
Chapter 13
Fourier Braids

Stephan Klaus

Abstract By the closure operation, knots can be represented by cyclic braids, which
can be unfolded as periodic complex valued functions. Their description by Fourier
series allows an approximation by finite Laurent polynomials g(z). We define an
algebraic discriminant Δn

g(z), such that an n-braid is given by those g(z) satisfying
the condition (S) of having all roots not on the unit circle. We study property (S)
from the algebraic and topological viewpoint. Using further algebraic conditions for
g(z)we obtain algebraic representations of cyclic braids in thickened surfaces, which
represent periodic boundary conditions.
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13.1 Cyclic Braids and the Closure Operation

We note that this research is based on earlier results of the author on algebraic con-
structions of knots given in [2–4, 6]. The author has also given a talk on these results
in the Oberwolfach Workshop 2014 on Algebraic Structures in Low-Dimensional
Topology [5].

Because of Alexander’s Theorem, knots and links can be obtained by closing
braids. We recall the basic notions. Let

Cn(C) := {(z1, z2, . . . , zn) | zi ∈ C, zi �= zj ∀i, j}
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284 S. Klaus

be the ordered configuration space of n points in the complex plane. There is
a free operation of the symmetric group Σn on Cn(C) and the quotient gives us
the (unordered) configuration space Cn(C)/Σn. As a base point in these spaces
we can use the configuration (1, 2, . . . , n) or the configuration (1, ε, . . . , εn−1) with
ε := e2πi/n.

An n-braid is a closed loop in the configuration space, i.e. a continuous function

b : S1 → Cn(C)/Σn.

In the following, we often jump between the equivalent descriptions f : I → X with
f (0) = f (1) and f : S1 → X for periodic functions with values in some topological
space X. Here the identification I/0∼1

∼= R/Z ∼= S1 ⊂ C is given by the map t �→
e2πit .

The set of pointed homotopy classes of n-braids starting and ending in a fixed
configuration is just the braid group

Brn := π1(C
n(C)/Σn).

The group structure is given by loop sum which we denote by ⊥, i.e. concatenation
of braids. If we do not specify the initial configuration as a base point and consider
free homotopy classes, then the set of free homotopy classes of braids is given by
the set of conjugacy classes of the group Brn.

In order to define the closure operation we use the open unit disc Ḋ2 instead of
the complex plane. As the strands are images of the closed interval I , they always
lie in a bounded region and hence we can shrink them to the unit disc by a suitable
contraction factor for any braid. (Alternatively, we could use a fixed diffeomorphism
C ∼= Ḋ2.) Then then strands of the braidb are embedded in the cylinderD2 × I1 ⊂ R

3

by (b(t), t) and the closure b̂ of b is defined by connecting the initial points and end
points of the strands in the bottom and top disc of the cylinder, where the connecting
paths lie outside the cylinder and have to be ‘parallel’.

Here is an equivalent (isotopic) definition of the closure operation which utilizes
the torus parametrization:

τ : D2 × I → R
3

τ (z, t) :=
⎛
⎝
cos(2πt)(2 + Re(z))
sin(2πt)(2 + Re(z))

Im(z)

⎞
⎠ .

Then the closure b̂ is defined by τ (b(t), t).
For a general n-braid b the closure does not give a knot but a link in R

3. In fact,
the strands of a braid b define a permutation ρ(b) of the set of initial points. Then the
closure b̂ is a knot if and only if ρ(b) is an n-cycle. We call a braid with this property
a cyclic braid.
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In the general case, the link components of b̂ correspond to the cycles in the cycle
decomposition of the permutation ρ(b). The other extreme is the case of a pure braid
which is defined by the condition that ρ(b) is the identity. Because of the covering
map

Cn(C) → Cn(C)/Σn

we get an exact sequence of fundamental groups

1 → PBrn → Brn → Σn → 1

where PBrn := π1(Cn(C)) denotes the pure braid group.
It is also well-known that the braid group has a presentation by generators and

relations
Brn = 〈σ1,σ2, . . . ,σn−1 | R1,R2〉

R1 : σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

R2 : σiσj = σjσi ∀i, j = 1, . . . , n − 2, |i − j| > 1

where the σi are the standard braid generators (half-twists of the ith and (i + 1)th
strands). The homomorphism ρ is just given by sending σi to the transposition of i
and i + 1.

We note that n, the number of strands of a cyclic n-braid, gives a bound for
the bridge number of the closure b̂. This fact can be seen from the well-known
result that the bridge number of a knot k : S1 → R

3 can be defined by the following
minimum. (See [8] for background in differential topology.) Let v ∈ S2 be a direction
in R

3 and consider the projection of k on the line spanned by v, i.e. pk,v : S1 → R,
pk,v := 〈k(t), v〉 (scalar product). By transversality, it is possible to find a direction
v and to change k slightly up to isotopy such that pk,v is a Morse-function which has
the property that the finite set of singular points consist of local minima and maxima
only (i.e. no saddle points) and pk,v takes different values on them. Then the number
of local minima equals the number of local maxima because the Euler characteristics
of S1 vanishes. It is well-known that the minimal possible number degM(k) ∈ N of
local minima (where we allow to change k up to isotopy) gives just the bridge number
of the knot. Obviously it holds

degM(k) = 1 ⇐⇒ k is the unknot.

Proposition 13.1 Let b be a cyclic n-braid, then the bridge number of its closure b̂
satisfies degM(b̂) ≤ n.

Proof Consider the closure as above and chose v in the plane spanned by x and
y. After a suitable isotopy (e.g., center the braid along a small disc around 0 such
that the closed braid is contained in a small tube around the unit circle), each strand
contributes with one local minimum (and one local maximum) to the singular points
of pk,v . �



286 S. Klaus

13.2 Unfolding of Cyclic Braids

A general n-braid is given by n functions I → C which start and end in the same
configuration and whose graphs do not intersect. For a cyclic braid b, we can give a
representation by only one complex periodic function:

Proposition 13.2 Concatenation of strands defines a homeomorphism from the set
of cyclic n-braids to the space of continuous functions

UCBn := {f : S1 → C | f (εkz) �= f (z) ∀z ∈ S1, k = 1, 2, . . . , �n/2�}

with ε := e2πi/n and �r� the largest integer smaller than or equal a real number r. In
particular, the set of free homotopy classes of cyclic n-braids is given by π0(UCBn).
The closure of a cyclic n-braid b (such that the associated function f takes values in
the unit disk) is given as

b̂(t) =
⎛
⎝
cos(2πnt)(2 + Re(f (e2πit)))
sin(2πnt)(2 + Re(f (e2πit)))

Im(f (e2πit))

⎞
⎠ .

Proof For a cyclic braid b, we pick one of the points u ∈ C of the initial configuration
as a start point with time parameter t = 0 and then we concatenate the n strands
b1, b2, . . . , bn which are numerated in the order of the associated n-cycle ρ(b), i.e.
bk starts at ρ(b)k−1(u) and ends in ρ(b)k(u). This defines a function

b1⊥b2⊥ . . . ⊥bn : [0, n] → C

which starts and ends in the same point u, see Fig. 13.1 (drawing by the author).
Rescaling this function to [0, 1] and using I/0∼1

∼= S1 we obtain a periodic function

Fig. 13.1 Unfolding of a
cyclic three-braid
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f : S1 → C. Now, multiplication of z by εk is just a time shift for the function f
which changes the start point to the kth strand (according to the cyclic order given by
ρ(b)). Hence the condition f (εkz) �= f (εlz)∀z ∈ S1 is equivalent to the condition that
the strands bk+i and bl+i do not intersect for all i. Because of εn = 1 and symmetry,
we only need the condition f (εkz) �= f (z)∀z ∈ S1, k = 1, 2, . . . , �n/2� in order to
guarantee that the n strands b1, b2, . . . , bn do not intersect. If a periodic function f :
I → C satisfies this condition it can in turn be interpreted as a cyclic braid by defining
the kth strand as the (rescaled) restriction of f to the segment [k/n, (k + 1)/n]. This
transformation from cyclic n-braids to functions inUCBn and back is clearly bijective
and continuous which proves the statement on π0. As the closure can be given by
b̂(t) = τ (b(t), t) and as b̂ winds n times around the z-axis, the last formula follows.
�

We call the transformation of a cyclic n-braid b to the associated function f (z) ∈
UCBn the unfolding of the braid (and ‘UCB’ is the abbreviation for ‘unfolded cyclic
braids’). Moreover, the defining property of UCBn can be formulated with the n-th
discriminant of the function f (z)

Δ
(n)
f (z) :=

�n/2�∏
k=1

(f (εkz) − f (z))

by the condition Δ
(n)
f (z) �= 0 for all z ∈ S1.

As an example, we consider the torus knot

Tn,m : R/Z → R
3

Tn,m(z) :=
⎛
⎝
cos(2πnt)(2 + cos(2πmt))
sin(2πnt)(2 + cos(2πmt))

sin(2πmt)

⎞
⎠

with (n,m) = 1. By definition, Tn,m is the closure of a cyclic braid bm,n with n strands
which ‘wind around’m/n times starting from the initial configuration (1, ε, . . . , εn−1)

(see Fig. 13.2 as an example, drawing by the author). In particular, the Morse
index satisfies degM(Tn,m) ≤ n. As Tn,m and Tm,n are isotopic in R

3, it holds also
degM(Tn,m) ≤ m. Hence degM(T2,m) = 2 for m > 1 odd because these torus knots
are known to be non-trivial.

Hence the unfolded function has winding number m around the core of the
torus and is given by f (z) = zm. Here, the discriminant is given by Δ

(n)
zm (z) =∏�n/2�

k=1 zm(εkm − 1) which is non-zero on S1.
As another example, we consider the figure-eight knot k4 (see Fig. 13.3, drawing

by the author) which can be obtained as the closure of the cyclic 3-braid given by
the braid word σ1σ

−1
2 σ1σ

−1
2 . In particular degM(k4) ≤ 3, but it is well-known that

actually degM(k4) = 2.
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Fig. 13.2 Torus knot T3,8

Fig. 13.3 Figure-eight knot

In order to construct a ‘nice’ explicit unfolding f (z) for the figure-eight knot, we
note that we should first construct an unfolding g(z) for the cyclic 3-braid σ1σ

−1
2

(which closes to the unknot!) and then we can set f (z) := g(z2). The reason is that
the braid word for f (z) is the square of the braid word for g(z) and squaring of
z has the effect that we run two times through the unfolding function g(z). Now,
inspection shows that g(z) = (z + z̄)(1 + z − z̄) is an element of UCB3 and serves
as an unfolding for σ1σ

−1
2 . (It is remarkable that the image of g(z) in C gives a

lemniscate, i.e. the true figure-8 curve!) Hence

f (z) = (z2 + z̄2)(1 + z2 − z̄2) = z4 − z̄4 + z2 + z̄2

gives an unfolding for the figure-eight knot. The discriminant is given by Δ
(3)
f (z) =

(z4 + z̄2)(ε − 1) + (−z̄4 + z2)(ε̄ − 1) with ε = e2πi/3.
The preceding examples show that certain manipulations on unfolding functions

have a geometric meaning for the corresponding cyclic braids. Now we list some
connections in this direction. Note that z̄ = z−1 for all z ∈ S1.

Proposition 13.3 For cyclic n-braids b and their associated unfoldings f (z) ∈
UCBn, the following correspondences hold true:
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unfolding: cyclic n-braid:
a + f (z) translation by a

af (z) rotation/dilatation by a
f (z) mirror braid

znf (z) Dehn twist
f (z̄) time reversal, inverse braid
f (uz) time/phase shift by t
f (zk) k-fold concatenation

where a ∈ C, u = e2πit ∈ S1 and (n, k) = 1.

Proof The statements on translation, rotation/dilatation and mirror image are clear
as they hold in C. If we multiply f (z) by zn, then the new function is also an element
in UCBn and in the corresponding braid, each strand is multiplied by the function z
which just yields a full Dehn twist of the whole braid. We note that a multiplication
by a power zk with 0 < k < n would in general not give back a cyclic braid (this
can also be checked with the defining property Δ

(n)
f (z) �= 0 which then would not be

respected). The statements on f (z̄) and f (uz) are also clear as they hold in S1. The
last statement for f (zk) follows as zk gives a k-fold covering of S1. �

One can ask if the concatenation of two braids also corresponds to a similar
operation for their unfoldings. Unfortunately, this seems not to be the case. The
reason is that the concatenation of cyclic braids in general does not yield again a
cyclic braid, as this does not even hold on the level of permutations. In order to
obtain from a cyclic braid b again a cyclic braid, we could concatenate b with a
pure braid c. Now a pure braid has no unfolding but is given by n loop functions
c1, c2, . . . , cn which do not intersect. Then the concatenation b⊥c is again a cyclic
braid which has a (rescaled) unfolding b1⊥c1⊥b2⊥c2⊥ . . . ⊥bn⊥cn and there seems
to exist no nice way to express this on the level of unfolded functions.

Also the Markov stabilization seems to have no nice description using unfolded
functions. Recall that the Markov stabilization of a cyclic n-braid to a cyclic (n + 1)-
braid is defined by concatenation with σ±1

n . After closure, it corresponds to the first
Reidemeister Move.

13.3 The Winding Number of a Cyclic Braid

Now we introduce the winding number of a cyclic n-braid using its unfolding f (z).
As the ‘kth phase difference’

δk(z) := f (εkz) − f (z)

has to be non-zero on S1 for all k = 1, 2, . . . , �n/2�, we can define its winding
number (induced maps on the fundamental group π1(S1) = Z)
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deg(δk : S1 → C−{0} � S1) ∈ Z.

Proposition 13.4 The winding numbers deg(δk) all are equal. The winding num-
ber of the discriminant deg(Δ

(n)
f : S1 → C−{0}) is given by deg(Δ

(n)
f ) = deg(δf ) ·

�n/2�.
Proof For α : S1 → C−{0} note that deg(α(z)) = deg(α(uz)) where u ∈ S1 is any
phase shift. Now we have

f (εkz) − f (z) = (f (εkz) − f (εk−1z)) + (f (εk−1z) − f (z))

where the first bracket on the right side is just δ1 with a phase shift of εk−1 and the
second bracket is δk−1, thus

δk(z) = δ1(ε
k−1z) + δk−1(z).

We prove the following general result: If α,β : S1 → C−{0} have the property
that also their sum α + β takes values in C−{0} then it holds deg(α) = deg(β) =
deg(α + β) for their winding numbers. For the proof, consider the diagram

C−{0} × C−{0} +→ C

∪ ∪
(C−{0} × C−{0}) − D

+→ C−{0}

where D := {z,−z | z ∈ C−{0}} is the anti-diagonal of C−{0}. With C−{0} � S1,
it is straightforward to check that (C−{0} × C−{0}) − D � S1, that the inclusion
in C−{0} × C−{0} induces in π1 the diagonal Z → Z × Z, and that addition in the
lower line of the diagram induces the identity map of Z. The general result follows
as (α,β) take values in (C−{0} × C−{0}) − D by assumption.

Now the statement on deg(δk) follows by induction from the above splitting of
δk . The statement on the winding number of the discriminant follows as complex
multiplication C−{0} × C−{0} → C−{0} induces addition in π1. �

Definition: This number deg(δf ) ∈ Z is called the winding number of the cyclic
n-braid.

13.4 Finite Fourier Approximations

In this section we will consider approximations of the functions inUCBn by Fourier
sums

∑
cke2πikt , i.e. by Laurent polynomials

∑
ckzk . We recall that a continuous

periodic function f : S1 → C can be approximated by a finite Fourier sum given any
error bound r > 0, i.e. there exists a Laurent polynomial with
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|f (z) −
∑

N−≤k≤N+
ckz

k| < r

for all z ∈ S1. We call (N−,N+) (with cN− �= 0 and cN+ �= 0) the bidegree of the
Laurent polynomial g(z) := ∑

N−≤k≤N+ ckzk .
When approximating an unfolding f (z) ∈ UCBn we have to be careful that we

stay in the same component of UCBn.
Definition: For f (z) ∈ UCBn we define its width by

w(f ) := min{|f (εkz) − f (z)| | ∀z ∈ S1, k = 1, 2, . . . , �n/2�},

which is a positive real number.

Lemma 13.1 A continuous function g : S1 → C which approximates f (z) by an
error bound smaller than the width 1

2w(f ) is a function in UCBn which lies in the
same path component as f (z), i.e. f (z) and g(z) yield (freely) isotopic cyclic n-braids.

Proof w(f ) is non-zero as |f (εkz) − f (z)| > 0 on S1 and the minimum is realized by
some z as S1 is compact. By the triangle inequality, g(z) also satisfies g(εkz) − g(z) �=
0 for all z ∈ S1, k = 1, 2, . . . , �n/2�. More general, this is true for all functions ht in
the linear homotopy h : S1 × I → C, which is defined by ht(z) := f (z) + t(g(z) −
f (z)). Hence all ht lie in UCBn which shows that f and g lie in the same path
component of UCBn and hence are associated to isotopic cyclic n-braids. �

In particular, this holds for a suitable approximation of f (z) by a Laurent polyno-
mial g(z) = ∑

N−≤k≤N+ ckzk . For N−,N+ ∈ Z, denote by

C[z, z−1](N−,N+)

the complex (N+ − N− + 1)-dimensional vector space of Laurent polynomials g(z)
with bidegree (n−, n+) such that N− ≤ n− ≤ n+ ≤ N+. We also denote for N ∈ N

the complex (2N + 1)-dimensional vector space of Laurent polynomials of order
≤ N by

C[z, z−1]±N := C[z, z−1](−N,+N).

Now we define:
UCB±∞

n := UCBn ∩ C[z, z−1]

UCB(N−,N+)
n := UCBn ∩ C[z, z−1](N−,N+)

UCB±N
n := UCBn ∩ C[z, z−1]±N

This gives a stratification of the space UCBn of cyclic n-braids

UCB±1
n ⊂ UCB±2

n ⊂ UCB±3
n ⊂ . . . ⊂ UCB±∞

n ⊂ UCBn.



292 S. Klaus

Corollary 13.1 Finite Fourier approximation defines a sequence of isotopy types of
cyclic n-braids

π0UCB±1
n → π0UCB±2

n → π0UCB±3
n → · · · → π0UCB±∞

n ≈ π0UCBn.

Every cyclic n-braid b can be represented up to isotopy by a Laurent polynomial.

Definition:Wecall the smallest possible orderN of aLaurent polynomial representing
a cyclic n-braid b up to isotopy its Fourier degree degF(b).

As an example, the ‘canonical’ cyclic n-braid bn,m which gives the torus knot Tn,m
as a closure has degF(bn,m) ≤ m because zm serves as an unfolding of b. As the torus
knots Tn,m and Tm,n are isotopic in R

3, we see that degF is primarily an invariant of
cyclic n-braids (like the number of strands). For the cyclic 3-braid b = σ1σ

−1
2 σ1σ

−1
2

with closure the figure-eight knot, we get degF(b) ≤ 4 by our computation of an
unfolding in the preceding section.

In fact, L. Kauffman [1] and A. Trautwein [12] defined the Fourier degree for
knots in a similar way. A knot can be considered as a periodic function k : R1 → R

3

and it is also possible to approximate such functions by finite Fourier sums, although
the details are a little different as k takes values in real 3-dimensional space, not in
C as in our case. Then Kauffman’s Fourier degree DegF(k) of a knot type is defined
as the minimal Fourier order (i.e. largest frequency) that one needs for a Fourier
approximation for k (up to isotopy). Here is a connection between our Fourier degree
for cyclic braids and that of Kauffman for knots:

Proposition 13.5 Let b be a cyclic n-braid and b̂ its knot closure. Then it holds

DegF(b̂) ≤ n + degF(b).

Proof Let d := degF(b). By definition, there is a unfolding of b given by a Laurent-
Polynomial g(z) = ∑

−d≤k≤d ckz
k . Now we use the explicit formula for the closure

map

b̂(t) =
⎛
⎝
cos(2πnt)(2 + Re(

∑
−d≤k≤d cke

2πikt))

sin(2πnt)(2 + Re(
∑

−d≤k≤d cke
2πikt))

Im(
∑

−d≤k≤d cke
2πikt)

⎞
⎠ .

Because of the trigonometric sum and product formulas which can be derived from
e2πi(r+s)t = e2πi(r)te2πi(s)t , the largest frequency in a product of two periodic functions
is the sumof largest frequencies of the factors. Hence the first two coordinates contain
maximal frequencies of order n + d, whereas d is the largest frequency in the last
coordinate. �

This result can be interpreted in the following way: The maximal frequency in the
unfolded braid is enlarged by n because of the n-fold winding of the braid around
the z-axis in order to get the closure.
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13.5 Property S and the Discriminant Variety

Now we consider the discriminant varieties in the spaces of Laurent polynomials

Δ±∞
n := {g(z) ∈ C[z, z−1] | Δ(n)

g (z) has a zero on S1},

Δ±N
n := {g(z) ∈ C[z, z−1]±N | Δ(n)

g (z) has a zero on S1},

which are the complements of the subspaces UCB±∞
n and UCB±N

n .
This leads us to consider the following open subset S of complex polynomials:

S := {p(z) ∈ C[z] | p(z) �= 0 on S1}.

By definition, S is the complement in C[z] of a codimension-1 discriminant variety

Δ := {p(z) ∈ C[z] | p(z) has a zero on S1}.

As every Laurent polynomial g(z) can be written as g(z) = zN
−
p(z) with a uniquely

defined complex polynomial p(x) := z−N−
g(z) (with p(0) �= 0), the condition of

having no zeros on S1 depends only on the polynomial p(z) which can be considered
as the essential part of g(z).

Here is a result which connects the winding numbers of p(z) and g(z) (as functions
from S1 to C−{0}) with the number of zeros of p(z) in the unit disc.

Proposition 13.6 The winding numbers of p(z) ∈ S and g(z) = zN
−
p(z) are given

by
deg(p) = number of zeros of p in the open unit disc Ḋ2

deg(g) = deg(p) + N−.

Proof Let a(x), b(x) ∈ C[z] be polynomials which are non-zero on S1. As com-
plex multiplication C−{0} × C−{0} → C−{0} induces addition in π1, we see that
deg(ab) = deg(a) + deg(b). If b has no zeros on the unit disc, we get a homotopy
b : D2 → C−{0} of b : S1 → C−{0} to the constant map b(0) ∈ C−{0}, hence
deg(b) = 0. Assume that a is normed and has all zeros on the open unit disc, i.e.
a(z) = ∏d

i=1(z − zi) with all zi ∈ Ḋ2. Then for t ∈ I we define

at(z) :=
d∏

i=1

(z − tzi) ∈ C[z]

which gives a homotopy at : S1 × I → C−{0} from a to a0(z) = zd . Hence deg(a)
= deg(zd) = d. Now every polynomial p(z) can be split as p(z) = a(z)b(z) with a
and b as above and the statement on deg(p) follows. The last statement on deg(g)

follows just from g(z) = zN
−
p(z). �
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Nowwe consider S from the algebraic viewpoint. Given a polynomial p(z) ∈ C[z],
we look for an algebraic invariant δp which detects the properties p ∈ S or p ∈ Δ. This
leads to the following construction. We assume that p is normed with decomposition
into linear factors p(z) = ∏d

i=1(z − zi). Then we define

δp(z) :=
d∏

i=1

(z − ziz̄i).

By definition, δp(z) is a polynomial of the same order as p(z) with zeros the real
numbers ziz̄i. Hence δp(1) = 0 is equivalent to the condition that p(z) has a zero on
S1, i.e. p ∈ Δ. Thus

δp := δp(1) =
d∏

i=1

(1 − ziz̄i) ∈ R

serves as an invariant we are looking for. Unfortunately, δp cannot be expressed as a
polynomial invariant in the coefficients of p(z) and their complex conjugates. It is not
possible to apply here the fundamental theorem for symmetric polynomials (in con-
trast to e.g.

∏d
i=1(z − z2i )) because C[z1, . . . , zn, z̄1, . . . , z̄n]Σn is not the polynomial

ring in the elementary symmetric functions on the zi and that on their conjugates z̄i.
As an example, we consider S in low degrees. Clearly, a linear complex poly-

nomial p(z) = z + a0 is in S if and only if a0 /∈ S1. Already the case of a quadratic
complex polynomial p(z) = z2 + a1z + a0 demonstrates the difficulty to describe S
by conditions on the coefficients. We have a1 = −(z1 + z2) and a0 = z1z2, whereas

δp = (1 − z1z̄1)(1 − z2z̄2) = 1 − (z1z̄1 + z2z̄2) + z1z̄1z2z̄2.

Now z1z̄1z2z̄2 = a0ā0, but a1ā1 = (z1z̄1 + z2z̄2) + (z1z̄2 + z2z̄1) and there is noway to
express the mixed sum by polynomials in the coefficients a0, a1 and their conjugates.
Instead it is possible to give δp by a complicated real algebraic function of a0 and a1.

13.6 Cylic Braids Avoiding Fixed Links and Knots in
Spaces with Periodic Boundary Conditions

We have seen that cyclic n-braids are given by unfoldings f (z) which can be chosen
as Laurent polynomials

UCB∞
n = {f (z) ∈ Z[z, z−1] | Δ

(n)
f (z) �= 0 on S1}.

Now we consider the additional condition

f (z) �= 0 on S1
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which means that we exclude the soul {0} × S1 from the solid torus D2 × S1. Then
the closure operation b �→ b̂ gives us a knot in R

3 − (S1 × {0}) which itself is dif-
feomorphic to an open full torus with an interior point (corresponding to infinity)
removed. If we compactify R

3 to S3, we do not have to remove this inner point, but
removing finitelymany points from the space where a knot, link or braid is embedded
does not change the isotopy classes of embeddings. Hence the algebraic space

UCB∞
n,1 := {f (z) ∈ Z[z, z−1] | f (z)Δ(n)

f (z) �= 0 on S1}.

serves as a model for knots in the solid torus. See the work of S. Lambropoulou [7]
for more details on the theory of knots in thickened surfaces.

More generally,

UCB∞
n,m := {f (z) ∈ Z[z, z−1] |

m−1∏
k=0

(f (z) − k)Δ(n)
f (z) �= 0 on S1}

is the algebraic space of unfolded n-braids which avoid in S1 × C the unlink
with m components given by S1 × {k} for k = 0, 1, . . . ,m − 1. Their homotopy
classes just form the subset of cyclic braids in the relative braid group Brn,m,
see [7]. Hence UCB∞

n,m is a model space for certain knots in the ambient space
R

3 − (S1 × {0, 1, . . . ,m − 1})which is diffeomorphic to the complement ofm solid
tori in R3 which are unknotted and unlinked.

In order to obtain knots in the thickened torus S1 × S1 × I , we have to modify our
construction by using the Hopf link H in S1 × C instead of the trivial 2-link (S1 ×
{0, 1}). The reason is that the complement ofH is diffeomorphic to the thickened torus
(minus the point at infinity). As the Hopf link can be constructed by the embedding
z �→ {0, z} and as each of the n strands has to avoid it, the unfolded cyclic braid has
to avoid the n-fold Hopf link. Thus the algebraic space

UCB∞
n,H := {f (z) ∈ Z[z, z−1] | f (z)(f (z) − zn)Δ(n)

f (z) �= 0 on S1}

is a model for knots in the thickened torus S1 × S1 × I .
In particular, these algebraic spaces approximate knots in the spaces S1 × I × I

and S1 × S1 × I with one- and two-periodic boundary conditions. I.e. these spaces
are formed from the cube I3 by identifying one or two antipodal pairs of faces. It
would be interesting to model by this method more general knotted configurations
in spaces with periodic boundary conditions. This could produce new connections
of Fourier series and Laurent polynomials to applications of knot theory in polymer
physics, see [9–11].
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