
Chapter 14
Molecular Simulation of Ionic Liquids:
Complex Dynamics and Structure

Niki Vergadou

Abstract Ionic Liquids (ILs) are organic salts with melting temperatures below
100◦ C. They are characterized by an exceptional combination of properties that
renders them very good candidates for use in many cutting-edge technological appli-
cations. The organic and simultaneously ionic nature of the constitutive ions results
in diverse interactions that directly affect the microscopic structure and the dynami-
cal behaviour of ILs. Molecular simulation methods using optimized force fields are
applied for the study of the complex dynamics and the spatial organization in ILs.

14.1 Introduction to Ionic Liquids

Ionic fluids consist entirely of ions. Within this category of materials, a new class of
fluids has emerged in the last few decades under the term “Ionic Liquids” (ILs) [1, 2].
ILs differ from molten salts due to the fact that they are usually composed of one
large asymmetric cation and one organic or inorganic anion and the combination of
this type of ionic chemical structures leads to salts with lower melting temperatures.
Following the description of Paul Walden who was one of the first [3, 4] to observe
organic salts in 1914, ILs are considered as the salts that are in the liquid state at
room temperature and by convention below 100◦ C. In Fig. 14.1, some typical anions
and cations are shown. There is a vast number of anions and cations that can be
combined to form millions of potential ILs [5], revealing an enormous territory that
despite having attracted great scientific interest in recent years, still remains largerly
unexplored.

ILs are identified as novel designer solvents and advanced materials that can be
utilized in a wide range of processes and applications. This fact is predominantly
attributed to their great chemical tunability due to the diverse chemical structure of
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Fig. 14.1 Chemical structure of commonly used cations and anions

the anions and cations involved that enables the design of task specific ILs (TSILs)
with controlled macroscopic properties. Apart from this important characteristic,
ILs also combine a number of other exceptional properties [6–9] such as negligible
vapour pressure, non-flammability, good thermal and electrochemical stability, wide
range of temperatures over which they remain in the liquid state as well as very
good solvation properties and in many cases high CO2 absorption and separation
capacity [10, 11]. Their range of application constantly grows and extends from
green chemistry and electrochemistry to biotechnology, environmental engineering
and novel separation processes (Fig. 14.2).

14.2 Molecular Simulation

The plethora of ILs and the multitude of technologies in which ILs can be used, neces-
sitates the unraveling of the underlying mechanisms [12] that are responsible for their
macroscopic behaviour. Molecular simulation [13, 14] is based on the fundamental
principles of statistical mechanics and provides a unique systematic way in this direc-
tion, enabling at the same time the prediction of a number of materials properties.
Among the properties that can be calculated from molecular simulations are: (i) ther-
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Fig. 14.2 Important properties of ILs and indicative range of applications

modynamic properties such as density, isothermal and isobaric compressibility, heat
capacities, Gibbs free energy, Helmholtz free energy, activity coefficients, (ii) struc-
tural properties, (iii) dynamical and transport properties including local dynamics,
diffusion coefficients, viscosities and ionic conductivities, (iv) surface and interfacial
properties such as surface tension, (v) phase equilibria, (vi) mechanical properties
and (vi) selectivity and permeability properties.

Various molecular simulation methods can be implemented depending on the
materials under study and the time- and length-scales involved in the specific problem
at hand, ranging from ab initio quantum mechanical methods, atomistic simulations
(Monte Carlo, Molecular Dynamics, Transitions State Theory of Infrequent Events)
to mesoscopic methods (Coarse-grained simulations, Kinetic Monte Carlo etc.). This
chapter involves the computational study of ILs at the atomistic level using molecular
dynamics (MD) simulation [15, 16].

The accuracy in the predictions of molecular simulation relies to a large extend on
the force field used for the representation of the inter- and intramolecular interactions
in the system. The interaction potential is typically of the form:
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where l, θ , χ and ψ denote bond length, bond angle, dihedral and improper angle,
respectively, and the subscript “0” refers to the equilibrium values. In the dihedral
potential term, parameter n is the multiplicity of the dihedral angle and δ is the
phase shift of the dihedral potential over the full range of rotation. Partial charges
are denoted by qi , ε0 is the vacuum permittivity and ε, σ are the Lennard-Jones (LJ)
parameters.

There are several difficulties and challenges in the molecular simulation of ILs
[17–19]. The intense chemical diversity that characterizes the ions in ILs, prohibits
the use of general force fields and necessitates the development and optimization
of system specific interaction potentials. At the same time, complex inter-ionic and
strong electrostatic interactions are present in these systems, hence polarizability and
charge transfer effects have to be taken into account in order to simulate accurately
their behaviour.

14.3 IL Structure and Dynamics

ILs exhibit a wide range of time scales in the relaxation of their various modes
of motion. They retain their structural organization at much longer distances com-
pared to ordinary liquids and are characterized by a sluggish dynamical behavior.
ILs are glass-forming materials and therefore the prediction of their transport prop-
erties, especially at low temperatures, is a very demanding task. The discussion
that follows focuses on molecular simulation results on ILs with imidazolium-based
cations, specifically the 1-alkyl-3-methylimidazolium ([Cnmim+]) cations, varying
the cations alkyl tail, coupled with bis(trifluoromethylsulfonyl)imide ([TF2N−]) or
tricyanomethanide ([TCM−]) anions. MD simulations of several tens of nanoseconds
were performed in a wide temperature range, and at atmospheric pressure using clas-
sical force fields that have been optimized and extensively validated for these two
imidazolium-based IL families [20, 21].

14.3.1 Spatial Organization

ILs are heterogeneous fluids that due to the ionic interactions, form polar and non-
polar domains [22]. Structural order is retained at long distances and is clearly
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Fig. 14.3 Radial
discribution functions (RDF)
between the ions
centers-of-mass of
[C8mim+][TCM−] IL at 298
K [21]
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Fig. 14.4 Radial
discribution functions (RDF)
between the ions
centers-of-mass of
[C8mim+][TF2N−] IL at
398 K [23]
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depicted by intense oscillations in the radial distribution functions (RDF) [21, 23]
of the ions center of mass. The anion-cation RDF reveals the strong ionic cou-
pling of the counterions (Figs. 14.3 and 14.4) and exhibits multiple coordination
shells (not in phase with the anion-anion RDF) while cation-cation RDFs show a
much broader distribution. The spatial distribution function of the central carbon in
[TCM−] around [C4mim+] at 298K (using an iso-surface value equal to 8.1 nm−3)
is shown in Fig. 14.5.

The effect of the alkyl tail length on these properties was also investigated and tail
aggregation phenomena (Fig. 14.6), which become more evident for the longer alkyl
chain lengths, were detected by calculating radial distribution functions between dif-
ferent sites on the ions [20, 21, 23]. The microscopic local structure reflects a spatially
heterogeneous environment that evolves from the interplay between short-range col-
lective interactions (non-polar tail groups) and long-range electrostatic interactions
(cation’s head groups). For a larger number of carbon atoms in the cation’s alkyl tail,
liquid crystalline-like structures emerge [24].
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Fig. 14.5 Spatial
distribution function of the
central carbon in [TCM−]
around [C4mim+]
(iso-surface value equal to
8.1 nm−3)

Fig. 14.6 Radial distribution
function (RDF) between the
terminal carbon atoms in the
cation alkyl chain of
[C2mim+][TCM−] (black),
[C4mim+][TCM−] (red),
[C6mim+][TCM−] (blue)
and [C8mim+][TCM−]
(green) at 298 K [21]
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14.3.2 Dynamical Heterogeneity

ILs are viscous liquids and their dynamics often resembles the one of the supercooled
liquids. Cooperative motion and caging effects are present in these systems leading
to heterogeneity phenomena [25–30] and to a non-Arrhenius behaviour. In glass-
forming materials, at short times the particles are trapped in “cages” of adjacent
particles, while the escape from the cage takes place at longer time scales as the
temperature decreases. Complex and heterogeneous dynamics has been detected in
ILs both experimentally [31–35] and computationally [20, 21, 35–43]

An estimation of the time scales at which dynamic heterogeneity appears can
be obtained from the non-Gaussian parameters αn(t), n = 2, 3, . . . [44], with α2(t)
defined as:
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Fig. 14.7 Non-Gaussian parameter α2(t) at 298, 348 and 398 K for a cation and b anion of
[C8mim+][TF2N−] IL [20]

α2 (t) = 3〈|ri (t) − ri (t0)|4〉
5〈|ri (t) − ri (t0)|2〉2 − 1 (14.2)

where |ri (t) − ri (t0)| represents the displacement of a particle (or an ion’s center
of mass) at a time interval t − t0 and the brackets denote the mean over all parti-
cles. Non-zero values in α2(t) signify dynamical heterogeneity phenomena with the
maximum being only indicative of the time of maximum heterogeneity, as the non-
Gaussian behaviour may be preserved at much longer times [45, 46]. The ballistic
motion is characterised by zero α2 (t) values and α2 (t) begins to increase at time
scales associated with β relaxation, dropping again at the long time limit to zero (α
relaxation) [47].

The non-Gaussian parameter is plotted in Fig. 14.7 for the cation and the anion
in [C8mim+][TF2N−] IL at three temperatures [20]. These plots clearly depict a
non-Gaussian nature in both ions that is preserved at longer times, with the cation
exhibiting a higher a2 peak than the anion. This is also true for the ILs with the shorter
alkyl tails [20] and is indicative of a more pronounced heterogeneous behaviour for
the cation. The maxima obtain a higher value as the temperature decreases and at
longer times. In case of [Cnmim+][TCM−], the anion is the one with the more intense
maximum [21, 48] as shown in Fig. 14.8 for [C8mim+][TCM−] cation and anion at
298 K.

A quantification of the dynamic heterogeneity can be achieved by measuring a
time-space correlation function corresponding to a classical expression of van Hove
function [49]:

G (r, t) = 1

N

〈
N∑

i=1

N∑

j=1

δ
(
r − ri (t) + r j (0)

)
〉

(14.3)

where δ is Dirac delta and the brackets denote time average from an equilibrium
trajectory in phase space. Therefore, although G (r, t) is a dynamic function, it
is simultaneously a measure of an equilibrium property. The function G (r, t) is
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Fig. 14.8 Non-Gaussian
parameter α2(t) for the
cation (red) and the anion
(black) of [C8mim+]
[TCM−] IL at 298K [21]
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proportional to the probability that a particle is located at position r at time t given
that a particle was located at r(0) at t = 0 and can be separated in a self (Gs) for
i = j and a distinct part (Gd ) for i �= j :

G (r, t) = Gs (r, t) + Gd (r, t) (14.4)

Single-ion dynamics can be quantified by the self-part of the van Hove correlation
function [50] that provides the distribution of particle dispacements for different
times:

Gs (r, t) = 1

N

〈
N∑

i=1

N∑

j=1

δ (r − ri (t) + ri (0))

〉
(14.5)

At time t = 0, Gs (r, 0) = δ and for all times, it is normalized by:

∫
Gs (r, t) dr = 1 (14.6)

At the long time limit, the particle is independent of its initial position:

lim
r→∞ Gs (r, t) = lim

t→∞ Gs (r, t) = 1

V
≈ 0 (14.7)

where V is the system volume. The probability density that a particle displaces by
distance r [51] is given by:

gs(r, t) =
∫ π

θ=0

∫ 2π

φ=0
Gs (r, t) r2 sin θdφdθ (14.8)

and for an isotropic medium Gs (r, t) = Gs (r, t) and gs(r, t) = 4πr2Gs (r, t).
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Fig. 14.9 Self-part of the Van Hove function Gs (r, t) as a function of distance at 298 K plotted
against the expected Gaussian distribution for a the cation and b the anion of [C6mim+][TCM−]

In the case of Fickian diffusion, the self-part of the Van Hove function follows
the Gaussian approximation [52]:

Gs
g (r, t) =

[
3

2π
〈
Δr2(t)

〉
] 3

2

exp

[
−3r2

2
〈
Δr2(t)

〉
]

(14.9)

with
〈
Δr2(t)

〉
being the mean square displacement (MSD) at a time interval t.

In Fig. 14.9, the self-part of the Van Hove function Gs (r, t) for (a) the cation and
(b) the anion of [C6mim+][TCM−] [21] is plotted against the expected Gaussian
distribution at 298 K and for t = 100, 500, 1000, 3000 ps. Deviations of the Gs (r, t)
from the expected Gaussian are evidence of dynamic heterogeneity, which for the
systems under study is present at time intervals typically ranging from a few ps
up to several ns. For the longer alkyl tail IL, the non-Gaussian behavior persists at
longer times, while these deviations are diminished as the temperature is increased.
A multifractal character has been also reported [42] in relation to the heterogeneous
nature of ILs.

The divergence between the Gs (r, t) and Gs
g (r, t) curves depicts the existence

at intermediate times of ions with “faster” or “slower” mobility than expected based
on that distance that each ion has travelled at time t . The crossing points of the two
curves at short and long distances are used to identify dynamically distinguishable
ions at a specific time interval [47].

The spatial correlation of these subsets of fast and slow ions manifests the occur-
rence of clustering phenomena between mobile and immobile ions. This is clearly
shown in Fig. 14.10, in which the RDFs between the centers of mass of slow anions
– slow cations, fast anions – fast cations and fast – slow anions and cations are shown
for (a) [C4mim+][TCM−] [21] and (b) [C6mim+][TCM−] at 298 K for t = 500 ps.
These RDFs are plotted against the RDF that corresponds to the anion-cation centers
of mass as calculated from all ions, exhibiting maxima at the same distances with
much higher peaks, though, in the case of ions of same mobility. The evolution of
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Fig. 14.10 Radial distribution functions (RDF) between the centers of mass of slow anions slow
cations (magenta), fast anions fast cations (blue) and fast slow anions and cations (black) plotted
against the total RDF (red) calculated for a [C6mim+][TCM−] [21] and b [C6mim+][TCM−] at
298 K for t = 500 ps. The red line corresponds to the radial distribution functions between the
anion-cation centers of mass as calculated from all ions

Fig. 14.11 Radial
distribution functions
between the centers of mass
of fast cations and fast anions
calculated at 298 K for t =
10, 50, 100, 300 and 1000 ps
of [C8mim+][TF2N−] [20]
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the clustering tendency in time is shown in Fig. 14.11 as calculated for fast cations
and fast anions of [C8mim+][TF2N−] at 298 K and t = 10, 50, 100, 300 and 1000 ps
[20].

14.3.3 Diffusional Anisotropy

Anisotropy in the ions translational motion is present in some ionic species in ILs [20,
21, 40, 53]. Such phenomena can be traced by examining the ions diffusional motion
along specific axes dictated by the geometry of the ions. In Fig. 14.12, four axes are
defined for the case of imidazolium-based cations: the vector NN that connects the
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Fig. 14.12 The vectors defined on the imidazolium-based cation along which the translational
motion of the center of mass was analyzed
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Fig. 14.13 Mean square displacement (MSD) at 298 K calculated along the direction of the vector
that is normal to the imidazolium plane (black), the vectors NN (red) and NNp (green), and along
the the end-to-end vector N3-Ct of the alkyl tail (blue) of the cation compared to the 1/3 of the total
MSD of the center of mass (magenta dashed line) for a [C2mim+][TCM−], b [C4mim+][TCM−],
c [C6mim+][TCM−] and d [C8mim+][TCM−] [21]

two nitrogen atoms in the imidazolium ring, the normal vector to the imidazolium
ring, the vector NNp that is perpendicular to the former two vectors and the end-to-
end vector N3-Ct of the alkyl tail.

Diffusional anisotropy can be extracted by comparing the MSD along each
axis to the one third of the total MSD, as shown in Fig. 14.13 for the cations in
[C2mim+][TCM−], [C4mim+][TCM−], [C6mim+][TCM−] and [C8mim+][TCM−]
ILs at 298K. In case of an isotropic diffusional motion the MSD along any axis
would coincide with the total MSD/3. For all systems presented, there is a more
facile movement along the NN and N3-Ct vectors, which becomes more intense for
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the cations with the longer alkyl tails. For [C8mim+][TCM−] IL in particular, the
movement along the N3-Ct vector deviates from the one of NN vector, exhibiting at
1.5ns an MSD almost by a factor of two higher than the 1/3 of the total MSD. The
movement along the NNp vector and the vector that is normal to the imidazolium
plane appears to be rather hindered compared to the other two directions. At 298K,
diffusional anisotropy is maintained over long timescales that extend even to the Ein-
stein regime. Similar behaviour is observed for the [Cnmim+][TF2N−] ILs in which,
apart from the cation, there is also a preferential movement along the direction of
the vector that connects the two sulfurs of the [TF2N−] anion [20].

14.3.4 Transport Properties

Long MD simulations in the order of several tens of nanoseconds have been per-
formed for the determination of the transport properties of the ILs under study. The
self-diffusion coefficients of the ions were calculated using the Einstein relation [54]:

D = 1

2d
lim
t→∞

d

dt

〈|ri (t) − ri (0)|2〉 (14.10)

where the brackets indicate the mean square displacement (MSD) over all ions’
centers of mass and d is the dimensionality of the conducted diffusivity.

The determination of the diffusion coefficients from an MD simulation pre-
supposes that the system is simulated long enough, so that it has reached the
Fickian regime. Normal diffusivity can be identified by a slope equal to unity
in the log(MSD) versus log(t) plot. Self-diffusion coefficients were calculated for
imidazolium-based ILs under study [20, 21, 48]. The self-diffusion coefficients for
the ions in [C8mim+][TCM−] IL are shown in Fig. 14.14 at various temperatures
and at atmospheric pressure. The calculated diffusivities for the cation are in excel-

Fig. 14.14 Self-diffusion
coefficients [21, 48] of the
anion (squares) and the
cation (circles) versus
temperature for
[C8mim+][TCM−] IL. The
open points correspond to
NMR experimental
measurements for the
cation [55]
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Fig. 14.15 Viscosity
calculations from MD
simulations (full points) [21,
48] as a function of
temperature plotted against
experimental data (lines with
open points) [48, 56] for
[C8mim+][TCM−]
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lent agreement with NMR experimental measurements [55] of the same IL system,
confirming the ability of the recently optimized force field [21] to reproduce the
properties of the [Cnmim+][TCM−] IL family with great accuracy. No experimental
results are currently available for the [TCM−] anion.

Shear viscosity was extracted from the autocorrelation function of the pressure
tensor using the Green-Kubo relation:

η = V

kBT

∫ ∞

0
dt

〈
Pαβ(t)Pαβ(0)

〉
(14.11)

where Pαβ(t) is the αβ-element of the pressure tensor at time t (α �= β). The tem-
perature dependence of the viscosity is captured very well [20, 21, 48] for all ILs
with good agreement with available experimental data. In Fig. 14.15, viscosities cal-
culated from MD in a wide temperature range for [C8mim+][TCM−] are plotted
against experimental measurements exhibiting a very good agreement.

14.4 Conclusions

Ionic fluids inherently carry a higher degree of complexity than systems comprised
of neutral species. ILs, in particular, exhibit an exceptional combination of properties
that originate significantly from their dual organic and ionic nature. A fundamental
understanding of the diverse interactions and the microscopic mechanisms that give
rise to the non-trivial spatial and dynamical behaviour in ILs is required, especially
considering more complex IL systems such as multi-compound IL fluids, ILs as gas
separation media [10, 57] and under confinement in solid substrates [58, 59] or IL-IL
mixtures [60, 61]. Theoretical and computational studies combined in a synergistic
manner with high-resolution experimental techniques should target in elucidating the
underlying complex phenomena, extending the fundamental knowledge and reveal-
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ing the chemical structure – property relations in this class of advanced materials
with enormous applicability in a wide range of state-of-the art technologies.
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