
Chapter 19
On Combining Algebraic Specifications
with First-Order Logic via Athena

Katerina Ksystra, Nikos Triantafyllou and Petros Stefaneas

Abstract We present a verification framework developed by researchers of the
National Technical University of Athens as part of the Research Project Thalis “Alge-
braicModeling of Topological and Computational Structures andApplications”. The
proposed framework combines two different specification and theorem-proving sys-
tems, in order to facilitate the modeling and analysis of critical software systems.
On the one hand, the CafeOBJ algebraic specification language offers executable,
composable specifications, and insightful information about the proofs of desired
invariant properties. On the other hand, Athena, an interactive theorem-proving sys-
tem, provides automation and soundness guarantees for its results, as well as detailed
structured proofs. Although having conducted complicated case studies (references
to which are provided in the paper), here we focus on explaining the steps of the
proposed hybrid methodology as clearly as possible, through an illustrative example
of a simple mutual exclusion protocol.
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19.1 Introduction

Algebraic specification techniques have been developed in the area of formal meth-
ods and several algebraic specification languages and processors have been proposed.
In algebraic specification methods, systems are specified based on algebraic mod-
eling, and then the specifications are verified against requirements using algebraic
techniques. Algebraic specification languages such as CafeOBJ [1], Maude [2] and
CASL [3] have well-known advantages for modeling and reasoning about digital
systems. The specifications are relatively simple, readable and writable, and can
be executed and analyzed in various ways to provide valuable information to the
modelers.

Sometimes, however, specification languages can be more effective when inte-
grated with more conventional theorem-proving systems. CASL, for instance, has
been interfaced with HOL/Isabelle [4], through HOL-CASL [5]. Also the Hetero-
geneous Tool Set (Hets) [6] has connections with the algebraic specification lan-
guages Maude and CASL and external theorem provers (SPASS, Vampire, Darwin,
KRHyper and MathServe).

In this paper we present a methodology that combines the CafeOBJ algebraic
specification language with the Athena theorem proving system [7], and a common
interface that trasforms equational specifications written in CafeOBJ into Athena
specifications. The aim of the proposed framework is to exploit both the nice proper-
ties of CafeOBJ specifications and the soundness and automation offered by Athena.
This framework was developed by researchers of the National Technical University
of Athens as part of the Research Project Thalis “Algebraic Modeling of Topological
and Computational Structures and Applications”.

Inmore details, CafeOBJ providesmechanized implementations of Observational
Transition Systems (OTSs), a species of behavioral specifications, that allow users to
specify distributed systems using multi-sorted conditional equational logic with sub-
sorting [8]. The specifications are executable via rewriting, which is useful for build-
ing up computational intuitions about the underlying system. In addition, CafeOBJ
allows users to compose proof scores that establish certain invariant properties, typi-
cally by induction. Athena on the other hand, is a system based on general polymor-
phic multi-sorted first-order logic. It integrates computation and deduction, allows
for readable and highly structured proofs, guarantees the soundness of results that
have been proved, and also has built-in mechanisms for general model-checking and
theorem-proving, as well as seamless connections to state-of-the-art external systems
for both.

By combining these two methodologies we wish to combine the strengths of
CafeOBJ, most notably succinct, composable, executable specifications based on
conditional equational logic with those of Athena, namely, structured and readable
proofs, soundness of the results, and greater automation both for proof and for coun-
terexample discovery. The goal of this paper is to give an overview of the theo-
retical foundations of our framework (Sect. 19.2) and to provide an easy to follow
introduction to the proposed methodology (together with a tool that automates the
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transformation process from OTS/CafeOBJ into Athena specifications) using a sim-
ple and illustrative example (Sect. 19.3). Finally, we discuss related work and advan-
tages of the proposed framework in Sect. 19.4 and future directions in Sect. 19.5.

We should mention here that the proposed methodology has been successfully
applied to much larger and complicated use cases as well. To this end we encourage
the interested reader to visit [9] for the application of the proposed methodology to
the verification of the Alternating Bit Protocol, which is considered the traditional
benchmark used for testing mechanical verification of protocols [10].

19.2 Theoretical Background

19.2.1 CafeOBJ Algebraic Specification Language

CafeOBJ [1] is an algebraic specification language and processor that can be used to
specify abstract data types and abstract state machines. The basic units of a CafeOBJ
specification are its modules. There are two kinds of modules in CafeOBJ, tight
and loose modules. A tight module only accepts the smallest implementation that
satisfies what are specified in the module, while a loose module can accept any
implementations (that satisfy them). A tight module is declared with the keyword
mod!, and a loose module with the keyword mod∗.

In CafeOBJ modules, we can declare module imports, sorts, operators, variables
and equations. Operators without arguments are called constants. Built-in operators
denoting logical connectives can be used to declare negation, conjunction, disjunc-
tion, implication, and exclusive disjunction. Operators can have attributes such as
comm that specifies that the binary operator is commutative. Operators are declared
with the keyword op (or ops if there are many). The constructor operators of the
sorts are declared with the attribute constr. The non-constructor operators, or some
properties of the operators are defined in equations. Conditional equations can also
be declared inside a module, using the keyword ceq.

19.2.2 Observational Transition Systems (OTSs)

An Observational Transition System (OTS) is a transition system written in terms of
equations and is a proper subclass of behavioral specifications [11]. Assuming that
there exists a universal state space Y and that each datatype we need to use has been
declared in advance, an OTS S is defined as the triplet S = 〈O, I, T 〉 where [12]:
• O is a set of observers. Each o ∈ O is a function o : Y Do1 . . . Dom → Do, that
takes as input a state of the system and maybe other datatypes (not necessarily
in that order) and return a datatype value. Given an OTS S and two states u1, u2

the equivalence between them is defined with respect to the values returned by
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the observers, i.e. u1 =S u2 if and only if for each o ∈ O , o(u1, x1, . . . , xm) =
o(u2, x1, . . . , xm) for all x1 ∈ Do1, . . . , xm ∈ Dom .

• I is the set of initial states, such that I ⊆ Y .
• T is a set of conditional transitions. Each t ∈ T is a function t : Y Dt1 . . . Dtn → Y .
Each transition t , together with any other parameters, preserves the equivalence
between two states, i.e. if u1 =S u2, then for each t ∈ T , t (u1, y1, . . . , yn) =S

t (u2, y1, . . . , yn) for all y1 ∈ Dt1, . . . , yn ∈ Dtn . Each t has an effective condition
c-t : Y Dt1 . . . Dtn → Bool. If ∼ c-t (u, y1, . . . , yn), then t (u, y1, . . . , yn) =S u.
t (u, y1, . . . , yn) is called a successor state of a state u. We write u �S u′ iff a state
u′ ∈Y is a successor state of a state u ∈ Y .

An execution of an OTS S is an infinite sequence u0, u1, . . . of states satisfying:

– Initiation: u0 ∈ I and
– Consecution: For each i ∈ N , there exists t ∈ T such that ui+1 =S t (ui ).

Let εs be the set of all executions obtained from S. A state u ∈ Y appears in an
execution u0, u1, . . . of an OTS S, denoted by u ∈ u0, u1, . . . if there exists i ∈ N
such that u =S ui . A state u ∈ Y is called reachable with respect to an OTS S, if
and only if there exists an execution e ∈ εs such that u ∈ e. Let RS be the set of all
reachable states with respect to S.1

Roughly speaking, in the OTS/CafeOBJmethod the transitions between the states
of the system are modelled with constructor operators. The structure of a state is
abstracted by the observers, each one returning some observable information about
the state. Themeaning of an observer is formally described bymeans of (conditional)
equations [14].

19.2.3 Proof Scores in CafeOBJ

CafeOBJ is equipped with its processor called the CafeOBJ system, which is used
as an interactive theorem prover. The CafeOBJ system verifies the desired properties
by using the equations of the theory that defines an OTS as left to right re-write rules.
This method is called proof score approach and is computer-human interactive [15].
A proof score is a plan to verify that a property holds for a specification. This is
implemented as a set of instructions written by a human to a proof engine, such that
when executed, and if everything evaluates as expected, a desired theorem is proved.

In order to prove an invariant property using CafeOBJ the following steps need
to be taken. First, we formally express the property we want to prove as a predicate
in CafeOBJ terms in a module. Next, we write the inductive step as a predicate that
defines that if the invariant holds in an arbitrary state s then that implies that it holds
in its successor state s ′. Then we ask CafeOBJ to prove via term rewriting (using the

1RS is the type denoting the set of all reachable states wrt S. Also Sys denotes RS but not Y if the
constructor-based logic is adopted, which is the current logic underlying the OTS/CafeOBJ method
[13].
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reduce command), if the property holds for an arbitrary initial state. Finally, using
all the transition rules in turn, we must instantiate s ′ and ask CafeOBJ to prove the
inductive step for each case.

After asking CafeOBJ to prove such an expression three results might be returned
by the system. If true is returned this means that the proof is successful. If a CafeOBJ
term is returned, this means that there exist some terms that the system cannot fully
reduce. The user must then split the case, by stating that the returned term equals to
true and false in turn (computer-human interactive method). This creates two new
proof obligations and is known as case splitting. Finally, if false is returned, either the
property does not hold, or the case that returned false is unreachable for our system.

19.2.4 Athena

Athena [7] is an interactive theorem proving environment for polymorphic multi-
sorted first-order logic, with separate (but intertwined) languages for computation
and deduction. The main tool for constructing proofs is the method call. A method
call represents an inference step and can be primitive or complex.Methods can accept
as arguments other methods and/or procedures, and thus are higher-order.

Athena proofs are machine-checkable and expressed in a true natural-deduction
style, a style of proof that was explicitly designed to capture the essential aspects of
mathematical reasoning as it has been practiced for thousands of years [16], whose
semantics are formalized in terms of assumption bases. An assumption base is a
set of sentences serving as working hypotheses—typically axioms and previously
derived theorems. Initially the system starts with a small assumption base, containing
defining axioms for some built-in function symbols. When an axiom is postulated
or a theorem is proved, the corresponding sentence is inserted into the assumption
base. During the evaluation of a proof, methods interact with the assumption base,
checking to see if some arguments are present in the set and/or making new entries
[17].

Another important point here is that Athena guarantees the soundness of every
defined method, meaning that if and when a method call manages to derive a conclu-
sion p, we can be assured that p is a logical consequence of the assumption base in
which the call occurred. This guarantee stems from the formal semantics of Athena.
The larger point to keep in mind is that defined methods can never produce a result
that is not logically entailed by the assumption base [16].

Additionally, Athena is integratedwithmodel builders.Model generation is useful
for consistency checking, and in particular for falsifying conjectures: If we are not
sure whether a formula follows from a given set of premises, we can try to find a
counter-model, i.e., a model in which all the premises are true but the formula in
question is false. Model generators can be used to find such models automatically.
If we manage to find a counterexample in Athena, then any attempt to prove the
property would be pointless and therefore model checking can be quite a time saver
[16].
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Athena provides also a significant degree of proof automation, through seamless
interfaces to powerful automated theorem provers likeVampire [18] and SPASS [19],
as well as SAT and SMT solvers.

19.3 Proposed Framework: Combining CafeOBJ
and Athena Environments

TheOTS/CafeOBJ approach presentsmany advantages, themost important ofwhich,
in our opinion and experience, is that the proof scores can easily and effectively guide
the user to discover the required case splittings and occasional lemmas for the proof.
However, we believe that it could benefit by being combined with proof systems like
Athena, for the following reasons.

At first, each proof conducted in Athena is checked for soundness by the system.
Thus, Athena could act as a validator for the proofs conducted in CafeOBJ. Also,
Athena as we have already mentioned is integrated with some powerful automated
theorem provers (ATPs). Thus, via Athena, access to these highly efficient ATPs can
be enabled for OTS/CafeOBJ specifications as well, which could help to streamline
the verification process. Finally, Athena uses a Fitch-style natural-deduction proof
system. Expressing OTS/CafeOBJ in a high-level and structured natural-deduction
style such as Athena’s could help to make them comprehensible and accessible to a
wider audience.

Accordingly, we propose a methodology which combines both environments
(CafeOBJ and Athena) and consists of the following steps:

• Step 1: Create the OTS specification in CafeOBJ.
• Step 2: Generate an equivalent Athena specification, automatically.
• Step 3:Attempt to falsify the property of interest inAthena. If unsuccessful proceed
to the next step, else either the property or the specification should be revised.

• Step 4: Apply the proof score methodology in CafeOBJ until a lemma is required.
Discover a candidate lemma in CafeOBJ that can discard the problematic case.

• Step 5: Attempt to falsify the candidate lemma using Athena. If unsuccessful
proceed to the next step, else either the property or the specification should be
revised.

• Step 6: Iterate steps 4 to 5 until the proof scores methodology is completed for the
property in question and also for all the lemmas used.

• Step 7: Using the insights gained by the proof scores (case splittings and lemmas)
generate an Athena proof and check its soundness.

With the proposed methodology (steps 1 to 3), the user could save considerable
time byfirst attempting to falsify the property in question. If indeed a counter example
is returned by Athena, then either the property in question is not invariant for the
specification, or there might be a bug in the specification itself. In the first case, the
proof is completed and the property falsified. In the second case the output of Athena
usually provides sufficient information for the discovery and correction of the bug.
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During the verification of complex systems with the proof score methodology, it
is possible that the user will consider as lemmas, properties which while successfully
discard the problematic cases, are not invariant for the specification. This is usually
discovered at a late stage of the verification of the lemmas, in which case the proof
needs to be recreated using a different candidate lemma. This, can at times become
an important time sink for the verification effort. Athena, could potentially inform
the user of the error in the candidate lemmas at a much earlier stage (steps 4 to 5)
and thus save the user valuable time.

Also once the proof score methodology is completed, by transferring the insights
gained by it toAthenawe can easily create a formal proof for the property in question.
Athena can thus inform us about the soundness of the proof or point to reasoning
errors.

Finally, as we mentioned earlier the final proof constructed in Athena will be in
a style easy to understand and thus could help provide explanation as to why the
property is invariant or not for the system, in other words act as a sort of software
documentation.

19.3.1 Rules of Translation

In order to obtain an Athena specification from an OTS/CafeOBJ specification we
have defined an appropriate translation schema. The basic units of OTS/CafeOBJ
specifications and their transformation into Athena notation are shown in Table19.1.

In more details, in Athena initial algebras (with tight semantics) are specified
using the keyword datatype, whereas an arbitrary carrier (with loose semantics)
is introduced with the domain keyword. An induction principle is automatically
generated for every new datatype. States are formalized as a structure and state
transitions as its constructors. Structures are very much like datatypes, except that
theremaybe confusion, i.e. different constructor termsmight denote one and the same
object. An induction principle is also automatically generated (and, of course, valid).
We continue with the declaration of the observers. They are defined as functions with
the constraint that they take as input a state (and maybe additional input) and return

Table 19.1 The basic units of
OTS/CafeOBJ specifications
and their transformation into
Athena notation

OTS/CafeOBJ notation Athena notation

Tight modules Datatypes

Loose modules Domains

State Structure

Initial state State constructor

State transitions State constructors

Observers Functions

Equations Axioms
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some datatype. Finally, the equations that define the initial state, as well as the pre-
and post-conditions of the state transitions are defined as axioms.

Informally, an arbitrary OTS specification written in CafeOBJ terms is translated
into an Athena specification through the operator cafe2athena as follows:

Datatype modules:

cafe2athena(mod! M1 {[m1] . . .})
=
datatype m1 cafe2athena(. . .)

cafe2athena(mod* M2 {[m2] . . .})
=
domain m2 cafe2athena(. . .)

OTS modules (sort representing state space, initial state, transitions):

cafe2athena(mod S {∗[Sys]∗ op ini t : → Sys .
bop a : Sys Vj 1 ... Vj n → Sys . . .})
=
structure Sys := ini t | (a Sys Vj 1 . . . Vj n)

Observers:

cafe2athena(bop o : Sys Vi 1 . . . Vi n → V )
=
declare o := [Sys Vi 1 . . . Vi n] → V

Variables:

cafe2athena(Var xi 1 : Vi 1 . . . Var xi n : Vi n)
=
define [xi 1 ... xi n] := [?Vi 1 . . . ?Vi n]

Init axiom:

cafe2athena(eq o(ini t, xi 1, . . . , xi n) = f (xi 1, . . . , xi n))

=
assert* ini t-axiom := ((o ini t xi 1 . . . xi n) = f xi 1 . . . xi n)

where xi 1,...,xi n are Vi 1 ...Vi n sorted CafeOBJ variables and f (xi 1, ..., xi n) is the
value of the observer at the initial state.

Effective condition:

cafe2athena(op c-a : Sys Vj 1 ... Vj n → Bool .
eq c-a(w, x j 1, ..., x j n) = g(w, x j 1, ..., x j n) .)

=
define c-a := lambda (w x j 1 ... x j n) (g w x j 1 ... x j n)

where w is a hidden sorted variable and x j 1, ..., x j n are Vj 1...Vj n sorted CafeOBJ
variables.
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Transition axioms:

cafe2athena(eq o(a(w, x j 1, ..., x j n), xi 1, ..., xi n) = e-a(w, x j 1, ..., x j n , xi 1, ..., xi n)

if c-a(w, x j 1, ..., x j n) .)

=
assert a-axiom :=
((o(a w x j 1 ...x j n) xi 1 ... xi n) = (e-a w x j 1 ... x j n xi 1 ... xi n)

if (c-a w x j 1 ... x j n ))

where e-a(w, x j 1, ..., x j n, xi 1, ..., xi n) is the changed value of the observer after the
application of the transition. The definition of a proof score in Athena terms can be
found in Appendix 5

19.3.1.1 Semantic Correctness of the Translation.

Some readers may have noticed that we restricted the translation to non-parametric
modules. The parametric module system does not add to the expressiveness of the
language, however not supporting it may result in an overhead in specification code.
By enforcing this restriction on the style of the OTS/CafeOBJ specifications it is
safe to claim the semantic correctness of the translation, since in both languages
the underlying semantics is basically Order-sorted Conditional Equational Logic (in
which constructors are explicitly used). For details about the semantic correctness
of the translation we refer readers to [9].

19.3.1.2 Cafe2Athena Tool.

In order to make the proposed methodology more agile, we have developed a tool
that takes as input an OTS/CafeOBJ specification and automatically produces an
Athena specification, implementing the rules of translation we previously presented.
The tool is written in Java and hides the details of the translation, since the user
loads a CafeOBJ specification file, presses the “Translate to Athena” button and
gets the corresponding Athena specification. Cafe2Athena tool was a deliverable of
the Research Program Thalis “Algebraic modeling of topological and computational
structures” and can be downloaded from [20].

19.3.2 Illustrating Example: A Mutual Exclusion Protocol
Using an Atomic Instruction (Mutex)

We present in this section the application of the proposed methodology to a mutex
algorithm so as to explain it better and demonstrate its effectiveness. In this system,
we have a set of processes, each of which is executing code. A process, at any system
state, is either in some critical section of the code or in some remainder (waiting)
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section. Also, we have two transitions; the first corresponds to a process entering the
critical section and the second to a process exiting the critical section (and entering
the remainder section).

When a process p enters its critical section, the resulting state becomes locked.
When p exits the critical section, the resulting state is unlocked. For p to enter its
critical section in some state s, p must be enabled in s. A process p is enabled in s iff
p is in its remainder section in s and s is not locked. This is, therefore, the effective
condition of the enter state transition for a given process. The effective condition of
the exit transition is for the process to be in its critical section. We also have two
observer functions, one that takes a state s and a process id p and tells us what section
of the code p is executing in s (critical or remainder), and a function that takes a
state s and tells us whether s is locked.

19.3.2.1 Step 1. Specification in CafeOBJ.

The specification of the mutex OTS in CafeOBJ can be seen in Appendix 5

19.3.2.2 Step 2. Specification in Athena.

Using the ‘Cafe2Athena’ toolweobtain the specification of themutexOTS inAthena.
Some parts of the specification are explained below.

A domain of process identifiers (Pid) and a datatype for code labels (cs and rs,
for critical and remainder section, respectively) have been introduced:

domain Pid
datatype Label := rs | cs
assert label-axioms := (datatype-axioms"Label")

Here, rs and cs are the (nullary) constructors of the Label algebra. The
datatype-axioms of Label are quantified sentences that assert no-confusion
and no-junk conditions for the constructors. The effect of the assert command is
to insert those conditions into the global assumption base. States are formalized as
a structure and the state transitions as constructors of this structure, as follows:

structure State := init | (enter Pid State)
| (exit Pid State)

The declaration of the observer functions can be seen below:

declare at: [Pid State] -> Label
declare locked: [State] -> Boolean

The “at” function tells us the label of a given process in a given state. Binary
function symbols can be used in infix in Athena (the default notation is prefix), so if
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p and s are terms of sort Pid and State, respectively, then (p ats) gives us the label
of p in state s. The term (lockeds) tells us whether or not s is locked.

We now present the axioms that define the initial state, as well as the pre- and
post-conditions of the two state transitions (entering and exiting). First, appropriate
variables for the given sorts are defined.

define [i j s s’] := [?i:Pid ?j:Pid ?s s’:State]
assert* init-axioms := [(_ at init = rs)

(~ locked init)]

The initial-state axioms are simple enough: every process in the initial state is in
the remainder section, and the initial state is not locked. For the transition axioms of
enter we see it is helpful to define the effective condition as a separate procedure,
called enabled-at:

define (enabled-at i s) := (s at i = rs & ~ locked s)

The axioms for the enter and exit transitions, respectively, are presented below:

assert* enter-axioms :=
[(i enabled-at s ==> locked i enter s)
(i enabled-at s ==> i at i enter s = cs)
(i enabled-at s & j =/= i ==> j at i enter s = j at s)
(~ i enabled-at s ==> i enter s = s)]

assert* exit-axioms :=
[(i at s = cs ==> i at i exit s = cs)
(i at s = cs & j =/= i ==> j at i enter s = j at s)
(i at s = cs ==> ~ locked i exit s)
(i at s =/= cs ==> i exit s = s)]

19.3.2.3 Step 3. Define the Desired Goal and Falsify It with Athena.

The desired mutual exclusion property satisfied by the algorithm, is that there is at
most one process in the critical section at any given moment. This property can be
rephrased as “if there are two processes in the critical section, then those processes
are identical”. In Athena, the desired goal is defined as follows:

define (goal-property s) :=
(forall i j . i at s = cs & j at s = cs ==> i = j)

define goal := (forall s . goal-property s)

Before we try to prove a conjecture p, it is often useful to first try to falsify it
in Athena by finding a counterexample to it. This falls under a class of techniques
collectively known as model checking, or model building. If we manage to find a
counterexample, then any attempt to prove p would be useless (because Athena’s
proofs are guaranteed to be sound, so we can never prove something that doesnt
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follow logically from the assumption base, and if we find a counterexample to p
then p does not follow from the assumption base), and therefore model checking can
be quite a time saver. Moreover, the feedback provided by the model checker, given
in the form of a specific counterexample to the conjecture, is often very valuable in
helping us to debug and, in general, to better understand the theory or system we are
developing [16].

Athena is integrated with a number of external systems that can be used for model
building/checking, most notably SMT and SAT solvers, but there is also a built-in
model checker which is perhaps the simplest to use and can be surprisingly effective
[16].

To falsify a conjecture p, we simply call (falsify p N ). Here N is the desired
quantifier bound, namely, the number of values of the corresponding sort that we
wish to examine (in connection with the truth value of p) at each quantifier of p.
When falsification fails within the given bound, the term ’failure is returned. When
falsification succeeds, it returns specific values for the quantified variables that make
the conjecture false. Let us see in our example, if we can falsify the goal by examining
100 states:

> (falsify goal 100)
List: [’success
|{
?i:Pid := Pid_1
?j:Pid := Pid_2
?s:State := (enter Pid_2

(exit Pid_1
(enter Pid_1 init )))

}|]

As we can see, Athena falsified the property in question and returned a state in
which the goal is violated. This state can be reached after the application of the
transitions enter, exit and enter in the initial state of our system, as Athena informed
us (enter p2 exit p1 enter p1 init).

In order to understand better why the property is violated in a particular state
we have written a procedure, simulate, that takes as input a sequence of states
s1, . . . , sn , and prints out each state in the sequence by applying all observer functions
to the given state, and specifically by evaluating the applications of those observer
functions (by using the relevant axioms as rewrite rules).

Since we know which transitions cause the falsification of the goal, we can use
the simulate method to see the value of the observers in this problematic state. In our
case, calling simulate (p2 enter p1 exit p1 enter init), results
in the following output:
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State after (p1 enter init):
locked: p1 at:
------------ -------------------
true cs

State after (p1 exit (p1 enter init )):
locked: p1 at:
------------ -------------------
false cs

State after (p2 enter (p1 exit (p1 enter init ))):
locked: p2 at:
------------ -------------------
true cs

If we observe the returned values in this state we see that while p2 exits the critical
section it basically remains in the critical section. Thus we understand that theremust
exist an error in the definition of the exit axioms (in particular, the first axiom was
mis-written as (i at s = cs ==> i at i exit s = cs) instead of (i
at s = cs ==> i at i exit s = rs)). After redefining the axiom, we
falsify again the desired goal, and Athena returns the term ’failure. Thus we proceed
to the next step of our methodology.

19.3.2.4 Step 4. Start the Proof of the Desired Goal Using Proof Scores
Approach (until a Lemma Is Needed).

We start to work with proof scores in CafeOBJ, until we reach the following case
where CafeOBJ returns false:

open ISTEP .
-- arbitrary values
op k : -> Pid .
-- assumptions
-- eq c-enter(s,k) = true .
eq at(s,k) = rs .
eq locked(s) = false .
eq i = k .
eq (j = k) = false .
eq at(s,j) = cs .
-- successor state
eq s’ = enter(s,k) .
red istep1 .
close

This means that in order to discard this case we must use a lemma. By taking a
close look at the equations that define this statewe can observe that eq at(s,j) =
cs and eq locked(s) = false cannot hold together. This means that a possi-
ble lemma could be the following:inv2(S,J) = (at(S,J) = cs implies
locked(S) = true). To test if this lemma actually discards the problematic
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case we use the above proof score with the reduction red inv2(s,j) implies
istep1 and CafeOBJ returns true.

19.3.2.5 Step 5. Falsify the Discovered Lemma with Athena.

After defining the lemma in Athena, we try to falsify it and Athena returns the term
’failure, so we continue the proof score using this lemma.

19.3.2.6 Step 6. Continue the Proof Using Proof Scores in CafeOBJ.

Checking the rest of the cases in CafeOBJ will result in the completion of the proof
score. It is interesting to point out that in our example, during the proof score of the
lemma the original property under verification was required as part of the inductive
hypothesis. This case is shown below.

open ISTEP .
-- arbitrary values
op k : -> Pid .
-- assumptions
eq at(s,k) = cs .
eq (j = k) = false .
eq at(s,j) = cs .
-- successor state
eq s’ = exit(s,k) .
red inv1(s,j,k) implies istep2 .
close

19.3.2.7 Step 7. Create an Athena Proof Based on the Gained Insights.

The above pattern in a proof score denotes a situation where simultaneous induction
must performed. Together with the case splits and lemmas used, such information
is essential to the construction of the Athena proof. Also, by taking a closer look
at the invariant and the lemma used ((i at s = cs and j at s = cs ==>
i = j and j at s = cs ==> locked s, respectively) it is not difficult to
understand that a strengthened goal can be formulated out of them: i at s = cs
& j at s = cs ==> i = j & locked s, which we will attempt to verify
in Athena. The new goal is defined as follows:

define (new-goal-property s) :=
(forall i j . i at s = cs & j at s = cs ==> i = j & locked s)
define new-goal := (forall s . new-goal-property s)
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A method for completely automated inductive reasoning is automatically defined
whenever a new structure or datatype is introduced, as we have already mentioned.
The name of the method is the name of the corresponding structure joined with
the string -induction, in lower case. If we try to prove the new goal using the
state-induction we get the following output, which means that the goal is
automatically proved.

> (! state-induction new-goal)
Theorem: (forall ?s:State

(forall ?i:Pid
(forall ?j:Pid

(if (and (= (at ?i:Pid ?s:State)
cs)

(= (at ?j:Pid ?s:State)
cs))

(and (= ?i:Pid ?j:Pid)
(locked ?s:State ))))))

However, a completely automatic proof does not shed much light on a system’s
workings. A structured proof that derives the desired result in a piecemeal fashion can
be much more valuable in explaining the underlying system, i.e., in explaining why
a given property holds. In addition, the effort invested in constructing the proof often
pays off in increased understanding, and also in the discovery of errors, unintended
consequences of design constraints, and so on.

Athena uses a natural-deduction style of proof, as we have already mentioned,
which allows for structured and readable proofs that resemble in certain key respects
the informal proofs one encounters in practice [16]. Part of a detailed structured
Athena proof of the goal property for our example is shown below.2

by-induction (forall s . new-goal s) {
init => (!spf (new-goal init) (ab))

| (s’ as (k enter s)) =>
pick-any i:Pid j:Pid
let {IH := (forall i j . i at s = cs & j at s = cs

==> i = j & locked s)}
assume hyp := (i at s’ = cs & j at s’ = cs)
conclude goal := (i = j & locked s’)
(! two-cases
assume case1 := (k enabled-at s)
let {s’-locked := (!chain- > [case1

==> (locked s’) [enter-axioms ]]);
s-not-locked := (!chain- > [case1

==> (~ locked s) [right-and ]]);
i=j := (! by-contradiction (i = j)

assume h := (i =/= j)
let {D := {(i =/= k | j =/= k) from h}}

(!cases D
assume i=/=k := (i =/= k)
(!M i=/=k case1 IH)

assume j=/=k := (j =/= k)
(!M j=/=k case1 IH)))}

2For the full proof we refer readers to Appendix 5.
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(!both i=j s’-locked)
assume case2 := (~ k enabled-at s)
(! direct-ih hyp s case2 IH enter-axioms ))

...
}

In this way, Athena takes us one step closer to the goal of enabling proofs that can
serve to explain and communicate our reasoning, but which are nevertheless entirely
formal and checkable by machine [16].

19.4 Discussion

Some approaches that deal with the integration of algebraic specifications with more
conventional proving systems are briefly presented. A methodology that offers pars-
ing, static analysis and proof management is the tool Hets - the Heterogeneous Tool
Set [6]. Hets has among others, connections with the algebraic specification lan-
guages Maude and CASL and external theorem provers and is based on a graph of
logics and logic translations. Another interesting methodology for proving inductive
properties of OTSs that aims at automating the proof scores approach to verification,
can be found in [14]. In this paper, authors revise the entailment systemof proof scores
and enrich it with proof rules and tactics. Also, a prototype tool (Constructor-based
Inductive Theorem Prover - CITP) implementing the methodology is demonstrated.
CITP is implemented in Maude.

This last approach is the closest to ours but with a different point of view. While
both methodologies aim at providing soundness to the OTS/CafeOBJ method, CITP
focuses on the automation of the proofswhereaswe aremore concernedwith combin-
ing the benefits of CafeOBJ and Athena specification and verification methodologies
into one. For example, in [14] authors discharge automatically a desired property and
the required lemmas but they do not describe how the lemmas are formulated. Also
they do not support detailed proofs or simulation of the system’s behavior. Thus, we
believe that our approach offers better explanation and understanding of the verifi-
cation of the desired properties and the behavior of the specified system.

In the following we summarize the benefits of the proposed methodology; One
advantage is that the proof scores approach can provide feedback to the user when
a proof fails, and can be used to discover the required case splittings and occasional
lemmas for the proof, in contrast with most automated theorem provers including
Athena. Another advantage is that you can use the model-checking tools of Athena
to obtain some first insights about the specified system and thus save valuable time.
Also, the simulate procedure, can become really helpful in understanding how the
specified system behaves. Especially when you deal with a complex system where it
is almost impossible to “follow” its execution process, such visualization techniques
can provide a clear overview of the system and help in the discovery of possible
errors. For example in [21] authors state that among the lessons learned from a non
trivial, real life protocol case study of the OTS/CafeOBJ method, is the delay arose
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from errors in the specification and the expression of system’s property. These errors
would be found easilywith the proposed integration. In addition, the structured proofs
supported by Athena can provide valuable information and explanation as to why a
property is invariant or not for the specified system. Another important advantage of
our approach is that Athena does a thorough check of the overall proof and provides
a guarantee that if and when you get a theorem, that result follows logically from the
assumption base and the primitive methods (which in this case include the external
ATP). This is really helpful because on the other hand, with CafeOBJ’s proof scores
approach there is much greater room for human oversight. Finally, the automation
offered by Athena through its connection with external systems is another advantage
of the proposed framework.

19.5 Conclusion

We proposed a hybrid methodology that combines the proof scores approach of
CafeOBJ with Athena’s reasoning and verification tools, together with a tool that
translates equational CafeOBJ specifications into Athena code, and demonstrated
our approach with a mutex algorithm. Also we presented several features of the
methodology that can be used to: better understand the specified system,model-check
desired properties and verify them via theorem proving, both automatically and in
a structured and more detailed way. The proposed method aims at combining the
strengths of the languages, CafeOBJ and Athena, by working with proof scores and
CafeOBJ but also taking advantage ofmore conventional formal-methods techniques
that have traditionally lied outside of the rewriting community.

This methodology has been applied in larger case studies as well [9] and as future
work we plan to push the automation level further for complex systems and to inves-
tigate possible connections with tools incorporating various provers and different
specification languages. Also, we plan to extend the proposed framework in order to
include the behavioral aspects of CafeOBJ as well.
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Appendix A

Here we present the CafeOBJ specification of the mutex system.

mod* PID {
[Pid]
op _=_ : Pid Pid -> Bool {comm}
var I : Pid
eq (I = I) = true .}

mod! LABEL {
[Label]
ops rs cs : -> Label
op _=_ : Label Label -> Bool {comm}
var L : Label
eq (L = L) = true .
eq (rs = cs) = false .}

mod* MUTEX {
pr(LABEL + PID)
*[Sys]*
-- an arbitrary initial state
op init : -> Sys
-- observation functions
bop at : Sys Pid -> Label
bop locked : Sys -> Bool
-- transition functions
bop enter : Sys Pid -> Sys
bop exit : Sys Pid -> Sys
-- CafeOBJ variables
var S : Sys
vars I J : Pid
-- init
eq at(init ,I) = rs .
eq locked(init) = false .
-- enter
op c-enter : Sys Pid -> Bool
eq c-enter(S,I) = ((at(S,I) = rs) and not locked(S)) .
ceq at(enter(S,I),J) = cs if (I = J) and c-enter(S,I) .
ceq at(enter(S,I),J) = at(S,J) if not((I = J) and c-enter(S,I)) .
ceq locked(enter(S,I)) = true if c-enter(S,I) .
ceq enter(S,I) = S if not c-enter(S,I) .
-- exit
op c-exit : Sys Pid -> Bool
eq c-exit(S,I) = (at(S,I) = cs) .
ceq at(exit(S,I),J) = rs if (I = J) and c-exit(S,I) .
ceq at(exit(S,I),J) = at(S,J) if not((I = J) and c-exit(S,I)) .
ceq at(exit(S,I),J) = at(S,J) if not(I = J) and not c-exit(S,I) .
ceq locked(exit(S,I)) = false if c-exit(S,I) .
ceq exit(S,I) = S if not c-exit(S,I) .}
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Appendix B

The declaration of an invariant property in CafeOBJ terms and the definition of the
induction schema, are shown below:

-- declaration of the invariant property
mod INV {
-- arbitrary values
op s : -> Sys .
ops i j : -> Pid .
-- name of invariant to prove
op inv1 : Sys Pid Pid -> Bool
-- CafeOBJ variables
var S : Sys
vars I J : Pid
-- invariant to prove
eq inv1(S,I,J) = (at(S,I) = cs and at(S,J) = cs implies I = J) .
}
-- declaration of the inductive step
mod ISTEP {
pr(INV)
-- arbitrary values
op s’ : -> Sys

-- name of formula to prove in each inducion case
op istep1 : -> Bool
-- formula to prove in each induction case
eq istep1 = inv1(s,i,j) implies inv1(s’ ,i,j) .
}

The definition of the corresponding invariant in Athena is presented here (the
induction schema is automatically defined in Athena).

define (inv1 s) := (forall ?i ?j . at s ?i = cs & at s ?j = cs
==> ?i = ?j)

The proof score of the desired invariant property in CafeOBJ, for the initial state
and when a transition, called enter(s,k), is applied can be seen below:

-- proof score
-- I. Base case
open INV .

red inv1(init ,i,j) .
close .

-- II. Induction case
-- 1. enter(s,k)
open ISTEP .
-- arbitrary values

op k : -> Pid .
-- successor state

eq s’ = enter(s,k) .
-- check

red istep1 .
close

The corresponding proof skeleton in Athena can be defined as follows.
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by-induction (forall ?s . goal-property ?s) {
init => (! prove (goal-property init))
| (state as (enter s k)) =>
pick-any i:Pid j:Pid

assume hyp := (state at i = cs & state at j = cs) {
goal := (i = j);

goal from (ab)
}

}

Finally, the following proof scores present a case splitting in CafeOBJ. In the
first case we assume that at(s,k) = cs while the second proof score assumes
its symmetrical case, i.e. (at(s,k) = cs) = false.

open ISTEP .
-- arbitrary values

op k : -> Pid .
-- case 1
eq at(s,k) = cs .
-- successor state

eq s’ = enter(s,k) .
-- check

red istep1 .
close

open ISTEP .
-- arbitrary values

op k : -> Pid .
-- case 2
eq (at(s,k) = cs) = false .
-- successor state

eq s’ = enter(s,k) .
-- check

red istep1 .
close

The same case splitting can be defined in Athena terms as follows:

(! two-cases
assume case1 := (k at s = cs)
...
assume case2 := (k at s =/= cs))

Appendix C

A detailed structured Athena proof of the (strengthened) goal for our example is
shown below.

Theorem 19.1 For all states s ′ and processes i and j , if i and j are in their critical
sections in s ′, then i = j and s ′ is locked. �
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Proof By structural induction on s ′. When s ′ is the initial state the result is trivial
because the antecedent is false, as all processes are in their remainder sections ini-
tially. Suppose now that s ′ is of the form (k enter s). Pick any processes i and j and
assume both are in their critical sections in s ′. We then need to show that i = j and
that s ′ = (kenters) is locked. The inductive hypothesis here is:

i at s = cs & j at s = cs ==> i = j & locked s (19.1)

We distinguish two cases:

1. Case 1: k is enabled at s. Then (k ats ′ = cs)and (lockeds ′) follow from the enter
axioms. Thus, we only need to show i = j . By contradiction, suppose that i 
= j .
Then either i 
= k or j 
= k. 3 So assume first that i 
= k (the reasoning for the
case j 
= k is symmetric). Then, from the enter axioms and the assumption that
k is enabled at s, we conclude i ats ′ = i ats, hence i at s = cs. Now applying the
inductive hypothesis to the above assumption, we conclude (locked s). However,
that contradicts the assumption that k is enabled at s, as that assumption means
that s is not locked.

2. Case 2: k is not enabled at s. In that case, by the enter axioms, we get

(k enter s = s)

i.e., s ′ = s, and the result now follows directly from the inductive hypothesis.

Finally, suppose that s ′ is of the form (k exit s). Again pick any processes i and j
and assume both are in their critical sections in s ′. We again need to show that i = j
and that s ′ = (kexits) is locked. The inductive hypothesis here is the same as before,
(19.1). We distinguish two cases again, depending on whether or not the effective
condition of the exit transition holds:

1. Case 1: (k at s = cs).We proceed by contradiction. First, by applying the inductive
hypothesis to the conjunction of (k at s = cs) with itself, we obtain (locked s).
Also, by the exit axioms, we get

k at s ′ = (k exi t s) = rs

i.e.,
k at s ′ = rs. (19.2)

The exit axioms also imply that s ′ is not locked. We can now conclude that

i 
= k (19.3)

3Clearly, if neither of these hold, i.e., if i = k and j = k, thenwe could also have i = j , contradicting
our hypothesis.
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because otherwise, if i = k, the assumption that i is in cs in state s ′ would con-
tradict (19.2). Hence, by the exit axioms, we get

i at s ′ = i at s. (19.4)

Therefore, from (19.4) and the assumption that i is in cs in s ′, we get i at s =
cs. But now applying the inductive hypothesis to i at s = cs and to (k at s = cs)
yields i = k, contradicting (19.3).

2. Case 2: (k at s 
= cs). In that case the exit axioms give (k exit s = s, i.e., s ′ = s,
and the result follows directly from the inductive hypothesis.

The above informal proof can be formulated inAthena at the same level of abstrac-
tion and with the exact same structure. Moreover, the proof colloquialism “the rea-
soning for that case is symmetric” that appears in the enter transition can be directly
accommodated by abstracting the symmetric reasoning into amethod and then apply-
ing that method to multiple instances. Likewise, the treatment of enter and exit is
symmetric when their effective conditions are violated, in which case the result fol-
lows directly from the inductive hypothesis, and this commonality too can be easily
factored out into a general method. The entire proof, along with these two methods,
can be seen below. Note that the proof doesn’t use external theorem provers. Instead,
it uses Athena’s own library chain method, which allows for limited proof search.
The chain method extends the readability benefits of equational chains into arbitrary
implication chains.

# T h i s i s t h e ‘ ‘ s y m m e t r i c ’ ’ r e a s o n i n g t h a t a p p e a r s i n t w o
# p l a c e s i n t h e t r e a t m e n t o f e n t e r . We a b s t r a c t i t h e r e
# i n t o o n e s i n g l e g e n e r i c m e t h o d M .

define (M inequality enabled-premise IH) :=
match [inequality enabled-premise] {

[(~ (i = k)) (((k at s) = rs) & (~ (locked s)))] =>
(!chain- >
[inequality

==> (enabled-premise & inequality) [augment]
==> (i at k enter s = i at s) [enter-axioms]
==> (i at s = i at k enter s) [sym]
==> (i at s = cs) [(i at k enter s = cs)]
==> (i at s = cs & i at s = cs) [augment]
==> (locked s) [IH]
==> (locked s & ~ locked s) [augment]
==> false [prop-taut ]])

}

# T h i s m e t h o d h a n d l e s a l l c a s e s w h e r e t h e e f f e c t i v e c o n d i t i o n
# i s v i o l a t e d .

define (direct-ih hyp s failed-ec IH transition-axioms) :=
match hyp {

(((i at s’) = cs) & ((j at s’) = cs)) =>
let {s=s’ := (!chain- >

[failed-ec ==> (s’ = s) [transition-
axioms ]])}

(!chain- > [hyp ==> (i at s = cs & j at s = cs) [s=s’]
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==> (i = j & locked s) [IH]
==> (i = j & locked s’) [s=s’]])

}

# Th e m a i n p r o o f :

by-induction (forall s . gp s) {
init => (!spf (gp init) (ab))

| (s’ as (k enter s)) =>
pick-any i:Pid j:Pid
let {IH := (forall i j . i at s = cs & j at s = cs

==> i = j & locked s)}
assume hyp := (i at s’ = cs & j at s’ = cs)
conclude goal := (i = j & locked s’)
(! two-cases
assume case1 := (k enabled-at s)
let {s’-locked := (!chain- > [case1

==> (locked s’) [enter-axioms ]]);
s-not-locked := (!chain- > [case1

==> (~ locked s) [right-and ]]);
i=j := (! by-contradiction (i = j)

assume h := (i =/= j)
let {D := {(i =/= k | j =/= k) from h}}

(!cases D
assume i=/=k := (i =/= k)
(!M i=/=k case1 IH)

assume j=/=k := (j =/= k)
(!M j=/=k case1 IH)))}

(!both i=j s’-locked)
assume case2 := (~ k enabled-at s)
(! direct-ih hyp s case2 IH enter-axioms ))

| (s’ as (k exit s)) =>
pick-any i:Pid j:Pid
let {IH := (forall i j . i at s = cs & j at s = cs

==> i = j & locked s)}
assume hyp := (i at s’ = cs & j at s’ = cs)
conclude goal := (i = j & locked s’)
(! two-cases
assume case1 := (k at s = cs)
(! by-contradiction goal
assume -goal := (~ goal)
let {locked-s :=

(!chain- > [case1
==> (case1 & case1) [augment]
==> (locked s) [IH]]);

p2 := (!chain- > [case1
==> (k at s’ = rs) [exit-axioms ]]);

i=/=k :=
(! by-contradiction (i =/= k)
assume h := (i = k)
(!chain- > [p2

==> (i at s’ = rs) [h]
==> (cs = rs) [(i at s’ = cs)]
==> (cs = rs & cs =/= rs) [augment]
==> false [prop-taut ]]))}

(!chain- > [i=/=k
==> (i at s’ = i at s) [exit-axioms]
==> (i at s = cs) [(i at s’ = cs)]
==> (i at s = cs & k at s = cs) [augment]
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==> (i = k) [IH]
==> (i = k & i =/= k) [augment]
==> false [prop-taut ]]))

assume case2 := (k at s =/= cs)
(! direct-ih hyp s case2 IH exit-axioms ))

}
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