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Preface

This book comprises a collection of papers presented in the THALES workshop
“Algebraic modeling of topological and computational structures and applications”,
that took place at the National Technical University of Athens (NTUA), 1–3 July
2015. This workshop disseminated the results of the research project THALES MIS
380154 with the same title, which was implemented from October 2011 until
December 2015. The project has been co-financed by the European Union
(European Social Fund—ESF) and Greek National Funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF)—Research Funding Program: THALES: Reinforcement of the
interdisciplinary and/or interinstitutional research and innovation.

The research project THALES was concerned with the study of topological and
computational structures and applications, mainly with the use of algebra and
especially with braid groups. Braids can be viewed as algebraic as well as topo-
logical objects and they play a crucial role in knot theory and in low-dimensional
topology, in the study of homotopy groups, in reflection groups and C*-algebras, in
statistical mechanics, in cryptography, and in Galois theory. The project consisted
in three research programs (RP), corresponding to the three research groups
involved:

RP1 “Algebraic modeling of topological structures”
RP2 “Algebraic modeling of applications”
RP3 “Algebraic modeling of computational structures”
RP1 aimed at the study of topological structures, such as knots, links, 3-manifolds

and classical homotopy groups, using braid groups, classical and generalized, and
their representations. Knot theory is the area of low-dimensional topology that deals
with the problem of classification of embeddings of a circle or collections of circles
into three-dimensional space. This problem is tackled by the construction of knot
invariants. Within this project, new skein link invariants were extracted from the
Yokonuma-Hecke algebras and other new (framization) knot algebras, via the cel-
ebrated method of V.F.R. Jones, which uses braid groups and the Alexander and
Markov theorems. Another subproject was about the study of the mixed braid groups
related to knots and links in specific 3-manifolds, and the construction of quotient
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algebras of the mixed braid groups. Further, the HOMFLYPT skein module of the
lens spaces was investigated via the Artin braid groups of B-type. The study of the
knot theory of a 3-manifold renders information about the topological structure
of the manifold, while the use of braids in the study provides more structure and
more control on the moves for topological equivalence. Powerful algebraic and
computational tools can then be employed. Our next focus was on special decom-
posable groups. In particular, the linearity of groups that fit into a short exact
sequence with kernel a free group and cokernel a linear group was studied. Finally,
the connections between modular invariant theory and certain unstable coalgebras
over the mod p Steenrod algebra were investigated. This problem is related to the
stable homotopy groups of spheres.

RP2 was concerned with the study of some novel application areas. One of them
was the development of new measures of polymer entanglements. Polymer chains
are long flexible molecules that impose topological constraints on each other, called
entanglements, which affect the physical properties of the polymer. The Gauss
linking number was extended to open polymeric chains in 1, 2 and 3 Periodic
Boundary Conditions (PBC) and the simulation of polymeric chains through braid
groups was proposed. Also, Fourier braids were introduced and PBC were repre-
sented by algebraic conditions. Furthermore, Turaev’s knotoids were retaken, which
are ideal for modeling, abstractly, polymers and biopolymers. The knotoids are a
new chapter in classical knot theory that is worth studying for its own sake and that
allows topological modeling of open-ended arcs in three-dimensional space (such as
long chain molecules, proteins, DNA). Another application area was the molecular
simulation of ionic liquids and their mixtures. Molecular simulation is a powerful
tool for the study of physical systems, based on fundamental principles of statistical
mechanics. This simulation manages to predict various properties of materials
through the connection of their microscopic structure and their macroscopic prop-
erties. It can efficiently contribute to the production of new materials with desired
properties. The modeling of many natural processes via topological surgery in 1, 2,
and 3 dimensions was another application of the project. Topological surgery is a
mathematical technique used for creating new manifolds out of known ones and, as
we observed, it appears in nature in numerous, diverse processes of various scales as,
for example, in the reconnection of cosmic magnetic lines, in DNA recombination,
in the formation of tornadoes and of Falaco solitons, in drop coalescence, in cell
mitosis, and in the formation of black holes. Inspired by such phenomena new
theoretical concepts were introduced, which enhance topological surgery with the
observed dynamics, and a connection with a 3D Lotka–Volterra dynamical system
was also pinned down.

RP3 was concerned with the algebraic modeling of computational structures and
applications. A subproject was about the unification of the well-known algebraic
specification language CafeOBJ with the strong theorem prover Athena within a
common interface. Other outputs included the development of novel techniques for
system modeling and verification, as well as applications on the modeling of video
and of musical structure. Algebraic modeling techniques were also applied in the
geometry of curves over finite fields and applications to cryptography and coding
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theory were investigated. The aim was the study of open problems referring to zeta
functions of certain algebraic curves aiming to calculate the number of rational
elements. Finally, another application was in the field of medical imaging, where a
new medical PET (Positron Emission Tomography) data reconstruction algorithm
was proposed for reconstructing sinograms to tomographic images. Also, various
deformable methods for optic disk extraction in retinal images were studied and
evaluated.

The research team of the project THALES comprised 56 researchers from
universities and research institutions from all over the world. The Scientific
Coordinator of the project and coordinator of the first RP was Professor Sofia
Lambropoulou of the NTUA. Professor Doros Theodorou of the NTUA was the
coordinator of the second RP and Assistant Professor Petros Stefaneas of the NTUA
was the coordinator of the third RP. Finally, Professor Louis H. Kauffman of the
University of Illinois at Chicago was the Invited Researcher of the project.

The THALES workshop was attended by more than 100 researchers. In total, 37
research talks and 17 posters were presented. The present book contains 23 chapters,
arranged into three parts that correspond to the three RPs of the project.

Part I: Algebraic Modeling of Topological Structures

A knot algebra is an algebra obtained as a quotient of the group algebra of a braid
group and endowed with a Markov trace; it can be thus used for the definition of knot
invariants. Framization is a mechanism proposed recently by Juyumaya and
Lambropoulou which consists of constructing a nontrivial extension of a knot algebra
for the definition of framed knot invariants. The inspiring example of framization is
the Yokonuma-Hecke algebra of type A, introduced by Yokonuma in the context of
finite reductive groups as a generalization of the Iwahori–Hecke algebra of type A.
The first five chapters of Part I are concerned with framizations of known knot
algebras.

In Chap. 1 by Konstantinos Karvounis and Sofia Lambropoulou, the families of
framed, classical, singular, and transverse link invariants defined via the
Yokonuma-Hecke algebras of type A are presented. The Yokonuma-Hecke alge-
bras comprise a family of algebras that generalize the classical Iwahori–Hecke
algebra and that also support Markov traces that give rise to those families of link
invariants. The family of classical link invariants is of special interest, since it
contains the HOMFLYPT polynomial P and, moreover, it extends to a
three-variable skein link invariant generalizing P and which is stronger than P.

Chapter 2 by Dimos Goundaroulis is a brief and comprehensive review of the
construction of the framization of the Temperley–Lieb algebra of type A and its
derived invariants for framed and classical links. Key elements of the representation
theory of the involved quotient algebras are also included. The invariants for
classical links are compared to the Jones polynomial and then they are generalized
to a two-variable invariant that is stronger than the Jones polynomial.

In Chap. 3, Maria Chlouveraki studies the algebraic structure and the repre-
sentation theory of the Yokonuma-Hecke algebra of type A, as well as of some
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similar framizations of the affine Hecke algebra of type A, the Ariki-Koike algebra,
and the Temperley–Lieb algebra.

Furthermore, in Chap. 4, Loic Poulain d’Andecy studies the affine Yokonuma-
Hecke algebra, seeing it as a quotient of a certain braid group. A large family of
Markov traces is constructed and, using well-known relations between braids and
links, this way invariants for classical links and for links in the solid torus are
produced. The study uses extensively a purely algebraic result, namely an isomor-
phism theorem relating affine Yokonuma-Hecke algebras with the usual affine Hecke
algebras, which moreover allows one to deduce naturally some properties of the
invariants.

In Chap. 5, Marcelo Flores gives a review about two framizations of the Hecke
algebra of type B, and the results related to each of these. He begins by presenting the
cyclotomic Yokonuma-Hecke algebra introduced by Chlouveraki and Poulain
d’Andecy, which provides one of such framizations. Next, Flores focuses on a new
framization defined recently by himself together with Juyumaya and Lambropoulou,
and on the results obtained for this new algebra. The author concludes with a pre-
liminary comparison between the isotopy invariants derived by both framizations.

In order to have a good understanding of knot theory in 3-manifolds, one should
be able to visualize and understand link diagrams in these manifolds. In Chap. 6,
Bostjan Gabrovsek and Maciej Mroczkowski present a survey of the so-called arrow
diagrams, which are used for representing links in Seifert fibered spaces, a large class
of 3-manifolds. Moreover, they show how to pass between some of the different
types of diagrams found in the literature. Using arrow diagrams, the authors express
the basis of the Kauffman bracket skein module and the HOMFLYPT skein module
of some 3-manifolds and they present new bases for these skein modules for the solid
torus and lens spaces.

In Chap. 7, Ioannis Diamantis and Sofia Lambropoulou present recent results
toward the computation of the HOMFLYPT skein module of the lens spaces
Lðp; 1Þ; SðLðp; 1ÞÞ, using the braid approach. They describe first the HOMFLYPT
skein module of the solid torus ST, SðSTÞ, using the mixed braid group B1;n, which
is the Artin braid group of type B, and they present a new basis, K, for it, through
which the braid band moves are naturally described. The authors then derive the
relation between SðSTÞ and SðLðp; 1ÞÞ and show that in order to compute
SðLðp; 1ÞÞ one needs to solve a controlled infinite system of equations obtained by
performing all possible braid band moves on elements in the basis K.

In Chap. 8, Dimitrios Kodokostas and Sofia Lambropoulou define a tower of
Hecke-type quotient algebras of the mixed braid group with two fixed strands, B2;n.
The groups B2;n are related to the knot theory of the handlebody of genus two, the
complement of the 2-unlink in S3 and the connected sums of two lens spaces. The
authors focus on the algebras H2;nðqÞ; n 2 N and review their work on extracting
inductive spanning sets for these algebras, appropriate for constructing Markov
traces. They also provide corresponding spanning sets for the other algebras defined
in the paper and they conjecture all spanning sets to be linear bases for the algebras
defined.
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In Chap. 9, Valerij Bardakov proves that the kernel of the map from the braid
group in the handlebody, Bg;n, to the classical braid group is a semi-direct product
of free groups. Also, he introduces an analogue of the Hecke algebra for the braid
group in the handlebody and formulates a conjecture on the basis of this algebra.

In Chap. 10, the research is twofold. First, Nondas Kechagias gives an invariant
theoretic description for the modp cohomology of the stabilization functor on the
basepoint of the zero sphere previously described by D. Quillen and M. Barratt—
S. Priddy independently. Second, the author compares the modp Dyer-Lashof
algebra with a co-free Steenrod coalgebra and he provides cogenerators along with
corelations. His approach is connected with the Peterson conjecture relating the
Dickson algebra with a quotient of a free unstable Steenrod algebra.

Part II: Algebraic Modeling of Applications

In Chap. 11, Eleni Panagiotou and Ken Millett extend the topological Gauss
linking number to open chains in systems employing one-dimensional periodic
boundary conditions to define periodic linking and periodic self-linking numbers.
These give rise to a periodic linking matrix and associated eigenvalues that are
applied to Olympic gels and tubular filamental structures.

The theory of knotoids, that was introduced in 2012 by Vladimir Turaev, was
proposed as a new diagrammatic approach to classical knot theory and also as a
generalization of classical knot theory. The notion of knotoids extends the notion of
1-1-tangles or long knots by having two distinct endpoints that may lie in any
region of knotoid diagrams. This makes knotoids a natural domain for under-
standing physicality and topology of open-ended space curves and also for a
transition and relationships with virtual knot theory. The height of a knotoid, that
measures the distance between the endpoints of a knotoid, is an efficient tool for the
classification of knotoids. In Chap. 12, Neslihan Gügümcü and Louis H. Kauffman
review their results on the estimation of the height of a knotoid given by the affine
index and the arrow polynomials. These polynomials, first defined in virtual knot
theory, are here given definitions in the category of knotoids.

In Chap. 13, Stephan Klaus constructs braids by folding periodic complex valued
functions. The method offinite Fourier approximation shows that braids are given by
certain finite Laurent polynomials gðzÞ such that an associated algebraic discriminant
has no root on the unit circle. This condition is studied from the algebraic and
topological viewpoint. Algebraic transformations of gðzÞ correspond to geometric
operations of the braid, for example, a Dehn twist. Moreover, this algebraic method
allows one to construct braids in a thickened torus or in other spaces.

Chapter 14 is devoted to the computational study of ionic liquids at the molecular
level. Ionic liquids are organic salts that are in the liquid state at room temperature
and exhibit a fascinating combination of properties due to their dual ionic and
organic nature that renders them ideal for use in a wide range of state-of-the-art
applications. Niki Vergadou applies molecular simulation methods for the investi-
gation of the microscopic phenomena that determine macroscopic properties of ionic
liquids and for the study of their complex dynamics and structure.
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In Chap. 15, Stathis Antoniou and Sofia Lambropoulou show that topological
surgery happens in natural phenomena at various scales and analyze the common
features of their underlying processes. These features are captured by schematic
models and new definitions which provide the theoretical setting for describing the
topological changes that occur. We believe that the understanding of their under-
pinning topology will lead to the better understanding of the phenomena them-
selves, as well as to new mathematical notions, which will in turn lead to new
physical implications.

Part III: Algebraic Modeling of Computational Structures

Chapter 16 is a survey on the theory of curves with automorphisms. Several
bounds on the order of the automorphism group curve are discussed, mostly related to
the research of the authors, Jannis Antoniadis and Aristides Kontogeorgis. The
authors’ point of view is to relate the theory of (modular) representations of auto-
morphism groups acting on natural objects related to the curve, such as (co)homology
spaces and spaces of holomorphic (poly)differentials. The chapter concludes with
applications to deformation theory of curves, liftings to characteristic zero andmoduli
problems.

Chapter 17 by Nicola Angius, Maria Dimarogkona, and Petros Stefaneas pro-
vides a first attempt at constructing semantic theories over institutions and examines
the logical relations holding between different such theories. The results show that
this approach can be very useful for theoretical computer science and may also
contribute to the current philosophical debate regarding the semantic and the
syntactic presentation of scientific theories.

Chapter 18 is a survey of results related to generic constructions and generic
limits for semantic and syntactic cases. The authors Sergey Sudoplatof, Yiannis
Kiouvrekis, and Petros Stefaneas consider both the pure model theory approach and
the institutional approach.

Chapter 19 by Katerina Ksystra, Nikos Triantafyllou, and Petros Stefaneas
contains some steps towards a verification framework based on the combination
of the CafeOBJ algebraic specification language with the interactive theorem
proving system Athena. The proposed framework combines two different specifi-
cation and theorem proving systems, in order to facilitate the modeling and analysis
of critical software systems.

Chapter 20 by Theodoros Mitsikas, Petros Stefaneas, and Iakovos Ouranos
demonstrates the design of an innovative rule based approach for the Air Traffic
Control regulations during the takeoff and landing phases, covering both current
and future separation standards of ICAO and FAA. The rule base consists of the
rules implementing the air traffic control regulations, and a database containing
characteristics of airports and aircraft. The proposed rule base constitutes a flexible
tool for the computation of the aircraft separation according to current and future
regulations, useful in the fields of conflict detection, conflict avoidance, and
scheduling aircraft landings. A further application will be for a decision support tool
in real-time environments, guaranteeing the enforcement of all the separation
standards.
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In Chap. 21, Marianthi Bozapalidou demonstrates that every commutative affine
musical contour actually simulates the classical one. Affine contours may be viewed
as an abstraction of the notion of musical intervals and are closely related to
sequential machines. Sequential machines are mathematical tools that can be
depicted by finite directed graphs and are suitable to describe and represent various
phenomena in music.

In Chap. 22, Antonios Kalambakas, Nikolaos Triantafyllou, Katerina Ksystra,
and Petros Stefaneas indicate how hyperoperation can be utilized in order to for-
mally represent and compare video content using algebraic semiotics. In this setup,
pictures are defined as a specific type of rectangular graphs and the picture
hyperoperation is given by virtue of the notion of the path inside such a picture.

Finally, in Chap. 23 Evi Karali presents and evaluates a new iterative algorithm
for medical image reconstruction, under the name Image Space Weighted Least
Squares (ISWLS). She then compares various snake or deformable methods,
towards a modified self-affine mapping system technique, more suitable for weak
edge detection. All methods were applied to glaucomatic retinal images with the
purpose of segmenting the optical disk.

We thank all participants of the workshop and all contributors for their great
efforts in making the workshop a success and this book possible.

Athens, Greece Sofia Lambropoulou
Athens, Greece Doros Theodorou
Athens, Greece Petros Stefaneas
Chicago, USA Louis H. Kauffman
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Chapter 1
Link Invariants from the Yokonuma–Hecke
Algebras

Konstantinos Karvounis and Sofia Lambropoulou

Abstract The Yokonuma–Hecke algebras are naturally related to the framed braid
group and they support a Markov trace. Consequently, invariants for various types of
links (framed, classical, singular and transverse) are derived from these algebras.
In this paper, we present results about these invariants and their properties. We
focus, in particular, on the family of 2-variable classical link invariants that are
not topologically equivalent to the HOMFLYPT polynomial and on the 3-variable
classical link invariant that generalizes this family and the HOMFLYPT polynomial.

Keywords Classical braids · Framed braids · Yokonuma–Hecke algebras
Markov trace · Framed knots and links · E–condition · Classical knots and links
Transverse knots and links · Singular braid monoid · Singular knots and links
HOMFLYPT polynomial

2010 Mathematics Subject Classification 57M27 · 57M25 · 20F36 · 20F38 ·
20C08

Introduction

The first example of construction of link invariants via braid groups is the Jones
polynomial [27]. It can be defined bymeans of a knot algebra, that is a triple (A, π, τ )

where A is an algebra, π is a representation of the braid group in A and τ is aMarkov
trace on A. The Jones polynomial is obtained via the Jones’ trace on the Temperley–
Lieb algebra. This construction generalizes to the HOMFLYPT (or 2-variable Jones)
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4 K. Karvounis and S. Lambropoulou

polynomial [19, 39, 43] using as a knot algebra the Iwahori–Hecke algebra of type
A and the Ocneanu trace [27].

Some years ago, the Yokonuma–Hecke algebras of type A [47] received attention.
These algebras have “framing” generators and they are naturally related to the framed
braid group. We denote them as Yd,n(q), where n corresponds to the number of
strands of the framed braid group Fn , d ∈ N imposes a modular condition on the
framing generators and q is a non-zero complex number. For d = 1 the algebra
Y1,n coincides with the Iwahori–Hecke algebra. The representation theory of the
Yokonuma–Hecke algebras has been extensively studied in [13, 45]. J. Juyumaya
in [29] defined a unique Markov trace on the Yokonuma–Hecke algebras, denoted
by trd , making Yd,n(q) into a knot algebra and a natural candidate for defining
framed and classical link invariants. Surprisingly, the trace trd could not be directly
re-scaled for the negative stabilization move of the framed braid equivalence. For
this, a condition was needed to be imposed on the framing parameters of trd that, in
turn, meant that they should satisfy a certain non-linear system of equations, called
the E-system. As it was shown by P. Gérardin [31, Appendix], the solutions of the
E-system are parametrized by the non-empty subsets D of Z/dZ.

Consequently, in [31] and in [32] an infinitum of framed and classical link invari-
ants respectively were defined, parametrized by d and the subsets D. Both of these
families of invariants contain the HOMFLYPT polynomial for d = 1. Furthermore,
the Yokonuma–Hecke algebras were proved to be suitable for defining invariants for
other classes of links, such as singular links [33] and transverse links [10].

With the classical link invariants in hand, the next natural question, which
remained as a long-standing open problem, was whether these invariants are topolog-
ically equivalent to the HOMFLYPT polynomial P in the sense that they distinguish
or not the same pairs of links. The first stepwas taken in [12], where it was proven that
these invariants do not coincide with P except for the trivial cases when |D| = 1 and
q = ±1. The Yokonuma–Hecke algebras have a quite complex quadratic relation for
the braiding generators that involves some idempotent elements, denoted by ei , that
are sums of products of the framing generators. Computations were needed, and for
this purpose a computer programwas developed (see [35] and http://www.math.ntua.
gr/~sofia/yokonuma). Note that the invariants have been originally defined using a
different presentation of the Yokonuma–Hecke algebras, denoted by Yd,n(u), that
used a more complicated quadratic relation than that of the presentation Yd,n(q).
By comparing the classical invariants on various pairs of knots and links, a con-
jecture for the case of knots was formulated in [10] and later proved in [11]. In
both papers the new presentation Yd,n(q) is used. More precisely, the classical link
invariants from the Yokonuma–Hecke algebras coincide with P on knots. Note that,
by this result it follows that these invariants are not topologically equivalent to the
Kauffman polynomial.

In [12] the specialized Juyumaya trace trd,D that is the trace trd with the framing
parameters specialized to a solution of the E-system was defined. Now, in [11] it has
been proved that the trace trd,D can be computed for classical braids by five rules
that involve the braiding generators of Yd,n and the idempotents ei , instead of the
framing generators. This result makes the calculations for the trace trd,D easier, since

http://www.math.ntua.gr/~sofia/yokonuma
http://www.math.ntua.gr/~sofia/yokonuma
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the elements ei can be considered as formal elements in the image of the classical
braid group in Yd,n(q). By the same result it also followed that the invariants Θd,D

of classical links are actually parametrized by the natural numbers and can be simply
denoted as Θd . In order to compare the invariants Θd to P on classical links, a new
programwas developed [35] that uses the five rules for the trace trd,D when applied to
images of classical braids. This program facilitated the comparison of the invariants
Θd and P on several P-equivalent pairs of links (that is pairs of links having the same
HOMFLYPTpolynomial) and, as it turned out, the invariantsΘd are not topologically
equivalent to P on links [11]. This fact was also proved theoretically in [11], since the
invariantsΘd satisfy the HOMFLYPT skein relation, but only on crossings involving
different components, and this enabled a diagrammatic approach to the definition of
the invariants Θd .

Remarkably, our examples of P-equivalent pairs of links distinguished by Θd

were distinguished for all d ≥ 2 [11]. Furthermore, in the five rules of trd,D when
restricted to classical braids only the value ED := 1/|D| appears that depends only
on the cardinality of the set D. This led to the hypothesis that the value ED can be
seen as a parameter, resulting in the construction of a new 3-variable classical skein
link invariant Θ(q, λ, E) that is stronger than the HOMFLYPT polynomial [11].
Moreover, W.B.R. Lickorish provided in [11, Appendix B] a closed formula for the
invariant Θ that shows that it is a complicated mixture of linking numbers and the
values of P on sublinks of a given link, providing thus a topological interpretation
for the invariant Θ (see also [36, 42]). Finally, the construction of the invariant Θ

led to an analogous generalization of the Kauffman polynomial and to new state sum
models, using the skein theoretical methods for Θ [36].

The interest in the Yokonuma–Hecke algebras led to the notion of framization
of knot algebras [34], the Yokonuma–Hecke algebra being the basic example, as
the framization of the classical Iwahori–Hecke algebra. Consequently, appropriate
Temperley–Lieb-type quotients of the Yokonuma–Hecke algebras were constructed
and studied in [22–25], see also [15, 16]. Furthermore, Yokonuma–Hecke algebras
related to type B have been constructed [14, 18, 34], equipped with Markov traces,
and related link invariants for the solid torus have been derived. Finally, a framization
of the BMW algebra has also been defined and studied [4, 34].

In this paper we present results mainly from [10, 11] on the Yokonuma–Hecke
algebras and link invariants derived from them. The paper is organized as follows.
In Sect. 1.1 we define the Yokonuma–Hecke algebras and provide some facts about
them. Then, in Sect. 1.2, we recall the definition of the Markov traces trd and trd,D

on Yd,n(q) and we discuss some properties that they satisfy. In Sect. 1.3 invariants
for framed, classical, singular and transverse links are presented, while in Sect. 1.4
we study further the classical link invariants. In Sect. 1.5 the 3-variable classical link
invariant Θ is presented and we discuss various ways to prove its well-definedness.
Finally, in Sect. 1.6we recall framed and classical link invariants derived fromanother
presentation of the Yokonuma–Hecke algebras and we discuss their relation to the
ones derived from the new presentation Yd,n(q).
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1.1 The Yokonuma–Hecke Algebra

In this section we recall the definition of the Yokonuma–Hecke algebra as a quotient
of the framed braid group.

1.1.1 The Framed Braid Group and the Modular Framed
Braid Group

The framed braid group,Fn
∼= Z

n
� Bn , is the group defined by the standard genera-

tors σ1, . . . , σn−1 of the classical braid group Bn together with the framing generators
t1, . . . , tn (t j indicates framing 1 on the j-th strand), subject to the relations:

(b1) σiσ jσi = σ jσiσ j for |i − j | = 1
(b2) σiσ j = σ jσi for |i − j | > 1
(f1) ti t j = t j ti for all i, j
(f2) t jσi = σi tsi ( j) for all i, j

(1.1)

where si ( j) is the effect of the transposition si := (i, i + 1) on j . Relations (b1) and
(b2) are the usual braid relations, while relations (f1) and (f2) involve the framing
generators. Further, for a natural number d the modular framed braid group, denoted
Fd,n , can be defined as the group with the presentation of the framed braid group,
but including also the modular relations:

(m) td
j = 1 for all j (1.2)

Hence, Fd,n
∼= (Z/dZ)n

� Bn . Geometrically, the elements of Fn (respectively
Fd,n) are classical braids on n strandswith an integer (respectively an integermodulo
d), the framing, attached to each strand. Further, due to relations (f1) and (f2), every
framed braid α in Fd,n can be written in its split form as α = t k1

1 . . . t kn
n σ , where

k1, . . . , kn−1 ∈ Z and σ involves only the standard generators of Bn . The same holds
also for the modular framed braid group.

For a fixed d we define the following elements ei in the group algebra CFd,n :

ei := 1

d

∑

1≤s≤d

t s
i t−s

i+1 (1 ≤ i ≤ n − 1)

where −s is considered modulo d . One can easily check that ei is an idempotent:
e2i = ei and that eiσi = σi ei for all i .
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1.1.2 The Yokonuma–Hecke Algebras

Let d ∈ N and let q ∈ C\{0} fixed. The Yokonuma–Hecke algebra q , denoted
Yd,n(q), is defined as the quotient of CFd,n by factoring through the ideal generated
by the expressions: σ 2

i − 1 − (q − q−1)eiσi for 1 ≤ i ≤ n − 1. We shall denote gi

the element in the algebra Yd,n(q) corresponding to σi while we keep the same nota-
tion for t j in the algebra Yd,n(q). So, in Yd,n(q) we have the following quadratic
relations:

g2
i = 1 + (q − q−1) ei gi (1 ≤ i ≤ n − 1). (1.3)

The elements gi ∈ Yd,n(q) are invertible:

g−1
i = gi − (q − q−1) ei (1 ≤ i ≤ n − 1). (1.4)

Further the elements gi ∈ Yd,n(q) satisfy the following relations:

Lemma 1.1 ([10, Lemma 1.1]) Let i ∈ {1, . . . , n − 1}. Then:

gr
i = (1 − ei ) gi +

(
qr + q−r

q + q−1

)
ei gi +

(
qr−1 − q−r+1

q + q−1

)
ei for r odd,

gr
i = 1 − ei +

(
qr − q−r

q + q−1

)
ei gi +

(
qr−1 + q−r+1

q + q−1

)
ei for r even.

The Yokonuma–Hecke algebras were originally introduced by T. Yokonuma [47]
in the representation theory of finite Chevalley groups and they are natural gener-
alizations of the Iwahori–Hecke algebras Hn(q). Indeed, for d = 1 all framings are
zero, so the corresponding elements of Fn are identified with elements in Bn; also
we have ei = 1, so the quadratic relation (1.3) becomes the well–known quadratic
relation of the algebra Hn(q):

g2
i = 1 + (q − q−1) gi (1 ≤ i ≤ n − 1).

Thus, the algebra Y1,n(q) coincides with the algebra Hn(q). The Yokonuma–Hecke
algebras can be also regarded as unipotent algebras in the sense of [45]. The repre-
sentation theory of these algebras has been studied in [13, 45]. In [13] a completely
combinatorial approach is taken to the subject. Further, in [26] a decomposition
of the Yokonuma–Hecke algebra is constructed, as a direct sum of matrix algebras
with coefficients in tensor products of Iwahori–Hecke algebras of type A, which is
a special case of a result of G. Lusztig [40].

Following [29, Sect. 3], the algebra Yd,n(q) has linear dimension dnn! and the set

Bcan
n =

{
t k1
1 . . . t kn

n (gi1 . . . gi1−r1) · · · (gi p . . . gi p−rp )

∣∣∣∣
k1, . . . , kn ∈ Z/dZ

1 ≤ i1 < · · · < i p ≤ n − 1

}
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is a C-linear basis for Yd,n(q). This basis is called the canonical basis of Yd,n(u).
Note that, in each element of the standard basis, the highest index generator gn−1

appears at most once.
Now, the natural inclusionsFn ⊂ Fn+1 give rise to the algebra inclusionsCFn ⊂

CFn+1, which in turn induce the algebra inclusions Yd,n(q) ⊂ Yd,n+1(q) for n ∈ N

(setting CYd,0(q) := C). We can construct an inductive basisBind
n for Yd,n(q) in the

following way: we set B ind
0 := {1} and

Bind
n+1 := {wngngn−1 . . . gi t

k
i , wntk

n+1 | 1 ≤ i ≤ n, k ∈ Z/dZ, wn ∈ Bind
n },

for all n ∈ N.

Remark 1.1 In the papers [12, 29–34] another presentation was employed for the
Yokonuma–Hecke algebra that was using a more complex quadratic relation giving
rise to more computational difficulties. We refer to this extensively in Sect. 1.6.

Remark 1.2 By the fact that the classical braid group Bn embeds in Fd,n (and in
Fn) and by relations (1.1) (b1, b2), there is a natural homomorphism from Bn to
Yd,n , treating the framing generators t j ’s as formal elements in the algebra. So, the
algebra Yd,n can be also used in the study of classical knots and links.

Note 1.1 In this paper we will sometimes identify algebra monomials with their
corresponding braid words.

1.2 Markov Traces on the Yokonuma–Hecke Algebras

In this section we recall the definition of a unique Markov trace defined on the
algebras Yd,n(q), as well as a necessary condition on the trace parameters, needed
for obtaining framed link invariants.

1.2.1 The Juyumaya Trace

By the natural inclusions Fn ⊂ Fn+1, which induce the inclusions Yd,n(q) ⊂
Yd,n+1(q), and using the inductive bases of the algebras Yd,n(q) we have:

Theorem 1.1 ([29, Theorem 12]) For z, x1, . . . , xd−1 indeterminates over C there
exists a unique linear map

trd :
⋃

n≥0

Yd,n(q) −→ C[z, x1, . . . , xd−1]
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satisfying the rules:

(1) trd(αβ) = trd(βα) α, β ∈ Yd,n(q)

(2) trd(1) = 1 1 ∈ Yd,n(q)

(3) trd(αgn) = z trd(α) α ∈ Yd,n(q) (Markov property)
(4) trd(αt s

n+1) = xs trd(α) α ∈ Yd,n(q) (1 ≤ s ≤ d − 1).

Note that for d = 1 the trace restricts to the first three rules and it coincides with the
Ocneanu trace τ on the Iwahori–Hecke algebras.

Moreover, the trace trd satisfies the following equality:

trd,D(aengn) = z trd,D(a) a ∈ Yd,n(q). (1.5)

Note 1.2 In this paper we will sometimes write trd(α) for a framed braid α ∈ Fn ,
by using the natural epimorphism of Fn onto Yd,n . Similarly, the same holds for a
classical braid α ∈ Bn by using the natural homomorphism of Bn into Yd,n .

1.2.2 The E–System

Using the natural epimorphism of the framed braid groupFn onto Yd,n(q), the trace
trd and the Markov framed braid equivalence, comprising conjugation in the groups
Fn and positive and negative stabilization and destabilization (see for example [37]),
in [31] the authors tried to obtain a topological invariant for framed links after the
method of V.F.R. Jones [27] (using for the algebra the presentation discussed in
Sect. 1.6). This meant that trd would have to be normalized, so that the closed braids
α̂ and α̂σn (α ∈ Fn) be assigned the same value of the invariant, and re-scaled, so

that the closed braids ̂ασ−1
n and α̂σn (α ∈ Fn) be also assigned the same value of

the invariant. However, as it turned out, trd(αg−1
n ) does not factor through trd(α),

that is:

trd(αg−1
n )

(4)= trd(αgn) − (q − q−1) trd(αen) �= trd(g
−1
n )trd(α). (1.6)

The reason is that, although trd(αgn) = z trd(α), trd(αen) does not factor through
trd(α), that is:

trd(αen) �= trd(en)trd(α). (1.7)

This is due to the fact that:

trd(αt k
n ) �= trd(t

k
n )trd(α) k = 1, . . . , d − 1. (1.8)

Forcing
trd(αen) = trd(en)trd(α) (1.9)
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yields that the trace parameters x1, . . . , xd−1 have to satisfy the E–system, the non-
linear system of equations in C:

E (m) = xm E (1 ≤ m ≤ d − 1)

where

E := E (0) = 1

d

d−1∑

s=0

xs xd−s = trd(ei ) and E (m) := 1

d

d−1∑

s=0

xm+s xd−s ,

where the sub-indices on the x j ’s are regarded modulo d and x0 := 1 (see [31]). As it
was shown by P. Gérardin (in theAppendix of [31]), the solutions of the E–system are
parametrized by the non-empty subsets of Z/dZ. For example, for every singleton
subset {m} of Z/dZ, we have a solution of the E–system given by:

x1 = exp(2πm
√−1/d) and xk = xk

1 for k = 2, . . . , d − 1. (1.10)

1.2.3 The Specialized Trace

Let X D := (x1, . . . , xd−1) be a solution of the E–system parametrized by the non-
empty subset D of Z/dZ. We shall call specialized trace the trace trd with the
parameters x1, . . . , xd−1 specialized to x1, . . . , xd−1 ∈ C, and it shall be denoted
trd,D (cf. [12]). More precisely,

trd,D : ⋃
n Yd,n(q) −→ C[z]

is a Markov trace on the Yokonuma–Hecke algebra, satisfying the following rules:

(1) trd,D(αβ) = trd,D(βα) α, β ∈ Yd,n(q)

(2) trd,D(1) = 1 1 ∈ Yd,n(q)

(3) trd,D(αgn) = z trd,D(α) α ∈ Yd,n(q) (Markov property)
(4′) trd,D(αt s

n+1) = xs trd,D(α) α ∈ Yd,n(q) (1 ≤ s ≤ d − 1).

The rules (1)–(3) are the same as in Theorem1.1, while rule (4) is replaced by the
rule (4′). As it turns out [32]:

ED := trd,D(ei ) = 1

|D| , (1.11)

where |D| is the cardinality of the subset D. Note that tr1,{0} coincides with tr1 that
in turn coincides with the Ocneanu trace τ .
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1.2.4 Properties of the Markov Traces

We shall now give some properties of the traces trd and trd,D [10], analogous to
known properties of the Ocneanu trace τ , by considering their behaviour under the
operations below. Clearly, a property satisfied by trd is also satisfied by trd,D (and
by τ ), but the converse may not hold.
• Inversion of braid words. Inversion means that a braid word is written from right to
left. For α = t k1

1 . . . t kn
n σ

l1
i1

. . . σ
lr
ir

∈ Fn , where k1, . . . , kn, l1, . . . , lr ∈ Z, we denote

by ←−α the inverted word, that is, ←−α = σ
lr
ir

. . . σ
l1
i1

t kn
n . . . t k1

1 . On the level of closed
braids this operation corresponds to the change of orientation on all components of
the resulting link. The operation can be extended linearly to elements of Yd,n . The
trace trd (and consequently also the trace trd,D) satisfies the following property:

trd(α) = trd(
←−α ).

• Split links. Let L = L1 � . . . � Lm be a split framed link, where L1, . . . , Lm are
framed links. Then there exists a braid word α = α1 . . . αm ∈ Fn , where αi ∈ Fi j \
Fi j−1+1 for some 1 ≤ i1 < . . . < ik ≤ n with i j+1 − i j > 1 such that α̂ = L and

α̂i = �i j−1

k=1U � Li for each i = 1, . . . , m. The trace trd (and consequently also the
trace trd,D) satisfies the following property:

trd(α) = trd(α1) · · · trd(αm) (1.12)

• Connected sums. Let α ∈ Fn and β ∈ Fm for some n, m ∈ N. The connected
sum of α and β is the word α#β := α[0]β[n−1] in the framed braid group Fn+m−1,
where α[0] is the natural embedding of α inFn+m−1, while β[n−1] is the embedding
of β in Fn+m−1 induced by the following shifting of the indices: σi → σn+i−1 for
i ∈ {1, . . . , m − 1} and t j → tn+ j−1 for j ∈ {1, . . . , m}. Upon closing the braids, this
operation corresponds to taking the connected sum of the resulting framed links. It is
known that the Ocneanu trace is multiplicative under the connected sum operation,
that is, τ(α#β) = τ(α) τ(β) if α ∈ Bn and β ∈ Bm . On the other hand, the trace trd

is not multiplicative under the connected sum operation, due to (1.8) and (1.7) (we
have α#t k

1 = αt k
n and, by linear extension, α#e1 = αen). Yet, the specialized trace

trd,D is multiplicative on connected sums, due to the E–condition (1.9), but this is
only true on the level of classical braids [10]. Namely:

trd,D(α#β) = trd,D(α) trd,D(β) for α ∈ Bn and β ∈ Bm .

For framed braids this is true only when ED = 1, that is, when the set D is singleton
and hence the corresponding solution X D of the E–system is described by (1.10).
Namely, for α ∈ Fn and β ∈ Fm :

trd,D(α#β) = trd,D(α)trd,D(β) ⇔ xd
1 = 1 and xk = xk

1 for k = 1, . . . , d − 1.
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• Mirror images. Let us consider the group automorphism of Bn given by σi → σ−1
i .

For α ∈ Bn , we denote by α∗ the image of α via this automorphism. We call α∗
the mirror image of α. On the level of closed braids this operation corresponds
to switching all crossings. Note that the operation mirror image applies on classi-
cal braids or links. It is known that the Ocneanu trace satisfies a “mirroring prop-
erty”. Namely, τ(q, z)(α∗) = τ

(
q−1, z − (q − q−1)

)
(α). However, due to (1.6), the

trace trd does not satisfy the mirroring property, but the specialized trace trd,D does.
Namely, observe that trd,D(g−1

i ) = z − (q − q−1)ED and set a new variable λD in
place of z. By re-scaling σi to

√
λDgi , so that trd,D(g−1

n ) = λDz, we find

λD := z − (q − q−1)ED

z
. (1.13)

If we solve (1.13) with respect to the variable z, we obtain

z = (q − q−1) ED

1 − λD
.

Hence, the trace trd,D can be considered as a polynomial in the variables (q, z) or in
the variables (q, λD) by the above change of variables. Using this notation, the trace
trd,D satisfies the following property:

trd,D(q, z)(α∗) = trd,D
(
q−1, z − (q − q−1)ED

)
(α), for any α ∈ Bn,

or equivalently,

trd,D(q, λD)(α∗) = trd,D
(
q−1, λ−1

D

)
(α), for any α ∈ Bn.

1.2.5 The Specialized Trace trd,D on Classical Braids

Let α ∈ Bn be a classical braid. When calculating trd,D(α), the framing generators t j

appear only in the form of the idempotents ei due to the application of the quadratic
relation (1.3). In this case, the fourth rule of the trace trd,D is not applied directly,
but rather indirectly using the E–condition (1.9). It has been long conjectured by
J. Juyumaya that the fourth rule of the trace trd,D , when computed on classical
braids, can be substituted by rules involving only the idempotents ei (cf. [2, 28]).
Indeed, this fact has been proved in [11].

Before we proceed to the statement (Theorem1.2), we define the subalgebra
Yd,n(q)(br) of Yd,n(q) generated only by the braiding generators g1, . . . , gn−1. The
subalgebra Yd,n(q)(br) is also the image of the natural homomorphism δ : CBn →
Yd,n(q) defined by σi → gi , since g−1

i ∈ Yd,n(q)(br) for i = 1, . . . , n − 1 [11].
Remarkably, for q �= 1 it is also true that ei ∈ Yd,n(q)(br) for i = 1, . . . , n − 1 [11].
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When computing the trace trd,D for classical braids, we restrict ourselves on the
subalgebra Yd,n(q)(br). Then the fourth rule of the trace can be substituted by two
new rules as follows:

Theorem 1.2 ([11, Theorem 4.3]) The following rules are sufficient for computing
the trace trd,D on Yd,n(q)(br):

(i) trd,D(ab) = trd,D(ba) a, b ∈ Yd,n(q)(br)

(ii) trd,D(1) = 1 1 ∈ Yd,n(q)(br)

(iii) trd,D(agn) = z trd,D(a) a ∈ Yd,n(q)(br) (Markov property)
(iv) trd,D(aen) = ED trd,D(a) a ∈ Yd,n(q)(br)

(v) trd,D(aengn) = z trd,D(a) a ∈ Yd,n(q)(br).

As we have seen, rule (v) holds for the trace trd (1.5) and rule (iv) is the E–
condition (1.9). There is no analogue of this theorem for the trace trd since it does
not satisfy the E–condition (rule iv). Notice that the value of the trace trd,D does not
depend on the specific solution of the E–system, but only on the cardinality of the
subset D ⊆ Z/dZ due to (1.11). This fact will have important consequences on the
classical link invariants defined via the trace trd,D .

1.3 Link Invariants from the Yokonuma–Hecke Algebras

Given a solution X D := (x1, . . . , xd−1) of the E–system invariants for various types
of knots and links, such as framed, classical and singular, have been constructed from
trd,D in [31–33]. The definitions of these invariants have been adapted in [10, 11] in
view of the new presentation of Yd,n(q). Moreover, we recall the construction of the
transverse link invariants defined in [10].

1.3.1 Framed Links

Let L f denote the set of oriented framed links. We set:

ΛD := 1

z
√

λD
. (1.14)

From the above and re-scaling σi to
√

λDgi , so that trd,D(g−1
n ) = λDz, we have the

following Theorem, which is analogous to [31, Theorem 8]:

Theorem 1.3 ([10, Theorem 4.1]) Given a solution X D of the E–system, for any
framed braid α ∈ Fn we define for the framed link α̂ ∈ L f :

Φd,D (̂α) = Λn−1
D (

√
λD)ε(α)

(
trd,D ◦ γ

)
(α)
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Fig. 1.1 The framed links of the skein relation in open braid form

where γ : CFn −→ Yd,n(q) is the natural algebra homomorphism defined via:
σi → gi and ts

j → t s(mod d)
j , and ε(α) is the algebraic sum of the exponents of the σi ’s

in α. Then the map Φd,D(q, z) is a 2-variable isotopy invariant of oriented framed
links.

Proposition 1.1 ([10, Proposition 4.2]) The invariant Φd,D satisfies the following
skein relation:

1√
λD

Φd,D(L+) − √
λDΦd,D(L−) = q − q−1

d

d−1∑

s=0

Φd,D(Ls), (1.15)

where the links L+, L− and Ls are closures of the framed braids illustrated in Fig.1.1.

Remark 1.3 Note that, for every d ∈ N, we have 2d − 1 distinct solutions of the
E–system, so the above construction yields 2d − 1 isotopy invariants for framed
links.

Remark 1.4 Due to the complicated computations for the trace trd,D (and hence for
the invariants Φd,D , two computer programs have been developed for this purpose.
One has been developed by M. Chmutov in Maple [10] and the other by the first
author in C#. Let w ∈ Yd,n(q) be a word. Both of the programs apply iteratively the
quadratic relation, breaking the word w into many simpler words. Then using the
relations (b1) and (f2) of the braid group (which also hold in the algebra Yd,n(q))
the programs reduce w into words written in split form. Finally, the four rules of
the trace trd,D are applied and the computation ends. Note that both programs have
exponential complexity with respect to r(w), where r(w) is the number of indices of
the braiding generators in w with powers different than 0 or 1.

1.3.2 Classical Links

LetL denote the set of oriented classical links. The classical braid group Bn injects
into the framed braid groupFn , whereby elements in Bn are viewed as framed braids
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with all framings zero. So, by the classical Markov braid equivalence, comprising
conjugation in the groups Bn and positive and negative stabilizations and destabi-
lizations, and by the construction and notations above, we obtain isotopy invariants
for oriented classical knots and links, where the t j ’s are treated as formal generators.
These invariants of classical links, which are analogous to those defined in [32]where
the old presentation for the Yokonuma–Hecke algebra is used, are denoted as Θd,D

and the restriction of γ : CFn −→ Yd,n(q) on CBn is denoted as δ. Namely,

Θd,D (̂α) := Λn−1
D (

√
λD)ε(α) (trd,D ◦ δ)(α).

An important corollary of Theorem1.2 is that the invariants Θd,D do not depend
on d and D but only on the cardinality of the set D. Namely:

Proposition 1.2 ([11, Proposition 4.6])The values of the isotopy invariants Θd,D for
classical links depend only on the cardinality |D| of D. Hence, for a fixed d, we only
obtain d invariants. Further, for d, d ′ positive integers with d ≤ d ′, we have Θd,D =
Θd ′,D′ as long as |D| = |D′|. We deduce that, if |D′| = d, then Θd ′,D′ = Θd,Z/dZ.
Therefore, the invariants Θd,D can be parametrized by the natural numbers, setting
Θd := Θd,Z/dZ for all d ∈ Z>0.

The invariants Θd(q, z) need to be compared with known invariants of classical
links, especially with the HOMFLYPT polynomial. The HOMFLYPT polynomial
P(q, z) is a 2-variable isotopy invariant of oriented classical links that can be con-
structed from the Iwahori–Hecke algebras Hn(q) and the Ocneanu trace τ after
re–scaling and normalizing τ [27]. In this paper we define P via the invariants Θd ,
since for d = 1 the algebras Hn(q) and Y1,n(q) coincide and the traces τ , tr1 and
tr1,{0} also coincide. Namely, we define:

P (̂α) = Θ1(̂α) =
(

1

z
√

λH

)n−1

(
√

λH)ε(α)
(
tr1,{0} ◦ δ

)
(α)

where λH := z−(q−q−1)

z = λ{0}. Further, recall that the HOMFLYPT polynomial sat-
isfies the following skein relation [27]:

1√
λH

P(L+) − √
λH P(L−) = (q − q−1) P(L0) (1.16)

where L+, L−, L0 is a Conway triple.
Contrary to the case of framed links, the skein relation of the invariantsΦd,D(q, z)

has no topological interpretation in the case of classical links since it introduces
framings. This makes it very difficult to compare the invariants Θd(q, z) with the
HOMFLYPT polynomial using diagrammatic methods. Further, on the algebraic
level, there is no algebra homomorphism connecting the algebras and the traces
[12]. Consequently, in [12] it is shown that for generic values of the parameters
q, z the invariants Θd(q, z) do not coincide with the HOMFLYPT polynomial. In
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fact, they only coincide in the trivial cases where q = ±1 or trd(ei ) = 1. The last
case implies that the solution of the E–system comprises the d-th roots of unity.
Yet, the invariants Θd(q, z) could be topologically equivalent to the HOMFLYPT
polynomial, in the sense that they distinguish or not distinguish the same pairs of
knots and links. The topological comparison of Θd with P has been a long-standing
open problem that was eventually answered in [11] and these results are presented
in Sect. 1.4 below.

Remark 1.5 A computer program has been developed by the first author in Mathe-
matica for computing the classical link invariants Θd [35]. This program uses Theo-
rem1.2 for computing the trace trd,D on classical braids, that is, the elements ei are
considered as formal elements instead of a sum of products of the framing genera-
tors. Further, it uses the new presentation Yd,n(q) of the Yokonuma-Hecke algebra,
whose quadratic relation is more economical for computations. Both facts result
in lower computational complexity than the programs of Remark1.4, however the
computational complexity remains exponential (see [35] for more details).

1.3.3 Singular Links

Let LS denote the set of oriented singular links. Oriented singular links are rep-
resented by singular braids that form the singular braid monoids S Bn [5, 7, 44].
The singular braid monoid S Bn is generated by the classical braiding generators
σi with their inverses, together with the elementary singular braids τi that are not
invertible. In [33] a monoid homomorphism was constructed that we adapt here to
the new presentation Yd,n(q) of the Yokonuma–Hecke algebra, namely:

η : S Bn −→ Yd,n(q)

σi → gi

τi → ei

(1.17)

Using the singular braid equivalence [21] (see also [38]), the map η and the spe-
cialized trace trd,D we obtain isotopy invariants for oriented singular links, analogous
to the ones constructed in [33, Theorem 3.6], as follows:

Theorem 1.4 ([10, Theorem 4.8]) For any singular braid α ∈ S Bn, we define

Ψd,D (̂α) := Λn−1
D (

√
λD)ε(α)

(
trd,D ◦ η

)
(α) ,

where ΛD, λD are as defined in (1.13) and (1.14), η is as defined in (1.17) and ε(α)

is the sum of the exponents of the generators σi and τi in the word α. Then the map
Ψd,D(q, z) is a 2-variable isotopy invariant of oriented singular links.
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Fig. 1.2 The singular links
L+, L− and L×

Moreover, in the image η(S Bn), we have

gi − g−1
i = (q − q−1)ei for all i = 1, . . . , n − 1,

which gives rise to the following skein relation (compare with [33]):

1√
λD

Ψd,D(L+) − √
λD Ψd,D(L−) = q − q−1

√
λD

Ψd,D(L×)

where L+, L− and L× are diagrams of three oriented singular links that are identical
except for one crossing, where they are as in Fig. 1.2. Furthermore, the properties
of the traces trd,D under inversion, split links, connected sums and mirror imaging
carry through to the invariants Ψd,D .

1.3.4 Transverse Links

Another class of links that is naturally related to the Yokonuma–Hecke algebras is
the class of transverse links, denoted by LT . A transverse knot is represented by
a smooth closed spacial curve that is nowhere tangent to planes of a special field
of planes in R

3 called standard contact structure (for the precise definition see for
example [20]). Transverse links are naturally framed and oriented. Two links that
are classically isotopic may be transversely non–equivalent. So, a topological type
of framed links may consist of several different types inLT . The problem is to find
transverse invariants for such links.

In 1983, D. Bennequin [6] noted that the closed braid presentation of knots is
convenient for describing transverse knots with the blackboard framing. For a knot
K represented as a closed braid α̂ with n strands, one can check that the self-linking
number is equal to sl(K ) = ε(α) − n, where ε(α) is the sum of the exponents of
the braiding generators σi in the word α ∈ Bn [6]. So, the transverse knot K defines
naturally an element of the framed braid group α′ := t sl(K )

1 α ∈ Fn . This generalizes
to transverse links in the obvious manner (using the self-linking of each component).

Further, S. Orevkov and V. Shevchishin [41] and independently N. Wrinkle [46]
gave a transverse analogue of the Markov Theorem, comprising conjugation in the
braid groups and only positive stabilizations and destabilizations: α ∼ α σn , where
α ∈ Bn . Now, rule (3) of the definition of the trace trd (Theorem1.1) tells us that trd
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respects positive stabilizations. Moreover, the absence of the negative stabilization in
the transverse braid equivalence resembles the problem of re-scaling of the trace trd

with respect to the negative stabilization, recall (1.6), making the Yokonuma–Hecke
algebras a natural algebraic object related to the class LT of transverse links. Let
L be a transverse link represented by the closure α̂ of a braid α ∈ Bn , giving rise to
the framed braid α′ = tr1

1 . . . trn
n α ∈ Fn , where r1 + . . . + rn = sl(L). We define

Md (̂α) := 1

zn−1
trd(α

′).

Theorem 1.5 ([10, Theorem 4.11]) The map Md(q, z, x1, . . . , xd−1) is a (d + 1)-
variable isotopy invariant of oriented transverse links.

The properties of the trace trd under inversion and split links carry through to the
invariants Md .

Remark 1.6 Due to the transverse braid equivalence, Md need not take the same

value on the links α̂σn and ̂ασ−1
n . Hence, the re-scaling map σi → √

λDgi is not
needed any more and by consequence a quantity analogous to λD is not introduced.
However, if we make such a re-scaling and specialize (x1, . . . , xd−1) to the solution
X D = (x1, . . . , xd−1) of the E–system, then the corresponding invariant of transverse
links would coincide with the invariants Φd,D(q, z) of oriented framed links from
Theorem1.3.

Our original hope was that the invariants Md would distinguish the transverse
knots of the same topological type and with the same Bennequin numbers [6]. How-
ever, this turned out not to be the case, due to the following reason: any quantum knot
invariant can be expressed in terms of Vassiliev invariants in a standard way (see, for
example, [7] or [8]); we show that the invariants Md can be similarly expressed in
terms of Vassiliev invariants.

Proposition 1.3 ([10, Proposition 6.1]) Let us make a substitution q = eh into the
transverse knot invariant Md(q, z, x1, . . . , xd−1) and consider the Taylor expansion
in the power series in h. For every n ∈ N, the coefficient of hn is a Vassiliev invariant
of order ≤ n.

The above proposition implies that the invariant Md(eh, z, x1, . . . , xd−1) of trans-
verse knots is covered by an (infinite) sequence of Vassiliev invariants. However, the
Fuchs–Tabachnikov theorem [20, Theorem 5.6] claims that any transverse Vassiliev
invariant turns out to be a topological Vassiliev invariant of framed knots. For further
discussion, we refer the reader to [10].
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1.4 The Classical Link Invariants

1.4.1 Behaviour of the Invariants Θd on Knots

Let L1 and L2 be two links.Wewill say that L1 and L2 areΘd -equivalent (respectively
P-equivalent) ifΘd(L1) = Θd(L2) (respectively P(L1) = P(L2)). A long-standing
question had been how the classical link invariants Θd compare to the HOMFLYPT
polynomial and among themselves for various values of d ≥ 2. The aim has been to
find a pair of P-equivalent knots or links that are not Θd -equivalent for some values
of d ≥ 2.

The first computations (using the presentation Yd,n(u)) on several pairs of P-
equivalent pairs of knots and links were disappointing. However, it became evident
from the computations that the invariantsΘd are related on knots to the HOMFLYPT
polynomial via a change of variables. This conjecture (formulated in [10]) has been
proved in [11] by comparing the traces trd,D and τ on braids whose closures are
knots. In detail:

Proposition 1.4 ([11, Proposition 5.6]) Let α ∈ Bn be a knot. Then

trd,D(q, z)(α) = En−1
D τ(q, z/ED)(α).

Now, using Proposition1.4 the conjecture relating the invariants Θd and P could
be proved:

Theorem 1.6 ([11, Theorem 5.8]) Given a solution X D of the E–system, for any
braid α ∈ Bn such that α̂ is a knot, we have:

Θd(q, z)(̂α) = Θ1(q, z/ED)(̂α) = P(q, z/ED)(̂α),

or equivalently:

Θd(q, λD)(̂α) = Θ1(q, λD)(̂α) = P(q, λD)(̂α).

Note that the polynomials Θd(q, λD) and P(q, λH) coincide on knots by consid-
ering substituting the variable λH with λD in P . Hence, the value ED does not appear
when computing the invariants Θd on knots.

1.4.2 Behaviour of the Invariants Θd on Split Links
and Disjoint Union of Knots

Let L and L ′ be two links. The invariants Θd satisfy the following property for split
links:
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Θd(L � L ′) = 1 − λD

(q − q−1)
√

λD ED
Θd(L)Θd(L ′).

This equality can easily be proven using the property of the trace on split links
(1.12). Now, Theorem1.6 can be generalized to disjoint unions of knots using the
multiplicative property of the invariants Θd on split links and Proposition1.4. In
detail:

Theorem 1.7 ([11, Theorem 6.2]) Given a solution X D of the E–system, for any
braid α ∈ Bn such that α̂ is a disjoint union of k knots, we have

Θd(q, z)(̂α) = E1−k
D Θ1(q, z/ED)(̂α) = E1−k

D P(q, z/ED)(̂α),

or equivalently:

Θd(q, λD)(̂α) = E1−k
D Θ1(q, λD)(̂α) = E1−k

D P(q, λD)(̂α).

Now the remaining question was the case of links that are not disjoint unions of
knots. In this case there was not an apparent conjecture relating the invariantsΘd and
P or relating the traces trd,D and τ . On the contrary, computations of the traces trd,D

and τ on simple examples of links indicated that the invariants Θd and P may not be
related by a change of variables [11, Sect. 6.2]. Specifically, for a 2-component link,
the invariants Θd seemed to depend not only on the value of P of the same link, but
also on the value of P of the link with the two components unlinked [11, Sect. 6.2].
Also, the behaviour of the elements ei when computing the trace trd,D on simple
examples was complicating the comparison of Θd with P on links [11, Sect. 6.3].

1.4.3 Behaviour of the Invariants Θd on Links – A Special
Skein Relation

In order to investigate the question of Θd equivalence on P-equivalent pairs of
links, a diagrammatic computation was not possible, since the skein relation of the
framed invariantsΦd,D (1.15) involves framed links and hence, there is no topological
interpretationwhen computing the invariantsΘd . However, if the skein relation (1.15)
is applied to a crossing involving different components, then all the framed links of the
skein relation reduce to classical links. Also, the skein relation obtained is identical
to the one of the HOMFLYPT polynomial. In detail:

Proposition 1.5 ([11, Proposition 6.8]) Let β ∈ Fn and i ∈ {1, . . . , n − 1}. Let

L+ = β̂σi , L− = ̂βσ−1
i and L0 = β̂.

Suppose we apply the skein relation (1.15) of Φd,D on L+ on the crossing σi and
that the i-th and (i + 1)-st strands (at the region of the crossing) belong to different
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Fig. 1.3 The links in the special skein relation in open braid form

components. Then the skein relation reduces to the skein relation of the HOMFLYPT
polynomial P = P(q, λD) (1.16)

1√
λD

Φd,D(L+) − √
λDΦd,D(L−) = (q − q−1)Φd,D(L0), (1.18)

see Fig.1.3. Furthermore, if we take β ∈ Bn as a framed braid with all framings
zero, then the above skein relation of Φd,D also holds for the invariants Θd , since it
involves only classical links:

1√
λD

Θd(L+) − √
λDΘd(L−) = (q − q−1)Θd(L0), (1.19)

1.4.4 Behaviour of the Invariants Θd on Links – Θd
as a Sum of HOMFLYPT Polynomials

This new special skein relation allows us to attack the problem diagrammatically.
One can apply the special skein relation on mixed crossings resulting to a skein
tree whose leaves consist of disjoint union of knots. Then using Theorem1.7 one
can compute the value of Θd on the initial link. Specifically, it has been proved
inductively in [11], that this procedure can be applied:

Theorem 1.8 ([11, Theorem 6.16]) For any �-component link L, the value Θd(L)

is a Q[q±1,
√

λD
±1]-linear combination of P(L) and the values of P on disjoint

unions of knots obtained by the skein relation:

Θd(L) =
�∑

k=1

E1−k
D

∑

α̂∈N (L)k

c(̂α) P (̂α) = P(L) +
�∑

k=2

(E1−k
D − 1)

∑

α̂∈N (L)k

c(̂α) P (̂α),
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where N (L)k denotes the set of all disjoint unions of k knots for k = 1, . . . , �.
Conversely, the value P(L) is a Q[q±1,

√
λD

±1]-linear combination of Θd(L) and
the values of Θd on disjoint unions of knots obtained by the skein relation:

P(L) =
�∑

k=2

Ek−1
D

∑

α̂∈N (L)k

c(̂α) Θd (̂α) = Θd(L) +
�∑

k=2

(Ek−1
D − 1)

∑

α̂∈N (L)k

c(̂α)Θd (̂α).

Theorem1.8 constitutes the first confirmation that Θd -equivalence does not nec-
essarily imply P-equivalence and vice versa. Let now d, d ′ ≥ 2 with d �= d ′. Using
Theorem1.8 one can write the invariants Θd and Θd ′ as a sum of HOMFLYPT poly-
nomials and attempt to derive a relation connecting the two invariants. Indeed, this
is possible and in fact is a generalization of Theorem1.8:

Theorem 1.9 ([11, Theorem 6.18]) Let d, d ′ ∈ N. For any �-component link L, the
value Θd ′(L) is an Q[q±1,

√
λD

±1]-linear combination of Θd(L) and the values of
Θd on disjoint unions of knots obtained by the skein relation:

Θd ′(L) = Θd(L) +
�∑

k=2

((
ED

ED′

)k−1

− 1

)
∑

α̂∈N (L)k

c(̂α) Θd (̂α).

It is immediate by Theorem1.9 that Θd -equivalence does not necessarily imply
Θd ′ -equivalence for d �= d ′. However, for 2-component P-equivalent links the fol-
lowing result holds:

Theorem 1.10 ([11, Theorem 7.1]) Let d, d ′ ≥ 2 and let L1 and L2 be a pair of
2-component P-equivalent links. Then L1 and L2 are Θd -equivalent if and only if
they are Θd ′ -equivalent.

1.4.5 Behaviour of the Invariants Θd on Links – A
Skein-Theoretic Approach

Theorem1.8 provides an algorithmic procedure to compute Θd diagrammatically as
follows:

Step 1. Apply the skein relation of Proposition1.5 on crossings linking different
components until the link L is decomposed into disjoint unions of knots.
An algorithmic process for achieving this is the following: we order the
components of L and we select a starting point on each component. Starting
from the chosen point of the first component and following its orientation we
apply the skein relation on all mixed crossings we encounter, so that the arcs
of this component are always overarcs.We proceed similarly with the second
component changing all mixed crossing except for crossings involving the
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first component, and so on. In the end we obtain the split version of the
original link.

Step 2. Following Theorem1.8 and its notation, we obtain

Θd(L) =
�∑

k=1

E1−k
D

∑

α̂∈N (L)k

c(̂α) P (̂α).

Step 3. Apply the skein relation (1.16) of the HOMFLYPT polynomial to obtain
the value of P on α̂ at variables (q, λD), for all disjoint unions of knots
α̂ ∈ N (L)k , k = 1, . . . , �.

Since the invariants Θd are well-defined via braid methods, we obtain by Theo-
rem1.8 the following:

Theorem 1.11 ([11, Theorem 6.19]) The invariants Θd can be completely defined
via the HOMFLYPT skein relation.

1.4.6 Behaviour of the Invariants Θd on Links – Comparison
with the HOMFLYPT Polynomial on Links

Theorem1.8 and the special skein relation (1.19) allow us to compare diagrammati-
cally the invariants Θd to the HOMFLYPT polynomial on various links.

It is known that the HOMFLYPT polynomial, being a skein link invariant, does
not distinguish mutant knots or links. The operation of mutation on a link diagram
is defined by choosing a disk that intersects the diagram at exactly four points and
then rotating 180◦ the 2-tangle encircled by the disk. Investigating with the use of
the trace trd,D whether the invariants Θd distinguish mutant knots or links would
be impossible. However, using the special skein relation, it is possible to prove the
following result:

Proposition 1.6 ([11, Proposition 6.5]) Let L and L ′ be two mutant links. Then
Θd(L) = Θd(L ′).

In order to compare the invariants Θd to the HOMFLYPT polynomial on exam-
ples of P-equivalent pairs of links, not isotopic to each other as unoriented link,
computations were needed in order to calculate the values of the invariants Θd on
them. Using the data from [9], 89 pairs of such links up to 11 crossings were found
and we computed, using the program of Remark1.5 [35], the values of the invariants
Θd on them using the program of Remark1.5. Out of these 89 pairs, there are 6 pairs
of P-equivalent links that are not Θd -equivalent for every d ≥ 2 [11] (Table1.1):
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Table 1.1 Six P-equivalent
pairs of 3-component links
that are not Θd -equivalent

L11n358{0, 1} L11n418{0, 0}
L11a467{0, 1} L11a527{0, 0}
L11n325{1, 1} L11n424{0, 0}
L10n79{1, 1} L10n95{1, 0}
L11a404{1, 1} L11a428{0, 1}
L10n76{1, 1} L11n425{1, 0}

Specifically, for these pairs the differences of the polynomials have been computed
[11]:

Θd (L11n358{0, 1}) − Θd (L11n418{0, 0})

= (ED − 1)(λD − 1)(q − 1)2(q + 1)2
(
q2 − λD

) (
λDq2 − 1

)

EDλ4Dq4
,

Θd (L11a467{0, 1}) − Θd (L11a527{0, 0})

= (ED − 1)(λD − 1)(q − 1)2(q + 1)2
(
q2 − λD

) (
λDq2 − 1

)

EDλ4Dq4
,

Θd (L11n325{1, 1}) − Θd (L11n424{0, 0})

= − (ED − 1)(λD − 1)(q − 1)2(q + 1)2
(
q2 − λD

) (
λDq2 − 1

)

EDλ3Dq4
,

Θd (L10n79{1, 1}) − Θd (L10n95{1, 0})

= (ED − 1)(λD − 1)(q − 1)2(q + 1)2
(
λD + λDq4 + λDq2 − q2

)

EDλ4Dq4
,

Θd (L11a404{1, 1}) − Θd (L11a428{0, 1})

= (ED − 1)(λD − 1)(λD + 1)(q − 1)2(q + 1)2
(
q4 − λDq2 + 1

)

EDq4 ,

Θd (L10n76{1, 1}) − Θd (L11n425{1, 0})

= (ED − 1)(λD − 1)(λD + 1)(q − 1)2(q + 1)2

EDλ3Dq2
.

Note that the factor (ED − 1) is common to all six pairs. This confirms that the
pairs have the same HOMFLYPT polynomial, since for ED = 1 the difference col-
lapses to zero. Further, all the computations can be found on http://www.math.ntua.
gr/~sofia/yokonuma. Except for the computational results, there is a diagrammatic
proof for the pair of links L11n358{0, 1} and L11n418{0, 0} in [11]. Now, we can
formulate the following immediate statement:

Theorem 1.12 ([11, Theorem 7.3]) The invariants Θd are not topologically equiv-
alent to the HOMFLYPT polynomial for any d ≥ 2.

The proof uses recursive applications of the special skein relation (1.19), in order
to construct skein trees, where only disjoint union of knots appear as leaves, for both
links. Then using the split link property of Θd (1.20), the value of Θd is written as a

http://www.math.ntua.gr/~sofia/yokonuma
http://www.math.ntua.gr/~sofia/yokonuma
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sum of HOMFLYPT polynomials of knots. Finally, by recognizing the topological
type of the knot diagrams and byfinding theHOMFLYPTpolynomial values for these
knots, the calculation is completed. Note that the intrinsic difference in computing
the invariantsΘd and P is in the different values of these invariants on disjoint unions
of knots. In particular, if K is a knot and U is the unknot, for the invariants Θd :

Θd(K � U ) = 1 − λD

(q − q−1)
√

λD ED
Θd(K ),

while for P we have that:

P(K � U ) = 1 − λD

(q − q−1)
√

λD
P(K ).

Theorem1.12 confirms that P-equivalence does not imply Θd -equivalence, but
it cannot provide us with any indication as to whether or not the invariants Θd are
strictly stronger than the HOMFLYPT polynomial.

1.5 A 3-Variable Generalization of the HOMFLYPT
Polynomial

1.5.1 The Invariant Θ(q, λ, E)

The program of Remark1.5 considers the value ED as a parameter. Moreover, the
six pairs of links of Table1.1 are distinguished by Θd for every d ≥ 2, as seen of the
difference of the values of Θd on each pair. The natural question arising is whether
the value ED can be considered as an indeterminate, allowing us to construct a
link invariant generalizing both the HOMFLYPT polynomial and the invariants Θd .
Indeed, in [11] such an invariant has been constructed:

Theorem 1.13 ([11, Theorem 8.1]) Let q, λ, E be indeterminates. There exists
a unique isotopy invariant of classical oriented links Θ : L → C[q±1, λ±1, E±1]
defined by the following rules:

1. For a disjoint union L of k knots, with k ≥ 1, it holds that:

Θ(L) = E1−k P(L).

2. On crossings involving different components the following skein relation holds:

1√
λ

Θ(L+) − √
λ Θ(L−) = (q − q−1)Θ(L0),

where L+, L−, L0 is a Conway triple.
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The invariantΘ distinguishes the 6 pairs of Table1.1. Moreover, sinceΘ general-
izes both the invariants Θd and the HOMFLYPT polynomial, we have the following:

Theorem 1.14 ([11, Theorem 8.2]) The invariant Θ(q, λ, E) is stronger than the
HOMFLYPT polynomial.

Remark 1.7 By the above, the computer program of Remark1.5 computes the
invariant Θ .

As we shall see, the well-definedness of Θ can be proved using a variety of
techniques, from diagrammatic ones to algebraic or combinatorial ones.

1.5.2 Properties of the Framed and Classical Invariants

The invariants Φd,D and Θ (and hence also the invariants Θd ) satisfy properties
analogous to the known ones of the HOMFLYPT polynomial, due to the behaviour
of trace trd,D under inversion, split links, connected sums and mirror imaging. In
detail:

• Reversing orientation:

Φd,D(L) = Φd,D(
←−
L ) and Θ(L) = Θ(

←−
L ),

where
←−
L is the link L with reversed orientation on all components.

• Split links:

Φd,D(L � L ′) = ΛD Φd,D(L)Φd,D(L ′)

and Θ(L � L ′) = 1 − λD

(q − q−1)
√

λD E
Θ(L)Θ(L ′).

(1.20)

• Connected sums:

Φd,D(L#L ′) = Φd,D(L)Φd,D(L ′) and Θ(L#L ′) = Θ(L)Θ(L ′),

where D is a subset ofZ/dZ such that xd
1 = 1 and xk = xk

1 for all k = 1, . . . , d − 1.
• Mirror images:

Φd,D(q, λD)(L∗) = Φd,D(q−1, λ−1
D )(L) and Θ(q, λD)(L∗) = Θ(q−1, λ−1

D )(L),

where L∗ is the mirror image of L .

Notice that P satisfies the exact same properties asΘ except for split links, where
the parameter E (or the value ED) does not appear:
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P(L � L ′) = 1 − λH

(q − q−1)
√

λH
P(L)P(L ′).

1.5.3 A Closed Formula for Θ

Before we proceed to explain how the well-definedness of the invariant Θ can be
proved, we provide a closed formula for Θ , proved by W.B.R. Lickorish. More pre-
cisely, the invariantΘ is a complicated mixture of linking numbers and HOMFLYPT
polynomials of sublinks. In detail:

Theorem 1.15 ([11, Appendix B by W.B.R. Lickorish]) Let L be an oriented link
with n components. Then

Θ(L) =
n∑

k=1

μk−1Ek

∑

π

λν(π) P(π L) (1.21)

where the second summation is over all partitions π of the components of L into k
(unordered) subsets and P(π L) denotes the product of the HOMFLYPT polynomials
of the k sublinks of L defined by π . Furthermore, ν(π) is the sum of all linking
numbers of pairs of components of L that are in distinct sets of π , Ek = (E−1 −
1)(E−1 − 2) · · · (E−1 − k + 1), with E1 = 1, and μ = λ−1/2−λ1/2

q−q−1 .

The above formula provides us with a topological interpretation of the invariant
Θ . Specifically, the invariant Θ is completely determined by the linking matrix of
a link L and the values of P on each sublink of L . For example, on the pair of
links of Theorem1.12 the invariant Θ detects a pair of 2-component sublinks that
are not P-equivalent. Specifically, the link L11n358{0, 1} contains a disjoint union
of two unknots as a sublink, whereas L11n418{0, 0} does not; hence, there is a pair
of sublinks with different HOMFLYPT polynomials.

Theorem1.15 is proved by W.B.R. Lickorish using the special skein relation and
combinatorial tools. For more details, the reader can refer to [11, Appendix B]. The
above result has also been proved in [42] using representation theory techniques.

Moreover, Theorem1.15 allows us to investigate further the question of whether
Θd -equivalence implies Θd ′-equivalence or vice versa. In detail:

Proposition 1.7 ([11, Proposition 8.9]) Let L and L ′ be two n-component links that
are not Θ-equivalent. Then they are not Θd -equivalent for d ≥ n.

The proof uses exclusively Theorem1.15. In detail, for d ≥ n we do not lose
any topological information, since all the coefficients Ek are not zero for all
k ∈ {1, . . . , n}. However, for d < n the coefficients Ek for k ≥ d are zero and hence a
pair ofHOMFLYPTnon-equivalent sublinksmay not be detected.Hence, for a pair of
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P-equivalent links L and L ′, either all the invariants Θd coincide and do not distin-
guish the links or there exists a d ∈ N with 2 ≤ d < n such that Θd(L) �= Θd(L ′).

In [11] it is shown that Θ can indeed be defined by (1.21):

Theorem 1.16 ([11, Theorem 8.11]) Suppose that the invariant Θ is defined by
Eq.1.21. Then, this definition is equivalent to the definition of Theorem1.13.

Note that the definition via (1.21) provides a quick way to compute the invariant Θ
for a link L . One only needs to identify the sublinks of a link and compute Θ using
the known values of P on the sublinks and the linking matrix of L .

1.5.4 The Well-Definedness of Θ

Chronologically, our first proof of the well-definedness of Θ was algebraic using
the class of tied links [2]. However, there exist other methods for proving that Θ is
well-defined. Summarizing, there are the following four equivalent methods:

1. combinatorially, via the closed formula of W.B.R. Lickorish (Theorem1.15);
2. skein-theoretically based on Theorem1.13 (a direct proof can be found in [36]);
3. algebraically, via the algebra of braids and ties En(q) [2] generated by

g1, . . . , gn−1 with the algebra of braids and ties.
4. algebraically, via the isomorphism of the subalgebra Yd,n(q)(br) of Yd,n(q) gen-

erated by g1, . . . , gn−1 with the algebra of braids and ties En(q) for d ≥ n [17].

All the above methods do not involve complicated constructions such as the
E–system, even though Θ contains the invariants Θd where the E–system is
needed. Moreover, the restriction d ≥ n of Theorem1.17 does not obstruct the well-
definedness of Θ: for a link L written as a braid in n strands one can always choose
a suitable d ≥ n.

Now we will provide some more insight on the last two algebraic methods for
proving the well-definedness of Θ using tied links. Tied links were introduced and
studied by F. Aicardi and J. Juyumaya in [2, 3]. A tied link is defined as a classical
link L endowed with a set of ties, containing unordered pairs of points belonging to
the components of L [3, Definition 1]. Diagrammatically, one can visualize a tie as
a spring connecting two (not necessarily different) components of L . The endpoints
of a tie are allowed to slide along the components that they are attached to. If two ties
join the same two components, one of them can be removed, and any tie on a single
component can be also removed. A tie that cannot be removed is called essential.

Tied link invariants can be constructed using either diagrammatic or algebraic
methods. In [3] such an invariant is defined using both methods. Specifically, a tied
link invariant is constructed with the use of a Markov trace on the algebra of braids
and ties En(q). The algebra of braids and tiesEn(q) is defined as the algebra generated
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by g1, . . . , gn−1, e1, . . . , en−1 satisfying the following relations (cf. [2,Definition 1]):

gi g j gi = g j gi g j for |i − j | = 1
gi g j = g j gi for |i − j | > 1
ei e j = e j ei

e2i = ei

ei gi = gi ei

ei g j = g j ei for |i − j | > 1
ei e j gi = gi ei e j for |i − j | = 1
ei g j gi = g j gi e j for |i − j | = 1

g2
i = 1 + (q − q−1) ei gi .

Diagrammatically, the generators gi correspond to the classical braiding gener-
ators and the elements ei correspond to ties connecting the i-th and the (i + 1)-th
strands. Note that the cancellation properties of ties mentioned above are reflected in
the fact that the elements ei are idempotents. In [2, 3], a different presentation En(u)

is used, where the quadratic relation is changed.
The similarity between the algebra En(q) and Yd,n(q)(br) is obvious: both can

be generated by the same generators and the generators of Yd,n(q)(br) satisfy the
exact same relations. However, it is not evident that these relations are enough for
the subalgebra Yd,n(q)(br) and whether the two algebras are isomorphic. In [17], the
authors have provided a representation-theoretic proof for the isomorphism between
the two algebras:

Theorem 1.17 ([17, Theorem 8]) Suppose that d ≥ n. Then the algebra En(q) is
isomorphic to the subalgebra Yd,n(q)(br) of Yd,n(q).

Note also the similarity of the condition d ≥ n of Theorem1.17 and Proposi-
tion1.7.

Now, a Markov trace ρ : ⋃
n≥0 En(q) → C[q±1, z±1, E±1] can be defined satis-

fying the following rules (cf. [2, Theorem 3]):

(i) ρ(ab) = ρ(ba) a, b ∈ En(q)

(ii) ρ(1) = 1 1 ∈ En(q)

(iii) ρ(agn) = z ρ(a) a ∈ En(q) (Markov property)
(iv) ρ(aen) = E ρ(a) a ∈ En(q)

(v) ρ(aengn) = z ρ(a) a ∈ En(q) .

Notice the resemblance of the above rules with the five rules of trd,D in Theorem1.2.
Further, the trace ρ satisfies similar properties to those of trd,D [11]. In [3] the tied
braid monoid T Bn is defined; it is generated by the braiding generators σ1, . . . , σn−1

and the generating ties η1, . . . , ηn−1, where ηi connects the i-th and the i + 1-th
strands of a tied braid. Denote by π̄ : CT Bn → En(q) the natural surjection defined
by σi → gi and ηi → ei . Then following the procedure of [3] an invariant Θ can be
defined as:
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Theorem 1.18 ([11, Theorem 8.4]) For any tied braid α ∈ T Bn, we define

Θ(̂α) :=
(

1

z
√

λ

)n−1 √
λ

ε(α)
(ρ ◦ π̄)(α) ,

where λ = z−(q−q−1)E
z and ε(α) is the sum of the exponents of the braiding generators

σi in the word α. Then the map Θ is a 3-variable isotopy invariant of oriented tied
links.

Note that, for E = 1, Θ specializes to the HOMFLYPT polynomial when
restricted to classical links.

In [3], a similar invariant has been defined using the presentation En(q). This
invariant is re-defined diagrammatically via a skein relation that applies to any cross-
ing in the link diagram. It is proved to be well-defined via the standard Lickorish–
Millett method [39]. The same can be done for Θ . Specifically, Θ satisfies the
following defining skein relation:

1√
λ

Θ(L+) − √
λ Θ(L−) = (q − q−1)Θ(L0,∼), (1.22)

For the well-definedness of Θ one only needs to show that Θ coincides with Θ

on classical links and that Θ satisfied the defining rules of Θ as in Theorem1.13.
Indeed, the skein relation (1.22) reduces to the special skein relation of the second
rule of Theorem1.13 and it also satisfies the property of Θ for disjoint unions of
knots [11].

1.6 Other Invariants from the Yokonuma–Hecke Algebras

A well-known property of the HOMFLYPT polynomial P , as defined via the
Iwahori–Hecke algebra, is that a transformation gi → cgi , where c ∈ C, leads to
a change of variables for P . In the case of the Yokonuma–Hecke algebras this is not
always true, because we have more possibilities for applying a linear transformation
on the braiding generators. Indeed, a transformation of the form gi → cgi would
work similarly for the framed link invariants Φd,D as for P . However, applying a
transformation of the form gi → cgi + c′ei gi , with c′ ∈ C, does not lead to a change
of variables for Φd,D but rather to new invariants, potentially topologically non-
equivalent to the invariants Φd,D . Indeed, as we shall see below, this transformation
gives rise to an algebra isomorphic to Yd,n(q) but with a different quadratic relation.

1.6.1 The Old Quadratic Relation

We begin by summarizing the construction of framed and classical links invariants
using the other presentation of the Yokonuma–Hecke algebra that we shall denote
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by Yd,n(u) and that was used in the papers [12, 29–34]. This old presentation was
also used originally for defining the invariants for framed, classical, singular and
transverse links described in [10, 11], recall previous sections, but then it was adapted
to the presentation Yd,n(q) that has simpler quadratic relations.

The algebra Yd,n(u) is generated by the elements g̃1, . . . , g̃n−1 and t1, . . . , tn , sat-
isfying relations (1.1) (with g̃i corresponding to σi ), (1.2) and the quadratic relations:

g̃i
2 = 1 + (u − 1) ei + (u − 1) ei g̃i (1 ≤ i ≤ n − 1). (1.23)

The presentation Yd,n(q) used in this paper and in [10, 11, 35] was obtained in
[13] by taking u := q2 and gi := g̃i + (q−1 − 1) ei g̃i (or, equivalently, g̃i := gi +
(q − 1) ei gi ).

In [26] a quadratic relation with two parameters is considered, which specializes
to both the old and the new quadratic relation for the Yokonuma–Hecke algebra.

1.6.2 The Traces ˜trd and ˜trd,D

Theorem1.1 has been originally proved by J. Juyumaya using the presentation
Yd,n(u) for the Yokonuma-Hecke algebra [29]. He proved that there exists a unique
linear Markov trace t̃rd on

⋃
n≥0 Yd,n(u) defined inductively by the four rules of

Theorem1.1, where rule (3) is replaced by the rule:

(̃3) t̃rd(ag̃n) = z̃ t̃rd(a) a ∈ Yd,n(u) (Markov property)

for some indeterminate z̃ over C. Since his proof uses the inductive basis of Yd,n(u),
it also works with the new quadratic relations (1.3), thus yielding Theorem1.1. The
E–condition and the E–system as presented in Sect. 1.2 were first defined and used
in [31] in order to re-scale t̃rd , and remain the same for Yd,n(q). In [12, Definition 3]
the specialized trace t̃rd,D with parameter z̃ is defined on

⋃
n≥0 Yd,n(u), satisfying

the analogous rules: (1), (2), (̃3) and (4′).

1.6.3 Related Invariants

Now, using the natural C-algebra epimorphism from CFn onto Yd,n(u) given by
σi → g̃i and t k

j → t k(mod d)
j and abusing notation, one can define the trace t̃rd on the

elements ofCFn , and thus, in particular, on the elements ofFn . By normalizing and
re-scaling the specialized trace t̃rd,D , invariants Γd,D(u, z̃) for oriented framed links
are defined in [31, Theorem 8].

As it turned out [31, Proposition 7], the invariants Γd,D satisfy the following skein
relation, involving the braiding and the framing generators:
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Fig. 1.4 The framed links of the skein relation in open braid form

1√
λ̃D

Γd,D(L+) −
√

λ̃DΓd,D(L−) = 1 − u−1

d

d−1∑

s=0

Γd,D(Ls) + 1 − u−1

d

√
λ̃D

d−1∑

s=0

Γd,D(Ls×)

(1.24)
where

λ̃D = z̃ − (u − 1)ED

u z̃
,

and the links L+, L−, Ls and Ls× are illustrated in Fig. 1.4. Comparing this skein
relation to the corresponding skein relation of Φd,D derived from Yd,n(q) (1.15) we
can see that terms involving Ls× are missing in (1.15).

Similarly to Φd,D(q, z), the invariants Γd,D(u, z̃) become invariants of oriented
classical links, denoted by Δd,D(u, z̃), when the traces t̃rd , t̃rd,D are applied on the
classical braid groups Bn and these are the ones studied in [12, 32]. Theorem1.2
and all its consequences hold also for the specialized trace t̃rd,D . In particular, the
values of the classical link invariants Δd,D depend only on the cardinality |D| of D,
so they can be parametrized by the natural numbers, setting Δd := Δd,Z/dZ for all
d ∈ Z>0. For d = 1 we have thatΔ1 = Δ1,{0}(u, z̃) = Θ1,{0}(q, z), the HOMFLYPT
polynomial, for u = q2 and z̃ = qz. This can be easily seen by comparing the skein
relations for Γ1,{0} and Φ1,{0}. So, both families of invariants Δd and Θd include the
HOMFLYPT polynomial as a special case.

However, the skein relation (1.24) of the invariants Γd,D does not yield a special
skein relation for the invariants Δd similar to (1.19) of Θd . Indeed, if the crossing
of L+ involves two different components, then so does the crossing of Ls× and so
the framings in Ls× cannot be collected together. Consequently, Theorem1.11 and
all other results for Θd that depend on the special skein relation are not valid for
the invariants Δd . Clearly, the diagrammatic analysis made for the invariants Θd on
pairs of P-equivalent links cannot be implemented for the invariants Δd . Neverthe-
less, there are computational indications that the invariants Δd are not topologically
equivalent to P . Concerning now the properties studied in Sect. 1.2.4, Δd has the
same behaviour asΘd on links with reversed orientation, on split links, on connected
sums and on mirror images. However, behaviour of Δd under mutation cannot be
checked using the methods of Proposition1.6. Furthermore, there is no reason that
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the invariants Δd(u, z̃) and Θd(q, z) are topologically equivalent. In fact, there is
computational evidence that they are not [1].

Moreover, using Theorem1.17, ED could be taken to be an indeterminate E ,
and t̃rd would be well-defined due to the isomorphism of Yd,n(u)(br) with the alge-
bra of braids and ties En(u) for d ≥ n; then t̃rd would coincide with the Markov
trace on En(u) defined in [2]. More precisely, in [2, 3], F. Aicardi and J. Juyu-
maya worked on the algebra of braids and ties En(u), generated by elements
g̃1, . . . , g̃n−1, e1, . . . , en−1, with the braiding generators satisfying the old quadratic
relations (1.23). Then they defined a Markov trace ρ̃ on ∪n≥0En(u) [2, Theorem 3]
that gave rise to a 3-variable isotopy invariant of tied links, denoted by Δ. Our con-
struction of Θ (recall Sect. 1.5.4) is completely analogous to the construction of Δ.
For E = 1,Δ specializes to the HOMFLYPT polynomial when restricted to classical
links. In [3], Δ is re-defined diagrammatically via a skein relation that applies to any
crossing in the link diagram. The invariant Δ has not been identified topologically.
One obstruction to this is the fact that the old quadratic relation is used for the alge-
bra En(u). So, it was impossible to derive a special skein relation that only involves
classical links (with no ties). Despite the fact that the algebras En(u) and En(q) are
isomorphic, the invariants Δ and Θ are also not necessarily topologically equivalent
[1] as we have already observed about the invariants Δd and Θd .

Restricting now Δ to classical links, similarly to the proof of Theorem1.13 [11],
one can prove that the invariant Δ satisfies the first rule of Theorem1.13. Given
also the isomorphism between the subalgebra Y(br)

d,n (u) of Yd,n(u) and the algebra of
braids and ties En(u) for d ≥ n, in this case the invariant Δ contains the invariants
Δd . Consequently, the invariantsΔd are topologically equivalent to the HOMFLYPT
polynomial on knots and on disjoint unions of knots.
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Chapter 2
A Survey on Temperley–Lieb-type Quotients
from the Yokonuma–Hecke Algebras

Dimos Goundaroulis

Abstract In this survey we collect all results regarding the construction of the
Framization of the Temperley–Lieb algebra of type A as a quotient algebra of the
Yokonuma–Hecke algebra of type A. More precisely, we present all three possible
quotient algebras the emerged during this construction and we discuss their dimen-
sion, linear bases, representation theory and the necessary and sufficient conditions
for the unique Markov trace of the Yokonuma–Hecke algebra to factor through to
each one of them. Further, we present the link invariants that are derived from each
quotient algebra and we point out which quotient algebra provides the most natural
definition for a framization of the Temperley–Lieb algebra. From the Framization of
the Temperley–Lieb algebra we obtain new one-variable invariants for oriented clas-
sical links that, when compared to the Jones polynomial, they are not topologically
equivalent since they distinguish more pairs of non isotopic oriented links. Finally,
we discuss the generalization of the newly obtained invariants to a new two-variable
invariant for oriented classical links that is stronger than the Jones polynomial.

2.1 Introduction

The Yokonuma–Hecke algebra was first introduced in the 60s by Yokonuma as a
generalization of the Iwahori–Hecke algebra in the context of Chevalley groups [30].
In recent years, Juyumaya simplified the natural description by giving a presentation
in terms of generators and relations [17–19]. A detailed overview of Juyumaya’s
approach can be found in [28, Preliminaries]. In this context, the Yokonuma–Hecke
algebra of type A can be considered as a quotient of the framed braid group algebra
over a two-sided ideal that is generated by a quadratic relation that involves certain
weighted idempotent elements.
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Throughout the past ten years the theory of Yokonuma–Hecke algebras received
a significant amount of attention, mainly due to the concept of framization of knot
algebras, a concept that was introduced by Juyumaya andLambropoulou [24]. A knot
algebra is an algebra that is involved in the construction of invariants of classical links
via braid group representations [16]. To be more precise, a knot algebra A is a triplet
(A, π, τ ), where π is an appropriate representation of the braid group in A and τ is a
Markov trace function defined onA. The Iwahori–Hecke algebra and the Temperley–
Lieb algebra are the most known examples of knot algebras. On the other hand, the
framization consists in an extension of a knot algebra via the addition of framing
generators which gives rise to a new algebra that is related to framed braids and
framed knots. The Yokonuma–Hecke algebra, Yd,n(u) is the basic example of this
concept and it can be regarded as a framization of the Iwahori–Hecke algebra, Hn(u)

[20, 24]. With this in mind, Juyumaya and Lambropoulou proposed framizations of
several knot algebras [23, 25] from which isotopy invariants for framed, classical
and singular links were derived [20–22].

The breakthrough in this theory came while comparing the invariants for classical
oriented knots and links from the Yokonuma–Hecke algebras to the HOMFLYPT
polynomial. In [5], the useof a different presentation forYd,n withparameterq instead
of u and a different quadratic relation led to the proof that the derived two-variable
invariantsΘd are not topologically equivalent to the HOMFLYPT polynomial on links
while they are topologically equivalent to the HOMFLYPT on knots. Furthermore,
in the same work it was shown that the invariants Θd distinguish more pairs of non-
isotopic oriented links than theHOMFLYPTpolynomial.Moreover, itwas shown that
the invariants canbegeneralized to a 3-variable invariantΘ for oriented classical links
that can be completely defined via the skein relation of the HOMFLYPT polynomial
on crossings involving different components of the link and a set of initial conditions
[5, 26]. The invariant Θ distinguishes the same pairs of HOMFLYPT-equivalent
links as Θd , it is not topologically equivalent to the HOMFLYPT or the Kauffman
polynomials and, thus, it is stronger than the HOMFLYPT polynomial on links.

One of the open problems in the concept of framization of knot algebras was
the determination of a framization of the Temperley–Lieb algebra. If one consid-
ers the classical Temperley–Lieb algebra as it was introduced by Jones [16] that is,
as a quotient of the Iwahori–Hecke algebra, it is immediately evident that desired
framization will emerge as an appropriate quotient of the Yokonuma Hecke algebra.
Contrary to the classical case such a candidate algebra is not unique. The study of
these quotient algebras has been the topic of the author’s Ph.D. thesis [11] which
led to a series of results regarding their topological [12–15] as well as their alge-
braic properties [7, 8]. There are three potential candidates that can qualify as the
framization of the Temperley–Lieb algebra: the Yokonuma-Temperley–Lieb algebra
YTLd,n(u), the Complex Reflection Temperley–Lieb algebra CTLd,n(u) and the so-
calledFramization of the Temperley–Lieb algebraFTLd,n(u). The algebraYTLd,n(u)

is too restricted and, as a consequence, the invariants for classical links from the alge-
bra YTLd,n(u) just recover the Jones polynomial [12]. On the other hand, the algebra
CTLd,n(u) is too large for our topological purposes and the derived link invariants
coincide either with those from Yd,n(u) or with those from FTLd,n(u) [13]. Unfor-
tunately, these two quotient algebras do not fit the topological purposes of deriving
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new invariants for (framed) knots and links and, thus, they do not qualify as potential
framizations of the Temperley–Lieb algebra. The third quotient algebra of Yd,n(u),
the Framization of the Temperley–Lieb algebra, FTLd,n(u), lies between YTLd,n(u)

and CTLd,n(u) and, as it will be made clear in Sect. 2.3, it turns out to be the right one
[13]. The invariants θd for classical links from the algebras FTLd,n adapted to a pre-
sentation with parameter q instead of u of Yd,n(q), are proven to be not topologically
equivalent to the Jones polynomial on links while they are topological equivalent to
the Jones polynomial on knots [13]. Finally, in analogy to the invariants Θd , the
invariants θd can be generalized to a new two-variable invariant of oriented classical
links θ that is stronger than the Jones polynomial [15].

The outline of the paper is as follows: In Sect. 2.2 we introduce the necessary
notations and we give a brief overview of all the required definitions and results such
as: the Temperley–Lieb algebra, the Yokonuma–Hecke algebra, the E-system and
the derived two-variable invariants for oriented framed and classical knots and links.
In Sect. 2.3 we discuss three quotients of the Yokonuma–Hecke algebra as possible
candidates for the framization of the Temperley–Lieb algebra. Moreover, we give all
algebraic (linear basis, dimension, representation theory) as well as all topological
(Markov trace, link invariants) results in the literature regarding each one of these
quotient algebras. In Sect. 2.4 we describe how the invariants Θd and θd compare to
the HOMFLYPT and Jones polynomials respectively. Finally, we discuss how the
invariants Θd generalize to a new three-variable invariant for oriented classical links
as well as the analogous generalization of the invariants θd to a new two-variable
invariant for oriented classical links and we also describe closed combinatorial for-
mulas for each one of the generalizations.

2.2 Preliminaries

In this section we will establish our notation and we will present the basic notions
that will be used in the following sections.

2.2.1 Notations

We start by fixing two positive integers, d and n. Every algebra considered in this
paper is an associative unital algebra over the fieldC(u), where u is an indeterminate.
The framed braid group on n strands is defined as the semi-direct product of Artin’s
braid group Bn with n copies of Z, namely:Fn = Z

n
� Bn , where the action of the

braid group Bn on Z
n is given by the permutation induced by a braid on the indices

σi t j = tsi ( j)σi . By considering framings modulo d, the modular framed braid group,
Fd,n = (Z/dZ)n

� Bn , is defined. Due to the above action a word w in Fn (resp.
Fd,n) has the splitting property, that is, it splits into the framing part and the braiding
part w = ta1

1 . . . tan
n σ where σ ∈ Bn and ai ∈ Z (resp. Z/dZ).
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Finally, a partition of n, λ = (λ1, . . . , λk), is a family of positive integers such
that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 and |λ| = λ1 + · · · + λk = n. We identify every
partition with its Young diagram, that is a left-justified array of k rows such that
the j th row contains λ j nodes for all j = 1, . . . , k. A d-partition λ, or a Young
d-diagram, of size n is a d-tuple of partitions such that the total number of nodes in
the associated Young diagrams is equal to n. That is, we have λ = (λ(1), . . . , λ(d))

with λ(1), . . . , λ(d), usual partitions such that |λ(1)| + · · · + |λ(d)| = n.

2.2.2 The Temperley–Lieb algebra

For n ≥ 3, the Temperley–Lieb algebra, TLn(u), is theC(u)-algebra that is generated
by the elements h1, . . . , hn−1 which are subject to the following relations:

hi h j = h j hi for all |i − j | > 1

hi h j hi = h j hi h j for all |i − j | = 1

h2
i = u + (u − 1)hi

hi,i+1 = 0,

where hi, j := 1+hi +h j +hi h j +h j hi +hi h j hi . Notice that the first three relations
are the defining relations of the Iwahori–Hecke algebra, Hn(u), which is defined
as the quotient of the algebra C(u)Bn over the two-sided ideal that is generated by
the quadratic relations mentioned above. Thus, with this presentation, the algebra
TLn(u) can be considered as the quotient of Hn(u) over the two-sided ideal that is
generated by the elements hi,i+1 ∈ Hn(u). It is not difficult to see that the defining
ideal of TLn(u) is principal and that is generated by the element h1,2.

The algebra Hn(u) supports a unique Markov trace, the Ocneanu trace τ with
parameter ζ [16, Theorem 5.1]. By normalizing and rescaling τ according to the
braid equivalence, one obtains the Homlypt polynomial [16, Proposition 6.2], [10,
29]. Further, the trace τ factors through to the quotient algebra TLn(u). The necessary
and sufficient conditions for the factoring of τ provide a specialization for the trace
parameter ζ which, in turn, gives rise to the Jones polynomial [16]:

V (u)(̂α) =
(

−1 + u√
u

)n−1
(√

u
)ε(α)

τ (π(α)),

where: α ∈ ∪∞ Bn , π is the natural epimorphism of C(u)Bn on TLn(u) that sends
the braid generator σi to hi and ε(α) is the algebraic sum of the exponents of the σi ’s
in α.
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2.2.3 The Yokonuma–Hecke Algebra

The Yokonuma–Hecke algebra Yd,n(u) [30] is defined as the quotient of the group
algebra C(u)Fd,n over the two-sided ideal generated by the elements:

σ 2
i − 1 − (u − 1)ei − (u − 1)eiσi for all i,

where ei := 1
d

∑d−1
s=0 t s

i td−s
i+1 , for i = 1, . . . , n − 1. The elements ei in Yd,n(q) are

idempotents [18]. The generators of the ideal give rise to the following quadratic
relations in Yd,n(q):

g2
i = 1 + (u − 1)ei + (u − 1)ei gi , (2.1)

where gi corresponds to σi . Moreover, (2.1) implies that the elements gi are invertible
with g−1

i = gi − (u−1 − 1)ei + (u−1 − 1)ei gi , 1 ≤ i ≤ n − 1. The ti ’s are called the
framing generators, while the gi ’s are called the braiding generators of Yd,n(q). By
its construction, the Yokonuma–Hecke algebra is considered as the framization of
the Iwahori–Hecke algebra. Regarding its algebraic properties, the algebra Yd,n(u)

has the following standard linear basis [18]:

{ta1
1 . . . tan

n w | ai ∈ Z/dZ, w ∈ BHn },

where BHn is the standard basis of Hn(u). A simple counting argument implies
that the dimension of the algebra Yd,n(u) is equal to n! dn . Further, the irreducible
representations of Yd,n(u) over C(u), are parametrised by the d-partitions of n [4,
Theorem 1].

One of the most important results regarding the Yokonuma–Hecke algebra lies
in [18] where Juyumaya showed that Yd,n(u) supports the following unique linear
Markov trace function:

trd : ∪∞
n=1Yd,n(u) −→ C(u)[z, x1, . . . , xd−1],

where z, x1, . . . , xd−1 are indeterminates. The trace trd can be defined inductively
on n by the following rules [18, Theorem 12]:

trd(ab) = trd(ba)

trd(1) = 1
trd(agn) = z trd(a)

trd(ats
n+1) = xs trd(a) (s = 1, . . . , d − 1),

where a, b ∈ Yd,n(u). Using the rules of trd and setting x0 := 1, one deduces that
trd(ei ) takes the same value for all i , indeed: E := trd(ei ) = 1

d

∑d−1
s=0 xs xd−s .
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In order to define framed and classical link invariants via the trace trd , one should
re-scale trd according to the framed braid equivalence [27]. Unfortunately, the trace
trd is the only known trace that does not re-scale directly [24]. The E-system is the
following system of non-linear equations

d−1
∑

s=0

xm+s xd−s = xm

d−1
∑

s=0

xs xd−s (1 ≤ m ≤ d − 1),

thatwas introduced in order to find the necessary and sufficient conditions that needed
to be applied on the parameters xi of tr so that the re-scaling of trd would be possible
[24]. We say that the (d − 1)-tuple of complex numbers (x1, . . . , xd−1) satisfies the
E-condition if x1, . . . , xd−1 are solutions of the E-system. The full set of solutions
of the E-system is given by Paul Gérardin [24, Appendix] using tools of harmonic
analysis on finite groups. More precisely, he interpreted the solution (x1, . . . , xd) of
the E-system, as the complex function x : Z/dZ → C that sends k 	→ xk , k 
= 0 and
0 	→ 1. Let now χm be the character of the group Z/dZ and let im := ∑d−1

s=0 χm(s)t s ,
for m ∈ Z/dZ ∈ C[Z/dZ]. We then have that the solutions of the E-system are of
the following form:

xs = 1

|D|
∑

m∈D

im(s), 1 ≤ s ≤ d − 1,

where D is a non-empty subset of Z/dZ. Hence, the solutions of the E-system
are parametrized by the non-empty subsets of Z/dZ. Two obvious solutions of the
E-system are: the all-zero solution, that is xi = 0, for all i , and when the xi ’s
are specialized to the dth roots of unity. For the rest of the paper we fix X D =
{x1, . . . , xd−1} to be a solution of the E-system parametrized by the non-empty subset
D of Z/dZ. If we specialize the trace parameters xi of trd to the values xi we obtain
the specialized trace trd,D with parameter z [5, 6].

By normalizing and re-scaling the specialized trace trd,D , invariants for framed
links are obtained [24]:

Γd,D(w, u)(̂α) =
(

− (1 − wu)|D|√
w(1 − u)

)n−1
(√

w
)ε(α)

trd,D(γ (α)), (2.2)

where: w = z+(1−u)

uz|D| is the re-scaling factor, γ is the natural epimorphism of the
framed braid group algebraC(u)Fn on the algebraYd,n(u), andα ∈ ∪∞Fn . Further,
by restricting the invariantsΓd,D(w, u) to classical links, seen as framed linkswith all
framings zero, in [21] invariants of classical oriented links Δd,D(w, u) are obtained.
In [6] it was proved that for generic values of the parameters u, z the invariants
Δd,D(w, u) do not coincide with the HOMFLYPT polynomial except in the trivial
cases u = 1 and ED = 1.
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2.3 The Three Possible Candidates

In this section we will present all results in the literature regarding the three possible
quotient algebras that can be considered as candidates for the framization of the
Temperley–Lieb algebra. Inwhat follows,wewill give the definitions and dimensions
for each quotient algebra, describe their linear bases and representation theory and
discuss the necessary and sufficient conditions so that the trace trd passes to each
one of the quotient algebras. Finally, we will present the invariants for framed and
classical links that are derived from each algebra.

2.3.1 Motivation Behind the Construction

Following the construction of the classical Temperley–Lieb algebra we would like
to introduce an analogue of TLn(u) in the context of framed knot algebras. Namely,
to define a quotient of Yd,n(u) over a two-sided ideal that is constructed from an
appropriately chosen subgroup of the underlying group Cd,n := (Z/dZ)n

� Sn of
Yd,n(u). At this point two such subgroups emerge naturally. The first possibility is
to consider the subgroups 〈si , si+1〉 of Cd,n that are also related to the defining ideal
of TLn(u). The second possibility is to let the framing generators ti be involved in
the generating set of such a subgroup and consider the following subgroup of Cd,n:

Ci
d,n := 〈ti , ti+1, ti+2〉 � 〈si , si+1〉 for all i.

Therefore we can define at least two types of algebras which could be considered as
analogues of the Temperley–Lieb algebras in the context of knot algebras with fram-
ing. The algebra that corresponds to the first possibility is the Yokonuma-Temperley–
Lieb algebra, denoted by YTLd,n(u), while the second is the Complex Reflection
Temperley–Lieb algebra, CTLd,n(u).

As mentioned in (2.2), new two-variable invariants for oriented framed knots
and links are defined through the trace trd on the Yokonuma–Hecke algebra by
imposing the E-system on the parameters x1, . . . , xd−1 [24]. Hence, we expect that
the framization of the Temperley–Lieb algebra will allow us to define one-variable
specializations of the invariants derived from Yd,n(u). Unfortunately, both quotients
above are not satisfactory for this purpose. In the case of YTLd,n(u), very strong
conditions on the trace parameters must be applied in order for trd to pass through
to the quotient algebra. Namely, the trace parameters xi must be dth roots of unity,
giving rise to obvious, special solutions of the E-system, which imply topologically
loss of the framing information. However, the original Jones polynomial can be
recovered from this quotient algebra. In the case of CTLd,n(u), the quotient algebra
is large enough so that the necessary and sufficient conditions such that trd passes to
CTLd,n(u) are, contrary to the case of YTLd,n(u), too relaxed, especially on the trace
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parameters xi . So, in order to obtain knot invariants we would still need to impose
the E-system on the trace parameters x1, . . . , xd−1 as in the case of Yd,n(u).

The discussion above indicated that the desired framization of theTemperley–Lieb
algebra, for our topological purposes, could be an intermediate algebra between the
quotient algebras YTLd,n(u) and CTLd,n(u). One may achieve this, by using for the
defining ideal an intermediate subgroup that lies between 〈si , si+1〉 and Ci

d,n . More
precisely, we define this framization as a quotient of the Yokonuma–Hecke algebra
over an ideal that is constructed from the following subgroup of Cd,n:

Hi
d,n := 〈ti t−1

i+1, ti+1t−1
i+2〉 � 〈si , si+1〉 for all i.

Thus, one obtains the so-called Framization of the Temperley–Lieb algebra,
FTLd,n(u). The relation between the three quotient algebras is given by the following
commutative diagram of epimorphisms [13, Proposition 3]:

Yd,n(u) CTLd,n(u) FTLd,n(u) YTLd,n(u)

Hn(u) TLn(u)

The Yokonuma-Temperley–Lieb algebra and its derived invariants were intro-
duced and studied in [12], while its representation theory was studied in [7]. The
algebras FTLd,n(u), CTLd,n(u) and their corresponding invariants were introduced
in [13] and were further studied in [8, 14, 15].

2.3.2 The Yokonuma-Temperley–Lieb Algebra

For n ≥ 3, the Yokonuma-Temperley–Lieb algebra, denoted byYTLd,n(u), is defined
as the quotient of Yd,n(u) over the two-sided ideal that is generated by the elements:

gi,i+1 := 1 + gi + gi+1 + gi gi+1 + gi+1gi + gi gi+1gi . (2.3)

It is a straightforward computation to show that the defining ideal of YTLd,n(u)

is principal and is generated by the element g1,2 [12, Lemma 4]. Thus, the algebra
YTLd,n(u) can be considered as the C(u)-algebra that is generated by the elements
t1, . . . , tn, g1 . . . , gn−1 that are subject to the defining relations of Yd,n(u) and the
relation g1,2 = 0 [12, Corollary 1]. Note also that for d = 1 the algebra YTL1,n(u)

coincides with TLn(u).
Every word in the algebra YTLd,n(u) inherits the splitting property from Yd,n(u).

For each fixed element in the braiding part, a set of linear dependency relations among
the framing parts can be described which, in turn, lead to the extraction of a linear
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basis for YTLd,n(u) [7]. Using this technique, Chlouveraki and Pouchin proved in
[7] that, for n ≥ 3, the following set is a linear basis for YTLd,n(u):

Sd,n = {

tr1
1 . . . trn

n w | w ∈ BTL, (r1, . . . , rn) ∈ Ed,n(w)
}

,

whereBTL is the linear basis of the classical Temperley–Lieb algebra as computed by
Jones in [16] and Ed,n(w) is a subset of {0, . . . , d − 1}n that describes the exponents
of the ti ’s that correspond to the fixed braid word w ∈ YTLd,n(u). For an explicit
description of the set Ed,n(w), the reader is encouraged to consider [7, Propositions 9
and 11]. Subsequently, the dimension of the Yokonuma-Temperley–Lieb algebra can
be computed, which is equal to:

dim(YTLd,n(u)) = dcn + d(d − 1)

2

n−1
∑

k=1

(

n

k

)2

,

where cn is the nth Catalan number [7, Proposition 4].
By standard results in representation theory we have that the irreducible represen-

tations ofYTLd,n(u) are in bijectionwith those irreducible representations ofYd,n(u)

that respect the defining relation of YTLd,n(u), which is g1,2 = 0. Specifically, the
irreducible representations of YTLd,n(u) are those representations of Yd,n(u) who
have at most two columns in total in the Young diagram of the parametrizing d-
partition of n [7, Theorem 1]. In the following example, the first 3-partition of 5
parametrizes an irreducible representation of YTL3,5(u) while the second one does
not correspond to an irreducible representation of YTL3,5(u):

i.

(

, ,∅
)

i i.

(

, ,∅
)

.

As mentioned in the introduction, the motivation behind the definition of a
Temperley–Lieb type quotient from the Yokonuma–Hecke algebra was the construc-
tion of polynomial invariants for framed knots and links via the use of the trace trd

of Yd,n(u). Thus, one of the biggest challenges regarding the study of the algebra
YTLd,n(u) was the determination of the necessary and sufficient conditions for trd

to factor through to the quotient algebra. By employing the methods that P. Gérardin
used to describe the full set of solutions of the E-system [24, Appendix], the author
together with Juyumaya, Kontogeorgis and Lambropoulou proved that following:

Theorem 2.1 ([12, Theorem 6]) The trace trd passes to the quotient algebra
YTLd,n(u) if and only if the xi ’s are solutions of the E-system and one of the two
cases holds:

(i) the x�’s are dth roots of unity and z = − 1
u+1 or z = −1,

(ii) the x�’s are the solutions of the E-system that are parametrized by the set D =
{m1, m2 | 0 ≤ m1, m2 ≤ d − 1 and m1 
= m2} and they are expressed as:
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x� = 1

2

(

χm1(t
�) + χm2(t

�)
)

, 0 ≤ � ≤ d − 1,

where the χk’s denote the characters of the group Z/dZ. In this case we have
that z = − 1

2 .

Note that in both cases the xi ’s are solutions of the E-system, as required by [24],
in order to proceed with defining link invariants. We do not take into consideration
case (i) for z = −1 and case (i i), where z = − 1

2 , since crucial braiding information
is lost and therefore they are of no topological interest [12]. The only remaining
case of interest is case (i) of Theorem 2.1, where the x�’s are the dth roots of unity
and z = − 1

u+1 . This implies that E = 1 and w = u in (2.2). So, by [6, 16], the
invariantΔd,s(u, u) coincides with the Jones polynomial. For this reason, the algebra
YTLd,n(u) is discarded as a potential framization of the Temperley–Lieb algebra.

2.3.3 The Complex Reflection Temperley–Lieb Algebra

Wemove on nowwith presenting the second natural definition of a potential framiza-
tion of the Temperley–Lieb algebra. For n ≥ 3, we define the Complex Reflection
Temperley–Lieb algebra, denoted byCTLd,n(u), as the quotient of the algebraYd,n(u)

over the ideal that is generated by the elements

ci,i+1 :=
∑

α,β,γ∈Z/dZ

tα
i tβ

i+1tγ

i+2 gi,i+1. (2.4)

In analogy to the algebraYTLd,n(u), the defining ideal of CTLd,n(u) can be shown
to be principal and is generated by the single element c1,2. Further, for d = 1, the
algebra CTL1,n(u) coincides with the algebra TLn(u). The denomination Complex
Reflection Temperley–Lieb algebra has to do with the fact that the underlying group
of CTLd,n(u) is isomorphic to the complex reflection group G(d, 1, 3).

The Complex Reflection Temperley–Lieb algebra is isomorphic to a direct sum of
matrix algebras over tensor products of Temperley–Lieb and Iwahori–Hecke algebras
[8, Theorem 5.8]. This isomorphism, which we will denote by φn , will lead to the
determination of a linear basis for CTLd,n(u). More precisely, there exists an explicit
isomorphism:

φn :
⊕

μ∈Compd (n)

Matmμ

(

TLμ1(u) ⊗ Hμ2(u) ⊗ . . . ⊗ Hμd (u)
) −→ CTLd,n(u).

Then the following set is a linear basis for CTLd,n(u) [8, Proposition 5.9]:

{

φn
(

b1b2 . . . bd Mk,l
) | b1 ∈ BTLμ1 (u), bi ∈ BHμi (u) for all i = 2, ..., d, 1 ≤ k, l ≤ mμ,μ ∈ Compd (n)

}

,
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where BTLμ1(u)
is the linear basis of TLμ1(u), BHμi (u) is the linear basis of Hμi , Mk,l

is the elementary mμ × mμ matrix with 1 in position(k, l) and μ ∈ Compd(n) is a d-
composition of n, that is,μ = (μ1, μ2, . . . , μd) ∈ N

d such thatμ1+μ2+· · ·+μd =
n. Counting the elements of the above basis one can derive the dimension of the
algebra CTLd,n(u) [8, Theorem 5.5]. Indeed, if ck := 1

k+1

(2k
k

)

is the kth Catalan
number, we have that:

dimC(u)CTLd,n(u) =
∑

μ ∈Compd (n)

(

n!
μ1! μ2! . . . μd !

)2

cμ1 μ2! . . . μd !

Let now λ = (λ(1), . . . , λ(d)) a d-partition of n. The irreducible representations
of CTLd,n(u) are those irreducible representations of Yd,n(u) whose Young diagram
of λ(1) has at most two columns [8, Theorem 5.3]. For instance, in the example
given below, the first 2-Young diagram corresponds to an irreducible representation
of CTL2,9(u) while the second one does not:

i.

(

,

)

i i.

(

,

)

.

Next we present the necessary and sufficient conditions for the trace trd to factor
through to the quotient algebra CTLd,n(u). We have the following:

Theorem 2.2 ([13, Theorem 7]) The trace trd passes to the quotient algebra
CTLd,n(u) if and only if the parameter z and the xi ’s are related through the equation:

(u + 1)z2
∑

k∈Z/dZ

xk + (u + 2)z
∑

k∈Z/dZ

E (k) +
∑

k∈Z/dZ

tr(e(k)
1 e2) = 0. (2.5)

Notice now that the conditions of Theorem 2.2 do not include any solutions of
the E-system. Thus, in order to obtain any well defined invariant from the algebras
CTLd,n(u) one has to impose the E-condition on the trace parameters xi . Even by
doing so, CTLd,n(u) does not deliver any new invariants for framed or classical
oriented knots and links. We have the following:

Proposition 2.1 ([13, Proposition 10])Let X D be a solution of theE-system parame-
trized by the subset D of Z/dZ. The invariants derived from the algebra CTLd,n(u):

1. if 0 ∈ D, they coincide with the invariants derived from the algebra FTLd,n(u),
2. if 0 /∈ D, they coincide with the invariants derived from the algebra Yd,n(u).

The above constitute the reasons for which the Complex Reflection Temperley–
Lieb algebra is discarded as a potential candidate for the framization of the
Temperley–Lieb algebra.
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2.3.4 The Framization of the Temperley–Lieb algebra

For n ≥ 3, the Framization of the Temperley–Lieb algebra, denoted by FTLd,n(u),
is defined as the quotient Yd,n(u) over the two-sided ideal that is generated by the
elements

ri,i+1 :=
∑

α+β+γ=0

tα
i tβ

i+1tγ

i+2 gi,i+1. (2.6)

In analogy to the case of the other two quotient algebras, for d = 1 the algebra
FTL1,n(u) coincides with TLn(u). Additionally, the defining ideal of FTLd,n(u) is
principal and is generated by the element r1,2. Thus, in terms of generators and rela-
tions, FTLd,n(u) is the C(u)-algebra generated by the set {t1, . . . , tn, g1, . . . , gn−1}
whose elements are subject to the defining relations of Yd,n(u) and the relation
r1,2 = 0.

As in the case of CTLd,n(u), the determination of a linear basis for the Framiza-
tion of the Temperley–Lieb algebra will emerge from an isomorphism theorem for
FTLd,n(u). More precisely, the quotient algebra FTLd,n(u) is isomorphic to a direct
sum of matrix algebras over tensor products of Temperley–Lieb algebras [8, Theo-
rem 4.3]. There exists an explicit isomorphism of C(u)-algebras:

˜φn :
⊕

μ∈Compd (n)

Matmμ

(

TLμ1(u) ⊗ . . . ⊗ TLμd (u)
) −→ FTLd,n(u),

then the following set is a linear basis for the algebra FTLd,n(u):

{

˜φn(b1 . . . bd Mk,l ) | bi ∈ BTLμi (q) for all i = 1, . . . d, 1 ≤ k, l ≤ mμ, μ ∈ Compd (n)
}

.

By using a counting argument one can derive the dimension of the algebra FTLd,n(u),
which is equal to [8, Theorem 3.11]:

dimC(u)FTLd,n(u) =
∑

μ ∈Compd (n)

(

n!
μ1! μ2! . . . μd !

)2

cμ1 cμ2 . . . cμd . (2.7)

The irreducible representations of FTLd,n(u) are those irreducible representations of
Yd,n(u) whose Young diagram of λ(i) has at most two columns, for i = 1, 2, . . . , d.
As in the previous examples, the first of the following 3-Young diagrams describes
an irreducible representation of FTL3,7(u) while the second does not:

i.

(

, ,

)

i i.

(

, ,

)

.

Wemove on now to the necessary and sufficient conditions so that trd factors through
to FTLd,n(u).



2 A Survey on Temperley–Lieb-type Quotients … 49

Theorem 2.3 ([13, Theorem 6]) The trace tr passes to FTLd,n(u) if and only if the
parameters of the trace tr satisfy:

xk = −z

⎛

⎝

∑

m∈Sup1
χm(tk) + (u + 1)

∑

m∈Sup2
χm(tk)

⎞

⎠ and z = − 1

|Sup1| + (u + 1)|Sup2| ,

where χm are the characters of the group Z/dZ, Sup1 � Sup2 (disjoint union) is the
support of the Fourier transform of x, and x is the complex function on Z/dZ, that
maps 0 to 1 and k to the trace parameter xk .

The intrinsic difference with the other two quotient algebras lies in the fact that
the necessary and sufficient conditions of Theorem 2.3 include all solutions of the
E-system. This observation is themain reason that led to the consideration of the quo-
tient algebra FTLd,n(u) as the most natural non-trivial analogue of the Temperley–
Lieb algebra in the context of framization of knot algebras. If one lets either Sup1
or Sup2 to be the empty set, then the trace parameters xk comprise a solution of the
E-system. In this context, if Sup1 is the empty set then z = − 1

(u+1)|Sup2| while if Sup2
is the empty set then z = −1/|Sup1| [13, Corollary 3]. Since for defining invariants
for oriented (framed) knots and links only the cardinal |D| of the parametrizing set
D of a solution is needed, the solutions mentioned above cover all the possibilities.
We do not take into consideration the case where Sup2 = ∅ and z = −1/|Sup1| since
important topological information is lost and thus basic pairs of knots are not distin-
guished [13, Remark 7]. For the remaining case, let X D be a solution of the E-system,
parametrized by the non-empty subset D = Sup2 of Z/dZ and let z = − 1

(u+1)|D| .
We obtain from Γd,D(w, u) the following new 1-variable framed link invariants:

Γd,D(u, u)(̂α) :=
(

− (1+u)|D|√
u

)n−1 (√
u
)ε(α)

trd,D (γ (α)) , (2.8)

for anyα ∈ ∪∞Fn . Further, in analogy to the invariants ofΓd,D(w, u), ifwe restrict to
framed links with all framings zero, we obtain fromΓd,D(u, u) new 1-variable invari-
ants of classical links Δd,D(u, u). Additionally, for d = 1 the invariant Γd,D(u, u)

coincides with the Jones polynomial.

2.4 Comparisons and Generalizations

In this section we will present the comparisons of the invariants Θd and θd to the
HOMFLYPT and the Jones polynomials respectively, and we will give generaliza-
tions for both of them.
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2.4.1 The Invariants Θd and Their Generalization

In a recent development [5] itwas proved that the classical link invariants derived from
the Yokonuma–Hecke algebra are not topologically equivalent to the HOMFLYPT
polynomial on links while they are topologically equivalent to the HOMFLYPT on
knots. This was achieved by considering a different presentation for the algebra Yd,n

with parameter q instead of u and a different quadratic relation. More precisely,
the algebra Yd,n(q) is defined as the C(q)-algebra that is generated by the elements
g′
1, . . . , g′

n−1, t1, . . . , tn , which satisfy all relations ofYd,n(u) except for the quadratic
relation that is replaced with the following:

(g′
i )

2 = 1 + (q − q−1)ei g
′
i . (2.9)

One can obtain this presentation from the one given in Sect. 2.2.3 by taking u = q2

and
gi = g′

i + (q − 1)ei g
′
i (or, equivalently, g′

i = gi + (q−1 − 1)ei gi ).

Thus, the following invariants of classical links were derived [5]:

Θd(q, λd)(̂α) =
(

1 − λd√
λd(q − q−1)ED

)n−1
√

λd
ε(α)

trd,D(δ(α)), (2.10)

where α ∈ ∪∞ Bn , ED = 1/d, ε(a) is as in (2.2), δ is the natural homomorphism
C(q)Bn → Yd,n(q) and λd = z′−(q−q−1)ED

z′ is the re-scaling factor for the trace trd,D .
The invariants Θd depend only on d ∈ N, that is, the cardinal of the subset D

that parametrizes the solution of the E-system [5, Proposition 4.6]. Furthermore, the
choice of the new presentation for Yd,n revealed that the invariants Θd satisfy the
HOMFLYPT skein relation on crossings between different components of a link L
[5, Proposition 6.8]. Using this, one can prove that the invariants Θd distinguish
more pairs of HOMFLYPT equivalent pair of non-isotopic oriented classical links
[5, Sect. 7.2] and thus that Θd are not topologically equivalent to the HOMFLYPT
polynomial on links [5, Theorem 7.3].

In [5] it has been shown skein-theoretically that the invariants for classical links
Θd generalize to a new 3-variable invariant Θ(q, λ, E) for classical oriented links
that can be defined uniquely by the following two rules:

1. On crossings between different components of an oriented classical link L the
skein relation of the HOMFLYPT polynomial holds:

1√
λD

Θ(L+) − √

λD Θ(L−) = (q − q−1)Θ(L0),

where L+, L− and L0 is a Conway triple.
2. For a disjoint union of K = �r

i=1Ki of r knots, with r > 1, it holds that:
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Θ(K ) = E1−r
r

∏

i=1

P(Ki ),

where P(Ki ) is the value of the HOMFLYPT polynomial on Ki .

Algebraically, the well-definedness of the invariant Θ can be proved by using the
algebra of braids and ties, En(q) [1]. The algebra En(q) supports a unique Markov
trace ρ that gives rise to a 3-variable invariant for tied linksΘ(q, λ, E)which, in turn,
restricts to an invariant of classical oriented links Θ(q, λ, E) [2, 3]. Alternatively,
one can use the fact that, for d ≥ n, En(q) is isomorphic to the subalgebra Y(br)

d,n (q)

of Yd,n(q) that is generated only by the gi ’s [9]. Note now that when computing
the specialized trace trd,D of a braid word in Bn , the framing generators appear
only when applying the quadratic or the inverse relation and only in the form of the
idempotents ei . In this case and by the E-condition, the last rule of the specialized
trace: trd,D(ats

n+1) = xs trd,D(a), for s = 1, . . . , d − 1, can be substituted by the
following two rules [5, Theorem 4.3]:

trd,D(aen) = ED trd,D(a) and trd,D(aengn) = z trd,D(a),

where D is the non-empty subset of Z/dZ that parametrizes a solution of the E-
system. Consequently, if ED is considered as an indeterminate, the specialized trace
trd,D onY(br)

d,n (q) iswell-defined since it coincideswith the traceρ onEn(q) and, there-

fore, the invariant Θ can be constructed directly through Y(br)
d,n (q) [5, Remark 4.18].

Conversely, one can recover the invariants Θd from Θ by specializing E = 1/d,
d ∈ N.

A self-contained diagrammatic proof for the well-definedness of the invariant Θ
has been given in [26]. The invariant Θ distinguishes more pairs of non isotopic
oriented links than the HOMFLYPT polynomial and thus it is stronger than the
HOMFLYPT.We note also that,Θ is not topologically equivalent to theHOMFLYPT
or the Kauffman polynomials.

Finally, it is worth noting that the invariant Θ can be described by the following
closed combinatorial formula, namely:

Theorem 2.4 ([5, Appendix]) Let L be an oriented link with n components, then:

Θ(q, λ, E)(L) =
m

∑

k=1

μk−1Ek

∑

π

λν(π) P(π L), (2.11)

where the second summation is over all partitions of π of the components of L into k
(unordered) subsets and P(π L) denotes the product of the HOMFLYPT polynomials
of the k sublinks of L defined by π . Furthermore, ν(π) is the sum of all linking
numbers of pairs of components of L that are distinct sets of π , Ek = (E−1 −
1)(E−1 − 2) . . . (E−1 − k + 1), with E1 = 1 and μ = λ−1/2−λ1/2

q−q−1
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2.4.2 The Invariants θd and Their Generalization

By adjusting the algebra FTLd,n to the presentation that has parameter q and involves
the quadratic relation (2.9), one can compare the derived invariants for classical
oriented links to the Jones polynomial. In this context, the generator of the defining
principal ideal of FTLd,n is transformed to the following element of Yd,n(q):

e1e2
(

1 + q(g′
1 + g′

2) + q2(g′
1g′

2 + g′
2g′

1) + q3g′
1g′

2g′
1

)

.

Note that the E-system and its solutions remain unaffected by this change of pre-
sentations. The values for the trace parameters z, however, are transformed to the
following:

z′ = −q−1ED

q2 + 1
or z′ = −q−1ED.

The parameters z and z′ are related through the equation: z = qz′. Again, the value
z′ = −q−1ED is discarded. For the remaining values for z′, we obtain from (2.10)
the following 1-variable specialization of Θd :

θd(q)(̂α) :=
(

−1 + q2

q ED

)n−1

q2ε(α)trd,D(δ(a)) = Θd(q, q4)(̂α),

whereα ∈ ∪∞ Bn , d and ED , ε(a) and δ are as in (2.10). The invariants θd were proven
to be topologically equivalent to the Jones polynomial on knots [13, Proposition 11],
however, they are topologically not equivalent to the Jones polynomial on links [13,
Theorem 9].

In [15] the author together with S. Lambropoulou has shown that the invariants
θd generalize to a new 2-variable invariant θ for classical links. This generalization
can be proved either algebraically or diagrammatically. Algebraically, this can be
shown in two different ways. The first way is to consider the partition Temperley–
Lieb algebra, PTLn(q), which is a quotient of En(q) and determine the necessary and
sufficient conditions such that the unique Markov trace ρ of En(q) factors through
to PTLn(q). These conditions give rise to a 2-variable invariant for classical links,
θ(q, E) [15, Definition 1], that for E = 1/d coincides with θd . Alternatively, one
can show that, for d ≥ n, the subalgebra FTL(br)

d,n (q) of FTLd,n that is generated
only by the braiding generators gi is isomorphic to PTLn(q) [14, Proposition 5].
Diagrammatically, one may consider the skein-theoretic definition of Θ(q, λ, E)

and specialize λ = q4. Thus, we obtain the following:

Theorem 2.5 ([15, Theorem 6]) Let q, E be indeterminates. There exists a unique
ambient isotopy invariant of classical oriented links

θ : L → C[q±1, E±1]



2 A Survey on Temperley–Lieb-type Quotients … 53

defined by the following rules:

1. On crossings involving different components the following skein relation holds:

q−2 θ(L+) − q2 θ(L−) = (q − q−1) θ(L0),

where L+, L− and L0 constitute a Conway triple.
2. For a disjoint union K = �r

i=1Ki of r knots, with r > 1, it holds that:

θ(K ) = E1−r
r

∏

i=1

V (Ki ),

where V (Ki ) is the value of the Jones polynomial on Ki .

All the properties of the invariant Θ carry through to θ [15] and so the invariant
θ distinguishes the same pairs of non-isotopic oriented classical links as Θ . More
precisely, in [5] six pairs of HOMFLYPT-equivalent non-isotopic oriented classical
links were found to be distinguished by the invariants Θ(q, λ, E), which are all still
distinguished by θ . Indeed we have that:

θ(L11n358{0, 1}) − θ(L11n418{0, 0}) = (1 − E)(q − 1)5(q + 1)5(q2 + 1)(q2 + q + 1)(q2 − q + 1)

E q18

θ(L11a467{0, 1}) − θ(L11a527{0, 0}) = (1 − E)(q − 1)5(q + 1)5(q2 + 1)(q2 + q + 1)(q2 − q + 1)

E q18

θ(L11n325{1, 1}) − θ(L11n424{0, 0}) = (E − 1)(q − 1)5(q + 1)5(q2 + 1)(q2 + q + 1)(q2 − q + 1)

E q14

θ(L10n79{1, 1}) − θ(L10n95{1, 0}) = (E − 1)(q2 − 1)3(q8 + 2 q6 + 2 q4 − 1)

E q18

θ(L11a404{1, 1}) − θ(L11a428{0, 1}) = (1 − E)(q − 1)3(q + 1)3(q2 + 1)(q4 + 1)(q6 − q4 + 1)

E q4

θ(L10n76{1, 1}) − θ(L11n425{1, 0}) = (E − 1)(q − 1)3(q + 1)3(q2 + 1)(q4 + 1)

E q10 .

The invariant θ(q, E) is not topologically equivalent to the HOMFLYPT or the
Kauffman polynomials, it includes the family of invariants {θd}d∈N as well as the
Jones polynomial and hence it is stronger than the Jones polynomial [15, Theorem7].

Finally, the invariant θ can be described by a closed combinatorial formula, which
is a corollary of Theorem 2.4. Indeed we have:

Corollary 2.1 Let L be an oriented link with n components. Then:

θ(q, E)(L) =
m

∑

k=1

(−1)k−1(q + q−1)k−1Ek

∑

π

λν(π)V (π L),
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where π , ν(π), and Ek are as in Theorem 2.4, and V (π L) denotes the product of
the Jones polynomial of the k sublinks of L defined by π .

From Corollary 2.1 it is clear that the invariant θ depends on the orientations of
the components of the link L , thus making it impossible to relate θ to the Kauffman
bracket polynomial. However, as shown in [15, Theorem 7], θ can be expressed in
terms of the oriented extension of the bracket polynomial. In particular, the author
together with S. Lambropoulou defined in [15] the ambient isotopy link invariant
{{L}} of the link diagram L by the following two rules:

(1) For a disjoint union K r := �r
i=1Ki , of r knots with r ≥ 1, we have that:

{{

K r
}} := E1−r

r
∏

i=1

V (Ki ), (2.12)

(2) On crossings involving different components the skein relation of the Jones
polynomial holds, namely:

(2.13)
Comparing (2.12) and (2.13) to Theorem 2.5, we deduce that {{L}} coincides with
the invariant θ(q, E).
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Chapter 3
Representation Theory of Framisations
of Knot Algebras

Maria Chlouveraki

Abstract We study the algebraic structure and the representation theory of the
Yokonuma–Hecke algebra of type A, its generalisations, the affine and cyclotomic
Yokonuma–Hecke algebras, and its Temperley–Lieb type quotients, the Yokonuma–
Temperley–Lieb algebra, the Framisation of the Temperley–Lieb algebra and the
Complex Reflection Temperley–Lieb algebra.

3.1 Introduction

A knot algebra is an algebra obtained as a quotient of the group algebra of a braid
group and endowed with aMarkov trace. Using Jones’s method [2, 3] of normalising
and re-scaling the trace according to the braid equivalence, these algebras can be used
for the definition of knot invariants. Some known examples are the Temperley–Lieb
algebra (Jones polynomial), the Iwahori–Hecke algebra of type A (Homflypt poly-
nomial), the Iwahori–Hecke algebra of type B (Geck–Lambropoulou invariants),
the Ariki–Koike algebras and the affine Hecke algebra of type A (Lambropoulou
invariants), the singular Hecke algebra (Kauffman–Vogel and Paris–Rabenda invari-
ants), the BMW algebra (Kauffman polynomial) and the Rook algebra (Alexander
polynomial).
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Modular framisation (or simply framisation) is a mechanism proposed recently
by Juyumaya and Lambropoulou [4] which consists of constructing a non-trivial
extension of a knot algebra via the addition of the so-called “framing” generators,
each of which is a generator of a cyclic group. In this way we obtain a new algebra
which is related to framed braids and framed knots.

The inspiring example of framisation is the Yokonuma–Hecke algebra of type A.
Yokonuma–Hecke algebras were introduced by Yokonuma [5] in the context of finite
reductive groups as generalisations of Iwahori–Hecke algebras. Given a finite reduc-
tive groupG, the Iwahori–Hecke algebra is the endomorphism ringof the permutation
representation of G with respect to a Borel subgroup, while the Yokonuma–Hecke
algebra is the endomorphism ring of the permutation representation of G with respect
to a maximal unipotent subgroup.

In recent years, the presentation of the Yokonuma–Hecke algebra of type A has
been transformed in [1, 6–9] to the one that we will use here. This new presentation
is given by generators and relations, depending on two positive integers, d and n, and
a parameter q. For q = pm and d = pm − 1, where p is a prime number and m is a
positive integer, the Yokonuma–Hecke algebra of type A, denoted by Yd,n(q), is the
endomorphism ring of the permutation representation of GLn(Fq) with respect to a
maximal unipotent subgroup. The algebra Yd,n(q) can be viewed as a framisation
of the Iwahori–Hecke algebra Hn(q) ∼= Y1,n(q), whose presentation we deform by
adding the framing generators t1, . . . , tn , which generate the finite abelian group
(Z/dZ)n . Thus, Yd,n(q) can be obtained as a quotient of the group algebra of both
the framed braid groupZ

n
� Bn and the modular framed braid group (Z/dZ)n

� Bn ,
where Bn denotes the classical braid group on n strands. Finally, Yd,n(q) can be also
obtained as a deformation of the group algebra of the complex reflection group
G(d, 1, n) ∼= (Z/dZ)n

� Sn , different from the Ariki–Koike algebra [10].
Juyumaya [8] has defined aMarkov trace onYd,n(q), which has been subsequently

used by himself and Lambropoulou for the definition of 2-variable isotopy invariants
for framed [11, 12], classical [13] and singular [14] knots and links, after Jones’s
method. The invariants for classical links are simply the invariants for framed links
restricted to links with all framings equal to 0 (that is, the links obtained as closures
of elements of Bn). Using the new presentation for Yd,n(q) established in [6], we
have recently proved that the classical link invariants obtained from the Yokonuma–
Hecke algebra are not topologically equivalent to the Homflypt polynomial [15].
This implies that framisations of knot algebras are very useful to topologists not
only for the construction of framed link invariants, but also for the construction of
new classical link invariants.

We have now introduced and studied many interesting new algebras, which are
obtained as framisations of other important knot algebras. First of all, we have the
affine and cyclotomicYokonuma–Hecke algebras [16], which generalise respectively
the affine Hecke algebras of type A and the Ariki–Koike algebras. In fact, we have
shown in [17] that affine Yokonuma–Hecke algebras appear also naturally in the
study of p-adic reductive groups, arising from a construction analogous to the one
used by Yokonuma, while cyclotomic Yokonuma–Hecke algebras give rise to both
Ariki–Koike algebras and classical Yokonuma–Hecke algebras of type A, both as
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quotients and as particular cases. Further, we have three possible framisations of
the Temperley–Lieb algebra, all obtained as quotients of Yd,n(q) by a suitable two-
sided ideal: the Yokonuma–Temperley–Lieb algebra [18], the Framisation of the
Temperley–Lieb algebra [19] and the Complex Reflection Temperley–Lieb algebra
[19]. Our study of the structure and the representation theory of these three algebras
in [1, 20] indicates that the Framisation of the Temperley–Lieb algebra is the most
natural analogue of the Temperley–Lieb algebra in this setting.

Now, all algebras mentioned above are endowed with Markov traces (see [16]
for the affine and cyclotomic Yokonuma–Hecke algebras, and [18, 19] for the
Temperley–Lieb quotients of the Yokonuma–Hecke algebra), which can be used
for the definition of knot invariants after Jones’s method. In view of the results of
[15], we have concluded that the invariants for links in the solid torus obtained from
the affine and cyclotomic Yokonuma–Hecke algebras in [16] are not topologically
equivalent to the invariants obtained from the affine and cyclotomic Hecke alge-
bras in [21–23], whereas the 1-variable invariants obtained from the Framisation of
the Temperley–Lieb algebra in [19] are not topologically equivalent to the Jones
polynomial.

In view of the importance of the algebras mentioned above to both algebraists
and topologists, in this paper we will study their algebra structure and representation
theory.Wewill provide explicit combinatorial formulas for their irreducible represen-
tations, compute their dimensions, construct bases for them and give semisimplicity
criteria. We will also discuss their symmetric algebra structure.

3.2 Symmetric Algebras

Let R be a commutative integral domain and let A be an R-algebra, free and finitely
generated as an R-module. If R′ is a commutative integral domain containing R, we
will write R′ A for R′ ⊗R A and we will denote by Irr(R′ A) the set of irreducible
representations of R′ A.

A symmetrising form on the algebra A is a linear map τ : A → R such that

(a) τ (ab) = τ (ba) for all a, b ∈ A, that is, τ is a trace function, and
(b) the map τ̂ : A → HomR(A, R), a �→ (x �→ τ (ax)) is an isomorphism of A-

bimodules.

If there exists a symmetrising form on A, we say that A is a symmetric algebra.

Example 3.1 Let G be a finite group. The linear map τ : Z[G] → Z defined by
τ (1) = 1 and τ (g) = 0 for all g ∈ G \ {1} is a symmetrising form on Z[G]; it is
called the canonical symmetrising form on Z[G].

Suppose that there exists a symmetrising form τ on A. Let K be a field containing
R such that the algebra K A is split. The map τ can be extended to K A by extension
of scalars. If V ∈ Irr(K A) and χV denotes the corresponding irreducible character,
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then τ̂ −1(χV ) belongs to the centre of K A [24, Lemma 7.1.7]. Schur’s lemma implies
that τ̂ −1(χV ) acts as a scalar on V ; we define this scalar to be the Schur element
associated with V and denote it by sV . We have sV ∈ RK , where RK denotes the
integral closure of R in K [24, Proposition 7.3.9].

Example 3.2 Let G be a finite group and let τ be the canonical symmetrising form
on A := Z[G]. If K is an algebraically closed field of characteristic 0, then K A is a
split semisimple algebra and sV = |G|/χV (1) for all V ∈ Irr(K A).

Following [24, Theorem 7.2.6], we have that the algebra K A is semisimple if and
only if sV �= 0 for all V ∈ Irr(K A). If this is the case,

τ =
∑

V ∈Irr(K A)

1

sV
χV .

From now on, we assume that R is integrally closed in K . Let θ : R → L be a
ring homomorphism into a field L such that L is the field of fractions of θ(R). We
call such a ring homomorphism a specialisation of R. Schur elements can be then
used to determine whether the algebra L A is semisimple as follows [24, Theorem
7.4.7]:

Theorem 3.1 Assume that K A and L A are split and that A is symmetric with
symmetrising form τ . For any simple K A-module V , let sV ∈ R be the Schur element
with respect to τ . Then L A is semisimple if and only if θ(sV ) �= 0 for all V ∈ Irr(K A).

Finally, if L A is semisimple, we have the following famous result known as
“Tits’s deformation theorem”. For its proof, the reader may refer, for example, to
[24, Theorem 7.4.6].

Theorem 3.2 Assume that K A and L A are split. If L A is semisimple, then K A is
also semisimple and we have a bijection Irr(KA) ↔ Irr(LA).

3.3 Yokonuma–Hecke Algebras

Let n ∈ N, d ∈ N
∗. Let q be an indeterminate. The Yokonuma–Hecke algebra (of

type A), denoted by Yd,n(q), is an associative C[q, q−1]-algebra generated by the
elements

g1, . . . , gn−1, t1, . . . , tn

subject to the following relations:
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(b1) gig j = g jgi for all i, j = 1, . . . , n − 1 such that |i − j | > 1,
(b2) gigi+1gi = gi+1gigi+1 for all i = 1, . . . , n − 2,
(f1) ti t j = t j ti for all i, j = 1, . . . , n,
(f2) t jgi = gi tsi ( j) for all i = 1, . . . , n − 1 and j = 1, . . . , n,
(f3) td

j = 1 for all j = 1, . . . , n,
(3.3.1)

where si is the transposition (i, i + 1), together with the quadratic relations:

g2i = q + (q − 1) ei gi for all i = 1, . . . , n − 1, (3.3.2)

where

ei := 1

d

d−1
∑

s=0

t s
i t−s

i+1. (3.3.3)

It is easily verified that the elements ei are idempotents in Yd,n(q). Also, that the
elements gi are invertible, with

g−1
i = q−1gi + (q−1 − 1) ei for all i = 1, . . . , n − 1. (3.3.4)

If we specialise q to 1, the defining relations (3.3.1)–(3.3.2) become the defining
relations for the complex reflection group G(d, 1, n) ∼= (Z/dZ) � Sn

∼= (Z/dZ)n
�

Sn . Thus, the algebra Yd,n(q) is a deformation of the group algebra over C of
G(d, 1, n). Moreover, for d = 1, the Yokonuma–Hecke algebra Y1,n(q) coincides
with the Iwahori–Hecke algebra Hn(q) of type A, and thus, for d = 1 and q spe-
cialised to 1, we obtain the group algebra over C of the symmetric group Sn .

Remark 3.1 Note that in all the papers prior to [6], the algebra Yd,n(q) is generated
by elements g1, . . . , gn−1, t1, . . . , tn satisfying relations (3.3.1) and the quadratic
relations:

g2i = 1 + (q − 1) ei + (q − 1) ei gi for all i = 1, . . . , n − 1. (3.3.5)

This presentation changed in [6], where we considered Yd,n(q) defined over C[q1/2,

q−1/2] and generated by elements g̃1, . . . , g̃n−1, t1, . . . , tn satisfying relations (3.3.1)
and the quadratic relations:

g̃2i = 1 + (q1/2 − q−1/2) ei g̃i for all i = 1, . . . , n − 1. (3.3.6)

By takinggi := g̃i + (q1/2 − 1) ei g̃i (and thus, g̃i = gi + (q−1/2 − 1) ei gi ),weobtain
the old presentation of the Yokonuma–Hecke algebra. By taking gi := q1/2g̃i we
obtain our presentation of the Yokonuma–Hecke algebra.

Now let w ∈ Sn , and let w = si1si2 . . . sir be a reduced expression for w. Since
the generators gi of the Yokonuma–Hecke algebra satisfy the same braid relations as
the generators ofSn , Matsumoto’s theorem (see, for example, [24, Theorem 1.2.2])
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implies that the element gw := gi1gi2 . . . gir is well defined, that is, it does not depend
on the choice of the reduced expression of w.

Juyumaya [8] has proved that the following set is a C[q, q−1]-basis of Yd,n(q):

BH
d,n := {

tr1
1 . . . trn

n gw
∣

∣ w ∈ Sn, 0 � r j � d − 1 for all j = 1, 2, . . . , n
}

.

(3.3.7)
In particular, Yd,n(q) is a free C[q, q−1]-module of rank dnn!.

The representation theory of Yokonuma–Hecke algebras has been first studied by
Thiem [25–27] in the general context of unipotent Hecke algebras. The generality
of his results and the new presentation for Yd,n(q) has led us to develop in [6] a
combinatorial approach to the representation theory of theYokonuma–Hecke algebra
of type A, in terms of d-partitions and standard d-tableaux.

3.3.1 Combinatorics of d-Partitions and Standard d-tableaux

A partition λ = (λ1, . . . ,λh) is a family of positive integers such that λ1 � λ2 �
. . . � λh � 1.Wewrite |λ| := ∑h

i=1 λi andwe say thatλ is a partition of n if n = |λ|.
We denote by P(n) the set of partitions of n. We define the set of nodes [λ] of λ to
be the set

[λ] := {(x, y) | 1 � x � h, 1 � y � λx }.

We identify partitions with their Young diagrams: the Young diagram of λ is a left-
justified array of h rows such that the i-th row contains λi boxes (nodes) for all
i = 1, . . . , h.

A d-partition of n is an ordered d-tuple λ = (λ(0),λ(1), . . . ,λ(d−1)) of partitions
such that |λ| := ∑d−1

i=0 |λ(i)| = n. We denote by P(d, n) the set of d-partitions of n.
The empty multipartition, denoted by ∅, is a d-tuple of empty partitions. A node θ
of λ is a triple (x, y, i), where 0 � i � d − 1 and (x, y) is a node of the partition
λ(i). We define p(θ) := i to be the position of θ and c(θ) := q y−x to be the quantum
content of θ.

A d-tableau of shape λ is a bijection between the set {1, . . . , n} and the set of
nodes ofλ. In other words, a d-tableau of shapeλ is obtained by placing the numbers
1, . . . , n in the nodes of λ. The size of a d-tableau of shape λ is n, that is, the size of
λ. A d-tableau is standard if its entries increase along any row and down any column
of every diagram in λ. For d = 1, a standard 1-tableau is a usual standard tableau.

For a d-tableau T , we denote respectively by p(T |i) and c(T |i) the position and
the quantum content of the nodewith the number i in it. For example, for the standard
3-tableau T = (

1 3 , ∅ , 2
)

of size 3, we have

p(T |1) = 0 , p(T |2) = 2 , p(T |3) = 0 and c(T |1) = 1 , c(T |2) = 1 , c(T |3) = q .
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For any d-tableau T of size n and any permutation σ ∈ Sn , we denote by T σ the
d-tableau obtained from T by applying the permutation σ on the numbers contained
in the nodes of T . We have

p(T σ|i) = p
(

T |σ−1(i)
)

and c(T σ|i) = c
(

T |σ−1(i)
)

for all i = 1, . . . , n.

Note that if the d-tableau T is standard, the d-tableau T σ is not necessarily standard.

3.3.2 Representation Theory of Yokonuma–Hecke Algebras

Let λ ∈ P(d, n), and let Vλ be a C(q)-vector space with a basis {vT } indexed by the
standard d-tableaux of shape λ. We set vT := 0 for any non-standard d-tableau T
of shape λ. By [6, Proposition 5 and Theorem 1] and [1, Theorem 3.7], we have the
following description of the irreducible representations of C(q)Yd,n(q):

Theorem 3.3 Let {ξ0, ξ1, . . . , ξd−1} be the set of all d-th roots of unity (ordered
arbitrarily). Let T be a standard d-tableau of shape λ ∈ P(d, n). For brevity, we
set pi := p(T |i) and ci := c(T |i) for all i = 1, . . . , n. The vector space Vλ is a
representation of C(q)Yd,n(q) with the action of the generators on the basis element
vT defined as follows: for j = 1, . . . , n,

t j (vT ) = ξp j vT ; (3.3.8)

for i = 1, . . . , n − 1, if pi > pi+1 then

gi (vT ) = vT si , (3.3.9)

if pi < pi+1 then
gi (vT ) = q vT si , (3.3.10)

and if pi = pi+1 then

gi (vT ) = qci+1 − ci+1

ci+1 − ci
vT + qci+1 − ci

ci+1 − ci
vT si , (3.3.11)

where si is the transposition (i, i + 1). Further, the set {Vλ | λ ∈ P(d, n)} is a com-
plete set of pairwise non-isomorphic irreducible representations of C(q)Yd,n(q).

The above theorem implies that the algebra C(q)Yd,n(q) is split. As we have
already mentioned, when q �→ 1, the algebra C(q)Yd,n(q) specialises to the group
algebra C[G(d, 1, n)], which is semisimple. By Tits’s deformation theorem, we
obtain that the algebra C(q)Yd,n(q) is also semisimple.
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Let now θ : C[q, q−1] → C be a ring homomorphism such that θ(q) = η ∈ C \
{0}. Using the representation theory of C(q)Yd,n(q), we have proved the following
semisimplicity criterion for CYd,n(η) [6, Proposition 9]:

Proposition 3.1 The specialised Yokonuma–Hecke algebra CYd,n(η) is (split) semi-
simple if and only if θ(P(q)) �= 0, where

P(q) =
∏

1�i�n

(1 + q + · · · + qi−1).

Note that followingAriki’s semisimplicity criterion [28] for Ariki–Koike algebras
(and so, in particular, for Iwahori–Hecke algebras of type A), the algebra CYd,n(η)
is semisimple if and only if the specialised Iwahori–Hecke algebra CHn(η) is semi-
simple.

Another way to obtain the above result is through our definition of a canonical
symmetrising form τ on Yd,n(q) [6, Proposition 10]. Having calculated the Schur
elements of Yd,n(q) with respect to τ [6, Proposition 11], we can deduce the above
semisimplicity criterion with the use of Theorem 3.1. More precisely, we have the
following:

Theorem 3.4 We define the linear map τ : Yd,n(q) → C[q, q−1] by

τ (tr1
1 . . . trn

n gw) =
{

1 if w = 1 and r j = 0 for all j = 1, 2, . . . , n,
0 otherwise,

(3.3.12)

wherew ∈ Sn and 0 � r j � d − 1 for all j = 1, 2, . . . , n. Then τ is a symmetrising
form onYd,n(q), called the canonical symmetrising form. If λ = (λ(0), . . . ,λ(d−1)) ∈
P(d, n), then the Schur element of Vλ with respect to τ is

sλ = dn sλ(0)sλ(1) . . . sλ(d−1) , (3.3.13)

where sλ(i) is the Schur element of the Iwahori–Hecke algebra H|λ(i)|(q) correspond-
ing to λ(i) for all i = 0, 1, . . . , d − 1 (we take s∅ := 1).

The Schur elements of Iwahori–Hecke algebras of type A have been calculated
by Steinberg [29]. A simple formula for them is given by Jacon and the author in
[30].

The connection between the representation theory of the Yokonuma–Hecke alge-
bra and that of Iwahori–Hecke algebras of type A implied by (3.3.13) is explained by
a result of Lusztig [31, Sect. 34], who has proved that Yokonuma–Hecke algebras,
in general, are isomorphic to direct sums of matrix algebras over certain subalgebras
of classical Iwahori–Hecke algebras. Using the new presentation for Yd,n(q), Jacon
and Poulain d’Andecy [32] have explicitly described this isomorphism between the
Yokonuma–Hecke algebra of type A and a direct sum of matrix algebras over ten-
sor products of Iwahori–Hecke algebras of type A. Another proof of this result has
been given recently in [33], where Espinoza and Ryom-Hansen have constructed a
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concrete isomorphism between Yd,n(q) and Shoji’s modified Ariki–Koike algebra.
Note that in all cases the result has been obtained over the ring C[q1/2, q−1/2] (using
the generators g̃i defined in Remark 3.1). We have managed to show that it is still
valid over the smaller ring C[q, q−1]. We have [1, Theorem 4.3]:

Yd,n(q) ∼=
⊕

μ∈Compd (n)

Matmμ
(Hμ0(q) ⊗ Hμ1(q) ⊗ · · · ⊗ Hμd−1(q)), (3.3.14)

where

Compd(n) = {μ = (μ0,μ1, . . . ,μd−1) ∈ N
d | μ0 + μ1 + · · · + μd−1 = n}

(3.3.15)
and

mμ = n!
μ0!μ1! . . .μd−1! (3.3.16)

3.4 Affine and Cyclotomic Yokonuma–Hecke Algebras

In [16], we introduced the affine and cyclotomic Yokonuma–Hecke algebras, which
give rise to both Ariki–Koike algebras and Yokonuma–Hecke algebras of type A
as quotients and as special cases. Let n ∈ N, d ∈ N

∗ and l ∈ N
∗ ∪ {∞}. Let q and

(Qi )i∈N be indeterminates, and set Rl := C[q±1, Q±1
0 , Q±1

1 , . . . , Q±1
l−1] if l < ∞,

andR∞ := C[q±1].We define the algebra Y(d, l, n) to be the associativeRl-algebra
generated by the elements

g1, . . . , gn−1, t1, . . . , tn, X1, X−1
1

subject to the relations (3.3.1)–(3.3.2), together with the following relations concern-
ing the generator X1:

X1 X−1
1 = X−1

1 X1 = 1
X1 g1X1g1 = g1X1g1 X1

X1gi = gi X1 for all i = 2, . . . , n − 1,
X1t j = t j X1 for all j = 1, . . . , n,

(3.4.1)

and if l < ∞,
(X1 − Q0)(X1 − Q1) · · · (X1 − Ql−1) = 0. (3.4.2)

The algebraY(d,∞, n) is called the affine Yokonuma–Hecke algebra. For l < ∞, the
algebra Y(d, l, n) is called the cyclotomic Yokonuma–Hecke algebra. These algebras
are isomorphic to the modular framisations of, respectively, the affine Hecke algebra
(l = ∞) and the Ariki–Koike algebra (l < ∞); see definitions in [4, Sect. 6] and [6,
Remark 1].
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The cyclotomic Yokonuma–Hecke algebra is a quotient of the affine Yokonuma–
Hecke algebra by the relation (3.4.2). If we map X1 �→ Q0 for l < ∞ or X1 �→ 1 for
l = ∞, we obtain a surjection of Y(d, l, n) onto Yd,n(q). If we map t j �→ 1 for all
j = 1, . . . , n, then we obtain a surjection of Y(d, l, n) onto H(l, n), where H(l, n)
denotes the Ariki–Koike algebra associated to G(l, 1, n) for l < ∞ and H(∞, n)
denotes the affine Hecke algebra of type A. Moreover, we have Y(d, 1, n) ∼= Yd,n(q)
and Y(1, l, n) ∼= H(l, n). In particular, we have Y(1, 1, n) ∼= Hn(q).

Remark 3.2 Let p be a prime number. In a recent series of papers [34–36], Vignéras
introduced and studied a large family of algebras, called pro-p-Iwahori–Hecke alge-
bras. They generalise convolution algebras of compactly supported functions on
a p-adic connected reductive group that are bi-invariant under the pro-p-radical
of an Iwahori subgroup, which play an important role in the p-modular represen-
tation theory of p-adic reductive groups. In [17] we have shown that the affine
Yokonuma–Hecke algebra Y(d,∞, n) is a pro-p-Iwahori–Hecke algebra. Thus, the
affine Yokonuma–Hecke algebra generalises the affine Hecke algebra of type A in a
similar way that the Yokonuma–Hecke algebra generalises the Iwahori–Hecke alge-
bra of type A. In particular, for q = pm and d = pm − 1, where m is a positive
integer, Y(d,∞, n) is isomorphic to the convolution algebra of complex valued and
compactly supported functions on the group GLn(F), with F a suitable p-adic field,
that are bi-invariant under the pro-p-radical of an Iwahori subgroup.

Remark 3.3 Following Lusztig’s approach in [31], Cui [37] has established an
explicit algebra isomorphism between the affine Yokonuma–Hecke algebra
Y(d,∞, n) and a direct sum of matrix algebras over tensor products of affine Hecke
algebras of type A, similar to (3.3.14).More recently, Poulain d’Andecy [38] obtained
the same result, aswell as an isomorphismbetween the cyclotomicYokonuma–Hecke
algebra Y(d, l, n), where l < ∞, and a direct sum of matrix algebras over tensor
products of Ariki–Koike algebras, using the same approach as in [32]. The isomor-
phism theorem for cyclotomic Yokonuma–Hecke algebras has been subsequently
re-obtained by Rostam [39] using his result that cyclotomic Yokonuma–Hecke alge-
bras are cyclotomic quiver Hecke algebras.

In [16] we have constructed several bases for the algebra Y(d, l, n). In order to
describe them here, we introduce the following notation: Let Zl := {0, . . . , l − 1}
for l < ∞ and Z∞ := Z. We define inductively elements X2, . . . , Xn of Y(d, l, n)
by setting

Xi+1 := q−1gi Xigi for all i = 1, . . . , n − 1.

Let Bd,n be a basis of the Yokonuma–Hecke algebra Yd,n(q) ∼= Y(d, 1, n) over Rl

(we can take, for example, BH
d,n defined in (3.3.7)). We denote by BAK

d,l,n the following
set of elements of Y(d, l, n):

Xa1
1 . . . Xan

n · ω , ak ∈ Zl and ω ∈ Bd,n .

Now, for k = 1, . . . , n, we set
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W (k)
J,a,b := g−1

J . . . g−1
2 g−1

1 Xa
1 tb

1 g1g2 . . . gk−1 ,

W (k)−
J,a,b := gJ . . . g2g1 Xa

1 tb
1 g−1

1 g−1
2 . . . g−1

k−1 ,

˜W (k)
J,a,b := gJ . . . g2g1 Xa

1 tb
1 g1g2 . . . gk−1 ,

˜W (k)−
J,a,b := g−1

J . . . g−1
2 g−1

1 Xa
1 tb

1 g−1
1 g−1

2 . . . g−1
k−1 ,

where J ∈ {0, . . . , k − 1} and a, b ∈ Z. We use the following standard conventions:
for ε = ±1, gε

J . . . g
ε
2g

ε
1 := 1 and gε

k−J . . . g
ε
k−2g

ε
k−1 := 1 if J = 0. Then we denote,

respectively, by BInd
d,l,n , BInd−

d,l,n , ˜BInd
d,l,n and ˜BInd−

d,l,n the following sets of elements of
Y(d, l, n):

W (n)
Jn ,an ,bn

. . . W (2)
J2,a2,b2

W (1)
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d − 1}.

W (n)−
Jn ,an ,bn

. . . W (2)−
J2,a2,b2

W (1)−
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d − 1}.

˜W (n)
Jn ,an ,bn

. . . ˜W (2)
J2,a2,b2

˜W (1)
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d − 1}.

˜W (n)−
Jn ,an ,bn

. . . ˜W (2)−
J2,a2,b2

˜W (1)−
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d − 1}.

We then have the following [16, Theorem 4.4]:

Theorem 3.5 Each set BAK
d,l,n, BInd

d,l,n, BInd−
d,l,n , ˜BInd

d,l,n and ˜BInd−
d,l,n is an Rl -basis of

Y(d, l, n). In particular, Y(d, l, n) is a free Rl -module and, if l < ∞, its rank is
equal to (dl)nn!.
Remark 3.4 The set BAK

d,l,n is the analogue of the Ariki–Koike basis of the Ariki–
Koike algebra H(l, n) for l < ∞, and the standard Bernstein basis of the affine
Hecke algebra of type A for l = ∞. The four other sets are inductive sets with
respect to n, which are analogous to the inductive bases of H(l, n) studied in [23,
40].

Furthermore, in [16] we have studied the representation theory of the cyclotomic
Yokonuma–Hecke algebra Y(d, l, n), which is quite similar to the representation
theory of the Yokonuma–Hecke algebra Yd,n(q). From now on, we only consider
the case l < ∞.

Let Kl denote the field of fractions of Rl . We will see that the irreducible rep-
resentations of the algebra KlY(d, l, n) are parametrised by the dl-partitions of n.
Instead of looking though at dl-partitions as dl-tuples of partitions, we look at them
as d-tuples of l-partitions, and we call them (d, l)-partitions when seen as such.
We denote by P(d, l, n) the set of (d, l)-partitions of n. If λ ∈ P(d, l, n), then λ =
(λ(0),λ(1), . . . ,λ(d−1)), where λ(i) is an l-partition for all i = 0, 1, . . . , d − 1, and
∑d−1

i=0 |λ(i)| = n.We thus haveλ(i) = (λ(i,0),λ(i,1), . . . ,λ(i,l−1)),whereλ(i, j) is a par-
tition for all i = 0, 1, . . . , d − 1 and j = 0, 1, . . . , l − 1, and

∑d−1
i=0

∑l−1
j=0 |λ(i, j)|=n.
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A node θ of λ is a 4-tuple (x, y, i, j), where 0 � i � d − 1, 0 � j � l − 1 and
(x, y) is a node of the partition λ(i, j). We define p(θ) := i to be the d-position of θ
and c(θ) := Q j q y−x to be the l-quantum content of θ.

Following the definitions in Sect. 3.3.1, a (d, l)-tableau is simply a dl-tableau and
a standard (d, l)-tableau is simply a standard dl-tableau. For a (d, l)-tableau T and
for i = 1, . . . , n, we denote respectively by p(T |i) and c(T |i) the d-position and the
l-quantum content of the node with the number i in it.

Now, let λ ∈ P(d, l, n), and let Vλ be a C(q)-vector space with a basis {vT }
indexed by the standard (d, l)-tableaux of shape λ. We set vT := 0 for any non-
standard (d, l)-tableau T of shape λ. By [16, Propositions 3.2 and 3.4], the vec-
tor space Vλ is a representation of KlY(d, l, n), with the action of the generators
g1, . . . , gn−1, t1, . . . , tn on the basis element vT defined exactly as in Theorem 3.3,
and the action of the generator X1 given by:

X1(vT ) = c(T |1) vT . (3.4.3)

Further, the set {Vλ | λ ∈ P(d, l, n)} is a complete set of pairwise non-isomorphic
irreducible representations of KlY(d, l, n).

Remark 3.5 We can easily show, by induction on i , that [16, Lemma 3.3]:

Xi (vT ) = c(T |i) vT for all i = 1, . . . , n. (3.4.4)

We also have a semisimplicity criterion for cyclotomic Yokonuma–Hecke alge-
bras, which is exactly the same as Ariki’s semisimplicity criterion [28] for Ariki–
Koike algebras [16, Proposition 4.7]:

Proposition 3.2 Let θ : Rl → C be a ring homomorphism such that θ(q)
∏l−1

j=0
θ(Q j ) �= 0. The specialised cyclotomic Yokonuma–Hecke algebra CY(d, l, n)θ,
defined via θ, is (split) semisimple if and only if θ(P) �= 0, where

P =
∏

1�i�n

(1 + q + · · · + qi−1)
∏

0�s<t�l−1

∏

−n<k<n

(qk Qs − Qt ).

Wededuce that the algebraCY(d, l, n)θ is semisimple if and only if the specialised
Ariki–Koike algebra CH(l, n)θ is semisimple.

Finally, we have proved the existence of a “canonical” symmetrising form on
KlY(d, l, n) and calculated the Schur elements with respect to it [16, Sect. 7]:

Theorem 3.6 We define the linear map τ : Y(d, l, n) → Rl by

τ (Xa1
1 . . . Xan

n tb1
1 . . . tbn

n gw) =
{

1 if w = 1 and a j = b j = 0 for all j = 1, 2, . . . , n,
0 otherwise,

(3.4.5)
where w ∈ Sn, a j ∈ Zl and 0 � b j � d − 1 for all j = 1, 2, . . . , n. Then τ
(extended linearly) is a symmetrising form onKlY(d, l, n). If λ = (λ(0), . . . ,λ(d−1))

∈ P(d, l, n), then the Schur element of Vλ with respect to τ is
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sλ = dn sλ(0)sλ(1) . . . sλ(d−1) , (3.4.6)

where sλ(i) is the Schur element of the Ariki–Koike algebraH(l, |λ(i)|) corresponding
to λ(i) for all i = 0, 1, . . . , d − 1 (we take s∅ := 1).

The Schur elements of Ariki–Koike algebras have been calculated independently
by Geck–Iancu–Malle [41] and Mathas [42]. A simple formula for them is given by
Jacon and the author in [30].

Remark 3.6 The map τ is known to be a symmetrising form on Y(d, l, n) (defined
over Rl) in cases d = 1 [43] and l = 1 [6]. In these cases, τ is called the canonical
symmetrising form on Y(d, l, n).

Remark 3.7 Equation (3.4.6) hints towards an isomorphism between the cyclotomic
Yokonuma–Hecke algebra Y(d, l, n) and a direct sum of matrix algebras over ten-
sor products of Ariki–Koike algebras; this isomorphism was recently described by
Poulain d’Andecy in [38] and by Rostam in [39].

3.5 Temperley–Lieb Quotients of Yokonuma–Hecke
Algebras

The Temperley–Lieb algebra was introduced by Temperley and Lieb in [44] for its
applications in statistical mechanics. Jones [2, 3, 45] later showed that it can be
obtained as a quotient of the Iwahori–Hecke algebra Hn(q) of type A by a two-
sided ideal, and used it for the construction of the knot invariant known as the Jones
polynomial.

As explained in the introduction, we have three possible analogues of the
Temperley–Lieb algebra in the Yokonuma–Hecke algebra setting: the Yokonuma–
Temperley–Lieb algebra [18], the Framisation of the Temperley–Lieb algebra [19]
and the Complex Reflection Temperley–Lieb algebra [19]. All three are defined as
quotients of the Yokonuma–Hecke algebra Yd,n(q) of type A by a suitable two-sided
ideal, and they specialise to the classical Temperley–Lieb algebra for d = 1.

In this section, we will determine the irreducible representations of the three
algebras by showing which representations of Yd,n(q) pass to each quotient. We will
compute their dimensions and construct bases for them. At the end of this section,
it will be clear that the most natural analogue of the Temperley–Lieb algebra in this
setting is the Framisation of the Temperley–Lieb algebra.

First, let us recall some information about the classical setting. Let n � 3. The
Temperley–Lieb algebra TLn(q) is defined as the quotient of the Iwahori–Hecke
algebra Hn(q) ∼= Y1,n(q) by the ideal In generated by the elements

gi,i+1 := 1 + gi + gi+1 + gigi+1 + gi+1gi + gigi+1gi =
∑

w∈〈si ,si+1〉
gw
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for all i = 1, . . . , n − 2. It turns out that this ideal is principal, and we have In =
〈 g1,2 〉.

Since the algebraC(q)Hn(q) is semisimple, the algebraC(q)TLn(q) is also semi-
simple and its irreducible representations are precisely the irreducible representations
of C(q)Hn(q) that pass to the quotient. That is, for λ ∈ P(n), Vλ is an irreducible
representation of C(q)TLn(q) if and only if g1,2(vT ) = 0 for every standard tableau
T of shape λ. It is easy to see that the latter is equivalent to the trivial representation
not being a direct summand of the restriction ResSn

〈s1,s2〉(Eλ), where Eλ is the irre-
ducible representation of the symmetric groupSn labelled by λ. Since the restriction
fromSn toS3

∼= 〈s1, s2〉 corresponds to the simple removal of boxes from theYoung
diagram of λ, and the trivial representation ofS3 is labelled by the partition (3), we
obtain the following description of the irreducible representations of C(q)TLn(q):

Theorem 3.7 Let λ ∈ P(n). We have that Vλ is an irreducible representation of
C(q)TLn(q) if and only if the Young diagram of λ has at most two columns.

Now, let n ∈ N, and let i = (i1, . . . , i p) and k = (k1, . . . kp) be two p-tuples of
non-negative integers, with 0 � p � n − 1. We denote by Hn the set of pairs (i, k)
such that

1 � i1 < i2 < · · · < i p � n − 1 and i j − k j � 1 ∀ j = 1, . . . , p.

For (i, k) ∈ Hn , we set

gi,k := (gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) . . . (gi pgi p−1 . . . gi p−kp ) ∈ Hn(q).

We take g∅,∅ to be equal to 1. We have that the set

BH
1,n = {gw |w ∈ Sn} = {gi,k | (i, k) ∈ Hn}

is the standard basis of Hn(q) as a C[q, q−1]-module.
Further, let us denote by Tn the subset of Hn consisting of the pairs (i, k) such

that

1 � i1 < i2 < · · · < i p � n − 1 and 1 � i1 − k1 < i2 − k2 < · · · < i p − k p � n − 1.

Jones [45] has shown that the set

BTL
1,n := {gi,k | (i, k) ∈ Tn}

is a basis of TLn(q) as a C[q, q−1]-module. We have |BTL
n | = Cn , where Cn is the

n-th Catalan number, i.e.,

Cn = 1

n + 1

(

2n

n

)

= 1

n + 1

n
∑

k=0

(

n

k

)2

.
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3.5.1 The Yokonuma–Temperley–Lieb Algebra

Let d ∈ N
∗ and let n ∈ N with n � 3. The Yokonuma–Temperley–Lieb algebra

YTLd,n(q) is defined as the quotient of the Yokonuma–Hecke algebra Yd,n(q) by
the ideal Id,n := 〈 g1,2 〉.

Since the algebra C(q)Yd,n(q) is semisimple, the algebra C(q)YTLd,n(q) is also
semisimple and its irreducible representations are precisely the irreducible represen-
tations of C(q)Yd,n(q) that pass to the quotient. That is, for λ ∈ P(d, n), Vλ is an
irreducible representation of C(q)YTLd,n(q) if and only if g1,2(vT ) = 0 for every
standard d-tableau T of shape λ. It is easy to see that the latter is equivalent to the
trivial representation not being a direct summand of the restriction ResG(d,1,n)

〈s1,s2〉 (Eλ),
where Eλ is the irreducible representation of the complex reflection group G(d, 1, n)
labelled by λ. Unfortunately, this restriction for d > 1 does not correspond to the
simple removal of boxes from the Young diagram of λ (as in the symmetric group
case), but it is controlled by the so-called Littlewood–Richardson coefficients. Using
algebraic combinatorics, we obtain the following description of the irreducible rep-
resentations of C(q)YTLd,n(q) [20, Theorem 3]:

Theorem 3.8 Let λ = (λ(0), . . . ,λ(d−1)) ∈ P(d, n). We have that Vλ is an irre-
ducible representation of C(q)YTLd,n(q) if and only if the Young diagram of λ has
at most two columns in total, that is,

∑d−1
i=0 λ(i)

1 � 2.

Using the fact that the algebra C(q)YTLd,n(q) is semisimple and the above
description of its irreducible representations, we have been able to calculate the
dimension of the Yokonuma–Temperley–Lieb algebra [20, Proposition 4]. We have

dimC(q)(C(q)YTLd,n(q)) = n(d2 − d) + d2 + d

2
Cn − (d2 − d).

What is more, we have shown in [20] that YTLd,n(q) is a free C[q, q−1]-module of
rank equal to the dimension above. However, note that, even though the set

BH
d,n = {

tr1
1 . . . trn

n gi,k

∣

∣ (i, k) ∈ Hn, 0 � r j � d − 1 for all j = 1, 2, . . . , n
}

is a basis of Yd,n(q) as a C[q, q−1]-module, the set

BTL
d,n = {

tr1
1 . . . trn

n gi,k

∣

∣ (i, k) ∈ Tn, 0 � r j � d − 1 for all j = 1, 2, . . . , n
}

is not a basis of YTLd,n(q) as aC[q, q−1]-module, since |BTL
d,n| = dnCn . The setBTL

d,n

is simply a generating set for YTLd,n(q), and we have managed to find a subsetBYTL
d,n

of BTL
d,n that is a basis of YTLd,n(q) by proving the following remarkable property:

Let (i, k) ∈ Tn . We denote by I(gi,k) the set (without repetition) of all indices of the
g j ’s appearing in gi,k , i.e.,

I(gi,k) = {i1, i1 − 1, . . . , i1 − k1, i2, i2 − 1, . . . , i2 − k2, . . . , i p, i p − 1, . . . , i p − k p}.
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We define the weight of gi,k to be wi,k := |I(gi,k)|. We then have [20, Propositions
9, 11, 12]:

|{(r1, . . . , rn) ∈ {0, . . . , d − 1}n | tr1
1 . . . trn

n gi,k ∈ BYTL
d,n }| = 2n−wi,k −1(d2 − d) + d − δwi,k ,0(d

2 − d),

where δi, j stands for Kronecker’s delta (note that we have wi,k = 0 if and only if
gi,k = 1). Thanks to this property, an explicit basis for YTLd,n(q) as a C[q, q−1]-
module is described in [20].

3.5.2 The Framisation of the Temperley–Lieb Algebra

Let d ∈ N
∗ and let n ∈ Nwith n � 3. TheFramisation of the Temperley–Lieb algebra

FTLd,n(q) is defined as the quotient of the Yokonuma–Hecke algebra Yd,n(q) by
the ideal Jd,n := 〈 e1e2g1,2 〉. We remark that Jd,n can be also defined as the ideal
generated by the element

∑

0�a,b�d−1 ta
1 tb

2 t−a−b
3 g1,2.

Again, since the algebra C(q)Yd,n(q) is semisimple, the algebra C(q)FTLd,n(q)
is also semisimple and its irreducible representations are precisely the irreducible
representations ofC(q)Yd,n(q) that pass to the quotient. That is, forλ ∈ P(d, n), Vλ

is an irreducible representation ofC(q)FTLd,n(q) if and only if e1e2g1,2(vT ) = 0 for
every standard d-tableau T of shape λ. Using the formulas for the irreducible repre-
sentations ofC(q)Yd,n(q) given by Theorem 3.3, we obtain the following description
of the irreducible representations of C(q)FTLd,n(q) [1, Theorem 3.10]:

Theorem 3.9 Let λ = (λ(0), . . . ,λ(d−1)) ∈ P(d, n). We have that Vλ is an irre-
ducible representation of C(q)FTLd,n(q) if and only if the Young diagram of λ(i) has
at most two columns for all i = 0, . . . , d − 1.

Following the recipe of [32, Sect. 3], we have proved the following isomorphism
theorem for FTLd,n(q) [1, Theorem 4.3]:

Theorem 3.10 There exists a C[q, q−1] algebra isomorphism

ψn : FTLd,n(q) →
⊕

μ∈Compd (n)

Matmμ
(TLμ0(q) ⊗ TLμ1(q) ⊗ · · · ⊗ TLμd−1(q)),

where Compd(n) and mμ are as defined in (3.3.15) and (3.3.16), and we take
TLn(q) ∼= Hn(q) for n < 3.

We deduce that the following set is a basis of FTLd,n(q) as a C[q, q−1]-module
[1, Proposition 4.4]:

{

ψ−1
n (bμ

0 bμ
1 . . . bμ

d−1 Mμ
k,l ) |μ ∈ Compd (n), bμ

i ∈ BTL
1,μi

for all i = 0, . . . , d − 1, 1 � k, l � mμ

}

,
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where Mμ
k,l denotes the elementary mμ × mμ matrix with 1 in position (k, l). In

particular, FTLd,n(q) is a free C[q, q−1]-module of rank

∑

μ∈Compd (n)

m2
μ Cμ0Cμ1 · · · Cμd−1 .

3.5.3 The Complex Reflection Temperley–Lieb Algebra

Let d ∈ N
∗ and let n ∈ N with n � 3. The Complex Reflection Temperley–Lieb alge-

bra CTLd,n(q) is defined as the quotient of the Yokonuma–Hecke algebra Yd,n(q)
by the ideal Kd,n := 〈∑d−1

s=0 t s
1e1e2g1,2 〉. We remark that Kd,n can be also viewed as

the ideal generated by the element
∑

0�a,b,c�d−1 ta
1 tb

2 t c
3 g1,2.

Once more, the algebraC(q)CTLd,n(q) is semisimple and, forλ ∈ P(d, n), Vλ is
an irreducible representation ofC(q)CTLd,n(q) if and only if

∑d−1
s=0 t s

1e1e2g1,2(vT ) =
0 for every standard d-tableau T of shape λ. Using the formulas for the irreducible
representations of C(q)Yd,n(q) given by Theorem 3.3, we obtain the following
description of the irreducible representations of C(q)CTLd,n(q) [1, Theorem 5.3]:

Theorem 3.11 Let {ξ0, ξ1, . . . , ξd−1} be the set of all d-th roots of unity (ordered
arbitrarily) as in Theorem 3.3. Let i0 ∈ {0, . . . , d − 1} be such that ξi0 = 1, and let
λ = (λ(0), . . . ,λ(d−1)) ∈ P(d, n). We have that Vλ is an irreducible representation
of C(q)CTLd,n(q) if and only if the Young diagram of λ(i0) has at most two columns.

Following the recipe of [32, Sect. 3], we have proved the following isomorphism
theorem for CTLd,n(q) [1, Theorem 5.8]:

Theorem 3.12 There exists a C[q, q−1] algebra isomorphism

ψn : CTLd,n(q) →
⊕

μ∈Compd (n)

Matmμ (TLμ0 (q) ⊗ Hμ1 (q) ⊗ Hμ2 (q) ⊗ · · · ⊗ Hμd−1 (q)),

where Compd(n) and mμ are as defined in (3.3.15) and (3.3.16), and we take
TLn(q) ∼= Hn(q) for n < 3.

We deduce that the following set is a basis of CTLd,n(q) as a C[q, q−1]-module
[1, Proposition 5.9]:

{

ψ
−1
n (bμ

0 bμ
1 . . . bμ

d−1 Mμ
k,l ) |μ ∈ Compd (n), bμ

0 ∈ BTL
1,μ0

, bμ
i ∈ BH

1,μi
for all i = 1, . . . , d − 1, 1 � k, l � mμ

}

,

where Mμ
k,l denotes the elementary mμ × mμ matrix with 1 in position (k, l). In

particular, CTLd,n(q) is a free C[q, q−1]-module of rank

∑

μ∈Compd (n)

m2
μ Cμ0μ1! . . .μd−1!.
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Chapter 4
Invariants for Links from Classical
and Affine Yokonuma–Hecke Algebras

Loic Poulain d’Andecy

Abstract We present a construction of invariants for links using an isomorphism
theorem for affine Yokonuma–Hecke algebras. The isomorphism relates affine
Yokonuma–Hecke algebras with usual affine Hecke algebras.We use it to construct a
large class ofMarkov traces on affine Yokonuma–Hecke algebras, and in turn, to pro-
duce invariants for links in the solid torus. By restriction, this construction contains
the construction of invariants for classical links from classical Yokonuma–Hecke
algebras. In general, the obtained invariants form an infinite family of 3-variable
polynomials. As a consequence of the construction via the isomorphism, we reduce
the number of invariants to study, given the number of connected components of a
link. In particular, if the link is a classical link with N components, we show that N
invariants generate the whole family.

4.1 Introduction

1. The Yokonuma–Hecke algebras (of type GL), denoted Yd,n , have been used by
J. Juyumaya and S. Lambropoulou to construct invariants for various types of links,
in the same spirit as the construction of the HOMFLYPT polynomial from usual
Hecke algebras. We refer to [1] and references therein. In particular, the algebras
Yd,n provide invariants for classical links and the natural question was to decide if
these invariants were equivalent, or not, to the HOMFLYPT polynomial. This study
culminated in the recent discovery [1] that these invariants are actually topologically
stronger than the HOMFLYPT polynomial (i.e. they distinguish more links). We
refer also to [1, Appendix B] and [2] for a description of the invariants in terms of
HOMFLYPT polynomials and linking numbers of sublinks.
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In [3], another approach to study invariants coming from Yokonuma–Hecke alge-
bras was developed. The starting point was the fact that the algebra Yd,n is isomorphic
to a direct sum of matrix algebras with coefficients in tensor products of usual Hecke
algebras. This allowed an explicit construction of Markov traces on {Yd,n}n≥1 from
the known Markov trace on Hecke algebras (on Hecke algebras, there is a unique
Markov trace up to normalisation, and it gives the HOMFLYPT polynomial). In
addition to its usefulness for the construction of Markov traces, the approach via
the isomorphism also helps to study the resulting invariants. Indeed some proper-
ties of the invariants follow quite immediately from a precise understanding of the
isomorphism (see paragraph 4 below).

Independently of which approach is used, another ingredient was added in [3]: a
third parameter in the invariants.While thefirst twoparameters come from the algebra
Yd,n , this third parameter γ has its origin in the framed braid group, and corresponds
to a certain degree of freedom one has when going from the framed braid group to
the algebra Yd,n . More precisely, we can deform the standard surjective morphism
from the framed braid group algebra to its quotient Yd,n into a family of morphisms
(depending on γ ) respecting the braid relations and the Markov conditions. Another
way of interpreting the parameter γ is that it modifies the quadratic relation satisfied
by the generators of Yd,n . Its existence explains (or is reflected in) the fact that dif-
ferent presentations for Yd,n were used before. Juyumaya–Lambropoulou invariants
correspond to certain specialisations of this parameter γ , depending on the chosen
presentation. So the parameter γ unifies every possible choices and yields more gen-
eral invariants. It is indicated in [1, Remark 8.5] that changing the presentation seems
to give a non-equivalent topological invariant.

2. In this paper, we consider the affine Yokonuma–Hecke algebras (of type GL),
denoted ̂Yd,n . They were introduced in [4] in connections with the representation
theory and the Jucys–Murphy elements of the classical Yokonuma–Hecke algebras.
Our main goal here is to generalise for ̂Yd,n the whole approach to link invariants via
the isomorphism theorem. The invariants are in general for links in the solid torus.
The classical links are naturally contained in the solid torus links and, restricted to
them, the obtained invariants correspond to the invariants obtained in [3] from Yd,n

(naturally seen as a subalgebra of ̂Yd,n). Specialising the parameter γ , we identify the
Juyumaya–Lambropoulou invariants among them. For those invariants, we empha-
size that we recover some known results [1] by a different method and furthermore
obtain some new results already in this particular case.

We start with an isomorphism between the algebra ̂Yd,n and a direct sum of matrix
algebras with coefficients in tensor products of affine Hecke algebras. As done in
[5], the isomorphism can be proved repeating the same arguments as for Yd,n (see
[3] where the proof for Yd,n is presented, as a particular case of a more general result
by G. Lusztig [6, Sect. 34]). Here we sketch a short different proof for ̂Yd,n using
the known result for Yd,n . We also prove the analogous theorem for the cyclotomic
quotients of̂Yd,n (withAriki–Koike algebras replacing affineHecke algebras). Useful
for concrete use, the formulas for the generators are simple and given explicitly.

Concerning links, S. Lambropoulou constructed invariants, analogues of the
HOMFLYPT polynomial, for links in the solid torus from affine Hecke algebras
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[7]. Then, it was explained in [8] how to obtain invariants for those links from the
algebras ̂Yd,n , unifying the methods of J. Juyumaya and S. Lambropoulou for Yd,n

and the construction of S. Lambropoulou for affine Hecke algebras. Due to the recent
results of [1], it is expected that the invariants obtained from ̂Yd,n are stronger than
the ones obtained from affine Hecke algebras.

Here we follow the alternative approach which uses the isomorphism to construct
Markov traces on the family of algebras {̂Yd,n}n≥1. To sum up, the Markov traces
are constructed and can be calculated with the following steps: for an element of
̂Yd,n , apply first the isomorphic map to obtain an element of the direct sum of matrix
algebras; then, for each matrix, apply the usual trace which results in an element of
a tensor product of affine Hecke algebras; finally apply a tensor product of Markov
traces on affine Hecke algebras. Our result consists in obtaining the compatibility
conditions relating the Markov traces appearing in different matrix algebras so that
the preceding procedure eventually results in a genuine Markov trace on {̂Yd,n}n≥1.

With the definition used here, for a given d > 0, the set of Markov traces on
{̂Yd,n}n≥1 forms a vector space. From the isomorphism, a set of distinguishedMarkov
traces appears naturally, which spans the set of all Markov traces constructed here.
Thus, our study of Markov traces (and of invariants) is reduced to the study of these
“basic” Markov traces (and of the corresponding “basic” invariants). It turns out that
these basic Markov traces are indexed, for a given d > 0, by the non-empty subsets
S ⊂ {1, . . . , d} togetherwith a choice, denoted formally by τ , of |S| arbitraryMarkov
traces on affine Hecke algebras. We note that if we restrict to Yd,n , the parameter τ

disappears and the basic Markov traces on {Yd,n}n≥1 are indexed, for a given d > 0,
only by the non-empty subsets S ⊂ {1, . . . , d}. This recovers a result of [3].

3. Throughout the paper, we intended to give in details the connections between
the two approaches, so that one would be able to pass easily from one to the other.
This will allow in particular to specialise and translate all our results on the invariants
to Juyumaya–Lambropoulou invariants as well.

Roughly speaking, J. Juyumaya and S. Lambropoulou constructed invariants from
Yd,n in two steps [9]. The same approach was followed in [8] for ̂Yd,n . First a certain
trace map, analogous to the Ocneanu trace and satisfying a certain positive Markov
condition, was constructed. Then a rescaling procedure was implemented, in order
to produce genuine invariants. The rescaling procedure amounts to two things: a
renormalisation of the generators and a renormalisation, depending on n, of the
trace. In the approach presented here, the first step is included from the beginning
in a more general quadratic relation for the generators. The second step is already
included in the definition of a Markov trace, namely that it is a family, on n, of trace
maps satisfying the two Markov conditions. As a consequence, to obtain invariants
here, one directly applies the Markov trace and no rescaling procedure is needed.

For the comparison, our first task is to explain that Juyumaya–Lambropoulou
approach is equivalent to considering certain Markov traces (with the definition used
here) and to relate their variables with the parameters considered here. Then we need
to identify these Markov traces in terms of the ones constructed via the isomorphism
theorem.We obtain finally the explicit decomposition of theseMarkov traces in terms
of the basic Markov traces indexed by S ⊂ {1, . . . , d} and τ as above.
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In particular, for Yd,n , this results in an explicit formula for the Juyumaya–
Lambropoulou invariants, as studied in [1], in terms of the basic invariants con-
structed here. We note that, in this case, the parameter τ is not present, and that
Juyumaya–Lambropoulou invariants are also parametrised, for a given d > 0, by
non-empty subsets of {1, . . . , d}. Nevertheless, they do not coincide with the basic
invariants and the comparison formula is not trivial (see Formulas (4.27) in Sect. 1.5).
In general, for ̂Yd,n , we obtain the expression of the invariants constructed in [8] in
terms of the basic invariants constructed here.

Concerning the third parameter γ , we recall that it was not present in the previous
approach. Actually, one need to specialise it to a certain value in our invariants to
recover the Juyumaya–Lambropoulou invariants. The two different presentations of
Yd,n that were used, as in [1], correspond to two different values of γ that we give
explicitly. Similarly, for ̂Yd,n , the invariants constructed in [8] correspond to a certain
specialisation of γ .

4. We conclude this introduction by describing the main properties obtained for
the invariants. As explained before, they follow quite directly from a precise under-
standing of the isomorphism, and are expressed easily in terms of the basic invariants
defined here. The main results are:

• for d > 0 and a non-empty subset S ⊂ {1, . . . , d}, the corresponding invariants
coincide with invariants corresponding to d ′ = |S| and the full set {1, . . . , d ′}.
Therefore, we only have to consider the full sets {1, . . . , d} for different d > 0.

• further, given a number N of connected components of a link, the invariants cor-
responding to {1, . . . , d} are zero if d > N . So, given N , we only have to consider
d = 1, . . . , N .

Moreover, with the comparison results explained in paragraph 3, it is easy to deduce
the similar properties for invariants obtained via Juyumaya–Lambropoulou approach.
The first item remains true as it is. The second item results in an explicit formula
expressing, if d > N , the invariants corresponding to {1, . . . , d} in terms of the
invariants corresponding to {1, . . . , d ′}withd ′ ≤ N . Specialisingγ to the appropriate
values and restricting to classical links, we recover with the first item a result of [1].
The second item in this case was proved only for N ≤ 2 also in [1].

4.2 Affine Yokonuma–Hecke Algebras

Let d, n ∈ Z>0 and u and v be indeterminates. We work over the ringC[u±1, v]. The
properties of the affine Yokonuma–Hecke algebras recalled here can be found in [8].
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4.2.1 Definitions

We use Sn to denote the symmetric group on n elements, and si to denote the
transposition (i, i + 1). The affine Yokonuma–Hecke algebra ̂Yd,n is generated by
elements

g1, . . . , gn−1, X
±1
1 , t1, . . . , tn,

subject to the following defining relations (4.1)–(4.3):

gi g j = g j gi for i, j = 1, . . . , n − 1 such that |i − j | > 1,
gi gi+1gi = gi+1gi gi+1 for i = 1, . . . , n − 2,

X1 g1X1g1 = g1X1g1 X1

X1gi = gi X1 for i = 2, . . . , n − 1,

(4.1)

ti t j = t j ti for i, j = 1, . . . , n,
gi t j = tsi ( j)gi for i = 1, . . . , n − 1 and j = 1, . . . , n,
tdj = 1 for j = 1, . . . , n,

X1t j = t j X1 for j = 1, . . . , n,

(4.2)

g2i = u2 + v ei gi for i = 1, . . . , n − 1, (4.3)

where ei := 1

d

∑

1≤s≤d

t si t
−s
i+1. The elements ei are idempotents and we have:

g−1
i = u−2gi − u−2v ei for all i = 1, . . . , n − 1. (4.4)

Let w ∈ Sn and let w = si1si2 . . . sir be a reduced expression for w. Since the
generators gi of ̂Yd,n satisfy the same braid relations as the generators si of Sn ,
Matsumoto’s lemma implies that the following element does not depend on the
reduced expression of w:

gw := gi1gi2 . . . gir . (4.5)

Elements X2, . . . , Xn of ̂Yd,n are defined inductively by

Xi+1 := u−2gi Xi gi for i = 1, . . . , n − 1. (4.6)

The elements X1, . . . , Xn commute with each other. They also commute with the
generators t1, . . . , tn and they satisfy g j Xi = Xi g j if i �= j, j + 1.

For λ = (λ1, . . . , λn) ∈ Z
n , we set Xλ := Xλ1

1 . . . Xλn
n . The following set of ele-

ments forms a basis of ̂Yd,n:

{ ta11 . . . tann Xλgw | a1, . . . , an ∈ {1, . . . , d} , λ ∈ Z
n , w ∈ Sn } . (4.7)
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This fact has the following consequences:

• Recall that the Yokonuma–Hecke algebra Yd,n is presented by generators g1, . . . ,
gn−1, t1, . . . , tn and defining relations those in (4.1)–(4.3) which do not involve the
generator X1. We have that Yd,n is isomorphic to the subalgebra of ̂Yd,n generated
by g1, . . . , gn−1, t1, . . . , tn (hence the common names for the generators).

• In particular, the commutative subalgebra Td,n := 〈t1, . . . , tn〉 of ̂Yd,n generated
by t1, . . . , tn is isomorphic to the group algebra of (Z/dZ)n .

• Bydefinition, the affineHecke algebra (of typeGL) is ̂Hn := ̂Y1,n .We have, for any
d > 0, that the quotient of̂Yd,n by the relations t j = 1, j = 1, . . . , n, is isomorphic
to ̂Hn . We denote by · the corresponding surjective morphism from ̂Yd,n to ̂Hn ,

and the generators of ̂Hn are denoted g1, . . . , gn−1, X
±1
1 .

• The subalgebra of ̂Hn generated by g1, . . . , gn−1 is the usual Hecke algebra,
denoted Hn . We also have Hn = Y1,n .

4.2.2 Compositions of n

Let Compd(n) be the set of d-compositions of n, that is the set of d-tuples μ =
(μ1, . . . , μd) ∈ Z

d
≥0 such that

∑

1≤a≤d μa = n. We denote μ =|d n.
For μ =|d n, the Young subgroup Sμ is the subgroup Sμ1 × · · · × Sμd of Sn ,

where Sμ1 acts on the letters {1, . . . , μ1},Sμ2 acts on the letters {μ1 + 1, . . . , μ2},
and so on. The subgroup Sμ is generated by the transpositions si with i ∈ Iμ :=
{1, . . . , n − 1} \ {μ1, μ1 + μ2, . . . , μ1 + . . . + μd−1}.

We denote by ̂Hμ the algebra ̂Hμ1 ⊗ . . . ⊗ ̂Hμd (by convention ̂H0 := C[u±1, v]).
It is isomorphic to the subalgebra of ̂Hn generated by X

±1
1 , . . . , X

±1
n and gi , with

i ∈ Iμ, and is a free submodule with basis {Xλ
gw | λ ∈ Z

n , w ∈ Sμ}.
Similarly, we have a subalgebra Hμ ∼= Hμ1 ⊗ . . . ⊗ Hμd of the Hecke algebra

Hn . It is naturally a subalgebra of ̂Hμ (generated only by gi , with i ∈ Iμ).
For μ =|d n, let mμ be the index of the Young subgroup Sμ in Sn , that is,

mμ := n!
μ1!μ2! . . . μd ! . (4.8)

We define the socle μ of a d-composition μ by

μa =
{

1 if μa ≥ 1,
0 if μa = 0,

for a = 1, . . . , d. (4.9)

The composition μ belongs to Compd(N ) where N is the number of non-zero parts
in μ. We denote by Socd the set of all socles of d-compositions, or in other words,
Socd is the set of d-compositions whose parts belong to {0, 1}. We note that there is
a one-to-one correspondence between the set Socd and the set of non-empty subsets
of {1, . . . , d}, given by



4 Invariants for Links from Classical and Affine Yokonuma–Hecke Algebras 83

{1, . . . , d} ⊃ S ←→ μS ∈ Socd , where μS
a =

{

1 if a ∈ S,

0 if a /∈ S.
(4.10)

4.2.3 Characters of Td,n

Let {ξ1, . . . , ξd} be the set of roots of unity of order d. A complex character χ of
the group (Z/dZ)n is characterised by the choice of χ(t j ) ∈ {ξ1, . . . , ξd} for each
j = 1, . . . , n. We denote by Irr(Td,n) the set of complex characters of (Z/dZ)n ,
extended to the subalgebra Td,n = 〈t1, . . . , tn〉 of ̂Yd,n .

For each χ ∈ Irr
(

Td,n
)

, we denote by Eχ the primitive idempotent of Td,n asso-
ciated to χ . Then the set {Eχ | χ ∈ Irr(Td,n)} is a basis of Td,n . Therefore, from the
basis (4.7) of ̂Yd,n , we obtain the following other basis of ̂Yd,n:

{Eχ X
λgw | χ ∈ Irr(Td,n) , λ ∈ Z

n , w ∈ Sn} . (4.11)

Permutations πχ .

Let χ ∈ Irr(Td,n). For a ∈ {1, . . . , d}, we let μa be the number of elements j ∈
{1, . . . , n} such that χ(t j ) = ξa . Then the sequence (μ1, . . . , μd) is a d-composition
of n which we denote by Comp(χ).

For a given μ =|d n, we consider a particular character χ
μ
0 ∈ Irr(Td,n) such that

Comp(χμ
0 ) = μ. The character χ

μ
0 is defined by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

χ
μ
0 (t1) = . . . = χ

μ
0 (tμ1) = ξ1 ,

χ
μ
0 (tμ1+1) = . . . = χ

μ
0 (tμ1+μ2) = ξ2 ,

...
...

...
...

...
...

...

χ
μ
0 (tμ1+···+μd−1+1) = . . . = χ

μ
0 (tn) = ξd .

(4.12)

The symmetric group Sn acts on the set Irr(Td,n) by the formula w(χ)
(

ti
) =

χ(tw−1(i)). The stabilizer of χ
μ
0 under the action of Sn is the Young subgroup Sμ.

In each left coset inSn/S
μ, there is a unique representative of minimal length. So,

for any χ ∈ Irr(Td,n) such that Comp(χ) = μ, we define a permutation πχ ∈ Sn by
requiring that πχ is the element of minimal length such that:

πχ(χ
μ
0 ) = χ . (4.13)

4.3 Isomorphism Theorems

We present isomorphism theorems for the algebras ̂Yd,n and their cyclotomic quo-
tients. We sketch a short proof, which uses the corresponding result for Yd,n (see [3,
Sect. 3.1]). We are still working over C[u±1, v].
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4.3.1 Isomorphism Theorem for Affine Yokonuma–Hecke
Algebras

For μ =|d n, we consider the algebra Matmμ
( ̂Hμ) of matrices of size mμ with coef-

ficients in ̂Hμ. We recall that mμ, given by (4.8), is the number of characters
χ ∈ Irr(Td,n) such that Comp(χ) = μ. So we index the rows and columns of a
matrix in Matmμ

( ̂Hμ) by such characters. Moreover, for two characters χ, χ ′ such
that Comp(χ) = Comp(χ ′) = μ, we denote by 1χ,χ ′ the matrix in Matmμ

( ̂Hμ) with
1 in line χ and column χ ′, and 0 everywhere else.

Theorem 4.1 The affine Yokonuma–Hecke algebra ̂Yd,n is isomorphic to
⊕

μ=|d n Matmμ
( ̂Hμ), the isomorphism being given on the elements of the basis (4.11)

by

Ψd,n : Eχ X
λgw−1 �−→ u�(w−1)−�(π−1

χ w−1πw(χ)) 1χ,w(χ) X
π−1

χ (λ)
gπ−1

χ w−1πw(χ)
, (4.14)

where χ ∈ Irr(Td,n), λ ∈ Z
n and w ∈ Sn (� is the length function on Sn).

Proof (Sketch of a proof) We start with explicit formulas for the images of the
generators of ̂Yd,n given below in (4.15)–(4.17), and we check that the images of the
generators satisfy all the defining relations (4.1)–(4.3) of ̂Yd,n . For the relations not
involving the generator X1, this is already known from the isomorphism theorem for
Yd,n . We omit the remaining straightforward verifications.

Thus, Formulas (4.15)–(4.17) induce amorphism of algebras, and we check that it
coincides withΨd,n given by (4.14). Again, for the images of the elements of the basis
of the form Eχgw−1 , this is already known from the Yd,n situation. The multiplication
by Xλ is straightforward.

It remains to check that Ψd,n is bijective. The surjectivity follows from a direct
inspection of Formula (4.16) together with the already known fact that every
Matmμ

(Hμ) is in the image of Ψd,n . The injectivity can be checked directly. Indeed,
assume that a certain linear combination

∑

χ,λ,w cχ,λ,wEχ Xλgw−1 is in the kernel of
Ψd,n . Then for every χ, λ,w, we obtain that

∑

w′
u�(w′−1)−�(π−1

χ w′−1πw′(χ))cχ,λ,w′ gπ−1
χ w′−1πw′(χ)

= 0 ,

where the sum is over w′ ∈ Sn such that w′(χ) = w(χ). For w′,w′′ satisfying this
condition, we have π−1

χ w′−1πw′(χ) = π−1
χ w′′−1πw′′(χ) if and only if w′ = w′′, and

therefore every coefficients in the above sum are 0.

Formulas for the generators.

Here, we give the images under the isomorphism Ψd,n of the generators of ̂Yd,n .
We recall that

∑

Eχ = 1 in ̂Yd,n , the sum being over Irr(Td,n). Let χ ∈ Irr(Td,n)

and set μ = Comp(χ). Then, by definition of πχ , it is straightforward to see that
π−1

χ ( j) = μ1 + · · · + μa−1 + α, where χ(t j ) = ξa and α = 
{k ≤ j | χ(tk) = ξa}.



4 Invariants for Links from Classical and Affine Yokonuma–Hecke Algebras 85

• Let j ∈ {1, . . . , n}. We have:

t j =
∑

χ∈Irr(Td,n)

Eχ t j =
∑

χ∈Irr(Td,n)

Eχχ(t j ) �−→
∑

χ∈Irr(Td,n)

1χ,χ χ(t j ) . (4.15)

It follows that the image of ei , i = 1, . . . , n − 1, is a sum of diagonal matrices;
the coefficient in position χ is 1 if χ(ti ) = χ(ti+1), and 0 otherwise.

• Let j ∈ {1, . . . , n}. We have:

X j =
∑

χ∈Irr(Td,n)

Eχ X j �−→
∑

χ∈Irr(Td,n)

1χ,χ Xπ−1
χ ( j) . (4.16)

• Let i ∈ {1, . . . , n − 1}. We have:

gi =
∑

χ∈Irr(Td,n)

Eχgi and Eχgi �−→
{

u 1χ,si (χ) if si (χ) �= χ,

1χ,χ gπ−1
χ (i) if si (χ) = χ .

(4.17)

The first line follows from πsi (χ) = siπχ if si (χ) �= χ . The second line follows
from π−1

χ (i + 1) = π−1
χ (i) + 1 if si (χ) = χ .

4.3.2 Isomorphism Theorem for Cyclotomic
Yokonuma–Hecke Algebras

Let v = (v1, . . . , vm) ⊂ C[u±1, v]\{0} be an m-tuple of non-zero parameters for a
certain m ∈ Z>0 (equivalently, one could consider v1, . . . , vm as indeterminates and
work over the extended ring C[u±1, v, v±1

1 , . . . , v±1
m ]). The cyclotomic Yokonuma–

Hecke algebra Yd,n(v) is the quotient of the affine Yokonuma–Hecke algebra ̂Yd,n by
the relation

(X1 − v1) . . . (X1 − vm) = 0 . (4.18)

It is shown in [8] that the algebra Yd,n(v) is a free C[u±1, v]-module with basis

{ta11 . . . tann Xλgw | a1, . . . , an ∈ {1, . . . , d} , λ ∈ {0, . . . ,m − 1}n , w ∈ Sn} .

In particular, if m = 1, Yd,n(v) is isomorphic to the Yokonuma–Hecke algebra Yd,n .
Similarly, the cyclotomic Hecke algebra Hn(v) (or the Ariki–Koike algebra) is

the quotient of the affine Hecke algebra ̂Hn by the relation (X1 − v1) . . . (X1 −
vm) = 0. Equivalently, it is the quotient of the cyclotomic Yokonuma–Hecke algebra
Yd,n(v) by the relations t j = 1, j = 1, . . . , n. It is a freeC[u±1, v]-module with basis

{Xλ
gw | λ ∈ {0, . . . ,m − 1}n , w ∈ Sn}.
For μ =|d n, we set H(v)μ := Hμ1(v) ⊗ · · · ⊗ Hμd (v). By definition, H(v)μ is

the quotient of the algebra ̂Hμ by the relations
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(Xμ1+···+μa−1+1 − v1) . . . (Xμ1+···+μa−1+1 − vm) = 0 , a = 1, . . . , d . (4.19)

Corollary 4.1 The cyclotomic Yokonuma–Hecke algebra Yd,n(v) is isomorphic to
the direct sum

⊕

μ=|d n Matmμ

(

H(v)μ
)

.

Proof Let Iv be the (two-sided) ideal of ̂Yd,n generated by the left hand side of the
relation (4.18). For μ =|d n, let I

μ

v be the ideal of ̂Hμ generated by the left hand
sides of the relations (4.19). The corollary follows from Theorem 4.1 together with
the fact that Ψd,n(Iv) = ⊕

μ=|d n Matmμ

(

I
μ

v

)

. It remains to check this fact.
The inclusion “⊂” follows at once from Formula (4.16) for j = 1. For the other

inclusion, let μ =|d n. Let a ∈ {1, . . . , d} such that μa �= 0, so that there is a char-
acter χ with Comp(χ) = μ and χ(t1) = ξa . Again, Formula (4.16) for j = 1 gives
Ψd,n(Eχ X1) = 1χ,χ Xμ1+···+μa−1+1. Therefore, for every generators of I

μ

v , we have
in Ψd,n(Iv) a matrix in Matmμ

(

̂Hμ
)

with the generator as one diagonal element and
0 everywhere else. As Ψd,n(Iv) is an ideal, this shows that Matmμ

(

I
μ

v

)

is included in
Ψd,n(Iv).

4.4 Markov Traces on Affine Yokonuma–Hecke Algebras

From now on, we extend the ground ring C[u±1, v] to C[u±1, v±1], and we consider
our algebras over this extended ring.

4.4.1 Definition of Markov Traces on {̂Yd,n}n≥1 and { ̂Hn}n≥1

A Markov trace on the family of algebras {̂Yd,n}n≥1 is a family of linear functions
{ρd,n : ̂Yd,n → C[u±1, v±1]}n≥1 satisfying:

ρd,n(xy) = ρd,n(yx) , n ≥ 1 and x, y ∈ ̂Yd,n;
ρd,n+1(xgn) = ρd,n+1(xg−1

n ) = ρd,n(x) , n ≥ 1 and x ∈ ̂Yd,n .
(4.20)

A Markov trace on the family of algebras { ̂Hn}n≥1 is a family of linear functions
{τn : ̂Hn → C[u±1, v±1]}n≥1 satisfying:

τn(xy) = τn(yx) , n ≥ 1 and x, y ∈ ̂Hn;
τn+1(xgn) = τn+1(xg

−1
n ) = τn(x) , n ≥ 1 and x ∈ ̂Hn.

(4.21)

Recall the definition of Socd from Sect. 4.2. For each μ ∈ Socd and each a ∈
{1, . . . , d} such that μa �= 0, we choose a Markov trace {τμ,a

n }n≥1 on { ̂Hn}n≥1. By
convention, ̂H0 := C[u±1, v±1] andmaps of the form τ

μ,a
0 are identities on ̂H0. Below

in (4.22), each term in the sum over μ =|d n acts on Matmμ
( ̂Hμ). We skip the proof

of the following theorem. It can be done exactly as in [3, Lemma 5.4].
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Theorem 4.2 The following maps form a Markov trace on {̂Yd,n}n≥1:

(
∑

μ=|dn
(τμ,1

μ1
⊗ · · · ⊗ τμ,d

μd
) ◦ TrMatmμ

)

◦ Ψd,n , n ≥ 1 . (4.22)

Roughly speaking, to construct a Markov trace on ̂Yd,n , after having applied the
isomorphismΨd,n and the usual trace of amatrix,wemust choose and apply aMarkov
trace on each component of ̂Hμ = ̂Hμ1 ⊗ · · · ⊗ ̂Hμd for each μ. This choice of
Markov traces is restricted: ifμ′ has the same socle asμ (that is,μ′

a = 0 ⇔ μa = 0),
then the chosen Markov traces on each component of ̂Hμ′

must be the same as for
̂Hμ; otherwise, they can be chosen independently.

Basic Markov traces.

Recall the bijection (4.10) between Socd and non-empty subsets of {1 . . . , d}. Fol-
lowing the theorem, we define some distinguished Markov traces as follows:

• Choose a non-empty S ⊂ {1, . . . , d} and consider the associated μS ∈ Socd .

Choose a Markov trace {τ a
n }n≥1 on { ̂Hn}n≥1 for each a ∈ S, and set τ

μS, a
n = τ a

n ,
n ≥ 1, in (4.22).

• Then, in (4.22), set all other Markov traces {τμ,a
n }n≥1 with μ �= μS to be 0.

We denote formally the choice of Markov traces in the first item by τ and denote by
{ρS,τ

d,n }n≥1 the resulting Markov trace on {̂Yd,n}n≥1. We call it a basic Markov trace.
Every Markov trace constructed in the preceding theorem is a linear combination of
basic Markov traces {ρS,τ

d,n }n≥1, where S and τ vary.

Example 4.1 A map on ̂Yd,n can be seen, up to Ψd,n , as acting on the direct sum of
matrix algebras. This way, for a given S, the maps ρ

S,τ
d,n are non-zero only on the

summands Matmμ
( ̂Hμ) such that μ = μS , that is, such that μa �= 0 if and only if

a ∈ S. As examples:

• if S = {k} then ρ
S,τ
d,n is non-zero only on Matmμ

( ̂Hμ), for μ = (0, . . . , 0, n,

0, . . . , 0) with n in position k. In this case, ̂Hμ = ̂Hn;
• we will see that it is enough to consider the situation S = {1, . . . , d}. In this case,

ρ
S,τ
d,n is non-zero only on Matmμ

( ̂Hμ), for μ with all parts different from 0.

Remark 4.1 (i) By restriction to the subalgebra Yd,n of ̂Yd,n , a Markov trace on
{̂Yd,n}n≥1 reduces to a Markov trace on {Yd,n}n≥1 (and similarly for ̂Hn and Hn). On
{Hn}n≥1, there is a unique Markov trace up to a normalisation factor. Therefore, the
choice of the Markov traces τ

μ,a
n in the theorem above reduces, for Yd,n , to a choice

of an overall factor αμ for each μ ∈ Socd . This is the result proved in [3]. In other
words, for Yd,n , the basic Markov traces are parametrised by Socd , or equivalently,
by the non-empty subsets of {1, . . . , d}.

(ii) LetMark( ̂Hn) be the space of Markov traces on { ̂Hn}n≥1. The space spanned
by the basic Markov traces ρ

S,τ
d,n is isomorphic to
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⊕

1≤k≤d

(

d
k

)

Mark( ̂Hn)
⊗k .

If we restrict to a subspace of Mark( ̂Hn) of dimension D, we obtain a space of
Markov traces on {̂Yd,n}n≥1 of dimension (D + 1)d − 1. In particular, for Yd,n , the
dimension is 2d − 1.

4.5 Invariants for Links

Letγ be another indeterminate.Wework fromnowonover the ring R := C[u±1, v±1,

γ ±1] and we consider now all algebras over this extended ring R.
We sketch a construction of invariants with values in R for Z/dZ-framed solid

torus links. We call Z/dZ-framed link a usual link together with a number in Z/dZ
(the framing) on each connected component. We refer to [7, 8] for definitions and
fundamental results (as the analogues of Alexander and Markov theorems) concern-
ing solid torus links and their Z/dZ-framed versions. Note that any invariant for
Z/dZ-framed links is also an invariant of non-framed links, simply by considering
links with all framings equal to 0.

The set of classical links is naturally included in the set of solid torus links (in
other words, the braid group is naturally a subgroup of the affine braid group). The
construction here includes, by restriction to the subalgebras Yd,n , the construction
forZ/dZ-framed classical links explained in [3, Sect. 6]. As the construction and the
results equally apply to the classical and the solid torus situations, we will simply
use the word link to refer to both types of links.

4.5.1 Definition of the Invariants

As in [8], we denote by Baff
n the affine braid group on n strands, and byZ/dZ � Baff

n

the Z/dZ-framed affine braid group. The generators of Z/dZ � Baff
n are denoted

σ1, . . . , σn−1, σ0, t1, . . . , tn . The defining relations are (4.1)–(4.2) with gi replaced
by σi and X1 by σ0. The algebra ̂Yd,n is thus a quotient of the group algebra of
Z/dZ � Baff

n by the relation (4.3).
The subgroup of Z/dZ � Baff

n generated by σ1, . . . , σn−1, σ0 is Baff
n . The algebra

̂Hn is a quotient of the group algebra of Baff
n by the relation σ 2

i = u2 + vσi , i =
1, ..., n − 1. Finally, the subgroup σ1, . . . , σn−1 of Baff

n is the classical braid group.

Invariants Pτ
L (u, v) from ̂Hn .

Let {τn}n≥1 be aMarkov trace on { ̂Hn}n≥1. From theAlexander andMarkov theorems
for non-framed links (see [7]), we construct the invariant Pτ

L (u, v), for a link L , as
follows:
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L �−→ βL ∈ Baff
n �−→ πn(βL) �−→ τn

(

πn(βL)
) =: Pτ

L (u, v) ∈ C[u±1, v±1] ,

where βL is a braid closing to L and πn is the natural morphism from RBaff
n to ̂Hn ,

given on the generators by σi �→ gi , i = 1, ..., n − 1 and σ0 �→ X1.
From the fact that there is a unique Markov trace (up to normalisation) on the

usual Hecke algebras {Hn}≥1, all the invariants Pτ
L , restricted to the set of classical

links, reduce (up to normalisation) to the unique invariant coming from Hn , the
HOMFLYPT polynomial.

Invariants Pd,S,τ
L (u, v, γ ) from ̂Yd,n .

We consider the following map from R[Z/dZ � Baff
n] to ̂Yd,n given on the generators

by:
δd,n : t j �→ t j , σ0 �→ X1 , σi �→ (

γ + (1 − γ )ei
)

gi .

One proves as in [3, Sect. 6] that, first, δd,n extends to a morphism of algebras, and
moreover, that the following procedure defines invariants for Z/dZ-framed links.

Definition 4.1 Let {ρd,n}n≥1 be a Markov trace on {̂Yd,n}n≥1. For a Z/dZ-framed
link L , the invariant Pρd

L (u, v, γ ) is defined as follows

L �−→ βL ∈ Z/dZ � Baff
n �−→ δd,n(βL ) �−→ ρd,n

(

δd,n(βL )
) =: Pρd

L (u, v, γ ) ∈ R ,

where βL is a Z/dZ-framed braid closing to L .

From the preceding section, it is enough to consider the basic Markov traces
{ρS,τ

d,n }n≥1. We denote by Pd,S,τ
L the corresponding invariant and refer to it as a basic

invariant.
If we restrict a basic invariant to the set of classical Z/dZ-framed links, it does

not depend on τ , and coincides with the invariants constructed in [3].

Remark 4.2 In the definition of the maps δd,n , a rule σi �→ (α + βei )gi would be
enough to give a morphism of algebras. The condition α + β = 1 is necessary for
the construction of invariants. We note that, considering the map δd,n is equivalent
to changing the quadratic relations g2i = u2 + vei gi to g2i = u2γ 2 + u2(1 − γ 2)ei +
vei gi . The role of γ is therefore to interpolate between different presentations of ̂Yd,n .

4.5.2 Comparison with Other Approaches

For non-framed links from ̂Hn [7].

Define ˜Xi ∈ ̂Yd,n , i = 1, . . . , n, by the following formulas:

˜X1 := X1 and ˜Xi+1 := g−1
i

˜Xi gi , i = 1, . . . , n − 1 .

Similarly, we have the images ˜X1, . . . , ˜Xn of ˜X1, . . . , ˜Xn in ̂Hn .
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Let x := {xa}a∈Z ⊂ C[u±1, v±1] be a set of parameters with x0 := 1. From the
results in [7] (see Remark 4.3 below), we have a unique Markov trace on { ̂Hn}n≥1,
which satisfies in addition

τ x
n

(

˜X
a

n h
) = xaτ

x
n (h) , ∀n ≥ 1 , ∀a ∈ Z , ∀h ∈ ̂Hn−1 .

The corresponding invariant of non-framed links is denoted P x
L (u, v).

Remark 4.3 In [7], the quadratic relation of ̂Hn was g
2
i = q + (q − 1)gi and a cer-

tain tr, depending on another parameter z was constructed. Setting λ := z+1−q
qz , an

invariant XL(
√
q,

√
λ) was obtained, by rescaling the generators, gi �

√
λgi , and

then rescaling the trace. This is equivalent, in our approach, to setting

u = √

λq , v = √
λ(q − 1) and τ xn := (

√
λz)1−n tr = (

v−1(1 − u2)
)n−1tr , ∀n ≥ 1 .

In conclusion, we have XL(
√
q,

√
λ) = P x

L (u, v).

For Z/dZ-framed links from ̂Yd,n [1, 8, 9].

Recall that {ξ1, . . . , ξd} is the set of d-th roots of unity. Fix a non-empty subset D ⊂
{1, . . . , d} and, for each k ∈ D, a set x(k) := {x (k)

a }a∈Z of parameters in C[u±1, v±1]
with x (k)

0 = 1. Denote formally x the set x(k) with k ∈ D.
From the results of [8] (and [9] in the non-affine case), we have a unique Markov

trace, denoted {ρ̃D,x
d,n }n≥1, on {̂Yd,n}n≥1 which satisfies in addition, for all n ≥ 1,

ρ̃
D,x
d,n

(

˜Xa
n t

b
n h

) = xa,b ρ̃
D,x
d,n (h) , ∀a ∈ Z , ∀b ∈ {1, . . . , d} , ∀h ∈ ̂Yd,n−1 , (4.23)

where the parameters xa,b are given by

xa,b = 1

|D|
∑

k∈D
x (k)
a ξ b

k , for all a ∈ Zand b ∈ {1, . . . , d}. (4.24)

The corresponding invariant of Z/dZ-framed links, we denote ˜Pd,D,x
L (u, v, γ ). By

restriction to classical Z/dZ-framed links, the parameters x do not appear, and we
obtain invariants labelled by d and D, denoted ˜Pd,D

L (u, v, γ ) (see Remarks below).

Remark 4.4 (i) In [8], the quadratic relation of ̂Yd,n was g2i = 1 + (q − q−1)ei gi
and a certain trace tr, depending on another parameter z was constructed. An invari-
ant Φ

d,D,x
L (q, z) was obtained. With λD := |D|z−(q−q−1)

|D|z , this is equivalent, in our
approach, to setting

u = √

λD , v = √

λD(q − q−1) , γ = 1 and ρ̃
D,x
d,n := (|D|v−1(1 − u2)

)n−1tr , ∀n ≥ 1 .
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In conclusion, we have Φ
d,D,x
L (q, z) = ˜Pd,D,x

L (u, v, 1) . Note that the construction
in [8] corresponds to the particular case γ = 1 here.

(ii) The restriction of the above procedure to the subalgebra Yd,n (the non-affine
case) gives the comparison of invariants constructed here with the invariants studied
in [1]. The invariants only depend on d and D (not on x), and were denoted in [1]
by Φd,D(q, z).

(iii) Originally, in [9], invariants (in the non-affine case) were constructed using
Yd,n with a different quadratic equation, namely with g2i = 1 + (q2 − 1)ei + (q2 −
1)ei gi . A certain trace t̃r, depending on a parameter z̃ = qz was constructed and
invariants, denoted Γd,S in [1], were obtained.With the same λD as above, the rescal-
ing of the generators is now gi �

√
λDq−1gi . A short calculation and comparison

with the formula in Remark 4.2 shows that u and v are as in item (i), while now
γ = q−1. As a conclusion, we have, for any classical Z/dZ-framed link L ,

Φd,D(q, z)(L) = ˜Pd,D
L (u, v, 1) and Γd,D(q, z)(L) = ˜Pd,D

L (u, v, q−1) . (4.25)

4.5.3 Comparison in Terms of the Basic Invariants
Pd,S,τ
L (u, v, γ )

We fix as above D and x. It remains to identify the Markov trace {ρ̃D,x
d,n }n≥1 in terms

of the basic Markov traces {ρS,τ
d,n }n≥1 constructed after Theorem 4.2.

Proposition 4.1 For each non-empty S ⊆ D, let τ be obtained by taking, for each
k ∈ S, the Markov trace {τ x(k)}n≥1 in position k. Then we have

{ρ̃D,x
d,n }n≥1 = 1

|D|
∑

S⊆D

(

v−1(1 − u2)
)|S|−1 {ρS,τ

d,n }n≥1 . (4.26)

Proof (Sketch of proof) Denote {ρn}n≥1 theMarkov trace on {̂Yd,n}n≥1 defined by the
right hand side of (4.26). To prove the proposition, we need to check that Condition
(4.23) is satisfied.

For n = 1, it is a straightforward verification. For n > 1, one may check the
equivalent condition ρn(˜Xa

n t
b
n h) = |D|v−1(1 − u2)xa,b ρn−1(h). We note that it is

enough to take h = Eχ Xλgw−1 , where χ ∈ Irr(Td,n) is such that Comp(χ) = μ

where μ = μS for some S ⊂ D, and such that w(χ) = χ (otherwise the condition is
0 = 0). Then the condition can be checked by a straightforward calculation of both
sides. One may use: an explicit description of the embedding ̂Yd,n ⊂ ̂Yd,n+1 on the

matrix algebras side (see [3, Sect. 3.4]); and the fact thatΨd,n(˜X j ) = ∑

χ 1χ,χ
˜Xπ−1

χ ( j)

for j = 1, . . . , n (induction on j).
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We note that Formula (4.26) is a triangular change of basis, with inverse

{ρS,τ
d,n }n≥1 = (

v−1(1 − u2)
)1−|S| ∑

D⊆S

(−1)|S|−|D||D| {ρ̃D,x
d,n }n≥1 .

In particular, restricting to Yd,n , we can forget the parameters x on one hand, and
the choice τ on the other. The proposition expresses the Juyumaya–Lambropoulou
invariant associated to D ⊂ {1, . . . , d} in terms of our basic invariants associated to
S ⊂ {1, . . . , d}. The formulas are (with notations as in Remark 4.4 and coefficients
αS as in (4.26)):

Φd,D(q, z)(L) =
∑

S⊆D

αS Pd,S
L (u, v, 1) and Γd,D(q, z)(L) =

∑

S⊆D

αS Pd,S
L (u, v, q−1) .

(4.27)

4.6 Properties of Invariants

As consequences of the construction using the isomorphism theorem, we prove sev-
eral properties of the constructed invariants, focusing essentially on the non-framed
links. We emphasize that these properties are valid for all non-framed links (classical
and solid torus).

4.6.1 Comparison of Invariants with Different d
for Non-framed Links

Let d > 0 and S a non-empty subset of {1, . . . , d}. We denote d ′ := |S|. Let τ be
any choice of d ′ Markov traces on { ̂Hn}n≥1. The following result says that, for non-
framed links, it is enough to consider the situation S = {1, . . . , d} for each d > 0.

Proposition 4.2 For any non-framed link L, we have Pd,S,τ
L = Pd ′,{1,...,d ′},τ

L .

In particular, if |S| = 1, the proposition asserts that Pd,S,τ
L (u, v, γ ) = Pτ

L (u, v),
where Pτ

L (u, v) is the invariant of the non-framed link obtained from ̂Hn .

Proof Let {ξ (d)
1 , . . . , ξ

(d)
d } denote the d-th roots of unity.

Letμ =|d n be such thatμ = μS , that is, such thatμa �= 0 if and only if a ∈ S. To
μ, we associate the composition μ′ = (μi1 , . . . , μid′ ) =|d ′ n, where μi1 , . . . , μid′ are
the non-zero parts ofμ and i1 < · · · < id ′ .We have Sμ = Sμ′

and, in turn, ̂Hμ = ̂Hμ′

and mμ = mμ′ .
Let χ ∈ Irr(Td,n) with Comp(χ) = μ. For every j = 1, . . . , n, by hypothesis on

μ and χ , there exists a ∈ {1, . . . , d ′} such that χ(t j ) = ξ
(d)
ia

. Then we set χ ′(t j ) =
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ξ (d ′)
a . This defines a bijection between the characters χ ∈ Irr(Td,n)with Comp(χ) =

μ and the characters χ ′ ∈ Irr(Td ′,n) with Comp(χ ′) = μ′. This bijection allows to
identify the spaces Matmμ

( ̂Hμ) and Matmμ′ ( ̂Hμ′
). We have moreover πχ = πχ ′ .

Recall the formulas (4.16)–(4.17) giving the images of thegenerators g1, . . . , gn−1,

X1 under Ψd,n . It is then immediate to see that Ψd,n(x) and Ψd ′,n(x) coincide in the
summandMatmμ

( ̂Hμ) = Matmμ′ ( ̂Hμ′
), for any x in the subalgebra of ̂Yd,n generated

by g1, . . . , gn−1, X1.

Remark 4.5 Herewe restrict to a classical non-framed link L .Note that the restriction
of the invariants Φ and Γ on the set of non-framed links were called respectively
Θ and Δ in [1]. With the comparison formulas (4.27) of the preceding section, a
straightforward consequence of Proposition 4.2 is the corresponding result for the
Juyumaya–Lambropoulou invariants. Namely, we have

Θd,D(q, z)(L) = Θd ′,{1,...,d ′}(q, z)(L) and Δd,D(q, z)(L) = Δd ′,{1,...,d ′}(q, z)(L) ,

where d ′ = |D|. In this case, this was proved in [1, Proposition 4.6] by a different
approach. In particular if |D| = 1, we recover the HOMFLYPT polynomial.

4.6.2 Links with a Fixed Number of Connected Components

Let μ =|d n and λ =|k n for some d, k > 0. We will say that λ is a refinement
of μ if {1, . . . , k} can be partitioned into d disjoint subsets (possibly empty):
{1, . . . , k} = I1 � · · · � Id , such that μa = ∑

i∈Ia λi for all a = 1, . . . , d. As exam-
ples, every composition λ =| n is a refinement of the composition (n), while the
composition (1, . . . , 1) =| n is a refinement of every composition μ =| n.

For a permutationπ ∈ Sn , we denote cyc(π) the collection of lengths of the cycles
of π and we consider it as a composition of n (the order is not relevant here). Then,
it is immediate that a permutation π ∈ Sn is conjugate to an element of Sμ if and
only if cyc(π) is a refinement of μ.

For a Z/dZ-framed affine braid β ∈ Z/dZ � Baff
n , we define its underlying per-

mutation pβ as the image ofβ by the natural group homomorphism fromZ/dZ � Baff
n

to Sn (defined by t j �→ 1, σ0 �→ 1 and σi �→ si ). Note that βt j = tpβ ( j)β, for
j = 1, . . . , n.

Proposition 4.3 Let β ∈ Z/dZ � Baff
n. In Ψd,n

(

δd,n(β)
)

, the matrix corresponding
to μ =|d n has all its diagonal elements equal to 0 if cyc(π) is not a refinement of μ.

Proof Let x := δd,n(β) ∈ ̂Yd,n . As δd,n is a group homomorphism, we have xt j =
tpβ ( j)x . In Ψd,n(x), in the matrix corresponding to μ =|d n, the coefficient on the
diagonal in position χ is Ψd,n(Eχ xEχ ). And we have Eχ xEχ = Eχ Epβ (χ)x . This is
equal to 0 if pβ(χ) �= χ . Now pβ(χ) = χ if and only if π−1

χ pβπχ ∈ Sμ, and this is
impossible if cyc(pβ) is not a refinement of μ.
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Now we will combine this general result on the isomorphism Ψd,n with two ele-
mentary facts. First, if a composition μ has strictly more non-zero parts than another
composition λ, then λ can not be a refinement of μ. Second, the closure of a (Z/dZ-
framed, affine) braid β is a (Z/dZ-framed) link with N connected components if and
only if cyc(pβ) has exactly N non-zero parts. Thus we have obtained the following
result.

Corollary 4.2 Let L be aZ/dZ-framed link with N connected components. We have
Pd,S,τ
L = 0 if |S| > N.

Finally, combining this corollary with Proposition 4.2 for a non-framed link L ,
we conclude our study by determining which basic invariants it is enough to consider
given the number of connected components of L .

Corollary 4.3 Let L be a non-framed link with N connected components. Every
invariant for L obtained here from (affine) Yokonuma–Hecke algebras is a combina-
tion of the following basic invariants:

P1,{1},τ
L , P2,{1,2},τ

L , . . . , PN ,{1,...,N },τ
L . (4.28)

In particular, for a non-framed knot (N = 1), it is enough to consider the algebras
̂Hn = ̂Y1,n.

For a classical non-framed link, we can forget the parameters τ , and it is enough
to calculate N distinct invariants, the first one being the HOMFLYPT polynomial.

Remark 4.6 Here we restrict to a classical Z/dZ-framed link L with N connected
components. In this particular case,we give the translation ofCorollary 4.2 in terms of
Juyumaya–Lambropoulou invariants, following Formula 4.27 (wewrite the formulas
for the invariantsΦd,D; the same formulas hold for Γd,D). A straightforward analysis
leads to

Φd,D(q, z)(L) = N

|D|
∑

D′⊂D, |D′|=N

Φd,D′(q,
|D|
N

z)(L) , if |D| > N .

Note that the rescaling of the variable z comes from the fact that the expressions
relating (u, v) with (q, z) depend on |D|.

If moreover L is a classical non-framed link with N connected components, with
Remark 4.5, it is enough to consider D = {1, . . . , d}, and we obtain

Θd,{1,...,d}(q, z)(L) = N

d

(

d
N

)

ΘN ,{1,...,N }(q,
d

N
z)(L) , if d > N . (4.29)

This formula is the generalisation, for N > 1, of [1, Theorem 5.8]. As a consequence,
the analogueofCorollary 4.3 holds aswell for these invariants: it is enough to consider
Θ1,{1}, . . . , ΘN ,{1,...,N }. This generalises [1, Theorem 7.1] for N > 2, obtained by a
different method.
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Chapter 5
On the Framization of the Hecke Algebra
of Type B

Marcelo Flores

Abstract We give a cross look to two framizations of the Hecke algebra of type B.
One of these is a particular case of the cyclotomic Yokonuma–Hecke algebra. The
other one was recently introduced by the author, J. Juyumaya and S. Lambropoulou.
The purpose of this paper is to show the main concepts and results of both framiza-
tions, giving emphasis to the second one, and to provide a preliminary comparison
of the invariants constructed from both framizations.

Introduction

The idea of framization of a knot algebra was introduced by J. Juyumaya and S.
Lambropoulou in [14], and it consists in adding certain new generators, called fram-
ing generators, to the original presentation of a knot algebra together with certain
relations among the original generators and these new generators. One does this
procedure, with the aim of constructing new invariants for framed links, and conse-
quently for classical links, see [11, 13]. It is important tomention that the framization
procedure doesn’t have a structured recipe, whence it is possible to find more than
one framization for the same algebra. However, since the motivation behind the pro-
cedure of framization is to obtain new polynomial invariants for (framed) knots and
links, focus is always given to those framizations that produce such new invariants.
Then, when we handle multiple possible framizations of the same knot algebra, we
will choose the one that is more natural from a topological viewpoint, cf. [7].

The Yokonuma–Hecke algebra is the first example of framization, since it is
considered as a framization of the Hecke algebra of type A. The last 10 years the
Yokonuma–Hecke algebra has earned importance in knot theory, since in [10] it was
proved that such an algebra supports a Markov trace, therefore, by using the Jones’s
recipe, invariants for: framed links [13], classical links [11] and singular links [12]
were constructed. It is worth to say, that recently it was proved that the invariants for
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classical links constructed in [11] are not topologically equivalent either to the Hom-
flypt polynomial or to the Kauffman polynomial, see [3].

On the other hand, Jones suggested that his recipe for the construction of the
Homflypt polynomial might be used for Hecke algebras of other types than A, cf.
[9, p. 336]. Then, S. Lambropoulou used the Jones’s recipe for the B–Hecke algebra
Hn(u, v); in fact in [15, 16] she constructed all the possible analogues of theHomflypt
polynomial for oriented knots and links inside the solid torus, see also [6].

In [2] taking as model the Yokonuma–Hecke algebra, M. Chlouveraki and L.
Poulain d’Andecy introduced the cyclotomic Yokonuma–Hecke algebra, denoted
by Y(d, m, n). These algebras generalize to the Ariki-Koike algebra, and the
Yokonuma–Hecke algebra. In particular, the cyclotomic Yokonuma–Hecke algebra
provides a framization of the Hecke algebra of type B, since the Ariki-Koike algebra
generalizes Hn(u, v). Moreover, in [2] it was also proved that Y(d, m, n) supports
a Markov trace, and therefore, using Jones’s recipe, an invariant for framed links in
the solid torus was constructed.

Recently in [5] we introduced a new framization of the Hecke algebra of type B,
denotedbyYB

d,n := YB
d,n(u, v),with the principal objective to explore their usefulness

in knot theory. More precisely, in this article we constructed two linear bases, a
faithful tensorial representation of Jimbo type for YB

d,n(u, v), and we proved that
YB

d,n supports a Markov trace. Finally we defined, by using Jones’s recipe, a new
invariant for framed and classical links in the solid torus.

The article is organized as follows. In Sect. 5.1 we introduce the notations and
background used in the paper. In Sect. 5.2 we review the main results about the
cyclotomic Yokonuma–Hecke algebra given in [2], aiming to provide a preliminary
comparison of the invariants constructed from both framizations. The following
sections keep the order given in [5], and have as objective to show the main results
obtained in that work, and also remark some differences between the framizations
YB

d,n and Y(d, 2, n).

5.1 Preliminaries

In this section we review known results, necessary for the sequel, and we also fix the
terminology and notations that will be used along the article:

• The lettersu, v, v1, . . . , vm denote indeterminates. ConsiderK := C(u, v),Rm :=
C[u±1, v±1

1 , . . . , v±1
m ], and Fm the field of fractions of Rm .

• The term algebra means unital associative algebra over K
• For a finite group G, K[G] denotes the group algebra of G
• The letters n and d denote two fixed positive integers
• We denote by ω a fixed primitive d–th root of unity
• We denote by Z/dZ the group of integers modulo d, {0, 1, . . . , d − 1}.
• As usual, we denote by � the length function associated to the Coxeter groups.
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5.1.1 Braids Groups of Type B

Set n ≥ 1. Let us denote by Wn the Coxeter group of typeBn . This is the finite Coxeter
group associated to the following Dynkin diagram

r1 s1 sn−2 sn−1
� � � � � � �

Define rk = sk−1 . . .s1r1s1 . . .sk−1 for 2 ≤ k ≤ n. It is known, see [6], that
every element w ∈ Wn can be written uniquely as w = w1 . . . wn with wk ∈ Nk , 1 ≤
k ≤ n, where

N1 = {1,r}, Nk = {1,rk,sk−1 . . .si ,sk−1 . . .siri ; 1 ≤ i ≤ k − 1} . (5.1)

Furthermore, this expression forw is reduced. Hence, we have �(w) = �(w1) + · · · +
�(wn).

The corresponding braid group of typeBn associated to Wn , is defined as the group
˜Wn generated by ρ1, σ1, . . . , σn−1 subject to the following relations

σiσ j = σ jσi for |i − j | > 1,
σiσ jσi = σ jσiσ j for |i − j | = 1,

ρ1σi = σiρ1 for i > 1,
ρ1σ1ρ1σ1 = σ1ρ1σ1ρ1.

(5.2)

Geometrically, braids of type Bn can be viewed as classical braids of type An

with n + 1 strands, such that the first strand is identically fixed. This is called ‘the
fixed strand’. The 2nd,…, (n + 1)st strands are renamed from 1 to n and they are
called ‘the moving strands’. The ‘loop’ generator ρ1 stands for the looping of the
first moving strand around the fixed strand in the right-handed sense, see [15, 16].
In Fig. 5.1 we illustrate a braid of type B4. Another way of visualizing B–type braids
geometrically is via symmetric braids, see [18].

Fig. 5.1 A braid of type B4
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Remark 5.1 The group Wn can be realized as a subgroup of the permutation group
of the set Xn := {−n, . . . ,−2,−1, 1, 2, . . . , n}. More precisely, the elements of
Wn are the permutations w such that w(−m) = −w(m), for all m ∈ Xn . Further the
elements of Wn can be parameterized by the elements of Xn

n := {(m1, . . . , mn) | mi ∈
Xn for all i} (see [8, Lemma 1.2.1]).More precisely, the elementw ∈ Wn corresponds
to the element (m1, . . . , mn) ∈ Xn

n such that mi = w(i).

For example, si is parameterized by (1, 2, . . . , i + 1, i, . . . , n) and r1 is parame-
terized by (−1, 2, . . . , n). More generally, if w ∈ Wn is parameterized by (m1, . . . ,

mn) ∈ Xn
n , then

wr1 is parameterized by (−m1, m2, . . . , mn)

wsi is parameterized by (m1, . . . , mi+1, mi , . . . , mn).
(5.3)

Finally we recall [8, Lemma 1.2.2], which is crucial to prove Proposition 5.1

Lemma 5.1 [8, Lemma 1.2.2] Let w ∈ Wn parameterized by (m1, . . . , mn) ∈ Xn
n .

Then �(wsi ) = �(w) + 1 if and only if mi < mi+1 and �(wr1) = �(w) + 1 if and
only if m1 > 0.

5.1.2 Framed Braid Groups of Type B

We start with the definition of a d–framed version of Wn .

Definition 5.1 The d–modular framed Coxeter group of type Bn , Wd,n , is defined
as the group generated by r1,s1, . . . ,sn−1 and t1, . . . , tn satisfying the Coxeter
relations of type B among r1 and the si ’s, together with the following relations:

ti t j = t j ti for all i, j,
td
i = 1 for all i,

t jr1 = r1t j for all j,
t jsi = si tsi ( j) where si is the transposition (i, i + 1).

(5.4)

The analogous group defined by the same presentation, where only relations td
j =

1 are omitted, shall be called framed Coxeter group of type Bn and will be denoted
as W∞,n .

Definition 5.2 The framed braid group of type Bn , denoted F B
n , is the group

presented by generators ρ1, σ1, . . . , σn−1, t1, . . . , tn subject to the relations (5.2),
together with the following relations:

ti t j = t j ti for all i, j,
t jρ1 = ρ1t j for all j,
t jσi = σi tsi ( j).

(5.5)
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The d–modular framed braid group, denotedF B
d,n , is defined as the group obtained

by adding the relations td
i = 1, for all i , to the above defining presentation of F B

n .

The mapping that acts as the identity on the generators r1 and the si ’s and maps
the t j ’s to 1 defines a morphism from Wd,n onto Wn . Also, we have the natural
epimorphism fromF B

d,n onto Wd,n defined as the identity on the t j ’s and mapping ρ1

to r1 and σi to si , for all i . Thus, we have the following sequence of epimorphisms.

F B
n −→ F B

d,n −→ Wd,n −→ Wn

where the first arrow is the natural projection of F B
n toF B

d,n .

5.2 The Cyclotomic Yokonuma–Hecke Algebras

In this section we will review the main results obtained in [2]. First we recall the
definition of cyclotomic Yokonuma–Hecke algebra

Definition 5.3 Let d, m and n positive integers. We denote by Y(d, m, n) to the
associative algebra over Rm generated by framing generators t1, . . . , tn , braiding
generators g1, . . . , gn−1 and the cyclotomic generator b1 subject to the following
relations

gi g j = g j gi for |i − j | > 1, (5.6)

gi g j gi = g j gi g j for |i − j | = 1, (5.7)

b1gi = gi b1 for all i �= 1, (5.8)

b1g1b1g1 = g1b1g1b1, (5.9)

ti t j = t j ti for all i, j, (5.10)

t j gi = gi tsi ( j) for all i, j, (5.11)

ti b1 = b1ti for all i, (5.12)

td
i = 1 for all i, (5.13)

g2
i = 1 + (u − u−1)ei gi for all 1 ≤ i ≤ n − 1, (5.14)

(b1 − v1) . . . (b1 − vm) = 0 (5.15)

where the ei ’s are the elements introduced in [10], that is

ei := 1

d

d−1
∑

s=0

t s
i t−s

i+1, 1 ≤ i ≤ n − 1 (5.16)

Four linear bases are given for this algebra in [2]. We recall only one of them,
which is used by Chlouveraki and Poulain D’Andecy to define a Markov trace in
Y(d, m, n).
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For k = 1, . . . , n, we set

W (k)
j,a,b := g−1

j . . . g−1
1 ba

1 tb
1 g1 . . . gk−1,

where j = 0, . . . , k − 1, and a ∈ Z/mZ, b ∈ Z/dZ. Then, we have the following
result

Bd,m,n := {W (n)
jn ,an ,bn

. . . W (2)
j2,a2,b2

W (1)
j1,a1,b1

| jk = 0, . . . , k − 1, ak ∈ Z/mZ, and bk ∈ Z/dZ }

is a basis for Y(d, m, n), see [2, Sect. 4].

Remark 5.2 To prove the above result, the authors proved first that Bd,m,n spans
the algebra Y(d, m, n), and then that its dimension is (dm)nn!. The last result is
obtained using tools of representation theory, specifically they constructed a set
{Vλ}λ∈P(d,m,n) of pairwise irreducible non-isomorphic representations of Fm ⊗Rm

Y(d, m, n) satisfying the following equation

∑

λ∈P(d,m,n)

(dim(Vλ))
2 = (dm)nn!,

hence they concluded that Bd,m,n is indeed a basis of Y(d,m,n). Then, in particular,
Fm ⊗Rm Y(d,m,n) is a semisimple algebra, for details see [2, Proposition 3.4] and
[2, Proposition 4.6]

Using the method of relative traces (see e.g. [2]) it is also proved that the algebra
Y(d, m, n) supports a Markov trace, which we denote by Trn . More precisely, this
trace is constructed from certain relative traces as follows.

Let z and xa,b with a ∈ {0, . . . , m − 1} and b ∈ {0, . . . , d − 1}, be parameters in
Rm such that x0,0 = 1. The relative traces trk : Y(d, m, k) → Y(d, m, k − 1) are
given, for any k ≥ 1, by.

trk(W (k)
j,a,bw) = zW (k−1)

j,a,b if 0 ≤ j ≤ k − 1 (5.17)

trk(W (k)
j,a,bw) = xa,bw if j = k − 1 (5.18)

where w ∈ Y(d, m, k − 1).
We define

Trn := tr1 ◦ · · · ◦ trn.

Then the family {Trn}n≥1 is a Markov trace, for details see [2, Sect. 5].
Finally, as it is usual, using the Jones’s recipe, new invariants for framed links in

the solid torus are constructed, which are denoted by Γm , for details see [2, Sect. 6.3].

Remark 5.3 As we see in [13], to be able define the invariant Γm , it is necessary that
the trace parameters satisfy a non-linear system of equations. In this case the system
is the following
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1

d

d−1
∑

s=0

x0,−s xa,b+s = xa,b E for all a ∈ {0, . . . , m − 1} and b ∈ {0, . . . , d − 1},

where E = Tri+1(ei ), and it is called the affine E–system, also any solution of this
system is referred to by saying that it satisfies the affine E–condition. This system is
solved in [2, Sect. 6.5] using only standard tools of linear algebra.

5.3 The Algebra YB
d,n

We begin this section giving the definition of the framization of the Hecke algebra
of type B introduced in [5], denoted by YB

d,n , which will be the main object of study
from now on.

Definition 5.4 Let n ≥ 2. The algebra YB
d,n := YB

d,n(u, v), is defined as the algebra
over K := C(u, v) generated by framing generators t1, . . . , tn , braiding generators
g1, . . . , gn−1 and the loop generator b1, subject to the following relations

gi g j = g j gi for |i − j | > 1, (5.19)

gi g j gi = g j gi g j for |i − j | = 1, (5.20)

b1gi = gi b1 for all i �= 1, (5.21)

b1g1b1g1 = g1b1g1b1, (5.22)

ti t j = t j ti for all i, j, (5.23)

t j gi = gi tsi ( j) for all i, j, (5.24)

ti b1 = b1ti for all i, (5.25)

td
i = 1 for all i, (5.26)

g2
i = 1 + (u − u−1)ei gi for all i, (5.27)

b2
1 = 1 + (v − v−1) f1b1., (5.28)

where the ei ’s are the elements defined in (5.16) and

f1 := 1

d

d−1
∑

s=0

t s
1 .

For n = 1, we define YB
d,1 as the algebra generated by 1, b1 and t1 satisfying the

relations (5.25), (5.26) and (5.28).

Notice that the elements f1 and ei ’s are idempotents. In Fig. 5.2 we illustrate the
generators of the algebra YB

d,n .
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Fig. 5.2 The generators of YB
d,n geometrically

Note. By taking d = 1, the algebra YB
1,n becomes Hn(u, v). Further, by mapping

gi 
→ hi and ti 
→ 1, we obtain an epimorphism from YB
d,n to Hn(u, v). Moreover, if

we map the ti ’s to a fixed non–trivial d–th root of the unity, we have an epimorphism
from YB

d,n to Hn(u, 1).

Remark 5.4 As we noted previously, the cyclotomic Yokonuma–Hecke algebra also
provides a framization of the Hecke algebra of type B. Specifically, if we put m = 2,
v1 = v and v2 = −v−1, then Y(d, 2, n) is a framization of Hn(u, v). But, also we can
note that the relation (5.15) doesn’t involve framing elements like the defining relation
(5.28) of YB

d,n . In fact Y(d, m, n) is essentially the Yokonuma–Hecke algebra of type
A with the cyclotomic generator and relation attached. This fact makes us think that
YB

d,n , at least algebraically, is amore natural framization for Hn(u, v) thanY(d, 2, n),
since the quadratic relation for the loop generator involves the idempotent element
f1, which plays the analogous role as ei in the quadratic relation of the braiding
generators. Then, in someway the braiding generators and the loop generator interact
with the framing generators from a more homogeneous way in YB

d,n .

5.4 A Tensorial Representation of YB
d,n

In this section we define a tensorial representation of YB
d,n , the definition of this rep-

resentation is based on the tensorial representation constructed by Green in [8] for
the Hecke algebra of type B and following the idea of an extension of the Jimbo rep-
resentation of the Hecke algebra of type A to the Yokonuma–Hecke algebra proposed
by Espinoza and Ryom–Hansen in [4].

Let V be a K–vector space with basis B = {vr
i ; i ∈ Xn, 0 ≤ r ≤ d − 1}. As

usual we denote by B⊗k the natural basis of V ⊗k associated to B.
We define the endomorphisms T, B : V → V by: (vr

i )T = ωr vr
i , and

(vr
i )B =

⎧

⎨

⎩

vr
−i for i > 0 and r = 0,

vr
−i + (v − v−1)vr

i for i < 0 and r = 0,
vr
−i for r �= 0.

On the other hand we define G : V ⊗ V → V ⊗ V by
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(vr
i ⊗ vs

j )G =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uvs
j ⊗ vr

i for i = j and r = s,
vs

j ⊗ vr
i for i < j and r = s,

vs
j ⊗ vr

i + (u − u−1)vr
i ⊗ vs

j for i > j and r = s,
vs

j ⊗ vr
i for r �= s.

For all 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, we extend these endomorphisms to the endo-
morphisms Ti , Gi and B1 of the n–th tensor power V ⊗n of V , as follows:

Tj := 1⊗( j−1)
V ⊗ T ⊗ 1⊗(n− j)

V and Gi := 1⊗(i−1)
V ⊗ G ⊗ 1⊗(n−i−1)

V and B1 := B ⊗ 1⊗(n−1)
V ,

where 1⊗k
V denotes the endomorphism identity of V ⊗k .

Theorem 5.1 (See [5, Theorem 1]) The mapping b1 
→ B1, gi 
→ Gi and ti 
→ Ti

defines a representation Φ of YB
d,n in End(V ⊗n).

We shall finish the section enunciating Proposition 5.1, which is an analogue of
[8, Lemma 3.1.4]. This proposition is used in the proof of Theorem 5.2 and describes,
through Φ, the action of Wn on the basis B⊗n .

The defining generators b1 and gi of the algebra YB
d,n satisfy the same braid

relations as the Coxeter generators r and si of the group Wn . Thus, the well–known
Matsumoto’s Lemma implies that if w1 . . . wm is a reduced expression of w ∈ Wn ,
with wi ∈ {r,s1, . . . ,sn−1}, then the following element gw is well–defined:

gw := gw1 · · · gwm , (5.29)

where gwi = b1, if wi = r and gwi = g j , if wi = s j .
The notation Φw stands for the image by Φ of gw ∈ YB

d,n .

Proposition 5.1 (See [5, Proposition3])Letw ∈ Wn parameterizedby (m1, . . . , mn)

∈ Xn
n . Then

(vr1
1 ⊗ · · · ⊗ vrn

n )Φw = v
r|m1 |
m1 ⊗ · · · ⊗ v

r|mn |
mn .

5.5 Linear Bases for YB
d,n

In this section we construct two linear bases for the algebra YB
d,n , which will be

denote by Cn and Dn . The first one is used for defining a Markov trace on YB
d,n (as

we will see in the next section), and the second one plays a technical role for proving
that Cn is a linearly independent set.

Set b1 := b1, bk := gk−1 . . . g1b1g1 . . . gk−1, and bk := gk−1 . . . g1b1g−1
1 . . . g−1

k−1
for all 2 ≤ k ≤ n. For all 1 ≤ k ≤ n, let us define inductively the sets Nd,k by

Nd,1 := {tm
1 , b1t

m
1 ; 0 ≤ m ≤ d − 1} and

Nd,k := {tm
k , bktm

k , gk−1x ; x ∈ Nd,k−1, 0 ≤ m ≤ d − 1} for all 2 ≤ k ≤ n.
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Analogously, for all 1 ≤ k ≤ n we define inductively the sets Md,k exactly like
Nd,k’s but exchanging bk by bk in each case (Fig. 5.3)

Now notice that every element of Md,k has the form m+
k, j,m or m−

k, j,m with j ≤ k
and 0 ≤ m ≤ d − 1, where

m+
k,k,m := tm

k , m+
k, j,m := gk−1 · · · g j t

m
j for j < k,

and
m−

k,k,m := tm
k bk, m−

k, j,m := gk−1 · · · g j b j t
m
j for j < k.

Similar expressions exist for elements in Nd,k exchanging bk by bk as well, see
[5, Sect. 4.1].

Remark 5.5 Observe that the above elements are the natural analogues of the ele-
ments W (k)

j,a,b given in Sect. 5.2. Indeed, m+
k, j,m (respectively m−

k, j,m) correspond to

W (k)
j−1,0,m (respectively W (k)

j−1,1,m).

Further, we consider the set Dn = {n1n2 · · · nn |ni ∈ Nd,i }, which is a spanning set
of YB

d,n [5, Proposition 4], moreover using the representation given in the previous
section, we can prove that Dn is also a linearly independent set, then we have

Theorem 5.2 Dn is a linear basis for YB
d,n. Hence the dimension of YB

d,n is 2ndnn!.
Sketch of the Proof of Theorem 5.2

Firstly, taking into account the structure properties of Wn given in Sect. 5.1.1, it
is easy to see that we can write the basis Dn as follows

Dn = {gwtm1
1 · · · tmn

n ; w ∈ Wn, (m1, . . . , mn) ∈ (Z/dZ)n}.

for details see [5, Proposition 1].
Secondly, we shall use a certain basisD of V introduced by Espinoza and Ryom–

Hansen in [4]. More precisely, D consist of the following elements:

ur
k =

d−1
∑

i=0

ωir vi
k (5.30)
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where k is running Xn and 0 ≤ r ≤ d − 1.
Moreover, it is not difficult to prove that:

(i) (ur
k)T = ur+1

k .
(ii) For a w ∈ Wn parameterized by (i1, . . . , in), we have

(u0
1 ⊗ · · · ⊗ u0

n)Φw = u0
i1 ⊗ · · · ⊗ u0

in
.

Note that (ii) follows by Proposition 5.1 and (5.30).
Now, suppose that

∑

c∈Dn

λcc =
∑

w∈Wn; m∈(Z/dZ)n

λw,m gwtm1
1 . . . tmn

n = 0,

where m = (m1, . . . , mn). Then applying Φ and evaluating in the element u0
1 ⊗

· · · ⊗ u0
n , we have

∑

λw,m(u0
1 ⊗ · · · ⊗ u0

n)Φ(gwtm1
1 . . . tmn

n ) = 0
∑

λw,m(u0
1 ⊗ · · · ⊗ u0

n)ΦwT m1
1 · · · T mn

n = 0

and by (ii) we obtain

∑

λi,mu0
i1 ⊗ · · · ⊗ u0

in
T m1
1 · · · T mn

n = 0,

where i := (i1, . . . , in) runs in Xn
n and m := (m1, . . . , mn) runs in (Z/dZ)n . Finally,

by using i) the result follows. Further we have the following corollary.

Corollary 5.1 The representation Φ is faithful.

Finally, we consider Cn = {m1m2 · · ·mn |mi ∈ Md,i }, which also is a spanning
set for YB

d,n , this fact is proved using the computations listed in [5, Lemmas 5, 6 and
7], then as Dn and Cn have the same cardinality we deduce the following result.

Proposition 5.2 The set Cn is a basis for YB
d,n.

5.6 A Markov Trace on YB
d,n

In this section we show that the algebra YB
d,n supports a Markov trace. This fact was

proved by using the method of relative traces, cf. [1, 2]. In few words, the method
consists in constructing a certain family of linear maps trn : YB

d,n −→ YB
d,n−1, called

relative traces, which builds step by step the desired Markov properties. Finally, the
Markov trace on YB

d,n is defined by
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Trn := tr1 ◦ · · · ◦ trn.

Let z be an indeterminate and denote by L the field of rational functions K(z) =
C(u, v, z).We set x0 := 1 and from now onwe fix non–zero parameters x1, . . . , xd−1

and y0, . . . , yd−1 in L.

Definition 5.5 For n ≥ 1, we define the linear functions trn : YB
d,n −→ YB

d,n−1 as
follows. For n = 1, tr1(t

a1
1 ) = xa1 and tr1(b1ta1

1 ) = ya1 . For n ≥ 2, we define trn on
the basis Cn of YB

d,n by:

trn(wmn) =
⎧

⎨

⎩

xmw for mn = tm
n

ymw for mn = bntm
n

zwm±
n−1,k,m for mn = m±

n,k,m

(5.31)

where w := m1 · · ·mn−1 ∈ Cn−1. Note that (5.31) also holds for w ∈ YB
d,n−1.

Using the previous definition and the relations on YB
d,n , it is not difficult to prove that

trn has the following properties:

• trn(XY Z) = X trn(Y )Z , for all X, Z ∈ YB
d,n−1 and Y ∈ YB

d,n . (5.32)

• trn(Xtn) = trn(tn X), for all X ∈ YB
d,n . (5.33)

• trn−1(trn(Xgn−1)) = trn−1(trn(gn−1X)), for all X ∈ YB
d,n . (5.34)

for details see [5, Lemmas 9, 10 and 13] respectively.

We define Trn : YB
d,n → L inductively by:

Tr1 := tr1 and Trn := Trn−1 ◦ trn.

Thus, we obtain directly

• Trn(1) = 1
• Trn(x) = Trk(x), for x ∈ YB

d,k and n ≥ k.

Let us denote Tr the family {Trn}n≥1. The following theorem is one of the main
results of [5].

Theorem 5.3 Tr is a Markov trace on {YB
d,n}n≥1. That is, for every n ≥ 1, the linear

map Trn : YB
d,n −→ L satisfies the following rules:

(i) Trn(1) = 1,
(ii) Trn+1(Xgn) = zTrn(X),

(iii) Trn+1(Xbn+1tm
n+1) = ymTrn(X),

(iv) Trn+1(Xtm
n+1) = xmTrn(X),

(v) Trn(XY ) = Trn(Y X),

where X, Y ∈ YB
d,n.
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Proof Rules (ii)–(iv) are a direct consequences of (5.32). We prove rule (v) by
induction on n. For n = 1, the rule holds since YB

d,1 is commutative. Suppose now
that (v) is true for all k less than n. We prove it first for Y ∈ YB

d,n−1 and X ∈ YB
d,n .

We have

Trn(XY ) = Trn−1(trn(XY ))
(32)= Trn−1(trn(X)Y )

(induction)= Trn−1(Y trn(X))
(32)= Trn−1(trn(Y X)).

Hence, Trn(XY ) = Trn(Y X) for all X ∈ YB
d,n and Y ∈ YB

d,n−1. Now, we prove the
rule for Y ∈ {gn−1, tn}. By using (5.33) and (5.34), we get

Trn(XY ) = Trn−2(trn−1(trn(XY ))) = Trn−2(trn−1(trn(Y X))).

In summary, we have
Trn(XY ) = Trn(Y X)

for all X ∈ YB
d,n and Y ∈ YB

d,n−1 ∪ {gn−1, tn}. Clearly, having in mind the linearity
of Trn , this last equality implies that rule (v) holds.

Note 5.1 As we could see in the proof of Theorem 5.3, (5.32), (5.33) and (5.34) give
step by step the desiredMarkov properties for Tr. This fact is the principal advantage
of use of the relative traces technique.

Remark 5.6 Let Tr the Markov trace of Y(d, 2, n) recalled in Sect. 5.2. Then, con-
sidering Remark 5.5, and ignoring the fact that Tr has a different domain, we can
say that the Markov trace defined in this section “coincides” with Tr, by taking
x0,m = xm and x1,m = ym , for all m ∈ {0, . . . , d − 1}.

5.7 The E–condition and the F–condition

We want to construct a new invariant for applying Jones’s recipe to the pair (YB
d,n ,

Tr). For that, as it was seen in [13], we need that the following equation holds

Trn+1(wen) = Trn(w)Trn+1(en) for all w ∈ YB
d,n . (5.35)

Then we must establish sufficient conditions over the parameters x1, . . . , xd−1,
y0, . . . , yd−1 ∈ L, such that (5.35) be satisfied.

With this goal in mind, we define the elements E (k) and F (k) as follows

E (k) := 1

d

∑

m

xk+m xd−m for 0 ≤ k ≤ d − 1 (5.36)
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F (k) := 1

d

∑

m

xd−m yk+m for 0 ≤ k ≤ d − 1. (5.37)

where the summations over m’s are regarded modulo d. Note that E (0) = Trn(en).
By using the above definitions and the trace rules, we obtain the following results.

Lemma 5.2 Let w = w′t k
n , where w′ ∈ YB

d,n−1. Then

Trn+1(we(m)
n ) = E (k+m)

xk
Trn(w).

Hence, Trn+1(wen) = E (k)

xk
Trn(w).

Lemma 5.3 Let w = w′bntk
n , where w′ ∈ YB

d,n−1. Then

Trn+1(we(m)
n ) = F (k+m)

yk
Trn(w).

In particular, we have Trn+1(wen) = F (k)

yk
Trn(w).

Lemma 5.4 Let w = w′m±
n,k,α , with w′ ∈ YB

d,n−1. Then Trn+1(wen) = zTrn(xen−1),
where x = m±

n−1,k,αw′.

Considering the previous lemmas, the following definition becomes natural.

Definition 5.6 The E–system is the non–linear system formed by the following
d − 1 equations:

E (m) = xm E (0) (0 < m ≤ d − 1)

Any solution (x1, . . . , xn) of the E–system is referred to by saying that it satisfies
the E–condition.

The elements E (k) and the E–system were originally introduced in [13] in order to
define new invariants. Specifically, whenever the trace parameters of the Markov
trace on the Yokonuma–Hecke algebra satisfy the E–system we have an invariant
for framed and classical knots and links in the 3-sphere. Further, in [13, Appendix]
P. Gérardin showed that the solutions of the E–system are parameterized by the
non-empty subsets of Z/dZ. Now, we introduce the F–system

Definition 5.7 Assume now that (x1, . . . , xn) a solution of the E–system parame-
terized by the set S ⊆ Z/dZ. The F–system is the following homogeneous linear
system of d equations in y0, . . . , yd−1:

F(m) = ymE
(0) (0 ≤ m ≤ d − 1)
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where E(0) and F(m) are the elements that result from replacing xi by xi in (5.36) and
(5.37) respectively, that is:

E(0) := 1

d

∑

m

xmxd−m and F(m) := 1

d

∑

m

xd−m yk+m .

Also we have that E(0) = 1
|S| , see [13, Sect. 4.3]. Thus the F–system is formed by the

following equations:

∑

m

xd−m yk+m − d

|S| ym = 0 (0 ≤ m ≤ d − 1). (5.38)

For any solution (y0, . . . , yn) of the F–systemwe say that it satisfies the F–condition.

Remark 5.7 Note that the F–system is a particular case of the affine E–system
recalled in Remark 5.3. More precisely, when the trace parameters are specialized
to complex numbers (x1, . . . , xn) and (y0, . . . , yn) that satisfy the E–condition and
the F–condition respectively, then these also satisfy the affine E–system for m = 2.

Finally using Lemmas 5.2, 5.3 and 5.4 the following theorem is obtained easily.

Theorem 5.4 We assume that the trace parameters are specialized to complex num-
bers (x1, . . . , xn) and (y0, . . . , yn) that satisfy the E–condition and the F–condition
respectively. Then

Trn+1(wen) = Trn(w)Trn+1(en) for all w ∈ YB
d,n . (5.39)

5.7.1 Solving the F–system

The affine E–system is solved in [2] using only standard tools of linear algebra, then
by Remark 5.7, in particular, it provides a solution for the F–system. Now, we give
an alternative approach to solve the F–system, following the method of resolution
of the E–system done by P. Gérardin, that is, by using some tools from the complex
harmonic analysis on finite groups, see [13, Appendix]. We shall introduce first
some notations and definitions, necessary for solving the F–system by the method
of Gérardin.

We shall regard the group algebra 
 := L[Z/dZ], as the algebra formed by all
complex functions on Z/dZ, where the product is the convolution product, that is:

( f ∗ g)(x) =
∑

y∈Z/dZ

f (y)g(x − y) where f, g ∈ 
.

As usual, we denote by δa ∈ 
 the function with support {a}.
Also we denote by ea’s the characters of Z/dZ, that is:
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ea : b 
→ cos

(

2πab

d

)

+ i sin

(

2πab

d

)

.

The Fourier transform F on 
 is the automorphism defined by f 
→ ̂f , where

̂f (x) := ( f ∗ ex )(0) =
∑

y∈Z/dZ

f (y)ex (−y).

Recall that (F−1 f )(x) = d−1
̂f (−u), where ̂f (v) = ∑

u∈G f (u)ev(−u). For more
properties of Fourier transform over finite groups see [17].

To solve the E–system, Gérardin considered the elements x ∈ 
, defined by
x(k) = xk . Then, he interpreted the E–system as the functional equation x ∗ x =
(x ∗ x)(0)x with the initial condition x(0) = 1. Now, by applying the Fourier trans-
form on this functional equation we obtain x̂2 = (x ∗ x)(0)̂x . These last equations
imply that x̂ is constant on its support S, where it takes the values (x ∗ x)(0). Thus,
we have

x̂ = (x ∗ x)(0)
∑

s∈S

δs .

By applyingF−1 and the properties listed in the proposition above, Gérardin showed
that the solutions of the E–system are parameterized by the non–empty subsets of
Z/dZ. More precisely, for such a subset S, the solution xS is given as follows.

xS = 1

|S|
∑

s∈S

es .

Now, in order to solve the F–systemwith respect to xS , we define y ∈ 
 by y(k) =
yk . Then we have F (k) = d−1(x ∗ y)(k). So, to solve the F–system is equivalent to
solving the following functional equation:

x ∗ y = (x ∗ x)(0)y.

which, applying the Fourier transform, is equivalent to:

x̂ ŷ = (x ∗ x)(0)ŷ.

This equation implies that the support of ŷ is contained in the support of x̂ . Now, set
S the support of x̂ . Then we can write ŷ = ∑

s∈S λsδs . Finally applying F−1 to the
last equation, we get:

y = 1

d

∑

s∈S

λses .

Thus, we have proved the following proposition.
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Proposition 5.3 The solution of the F-system with respect to the solution xS of the
E–system is in the form:

yS =
∑

s∈S

αses,

where the αs ’s are complex numbers.

5.8 Knot and Link Invariants from YB
d,n

In this section we define invariants for knots and links in the solid torus, by using
the Jones’s recipe applied to the pairs (YB

d,n,Trn) where n ≥ 1. To do that, we fix
a subset S of Z/dZ from now, and we will consider the trace parameters xk’s and
yk’s as the solutions given in the previous section associated to set S. The invariants
constructed here will take values in L.

As in the classical case, the closure of a framed braidα of typeB (recall Sect. 5.1.2)
is defined by joining with simple (unknotted and unlinked) arcs its corresponding
endpoints and is denoted by α̂. The result of closure, α̂, is a framed link in the solid
torus, denoted ST . This can be understood by viewing the closure of the fixed strand
as the complementary solid torus. For an example of a framed link in the solid torus
see Fig. 5.4.

By the analogue of theMarkov theorem for ST (cf. for example [15, 16]), isotopy
classes of oriented links in ST are in bijection with equivalence classes of braids of
type B and this bijection carries through to the class of framed links of type B.

We set

λS := z − (u − u−1)ES

z
and 
S := 1

z
√

λS
, (5.40)

where ES = Tr(ei ) = 1/|S|. We are now in the position to define link invariants in
the solid torus.

Definition 5.8 For α inF B
n , the Markov trace Tr with the trace parameters special-

ized to solutions of the E–system and the F–system, and π the natural epimorphism
of F B

n onto YB
d,n we define

X B
S (̂α) := 
n−1

S (
√

λS)
e Tr(π(α)),

Fig. 5.4 A framed link in
the solid torus

7

4 ST

L
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where e is the exponent sum of the σi ’s that appear in α. Then X B
S is a Laurent

polynomial in u, v and z and it depends only on the isotopy class of the framed link
α̂, which represents an oriented framed link in ST .

Remark 5.8 The invariants X B
S , when restricted to framed links with all framings

equal to 0, give rise to invariants of oriented classical links in ST . By the results in
[3] and since classical knot theory embeds in the knot theory of the solid torus, these
invariants are distinguished from the Lambropoulou invariants [15]. More precisely,
they are not topologically equivalent to these invariants on links.

Remark 5.9 As we said in the Remark 5.7, when we focus in the algebra Y (d, 2, n),
the affine E–condition coincide with our conditions (E– and F– condition). Then, we
consider the polynomial Γm defined in [2, Sect. 6.3] for m = 2, which is given by

Γ2(̂α) := 
n−1
S (

√

λS)
e Tr(π(α)),

where π : F B
n → Y(d, 2, n) is the natural algebra epimorphism given by

ρ1 
→ b1, σi 
→ gi , i = 1, . . . , n − 1, and t j 
→ t j

At first sight the invariants look similar, but the structural differences between YB
d,n

and Y(d, 2, n) commented in Remark 5.4 make them differ. For example, for the
loop generator twice, we have the following

In YB
d,n In Y(d, 2, n)

Tr(π(b2
1)) = Tr(1 + (v − v−1)b1 f1) Tr(π(b2

1)) = Tr(1 + (v − v−1)b1)

= 1 + (v−v−1)

d

∑

s Tr(b1t s
1) = 1 + (v − v−1)y0

= 1 + (v−v−1)

d

∑

s ys

Therefore

X B
S (̂b2

1) = 1 + (v − v−1)

d

∑

s

ys and Γ2(
̂b2
1) = 1 + (v − v−1)y0.

Then clearly for the framed link ̂b2
1, the two invariants have different values,

nevertheless in order to do a proper comparison of these invariants is necessary a
deeper study.
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Chapter 6
Link Diagrams in Seifert Manifolds
and Applications to Skein Modules

Boštjan Gabrovšek and Maciej Mroczkowski

Abstract In this survey paper we present results about link diagrams in Seifert
manifolds using arrow diagrams, starting with link diagrams in F × S1 and N×̂S1,
where F is an orientable and N an unorientable surface. Reidemeister moves for
such arrow diagrams make the study of link invariants possible. Transitions between
arrow diagrams and alternative diagrams are presented. We recall results about the
Kauffman bracket and HOMFLYPT skein modules of some Seifert manifolds using
arrow diagrams, namely lens spaces, a product of a disk with two holes times S1,
RP3#RP3, and prismmanifolds.We also present new bases of the Kauffman bracket
and HOMFLYPT skein modules of the solid torus and lens spaces.

6.1 Arrow Diagrams of Links in Products and Twisted
Products of S1 and a Surface

Let F be an orientable surface and N an unorientable surface. In this section we
recall the construction of arrow diagrams for links in F × S1, introduced in [13], and
N×̂S1, introducted in [11]. These diagrams are very similar to gleams introduced in
[16].
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6.1.1 Arrow Diagrams of Links in F × S1

Let L be a link in M = F × S1. We cut M along F0 = F × {1}, 1 ∈ S1, to get
M ′ = F × [0, 1]. By a general position argument we may assume that L intersects
F0 transversally in a finite number of points. InM ′ the link L becomes L ′ - a collection
of circles and arcs with endpoints coming in pairs (x, 0) and (x, 1), x ∈ F . Let π be
the vertical projection from M ′ onto F . Then π(L ′) is a collection of closed curves.
Again, by a general position argument, wemay assume that there are only transversal
double points in π(L ′) and the endpoints of arcs are projected onto points distinct
from these double points. An arrow diagram D of the link L is π(L ′)with some extra
information: for double points P , the usual information of over- and undercrossing
is encoded depending on the relative height of the two points π−1(P) in F × [0, 1];
for points Q that are projections of endpoints of arcs (x, 0) and (x, 1) in L ′, orient
L in such a way that the height drops by 1 in L ′ when the first coordinate crosses x ,
and put on Q an arrow indicating this orientation.

Thus, an arrow diagram D is a collection of immersed curves in F , with under-
and overcrossing information for double points and some arrows on these curves.
For an example see the diagram on Fig. 6.1.

We call an arrow diagram regular, if none of the following forbidden positions
appear on the diagram:

(i) cusps (Fig. 6.2a), (1)
(ii) self-tangency points (Fig. 6.2b),
(iii) triple points (Fig. 6.2c),
(iv) two arrows coincide (Fig. 6.2d),
(v) arrows and crossings coincide (Fig. 6.2e).

F × {0}

F × {1}

π−−−→

Fig. 6.1 A link in F × S1 and its diagram

(a) (b) (c) (d) (e)

Fig. 6.2 Forbidden positions of regular diagrams in F × S1
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With standard arguments of general positionwemay assume that every link admits
a regular diagram.

We complete this section by providing a list of generalized Reidemeister moves
associated with the arrow diagrams. As usual, Reidemeister moves coincide with the
change of diagram that occurs when an isotopy of the link is performed in such a way
that the configuration of arcs (and arrows) passes through a forbidden position in the
projection. We therefore assign each forbidden position an associated Reidemeister
move. By general position theory, the ambient isotopy bringing one link diagram to
another one passes through only a finite number of such forbidden positions, hence
a finite number of Reidemeister-type moves.

As in the classical case, Reidemeister movesΩ1,Ω2, andΩ3 (Fig. 6.3) arise from
the forbidden positions (i), (ii), and (iii), respectively. Positions (iv) and (v) generate
Reidemeister moves Ω4 (“arrow annihilation”) and Ω5 (“arrow push”), respectively.
Graphical interpretation of moves Ω4 and Ω5 are presented in Figs. 6.4 and 6.5,
respectively.

We conclude this section with the following Reidemeister-type theorem.

Theorem 6.1 A link L1 is ambient isotopic to a link L2 if and only if an arrow
diagram D1 of L1 can be obtained from an arrow diagram D2 of L2 by a finite series
of Reidemeister moves Ω1 to Ω5.

←→

(a) Ω1

←→

(b) Ω2

←→

(c) Ω3

←→ ←→

(d) Ω4

←→

(e) Ω5

Fig. 6.3 Classical Reidemeister moves Ω1 – Ω3 and two “arrow” moves Ω4 and Ω5

isot.←−−→ isot.←−−→

Ω4←−→ Ω4←−→

Fig. 6.4 Interpretation of the move Ω4
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Fig. 6.5 Interpretation of
the move Ω5

isot.←−−→

Ω5←−→

6.1.2 Arrow Diagrams of Links in N×̂S1

An unorientable surface N is obtained from a sphere with n holes Sn by glueing k of
the boundary S1’s with antipodal maps (which is equivalent to glueingMobius bands
to these holes). Denote the k boundary S1’s by C . Let M = N×̂S1 be obtained from
M ′ = Sn × S1 by glueing (x, y) ∈ C × S1 to (−x, r(y)), where r is a reflection of
S1 (one may take the complex conjugation). Let L be a link in M . In M ′, L becomes
L ′, a collection of circles and arcs with endpoints coming in antipodal pairs (x, y)
and (−x, r(y)) in C × S1.

For L ′ in Sn × S1 one constructs an arrow diagram as in the previous subsection,
the only difference being that there are now some arcs with endpoints coming in
antipodal pairs. For an example of a diagram see Fig. 6.6.

We call a diagram regular, if, in addition to the list (1), none of the following
forbidden positions appear on the diagram:

(vi) tangency points with the boundary (Fig. 6.7a),
(vii) crossing coincides with the boundary (Fig. 6.7b),
(viii) arrow coincides with the boundary (Fig. 6.7c).

Fig. 6.6 A diagram of a link
in N×̂S1
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(a)
(b)

(c)

Fig. 6.7 Additional forbidden positions of regular diagrams in N×̂S1

To these additional forbidden positions (vi), (vii), and (viii), we associate Reide-
meister moves Ω6, Ω7, and Ω8 (Fig. 6.8), respectively.

Theorem 6.2 A link L1 is ambient isotopic to a link L2 in N×̂S1 if and only if an
arrow diagram D1 of L1 can be obtained from an arrow diagram D2 of L2 by a
series of Reidemeister moves Ω1 to Ω8.

Example 6.1 The connected sumof twoprojective spacesRP3�RP3 is also a twisted
S1 over RP2. Thus, diagrams consists of closed curves and arcs in a disk with
endpoints of arcs coming in antipodal pairs on the boundary of the disk. An example
of Reidemeister moves between diagrams is presented in Fig. 6.9.

←→

(a) Ω6

←→

(b) Ω7

←→

(c) Ω8

Fig. 6.8 Additional Reidemeister moves

Ω5−−−→ Ω5−−−→ Ω8−−−→

Ω4−−−→

Fig. 6.9 Reidemeister moves on diagrams of a link in RP3�RP3
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6.2 Arrow Diagrams for Links in Seifert Manifolds

Definition 6.1 A standard fibered torus corresponding to a pair of coprime integers
(q, p), q > 0, or p

q , is the solid cylinder D2 × I , where we identify the ends of the

solid cylinder with a 2π p/q twist. Each S1 fiber comes from q vertical segments in
the cylinder, except for the core fiber which comes from the central vertical segment.
We call this core fiber exceptional if q > 1.

Definition 6.2 A Seifert manifold (also a Seifert fibered space) is a closed 3-
manifold which can be decomposed into a disjoint union of S1’s (called fibers),
such that each tubular neighbourhood of a fiber is a standard fibered torus.

Any orientable SeifertmanifoldM can be obtained from F × S1 or N×̂S1 through
a finite number of surgeries (qi , pi ) on vertical S1 fibers (see [14]).

To perform such a surgery one removes a vertical solid torus T1 with longitude
l1 and meridian m1 on ∂T1 corresponding to a vertical and horizontal S1’s in the
product F × S1 or Sn × S1 in the case of N×̂S1 (see the previous section). Then,
another solid torus T2 with fixed longitude l2 and meridian m2 is glued to ∂T1, so
thatm2 is glued to the curve qim1 + pi l1, see Fig. 6.10. After glueing the meridional
disk along this curve, the remaining ball of T1 is glued to finish the surgery.

The diagram of a link L in the Seifert manifold M is constructed as before,
assuming that L misses the exceptional fibers of the surgeries (which can be done
by general position). These exceptional fibers project to points in F or N , disjoint
from the curves of the diagram. These points appear in the diagrams, together with
the type of surgery (qi , pi ) next to them. See Fig. 6.11 as an example.

If qi = 1, the fiber is not exceptional and, as a shorthand, next to the point onto
which it is projected, we put (pi ) instead of (1, pi ). For instance, ifM is an S1-bundle
over F , then there is a unique (p) fiber in the diagrams, p ∈ Z. If p = 0 one gets
just S1 × F .

With the added surgery fibers we get an additional forbidden position:

(ix) the surgery point and strand coincide (Fig. 6.12a), (2)

Fig. 6.10 Glueing map of
the surgery

m2

−→

qim1 + pil1
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(q1, p1)

(q2, p2)

(q3, p3)

Fig. 6.11 A diagram of a link in a Seifert manifold with three surgeries

(a) Forbidden position

←→

(b) Ω(q,p)

Fig. 6.12 A forbidden position and the corresponding slide move Ω(q,p)

which gives rise to the Reidemeister moveΩ(qi ,pi ), corresponding to sliding an arc of
the link L through the meridional disk of T2. TheΩ(q,p) move is shown in Fig. 6.12, it
consists of going q times around the exceptional point and adding p arrows uniformly
on every 2πq/p angle.

Theorem 6.3 A link L1 is ambient isotopic to a link L2 in an orientable Seifert
manifold M if and only if an arrow diagram D1 of L1 can be obtained from an arrow
diagram D2 of L2 by a series of Reidemeister moves Ω1 to Ω8 and Ω(qi ,pi ).

Let D be an arrow diagram of a link L . We call a component of D an oval if it is
a component without crossing with possible arrows on it. We call an oval nested if it
lies in the interior of a disk bound by another oval.

If n arrows lie consecutively we simplify the diagram by placing only one arrow
with an integer n next to it. We interpret a negative integer above an arrow as |n|
reversed arrows, see Fig. 6.13. In lens spaces we can alternatively think of L(p, q)

as a manifold with Heegaard genus 1 decomposition of two solid tori. We isotope L
into the first solid torus and project it to annulus as before and an arrow diagram of
a link in L(p, q) can thus be viewed as a diagram on a disk. For L(p, 1), the move
Ω(1,p), which we will denote by Ω(p) (see [11]), is a winding around the boundary
of the disk with p arrows added, see Fig. 6.14.
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} n

∼

n

∼

−n

Fig. 6.13 Oval notation

←→
p

Fig. 6.14 The Ω(p) move

a1

a1

(a) S2

b2

a2

b2

a2

b1

a1

b1

a1

(b) T 2#T 2

a3

a3

a2

a2

a1

a1

(c) K#RP 2

Fig. 6.15 Fundamental polygons, where K is the Klein bottle

6.2.1 Alternative Diagrams for Links in Seifert Manifolds

On some occasions it may be convenient to cut the base surface to its fundamental
polygon and get diagrams on a regular n-gon. Such diagrams can be expanded to all
Seifert manifolds, orientable and non-orientable, since any Seifert manifold can be
obtained from an S1-bundle over F or N through a finite number of surgeries (qi , pi )
on vertical S1 fibers. These diagrams were introduced in [12], also see [5].

We start by taking the fundamental polygon G of the surface, with the standard
identification of the edges ofG.We distinguish between three cases: either the surface
is S2, a genus g > 0 surface F , or a non-orientable surface N , (see Fig. 6.15).

Take G × [0, 1]. By glueing {x} × {0} to {x} × {1} for each x ∈ G, we get the
trivial circle bundle G × S1. Since G is a disk, we can orient all the fibers {x} × S1

coherently. If two oriented edges ai and a′
i are identified in G, in order to get F ,

we can identify the cylinders ai × S1 and a′
i × S1 in two essentially different ways:

ai × S1 can be glued to a′
i × S1 by identity or by a reflection on the S1 component.



6 Link Diagrams in Seifert Manifolds and Applications … 125

Fig. 6.16 Forbidden
positions of regular diagrams

(a) (b) (c) (d)

We assign to each edge sign ±1, which takes the value +1 if the identification was
made by identity and −1 if the identification was made by reflection.

After the above identifications the resulting space is an S1-bundle over F . Any
Seifert manifold can be obtained from this S1-bundle by performing a finite number
of (qi , pi )-surgeries on vertical fibers.

We remark that for an orientable Seifert fibered space M , the base space does not
need to be oriented, but the edge signs are determined.

Since the vertical projection maps, as before, an exceptional fiber to a point in the
base space, it is enough to specify the image of each exceptional fiber in G, which
is done by placing a point on G decorated by the surgery coefficient (qi , pi ) of the
fiber.

We call a diagram regular if, in addition to forbidden positions (1) and (2), none
of the following situations occur on the diagram:

(x) border tangency (Fig. 6.16a),
(xi) crossing lies on the border (Fig. 6.16b),
(xii) arrow lies on the border (Fig. 6.16c),
(xiii) arc goes through the basepoint (the preimage of the 0-cell of F) (Fig. 6.16d).

Positions (x), (xi), and (xii) generate the Reidemeister moves Ω9, Ω
O/N±
10 , and

Ω±
11, that act across edges in G (Fig. 6.17). The move Ω10 comes in four flavours:

the base surface is orientable (O) or non-orientable (N) and the sign of the edge is
positive or negative. Similarly, the sign of the move Ω±

11 corresponds to the sign of
the edge we are pushing the arrow through.

Position (xiii) generates the Reidemeister move Ω12 that tells us what happens
when we push an arc over the basepoint. The move comes in three flavours: if G is
a orientable genus g > 0 surface we have ΩO

12, if G is the 2-sphere we have Ω S
12,

and if G is a non-orientable surface we have ΩN
12. Figure6.18 shows the geometrical

interpretation of Ω12 in the case of a double torus.
Considering the arguments above, we can now formulate the following Reide-

meister theorem for links in Seifert manifolds.

Theorem 6.4 Two arrow diagrams for links in a Seifert manifold M represent the
same link up to ambient isotopy if and only if they are connected through a finite
series of Reidemeister moves Ω1 – Ω5, Ω9 – Ω12, and Ω(qi ,pi ).
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←→

(a) Ω9

←→

(b) ΩO+
10

←→

(c) ΩO−
10

←→

(d) ΩN+
10

←→

(e) ΩN−
10

←→

(f) Ω+
11

←→

(g) Ω−
11

←→

(h) ΩO
12

←→

(i) ΩS
12

←→

(j) ΩN
12

Fig. 6.17 Additional Reidemeister moves

a1 a2

b1 b2

←→
a1 a2

b1 b2

Fig. 6.18 Visualization of the move ΩO
12
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6.3 Diagram Conversions for Links in the Solid Torus

In this section we define two widely used diagrams of links in the solid torus and
links in lens spaces, namely the classical diagram (e.g. [7, 15]) and the mixed link
diagram (e.g. [2, 8, 9]). In addition we show how to pass between these diagrams.

6.3.1 Classical Diagrams

Let T = D2 × S1 be the solid torus and let L ⊂ T be a link in T . A classical link
diagram of L is the projection of L to the annulus in T that lies in the plane spanned
by the longitude l of T , see Fig. 6.19.

As in the previous section, we can think of L(p, q) as glueing of two solid tori. A
classical diagram of a link in L(p, q) can again be viewed as a diagram of a link in
a solid torus. Alternatively, one can think of L(p, q) as the result of a p/q rational
surgery performed on a unknot C in S3, where again we can project the knot to the
annulus S3 \ C .

6.3.2 Passing from Classical to Arrow Diagrams

Consider a classical diagram of a link in D × S1. Each such diagram can be obtained
by closing a (n, n)-tangle T with n strands parallel to {P} × S1 for any point P ∈ D.
The construction of the corresponding arrow diagram is presented in Fig. 6.20. By
rotating the tangle it can be made horizontal, so that in the arrow diagram it will
look also like T . In the arrow diagram, the strands become arcs starting at the upper
endpoints of the tangle, with arrows on them, then going under the tangle and joining
the lower endpoints of the tangle. Applying someΩ5 moves all arrows can be moved
to the upper endpoints of the tangle. Then one notices that the strands go from the
upper to the lower endpoints of T with a full negative twist.

−→

Fig. 6.19 A link in the solid torus (left) and its classical diagram (right)
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T −→
T

−→
T

−→
T

−→
T

−→
T

Fig. 6.20 Passing from classical diagrams to arrow diagrams

Summing up, if one has a classical diagram of a link in the solid torus, presented
as a closure of a tangle, an arrow diagram for this link is obtained from the same
tangle, by adding arrows going up at the upper endpoints of the tangle, making a
full negative twist of the strands and closing the tangle on the left. By a similar
construction, one can add a positive twist and close the tangle on the right.

6.3.3 Passing from Arrow to Classical Diagrams

An arrow diagram can be viewed as an almost flat diagram outside small neighbor-
hoods of the arrows (i.e. it lies in a thickened D × {1} in D × S1). The neighborhoods
of arrows correspond to vertical strands parallel to {P} × S1, P ∈ D. We choose an
arbitrary direction in R

2 of the arrow diagram (for instance the vertical one), and
rotate the diagram around the axis orthogonal to this direction. One may assume,
by general position, that the arrows do not point in the chosen direction. Then the
arrows become vertical strands: just before the arrow a vertical strand goes up above
other strands, and just after the arrow a vertical strand goes from below under other
strands. Closing these vertical strands in an annulus gives a classical diagram from
the original arrow diagram. An example is presented in Fig. 6.21.
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−→ −→

Fig. 6.21 Passing from arrow diagrams to classical diagrams

Fig. 6.22 A mixed link
diagram for the solid torus

Fig. 6.23 A mixed link
diagram for L(p, q)

(q, p)

6.3.4 Mixed Link Diagrams

Let N (U ) be a the thickened unknot U in S3. Since T = S3 \ N (U ) is a solid torus,
we can represent any link L in T with a diagram of L ∪U in the plane. We call L
the moving component and U the fixed component. We also keep track of the two
types of component, by coloring them with two different colors. Such a diagram is
called a mixed link diagram for T (Fig. 6.22).

Every closed oriented 3-manifold M can be constructed from a link A ⊂ S3 on
which we perform (integer or rational) Dehn surgeries on its components [10, 17].
Furthermore, each component of the link A can be assumed to be unknotted. In this
way, we can represent a link L in M by a diagram A ∪ L in the plane, but again, we
keep track of the fixed and moving parts by coloring them with two distinct colors;
in addition, we equip each component of A with the surgery coefficient.

For example, the lens space L p,q is the result of a (q, p) or p
q rational surgery on

the unknot in S3. Figure6.23 shows an example of a knot in L(p, q) (see [1, 8, 9]).
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−→ −→

Fig. 6.24 Passing from classical diagrams to mixed link diagrams

6.3.5 Passing from Classical Diagrams to Mixed Link
Diagrams for the Solid Torus

Passing from classical diagrams tomixed link diagrams and back is easy: the comple-
ment of the solid torus is the thickened N (U ), thusU represents the fixed component,
see Fig. 6.24.

6.3.6 Passing from Mixed Link Diagrams to Classical
Diagrams for the Solid Torus

To pass from mixed link diagrams to classical diagrams, we isotope the moving
components of mixed link in such away, that overcrossings with the fixed component
U lie on one side, say on the left and undercrossings lie on the other side. Strands
connecting undercrossings and overcrossings should also connect on one side, say
the top, see Fig. 6.25.
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−→ −→

−→ −→

Fig. 6.25 Passing from mixed link diagrams to classical diagrams

6.4 The Kauffman Bracket and HOMFLYPT Skein
Modules

Let M be an orientable3-manifold. Take a coefficient ring R and a unit A ∈ R (an
element with a multiplicative inverse). And let Lfr(M) be the set of isotopy classes
of framed links in M , including the class of the empty link [∅]. Let RLfr(M) be the
free R-module spanned by Lfr(M).

We would like to impose the Kauffman relation and the framing relation in
RLfr(M). We therefore take the submodule Sfr(M) of RLfr(M) generated by

− A − A−1 , (Kauffman relator)

L � − (−A2 − A−2)L. (framing relator)

The Kauffman bracket skein module S2,∞(M) is defined as RLfr(M) modulo
these two relations:

S2,∞(M) = RLfr(M)/S(M).

Example 6.2 For the 3-sphere, S2,∞(S3) is a free R-module with a basis consisting
of a single element, the equivalence class of the unknot (here, we exclude the empty
link). Expressing a link in this basis and, for the unknot, evaluating [O] = 1, we get
exactly the Kauffman bracket.

Theorem 6.5 ([15]) Let T be the solid torus, S2,∞(T ) is freely generated by an
infinite set of generators {xn}∞n=0, where x

n, n > 0, is a parallel copy of n longitudes
of T (see Fig.6.26) and x0 is the empty link.
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Fig. 6.26 Generator x4

∼

Theorem 6.6 ([7]) S2,∞(L(p, q)) is freely generated by the set of generators
{xn}�p/2	n=0 , where xn, n > 0, is a parallel copy of n longitudes of T ⊂ L(p, q) (see
Fig.6.26) and x0 is the empty link.

For the HOMFLYPT skein module we take oriented (unframed) links and impose
on them the HOMFLYPT skein relation.

Let the ring R have two units v, z ∈ R. Let Lor(M) be the set of isotopy classes
of oriented links in M , including the class of the empty link [∅] and let RLor(M) be
the free R-module spanned by Lor(M).

We take the submodule S(M) of RLor(M) generated by the expressions

v−1 − v − z . (HOMFLYPT relator)

We also add to S(M) the HOMFLYPT relation involving the empty knot:

v−1∅ − v∅ − z . (empty knot relator)

The HOMFLYPT skein module S3(M) of M is RLor(M) modulo the above
relations:

S3(M) = RL(M)/S(M).

Let tn , n ∈ Z be the knot in Fig. 6.27a, b, note that for n < 0, tn is t|n| with reversed
orientation.

Theorem 6.7 ([6, 15]) The HOMFLYPT skein module of the solid torus T is a free
R-module, generated by the infinite set

B = {tk1 · · · tks | ki ∈ Z \ {0}, k1 ≤ · · · ≤ ks} ∪ {∅}.

Fig. 6.27 HOMFLYPT
skein module generators

n

(a) tn

n

(b) t−n

4 4 −3

(c) t24 t−3
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6.4.1 Results for Kauffman Bracket and HOMFLYPT Skein
Modules Using Arrow Diagrams

The first result, using arrow diagrams, was to compute the Kauffman bracket skein
module of a product of S1 with a disk with two holes. There is an incompressible,
non-boundary parallel torus immersed (not embedded) in such a manifold. In sev-
eral examples of manifolds, such surfaces, when embedded, yield torsion, so it was
interesting to consider a case with an immersion instead of an embedding. There was
no torsion in this case:

Theorem 6.8 ([13]) Let M be the product of a disk with two holes and S1. Then
S2,∞(M) is freely generated by an infinite set of generators.

Now, consider links in themanifoldRP3�RP3 (see Example 6.1). Let t = −A−3x
(see Fig. 6.26). We can view t as an oval with one arrow, obtained from x by adding
a negative kink. The multiplication of two arrow diagrams of links in the solid torus
consists in putting them in two disjoint disks. Thus, for example, x3 = x2x = xxx
is the diagram were the three x’s are in three disjoint disks.

Let Qn , n ∈ N ∪ {0} be defined by:

Q0 = 1, Q1 = t and Qn = t Qn−1 − Qn−2

Let E be the knot with diagram in Fig. 6.28a: an arc with two antipodal endpoints
and no crossings. Let E ′ be the knot with diagram in Fig. 6.28b: an arc as in E with
an added arrow.

Theorem 6.9 ([11]) S2,∞(RP3�RP3) = R ⊕ R ⊕ R[t]/S, where R = Z[A, A−1]
and S is the submodule of R[t] generated by:

(An+1 + An−1)(Qn − 1) − 2(A + A−1)

n
2∑

k=1

An+2−4k , for n ≥ 2 even,

(An+1 + An−1)(Qn − t) − 2t

n−1
2∑

k=1

An+1−4k , for n ≥ 3 odd.

The generators of the two R’s are E and E ′.

Fig. 6.28 Generators
E and E ′

(a) E (b) E′
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By adding (q, p) fibers to RP3�RP3 one gets the prism manifolds. If q = 1, the
prism manifold is denoted by Mp (it has no exceptional fibers, just as L(p, 1)).

Theorem 6.10 ([12]) S2,∞(Mp) is a free R-module generated by ∅, x, x2,…,x1+� p
2 	,

E and (if p is even) E ′. Thus, it has 3 + � p
2 	 generators, if p is odd, and 4 + p

2
generators, if p is even.

Let us now turn to HOMFLYPT skein modules. Consider now links in the lens
space L p,1. Recall, from Sect. 6.2 that arrow diagrams of such links lie in the disk
and there is an additional slide move Ω(p) (Fig. 6.14).

Let

Bp = {tk1 · · · tks | ki ∈ Z \ {0}, − p

2
< k1 ≤ · · · ≤ ks ≤ p

2
} ∪ {∅}.

Using the move Ω(p), elements in B can be expressed with elements in Bp. In fact,
one gets more:

Theorem 6.11 ([4]) S3(L p,1) is free with basis Bp.

See also [3] for the braid approach to the HOMFLYPT skein module of L(p, 1).

6.5 Alternative Bases for the Kauffman Bracket Skein
Modules

We denote by Pn an oval with n counterclockwise arrows (|n| clockwise arrows if
n < 0) and by yn a nested system of n ovals with one counterclockwise arrow on
each if n > 0 or clockwise arrow if n < 0. By convention y0 is the empty link. See
Fig. 6.29.

We exhibit some alternative bases for the Kauffman bracket skein modules of the
solid torus and lens spaces. The results follow easily from the following lemmas.

Lemma 6.1 ([13]) In S2,∞(T ) one can revert x in the sense that

x = P1 = A6 P−1.

Lemma 6.2 ([13]) From an oval Pn, n > 0, we can push off an arrow using
Reidemeister moves and skein relations in the sense that

Pn = −A−2Pn−1x − A2Pn−2.

Similarly for Pn, n < 0, it holds

Pn = −A2Pn+1P−1 − A−2Pn+2.
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∼
4

(a) P4

∼
4

(b) P−4

∼

(c) y4

Fig. 6.29 Diagrams of P4, P−4, and y4

The following lemma illustrates the methods used when doing calculations in
S2,∞(T ).

Lemma 6.3 An oval can be pushed to an adjacent arc in S2,∞(T ) using skein rela-
tions in the sense that

n

=
∑n

i=−n ri i

for n > 0 and ri ∈ R, furthermore it holds that rn = −A2n+2 and r−n = −A2.

Proof First we make an Ω2 move through the arc and push an arrow through, then
we resolve the newly changed crossing by the Kauffman skein relation. For the first
term we resolve the remaining crossing and for the second term we push the arrow
through the remaining crossing and perform an Ω1:

n
Ω2===

n
Ω5===

n−1

== A

n−1

+A−1

n−1
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== A2

n−1

+

n−1

+A−1

n−1

Ω1=== A2

n−1

+
n−2

−A2 n

If n = 1, the first two lines of the equations above show that r1 = −A4 and
r−1 = −A2. For n > 1, we repeat this process with the oval with n − 1 arrows to the
left of the strand with one arrow up. Then, we iterate this process with ovals with
less and less arrows until there is only one arrow left. At each step an arrow will be
transferred from the oval to the strand upwards with coefficient A2. The coefficient
of rn is thus (A2)n−1(−A4) = −A2n+2. It follows from the equations above that in
the procedure we get n arrows pointing downwards only at the first step, so r−n is
−A2.

In addition to Turaev’s basis of S2,∞(T ) in [15] and Hoste/Przytycki’s basis of
S2,∞(L(p, q)) in [7], we show in the next propositions some alternative choices for
bases of these skein modules.

Proposition 6.1 The set {Pn}∞n=1 ∪ {∅} forms a free basis of S2,∞(T ).

Proof FromLemma 6.2 it follows that, for n > 0, Pn is a polynomial of degree nwith
leading invertible coefficient (−1)n+1A−2n+2. Thus, the Pn’s can be expressed with
the xn’s with an upper triangular matrix with invertible coefficients on the diagonal.
It follows that {Pn}∞n=1 ∪ {∅} is a basis of S2,∞(T ).

Proposition 6.2 The set {P−n}∞n=1 ∪ {∅} forms a free basis of S2,∞(T ).

Proof From Lemma 6.1, P−1 = A−6P1 = A−6x . From Lemma 6.2 it follows that,
for n < 0, Pn is a polynomial of degree |n| with leading invertible coefficient
(−1)n+1A−2n−8. The rest of the proof is the same as in the preceding proposition.

Proposition 6.3 The set {yn}∞n=0 forms a free basis of S2,∞(T ).

Proof We will show that yn is a polynomial of degree n in x with an invertible
leading coefficient. Then we will be done, just as in the proofs of the preceding two
propositions.

The proof is by induction on n. Obviously it holds for n = 1 because y1 = x . It
will be useful to have this more general induction hypothesis, for k, l ≥ 0, k + l ≤ n:

(Hk,l) : xk nested inside yl is a polynomial of degree k + l with an invertible
leading coefficient.
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For instance x nested inside yl is just yl+1. We perform an inner induction on l.
The hypothesis is true for l = 0 because xk nested in y0 is just xk . Suppose (Hk ′,l ′)

is true for all k ′ + l ′ < n and that it is also true for all xk
′
nested in yl ′ where l ′ < l,

k ′ + l ′ = n.
Now consider xk nested in yl , k + l = n. Use Lemma 6.3 to push the k x’s into

the most nested oval of yl . Pushing one such x , the only nonzero coefficients will
be r1 = −A4 and r−1 = −A2 corresponding to adding a counterclockwise or clock-
wise arrow respectively to this most nested oval of yl . As originally there is one
countercklockwise arrow on this oval, this oval will become Pm when the x’s are
pushed into it, with −k + 1 ≤ m ≤ k + 1. We know that Pm is a polynomial in x of
degree |m| with an invertible leading coefficient. By induction on n, the terms with
m < k + 1 will have degree less than n (some arrows are cancelled). The remaining
term, m = k + 1, corresponds to all x’s being pushed as counterclockwise arrows,
yielding (−A4)k times Pk+1 nested inside yl−1. Now Pk+1 is of degree k + 1 with
an invertible leading coefficient. The terms of Pk+1 of degree less than k + 1 nested
in yl−1 will have degree less than n by induction. Finally, the only term remaining
is an invertible coefficient times xk+1 nested in yl−1, which is of degree n times an
invertible coefficient by induction on l. Thus (Hk,l) is true.

Proposition 6.4 The set {y−n}∞n=0 forms a free basis of S2,∞(T ).

Proof The proof mirrors that of the previous proposition, using P−1 = A−6x instead
of x .

As, for n > 0, Pn , P−n , yn and y−n are all polynomials of degree n in x with an
invertible leading coefficient, the following proposition follows from Theorem 6.6.

Proposition 6.5 The sets {Pn}�p/2	n=1 ∪ {∅}, {P−n}�p/2	n=1 ∪ {∅}, {yn}�p/2	n=0 , and {y−n}�p/2	n=0
are all free bases of S2,∞(L(p, q)).

6.6 Alternative Bases for the HOMFLYPT Skein Modules

The following two lemmas are from [4]. Using them, we will exhibit new bases for
S3(L p,1). Recall that tn , n ∈ Z \ {0}, stands for an oval with |n| counter clockwise
arrows on it, which is oriented in a counterclockwise way if n > 0 and in a clockwise
way otherwise.

Denote by t̄n , n ∈ Z \ {0}, the oval obtained from tn by reversing all arrows and
the orientation (Fig. 6.30).

Fig. 6.30 Knots t̄n and t̄−n
for n > 0

n

(a) t̄n

n

(b) t̄−n
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Lemma 6.4 In S3(T ) we can revert clockwise arrows on an oval in the sense that
for n > 0

t̄n =
∑

i

Ai Ti and t̄−n =
∑

i

A′
i T

′
i

where Ai , A′
i ∈ R, Ti , T ′

i ∈ B.Moreprecisely, any Ti = tk1 · · · tks , where all ki > 0
andk1 + · · · + ks = n. Similarly, any T ′

i = tk1 · · · tks , where all ki < 0andk1 + · · · +
ks = −n.

The following lemma is a reformulation of Lemma6.2 in [4], emphasizing the
orientations and making the coefficients A0 and A′

0 explicit.

Lemma 6.5 Let D be a diagram of a link L with an oval containing n arrows, n ∈ Z,
and a strand adjacent to it, that may contain arrows outside the drawn region. We say
that the orientations of the oval and the strand agree if the oval has a counterclokwise
orientation and the strand right to it is oriented upwards or if both have opposite
orientations. Otherwise we say that their orientations disagree.

The oval can be pushed through the strand. There are four possible configurations
of orientations, but we will explicitly point out two, with n > 0 and the orientations
agreeing or disagreeing. The following formulas hold in S3(T ):

n

=
n∑

i=0

Ai
i

n-i

or
n

=
n∑

i=0

A′
i

i
n-i

,

where Ai , A′
i ∈ R. Furthermore, we can keep track of the coefficients A0 and A′

0
getting A0 = v2n and A′

0 = v−2n. For the remaining two configurations the transfer
of arrows is as in the first formula when the orientations agree and as in the second
formula when the orientations disagree.

In [2] a newbasis forS3(T ) is presented. Translating this basis into arrowdiagrams
gives a basisB′. Its elements have diagrams consisting of s ∈ N concentric ovals with
ki ∈ Z \ {0} arrows on each oval, denoted tk1,k2,...,ks , satisfying k1 ≥ k2 ≥ . . . ≥ ks ,
with k1 arrows on the most nested oval, k2 arrows on the next one and, so on, with
ks arrows on the oval containing all other ovals, see Fig. 6.31. With this notation

Fig. 6.31 An element from
B′ and B′′

3
1
2
5

(a) t5,2,−1,−3 ∈ B′

4
2
3
1

(b) t−1,−3,2,4 ∈ B′′
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B′ = {tk1,...,ks | ki ∈ Z \ {0}, s ∈ N, k1 ≥ k2 ≥ · · · ≥ ks}.

We will exhibit a similar basis of S3(T ), using an order relation similar to the one
used in [2]:

B′′ = {tk1,...,ks | ki ∈ Z \ {0}, s ∈ N, 0 > k1 ≥ . . . ≥ kl, 0 < kl+1 ≤ . . . ≤ ks}.

We introduce an order relation on configurations of ovals with arrows, i.e. on
diagrams with no crossings, and such that there are no ovals with zero arrows. This
relation is defined in a lexicographical way by considering in this order:

1. The number of all arrows counted as positive for all ovals independently of ori-
entations.

2. The number of ovals.
3. A lexicographical ordering of ovals with positive arrows: from ovals with the

smallest number of arrows to ovals with the largest number of arrows.
4. A lexicographical ordering of ovals with negative arrows in the same way as in

(3), but taking absolute values (i.e. the number of arrows) into account.

To illustrate 3, inB one has, t21 t
2
3 > t21 t2t4, because (1, 1, 3, 3) > (1, 1, 2, 4) (lexi-

cographically). To illustrate 4, t2−2t
2−4 > t2−2t−3t−5 because (| − 2|, | − 2|, | − 4|, | −

4|) > (| − 2|, | − 2|, | − 3|, | − 5|).
The order defined above becomes a total order when restricted toB or B′′. Indeed,

if two configurations of ovals have the same order, they will have the same series
of arrows on ovals, for example (−3,−3,−1, 1, 4, 4). Restricting to B or B′′ this
determines completely the diagram.

Lemma 6.5 can be refined to take into account this ordering, in the following
sense:

Lemma 6.6 Let D be a diagram with no crossings, with an oval ti containing no
other ovals, next to an oval t j (it can be nested in t j or not). Suppose that 0 < |i | ≤ | j |
if i and j have the same sign, or i < 0 < j otherwise. Then one can push ti through
t j getting v±2i times the diagram in which the whole ti is pushed plus terms of lower
order.

Proof If i < 0 < j , then it follows from Lemma 6.5 that all terms will have less
arrows than D, except for the term corresponding to the whole ti being pushed,
which comes with a factor v−2i . If 0 < i ≤ j , then, from the same lemma, it follows
that we will have a term as before, this time with coefficient v2i , plus terms for which
some a > 0 arrows will be transferred from ti to t j . In the lexicographical order the
change will be from (. . . , i, . . . , j, . . .) to (. . . , i − a, . . . , j + a, . . .) which is of
lower order. Similarly for j < i < 0 there will be a change from (. . . , j, . . . , i, . . .)
to (. . . , j − a, . . . , i + a, . . .) which is again of lower order.

Theorem 6.12 B′′ is a basis of the free skein module S3(T ).
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Proof Let T = tk1 · · · tks ∈ B, k1 ≤ k2 ≤ · · · ≤ ks , ki ∈ Z \ {0}. We construct first a
function F : B → RB′′. If kl < 0 and kl+1 > 0, F(T ) will be equal to
tkl ,kl−1,··· ,k1,kl+1,··· ,ks (which has the same order as T ) times an invertible coefficient
plus terms of lower order. F is defined by induction on the order. F is the identity if
the number of arrows is 0 (empty diagrams) or if the number of ovals is 1.

If ks > 0 push all other ovals into tks , using Lemma 6.6. We get v to some power
times tks around all other ovals plus terms of lower order. Reexpress these terms of
lower order in B by pushing ovals out of tks again. As we push through the oval with
a maximum of arrows, Lemma 6.6 guarantees that the order cannot increase. Thus
F of the terms that were reexpressed in B will be of lower order than the term with
all ovals pushed into tks and the induction can be applied.

If ks < 0 push all ovals into tk1 to get again v to some power times tk1 around all
other ovals plus terms of lower order which, again, are reexpressed with terms in B
of lower order.

Now repeat this process for ovals inside ks or k1, pushing ovals into the oval
with maximum positive arrows (or maximum negative if there are no ovals with
positive arrows). For terms with lower order reexpress them in B: if some arrows
were killed we will obviously get terms with lower order also in B; if some arrows
were transferred (by construction from ovals with less arrows to ovals with more
arrows) we will get terms with lower lexicographical order. It is clear that the order
cannot increase back to the order of T , when pushing the ovals which have lost some
arrows out to get elements in B.

Continue until all ovals are nested. We get at the end v to some power times
tkl ,kl−1,··· ,k1,kl+1,··· ,ks ∈ B′′ plus terms of lower order.

Now extend F linearly from RB to RB′′. The matrix of F with respect to the
ordered B and B′′ will be upper triangular with invertible elements (powers of v) on
the diagonal. This shows that B′′ is a basis of S3(T ).

Recall that the basisBp ofS3(L(p, 1)) consists of diagramswith non-nested ovals
and the number of arrows ki on each of them satisfying − p

2 < ki ≤ p
2 .

We want to exhibit a new basis of this skein module, B′′
p, using a proof similar to

that of Theorem 6.12. Let:

B′′
p = {tk1,..,ks | ki ∈ Z \ {0}, s ∈ N,

0 > k1 ≥ . . . ≥ kl > − p

2
, 0 < kl+1 ≤ . . . ≤ ks ≤ p

2
}.

Thus B′′
p is B′′ with arrows on ovals restricted to the interval (− p

2 ,
p
2 ]. The order

on B′′ used in the proof of the preceding theorem restricts to an order on B′′
p. We use

it in the proof of the next theorem.

Theorem 6.13 B′′
p is a basis of the free skein module S3(L(p, 1)).

Proof We construct a function F : Bp → RB′′
p in the same way as it was done in

the proof of Theorem 6.12, having a similar property, namely that F of an element
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T in Bp will be equal to the element of B′′
p consisting of the same ovals as in T but

nested, times an invertible coefficient plus terms of lower order. When reexpressing
an element in Bp it may happen that the number of arrows is reduced with Ω(p)

moves but this lowers the order.
Extending F linearly to RBp, its matrix is again upper triangular with invertible

elements on the diagonal, from which it follows that B′′
p is a basis of S3(L(p, 1)).
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Chapter 7
The Braid Approach to the HOMFLYPT
Skein Module of the Lens Spaces L(p, 1)

Ioannis Diamantis and Sofia Lambropoulou

Abstract In this paper we present recent results toward the computation of the
HOMFLYPT skein module of the lens spaces L(p, 1), S (L(p, 1)), via braids. Our
starting point is the knot theory of the solid torus ST and the Lambropoulou invariant,
X , for knots and links in ST, the universal analogue of the HOMFLYPT polynomial
in ST. The relation between S (L(p, 1)) and S(ST) is established in Diamantis et
al. (J Knot Theory Ramif, 25:13, 2016, [5]) and it is shown that in order to compute
S (L(p, 1)), it suffices to solve an infinite systemof equations obtainedbyperforming
all possible braid band moves on elements in the basis of S(ST), Λ, presented in
Diamantis and Lambropoulou (J Pure Appl Algebra, 220(2):577–605, 2016, [4]).
The solution of this infinite system of equations is very technical and is the subject
of a sequel work (Diamantis and Lambropoulou, The HOMFLYPT skein module of
the lens spaces L(p, 1) via braids, in preparation, [2]).

7.1 Introduction

Skein modules were introduced by Przytycki [20] and Turaev [23]. They generalize
knot polynomials in S3 to knot polynomials in arbitrary 3-manifolds. The essence
is that skein modules are quotients of free modules over ambient isotopy classes of
links in 3-manifolds by properly chosen local (skein) relations.

Let M be an oriented 3-manifold, R = Z[u±1, z±1], L the set of all oriented links
in M up to ambient isotopy in M and let S be the submodule of RL generated by the
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Fig. 7.1 The links
L+, L−, L0 locally

Fig. 7.2 An element in the
basis of S(RP2×̂I )

skein expressions u−1L+ − uL− − zL0, where L+, L− and L0 comprise a Conway
triple represented schematically by the illustrations in Fig. 7.1.

For convenience we allow the empty knot, ∅, and add the relation u−1∅ − u∅ =
zT1, where T1 denotes the trivial knot. Then the HOMFLYPT skein module of M is
defined to be:

S (M) = S (
M; Z

[
u±1, z±1

]
, u−1L+ − uL− − zL0

) = RL/
S.

Skein modules of 3-manifolds have become very important algebraic tools in the
study of 3-manifolds, since their properties renders topological information about
the 3-manifolds. Unlike the Kauffman bracket skein module, the HOMFLYPT skein
module of a 3-manifold, also known as Conway skein module and as third skein
module, is very hard to compute and very little is known so far. More precisely,
S(S3) = Z[v±1, z±1], where the empty link is a generator of the module [6, 22].
Also, for the solid torus ST, S(ST) is a free, infinitely generated Z[u±1, z±1]-module
isomorphic to the symmetric tensor algebra SRπ̂0, where π̂0 denotes the conjugacy
classes of non trivial elements of π1(ST) [4, 11, 14, 23]. Further, let F denote a sur-
face. ThenS(F × I ) is an algebrawhich, as an Rmodule, is a freemodule isomorphic
to the symmetric tensor algebra, SRπo, where πo denotes the conjugacy classes of
nontrivial elements of π1(F) [21].Moreover, S(RP2×̂I ) is freely generated by stan-
dard oriented unlinks as presented in Fig. 7.2 [19] and S(S1 × S2) is freely generated
by the empty link over a properly chosen ring [8]. Finally, S(M1#M2) is isomorphic
to S(M1) ⊗ S(M2) modulo torsion, where M1, M2 are oriented 3-manifolds and
M1#M2 their connected sum [9].

In [7] the HOMFLYPT skeinmodule of the lens spaces L(p, 1) is computed using
diagrammatic method. The diagrammatic method could in theory be generalized to
the case of L(p, q), q > 1, but the diagrams become even more complex to analyze
and several induction arguments fail.



7 The Braid Approach to the HOMFLYPT … 145

In [14] the most generic analogue of the HOMFLYPT polynomial, X , for links
in the solid torus ST has been derived from the generalized Hecke algebras of type
B, H1,n , via a unique Markov trace constructed on them. This algebra was defined
by Lambropoulou in [14] and is related to the knot theory of the solid torus, the
Artin group of Coxeter group of type B, B1,n , and to the affine Hecke algebra of type
A. The Lambropoulou invariant X recovers the HOMFLYPT skein module of ST,
S(ST), and is appropriate for extending the results to the lens spaces L(p, q), since
the combinatorial setting is the same as for ST, only the braid equivalence includes
the braid band moves (shorthanded to bbm), which reflect the surgery description
of L(p, q). For the case of L(p, 1), in order to extend X to an invariant of links in
L(p, 1) we need to solve an infinite system of equations resulting from the braid
band moves. Namely we force:

X α̂ = Xb̂bm(α)
, (7.1)

for all α ∈ ⋃
∞ B1,n and for all possible slidings of α.

The above equations have particularly simple formulations with the use of a new
basis, Λ, for the HOMFLYPT skein module of ST, that we give in [1, 4]. This basis
was predicted by Przytycki and is crucial in this paper, since bbm’s are naturally
described by elements in this basis.

In order to show that the setΛ is a basis for S(ST), we started in [4] with the well-
known basis of S(ST), Λ′, discovered independently in [11, 23] with diagrammatic
methods, and a basis Σn of the algebra H1,n and we followed the steps below:

• An ordering relation in Λ′ is defined and it is shown that the set is totally ordered.
• Elements in Λ′ are converted to linear combinations of elements in the new set Λ
as follows:

• Elements in Λ′ are first converted to elements in the linear basis of H1,n(q), Σn .
• Using conjugation, the gaps appearing in the indices of the looping generators in
the monomials in

⋃
n Σn are managed.

• Using conjugation, the exponents of the looping generators are ordered.
• Using conjugation and stabilization moves, the ‘braiding tails’ are removed from
the above monomials and thus, the initial elements in

⋃
n Σn are converted to

linear combination of elements in Λ.
• Finally, the sets Λ′ and Λ are related via a block diagonal matrix, where each
block is an infinite lower triangular matrix.

• The diagonal elements in the abovematrix are invertible, making thematrix invert-
ible and thus, the set Λ is a basis for S(ST).

The new basis is appropriate for computing the HOMFLYPT skein module of the
lens spaces L(p, q) in general. Note that S(ST) plays an important role in the study
of HOMFLYPT skein modules of arbitrary c.c.o. 3-manifolds, since every c.c.o.
3-manifold can be obtained by surgery along a framed link in S3 with unknotted
components. The family of the lens spaces, L(p, q), comprises the simplest example,
since they are obtained by rational surgery on the unknot.
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Equations (7.1) are very controlled in the algebraic setting, because, as shown
in [5], they can be performed only on elements in Λ. This is shown by following
the technique developed in [4]. The difference lies in the fact that here we deal with
elements in Λ and at the same time with their result after the performance of a bbm
and we keep track of how bbm’s affect the steps described above. More precisely, in
[5] we followed the steps below:

• Equations (7.1) boil down by linearity to considering only words in the canonical
basis Σ ′

n of the algebra H1,n(q).
• For words in

⋃
n Σ ′

n equations of the form X α̂′ = X ̂bbm±1(α′) are obtained, where

̂bbm±1(α′) is the result of the performance of a braid bandmove on the firstmoving
strand of the closed braid α̂′, and α′ ∈ ⋃

n Σ ′
n .

• Then, elements in
⋃

n Σ ′
n are expressed to elements in the linear basis Σn of

H1,n(q) and it is shown that the equations for words in
⋃

n Σ ′
n are equivalent to

equations of the form X α̂ = X ̂bbm±1(α)
, where α ∈ ⋃

n Σn .
• A set Λaug is then introduced, consisting of monomials in the looping generators
ti ’s with no gaps in the indices (as in Λ) but not necessarily ordered exponents.

• Equations for words in
⋃

n Σn are now reduced to equations obtained from ele-
ments in the H1,n(q)-module Λaug , where the braid band moves are performed on
any moving strand.

• Equations of the form X β̂ = X ̂bbm±i (β)
are now obtained, where ̂bbm±i (β) is the

result of the performance of a braid band move on the i th moving strand of the
closed braid β̂, and β an element in the augmented setΛaug followed by a ‘braiding
tail’.

• Using conjugation, the exponents then become in decreasing order and equations
obtained from elements in the H1,n(q)-module Λaug by performing bbm’s on all
moving strands are reduced to equations for words in H1,n(q)-module Λ by per-
forming bbm’s on all moving strands.

• The ‘braiding tails’ fromelements in theH1,n(q)-moduleΛ are noweliminated and
it is shown that equations for words in the H1,n(q)-module Λ by performing braid
band moves on any strand, are now reduced to equations obtained from elements
in the basis Λ of S(ST) by performing braid band moves on every moving strand:

S (L(p, 1)) = S(ST)

< a − bbmi (a) >
, for all i and for all a ∈ Λ. (7.2)

In [2] we elaborate on the infinite system.
The importance of our approach is that it can shed light on the problem of com-

puting skein modules of arbitrary c.c.o. 3-manifolds, since any 3-manifold can be
obtained by surgery on S3 along unknotted closed curves. Indeed, one can use our
results in order to apply a braid approach to the skein module of an arbitrary c.c.o.
3-manifold. The main difficulty of the problem lies in selecting from the infinitum of
band moves (or handle slide moves) some basic ones, solving the infinite system of
equations and proving that there are no dependencies in the solutions. Note that the
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computation ofS (L(p, 1)) is equivalent to constructing all possible analogues of the
HOMFLYPT or 2-variable Jones polynomial for knots and links in L(p, 1), since the
linear dimension ofS (L(p, 1))means the number of independent HOMFLYPT-type
invariants defined on knots and links in L(p, 1).

The paper is organized as follows: In Sect. 7.2 we recall the setting and the essen-
tial techniques and results from [3, 15–18]. More precisely, we describe braid equiv-
alence for knots and links in L(p, 1) and we present a sharpened version of the
Reidemeister theorem for links in L(p, 1). We also provide geometric formulations
of the braid equivalence via mixed braids in S3 using the L-moves and the braid
band moves and give algebraic formulations in terms of the mixed braid groups B1,n .
In Sect. 7.3 we present results from [4, 14]. More precisely, we recover the HOM-
FLYPT skein module of the solid torus ST, S(ST), via algebraic techniques and we
present a new basis for S(ST), Λ, from which the braid band moves are naturally
described. The aim of this section is to set a homogeneous ground in computing
skein modules of c.c.o. 3-manifolds in general via algebraic means. In Sect. 7.4 we
derive the relation between S(ST) and S (L(p, 1)) and show that in order to compute
S (L(p, 1)) we only need to consider elements in the basis Λ of S(ST) and impose
on the Lambropoulou invariant X relations coming by performing all possible braid
band moves on elements in Λ.

7.2 Topological and Algebraic Tools

7.2.1 Mixed Links and Isotopy in L( p, 1)

We consider ST to be the complement of a solid torus in S3. Then, an oriented link
L in ST can be represented by an oriented mixed link in S3, that is, a link in S3

consisting of the unknotted fixed part Î representing the complementary solid torus
in S3 and the moving part L that links with Î (Fig. 7.3). A mixed link diagram is
a diagram Î ∪ L̃ of Î ∪ L on the plane of Î , where this plane is equipped with the
top-to-bottom direction of I (see [13, 17]).

It is well–known that the lens spaces L(p, 1) can be obtained from S3 by surgery
on the unknot with surgery coefficient p. Surgery along the unknot can be realized

Fig. 7.3 A mixed link in S3
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by considering first the complementary solid torus and then attaching to it a solid
torus according to some homeomorphism on the boundary. Thus, isotopy in L(p, 1)
can be viewed as isotopy in ST together with the band moves in S3, which reflect
the surgery description of the manifold, see Fig. 7.4 (see [17]). In [3] we show that
in order to describe isotopy for knots and links in a c.c.o. 3-manifold, it suffices
to consider only the type α band moves (see Fig. 7.5) and thus, isotopy between
oriented links in L(p, 1) is reflected in S3 by means of the following result (cf. [17,
Theorem 7.8], [3, Theorem 6]):

Two oriented links in L(p, 1) are isotopic if and only if two corresponding mixed
link diagrams of theirs differ by isotopy in ST together with a finite sequence of the
type α band moves.

Fig. 7.4 The two types of band moves

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

Fig. 7.5 A type-β band move follows from a type-α band move in the case of integral surgery
coefficient
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7.2.2 Mixed Braids for Knots and Links in L( p, 1)

By the Alexander theorem for knots in solid torus ([13, Theorem 1]), a mixed link
diagram Î ∪ L̃ of Î ∪ L may be turned into amixed braid I ∪ β with isotopic closure.
This is a braid in S3 where, without loss of generality, its first strand represents Î ,
the fixed part, and the other strands, β, represent the moving part L . The subbraid β

is called the moving part of I ∪ β (see Fig. 7.6).
The sets of mixed braids related to ST form groups, which are in fact the Artin

braid groups of type B. The mixed braid group on n moving strands is denoted as
B1,n and it admits the following presentation:

B1,n =
〈

t, σ1, . . . , σn−1

∣
∣
∣
∣
∣
∣
∣
∣

σ1tσ1t = tσ1tσ1

tσi = σi t, i > 1
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2
σiσ j = σ jσi , |i − j | > 1

〉

, (7.3)

where the ‘braiding’ generators σi and the ‘looping’ generator t are illustrated in
Fig. 7.7 [13–15].

In B1,n we also define the elements:

t ′i := σiσi−1 . . . σ1tσ
−1
1 . . . σ−1

i−1σ
−1
i and ti := σiσi−1 . . . σ1tσ1 . . . σi−1σi , (7.4)

for i = 0, 1, . . . , n − 1, where t0 = t = t ′0. For illustrations see Fig. 7.8.

Fig. 7.6 The closure of a
mixed braid to a mixed link

Fig. 7.7 The generators of
B1,n
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Fig. 7.8 The elements t ′i and ti

Remark 7.1 In [14, Proposition 1] it is shown using the Artin combing, that every
element in B1,n can be written in the form τ ′ · w, where τ ′ is a word in the looping
elements t ′i and w ∈ Bn is the ‘braiding tail’. Furthermore, the looping elements t ′i
are conjugates. On the other hand, the elements ti commute. Moreover, the ti ’s are
consistent with the braid band move used in the link isotopy in L(p, 1), in the sense
that a braid band move can be described naturally with the use of the ti ’s.

7.2.3 Braid Equivalence for Knots and Links in L( p, 1)

In [17] the authors give a sharpened version of the classical Markov theorem for
braid equivalence in S3 based only on one type of moves, the L-moves: An L-move
on a mixed braid I

⋃
β, consists in cutting an arc of the moving sub-braid open and

pulling the upper cut point downward and the lower upward, so as to create a new
pair of braid strands with corresponding endpoints, and such that both strands cross
entirely over or under with the rest of the braid. Stretching the new strands over will
give rise to an Lo-move and under to an Lu-move. For an illustration see Fig. 7.9.
An algebraic L-move has the following algebraic expression for an Lo-move and an
Lu-move respectively:

α = α1α2
Lo∼ σ−1

i . . . σ−1
n α′

1σ
−1
i−1 . . . σ−1

n−1σ
±1
n σn−1 . . . σiα

′
2σn . . . σi

α = α1α2
Lu∼ σi . . . σnα

′
1σi−1 . . . σn−1σ

±1
n σ−1

n−1 . . . σ−1
i α′

2σ
−1
n . . . σ−1

i

(7.5)

where α1, α2 are elements of B1,n and α′
1, α

′
2 ∈ B1,n+1 are obtained from α1, α2 by

replacing each σ j by σ j+1 for j = i, . . . , n − 1.
In order to translate isotopy for links in L(p, 1) into mixed braid equivalence, we

first define a braid band move to be a move between mixed braids, which is a type
α band move between their closures. It starts with a little band oriented downward,
which, before sliding along a surgery strand, gets one twist positive or negative (see
Fig. 7.10).

Then, isotopy in L(p, 1) is translated on the level of mixed braids by means of
the following theorem:
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Fig. 7.9 A mixed braid and the two types of L-moves

Fig. 7.10 Braid band move performed on the first moving strand

Theorem 7.1 ([18, Theorem 5]) Let L1, L2 be two oriented links in L(p, 1) and let
I ∪ β1, I ∪ β2 be two corresponding mixed braids in S3. Then L1 is isotopic to L2

in L(p, 1) if and only if I ∪ β1 is equivalent to I ∪ β2 in
∞∪
n=1

B1,n by the following
moves:

(i) Conjugation : α ∼ β−1αβ, α, β ∈ B1,n

(i i) Stabili zation moves : α ∼ ασ±1
n ∈ B1,n+1, α ∈ B1,n

(i i i) Loop conjugation : α ∼ t±1αt∓1, α ∈ B1,n

(iv) Braid band moves : α ∼ t pα+ · σ±1
1 , α+ ∈ B1,n+1

where α+ is the word α with all indices shifted by 1 (see Fig.7.10). Equivalently, L1 is
isotopic to L2 if and only if I ∪ β1 and I ∪ β2 differ by moves (iii) and (iv) as above,
while moves (i) and (ii) are replaced by the two types of L-moves, see Eq. (7.5).

Notation 7.1 We denote a braid band move by bbm and, specifically, the result of a
positive or negative braid band move performed on the i th-moving strand of a mixed
braid β by bbm±i (β).

Note that in the statement of Theorem 7.1 in [18] the braid band moves take place
on the last strand of a mixed braid. Clearly, this is equivalent to performing the braid
band moves on the first moving strand or, in fact, on any specified moving strand of
the mixed braid. Indeed, in a mixed braid β ∈ B1,n consider the last moving strand
of β approaching the surgery strand I from the right. Before performing a bbm we
apply conjugation (isotopy in ST) and we obtain an equivalent mixed braid where
the first strand is now approaching I (see Fig. 7.11). In terms of diagrams we have
the following ([5, Lemma 1]):



152 I. Diamantis and S. Lambropoulou

Fig. 7.11 A bbm may always be assumed to be performed on the first moving strand of a mixed
braid

β ∼ (σi−1 . . . σ1σ
−1
1 . . . σ−1

i−1) · β ∼ (σ−1
1 . . . σ−1

i−1) · β · (σi−1 . . . σ1)︸ ︷︷ ︸
α

↓ ↓
bbm±n(β) = bbm±1(α)

7.2.4 The Generalized Iwahori–Hecke Algebra of Type B

It is well-known that B1,n is the Artin group of the Coxeter group of type B, which
is related to the Hecke algebra of type B, Hn(q, Q) and to the cyclotomic Hecke
algebras of type B. In [14] it has been established that all these algebras are related to
the knot theory of ST. The basic one is Hn(q, Q), a presentation of which is obtained
from the presentation (7.3) of the Artin group B1,n by corresponding the braiding
generator σi to gi and by adding the quadratic relations:

g2i = (q − 1)gi + q (7.6)

and the relation t2 = (Q − 1) t + Q. The cyclotomic Hecke algebras of type B are
denoted Hn(q, d), d ∈ N, and they admit presentations that are obtained by the
quadratic relation (7.6) and the relation td = (t − u1)(t − u2) . . . (t − ud). In [14]
also the generalized Iwahori–Hecke algebra of type B, H1,n(q), is introduced, as the
quotient of C

[
q±1

]
B1,n over the quadratic relations (7.6). Namely:

H1,n(q) = C
[
q±1

]
B1,n

〈σ 2
i − (q − 1) σi − q〉 .

Note that in H1,n(q) the generator t satisfies no polynomial relation, making the
algebra H1,n(q) infinite dimensional, and as observed by T. tomDieck, H1,n is closely
related to the affine Hecke algebra of type A, H̃n(q). In [14] the algebra H1,n(q) is
denoted as Hn(q,∞).
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In [12]V.F.R. Jones gives the following linear basis for the Iwahori–Hecke algebra
of type A, Hn(q):

S = {
(gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) . . . (gip gi p−1 . . . gip−kp )

}
,

for 1 ≤ i1 < · · · < i p ≤ n − 1 .
The basis S yields directly an inductive basis for Hn(q), which is used in the

construction of the Ocneanu trace, leading to the HOMFLYPT or 2-variable Jones
polynomial.

We also introduce in H1,n(q) the ‘looping elements’

t ′0 = t0 := t, t ′i = gi . . . g1tg
−1
1 . . . g−1

i and ti = gi . . . g1tg1 . . . gi (7.7)

that correspond to the elements of Eq.7.4 of B1,n .
From [14] we have:

Theorem 7.2 ([14, Proposition 1 and Theorem 1]) The following sets form linear
bases for H1,n(q):

(i) Σn = {t k1i1 . . . t krir · σ }, where 0 ≤ i1 < . . . < ir ≤ n − 1,
(i i) Σ ′

n = {t ′i1 k1 . . . t ′ir
kr · σ }, where 0 ≤ i1 < . . . < ir ≤ n − 1,

where k1, . . . , kr ∈ Z and σ a basic element in Hn(q).

For an illustration of the ti ’s and the t ′i ’s recall Fig. 7.8.

Remark 7.2 Note that the form of the elements in the set Σ ′
n is consistent with

the Artin combing in the mixed braid group B1,n (recall Remark 7.1). However the
looping part of a mixed braid after the combing contains elements of a free group
on n generators, so the indices as well as the exponents have no restrictions. In
Theorem 7.2 though, the indices of the ti ’s and the t ′i ’s in the above sets are ordered
but are not necessarily consecutive, neither do they need to start from t . Also, the
exponents are arbitrary.

Notation 7.2 We shall denote

Σ :=
⋃

n

Σn and similarly Σ ′ :=
⋃

n

Σ ′
n. (7.8)

7.3 The HOMFLYPT Skein Module of the Solid Torus

In [11, 23] the HOMFLYPT skein module of the solid torus ST has been computed
using diagrammatic methods by means of the following theorem:
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Fig. 7.12 A basic element
of S(ST)

Theorem 7.3 (Turaev, Kidwell–Hoste) The skein module S(ST) is a free, infinitely
generated Z[u±1, z±1]-module isomorphic to the symmetric tensor algebra SRπ̂0,
where π̂0 denotes the conjugacy classes of non trivial elements of π1(ST).

In the diagrammatic setting of [11, 23], ST is considered as Annulus × Interval.
A basic element of S(ST) in the context of [11, 23], is illustrated in Fig. 7.12. The
HOMFLYPT skein module of ST is particularly important, because any closed,
connected, oriented (c.c.o.) 3-manifold can be obtained by surgery along a framed
link in S3 with unknotted components. Such component can be viewed as a solid
torus complementing ST in S3.

7.3.1 Recovering S (ST) Using Algebraic Means

In [14] the bases Σ ′
n are used for constructing a Markov trace on

⋃∞
n=1 H1,n(q).

Theorem 7.4 ([14, Theorem 6]) Given z, sk , with k ∈ Z specified elements in R =
Z

[
q±1

]
, there exists a unique linear Markov trace function

tr :
∞⋃

n=1

H1,n(q) → R (z, sk) , k ∈ Z

determined by the rules:

(1) tr(ab) = tr(ba) for a, b ∈ H1,n(q)

(2) tr(1) = 1 for all H1,n(q)

(3) tr(agn) = ztr(a) for a ∈ H1,n(q)

(4) tr(at ′n
k
) = sk tr(a) for a ∈ H1,n(q), k ∈ Z.

Note that the use of the looping elements t ′i enable the trace tr to be defined by just
extending by rule (4) the three rules of the Ocneanu trace on the algebras Hn(q) [12],
recall Remark 7.1. Using tr the second author constructed a universal HOMFLYPT-
type invariant for oriented links in ST. Namely, let L denote the set of oriented links
in ST. Then:
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Theorem 7.5 ([14, Definition 1]) The function X : L → R(z, sk)

X α̂ = Δn−1 ·
(√

λ
)e

tr (π (α)) ,

where Δ := − 1−λq√
λ(1−q)

, λ := z+1−q
qz , α ∈ B1,n is a word in the σi ’s and t ′i ’s, α̂ is the

closure of α, e is the exponent sum of the σi ’s in α, and π the canonical map of B1,n

on H1,n(q), such that t �→ t and σi �→ gi , is an invariant of oriented links in ST.

In the braid setting of [14], the elements of S(ST) correspond bijectively to the
elements of the following set Λ′:

Λ′ = {t k0 t ′1k1 . . . t ′n
kn , ki ∈ Z \ {0}, ki ≥ ki+1 ∀i, n ∈ N}. (7.9)

So, we have that Λ′ is a basis of S(ST) in terms of braids. Note that Λ′ is a subset of⋃
n H1,n and, in particular,Λ′ is a subset of Σ ′. Note also that in contrast to elements

in Σ ′, the elements in Λ′ have no gaps in the indices, the exponents are ordered and
there are no ‘braiding tails’.

Remark 7.3 TheLambropoulou invariant X recoversS(ST), because it gives distinct
values to distinct elements of Λ′, since tr(t k0 t ′1

k1 . . . t ′n
kn ) = skn . . . sk1sk0 .

Note also that the invariant X is defined by the skein relation:

1√
q
√

λ
XL+ − √

q
√

λXL− =
(√

q − 1√
q

)
XLo

and an infinitum of initial conditions, one for each element in S(ST) as shown in
Fig. 7.12. Namely, if U denotes the unknot, then XU = 1 and X ̂t k0 t ′1

k1 ...t ′n
kn

= Δn−1 ·
skn . . . sk1sk0 .

7.3.2 The New Basis, Λ, of S(ST)

In [4] we give a different basis Λ for S(ST), which was predicted by J. Przytycki
and which is described in Eq.7.10 in open braid form (Figs. 7.13 and 7.14).

Theorem 7.6 ([4, Theorem 2]) The following set is a Z[q±1, z±1]-basis for S(ST):

Λ = {t k0 t k11 . . . t knn , ki ∈ Z \ {0}, ki ≥ ki+1 ∀i, n ∈ N}. (7.10)

The importance of the new basisΛ of S(ST) lies in the simplicity of the algebraic
expression of a braid band move, which extends the link isotopy in ST to link isotopy
in L(p, 1) and this fact was our motivation for establishing this new basis Λ (recall
Theorem 7.1(iv), Remark 7.1 and Fig. 7.10).
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Fig. 7.13 Elements in two
different bases of S(ST)

Fig. 7.14 An element of the
new basis Λ

Notice that comparing the set Λ with the set Σ , we observe that there are no gaps
in the indices of the ti ’s and the exponents are in decreasing order. Also, there are no
‘braiding tails’ in the words in Λ.

Our method for proving Theorem 7.6 is the following:
• We define total orderings in the sets Λ′ and Λ,
• we show that the two ordered sets are related via a lower triangular infinite

matrix with invertible elements on the diagonal, and
• using this matrix, we show that the set Λ is linearly independent.
In order to relate the two sets via a lower triangular infinite matrix we start with

elements in the basic set Λ′ and we first convert them into sums of elements in Σ ,
containing the linear bases of the algebras H1,n(q). These elements consist of two
parts: arbitrary monomials in the ti ’s followed by ‘braiding tails’ in the bases of the
algebras Hn(q). Then, these elements are converted into elements in the set Λ by:

• managing the gaps in the indices,
• by ordering the exponents of the ti ’s and
• by eliminating the ‘braiding tails’.

It is worth mentioning that these procedures are not independent in the sense that
when, for example one manages the gaps in the indices of the looping generators
ti ’s, ‘braiding tails’ may occur and also the exponents of the ti ’s may alter. Similarly,
when the ‘braiding tails’ are eliminated, gaps in the indices of the ti ’s might occur.
This is a long procedure that eventually stops and only elements in the set Λ remain.
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7.3.3 An Ordering for the Sets Σ ′,Σ,Λ′ and Λ

For defining orderings in the sets Σ,Σ ′,Λ and Λ′ we need the notion of the index
of a word w in any of these sets, denoted ind(w). In Λ′ or Λ ind(w) is defined to be
the highest index of the t ′i ’s, resp. of the ti ’s in w. Similarly, in Σ ′ or Σ , ind(w) is
defined as above by ignoring possible gaps in the indices of the looping generators
and by ignoring the braiding parts in the algebras Hn(q). Moreover, the index of a
monomial in Hn(q) is equal to 0.

Example 7.1

i. ind(t ′k0 t ′1
k1 . . . t ′nkn ) = n = ind(t k0 t1k1 . . . tnkn )

i i. ind(t k0 t k22 · σ) = 2 , σ ∈ Hn(q)

i i i. ind(σ ) = 0 , σ ∈ Hn(q)

We now proceed with defining an ordering relation in the sets Σ and Σ ′, which
passes to their respective subsets Λ and Λ′:

Definition 7.1 ([4, Definition 2]) Let w = t ′i1
k1 . . . t ′iμ

kμ · β1 and u = t ′j1
λ1 . . . t ′jν

λν ·
β2 in Σ ′, where kt , λs ∈ Z for all t, s and β1, β2 ∈ Hn(q). Then, we define the
following ordering in Σ ′:

(a) If
∑μ

i=0 ki <
∑ν

i=0 λi , then w < u.
(b) If

∑μ

i=0 ki = ∑ν
i=0 λi , then:

(i) if ind(w) < ind(u), then w < u,
(ii) if ind(w) = ind(u), then:
(α) if i1 = j1, . . . , is−1 = js−1, is < js , then w > u,
(β) if it = jt for all t and kμ = λμ, kμ−1 = λμ−1, . . . , ki+1 = λi+1, |ki | < |λi |,
then w < u,
(γ ) if it = jt for all t and kμ = λμ, kμ−1 = λμ−1, . . . , ki+1 = λi+1, |ki | = |λi |
and ki > λi , then w < u,
(δ) if it = jt ∀t and ki = λi , ∀i , then w = u.

The ordering in the set Σ is defined as in Σ ′, where t ′i ’s are replaced by ti ’s.

Example 7.2

i. t2t ′1
8

< t6t ′1
10 since 2 + 8 < 6 + 10 , (Def. 7.1a)

ii. t2t ′1
8

< t3t ′1
4t ′2

3 since ind(t2t ′1
8
) < ind(t3t ′1

4t ′2
3
) , (Def. 7.1b(i))

iii. t2t ′1
3t ′3

4t ′4
8

< t8t ′1t ′2t ′4
7 since 3 = i3 > j3 = 2 , (Def. 7.1b(ii)(α))

iv. t2t ′1
4t ′3t ′4

3
< t14t ′1

−8t ′3t ′4
3 since |4| < | − 8| , (Def. 7.1b(ii)(β))

v. t t ′1
4t ′3t ′4

3
< t10t ′1

−4t ′3t ′4
3 since − 4 < 4 , (Def. 7.1b(ii)(γ ))

In order to eventually get to the infinite matrix relating the two basic sets Λ′ and
Λ we need to define the subsets of level k, Λ(k) and Λ′

(k), of Λ and Λ′ respectively
[4, Definition 3], to be the sets:



158 I. Diamantis and S. Lambropoulou

Λ(k) := {t k00 t k11 . . . t kmm | ∑m
i=0 ki = k, ki ∈ Z \ {0}, ki ≥ ki+1 ∀i}

Λ′
(k) := {t ′0k0 t ′1k1 . . . t ′m

km | ∑m
i=0 ki = k, ki ∈ Z \ {0}, ki ≥ ki+1 ∀i}

(7.11)

In [4] it was shown that the setsΛ(k) andΛ′
(k) are totally ordered and well ordered for

all k ([4, Propositions 1 and 2]). Note that the sets Λ and Λ′ admit a natural grading:
Λ = ⊕

k
Λ(k) and Λ′ = ⊕

k
Λ′

(k).

In the rest of the section we will be using the ordering in the transitions from Σ ′
to Σ and from Σ to Λ.

7.3.4 From Λ′ to Σ

In this subsection we convert monomials in the t ′i ’s to expressions containing the ti ’s.
Full details and related technical lemmas are provided in [4]. In order to simplify the
expressions in this step we first introduce the following notation.

Notation 7.3 We set τ
ki,i+m

i,i+m := t kii . . . t ki+m

i+m and τ ′ki,i+m

i,i+m := t ′kii . . . t ′ki+m

i+m , for m ∈ N,
k j �= 0 for all j .

We now introduce the notion of homologous words, which is crucial for relating
the sets Λ′ and Λ via a triangular matrix.

Definition 7.2 ([4, Definition 4]) We say that two words w′ ∈ Λ′ and w ∈ Λ are
homologous, denoted w′ ∼ w, if w is obtained from w′ by changing t ′i into ti
for all i .

Example 7.3 The words t2t ′1
−1t ′2

3 and t2t1−1t23 are homologous. Note also thatΛ′ �
t ∼ t ∈ Λ.

In [4, Lemma 11] it is shown that the following relations hold in H1,n(q) for
k ∈ Z\{0}:

t ′m
k = q−mktkm + ∑

i fi (q)t kmwi + ∑
i gi (q)tλ0 tλ1

1 . . . tλm
m ui

where wi , ui ∈ Hm+1(q), ∀i , ∑m
i=0 λi = k and λi ≥ 0, ∀i , if k > 0 and λi ≤ 0, ∀i ,

if k < 0.
Using now these relations, we have that every element inΛ′ can be expressed as a

linear sum of each homologous word, the homologous word with ‘braiding tails’ and
elements in Σ of lower order, as illustrated abstractly in Fig. 7.15. More precisely:

Theorem 7.7 ([4, Theorem 7]) The following relations hold in H1,n(q) for kr ∈
Z, r = 0, . . . ,m:

τ ′k0,m
0,m = q− ∑m

n=1 nkn · τ
k0,m
0,m +

∑

i

fi (q) · τ
k0,m
0,m · wi +

∑

j

g j (q) · τ j · u j ,
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Fig. 7.15 Illustrating Theorem 7.7

where wi , u j ∈ Hm+1(q), for all i, j , τ j a monomial of the ti ’s such that τ j < τ
k0,m
0,m

for all j and fi , g j ∈ C, for all i, j .

Example 7.4 We shall now give examples of monomials in Λ′ converted into sums
of elements in Σ using technical lemmas from [4] ([4, Lemmas 3, 4, 5, 6, 9 and
11]). The examples provide at the same time the motivation for the subsections that
follow.

i. Consider the monomial t t ′1t ′2
−2 ∈ Λ′. We have that:

t t ′1t ′2
−2 = q3 · t t1t−2

2 + q4(q−1 − 1) · t t1t−2
2 · g−1

1 +

+ 1 ·
[
(q − 1)2g−1

1 g−1
2 − (q − 1)3(g−2

1 − q−1)g−1
2 − q−1(q − 1)3g2g

−1
1 g−1

2

]
+

+ t t−1
1 ·

[
(q − 1)(q2 − q + 1) · g−1

2 − (q − 1)2 · g1g2g−1
1 g−1

2

]
+

+ t t−1
2 ·

[
q2(q − 1) · g−1

2 + q(q − 1)3 · g−1
2 − q(q − 1)2 · g2g−1

1 g−1
2

]
+

+ t1t
−1
2 ·

[
q(q − 1) · g2g−1

1 g−1
2 − q(q − 1)2 · g−1

1 g−1
2

]
+

+ t−1t1 ·
[
−(q − 1) · g2g−1

1 g−1
2 − q−1(q − 1)2 · g−1

1 g−1
2

]

So, we obtain the homologous word w = t t1t
−2
2 , the word w again followed by

the braiding element g−1
1 and terms in Σ of order less than w: since either their

index is less that ind(w) (the terms 1, t t−1
1 and t−1t1), or they contain gaps in

the indices (the terms t t−1
2 and t1t

−1
2 ).

i i. A simpler example is the following:

t t ′1
−2 = t t1

−2 − (q−1 − 1)t1
−1 · g−1

1 + (q−1 − 1)t−1 · g1

We obtained the homologous word t t1−2, the element t−1 · g1 in Σ comprising
the monomial t−1 with gaps in the indices, followed by ‘braiding tail’ g−1

1 and
also the lower order term t−1g1 in the Hn(q)-module Λ.



160 I. Diamantis and S. Lambropoulou

In Theorem 7.7 note that in the right hand side there are terms which do not
belong to the set Λ. The point now is that these terms are elements in the set of
bases Σ on the Hecke algebras H1,n(q), but, when we are working in S(ST), which
is the knots and links level, such elements must be considered up to conjugation
by any generator of the algebra and up to stabilization moves (recall Theorem 7.1).
Topologically, conjugation corresponds to closing a mixed braid.

7.3.5 From Σ to Λ: Managing the Gaps

In this subsection we show how to deal with monomials in Σ where the looping
elements do not have consecutive indices. We call gaps in monomials of the ti ’s any
gaps occurring in the indices. After managing, that is eliminating, the gaps we pass
to the augmented Hn(q)-module Λaug , which consists of monomials in the ti ’s with
consecutive indices but not necessarily ordered exponents.

Definition 7.3 ([5, Definition 3]) We define the sets:

Λaug
n := {t k00 t k11 . . . t knn , ki ∈ Z

∗}, Λaug :=
⋃

n∈N

Λaug
n ,

and the subset of level k of Λaug Λ
aug
(k) :

Λ
aug
(k) :=

{

t k00 t k11 . . . t kmm |
m∑

i=0

ki = k, ki ∈ Z
∗
}

.

Note that in [5] the set Λaug is denoted by L . Obviously the set Λ (Eq. 7.10) is a
subset of Λaug .

Notation 7.4 Whenever we talk about a module with coefficients in
⋃

n∈N
Hn(q)

we shall be denoting it by Hn(q)-module.

In what follows for the expressions that we obtain after appropriate conjugations
we shall use the notation =̂.

Theorem 7.8 ([4, Theorem 8]) Let τ be a monomial in the ti ’s with gaps in the
indices. Then we have that:

τ =̂
∑

i

τi · βi ,

where τi ∈ Λaug and βi ∈ ⋃
n∈N

Hn(q) for some n ∈ N and for all i .

Theorem 7.8 is best demonstrated in the following example on a word with two
gaps. Note that we underline expressions which are crucial for the next step.
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Example 7.5 For the 2-gap word t k0 t k11 t3t25 t
−1
6 ∈ Σ we have:

tk0 t
k1
1 t3t

2
5 t

−1
6 = tk0 t

k1
1 g3t2g3t

2
5 t

−1
6 = g3t

k0 t
k1
1 t2t

2
5 t

−1
6 g3 =̂

=̂ tk0 t
k1
1 t2t

2
5 t

−1
6 g23 = tk0 t

k1
1 t2t5t5t

−1
6 g23 =

= tk0 t
k1
1 t2g5g4t3g4g5t5t

−1
6 g23 = g5g4t

k0 t
k1
1 t2t3g4g5t5t

−1
6 g23 =̂

=̂ tk0 t
k1
1 t2t3g4g5t5t

−1
6 g23g5g4 =

= tk0 t
k1
1 t2t3

[
q2t3g4g5 + q(q − 1)t4g5 + (q − 1)t5g4

]
t−1
6 g23g5g4 =

= q2tk0 t
k1
1 t2t

2
3 g4g5t

−1
6 g23g5g4 + q(q − 1)tk0 tk11 t2t3t4g5t

−1
6 g23g5g4 +

+ (q − 1)tk0 tk11 t2t3t5g4t
−1
6 g23g5g4 =

= q2tk0 t
k1
1 t2t

2
3 t

−1
6 g4g5g

2
3g5g4 + (q − 1)tk0 tk11 t2t3t5t

−1
6 g4g

2
3g5g4 +

+ q(q − 1)tk0 tk11 t2t3t4t
−1
6 g5g

2
3g5g4 =̂

=̂ q2tk0 t
k1
1 t2t

2
3 g

−1
6 g−1

5 t−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4 + q(q − 1)tk0 tk11 t2t3t4g

−1
6 t−1

5 g−1
6 g5g

2
3g5g4 +

+ (q − 1)tk0 tk11 t2t3g5t4g5t
−1
6 · (g4g

2
3g5g4) =

= q2g−1
6 g−1

5 tk0 t
k1
1 t2t

2
3 t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4 + q(q − 1)g−1

6 tk0 t
k1
1 t2t3t4t

−1
5 g−1

6 g5g
2
3g5g4 +

+ (q − 1)g5t
k0 t

k1
1 t2t3t4t

−1
6 g5g4g

2
3g5g4 =̂

=̂ q2tk0 t
k1
1 t2t

2
3 t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4g

−1
6 g−1

5 + q(q − 1)tk0 tk11 t2t3t4t
−1
5 g−1

6 g5g
2
3g5g4g

−1
6 +

+ (q − 1)tk0 tk11 t2t3t4t
−1
6 g5 · (g4g

2
3g5g4g5) =

= q2tk0 t
k1
1 t2t

2
3 t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4g

−1
6 g−1

5 + q(q − 1)tk0 tk11 t2t3t4t
−1
5 g−1

6 g5g
2
3g5g4g

−1
6 +

+ (q − 1)tk0 tk11 t2t3t4g
−1
6 t−1

5 g−1
6 g5g4g

2
3g5g4g5 =̂

=̂ q2tk0 t
k1
1 t2t

2
3 t

−1
4 g−1

5 g−1
6 g4g5g

2
3g5g4g

−1
6 g−1

5 + q(q − 1)tk0 tk11 t2t3t4t
−1
5 g−1

6 g5g
2
3g5g4g

−1
6 +

+ (q − 1)tk0 tk11 t2t3t4t
−1
5 g−1

6 g5g4g
2
3g5g4g5g

−1
6
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7.3.6 From the Hn(q)-Module Σ to the Hn(q)-Module Λ:
Ordering the Exponents

By Theorem 7.8 we have to deal with elements inΛaug , where the looping generators
have consecutive indices but their exponents are not in decreasing order, followed
by ‘braiding tails’. We show that these elements are conjugate equivalent to sums
of elements in the Hn(q)-module Λ, namely, elements in Λ followed by ‘braiding
tails’.

Theorem 7.9 ([4, Theorem 9]) For an element in the Hn(q)-module Λaug we have
that:

τ
k0,m
0,m · w =̂

∑

j

τ
λ0, j

0, j · wj ,

where τ
λ0, j

0, j ∈ Λ and w,wj ∈ ⋃
n∈N

Hn(q) for all j .

Example 7.6 Consider the element t t21 t
3
2 ∈ Λaug and apply Theorem 7.9 on the first

‘bad’ exponent occurring in the word, starting from right to left. In that way we
obtain a word with one less ‘bad’ exponent, so applying Theorem 7.9 again we
obtain elements in the set Λ followed by braiding tails. More precisely:

t t21 t
3
2 =̂ a · t3t21 t2 · u1 + b · t2t21 t22 · u2 + c · t4t1t2 · u3

where u1, u2, u3 ∈ H3(q), for all i and a, b, c ∈ C[q±1].

7.3.7 From the Hn(q)-Module Λ to Λ: Eliminating the Tails

So far we have seen how to convert elements in the basis Λ′ to sums of elements
in Σ and then, using conjugation, how these elements are expressed as sums of
elements in the Hn(q)-module Λ. We now present results on how using conjugation
and stabilization moves all these elements in the Hn(q)-module Λ are expressed as
sums of elements in the set Λ with scalars in the field C. We will use the symbol �
when a stabilization move is performed and �̂ when both stabilization moves and
conjugation are used. More precisely, in [4] we prove the following:

Theorem 7.10 ([4, Theorem 10]) For a word in the Hn(q)-module, Λ we have:

τ
k0,m
0,m · wn �̂

∑

j

f j (q, z) · τ
v0,u j
0,u j

,

such that
∑

v0,u j = ∑
k0,m, τ

v0,u j
0,u j

∈ Λaug and τ
v0,u j
0,u j

< τ
k0,m
0,m for all j .
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Example 7.7 In this example we demonstrate how to eliminate the ‘braiding tail’ in
a word.

t3t21 t
−1
2 g−1

1 = t3t1t
−1
2 t1g

−1
1 = t3t1t

−1
2 g1t =̂ t4t1t

−1
2 g1 = t4t−1

2 t1g1 =

= (q − 1)t4t1t
−1
2 + qt4t−1

2 g1t =̂ (q − 1)t5t−1
2 g21 + qt5t−1

2 g1 =

= (q − 1)t5t−1
1 g−1

2 g21g
−1
2 + qt5t−1

1 g−1
2 g1g

−1
2 .

We have that:

g−1
2 g21g

−1
2 = q−2(q − 1)g1g2g1 − (q−1 − 1)2g2g1 − (q−1 − 1)2g1g2 +

+ (q − 1)(q−1 − 1)2g1 + q(q−1 − 1)g−1
2 + 1,

g−1
2 g1g

−1
2 = q−2g1g2g1 + q−1(q−1 − 1)g2g1 + q−1(q−1 − 1)g1g2 +

+ (q−1 − 1)2g1,

and so

(q − 1) · t5t−1
1 g−1

2 g21g
−1
2 �̂

(
(q − 1) + q−1(q − 1)3

)
· t5t−1

1 − q−3(q−1 − 1)3z2 · t4+

+ 3q−3(q − 1)4z · t4 − q−1(q − 1)2z · t4 − q−3(q − 1)5 · t4,

q · t5t−1
1 g−1

2 g1g
−1
2 �̂ z · t5t−1

1 + q−1(q−1 − 1)z2 · t4 + 2(q−1 − 1)2z · t4+

+ q(q−1 − 1)3 · t4.

Remark 7.4 This is a long procedure, since eliminating the tails will give rise to
gaps in the indices again. Recall however that when managing gaps in the indices
and ordering the exponents of the ti ’s we also obtain ‘braiding tails’. This is a long
procedure which, as shown in [4] using complex and technical inductions, this pro-
cedure eventually terminates and only elements in Λ remain. This means that Λ is
a generating set for S(ST). This procedure is abstractly demonstrated in Fig. 7.16.
In the figure, we start with a word τ ′ in the old basis of S(ST), Λ′, and applying
Theorems 7.8–7.10 we end up with a linear combination of the homologous word
τ ∈ Λ and of elements λi ∈ Λ smaller than τ .
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Fig. 7.16 From Λ′ to Λ

7.3.8 The Infinite Matrix

With the orderings given in Definition 7.1, in [4] we showed that the infinite matrix
converting elements of the basis Λ′ of S(ST) to elements of the set Λ is a block
diagonal matrix, where each block corresponds to a subset of Λ′ of level k and it
is an infinite lower triangular matrix with invertible elements in the diagonal. This
constitutes our strategy for proving Theorem 7.6. More precisely, fixing the level k
of a subset of Λ′, the proof of Theorem 7.6 is based on the following:

(1) Amonomialw′ ∈ Λ′
(k) ⊆ Λ′ can be expressed as linear combinations of elements

in Λ(k) ⊆ Λ, vi , followed by monomials in Hn(q), with scalars in C such that
there exists j : v j = w ∼ w′.

(2) Applying conjugation and stabilization moves on all vi ’s results in elements ui
in Λ(k), such that ui < vi for all i .

(3) The coefficient of w is an invertible element in C.
(4) Λ(k) � w < u ∈ Λ(k+1).
(5) Using this infinite diagonal matrix, in [4, Theorem 11] we showed that the set

Λ is linearly independent. Hence, using the above and Remark 7.4, Λ forms a
basis for the HOMFLYPT skein module of ST.
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7.4 Topological Steps Toward S (L( p, 1))

We now return to our initial aim, that is, the computation of the HOMFLYPT skein
module of a lens space L(p, 1). As explained in the Introduction, in order to compute
S(L(p, 1)) we need to normalize the invariant X (recall Theorem 7.5) by forcing it
to satisfy all possible braid band moves (bbm), recall Eq.7.1. At this point the reader
should recall the discussion in the Introduction culminating to Eq.7.2. In order to
simplify this system of equations, in [5] we first show that performing a bbm on a
mixed braid in B1,n reduces to performing bbm’s on elements in the canonical basis,
Σ ′

n , of the algebra H1,n(q) and, in fact, on their first moving strand. We then reduce
the equations obtained from elements in Σ ′ to equations obtained from elements in
Σ . In order now to reduce further the computation to elements in the basis Λ of
S(ST), we first recall that elements in Σ consist in two parts: a monomial in ti ’s
with possible gaps in the indices and unordered exponents, followed by a ‘braiding
tail’ in the basis of Hn(q). So, we first manage the gaps in the indices of the looping
generators of elements in Σ , obtaining elements in the augmented Hn(q)-module
Λaug (followed by ‘braiding tails’). Note that the performance of bbm’s is now
considered to take place on any moving strand. We then show that the equations
obtained from elements in the Hn(q)-module Λaug by performing bbm’s on any
strand are equivalent to equations obtained from elements in the Hn(q)-module Λ

by performing bbm’s on any strand (ordering the exponents in the ti ’s). We finally
eliminate the ‘braiding tails’ from elements in the Hn(q)-module Λ and reduce the
computations to the setΛ, where the bbm’s are performed on any moving strand (see
[5]). Thus, in order to compute S(L(p, 1)), it suffices to solve the infinite system
of equations obtained by performing bbm’s on any moving strand of elements in
the set Λ.

In this section we present the above steps in more details. The procedure is similar
to the one described in [4] (seeSect. 7.2 in this paper), but nowwedo it simultaneously
before and after the performance of a braid band move.

7.4.1 Reducing Computations from B1,n to Σ ′
n

We now show that it suffices to perform bbm’s on elements in the linear basis of
H1,n(q), Σ ′. As already mentioned, this is the first step in order to restrict the per-
formance of bbm’s only on elements in the basis Λ. We first recall that by the Artin
combing we can write words in B1,n in the form τ ′ · w, where τ ′ is a monomial in
the t ′i ’s and w ∈ Bn (Remark 7.1). We then note the following:

Lemma 7.1 Braid band moves are interchangeable with the Artin combing.

Proof Let d ∈ B1,n . Then, the proof is clear from the following diagram:
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B1,n � d
(±)(p,1)bbm−−−−−−−→ t pd ′ · σ±1

1⏐⏐�Artin combing

⏐⏐�Artin combing

τ ′
1 · w (±)(p,1)bbm−−−−−−−→ t pτ ′

2 · σ±1
1

�

Lemma 7.2 ([5, Lemma 2]) Braid band moves and the quadratic relation (skein
relation) are interchangeable.

Proof By Lemma 7.1, a word in B1,n can be assumed in the form τ ′
1 · w, where τ ′

1
is a monomial in t ′i ’s and w ∈ Bn . Seen as a monomial in Hn(q) and applying the
quadratic relation, the element w can be written as a sum: w = ∑n

i=1 fi (q)wi , where
the wi ’s are words in Hn(q) in canonical form and the fi (q) are expressions in C for
all i . We perform a braid band move on the element τ ′

1 · w ∈ B1,n and we obtain:

τ ′
1 · w (±)(p,1)−−−−→

bbm
t pτ ′

2 · w+σ±1
1 ,

where w+ ∈ Bn+1 is the same word as w but with all indices shifted by one. Hence,
on the algebra level we have wi ∈ Hn(q) and w+ = ∑n

i=1 fi (q)wi+ ∈ Hn+1(q). So:

τ ′
1 · w = τ ′

1 ·
n∑

i=1

fi (q)wi
(±)(p,1)−−−−→
bbm

t pτ ′
2 ·

n∑

i=1

fi (q)wi+g
±1
1 .

On the other hand, for each mixed braid τ ′
1 · wi we also have:

τ ′
1 · wi

(±)(p,1)−−−−→
bbm

t pτ ′
2 · wi+σ±1

1 ∀ i,

and thus, on the algebra level we finally obtain:

τ ′
2 ·

n∑

i=1

fi (q)wi g
±1
1 = t pτ ′

2 · w+g±1
1 .

That is, the following diagram commutes:

τ ′
1 · w (±)(p,1)bbm−−−−−−−→ t pτ ′

2 · w+σ±1
1⏐⏐

�quadratic

⏐⏐
�quadratic

∑
i fi (q)τ ′

1 · wi
(±)(p,1)bbm−−−−−−−→ ∑

i fi (q)t pτ ′
2 · wi+g

±1
1

See also Fig. 7.17. So the proof is concluded.
�
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Fig. 7.17 Proof of Lemma 7.2

Furthermore we have:

Lemma 7.3 The procedure of bringing a looping monomial in the t ′i ’s in the form
of elements in the sets Σ ′

n of Theorem 7.2 is consistent with the braid band moves.

Proof Let τ ′
1 · w be an element in B1,n and t pτ ′

2 · w+ · σ±1
1 the result of a performance

of a bbm on τ ′
1 · w. We now follow [14, Proposition 2 and Theorem 1] so as to order

the indices of the monomials τ ′
1 and τ ′

2 in the t ′i ’s (before and after the performance
of the bbm). Cabling the first moving strand coming from the performance of the
bbmwith the fixed strand of the mixed braid, and viewing this cable as one thickened
strand, we have that the procedurewe follow to order the indices of the t ′i ’s is identical
before and after the performance of the bbm and this concludes the proof. �

Using Lemmas 7.1, 7.2 and 7.3 we now have the following:

Proposition 7.1 ([5, Proposition 1]) It suffices to consider the performance of braid
band moves on the first strand of only elements in the set Σ ′.

Proof By the Artin combing, any d ∈ B1,n can be written in the form τ ′ · w, where
τ ′ is a monomial in t ′i ’s and w ∈ Bn . By Lemma 7.1 we have that:
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X
τ̂ ′·w = X ̂t pτ ′′ ·σ±1

1 ·w+

(Lemma 7.2)⇒
∑

i Ai · X
τ̂ ′ ·wi

= ∑
i Ai · X ̂t pτ ′′ ·σ±1

1 ·wi+
,

where wi are words in reduced form in Hn(q), ∀i and Ai ∈ C. Then, we order the
indices of the monomials in the t ′i ’s before and after the performance of the bbm. The
result follows from Lemma 7.3. �

7.4.2 From the Set Σ ′ to the Set Σ

We shall now show that it suffices to perform bbm’s on elements in the linear bases
Σ of the algebras H1,n(q), which includes as a proper subset the basis Λ of S(ST),
described in Sect. 7.3.2. Indeed, let τ ′ · w ∈ Σ ′ as above. Then, by (7.7) we have:

τ ′ · w = (tk0 t ′1
k1 . . . t ′m

km ) · w = tk0 (t1g
−2
1 )k1 . . . (tmg

−1
m . . . g−1

2 g−2
1 g−1

2 . . . g−1
m )km

︸ ︷︷ ︸
τ

· w =

= τ · w,

see top row of Fig. 7.18.
We then perform a bbm on the first moving strand of both τ ′ · w and τ · w (see

bottom rowofFig. 7.18) andwecable the newparallel strand togetherwith the surgery
strand. Denote the result of cabling the new strand appearing after the performance
of the bbm with the fixed strand as cbl(ps). Then:

τ ′ · w bbm→ cbl(ps) · τ ′ · w · g±1
1‖ ‖

τ · w bbm→ cbl(ps) · τ · w · g±1
1

So: X
τ̂ ′ ·w = X ̂bbm(τ ′ ·w)

⇔ X̂τ ·w = X ̂bbm(τ ·w)
. But since τ · w ∈ H1,n(q) for some

n ∈ N, we can express τ · w as a sum of elements in the linear basis Σn of H1,n(q),
that is, τ · w = ∑

i ai Ti · wi , where ai ∈ C and Ti · wi ∈ Σn , for all i and Ti is a
monomial in the t j ’s with possible gaps in the indices and unordered exponents.
Then, by Theorem 7.5:

X̂τ ·w = X ̂bbm(τ ·w)
⇔ tr(τ · w) = Δ · tr (

cbl(ps)τ · w · g±1
1

)

⇔ ∑
i ai tr(Ti · wi ) = Δ · ∑

i ai tr
(·cbl(ps)Ti · wi · g±1

1

)
.
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Fig. 7.18 Proof of
Proposition 7.2

We conclude that:

τ ′ · w bbm→ cbl(ps) · τ ′ · w · g±1
1 (∗)

‖ ‖
τ · w bbm→ cbl(ps) · τ · w · g±1

1‖ ‖
∑

i ai · Ti · wi
bbm→ ∑

i ai · t pTi+ · wi+g±1
1 (∗∗)
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The main points in the above procedure is that when performing a bbm, the
looping generators ti (in some H1,n) remain formally the same (in some H1,n+1). This
implies that after the bbm and the cabling operation, thewords τ ′ · w and τ · w remain
formally the same. Furthermore, when converting the words τ · w and bbm(τ · w)

into linear sums of elements in the bases Σn and Σn+1 respectively, the coefficients
ai ∈ C in (∗∗) remain the same.

The above are summarized in the following proposition:

Proposition 7.2 ([5, Proposition 2]) The equations

XT̂ ′·w = X ̂bbm1(T ′ ·w)
(7.12)

result from equations of the form

XT̂ ·w = X ̂t pT+·w+·g±1
1

, (7.13)

where T ′ · w ∈ Σ ′ and T · w ∈ Σ .

7.4.3 From the Set Σ to the Hn(q)-Module Λaug: Managing
the Gaps

As mentioned in Sect. 7.3, a word in Σ is a monomial in the ti ’s followed by a
‘braiding tail’, a monomial in the gi ’s. This ‘braiding tail’ is a word in the algebra
Hn(q) and the monomial in the ti ’s may have gaps in the indices. Using the ordering
relation given in Definition 7.1 and conjugation these gaps are managed by showing
that a monomial in the ti ’s can be expressed as a sum of monomials in the ti ’s with
consecutive indices, which are of less order than the initial word and which are
followed by ‘braiding tails’ (Theorem 7.8). Note that the exponents of the ti ’s are in
general not ordered, so these end monomials do not necessarily belong to the basis
Λ of S(ST). In order to restrict the bbm’s only on elements in Λ, we need first to
augment the set Λ. So, as a first step we consider the augmented set Λaug in S(ST)

that contains monomials in the ti ’s with consecutive indices but arbitrary exponents.
Note that, due to the presence of ‘braiding tails’, the set Λaug is considered as an
Hn(q)-module.

Wenowproceedwith showing thatEq. (7.13) (Proposition 7.2) reduce to equations
of the same type, but with elements in the set Λaug . For that, we need the following
lemma about the monomial t k1 ∈ Σ \Λaug , which serves as the basis of the induction
applied for proving the main result of this section, Proposition 7.3.
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Lemma 7.4 ([5, Lemma 3]) The equations Xt̂k1
= X ̂t p tk2 σ±1

1

are equivalent to the

equations
Xt̂u0 t1u1

= X ̂t p t
u0
1 t

u1
2 σ±1

1

, ∀ u0, u1 < k : u0 + u1 = k,

Xt̂k = X ̂t p tk1 σ±1
1

, bbm on 1st strand, t k ∈ Σ2,

Xt̂k = X ̂t p tk1 σ2σ
±1
1 σ−1

2

bbm on 2nd strand, t k ∈ Σ2.

Indeed, in [5] we prove that:

t k1
bbm−→
1st str.

t ptk2σ
±1
1

�̂ �̂
(q−1)2

∑k−2
j=0

∑k−2− j
φ=0 q j+φ t j+1+φ t k−1− j−φ

1

bbm−→
1st str.

(q−1)2
∑k−2

j=0

∑k−2− j
φ=0 q j+φ t p t j+1+φ

1 t k−1− j−φ

2 σ±1
1

(q − 1)(k − 1)qk−1ztk
bbm−→
1st str.

(q − 1)(k − 1)qk−1zt ptk1σ
±1
1

(q − 1)qk−1ztk
bbm−→
1st str.

(q − 1)qk−1zt ptk1σ
±1
1

qktk
bbm−→

2nd str.
qkzt ptk1σ2σ

±1
1 σ−1

2 .

which captures the main idea of the proof of Lemma 7.4.
Let now τgaps denote a word containing gaps in the (ordered) indices but not

starting with a gap. When managing the gaps, the first part of the word (before the
first gap) remains intact after managing the gaps and the same carries through after
the performance of a bbm on the first moving strand. That is, the following diagram
commutes:

τgaps · w 1st str.−→
bbm

t pτgaps+ · w+g±1
1

| |
man. gaps man. gaps

↓ ↓
∑

i Aiτi · wi
1st str.−→
bbm

∑
i Ai t pτi+ · wi+g

±1
1

where τgaps · w ∈ Σ and τi ∈ Λaug , for all i .
In the case where the word τgaps · w ∈ Σ starts with a gap, in [5] it is shown that

equations obtained from τ · w are equivalent to equations obtained from elements
τi · wi ∈ Σ , where τi are monomials in the ti ’s not starting with a gap, but with the
bbm performed on any strand (see Fig. 7.19).

The above are summarized in the following proposition:

Proposition 7.3 ([5, Proposition 3]) In order to obtain an equivalent infinite system
to the one obtained from elements in Σ by performing braid band moves on the first
moving strand, it suffices to consider monomials in Λaug followed by braiding tails
in Hn(q) and perform braid band moves on any moving strand.
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Fig. 7.19 Bbm’s before and
after managing the gaps

7.4.4 From the Hn(q)-Module Λaug to the Hn(q)-Module Λ:
Ordering the Exponents

The monomials in the ti ’s that we obtain after managing the gaps are not elements
in the set Λ, since the exponents of the loop generators are not necessarily ordered.
We now order the exponents of the ti ’s and we show that equations obtained from
elements in the Hn(q)-module Λaug reduce to equations obtained from elements in
the Hn(q)-module Λ.

Theprocedurewe follow is similar to the onedescribed in [4], but, aswementioned
earlier, in this case we do it simultaneously before and after the performance of a
bbm.

Proposition 7.4 ([5, Proposition 4]) Equations of the infinite system obtained from
elements in Λaug followed by braiding tails in Hn(q) are equivalent to equations
obtained from elements in Λ followed by braiding tails, where a braid band move
can be performed on any moving strand.
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Proof It follows from Theorem 7.9, since all steps followed so as to order the expo-
nents in a monomial in the ti ’s remain the same after the performance of a bbm,
ignoring the t p appearing after the bbm. �

7.4.5 From the Hn(q)-Module Λ to Λ: Eliminating the Tails

We now deal with the ‘braiding tails’. Applying the same technique as in Theo-
rem 7.10 before and after the performance of a bbm, we first prove that equations
obtained by performing bbm’s on any moving strand on elements in Λ followed by
words in Hn(q), reduce to equations obtained by performing bbm’s on any moving
strand from elements in Λaug (with no ‘braiding tails’).

Proposition 7.5 ([5, Proposition 5]) Equations obtained from bbm’s on elements in
Λ followed by words in Hn(q) are equivalent to equations obtained by performing
a braid band move on any moving strand on elements in Λaug.

Proof We perform a bbm on an element a · w in the Hn(q)-module Λ and we cable
the parallel strand with the surgery strand, see Fig. 7.20.We then apply Theorem 7.10
before and after the performance of the bbm and uncable the parallel strand. The proof
is illustrated in Fig. 7.20. �

Fig. 7.20 The proof of Proposition 7.5



174 I. Diamantis and S. Lambropoulou

t t1t2 · g1g2g1 1st str.−→
bbm

t pt1t2t3 · g2g3g2g±1
1

| |
elim. tails elim. tails

↓ ↓
(q − 1)(q2 − q + 1) · t t1t2 1st str.−→

bbm
(q − 1)(q2 − q + 1) · t pt1t2t3g±1

1

+ +
q(q − 1)2z · t t21 1st str.−→

bbm
q(q − 1)2z · t pt1t22 g±1

1

+ +
[
q2(q − 1)(q2 − q + 1)z2

] · t3 1st str.−→
bbm

[
q2(q − 1)(q2 − q + 1)z2

] · t pt31 g±1
1

+ +
a · t2t1 1st str.−→

bbm
a · t pt21 t2g±1

1

Example 7.8 In this example we demonstrate Proposition 7.5.
where a = q3z + q2(q − 1)2 + 2q2(q − 1)2z + q(q − 1)4z.

Fig. 7.21 The performance
of a bbm on the 1st and on
the 3rd strand of an element
in Λ
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In the process of eliminating the ‘braiding tails’ we have so far reached bbm’s in
the set Λaug (with no ‘braiding tails’). Following the same procedure and applying
the same techniques as in [4], we finally reach the set Λ by means of the following:

Theorem 7.11 ([5, Theorem 8]) In order to obtain the bbm equations needed for
computing the HOMFLYPT skein module of the lens spaces L(p, 1), it suffices to
perform braid band moves on any strand on elements in the basis Λ of S(ST).

Proof The proof is based on Theorems 7.8, 7.9 and 7.10 and the fact that the bbm’s
commute with the stabilizationmoves (Lemma 7.1) and the skein (quadratic) relation
(Lemma 7.2). �

Remark 7.5 The fact that the bbm’s and conjugation do not commute, results in
the need of performing braid band moves on all moving strands of elements in Λ

(Fig. 7.21).

7.5 Conclusions

In this paper we present recent results toward the computation of the HOMFLYPT
skein module of the lens spaces L(p, 1), S (L(p, 1)), via braids. We first presented
a new basis Λ of S(ST) in braid form, which is crucial for the braid approach to
S (L(p, 1)) andwe then relatedS (L(p, 1)) toS(ST)bymeans of equations resulting
from bbm’s. In particular, we showed that by considering elements in the basisΛ and
imposing on values on them of the Lambropoulou invariant X for knots and links
in ST relations coming from the performance of bbm’s on all their moving strands,
we arrive at an infinite system of equations, the solution of which coincides with the
computation of S (L(p, 1)). Our results are summarized to the following:
In order to compute S(L(p, 1)) it suffices to solve the infinite system of equations:

X τ̂ = Xb̂bmi (τ )
,

where bbmi (τ ) is the result of the performance of bbm on the i th-moving strand of
τ ∈ Λ, for all τ ∈ Λ and for all i .

In [2] we elaborate on the system. This is a very technical and difficult task. These
results will serve as our main tool for computing S (L(p, q)) in general.
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Chapter 8
Some Hecke-Type Algebras Derived from
the Braid Group with Two Fixed Strands

Dimitrios Kodokostas and Sofia Lambropoulou

Abstract We construct some Hecke-type algebras, and most notably the quotient
algebra H2,n(q) of the group-algebraZ [q±1] B2,n of the mixed braid group B2,n with
two identity strands and n moving ones, over the quadratic relations of the classical
Hecke algebra for the braiding generators. The groups B2,n are known to be related to
the knot theory of certain families of 3-manifolds, and the algebras H2,n(q) are aimed
for the construction of invariants of oriented knots and links in these manifolds. To
this end, one needs a suitable basis of H2,n(q), and we have singled out a subset Λn

of this algebra for which we proved it is a spanning set, whereas ongoing research
aims at proving it to be a basis.

Keywords Mixed braid group on two fixed strands · Mixed Hecke algebra
Quadratic relation · Hecke-type algebras

Introduction

It is established that knots and links in arbitrary knot complements, in compact,
connected, oriented (c.c.o.) 3-manifolds and in handlebodies may be represented
by mixed links and mixed braids in S3 [4, 9, 13]. The braid structures related to
knots and links in the above spaces are the mixed braid groups Bm,n and appropriate
cosets of theirs [15]. An element in Bm,n is a classical braid in S3 on m + n strands
with the first m strands forming the identity braid. The mixed braid groups enable
the algebraic formulation of the geometric braid equivalences in the above spaces
[4, 9, 16].
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In this paper we focus on the mixed braid groups B2,n , which are related to knots
and links in certain families of 3-manifolds like, for example, the handlebody of
genus two, the complement of the 2-unlink in S3 and the connected sums of two
lens spaces, which are of interest also to some biological applications [3]. We define
the quotient algebras H2,n(q), H2,n(q, u1, v1) and H2,n(q, u1, . . . , ud1 , v1, . . . , vd2)
of B2,n over the quadratic relations of the classical Iwahori–Hecke algebra for the
braiding generators, and polynomial relations for the looping generators. We then
focus on H2,n(q) and present a subset Λn of it, indicating the reason it has to be
a spanning set for its additive structure. The set Λn potentially constitutes a linear
basis of H2,n(q), a fact whose proof is the object of ongoing research.

The sets Λn for n ∈ N are destined to provide an appropriate inductive basis
for the sequence of algebras H2,n(q), n ∈ N, in order to construct Homflypt-type
invariants for oriented links in 3-manifolds whose braid structure is encoded by the
groups B2,n . It is known that the mixed braid groups B1,n have been utilized for
constructing Homflypt-type invariants for oriented links in the solid torus [8, 12,
14] and the lens spaces L(p, 1) [6], following the original Jones construction of
the classical Homflypt polynomial for oriented links in S3 using the Iwahori–Hecke
algebra of type A and the Ocneanu trace [10]. For our purposes we first need to
construct appropriate algebras related to the mixed braid groups B2,n , and then to
chose an appropriate inductive bases on them, so that the construction of Oceanu-
type Markov traces on these algebras would be possible, which subsequently can be
used for the construction of link invariants.

The paper is organized as follows: in Sect. 8.1.1 we recall the definition and a
presentation of the mixed braid group B2,n and we define some important elements
of it which we call loopings. In Sect. 8.1.2 we define our quotient algebras H2,n(q),
H2,n(q, u1, v1) andH2,n(q, u1, . . . , ud1 , v1, . . . , vd2). In Sect. 8.2we provide a poten-
tial basis Λn for the algebra H2,n(q), and we give the necessary lemmata for proving
it to be spanning set of the algebra.

8.1 The Mixed Braid Groups B2,n and Related Hecke-Type
Algebras

8.1.1 The Mixed Braid Group B2,n On Two Mixed Strands
and Other Related Groups

For each n ∈ N, the elements of the mixed braid group B2,n on two fixed strands are
defined to be the braids with n + 2 strands where the first two of them are straight,
and the group operation is by definition the usual braid concatenation. A description
of B2,n in terms of generators and relations is the following [15]:
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I II 1 ni i+ 1 IIIIII 11 nn 22

σi τ

Fig. 8.1 The generators of B2,n

Fig. 8.2 The looping
elements Ti , τi

B2,n =
〈

τ ,T ,

σ1, . . . , σn−1

∣∣∣∣∣∣∣∣∣

σkσ j = σ jσk (|k − j | > 1) , σkσk+1σk = σk+1σkσk+1 (1 ≤ k ≤ n − 1)
T σk = σk T (k ≥ 2), T σ1 T σ1 = σ1 T σ1 T
τ σk = σk τ (k ≥ 2), τ σ1 τ σ1 = σ1 τ σ1 τ ,

τ (σ1T σ1) = (σ1T σ1)τ

〉

where σi , τ , T are shown in Fig. 8.1; I, I I indicate the two fixed strands as they are
called, whereas 1, 2, . . . , n indicate the moving strands. The braids τ , T and their
inverses are called the looping generators, whereas σi and its inverse are called the
i-th braiding generators for i = 1, 2, . . . , n − 1, whereas i is called the index of the
i-th braiding generators.

Belowwe define the elements Ti , τi , i = 1, . . . , n of B2,n which will be of central
importance to us in what follows.

Definition 8.1 The looping elements or just loopings Ti , τi of B2,n are those braids
in which all strands are straight except for the i-th moving strand that loops once
around the first or the second fixed strand respectively, first going over and then (after
the looping) under the rest of the strands to its left (see Fig. 8.2). We use the name
looping for the inverses of these elements as well, and we say that each one of the
loopings T ±1

i , τ±1
i has index i . Formally:

T1 := T , τ1 := τ and Ti := σi−1 . . . σ1T σ1 . . . σi−1, τi := σi−1 . . . σ1τσ1 . . .σi−1 for i > 1.

As is shown in Fig. 8.3, the defining relation τσ1T σ1 = σ1T σ1τ of B2,n which
is now written as τ1σ1T1σ1 = σ1T1σ1τ1, holds in general for all i = 1, 2 . . . , n − 1
(just slide the τi looping to pass through the Ti looping):

τiσiTiσi = σiTiσiτi .
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Fig. 8.3 The relation
τiσiTiσi = σiTiσi τi in B2,n

Clearly, B2,n is generated by the set {Ti , τi ,σi |i = 1, . . . , n} as well. Also, clearly,
the group B2,n is a subgroup of the usual braid group B2+n in 2 + n strands [15]. In
turn, B2,n contains some important subgroups. One of them is the pure mixed braid
group on two fixed strands P2,n that consists of all pure braids in B2,n . For a further
study of the structure of the groups B2,n, P2,n and their generalizations Bm,n, Pm,n as
well as the underlying Coxeter-type groups see [2, 15].

Other important subgroups of B2,n are those generated by T ,σ1, . . . ,σn−1 and
by τ ,σ1, . . . ,σn−1, which are isomorphic to the mixed braid group on one fixed
strand B1,n defined in terms of generators and relations in an analogous manner
as B2,n and which, in fact, is the Artin braid group of type B. Indeed, the defining
relations T σ1T σ1 = σ1T σ1T and τσ1τσ1 = σ1τσ1τ of B2,n are of the same type
as the four-term defining relations of the Artin braid group of type B.

8.1.2 The Algebra H2,n(q) and Other Related Algebras

We define the algebra H2,n(q) for each n ∈ N as a quotient of an appropriate group-
algebra of B2,n over appropriate quadratic relations. Namely:

Definition 8.2 The mixed Hecke algebra on two fixed strands H2,n(q) is defined as
the unital associative algebra:

H2,n(q) := Z [q±1] B2,n

〈σi
2 − (q − 1)σi − q · 1, i = 1, 2, . . . , n − 1〉 ,

where q is a variable.
In general we use the same notation for the elements of B2,n when considered as

elements of H2,n(q), except for σi which we denote gi , i = 1, . . . , n. H2,n(q) has
equivalently a presentation with generators τ , T , g1, . . . , gn−1 and relations:
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(b1) gkgk+1gk = gk+1gkgk+1 for 1 ≤ k ≤ n − 1
(b2) gkg j = g jgk for |k − j | > 1
(T1) T gk = gk T for k ≥ 2
(T2) T g1 T g1 = g1 T g1 T
(τ1) τ gk = gk τ for k ≥ 2
(τ2) τ g1 τ g1 = g1 τ g1 τ
(m) τ (g1T g1) = (g1T g1)τ
(q) g2i = (q − 1) gi + q · 1 for i = 1, 2, . . . , n − 1

(8.1)

(here (b) stands for “braid”, (m) for “mixed” and (q) for “quadratic”). The elements
τ , T and their inverses will be called the looping generators of the algebra. The
elements g1, . . . , gn−1 and their inverses will be called the braiding generators of
the algebra, whereas i will be the index of gi , g

−1
i .

Since the classical Artin braid group Bn embeds naturally in B2,n , we have that
the classical Iwahori–Hecke Algebra Hn(q) is a subalgebra of H2,n(q) in a natural
way as well. Furthermore, note that the relations (T2) and (τ2) are of the same type as
the well-known four-term defining relation of the Artin braid group of type B which
is realized here by the mixed braid group B1,n with one fixed strand, hence it embeds
naturally in B2,n . So, the algebra H2,n(q) extends naturally the mixed Hecke algebra
H1,n(q) introduced in [14] as “generalized Hecke algebra” of type B. The algebra
H2,n(q) clearly contains two subalgebras isomorphic to H1,n(q).

We can define a lot of other interesting related algebras, a few of which as follows:

Definition 8.3 The algebra H2,n(q, u1, v1) is defined as:

H2,n(q, u1, v1) := Z [q±1, u±1
1 , v±1

1 ] B2,n

〈(q), T 2 = (u1 − 1)T + u1 · 1, τ 2 = (v1 − 1)τ + v1 · 1〉 ,

where distinct variables u1, v1 are associated to T , τ .

Note that the relations (T2) and (τ2) are of the same type as the defining relations of
the Hecke algebra of type B [7]. Furthermore, it is clear from the quadratic relations
for the looping generators in Definition 8.3 that the algebra H2,n(q, u1, v1) extends
the classical Hecke algebra of typeB. In fact H2,n(q, u1, v1) contains two subalgebras
isomorphic to the Hecke algebra of type B.

Definition 8.4 The cyclotomic algebra H2,n(q, u1, . . . , ud1 , v1, . . . , vd2) is defined
as:

H2,n(q, u1, . . . , ud1 , v1, . . . , vd2 ) :=
Z[q±1, u±1

1 , . . . , u±1
d1

, v±1
1 , . . . , v±1

d2
] B2,n

〈(q), (T − u1) . . . (T − ud1 ) = 0, (τ − v1) . . . (τ − vd1 ) = 0〉 ,

where q, u1, . . . , ud1 , v1, . . . , vd2 are variables and the last two relations are called
cyclotomic relations for T and τ respectively (see Fig. 8.4).
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Fig. 8.4 The mixed braids
involved in the cyclotomic
relation of the loop generator
τ

Analogously to the algebras defined above, by relations for (T2) and (τ2)
and the defining relation for T , τ in Definition 4 it follows that the algebra
H2,n(q, u1, . . . , ud1 , v1, . . . , vd2) extends naturally the Ariki–Koike algebra of type
B [1], and in fact it contains two subalgebras isomorphic to the Ariki–Koike algebra.

The mixed Hecke algebra H1,n(q), the Iwahori–Hecke algebra of type B, and the
Ariki–Koike algebra of type B are all related to the knot theory of the solid torus and
the lens spaces [5, 6, 8, 12, 14]. Note that each one of the three types of algebras that
we define here surjects naturally onto its corresponging B-type algebra, for example
via the following mappings respectively:

• T �→ 1, τ �→ τ , gi �→ gi surjects H2,n(q) onto H1,n(q).
• T �→ 1, τ �→ τ , gi �→ gi and specializing u1 to 1, surjects H2,n(q, u1, v1) onto the
Hecke algebra of type B.

• T �→ 1, τ �→ τ , gi �→ gi and specializing ui to 1 for i = 1, . . . , d1, surjects
H2,n(q, u1, . . . , ud1 , v1, . . . , vd2) onto the Ariki–Koike algebra of type B.

Finally, let us note that the algebras H2,n(q, u1, v1) and H2,n(q, u1, . . . , ud1 , v1,
. . . , vd2) can be viewed as quotient algebras of H2,n(q), if in Definitions8.2–8.4
we use Z[q±1, u±1

1 , . . . , u±1
d1

, v±1
1 , . . . , v±1

d2
] as a common ring of coefficients for all

three algebras.

8.2 A Spanning Set and Potential Basis for the Algebra
H2,n(q).

We still call Ti , τi and their inverses as looping elements or loopingswhenwe cosider
them as elements of H2,n(q), and similarly we call i as their index. For Ti , τi as
elements of the algebra we have

Ti = gi−1 . . . g1T g1 . . . gi−1 and τi = gi−1 . . . g1τg1 . . . gi−1.

Our aim is to provide a “nice” form for any element w of H2,n(q) using these
looping elements and the gi ’s, so that a possible spanning set of the algebra reveals
itself. Since w is a Z[q±1]-linear combination of images in the algebra H2,n(q) of
braids in B2,n , one has to think about only the case of putting an image of a braid w

in a “nice” form.
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Now let us recall that the set {Ti , τi ,σi |i = 1, . . . , n} generates B2,n , thus an
arbitrary braid w of B2,n is written as a finite product of elements of this set and their
inverses; as a matter of fact, it can be written so in many ways. Previous work done
on specific subsets of B2,n , shows that considering their elements as belonging to
appropriate related algebras similar to H2,n(q), we can put them in canonical forms
useful for constructing Markov traces over these algebras. For example whenever w

is a product of only the gi ’s (considered as an element of the algebra) thenw actually
belongs to Hn(q) and as such it is subjected to the canonical form of the classical
Hecke algebra Hn(q) of type A, given by V.F.R. Jones [10]. Also, whenever w is a
product of only τi , gi ’s (thus containing no Ti ’s), it actually belongs to H1,n(q) (as
mentioned in the previous section, this is the generalized Hecke algebra of type B),
and therefore it is subjected to the canonical form given in [14]. Such aw is written as
a finiteZ[q±1]-linear combination of products of τi ’s and gi ’s with the τi ’s appearing
first, and moreover with the indices of the τi ’s in increasing order from left to right.

Theorem 8.1 below tells us how to bring any w of B2,n to a similar “nice” form
when considered as an element of the algebra H2,n(q). At the same time we get a
spanning set Λn for the additive structure of H2,n(q) as a Z[q±1]-module. What the
theorem actually says is that every element of the algebra H2,n(q) is written as a finite
Z[q±1]-linear combination of products of Ti , τi ’s and gi ’s with the Ti , τi ’s appearing
first, and moreover with the indices of the τi ’s in increasing order from left to right.
To achieve this for the image of a braid given in a product form we can try first to
push all gi ’s (i.e. the images of the σi ’s) at the end using braid isotopies (at the braid
level) together with the quadratic relations in the algebra H2,n(q) (see Lemma 8.1).
And then we can similarly try to push all loopings with big indices after those with
smaller ones (see Lemma 8.2). Working out specific examples one soon realizes that
pushing the gi ’s is always possible, and that pushing the loopings with big indices
after those with small ones can be almost always achieved, except that in the process
some new gi ’s might be created, and pushing them anew to the end might increase
the indices of the loopings from which it passes, leaving quite open the question of
whether the indices of the loopings can indeed be ordered. We deal with this issue
in Lemma 8.3.

Theorem 8.1 Any element in H2,n(q) can be written as a finite Z[q±1]-linear com-
bination of the form (suppressing the coefficient in Z[q±1] of each term):

∑
(Π1Π2 · · ·Πn)G

where G is a finite product of braiding generators, and Πi is a finite product of only
the loopings Ti , τi , T −1

i , τ−1
i for all i . Thus the following is a spanning set of the

algebra H2,n(q):
Λn := {Π1Π2 · · · ΠnG | G = an element in some basis of Hn(q) and Πi = finite
product of only the loopings Ti , τi , T −1

i , τ−1
i ,∀i }.

The definition of the looping elements and braiding generators can be repeated
for the other algebras which we defined in Sect. 8.1.2, and the proof of Theorem 8.1
can be repeated unaltered step by step to get:
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Theorem 8.2 Let A = H2,n(q, u1, v1), R = Z[q±1, u±1
1 , v±1

1 ] or A = H2,n(q, u1,
. . . , ud1 , v1, . . . , vd2), R = Z[q±1, u±1

1 , . . . , u±1
d1

, v±1
1 , . . . , v±1

d2
]. Then any element

in A can be written as a finite R-linear combination of the form (suppressing the
coefficient in R of each term):

∑
(Π1Π2 · · ·Πn)G

where G is a finite product of braiding generators, and Πi is a finite product of only
the loopings Ti , τi , T −1

i , τ−1
i for all i . Thus the following is a spanning set of the

algebra R:
Λn := {Π1Π2 · · · ΠnG | G = an element in some basis of Hn(q) and Πi = finite
product of only the loopings Ti , τi , T −1

i , τ−1
i ,∀i }.

Below we list the necessary lemmata for the proof of Theorem 8.1 which is quite
technical since it has to deal carefully with the indices appearing in a given product
of loopings as well as with the possible recursion phenomena that might arise during
the process. We provide the actual proof in [11]. The lemmata equip us with specific
formulas for pushing braiding generators to the right of a product of loopings, and
also for pushing loopings with high indices to the right of loopings with lower indices
in a product of loopings. The lemmata also explain how we can deal with recursion
phenomena.

Lemma 8.1 Let us call A = q−1 − 1, B = q − 1. And let us denote the identity
element of H2,n(q) by 1. Then the following hold in H2,n(q):

(1) g−1
i = q−1gi + A · 1

(2) giT ±1
j = T ±1

j gi gi τ
±1
j = τ±1

j gi whenever j 
= i, i + 1
(3) giTi = q−1Ti+1gi + ATi+1 gi τi = q−1τi+1gi + Aτi+1

(4) giT −1
i = T −1

i+1 − AT −1
i+1 + AT −1

i gi τ
−1
i = τ−1

i+1 − Aτ−1
i+1 + Aτ−1

i
(5) giTi+1 = qTigi + BTi+1 gi τi+1 = qτigi + Bτi+1

(6) giT −1
i+1 = q−1T −1

i gi + AT −1
i gi τ

−1
i+1 = q−1τ−1

i gi + Aτ−1
i .

(7) (The passage property) Any product gε
k t

ζ
l (ε, ζ ∈ {1,−1}, tl a looping) can be

written as a finite linear combination of the form (suppressing the coefficient in
Z[q±1] of each term on the right-hand side):

gε
i t

ζ
l =

∑
tζl gε

i +
∑

tζi +
∑

tζi g
ε
i +

∑
tζi+1.

(where possibly some of the terms are missing).
(8) (The big passage property) Let Π be a finite product of k in number loopings

with indices in the interval [m, M], and let i ∈ [m, M − 1]. Then g±1
i Π canbewritten

as a finite linear combination of the form (suppressing the coefficient in Z[q±1] of
each term on the right-hand side):

g±1
i Π =

∑
Π1g

±1
i +

∑
Π2
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(where possibly some terms are missing) with each Π1,Π2 a product of k in number
loopings with indices in [m, M].

Part (2) of the lemma can be seen in the braid level via trivial braid isotopies,
and parts (2)–(6) can also be seen pictorially after at most two applications of the
quadratic relation to the braids of the left-hand side. These are summarized in part
(7). Since on both sides of parts (2)–(6) each term contains a single looping and in
part (7) the index of the looping either does not change at all or if it does, it decreases
by 1 but then never below the index i of the braiding generator, or else it increases
by 1 but then never by 1 above the index i of the braiding generator, we get part (8)
at once.

The following lemma describes how we can push a looping with high index to
the right of a looping with smaller index.

Lemma 8.2 For j < i and ε, ζ ∈ {1,−1} each one of the words T ε
i T

ζ
j , T ε

i τ
ζ
j , τ

ε
i T

ζ
j ,

τ ε
i τ

ζ
j can be written as a linear combination of the form (suppressing the coefficient

in Z[q±1] of each term on the right-hand side):

1. T ε
i T

ζ
j = T ζ

j T ε
i , τ ε

i τ
ζ
j = τ

ζ
j τ

ε
i , T ε

i τ
ζ
j = τ

ζ
j T ε

i

2. τ ε
i T ε

j = T ε
j τ

ε
i + T ε

j τ
ε
i G

ε + τ ε
jT ε

i G
ε, where G = g jg j+1 . . . gi−2g

−1
i−1g

−1
i−2 . . .

g−1
j+1g

−1
j .

3. τ ε
i T −ε

j = T −ε
j τ ε

i + T −ε
j τ ε

j G
ε + τ ε

i T −ε

i Gε, where G = g jg j+1 . . . gi−2gi−1gi−2

. . . g j+1g j .

The proof of this lemma is easy, as part (1) can be seen at the braid level via
braid isotopies, and the last two parts can also be seen at the braid level as a double
application of the quadratic relation at the obvious crossings so that the i-looping
can be moved above the j-looping.

The lemma that follows is the last one that we need for the proof of Theorem
8.1, and it says that a certain class of words actually satisfies the theorem. These
words have the odd property that whenever we apply all the previous formulas in
order to write them as sums of monomials in the way demanded by the theorem,
they are written so except from the fact that one of the monomials is the word itself.
Fortunately, the coefficients appearing in these equalities are well behaved and we
can solve for the given word so that it is indeed expressed in way described in the
theorem. This recursion phenomenon is possible only because one of the monomials
on the right-hand side in case (3) of Lemma 8.2 still starts with an i-looping instead
of a j-looping.

In the statement of the lemma it is convenient to write [i, j] in the bottom of
a product of looping or braiding generators to indicate that their indices lie in the
interval [i, j], and towrite< i, j > to indicate that these indices are also in increasing
order (from left to right).

Lemma 8.3 Let us denote elements in {T ±1
i , τ±1

i } indiscreetly by ti . Then each one
of the words τ ε

MT −ε
M t ζ

m with m < M and ε, ζ ∈ {−1, 1} can be written as a finite
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linear combination of the form (suppressing the coefficient in Z[q±1] of each term
on the right-hand side):

τ ε
MT −ε

M t ζ
m =

∑ (
tmtm1 tm2
<m,M>

)
G

[m,M−1]

where each G is a finite product of g±1
i ’s (notice the crucial fact that every term of

the last sum starts with an m-looping).

The proof of this lemma is not as immediate as the proofs in the previous lemmata.
We have to examine all possible cases separately, applying the quadratic relations
appropriately and using isotopies at the braid level. The reader is referred to [11]
for full details of the proof, as well as for the proof of Theorem 8.1 which is a
consequence of Lemmata 8.1–8.3.

Remark In [11], we also conjecture that the set Λn is a linear basis for the algebra
H2,n(q). This is not straightforward to prove, as the algebra H2,n(q) is infinite dimen-
sional. Nevertheless we can get some insight of how Λn behaves, by examining its
counterparts in the other algebras H2,n(q, u1, v1) and H2,n(q, u1, . . . , ud1 , v1, . . . ,
vd2), defined in this paper, and for which these counterparts also constitute spanning
sets (Theorem 8.2). Although these algebras are infinite dimensional too, the expo-
nents of the loopings in the elements of the above spanning sets are bounded, a fact
that makes these algebras easier to study.

8.3 Conclusion and Further Research

In this paper we have defined some Hecke-type algebras related to the mixed braid
group B2,n on two fixed strands, and we have focused on one of them, namely on the
mixed Hecke algebra H2,n(q) which is defined as the quotient of the group-algebra
Z[q±1]B2,n over the quadratic relations of the usual Hecke algebra. These algebras
are related to the knot theory of various 3-manifolds whose knot structure is encoded
by the mixed braid groups B2,n , such as handelebodies of genus two, and connected
sums of lens spaces. We have given here a subset Λn of H2,n(q) and provided the
necessary lemmata along with hints for their truth, for proving that Λn is a spanning
set for the additive structure of the algebra [11]. We conjecture that Λn is actually a
basis for H2,n(q) and this the subject of current research. Then, based on previous
work done on similar Hecke-type algebras, we expect that we can use Λn for the
construction of knot invariants in the above 3-manifolds.
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Chapter 9
Braid Groups in Handlebodies
and Corresponding Hecke Algebras

Valeriy G. Bardakov

Abstract In this paper we study the kernel of the homomorphism Bg,n → Bn of the
braid group Bg,n in the handlebody Hg to the braid group Bn . We prove that this
kernel is semi-direct product of free groups. Also, we introduce an algebra Hg,n(q),
which is some analog of the Hecke algebra Hn(q), constructed by the braid group Bn .

9.1 Introduction

Let Hg be a handlebody of genus g. The braid group Bg,n on n stings in the
handlebody Hg was introduced by A.B. Sossinsky [1] and independently S. Lam-
bropoulou [2]. Properties of this group are studied by V.V. Vershinin [3, 4] and by
S. Lambropolou [2, 5].

The motivation for studying braids from Bg,n comes from studying oriented knots
and links in knot complements in compact connected oriented 3-manifolds and in
handlebodies, since these spaces may be represented by a fixed braid or a fixed
integer-framed braid in S

3 [2, 6–8]. Then knots and links in these spaces may be
represented by elements of the braid group Bg,n or an appropriate cosets of these
group [2]. In particular, if M denotes the complements of the g-unlink or a connected
sum of g lens spaces of type L(p, 1) or a handlebody of genus g, then knots and
links in these spaces may be represented precisely by the braids in Bg,n for n ∈ N.
In the case g = 1, B1,n is the Artin group of type B.

The group Bg,n can be considered as a subgroup of the braid group Bg+n on
g + n strings such that the braids in Bg,n leave the first g strings identically fixed.
Using this fact V.V. Vershinin [3] and S. Lambropoulou [2] defined a epimorphism
of Bg,n onto the symmetric group Sn and prove that the kernel of this epimorphism:
Pg,n is a subgroup of the pure braid group Pg+n and is semi-direct products of free
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groups. On the other side, V.V. Vershinin [3] noted that there is a decomposition
Bg,n = Rg,n � Bn for some group Rg,n and the braid group Bn . S. Lambropoulou
proved in [5] that R1,n is isomorphic to a free group Fn of rank n.

The Hecke algebra of type A, Hn(q) was used by V.F.R. Jones [9] for the con-
struction of polynomial invariant for classical links, the well known HOMFLYPT
polynomial. S. Lambropoulou [5] defined a generalization of the Hecke algebra of
type B to construct a HOMFLYPT-type polynomial invariant for links in the solid
torus, which was then used in [10] for extending the study to the lens spaces L(p, 1).

In the present paper we define some decomposition of Pg,n as semi-direct product
of free groups, which is different from the decomposition defined in [2, 3]. Also, we
study the group Rg,n and prove that this group is semi-direct products of free groups.
Using this decomposition and the decomposition Bg,n = Rg,n � Bn we define some
algebra, which is a generalization of the Hecke algebra Hn(q).

The paper is organized as follows. In Sect. 2, we remind some facts on the braid
group Bn . In particular, we define vertical and horizontal decompositions of the pure
braid group Pn . In Sect. 3, we recall some facts on the group Bg,n , we describe the
vertical decomposition of Pg,n and we define the horizontal decomposition of Pg,n .
In Sect. 4, we study Rg,n and we construct vertical and horizontal decompositions for
this group. In Sect. 5 we introduce some algebra Hg,n(q) which is a generalization
of the Hecke algebra Hn(q) and we find the quotient of Bg,n by the relations σ 2

i = 1.

9.2 Braid Group

In this section we recall some facts on the braid groups (see [11, 12]).
The braid group Bm , m ≥ 2, on m strings is generated by elements

σ1, σ2, . . . , σm−1,

and is defined by relations

σiσ j = σ jσi , for |i − j | > 1,
σiσi+1σi = σi+1σiσi+1, for i = 1, 2, . . . ,m − 2.

A subgroup of Bm which is generated by elements

ai j = σ j−1σ j−2 . . . σi+1σ
2
i σ−1

i+1 . . . σ−1
j−2σ

−1
j−1, 1 ≤ i < j ≤ m,

is called the pure braid group and is denoted Pm . This group is defined by the relations

aikai j ak j = akjaikai j , (9.1)

anjaknak j = akjanjakn, for n < j, (9.2)

(aknak ja
−1
kn )ain = ain(aknak ja

−1
kn ), for i < k < n < j, (9.3)

akjain = ainak j , for k < i < n < j or n < k. (9.4)

http://dx.doi.org/10.1007/978-3-319-68103-0_2
http://dx.doi.org/10.1007/978-3-319-68103-0_3
http://dx.doi.org/10.1007/978-3-319-68103-0_4
http://dx.doi.org/10.1007/978-3-319-68103-0_5
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The subgroup Pm is normal in Bm , and the quotient Bm/Pm is the symmetric group
Sm . The generators of Bm act on the generator ai j ∈ Pm by the rules:

σ−1
k ai jσk = ai j , for k �= i − 1, i, j − 1, j, (9.5)

σ−1
i ai,i+1σi = ai,i+1, (9.6)

σ−1
i−1ai jσi−1 = ai−1, j , (9.7)

σ−1
i ai jσi = ai+1, j [a−1

i,i+1, a
−1
i j ], for j �= i + 1 (9.8)

σ−1
j−1ai jσ j−1 = ai, j−1, (9.9)

σ−1
j ai jσ j = ai j ai, j+1a

−1
i j , (9.10)

where [a, b] = a−1b−1ab.
Denote by

Ui = 〈a1i , a2i , . . . , ai−1,i 〉, i = 2, . . . ,m,

a subgroup of Pm . It is known that Ui is a free group of rank i − 1. One can rewrite
the relations of Pm as the following conjugation rules (for ε = ±1):

a−ε
ik ak ja

ε
ik = (ai j ak j )

εakj (ai j ak j )
−ε, (9.11)

a−ε
kn ak ja

ε
kn = (akjanj )

εakj (akjanj )
−ε, for n < j, (9.12)

a−ε
in ak ja

ε
in = [a−ε

i j , a−ε
nj ]εakj [a−ε

i j , a−ε
nj ]−ε, for i < k < n, (9.13)

a−ε
in ak ja

ε
in = akj , for k < i < n < j or n < k. (9.14)

From these rules it follows thatUm is normal in Pm and hence Pm has the following
decomposition: Pm = Um � Pm−1, where the action of Pm−1 on Um is define by the
rules (9.11)–(9.14). By induction onm, Pm is the semi-direct product of free groups:

Pm = Um � (Um−1 � (. . . � (U3 �U2) . . .)).

We will call this decomposition vertical decomposition.
Let U (k)

m , k = 1, 2, . . . ,m, be the subgroup of Pm which is generated by ai j ,
where k < j . Then U (k)

m = Um � (Um−1 � (. . . � (Uk+2 �Uk+1) . . .)). By defini-
tion U (1)

m = Pm and these groups form the normal series

1 = U (m)
m ≤ U (m−1)

m ≤ . . . ≤ U (2)
m ≤ U (1)

m = Pm,

where
U (r)

m /U (r+1)
m

∼= Fr , r = 1, 2, . . . ,m − 1.

On the other side, define the following subgroups of Pm :

Vk = 〈ak,k+1, ak,k+2, . . . , ak,m〉, k = 1, 2, . . . ,m − 1.
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This group is free of rank m − k. Using the defining relation of Pm , it is not difficult
to prove the following:

Lemma 9.1 In Pn hold the following conjugation rules (for ε = ±1):

(1) a−ε
k j aika

ε
k j = (aikai j )εaik(aikai j )−ε, where i < k < j ;

(2) a−ε
jk aika

ε
jk = (ai j aik)εaik(ai j aik)−ε, where i < j < k;

(3) a−ε
kn ai j a

ε
kn = [a−ε

ik , a−ε
in ]εai j [a−ε

ik , a−ε
in ]−ε, where i < k < j < n;

(4) a−ε
in ak jaε

in = akj , where k < i and n < j ;
(5) a−ε

k j aina
ε
k j = ain, where n < k.

From this lema it follows that V1 is normal in Pm and we have decomposition
Pm = V1 � Pm−1. By induction on m, Pm is the semi-direct products of free groups:

Pm = V1 � (V2 � (. . . � (Vm−2 � Vm−1) . . .)).

We will call this decomposition horizontal decomposition. Let V (k)
m be a subgroup

of Pm which is generated by ai j for i < k. Then we have the normal series

1 = V (1)
m ≤ V (2)

m ≤ · · · ≤ V (m−1)
m ≤ V (m)

m = Pm,

where
V (r)
m /V (r−1)

m
∼= Fm−r+1, r = 2, 3, . . . ,m.

A motivation for the terms vertical and horizontal is as follows. If we put the
generators of Pm in the following table

a12, a13, . . . a1,m−1, a1,m,

a23, . . . a2,m−1, a2,m,

. . . . . . . . . . . . . . .

am−2,m−1, am−2,m,

am−1,m,

then the generators from the kth row generate Vk and the generators from the kth
column generate Uk+1. The group U (r)

m is generated by the last m − r columns of
this table and the group V (r)

m is generated by the first r − 1 rows of this table.

9.3 Braid Groups in Handlebodies

Recall some facts on the braid group Bg,n on n strings in the handlebody Hg (see
[1–3]). The group Bg,n is generated by elements

τ1, τ2, . . . τg, σg+1, σg+2, . . . , σg+n−1,



9 Braid Groups in Handlebodies and Corresponding Hecke Algebras 193

and is defined by the following list of relations

σiσ j = σ jσi , for |i − j | > 1,
σiσi+1σi = σi+1σiσi+1, for i = g + 1, . . . , g + n − 2,
τkσi = σiτk, for k ≥ 1, i ≥ g + 2,
τk(σg+1τkσg+1) = (σg+1τkσg+1)τk, for k = 1, . . . , g,
τk(σ

−1
g+1τk+lσg+1) = (σ−1

g+1τk+lσg+1)τk, for k = 1, . . . , g − 1, l = 1, . . . , g − k.

The group Bg,n can be considered as a subgroup of the classical braid group Bg+n

on n + g strings such that the braids from Bg,n leave the first g strings unbraided.
Then τk = ak,g+1, in Bg+n , i.e.

τk = σgσg−1 . . . σk+1σ
2
k σ−1

k+1 . . . σ−1
g−1σ

−1
g , k = 1, 2, . . . , g.

The elements τk , k = 1, 2, . . . , g, generate a free group of rank g which is isomor-
phic to Ug+1 = 〈a1,g+1, a2,g+1, . . . , ag,g+1〉 in Bg+n . Also, we see that some other
generators of Pg+n lie in Bg,n . Put them in the table bellow:

a1,g+1, a1,g+2, . . . a1,g+n−1, a1,g+n,

a2,g+1, a2,g+2, . . . a2,g+n−1, a2,g+n,

. . . . . . . . . . . . . . .

ag−1,g+1, ag−1,g+2, . . . ag−1,g+n−1, ag−1,g+n,

ag,g+1, ag,g+2, . . . ag,g+n−1, ag,g+n,

ag+1,g+2, . . . ag+1,g+n−1, ag+1,g+n,

. . . . . . . . . . . .

ag+n−2,g+n−1, ag+n−2,g+n,

ag+n−1,g+n .

We will denote by ˜Bn the subgroup of Bg,n which is generated by σg+1, σg+2,

. . . , σg+n−1. It is evident that ˜Bn is isomorphic to Bn . The corresponding pure braid
group of ˜Bn will be denote ˜Pn . This group is isomorphic to Pn and is generated by
elements from the above table which lie under the horizontal line. The group ˜Pn has
the following vertical decomposition

˜Pn = ˜Un � (˜Un−1 � (. . . � (˜U3 � ˜U2) . . .)),

where
˜Ui = 〈ag+1,g+i , ag+2,g+i , . . . , ag+i−1,g+i 〉, i = 2, 3, . . . , n.

There is an epimorphism:
ψn : Bg,n −→ Sn,

which is defined by the rule

ψn(τk) = 1, k = 1, 2, . . . , g, ψn(σi ) = (i, i + 1), i = g + 1, g + 2, . . . , g + n − 1.
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This epimorphism is induced by the standard epimorphism Bg+n −→ Sg+n . Let
Pg,n = Ker(ψn). Then Pg,n is generated by the element from the table above. In
[2, 3] it was proved that there exists the following short exact sequence:

1 −→ Pg,n −→ Bg,n −→ Sn −→ 1,

and was found the vertical decomposition of Pg,n:

Pg,n = Ug+n � (Ug+n−1 � (. . . � (Ug+2 �Ug+1) . . .)).

If we let U (g+n−i)
g+n = Ug+n � (Ug+n−1 � (. . . � (Ug+n−i+2 �Ug+n−i+1) . . .)), then

we get the normal series:

1 = U (g+n)
g+n ≤ U (g+n−1)

g+n ≤ . . . ≤ U (g)
g+n = Pg,n,

where
U (r)

g+n/U
(r+1)
g+n

∼= Fr , r = g, g + 1, . . . , g + n − 1.

The homomorphism which is induced by the embedding Bg,n −→ Bg+n sends this
normal series to the corresponding normal series for Pg+n .

Let us construct the horizontal decomposition for Pg,n . To do this, define the
following subgroups in Pg,n:

Vg,1 = 〈a1,g+1, a1,g+2, . . . , a1,g+n〉,
Vg,2 = 〈a2,g+1, a2,g+2, . . . , a2,g+n〉,
.......................................................

Vg,g = 〈ag,g+1, ag,g+2, . . . , ag,g+n〉,
Vg,g+1 = 〈ag+1,g+2, ag+1,g+3, . . . , ag+1,g+n〉,
Vg,g+2 = 〈ag+2,g+3, ag+2,g+4, . . . , ag+2,g+n〉,
.......................................................

Vg,g+n−1 = 〈ag+n−1,g+n〉.

We see that Vg,g+i = Vg+i for all i = 1, 2, . . . , n − 1, these subgroups lie in ˜Pn and
as we know

˜Pn = Vg,g+1 � (Vg,g+2 � (. . . � (Vg,g+n−2 � Vg,g+n−1) . . .))

is the horizontal decomposition of ˜Pn .
We see that the vertical decomposition of Pg,n is a part of the vertical decompo-

sition for Pg+n . For the horizontal decomposition situation is more complicated.

Example 9.1 The horizontal decomposition of P4 has the form

P4 = V1 � (V2 � V3),
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where
V1 = 〈a12, a13, a14〉, V2 = 〈a23, a24〉, V3 = 〈a34〉,

and V1 is normal in P4, V2 is normal in V2 � V3. The group P2,2 contains subgroups

V2,1 = 〈a13, a14〉, V2,2 = V2 = 〈a23, a24〉, V2,3 = V3 = 〈a34〉,

but in this case V2,1 is not normal in P2,2, Indeed, from Lemma 9.1 we have the
following relations

a−ε
23 a13a

ε
23 = (a12a13)

εa13(a12a13)
−ε, a−ε

24 a14a
ε
24 = (a12a14)

εa14(a12a14)
−ε.

Hence, P2,2 contains not only V2,1 but its normal closure in P2,2 and we get the
horizontal decomposition

P2,2 = V 2,1 � (V2 � V3),

where V 2,1 = 〈V2,1〉P2,2 is the normal closure of V2,1 in P2,2.

In the general case, let V g,i be the normal closure of Vg,i in the subgroup
〈Vg,i , Vg,i+1, . . . , Vg,g, ˜Pn〉, i.e.

V g,i = 〈Vg,i 〉〈Vg,i ,Vg,i+1,...,Vg,g,˜Pn〉.

Lemma 9.2 (1) V g,g = Vg,g
∼= Fn.

(2) V g,i is a subgroup of Vi for every i = 1, 2, . . . , g and, in particular, is a free
group.

Proof (1) We see that Vg,g = Vg and from Lemma 9.1 it follows that Vg is normal
in 〈Vg,g, ˜Pn〉.

(2) The fact that V g,i is a subgroup of Vi follows from the conjugation rules of
Lemma 9.1. The fact that V g,i is free follows from the fact that Vi is free.

Since ˜Pn ∼= Pn , it has the horizontal decomposition:

˜Pn = Vg+1 � (Vg+2 � (. . . � (Vg+n−2 � Vg+n−1) . . .)).

Using Lemma 9.2, one can construct the horizontal decomposition of Pg,n .

Theorem 9.1 The group Pg,n is the semi-direct products of groups:

Pg,n = V g,1 � (V g,2 � (. . . � (V g,g � ˜Pn) . . .)).

Proof Use induction on g. If g = 1, then P1,n = Pn+1 and the horizontal decomposi-
tion for Pn+1 gives the horizontal decomposition: P1,n = Vg � ˜Pn . As follows from
Lemma 9.2, Vg = V g,g .
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Let g > 1. Define a homomorphism of Pg,n onto the group Pg−1,n which sends
all generators of Vg,1 to the unit and keeps all other generators. The kernel of this
homomorphism is the normal closure of Vg,1 in Pg,n . Denote this kernel by V g,1 =
〈Vg,1〉Pg,n . Since, Vg,1 is a subgroup in V1 and V1 is normal in Pg+n we get that V g,1

lies in V1 and hence is a free. We have the decomposition Pg,n = V g,1 � Pg−1,n .
Using the induction hypothesis we get the required decomposition.

9.4 The Kernel of the Epimorphism Bg,n → ˜Bn

As was noted in [3] there is an epimorphism

ϕn : Bg,n −→ ˜Bn,

where the subgroup ˜Bn = 〈σg+1, σg+2, . . . , σg+n−1〉 is isomorphic to Bn . This endo-
morphism is defined by the rule

ϕn(τk) = 1, k = 1, 2, . . . , g, ϕn(σi ) = σi , i = g + 1, g + 2, . . . , g + n − 1.

If we denote Rg,n = Ker(ϕn), then Bg,n = Rg,n � ˜Bn . The purpose of this section is
the description of the group Rg,n .

Considering the table with the generators of Pg,n (see Sect. 3), we see that
all generators, which lie in the fist g rows of this table, are elements of Rg,n .
Denote by Qg,n the subgroup of Rg,n that is generated by these elements, i.e.
Qg,n = 〈Vg,1, Vg,2, . . . , Vg,g〉. Then Rg,n = 〈Qg,n〉Bg,n is the normal closure of Qg,n

in Bg,n .
On the other side, if we denote

Ug,g+i = 〈a1,g+i , a2,g+i , . . . , ag,g+i 〉 ≤ Ug+i , i = 1, 2, . . . , n,

then Qg,n = 〈Ug,g+1,Ug,g+2, . . . ,Ug,g+n〉. Note that Ug,g+1 = Ug+1. Let Ug,g+i be
the normal closure of Ug,g+i in Ug+i , i = 1, 2, . . . , n. In this notations it holds:

Theorem 9.2 The group Rg,n has the following decompositions:

(1) Rg,n = Ug,g+n � (Ug,g+n−1 � (. . . � (Ug,g+2 �Ug,g+1) . . .)),

where Ug,g+1 = Ug+1.

(2) Rg,n = V g,1 � (V g,2 � (. . . � (V g,g−1 � V g,g) . . .)),

where V g,g = Vg.

Proof As we know, Rg,n is the normal closure of Qg,n in Bg,n . To find this closure, at
first, consider conjugations of the generators of Qg,n by σg+k , k = 1, 2, . . . , n − 1.

Conjugating generators from the kth column of our table by σg+k , we have

σ−1
g+kai,g+kσg+k = ai,g+kai,g+k+1a

−1
i,g+k, i = 1, 2, . . . , g.

http://dx.doi.org/10.1007/978-3-319-68103-0_3
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Conjugating generators from the (k + 1)st column of our table by σg+k , we have

σ−1
g+kai,g+k+1σg+k = ai,g+k, i = 1, 2, . . . , g.

Generators from all other columns commute with σg+k .
Hence, for every generator ai j of Qg,n and every σk , k = g + 1, g + 2, . . . , g +

n − 1, the element σ−1
k ai jσk lies in Qg,n .

For the group ˜Bn there exists the following exact sequence

1 −→ ˜Pn −→ ˜Bn −→ Sn −→ 1.

Let mkl = σk−1 σk−2 . . . σl for l < k and mkl = 1 in other cases. Then the set

�n =
⎧

⎨

⎩

g+n
∏

k=g+2

mk, jk | 1 ≤ jk ≤ k

⎫

⎬

⎭

is a Schreier set of coset representatives of ˜Pn in ˜Bn .
From the previous observations it follows that if α ∈ �, then for every generator

ai j of Qg,n the element α−1ai jα lies in Qg,n .
Nowwewill consider the conjugations of the generators of Qg,n by the generators

of Pg,n .
(1) To prove the first decomposition, take some element h ∈ Bg,n and using the

vertical decomposition, write it in the normal form:

h = ug+1ug+2 . . . ug+nα, where uk ∈ Uk, α ∈ �n.

In every group Uk , k = g + 1, g + 2, . . . , g + n, we have two subgroups:

Ug,k = 〈a1k, a2k, . . . , agk〉, ˜Uk = 〈ag+1,k, ag+2,k, . . . , ak−1,k〉 ≤ ˜Pn.

We see that Ug,k is a subgroup of Pg,n , ˜Uk is a subgroup of ˜Pn and Uk = 〈Ug,k, ˜Uk〉
is a free group. Define the projection πk : Uk −→ ˜Uk by the rules

πk(aik) = 1, i = 1, 2, . . . , g;

πk(a jk) = a jk, j = g + 1, g + 2, . . . , k − 1.

The kernel Ker(πk) = Ug,k is the normal closure 〈Ug,k〉Uk of Ug,k into Uk . Hence,
element uk can be written in the form uk = ukπk(uk) for some uk ∈ Ug,k . Denote
for simplicity wg+i = πg+1(ug+i ), we can rewrite h in the form

h = (ug+1wg+1)(ug+2wg+2) . . . (ug+nwg+n)α.
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Shifting all wg+i to the right we get

h = ug+1u
w−1
g+1

g+2 . . . u
w−1
g+n−1w

−1
g+n−2...w

−1
g+1

g+n wg+1wg+2 . . .wg+nα.

The image ϕn(h) = wg+1wg+2 . . .wg+nα. Hence, the element

ug+1 u
w−1
g+1

g+2 . . . u
w−1
g+n−1w

−1
g+n−2...w

−1
g+1

g+n

lies in the kernel Ker(ϕn) = Rg,n . We proved that any element from Rg,n lies in the
product

Ug,g+n � (Ug,g+n−1 � (. . . � (Ug,g+2 �Ug,g+1) . . .)).

On the other side, this product contains Qg,n and is normal in Bg,n . Hence, Rg,n has
the required decomposition.

(2) Prove the second decomposition. DenoteG = V g,1 � (V g,2 � (. . . � (V g,g−1

� V g,g) . . .)) the group from the right side of the decomposition of Rg,n . Take an
arbitrary element h ∈ Bg,n . By the theorem on the horizontal decomposition of Bg,n

it has the following normal form:

h = v1v2 . . . vgb, where vi ∈ Vg,i , b ∈ ˜Bn

and v1v2 . . . vg lies in Rg,n . Under the endomorphism ϕn : Bg,n −→ ˜Bn element h
goes to the element b. Hence, G lies in Rg,n .

On the other sidewemust prove that Rg,n lies inG.Weknow that Rg,n is the normal
closure of Qg,n in Bg,n . As was shown before, if α ∈ �n is a coset representative of
˜Pn into ˜Bn and ai j is some generator of Qg,n , then aα

i j lies in Qg,n . Considering the
conjugation of ai j ∈ Qg,n by generators of Pg,n and using the Lemma 9.1 we get an
element which lies in G.

In the case g = 1 we have P1,n = Pn+1 and R1,n = 〈a12, a13, . . . , a1,n+1〉 ∼= Fn

and we get the decomposition which was found in [5].

Corollary 9.1 B1,n
∼= Fn � Bn.

9.5 Some Analog of the Hecke Algebra for the Braid Group
in the Handlebody

Let q be some complex number. Recall that theHecke algebra Hn(q) is an associative
C-algebra with unit, which is generated by elements

s1, s2, . . . , sn−1,
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and is defined by the relations

si s j = s j si , for |i − j | > 1,
si si+1si = si+1si si+1, for 1 ≤ i ≤ n − 2,
s2i = (q − 1)si + q, for i = 1, . . . , n − 1.

The algebra Hn(q) has the following linear basis:

S = {(si1si1−1 . . . si1−k1)(si2si2−1 . . . si2−k2) . . . (si p si p−1 . . . si p−kp )}

for 1 ≤ i1 < · · · < i p ≤ n − 1. The basis S is used in the construction of theMarkov
trace, leading to the HOMFLYPT or 2-variable Jones polynomial (see [9]).

The braid group in the solid torus B1,n is the Artin group of the Coxeter group
of type B, which is related to the Hecke algebra of type B. The generalized Hecke
algebra of type B, H1,n(q) is defined by S. Lambropoulou in [13]. H1,n(q) is iso-
morphic to the affine Hecke algebra of type A , ˜Hn(q). A unique Markov trace is
constructed on the algebras H1,n(q) that leads to an invariant for links in the solid
torus, the universal analogue of the HOMFLYPT polynomial for the solid torus.

The algebra H1,n(q) is generated by elements

t, t−1, s1, s2, . . . , sn−1,

and is defined by the relations

si s j = s j si , for |i − j | > 1,
si si+1si = si+1si si+1, for 1 ≤ i ≤ n − 2,
s2i = (q − 1)si + q, for i = 1, 2, . . . , n − 1,
s1ts1t = ts1ts1,
tsi = si t, for i > 1.

Hence,

H1,n(q) = C[B1,n]
〈σ 2

i − (q − 1)σi − q〉 .

Note that in H1,n(q) the generator t satisfies no polynomial relation, making the
algebra H1,n(q) infinite dimensional. If we set t = 0 in H1,n(q), we obtain the Hecke
algebra Hn(q).

In H1,n(q) are defined in [5] the elements

ti = si si−1 . . . s1ts1 . . . si−1si , t ′i = si si−1 . . . s1ts
−1
1 . . . s−1

i−1s
−1
i .

It was then proved that the following sets form linear bases for H1,n(q):


n = t k1i1 t
k2
i2

. . . t krir σ, where 1 ≤ i1 < . . . < ir ≤ n − 1,
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′
n = (t ′i1)

k1(t ′i2)
k2 . . . (t ′ir )

kr σ, where 1 ≤ i1 < . . . < ir ≤ n − 1,

where k1, k2, . . . , kr ∈ Z and σ a basis element in Hn(q). The basis 
′
n is used in [5,

13] for constructing a Markov trace on
⋃∞

n=1 H1,n(q) and a universal HOMFLYPT-
type invariant for oriented links in the solid torus.

Definition 9.1 Let q ∈ C. The algebra Hg,n(q) is an associative algebra overCwith
unit that is generated by

t±1
1 , t±1

2 , . . . , t±1
g , sg+1, sg+2, . . . sg+n−1

and is defined by the following relations

si s j = s j si , for |i − j | > 1,
si si+1si = si+1si si+1, for i = g + 1, g + 2, . . . , g + n − 2,
s2i = (q − 1)si + q, for i = g + 1, g + 2, . . . , g + n − 1,
tksi = si tk, for k ≥ 1, i ≥ g + 2,
tk(sg+1tksg+1) = (sg+1tksg+1)tk, for k = 1, 2, . . . , g,
tk(sg+1tk+l sg+1) = (sg+1tk+l sg+1)tk, for k = 1, 2, . . . , g − 1; l = 1, 2, . . . , g − k.

Remark 9.1 Morenatural to consider the generators s1, s2, . . . sn−1 instead sg+1, sg+2,

. . . sg+n−1, but for technical reasons we will use our notation.

We see that

Hg,n(q) = C[Bg,n]
〈σ 2

i − (q − 1)σi − q〉 .

If we consider the algebra Hn(q) as a vector space overC, then it is isomorphic to
the vector spaceC[Sn]. Thus to study Hg,n(q), we define a groupGg,n as the quotient
of Bg,n by the relations

σ 2
i = 1, i = 1, 2, . . . , n − 1.

Denote the natural homomorphism Bg,n −→ Gg,n by ψ and let ψ(ai j ) = bi j .

Theorem 9.3 The group Gg,n is the semi-direct product Gg,n = Fn
g � Sn of the

direct product of n copies of free group Fg of rank g and the symmetric group Sn.

Proof We know that Bg,n = Rg,n � ˜Bn and

Rg,n = Ug,g+n � (Ug,g+n−1 � (. . . � (Ug,g+2 �Ug,g+1) . . .)).

On the other side, Uk , k = g + 1, g + 2, . . . , g + n, is generated by two subgroups:

Ug,k = 〈a1k, a2k, . . . , agk〉 and ˜Uk = 〈ag+1,k, ag+2,k, . . . , ak−1,k〉 ≤ ˜Pn.
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Note that under the homomorphismψ the subgroups ˜Uk go to 1.Hence,ψ(Ug,g+k) =
ψ(Ug,g+k) ∼= Fg and

ψ(Rg,n) = ψ(Ug,g+n) � (ψ(Ug,g+n−1) � (. . . � (ψ(Ug,g+2) � ψ(Ug,g+1)) . . .))

is the semi-direct product of n copies of free group Fg . Also, Gg,n = ψ(Rg,n) �
ψ(˜Bn) ∼= ψ(Rg,n) � Sn .

Let us show that in fact ψ(Rg,n) is the direct product of n copies of free group
Fg . To do it it is enough to prove that

ψ(Rg,n) = ψ(Ug,g+n) × ψ(Rg,n−1).

Denote bi j = ψ(ai j ), consider the relations (9.11)–(9.14) and find their images under
the homomorphism ψ . The relation (9.11) goes to the relation

b−ε
i,g+ j bg+ j,g+nb

ε
i,g+ j = (bi,g+nbg+ j,g+n)

εbg+ j,g+n(bi,g+nbg+ j,g+n)
−ε,

but bg+ j,g+n = 1 and we have the trivial relations.
The relation (9.12) goes to the relation

b−ε
l,g+ j bl,g+nb

ε
l,g+ j = (bl,g+nbg+ j,g+n)

εbl,g+n(bl,g+nbg+ j,g+n)
−ε,

but bg+ j,g+n = 1 and we have the relation

b−ε
l,g+ j bl,g+nb

ε
l,g+ j = bl,g+n.

The relation (9.13) goes to the relation

b−ε
i,g+ j bl,g+nb

ε
i,g+ j = [b−ε

i,g+n, b
−ε
g+ j,g+n]εbl,g+n[b−ε

i,g+n, b
−ε
g+ j,g+n]−ε, i < l < g + j,

but bg+ j,g+n = 1 and we have the relation

b−ε
i,g+ j bl,g+nb

ε
i,g+ j = bl,g+n, i < l < g + j.

The relation (9.14) goes to the relation

b−ε
i,g+ j bl,g+nb

ε
i,g+ j = bl,g+n, l < i < g + j < g + n.

The image of ˜Bn ≤ Bg,n is isomorphic to Sn . Thus from the decomposition Bg,n =
Rg,n � ˜Bn we get the required decomposition for Gg,n .

From this theorem we have

Corollary 9.2 Every element h ∈ Gg,n has the unique normal form

h = h1h2 . . . hnα,



202 V.G. Bardakov

where hi is a reduced word in the free group

ψ(Ug,g+i ) = 〈b1,g+i , b2,g+i , . . . , bg,g+i 〉 ∼= Fg, i = 1, 2, . . . , n,

α ∈ �n is a coset representative of ψ(Rg,n) in Gg,n.

Using this normal form and the fact that these normal forms form a linear basis
of C[Gg,n], we can try to define a basis of Hg,n(q). In the algebra Hg,n(q) define the
following elements

t1,g+1 = t1, t1,g+2, . . . , t1,g+n,

t2,g+1 = t2, t2,g+2, . . . , t2,g+n,

. . . . . . . . . . . .

tg,g+1 = tg, tg,g+2, . . . , tg,g+n,

where

ti j = s j−1s j−2 . . . s1ti,g+1s1 . . . s j−2s j−1, 1 ≤ i ≤ g, g + 2 ≤ j ≤ g + n.

These elements correspond to the elements bi j from Gg,n , which were defined in
Theorem9.3 as the images of the elements ai j under the map ψ . It is not difficult to
see that the elements

t1,g+i , t2,g+i , . . . , tg,g+i

generate a free group of rank g.
The algebra Hg,n(q) contains the subalgebra with the set of generators sg+1, sg+2,

. . . sg+n−1, which is isomorphic to Hn(q). Let 
g,n be the following set in Hg,n(q):

u1u2 . . . unσ,

where ui is a reduced word in the free group

〈t1,g+i , t2,g+i , . . . , tg,g+i 〉 ∼= Fg, i = 1, 2, . . . , n,

σ is a basis element in Hn(q).

Conjecture 9.1 There is an isomorphism Hg,n(q) ∼= C[Gg,n] asC-modules. In par-
ticular, the set 
g,n is a basis of the algebra Hg,n(q).

The algebra H2,n(q) is the subject of study in [14], where one set of elements in
H2,n(q), different from our 
2,n , is proved to be a spanning set for the algebra.

At the end, we formulate the following question for further investigation.

Question 9.1 Is it possible to define a Markov trace on the algebra
⋃∞

n=1 Hg,n(q)

and construct some analogue of the HOMLYPT polynomial that is an invariant of
links in the handlebody Hg?
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Chapter 10
Infinite Loop Spaces, Dyer–Lashof Algebra,
Cohomology of the Infinite Symmetric Group
and Modular Invariants

Nondas E. Kechagias

Abstract In this lecture note we survey results obtained under the research program
Thalis (Kechagias, J. Homotopy Relat. Struct. 8(2), 201–229, (2013), [24], J. Pure
Appl. Algebra 219(4), 839–863, (2015), [25]) and place them in the context of
algebraic topology. It is divided into two parts. In the first part, we survey infinite
loop spaces, Ω-spectra, and their relation with the symmetric groups. In the second
part, we express the component Dyer–Lashof coalgebras as subalgebras of a cofree
unstable coalgebra on two cogenerators using an extension of thePeterson conjecture.
We also compare and approximate H∗ (Q0S0;Z/pZ

)
with certain free objects using

modular invariants. A new basis for H∗ (BΣ∞;Z/pZ) is provided.

10.1 Introduction

In this lecture note we survey results obtained under the research program Thalis
[24, 25] and place them in the context of algebraic topology. Moreover, we correct
some statements appearing in [24]. We begin by surveying infinite loop spaces, Ω-
spectra, generalized cohomology theories and how these concepts relate to each
other. Section one is intended to be understood by a general audience. The infinite
loop space structure is reflected by certain invariants; e.g., the Dyer–Lashof algebra.
We recall the Dyer–Lashof algebra and its algebraic structure following May [10]
in section two. Its connection with modular invariants is discussed in section three.
Modular invariant theory plays an important role inmodp cohomology of groups and
representation theory. Its application in algebraic topology was realized by Madsen
and since then many people have demonstrated its use. We provide an incomplete
list of references which is not intended to be up to date.

The action of the Steenrod algebra plays an important role in studying homotopy
groups of spheres. It is also of great use in the study of cohomology of infinite

N.E. Kechagias (B)
Department of Mathematics, University of Ioannina,
45500 Ioannina, Greece
e-mail: nkechag@uoi.gr
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loop spaces. We closely investigate its action on both the Dickson and Dyer–Lashof
algebras.

TheDyer–Lashof algebra R is a component coalgebra R = ⊕

n≥0
R[n].We consider

the category of connected cocommutative positively graded coalgebras. LetA stand
for the Steenrod algebra. The advantage of using modular invariant theory is the
complete knowledge of the action on Dickson algebra generators instead of the
standard approach as in [10]. The hom dual of R[n] is isomorphic to the classical
Dickson algebra Dn , for p = 2, as A -algebras [44]. Here the hom dual stands for
the Fp dual. The classical Dickson algebra of length n, Dn = P[y1, . . . , yn]GLn , is
a polynomial algebra. The Peterson conjecture is about the global structure of the
classicalDickson algebra as an unstable algebra over the Steenrod algebra. Pengelley,
Peterson and Williams, for p = 2 [48], proved that the classical Dickson algebra is
a free unstable algebra on a certain cyclic module, modulo one additional relation.
Here and bellow the term “free unstable algebra” is used according to Steenrod in
[56] p. 29, see Definition 10.9. Because of Mui’s isomorphism between (R[n])∗ and
Dn for p = 2 [44], it follows that R[n] is isomorphic to a subcoalgebra of a cofree
unstable coalgebra on one cogenerator.

We consider the odd primary case. The Bockstein operations introduce amusing
complications. We prove that R[n] is isomorphic to a subcoalgebra of a cofree unsta-
ble A -coalgebra on two cogenerators in [25]. Dually, R[n]∗ is isomorphic to a free
unstable A -algebra on a module generated by two elements μ and u modulo cer-
tain relations (Definition 10.9). This is one of our main theorems. As a corollary we
obtain an isomorphism HomCA (R[n], R[n]) ∼= Z/pZ. We discuss this extension
in section four.

We close this survey by giving an alternative description of the modp coho-
mology of the infinite symmetric group using modular invariants as it appeared
in [24]. Barratt–Priddy [4] and Quillen [50] independently established the connec-
tion between the classifying space of the infinite symmetric group and the stable
range of spheres. We recall that the k-stem or kth stable homotopy group of spheres
is πn+k (Sn) for n > k + 1. Our motivation is a better understanding of the action
of the Steenrod algebra on the cohomology of infinite loop space of the zero sphere
H∗ (Q0S0;Fp

)
. An explicit basis for the cohomology of the infinite symmetric group

is constructed in terms of Dickson invariants, Theorem 12 in [24].
Let EDn := (E(x1, . . . , xn) ⊗ P[y1, . . . , yn])GLn stand for the extended Dickson

algebra of length n. Let ED = ⊕

n≥1
ED+

n be the Dickson algebra monomials of posi-

tive degree of any length and SED a certain submodule that will be defined later. Let
SED# be the corresponding abelian restricted Lie algebras and V

(
SED#

)
the corre-

sponding universal enveloping algebra.Weprove thatV
(
SED#

)
and H∗ (Q0S0;Fp

)

are isomorphic algebras but not as Steenrod algebras. In [24] we stated that they are
not isomorphic as Steenrod modules and this is not what we proved. The map we
used to define the isomorphism provides no information as a Steenrod module iso-
morphism.We take the opportunity to correct somemathematical statements pointed
out by the referee. Wellington also proved that H∗ (Q0S0;Fp

)
is not a free unstable
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Steenrod algebra in his memoirs A.M.S., [59] p. 35. We approximate the differ-
ence defining certain subalgebras Ck of V

(
SED#

)
. Their images in H∗ (Q0S0;Fp

)

under the above isomorphism filter H∗ (Q0S0;Fp
)
. Certain quotients of those A -

algebras are isomorphic with free Steenrod algebras generated by certain Dickson
submodules, Theorem 15 in [24].

We thank the referee verymuch for his numerous valuable suggestions-corrections
regarding the exposition of this work and the correction regarding the misleading
statement in [24] as mentioned above.

10.2 A Brief Survey

Topology is the study of topological spaces and continuous maps. A “nice” topo-
logical space is a CW complex; i.e., a space built up from cells. By attaching cells
on a space X one can built a large class of topological spaces which have a certain
amount of geometric intuition behind them. A major goal of algebraic topology is
to study topological spaces by means of geometric invariants such as homotopy or
(co)homology. There are far too many topological spaces and maps to deal with
effectively. Thus a homotopy theorist studies homotopy classes of maps from X to
Y , [X,Y ], and classes of spaces under homotopy equivalences. Two fundamental
problems in homotopy theory are to determine if X and Y are of the same homotopy
type and to compute [X,Y ]. If X is a sphere and maps are respecting the base points,
[Sn,Y ] is just the nth homotopy group of Y : πn (Y ).

Homotopy theory has a strong interplay with many other areas of mathematics,
particular geometry and algebra. Many geometric properties can be classified using
homotopy theory. Just to mention a few with great impact in mathematics.

• The Hopf invariant problem introduced by Hopf related to many questions. For
which n does there exist a map f : S2n−1 → Sn with Hopf invariant one? For
which n, Rn is a division algebra with a norm preserving multiplication?

• The vector field problem. What is the maximum number of linearly independent
vector fields on a sphere?

• The Kervaire invariant problem of differential topology. In which dimensions n
does there exist a smooth framed manifold with Kervaire invariant one?

Sincemanifolds are of a great importance inmathematicswe discuss awell known
geometric application and its relation with homotopy theory [61].

Given a closed n-manifold M , under what conditions is it like the boundary of an
(n + 1)-manifoldW? Twomanifolds are called “bordant” if and only if their disjoint
union is the boundary of an (n + 1)-manifold. This defines an equivalence relation.
Thom [57] showed that the bordism classes form a graded ring called cobordism ring
(group). He reduced the study of cobordism groups to the study of stable homotopy
groups:

lim
m

πn+m (MO (n)) .
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Here the spaces MO (n) constructed by Thom are called Thom complexes. The limit
is formed by the maps ΣMO (n) → ΣMO (n + 1) and Σ is the reduced suspen-
sion functor. He constructed a spectrum MO which is approximated by the spaces
MO (n). We shall introduce two notions, “stable” homotopy theory and “spectra”.
It was stated by Milnor [39] that one should deal with single objects like spectra E
rather than the spaces E (n) which approximate it.

In algebraic topology, it is rather important to distinguish between unstable prob-
lems, which arise in some definite dimension, and stable problems, which arise in
any sufficiently large dimension. To that direction we have the suspension homo-
morphism

Σ : πn+k
(
Sn
)→ πn+k+1

(
Sn+1

)
or [Sn+k, Sn] → [ΣSn+k,ΣSn]

and the Freudenthal Suspension Theorem says that this homomorphism is an iso-
morphism for n > k + 1. Hence the groups πn+k (Sn) are independent of dimension
for n > k + 1 and called the k-stem. As long as the dimension of the sphere is
large enough the homotopy group depends only on the relative dimension k. This is
encoded by an object called “spectrum”. Spectra are objects that capture the prop-
erties of topological spaces which are independent of the dimension. For example
cohomology functors are themselves spectra. Spectra have extremely nice formal
properties, and they can be used to give information about certain homotopy groups
of spaces, known as the “stable” homotopy groups. Before commenting further on
this notion, we recall some classical constructions.

Serre [52] called a space X equipped with a product μ : X × X → X which
satisfies appropriate axioms an “H -space” in honor of Hopf’s work on the topology
of Lie groups. Any topological monoid is an H -space but a general H -space need
not be associative, not even up to homotopy.

If X is an H -space, μ and the Künneth formula are used to define a “Pontryagin
product” on H∗ (X). An important example of an H -space is a “loop space”

ΩX = {(S1, 1)→ (X, x0)
}
with the compact open topology.

The H -space structure does not depend onμ, up to isomorphism of H -spaces.ΩX is
the fiber space of the Serre fibration ΩX → PX → X . Here PX = {([0, 1], 0) →
(X, x0)} is the contractible path space of X . Serre used the fibration above and
spectral sequences to come up with very important results in homotopy theory [52,
53].

One can iterate the loop space construction

Ωn X = Ω
(
Ωn−1X

) = · · · =: {(Sn, ∗)→ (X, x0)
}
.

A space Y is called an “infinite loop space”, if there is a sequence of spaces {Xn}
with Y = X0 and weak homotopy equivalences



10 Infinite Loop Spaces, Dyer–Lashof Algebra, Cohomology … 209

Xn
�→ ΩXn+1.

We recall that a map g : X → Y between connected spaces is a weak equivalence if

gn : πn (X) → πn (Y )

is an isomorphism for all n. This implies that g∗ : [W, X ] → [W,Y ] is an isomor-
phism for all CW -complexes W . Weak equivalences are used instead of homotopy
equivalences to avoid technical nuisance.

One may ask: “how do infinite loop spaces arise in nature”? We comment on this
question bellow.

In homology theory we have:

Hn (X, π) ∼= Hn+1 (ΣX, π) .

Here π is an abelian group. Although the ordinary reduced cohomology of a sphere
is very simple,

H
∗ (

Sn
) =

{
Z, if ∗ = n
0, if ∗ 	= n

the cohomology of ΩSn is a free algebra on one generator of degree n − 1.
We recall that the suspension functor Σ and the loop functor Ω are adjoint (Kahn

[20]):
[X,ΩY ] ↔ [ΣX,Y ] . (10.1)

This bijection implies πn (ΩX) ∼= πn+1 (X).
A sequence of spaces {Xn} and maps {ΣXn → Xn+1} is an example of a “spec-

trum”. For a complete account see Adams [1]. The notion of a spectrum is due to
Lima [28].

A “spectrum” is a sequence of spaces and maps {Xn , fn} together with struc-
ture maps fn : ΣXn → Xn+1 or f n : Xn → ΩXn+1. These maps do not need to be
defined until some arbitrarily high suspension.

Two basic examples are in order. There is a functor from spaces to spectra called
Σ∞, the suspension spectrum, Σ∞X := {Xn = Σn X , fn = 1}. And the loop spec-
trum defined bellow.

Let us note that there are various other definitions of spectra, together with defini-
tions for morphisms of spectra, fibrations, and cofibrations such that there are a lot of
model categories of spectra. Most of them are Quillen adjoint and yield isomorphic
homotopy categories. For model categories see [16].

The story started with Hurewicz (1939) who studied aspherical spaces with trivial
higher homotopy groups. For example closed orientable surfaces of genus greater
than zero are such examples. Eilenberg and MacLane [13] took a step further. They
considered spaces whose homotopy groups vanish in all but one dimension n. These
spaces, called Eilenberg–MacLane spaces, were to assume enormous importance in
homotopy theory



210 N.E. Kechagias

π∗ (K (π, n)) =
{

π , if ∗ = n
0, if ∗ 	= n

.

Here π is an abelian group if n ≥ 1. Because of (10.1), K (π, n) � ΩK (π, n + 1)
and {K (π, n)} is an example of an Ω-spectrum defined bellow and any Eilenberg–
MacLane space is an infinite loop space.

Let us return to sequences of spaces X0, X1, . . .. Each weak equivalence Xn
�→

ΩXn+1 can of course be transformed into amapΣXn → Xn+1. So such a sequence is
a spectrum. It requires a special name.LetEbe a spectrum,

{
En , f n : En → ΩEn+1

}
;

we call E an “Ω-spectrum” if the maps f n are weak homotopy equivalences. If E is
an Ω-spectrum we have the following spacial property

[
Σ∞X , E

]
n = [X , En] .

We can replace the spaces En by weakly equivalent ones so that we actually get
homeomorphisms En

∼= ΩEn+1 [32]. This is very appropriate in the theory of infinite
loop spaces, where it is necessary to keep the geometry under control.

Using the suspension spectrum one can define “stable” homotopy groups. The
stable homotopy groups of a complex X are defined by

π s
n (X) = {Sn, X} = lim

m→∞[Sn+m,Σm X ] = [Σ∞S0,Σ∞X ]n .

Here S0 stands for the zero sphere.
Complexes X andY are of the same stable homotopy type, if there exists an integer

m such that Σm X and Σm X are homotopy equivalent. The set of stable homotopy
classes of maps from X to Y shall be

lim
m→∞[Σm X,ΣmY ].

This bicovariant functor (covariant in Y and contravariant in X ) is “stable homo-
topy” and is closely related with the suspension spectrum. It would be nice to work
in a category where stable maps were simply maps. Stable homotopy in the category
of spaces is in fact a rather awkward interplay. One constantly suspends maps to
stay in the stable range. So people work in a “stable homotopy category”. A map of
Ω-spectra f : E → F is a set of morphisms { fn : En → Fn} such that the following
diagram commutes

En
�→ ΩEn+1

fn ↓ ↓ Ω fn+1

Fn
�→ ΩFn+1

The category of Ω-spectra is defined and its homotopy category, given by inverting
maps ofΩ-spectra which are homotopy equivalences, is called the stable homotopy
category.
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Ordinary cohomology is related with an Ω-spectrum, namely an Eilenberg–
MacLane spectrum as follows. By obstruction theory, if X is any complex, then
[X, K (π, n)] is in one to one correspondence with ordinary cohomology Hn (X, π).
So cohomology groups are representable functors by Brown’s Representability The-
orem. This remarkable theorem [8] states that if you assign some algebraic object
F (X) to a complex X and it has certain properties, then there is a spectrum F such
that

F (X) = [X,F] or Fn (X) = [X, Fn
]
for n ≥ 0.

This only happens if Fn �→ ΩFn+1 and it is related with generalized cohomology
theories (Whitehead [60]). The category of Ω-spectra is equivalent to the category
of cohomology theories on based spaces. Axioms for (co)homology theories were
announced by Eilenberg and Steenrod in 1945. It was very impressive that a com-
plicated subject as cohomology theory could be characterized by simple axioms. All
but one of their axioms have a generalized character, the Dimension axiom is quite
specific. When one needs it, one may throw in the wedge axiom of Milnor [40].

Definition 10.1 Let Fn : CW → Ab be a sequence of functors from the category of
CW complexes to abelian groups, indexed with n ∈ Z. The sequence {Fn} is called a
generalized reduced cohomology theory on CW complexes, if the following axioms
hold for each n:

1. Fn is invariant under basepoint-preserving weak homotopy equivalence, and as
such factors through the pointed homotopy category of CW -complexes.

2. Fn

(
∨

α

Xα

)
�⊔

α

Fn (Xα).

3. Let X = A ∪ B be the union of subcomplexes and each contain the base point.
If a ∈ Fn (A) and b ∈ Fn (B) restrict to the same element in Fn (A ∩ B), there
exists an element x ∈ Fn (X) which restricts over A and B, respectively.

4. For each CW pair (X, A) there is a long exact sequence

· · · → Fn (X) → Fn (A) → Fn (X, A) → Fn+1 (X) → · · ·

where we write Fn (X, A) for Fn (X/A).

From the knowledge of all Fn
(
S0
)
(the coefficient ring) one can derive Fn

(
Sk
)

and from the knowledge of the attaching maps of a CW complex X one can derive
Fn (X) up to extension for all X . Fn should convert homotopy colimits into limits.
We just note that an analogue of Brown representability holds for simplicial presheaf
categories over pointed complete cofibrantly generated simplicial model categories
that satisfy certain properties.

So any generalized cohomology theory yields an Ω-spectrum and vice versa.
Moreover, all algebraic properties of F (X) are reflected in F up to homotopy. For
example, if F (X) ∼= [X,F] is a ring, then F is a ring up to homotopy.

If one starts from a cohomology theory, then one constructs a representing spec-
trum. If one takes the corresponding cohomology theory, then one will recover the
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original cohomology theory up to isomorphism. In a celebrated paper G.W. White-
head showed that if we start from the spectrum F, we can define a generalized
(co)-homology theory [60]. As we mentioned at the beginning of this survey, this is
done in such a way that the Thom spectrum, although it is not an Ω-spectrum, gives
rise to real, unoriented bordism and cobordism. Conversely, if one starts from a spec-
trum F, then he will construct the corresponding generalized cohomology theory F∗.
Thus a representing Ω-spectrum E. Then E and F have the same homotopy groups
(the coefficient groups for F∗). Any spectrum F can be replaced with an equivalent
Ω-spectrum E:

En = lim
m

ΩmFn+m .

Ω∞F is defined to be E0. Thus Ω∞ is a functor from spectra to spaces and Σ∞
from spaces to spectra. The values of the functor Ω∞ are infinite loop spaces. An
example: QX := Ω∞Σ∞X = lim

m
ΩmΣm X . One may think of infinite loop spaces

as the abelian groups up to homotopy in the strongest sense.
May and Thomason [34] proved that if C is a “strict symmetric monoidal cate-

gory” then the classifying space BC =|NC |, the geometric realization of the nerve,
is an infinite loop space. All infinite loop spaces arise from this “construction” and
all such constructions are equivalent in some sense.

One may ask: “how much of Brown’s representability theorem carries over to a
general model category?” Jardine [19] proved an analogue of Brown representability
theorem for simplicial presheaf categories. Of course there are examples of model
categories for which Brown’s representability fails.

It is evident now that a category is required which allows one to study both
homotopy theory and cohomology theories. Roughly speaking, this category should
provide the following:

• Weshould haveCW -spectra, sowe should be able to carry overCW approximation
from the classical setting.

• It should be additive.
• It should give us a faithful embedding of stable homotopy category of spaces into
that of spectra: its suspension spectrum should yield stable homotopy groups.

• The suspension functor should be an equivalence.
• We should have the Brown representability analogue.
• We should have certain maps of spectra E × E → E so that extra structure will be
provided (like the cup product in cohomology).

Let us return to the specific theme expressed by the title of this work. All (co)-
homologies are understood to be mod p in this work, p is any prime number.

A natural question to ask iswhat do the spacesΩn X look like?ΩX is an H -space
and Ω2X is more than an H -space (Stasheff [54]). So Ω∞X admits extra structure.
Their invariants reflecting the infinite loop space structure such as the homology
operations were defined and studied by Kudo and Araki [26, 27] for p = 2, Browder
[7] andDyer and Lashof [12] for p an odd prime. Theyweremotivated by Steenrod’s
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[55] construction of cohomology operations, and studied the modp homology of
Ω∞Σ∞X for a prime p.

Boardman and Vogt [5] (inspired by Milgram [35]) observed that the product
in an iterated loop space is not only homotopy commutative and associative, but it
is subject to a whole hierarchy of higher commutativity and associativity relations.
The work of May [33] and Segal [51] gave a good understanding of these spaces.
May constructed approximation models CmX for ΩmΣm X such that they are weak
homotopy equivalent. These spaces play an important role in the subject.

LetΣn be the symmetric group of degree n, i.e.,Σn is the group of all permutations
of n elements and BΣn its classifying space (Milnor [37]). The infinite symmetric
group Σ∞ is defined to be the direct limit of the symmetric groups under the natural
inclusions:

imn : Σn → Σm by imn (α) (i) =
{

α (i) , if 1 ≤ i ≤ n
i , if n ≤ i ≤ m

.

Here α ∈ Σn . There are also homomorphisms μn,m : Σn × Σm → Σn+m by

μn,m (α, β) (i)

{
α (i) , if 1 ≤ i ≤ n

n + β (i − n) , if n < i ≤ n + m
.

The mapsμn,m induce a multiplication in the homology group H∗ (BΣ∞) calculated
by Nakaoka [45] (see also [15]).

When one constructs a model for Ω∞Σ∞X , by the method of J.P. May [33] or
any other method, one uses the spaces BΣn:

C (X) =
⊔

n≥1

EΣn ×Σn X
n ↙≈ .

Here EΣn is the universal covering space for BΣn , Σn acts on Xn by permutation
of coordinates and ≈ stands for certain relations [33].

For the zero sphere S0, C
(
S0
) = ⊔

n≥1
BΣn has a natural associative H -space

structure with unit induced from μn,m upon applying the functor B and using
B (Σn × Σm) = BΣn × BΣm .

Barratt and Priddy [4] andQuillen [50] independently proved the following impor-
tant theorem in homotopy theory. For details, please see [1].

Theorem 10.1 (i) Q
(
S0
)
is the group completion of C

(
S0
)
.

(ii) There are natural inclusions in : BΣn → Q
(
S0
)
inducing an H-map i :

C
(
S0
)→ Q

(
S0
)
with Bi : BC (S0)→ Q

(
S1
)
a homotopy equivalence.Moreover,

ΩBC
(
S0
) � Q

(
S0
)
.

(iii) H∗
(
ΩBC

(
S0
)) ∼= H∗ (Z × BΣ∞).

Q
(
S0
)
is naturally equipped with two products [30]. One is the “loop sum”which

is given byΩn−1 (∗) : (Ωn Sn) × (Ωn Sn) → (Ωn Sn)where ∗ : (ΩSn) × (ΩSn) →
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(ΩSn) is the usual loop sum. This product is reflected in C
(
S0
)
by the family of

homomorphisms
φn,m : Σn × Σm → Σn+m given by

φn,m (α, β) (i) =
{

α (i) , 1 ≤ i ≤ n;
n + β (i − n) , n + 1 ≤ i ≤ n + m.

The second one is the composition product which is reflected in C
(
S0
)
by the

family of homomorphisms

ψn,m : Σn × Σm → Σnm given by

ψn,m (α, β) (i, j) = (α (i) , β ( j)) , 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Here (i, j) is given the lexicographical ordering [35].
H∗
(
Q
(
S0
))

is a coalgebra as it is with all spaces but also an algebra. Since the
induced product in homology is a map of coalgebras, it makes H∗

(
Q
(
S0
))

a Hopf
algebra [41]. Topologists call a Hopf algebra a “coalgebraic group” because it is an
abelian group object in the category of coalgebras. The secondmultiplication induces
another map. Altogether this total structure is called a “Hopf ring” or a “coalgebraic
ring” ([49]). The coalgebraic ring structure of H∗

(
Q
(
S0
))

is of interest in the study
of homology of infinite loop spaces [9, 15, 58].

It is well known that all spectra are module spectra over the sphere spectrum.
Themodp homology of any infinite loop space becomes an H∗

(
QS0

)
-module in the

category of coalgebras. H∗
(
QS0

)
is our object of study.

Before commenting further on the homology of infinite loop spaces, we shall
recall the Steenrod operations. Steenrod introduced a family of operations

Sqi : Hn (− ;F2) → Hn+i (− ;F2)

which behave well with respect to suspension. They were extended to any odd prime
number p. For all integers i and n there is a natural transformation of functors which
is a homomorphism

Pi : Hn
(− ;Fp

)→ Hn+2i(p−1)
(− ;Fp

)

and the Bockstein operator

β : Hn
( ;Fp

)→ Hn+1 ( ;Fp
)

associated to the short exact sequence 0 → Z/pZ → Z/p2Z → Z/pZ → 0.
The stable operations inmodp cohomology form an algebraA called the Steenrod

algebra [56]. The modp Steenrod algebraA is the quotient of the “free” associative
unital graded Fp-algebra generated by the elements:
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Sqi , i > 0, if p = 2,

β and Pi , i > 0 and β2 = 0, if p > 2;

by the ideal generated by the elements, known as the Adem relations

Sqi Sq j −
[i/2]∑

0

(
j − k − 1

i − 2k

)
Sqi+ j−k Sqk , i, j > 0 such that i < 2 j , p = 2;

Pi P j −
[i/p]∑

0

(
(p − 1) ( j − t) − 1

i − pk

)
Pi+ j−t Pt , i, j > 0 such that i < pj and

PiβP j −
[i/p]∑

0

(−1)i+t

(
(p − 1) ( j − t)

i − pt

)
βPi+ j−t Pt

−
[(i−1)/p]∑

0

(−1)i+t−1
(

(p − 1) ( j − t) − 1

i − pt − 1

)
Pi+ j−tβPt , i, j > 0 such that i ≤ pj , p > 2.

Sq0 for p = 2 and P0 for p > 2 are understood to be the unit.
Steenrod and Adem proved that for any space (or spectrum) X , H∗ (X) is in a

naturalway agradedA -module.Moreover, theCartan formula holds for cohomology
classes

Pn (xy) =
∑

i+ j=n

Pi (x) P j (y) .

The cohomology operations can be used to study homotopy groups of spheres
(for an introduction see Mosher-Tangora [42]).

Let X be an infinite loop space. There is another algebra R acting on homology
of infinite loop spaces generated by

Qi : Hn
(
X;Fp

)→ Hn+2(p−1)i
(
X;Fp

)

and
β : Hn

(
X;Fp

)→ Hn−1
(
X;Fp

)

which satisfy certain properties [10]. They can also be used to study stable homotopy
groups of spheres (for an introduction see Wellington [59]).

H∗ (QX) admits anA −R allowable Hopf algebra structure (May [10]); i.e., it is
a Hopf algebra on which both the Steenrod algebra and the Dyer–Lashof algebra act
and the two actions satisfy the Nishida relations [46]. We shall study their structure
in the next sections.
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10.3 The Component Dyer–Lashof Coalgebras

The structure of H∗(Q0S0) has been described in terms of Dyer–Lashof operations.
These family of homology operations were defined by Kudo and Araki [26, 27] for
p = 2, Browder [7] and Dyer and Lashof [12] for p an odd prime.

Qi : Hn
(
QX,Fp

)→ Hn+2(p−1)i
(
QX,Fp

)

and
β : Hn

(
QX,Fp

)→ Hn+1
(
QX,Fp

)
.

Qs y = 0 if 2s < |y| while Qs y = y p if 2s = |y| and Qs[0] = 0 for s > 0. For
k ∈ Z there is a component in QS0. Here QkS0 stands for the kth component. All
components are homotopically equivalent. Let [k] be the image of the generator of
H0
(
QkS0

)
in H0

(
QS0

)
. The element [0] ∈ H0(QX) is the identity for the Pon-

tryagin algebra H∗(QX) induced by the loop product. Let Q0X denote the base
point component. In degree zero H∗(QS0), [k] · [l] = [k + l] and Q0 [k] = [pk].
The operation Q0 acts on the homology of the base point component H∗(Q0S0)
(Madsen [29], Cohen [10]).

Iterates of the Dyer–Lashof operations are of the form

Q(I,ε) = βεk Qik . . . βε1Qi1

where (I, ε) = ((ik, . . . , i1), (εk, . . . , ε1)) with ε j = 0 or 1 and i j a non-negative
integer for j = 1, . . . , k. For p = 2, ε j = 0 for all j . (I, ε) ∈ N

k × F
k
2. For p = 2,

I ∈ N
k . The excess of (I, ε) or Q(I,ε), denoted e(I, ε), is defined by

e(I ) = ik −
(

k−1∑

1

it

)

for p = 2;

e(I, ε) = ik − 2 (p − 1)

(
k−1∑

1

it

)

− εk +
k−1∑

1

εt for p an odd prime.

There are relations among the iterated operations called Adem relations, so that
an operation can be reduced to a sum of admissible operations after applying Adem
relations. The Steenrod algebra A acts on the right of R via Nishida relations (see
[10] p. 6).

The Dyer–Lashof algebra R is given as the quotient of a free associative algebra
generated by

{
Qi | i ≥ 0

} ∪ {βQi | i ≥ 1
}
modulo the Adem relations, the relation

β2 = 0 and negative excess, see the details in [10].
It is a non-negatively graded Hopf algebra and also a component coalgebra R =⊕

k≥0
R[k] with respect to the length of the operations.
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Let k ≥ 1, R[k] is the subA -coalgebra spanned by admissible elements of fixed
length k and non-negative excess.

{Q(I,ε) | (I, ε) admissible, l (I ) = k and e (I, ε) ≥ 0 }.

The coproduct is given by

ψQ(I,ε) =
∑

Q(K ,ε′) ⊗ Q(I−K ,ε").

The sum and difference of two sequences of the same length is defined termwise
under the conventions β2 = 0 = β−1 and Q−i = 0. We note that the sum of
two admissible sequence is also admissible, but the difference need not be. For
admissible sequences (I, ε) we consider increasing sequences in N

k , i.e. (I, ε) =
((ik, . . . , i1), (εk, . . . , ε1)) such that it + εt−1 > pit−1 and i1 ≥ ε1 ≥ 0 for 2 ≤ t ≤
k.

We define an ordering on the set of sequences (I, ε) following May [10]. This
ordering will be of special interest in the last section.

Definition 10.2 (a) For a sequence (I, ε), define I j = ((i j , . . . , i1), (ε j , . . . , ε1)),
1 ≤ j ≤ k, and similarly for p = 2. Note that e

(
I j
) = e

(
Jj
)
for all j implies

(I, ε) = (J, ε′), and define a total ordering of the sequences of length k by (I, ε) <(
J, ε′) if e

(
I j
)

< e
(
Jj
)
for the largest j such that e

(
I j
) 	= e

(
Jj
)
. The weight of

(I, ε) or Q(I,ε) is defined to be pk , if the length of (I, ε) is k.
(b) A natural order is defined on the set of all sequences (I, ε) as follows: (I, ε) <(

J, ε′), if
(i) l (I, ε) < l

(
J, ε′) or

(ii) l (I, ε) = l
(
J, ε′) and (I, ε) <

(
J, ε′).

Note that ik = e (Ik−1) is equivalent to e (I ) = 0.
Next we proceed to the definition of a vector space which plays an important role

on defining the homology of Q0S0.

Definition 10.3 Let MS0 be the Fp-vector space on BMS0 = {Q(I,ε)x | (I, ε) is
admissible of non-negative excess and positive degree} ∪ {[0]}. Here x represents the
image of the generator of H̄0(S0) in H0(QS0) and Q(I,ε)x corresponds to Q(I,ε)x ·〈
Q(I,ε)x

〉−1 = Q(I,ε)x · 〈−pl(I ) 〈x〉〉 translating to the base point component (May
[10] p. 55). Here 〈x〉 denotes the component of x .

We denote
(
BMS0

)+ = BMS0 − {[0]}.
Using the loop product we can discard the classes with ik = e (Ik−1), i.e.,

Q(I,ε)x ≡ QIk−1x ∗ · · · QIk−1x = (QIk−1x
)p

.

Now we state an important theorem.



218 N.E. Kechagias

Theorem 10.2 (Madsen, May) H∗(Q0S0) is the free commutative algebra gener-
ated by certain elements in

(
BMS0

)+
modulo the ideal generated by

{Qs y − y p | |y| = 2s and y ∈ (BMS0
)+} and y2 = 0, if |y| = odd and p > 2.

See Wellington [59] or Theorem 1 and 2 in Kechagias [24] for details. Next we
discuss the coalgebra structure for R[n].

A cofree coalgebra is completely understood if a basis for the spaceof theprimitive
monomials elements is known. We recall that a primitive element of a co-algebra C
is an element x that satisfies

Δx = x ⊗ 1 + 1 ⊗ x .

Madsen (for p = 2) and May (for p odd) explicitly described the primitive ele-
ments for each n [10, 29]. The primitive monomials are described in the next defin-
ition.

To simplify notation we merge the two sequences (I, ε) = ((ik, . . . , i1),
(εk, . . . , ε1)) into one ((εk, ik), . . . , (ε1, i1)).

Definition 10.4 Let t be a natural number such that 0 ≤ t ≤ n − 1 and the term p−1

is omitted in the following expressions:
In,t = ((0, pn−1 − pt−1

)
, . . . ,

(
0, pn−t − 1

)
,
(
0, pn−t−1

)
, . . . , (0, 1)

)
;

Jn,t = ((0, pn−1 − pt−1
)
, . . . ,

(
0, pn−t − 1

)
,
(
1, pn−t−1

)
,
(
0, pn−t−2

)
, . . . ,

(0, 1)).
Let t and s be natural numbers such that 0 ≤ s < t ≤ n − 1 and the term p−1 is

omitted in the following expression:
Kn;s,t=(

(
0, pn−1−pt−1 − ps−1

)
, . . . ,

(
0, pn−t−pt−s − 1

)
,
(
1, pn−t−1 − pt−s−1

)
,(

0, pn−s−2 − pt−s−2
)
, . . . ,

(
0, pn−s − 1

)
,
(
1, pn−s−1

)
,
(
0, pn−s−2

)
, . . . , (0, 1)).

The elements described above are divided in to three classes according to the
number of Bockstein operations involved: non, one, and two.

{
In,t , Jn,t and Kn;s,t

}

for certain indices. Sequences of operations involving Bockstein operations corre-
spond to particular classes involving xi ’s in H∗ ((BFp

)n ;Fp
)
under the appropriate

monomorphism.
Madsen [29] and May [10] computed the hom-duals of R[n] in analogy with

Milnor’s computation of the hom-dual of the Steenrod algebra [38].

Theorem 10.3 (Madsen p = 2) The hom-dual of R[n], (R[n])∗, is a graded poly-
nomial algebra generated by {(QIn,t

)∗ | 0 ≤ t ≤ n − 1}.
Theorem 10.4 (May p odd) The hom-dual of R[n], (R[n])∗ is a graded algebra
generated by certain elements
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{(
QIn,t

)∗
,
(
QJn,t

)∗
and

(
QKn;s,t

)∗ | 0 ≤ s < t ≤ n − 1
}

subject to particular relations.

For details see Theorem 4, p. 844, in [24].
In the next section the relation between R[n] and modular invariants is discussed.

10.4 The Dickson Algebras asAAA -Modules

Let G be a finite group, then there is a canonical embedding G ↪→ Σ|G| induced by
the regular representation. If H ≤ G, we have a commutative diagram

G
reg→ Σ|G|

j ↑ ↑ Δ

H
reg|G:H |→ (

Σ|H |
)|G:H |

Here we write G = Hg1
⊔ · · ·⊔ Hg|G:H |, where the gi are representatives of the

right coset of H in G. These maps provide canonical characteristic classes for group
cohomology. For example, if G = (Fp

)n
, then

Imreg∗ = H∗(BZ/pZ × · · · × BZ/pZ;Fp)
GL(n,Fp)

which is the extended Dickson algebra defined bellow. This may partially explain
why the Dickson algebra plays such an important role. Invariant theory was used
to detect unexpected multiplicative relations in H∗ (BΣn;Fp

)
[3, 14, 15]. The ring

of invariants are at the core of any computations of H∗ (BΣn;Fp
)
. They build up

successively, yielding relations rich in symmetry but of a high convoluted type.
It is known that H∗ (BΣn;Fp

)
is detected by elementary abelian subgroups [50].

Moreover, the restriction from the cohomology of a higher symmetric group to a
lower one is surjective. Generators appearing at a finite stage (in H∗ (BΣn;Fp

)
for

some n) will be nontrivial images under restriction. On the other hand, the precise
multiplicative relations among them change at each level, as the lattice of detecting
subgroups becomes larger and more complicated. For example, the interested reader
might examine H∗ (BΣ8;F2) and H∗ (BΣ12;F2) [14] or [3]. For notation and details
please see [3].

It is well known that

H∗(BZ/pZ × · · · × BZ/pZ;Fp) ∼=
{

P [y1, . . . , yn] , for p = 2
E (x1, . . . , xn) ⊗ P [y1, . . . , yn]
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as A -algebras. Here the A -algebra structure on the right hand side is given by:

Pi (ab) =
∑

0≤ j≤i

(
P ja

) (
Pi− j b

)
and βxi = yi .

Let g ∈ GL
(
n,Fp

)
and g = (gi, j

)
, then

(
gi, j
)
xs =

n∑

i=1

gi,s xs for 1 ≤ s ≤ n.

This action is extended to the yi ’s via the Bockstein homomorphism:

(
gi, j
)
ys =

n∑

i=1

gi,s ys for 1 ≤ s ≤ n.

It follows that the group action commutes with the Steenrod algebra action and
(E(x1, . . . , xn) ⊗ Fp[y1, . . . , yn])G is an A -module for any subgroup G of
GL
(
n,Fp

)
.

The extended Dickson algebra EDn and a certain subalgebra SEDn related with
the Dyer–Lashof coalgebra R[n] along with the Mui generators are defined.

Theorem 10.5 ([11]) The classical Dickson algebra is a polynomial algebra on n
generators

Dn := Fp[y1, . . . , yn]GL(n,Fp) = Fp
[
dn,n−1, . . . , dn,1, dn,0

]
.

Let Ln and Ln,k+1 denote the following determinants:

Ln =

∣∣∣
∣∣∣∣∣∣

y1 · · · yn
y p
1 · · · y p

n
...

...

y pn−1

1 · · · y pn−1

n

∣∣∣
∣∣∣∣∣∣

and Ln,k+1 =

∣∣∣
∣∣∣∣∣∣

y1 · · · yn
y p
1 · · · y p

n
...

...

y pn

1 · · · y pn
n

∣∣∣
∣∣∣∣∣∣

where the row
(
y pk+1

1 , . . . , y pk+1

n

)
is missing in Ln,k+1. Here 0 ≤ k + 1 ≤ n. Ln,n is

denoted by Ln . Moreover, Ln,0 = L p
n . A Dickson algebra generator was defined as

follows:

dn,k+1 = Ln,k+1

Ln
.

Mui (see [43]) gave an invariant theoretic description of the cohomology algebra
of the symmetric group and calculated the associated rings of invariants involving
the exterior subalgebra E(x1, . . . , xn) of H∗ ((BZ/pZ)n ;Fp

)
.
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Certain elements Mn;s1,...,sk have been defined by Mui in [43] as follows:

Mn;s1,...,sk = 1

k!

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

x1 · · · x1
...

...

x1 · · · xn
y1 · · · yn
...

...

y pn−1

1 · · · y pn−1

n

∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣

.

Here there are k rows of xi ’s and the si th’s powers are omitted, where 0 ≤ s1 < · · · <

sk ≤ n − 1 in the determinant. We call these elements Mui generators.
Here we use the notation introduced by Mui in [43] for the Dickson algebra

generators. The symbol dn,k corresponds to dn,n−k in [24, 25].

Theorem 10.6 ([43]) The extended Dickson algebra

EDn := (E(x1, . . . , xn) ⊗ Fp[y1, . . . , yn])GL(n,Fp)

is a free Dn-module with basis given by certain elements calledMui generators along
with 1:

Mn;s1,...,sk L
p−2
n , for 1 ≤ k ≤ n, and 0 ≤ s1 < · · · < sk ≤ n − 1.

Its algebra structure is given by certain relations.

Definition 10.5 Let SEDn be the subalgebra of EDn generated by

{
dn,t , Mn;t L p−2

n , Mn;s,t L p−2
n | 0 ≤ s < t ≤ n − 1

}
.

The generators dn,t , Mn;t L
p−2
n and Mn;s,t L

p−2
n above correspond to the primitive

elements QIn,t , QJn,t and QKn;s,t in R[n] respectively, see Theorem 10.8.

Proposition 10.1 ([22]) SEDn is an A -algebra which is a free Dn-module with
basis given by elements consisting of the following monomials along with 1:

∏

1≤r≤k

Mn;s2r−1,s2r L
p−2
n and

⎛

⎝
∏

1≤r≤q

Mn;s2r−1,s2r L
p−2
n

⎞

⎠Mn;s2q+1L
p−2
n .

Here, 1 ≤ k ≤ [ n2
]
, 0 ≤ s1 < s2 < · · · < s2k ≤ n − 1 and 1 ≤ q ≤ [ n2

]
, 2q + 1 ≤

n, 0 ≤ s1 < s2 < · · · < s2q < s2q+1 ≤ n − 1.

The action of the Steenrod algebra on the cohomology of infinite loop spaces
plays an important role in computing the Adams spectral sequence [59]. The key
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step for calculations is to express the Mui generators involved in SEDn as Steenrod
admissible operations on the generator with the least degree. Here comes an idea of
Frank Peterson.

Peterson conjectured that the classical Dickson algebra admits a certain global
structure as an unstable algebra over the Steenrod algebra. This conjecturewas solved
by Pengelley, Peterson and Williams for p = 2 [48]. They proved that the classical
Dickson algebra is a free unstable algebra on a certain cyclic module, modulo one
additional relation. Their approach leads to a characterization of other unstable cyclic
modules.

Pengelley andWilliams considered the oddprimary case [47]. Theyproved that the
classical Dickson algebra, Dn , is a free unstable algebra on a certain cyclic module,
modulo one additional relation. Frank Peterson conjectured that the Steenrod algebra
action on Dn characterizes its algebra structure.

It is well known that the operations Sq2n , n ≥ 0, for p = 2 constitute a system of
multiplicative generators for A ; so do the operations β and P pn , n ≥ 0 for p > 2.

Definition 10.6 Let p = 2. For a sequence of integers I = (i1, . . . , in), let Sq I

denote Sqi1 . . . Sqin . The sequence I is said admissible if it ≥ 2it+1 for all t ≥ 1
(in+1 = 0).

Let p > 2. For a sequence of integers I = (ε0, i1, ε1, . . . , in, εn), where the εk
are 0 or 1, let P I denote βε0 Pi1βε1 · · · Pinβεn . The sequence I is said admissible if
it ≥ pit+1 + εt for all t ≥ 1 (in+1 = 0). The operations Sq I (P I ) with I admissible
are called admissible monomials.

The next theorem provides the action of the Steenrod algebra generators on the
generators of Dn . This remarkable property comes from the simple action of the
Steenrod algebra on the lowest degree generator of Dn , dn,n−1:

Theorem 10.7 (Theorem 30, p. 169, [21])

P pk d p j

n,i =

⎧
⎪⎨

⎪⎩

d p j

n,i−1, if k = j + i − 1 and 0 ≤ i < n;

−d p j

n,i d
p j

n,n−1, if k = j + n − 1;
0, otherwise.

The following corollary expresses the module relation used by Pengelley and
Williams.

Corollary 10.1 P pn−2
P pn−1

dn,n−1 = 2P pn−1
P pn−2

dn,n−1.

Now we describe the Dickson algebra generators as Steenrod algebra actions on
the lowest degree generator.

Corollary 10.2 Let 0 ≤ m ≤ n − 2, then

P pm+···+pn−2
dn,n−1 = P pm . . . P pn−2

dn,n−1 = dn,m .
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The remarkable property of the classical Dickson algebra is expressed in the next
proposition.

Proposition 10.2 (a) Let 0 ≤ k ≤ n − 2 and 2 ≤ t ≤ p − 1, then Ptpk dn,k+1 = 0.
(b) Let pn−2 < κ < pn−1 and κ 	= pt + · · · + pn−2 with 0 ≤ t ≤ n − 2, then

Pκdn,n−1 = 0.

Proof We shall provide with a simple proof following a referee’s suggestion. The
Steenrod algebra action commutes with the group action on Fp[y1, . . . , yn]. Hence
if d is an invariant polynomial with respect to some subgroup G ≤ GL

(
n,Fp

)
, then

Pmd is also invariant under the same subgroup G.
(a) Let 2a denote the degree of Ptpk dn,k+1 which is also an element of Dn .

2a = 2
(
pn − pk+1 + tpk (p − 1)

)
and

2
n−1∑

0

ai
(
pn − pi

) = 2a for some natural numbers ai .

(
pn − pk+1 + 2 (p − 1)

) ≤ a ≤ (pn − pk+1 + pn−2 (p − 1)2
)
.

Because of the restrictions a = pn − pi + pn − p j with 0 ≤ i , j ≤ n − 1 and

2pn−1 + pk+1 ≤ pi + pn−2 + p j .

If n > 3, then k = n − 2 implies no solution. So let k < n − 2, then i = j = n − 1.
But then

a = pn − pk+1 + tpk (p − 1) = 2
(
pn − pn−1

)

which implies that p divides t . Finally Ptpk dn,k+1 = 0.
For n = 3, 0 ≤ k ≤ 1 and 2 ≤ t ≤ p − 1. Then Ptd3,1 = 0 and also Ptpd3,2 = 0.
It follows that Ptpk dn,k+1 = 0.
(b) As above Pκdn,n−1 ∈ Dn and 2a = |Pκdn,n−1| = 2

(
pn − pn−1 + k (p − 1)

)

such that

2
(
pn − pn−1 + pn−2 (p − 1)

)
< 2a < 2

(
pn − pn−1 + pn−1 (p − 1)

)
or

(
pn − pn−2

)
< a < 2

(
pn − pn−1

)
and

a 	= pn − pt for 0 ≤ t ≤ n − 2.

Since a =
n−1∑

0
ai
(
pn − pi

)
for some natural numbers ai , the claim follows.

The following theorem relates to the hom-dual of R[n]with the Dickson algebras.
Theorem 10.8 ([29, 44] p = 2, [22] p = odd) There exists an A -algebra isomor-
phism

Tn : SEDn → R[n]∗
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given by Tn
(
dn,i+1

) = (QIn,i
)∗
, Tn

(
Mn;i L

p−2
n

)
= (QJn,i

)∗
, and Tn

(
Mn;s,i L

p−2
n

)
=

(
QKn;s,i

)∗
.

The action of the Steenrod algebra on Mui generators is given in Proposition 23,
p. 850 in [25].

Theorem 10.9 (a) The value of P Pi
on Mn;s1,...,sk L

p−2
n is as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mn;s1,...,s j−1,...,sk L
p−2
n , if i = s j − 1 and s j−1 	= s j − 1;

0, if i = s j − 1 = s j − 1 or i − 1 	= s j , n;

−L p−2
n

(
Mn;s1,...,sk dn,n−1 +

k∑

i=1
(−1)k+i Mn;s1,...,ŝi ,...,sk ,n−1dn,si

)
,

if i = n − 1 and sk < n − 1;
(p − 2)Mn;s1,...,sk L

p−2
n dn,n−1, if i = n − 1 and sk = n − 1.

(b) The value of β on Mn;s1,...,sk L
p−2
n is as follows

{
(−1)k−1Mn;s2,...,sk L

p−2
n , if s1 = 0;

0, otherwise.

We express the relations we are about to define on our free unstable module in
the next corollary. The proof consists of applications of Theorems 10.9 and 10.7.

Corollary 10.3 Let M = Mn;n−2,n−1L
(p−2)
n .

1. βM = 0 = P pk M, if k 	= n − 3 and k < n − 1.
2. P pn−3

P pn−3
M = 0.

3. P pn−3
P pn−1

M = P pn−1
P pn−3

M.
4. P pn−2

P pn−2
P pn−3

M = 0 = P pn−3
P pn−2

P pn−3
M.

5.
(
βP (0,...,n−2)

) (
βP (0,...,n−3)

)
M = (−1) P (0,...,n−2)dn,n−1.

Here P (0,...,k) stands for P1 . . . P pk .

10.5 SEDn as a Quotient of a Free Unstable Algebra

In this section we shall define an unstable A -module M (μ, u) and from it an
unstableA -algebraQ (μ, u). Finally an isomorphism betweenQ (μ, u) and SEDn

will be defined. We extract results from [24].
Let us recall the definition of a free unstable A -algebra from [56]. We need

some definitions. Recall an admissible monomial P I in the Steenrod algebra from
Definition 10.6.
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Definition 10.7 The excess of an admissible sequence I is defined to be

(i1 − 2i2) + (i2 − 2i3) + · · · + (in−1 − 2in) + in if p = 2;

2 (i1 − pi2) + 2 (i2 − pi3) + · · · + 2in + ε0 − ε1 − · · · εn if p > 2.

and it is denoted by e (I ).

AnA -moduleM is called unstable, ifβεPi x = 0 for 2i + ε > |x | and ε ∈ {0, 1}.
Recall the definition of the suspension functor Σ : M → M in the category of Z-
graded A -modules and morphisms being A -linear maps of degree zero. Given an
A -module M , ΣM is defined by (ΣM)m ∼= Mm−1 and the A -action is given by
θ (Σm) = (−1)|θ | Σθm for m ∈ M and θ ∈ A .

Definition 10.8 F (n) is called a free unstable A -module on one n-dimensional
generator, if F (n) ∼= Σn (A /B (n)). Here B (n) denotes the subspace generated by
all admissible monomials of excess greater than n in A . B (n) is a left ideal.

A free unstable A -module is the direct sum of free unstable A -modules on one
generator.

Following Steenrod [56] we recall the definition of a free unstable A-algebra.

Definition 10.9 LetM be anA -module. A freeA -algebra generated byM , denoted
by V M , is the quotient of the tensor algebra T (M) on M by the ideal of T (M)

generated by all elements of the form

x ⊗ y − (−1)|x ||y| y ⊗ x and Pnx = x⊗p for 2n = |x |.

If M is a free unstableA -module, then V M is called the completely free unstable
A -algebra generated by M .

Now we are ready to proceed to our object of study.

Definition 10.10 The module M (μ, u) has two generators μ and u of degrees
2
(
pn − pn−1 − pn−2

)
and 2

(
pn − pn−1

)
respectively and relations

P pkμ = 0 = P pl u, (10.2)

for − 1 ≤ k ≤ n − 4, k = n − 2 and − 1 ≤ l ≤ n − 3;

P pn−3
P pn−3

μ = 0 = P pn−2
P pn−2

u; (10.3)

P pn−3
P pn−2

P pn−3
μ = 0 = P pn−2

P pn−2
P pn−3

μ; (10.4)

P pn−1
P pn−3

μ = P pn−3
P pn−1

μ and P pn−2
P pn−1

u = 2P pn−1
P pn−2

u. (10.5)
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P (−1,...,n−2)P (−1,...,n−3)μ = P (0,...,n−2)u. (10.6)

Here P p−1
or P−1 stands for β and P (−1,...,k) for βP1 · · · P pk .

Using the definitions above we define the main object of study in this paper.

Definition 10.11 Let Q (μ, u) be the free unstable A -algebra on the module
M (μ, u) subject to the following relations:

μ2 = 0 and P pn−1
u = (p − 1)u2. (10.7)

P pn−1
μ = (p − 2)μu and (10.8)

P pn−1
P pn−2

P pn−3
μ = −P pn−2

P pn−3
μu + μP pn−3

P pn−2
u − P pn−3

μP pn−2
u.

Wewill now relateQ (μ, u) and SEDn .Wecheck that the actionon themonomials
Mn;n−2,n−1L

p−2
n and dn,n−1 ∈ SEDn obey the defining A -action relations on the

generators μ and u ∈ Q (μ, u). Using Corollaries 10.2 and 10.3 we show that the
map from Q (μ, u) to SEDn is an epimorphism. It remains to show that it is also
one to one. This is done by showing that Q (μ, u) has no more algebra generators
than SEDn and they satisfy the same relations. Thus we have the following.

Theorem 10.10 (Theorem 26, [25]) The algebra Q (μ, u) is isomorphic as an A -
algebra to SEDn.

For the details see [25].
A cofree coalgebra on an algebraic object is characterized by its universal property.

We consider the category of connected cocommutative positively graded coalgebras.
A cofree unstable A -coalgebra of finite type is isomorphic to the dual of a free
unstable A -algebra (Steenrod [56]).

Let CA be the category of unstable coalgebras i.e. an object of CA has both
an unstable rightA -module structure and a connected cocommutative Fp-coalgebra
structure subject to compatibility conditions [6]. Let MA be the category of con-
nected unstable rightA -modules.We recall that an unstable rightA -module consists
of a positively graded Fp-module M and a graded module map

A i ⊗ Mn → Mn−2(p−1)i with the property

Pkm = 0, if |m| < 2pk; and βPkm = 0, if |m| = 2pk + 1.

The comultiplication map in CA is an unstable A -module map and the pth root
map ξ : Mpk → Mk , dual to the pth power map, satisfies

ξ (m) = Pk (m) .
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Here M =⊕
i
Mi is an unstableA -module. For example H∗

(
X, Fp

)
is an object in

CA for a connected space X and its comultiplication is induced by the diagonal.
For a connected unstableA -module M , the cofree unstableA -coalgebra cogen-

erated by M , UM , has the following universal property: UM comes with an A -
module map i : UM → M and if C is an unstable A -coalgebra and f : C → M
anA -module map, there exists a uniqueA -coalgebra map f : C → UM such that
f = i f . If M is of finite type, then UM is dual to the free unstableA -algebra V M∗
generated by the dual A -module M∗. Moreover, U is a functor from the category
MA to CA right adjoint to the forgetful functor.

We compared SEDn with a free unstable algebra on M (μ, u). Now we attempt
the dual comparison. Since SEDn is of finite type, onewould compare (SEDn)

∗ with
a cofree unstable coalgebra on (M (μ, u))∗. Using the isomorphism R[n]∗ ∼= SEDn

as A -algebras, the next corollary follows.

Corollary 10.4 (Corollary 41, [25]) R[n] is isomorphic to a subcoalgebra of a
cofree unstable coalgebra on two cogenerators.

Corollary 10.5 (Corollary 42, [25]) Let 1 ≤ n, then HomCA (R[n], R[n]) ∼= Fp.

Proof It suffices to prove the dual version of the claim:

HomU A (Q (μ, u) ,Q (μ, u)) ∼= Fp.

We have to consider the degree of the lowest degree μ and the degree u. Because
of Theorem 10.10 and Corollary 10.3 (e), we only have to examine the image of μ.
Now the claim follows.

Kechagias (unpublished [23]) and Hung [18] obtained a similar version of the last
result using different approaches.

10.6 modp Cohomology of the Infinite Symmetric Group

There are intimate connections between the cohomology of the symmetric groups
and the structure of cohomology operations. These connections were exploited
and developed from about 1952–1964 in work of J. Adem, N. Steenrod, A. Dold,
N. Nakaoka and others. Meanwhile, in the period from 1959–1961 E. Dyer and
R. Lashof discovered a fundamental relationship between H∗

(
BΣn;Fp

)
and the

structure of the homology of infinite loop spaces.
The original calculation of H∗ (BΣ∞) is due to Nakaoka [45]. A different

approach due toMilgram [36], Barratt–Priddy [4], andQuillen [50] yields the homol-
ogy of the infinite symmetric group as a corollary of fundamental results in homotopy
theory.
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The theme in this section is to provide a set of generators for themodp cohomology
of the classifying space of the infinite symmetric group. We obtain this set by com-
paring H∗(Q0S0)with a free unstable algebra on amodule of Dickson invariants.We
show that H∗(Q0S0) is isomorphic to a free unstable algebra as algebras. However,
this isomorphism can not preserve the action of the Steenrod algebra. Nevertheless,
the description of H∗(Q0S0) in terms of the free unstable algebra provides an explicit
basis for the cohomology algebra. This is the basis we use for H∗(BΣ∞,Fp).

We recall that an Abelian restricted Lie algebra is an Fp-module L together with
a restriction (pth power operation) ξ : Ln → L pn , for pn even, such that ξ (ad) =
a pξ (d) and ξ

(
d + d ′) = ξ (d) + ξ

(
d ′) for d, d ′ of even degree and a ∈ Fp.

Using ED and SED (10.9) we define the corresponding Lie algebras. We follow
May [31].

Definition 10.12 Let D# be the Lie algebra with underlying graded module D and
its Lie product zero. Let a restriction (according to Milnor–Moore) ξ be defined on
the components D#

k of D
# and extended naturally:

ξ : D#
k → D#

k

by ξ(d) = Pmd for 2m = |d|.
Let V

(
D#
)
be the universal enveloping algebra on D# given by

V
(
D#
) = A

(
D#
)
/I .

Here I is the ideal generated by

ξ(d) − (d)p for |d| = even or p = 2.

Here A stands for the free commutative algebra on D#, d ∈ D# and (d)p ∈
A
(
D#
)
. The A -module structure is determined by the given action on D and the

Cartan formula.
Let ED be the Dickson algebra monomials of positive degree of any length and

SED its obvious submodule respectively:

ED =
⊕

k≥1

ED+
k , SED =

⊕

k≥1

SED+
k . (10.9)

For p = 2, they coincide.
We consider SED# as a sub-restricted Lie algebra of ED# and V

(
SED#

)
the

universal enveloping algebra on SED#.
We must note that there is no relation between the original product structure in

SEDn expect for the pth power and the one imposed by the definition above. Let us
also note that V

(
SED#

)
is primitively generated commutative Hopf algebra with

P
(
V
(
SED#

)) = SED#.
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We note that the order defined in Definition 10.2 can be transposed to SED. We
also use Definition 10.4.

Definition 10.13 Let χ be the function defined between the module basis for SEDk

and the monoid N
k × F

k
2 as follows

χ
(
dk,i
) = Ik,i , χ

(
Mk;i L

p−2
k

)
= Jk,i and χ

(
Mk;s,mL

p−2
k

)
= Kk;s,m

and the rule χ (uv) = χ (u) + χ (v). Here u and v are monomials. Via χ and the
Definition 10.2 monomials in SEDk are also ordered. Moreover, using the weight
(Definition 10.2) and the order defined above, monomials in SED are ordered as
well.

Using the defined ordering on SED above, a basis for V
(
SED#

)
is obtained as

follows:
BV

(
SED#

) = {1}∪
{
(d1)

m1 . . . (dk)
mk

∣∣
∣
k ≥ 1, di ∈ B(SED), d1 < · · · < dk,mi = 1
if |di | = odd and 0 < mi < p if |di | = even

}
.

Here B (SED) stands for the basis of monomials of SED.

Theorem 10.11 (Theorem 9, [24]) There is an isomorphism of algebras

e : V (SED#
)→ H∗(Q0S

0).

For a natural number n ∈ N ∼= π0
(
C
(
S0
))
, BΣn is the corresponding path com-

ponent of C
(
S0
)
. We may form BC

(
S0
)
, the classifying space of C

(
S0
)
, and

ΩBC
(
S0
)
the loop space of BC

(
S0
)
. So there is a map

C
(
S0
)→ ΩBC

(
S0
)

and this is a map of H -spaces. Now π0
(
ΩBC

(
S0
)) ∼= Z is the universal group

associated to monoid π0(C
(
S0
)
).

In general, it is well known that if X is a connected associative H -space, then X
has the structure of an H -group, i.e., X � ΩBX . For X not connected (like C

(
S0
)
)

the result fails. However, one can still “adjoint” inverses to X and inquire about the
homology algebra of the resulting space and its relation to the homology algebra of X .

Since ΩBC
(
S0
)
is a grouplike H -space, its path components are all homotopy

equivalent. So

ΩBC
(
S0
) � π0

(
ΩBC

(
S0
))× (ΩBC

(
S0
))

0 .

Since π1 (BΣ∞) ∼= Σ∞ is not abelian, BΣ∞ is not an H -space. Nevertheless,
H∗ (BΣ∞) has a ring structure and that moreover it is isomorphic as a ring to
H∗
(
Q0
(
S0
))

via an isomorphism induced by a map
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BΣ∞ → Q0S
0.

Now, H∗
(
ΩBC

(
S0
)) ∼= H∗ (Z × BΣ∞). Moreover, ΩBC

(
S0
) � Q

(
S0
)

and
Q
(
S0
)
is the group completion of C

(
S0
)
. Please recall Theorem 10.1.

In the early 1970s this isomorphism formed the starting point formuchofQuillen’s
work relating the classifying spaces of finite groups of Lie type to stable homotopy
theory.

Let us just note that the homology of BΣn injects with any untwisted coefficients
k, onto a direct summand in the homology of BΣ∞ for each n via the homology map
induced from the usual inclusion of groups. In particular

H∗ (BΣ∞; k) ∼=
∞⊔

1

H∗ (BΣn, BΣn−1; k) .

Partition n = p j1 + p j2 + · · · + p jr with 0 ≤ j1 ≤ j2 ≤ · · · ≤ jr . Then a homology
basis for H∗ (BΣn, BΣn−1) is given by the elements

QI (1) · QI (2) · · · · · QI (r).

Here l (I (t)) = jt and QI (t) is an admissible element in R. The r -tuple ( j1, . . . , jr )
ranges over all partitions of n as above. Here theA action is given by Cartan formula
and Nishida relations [4, 12, 45].

A positive integer valued function φ is defined on the basis of H∗ (BΣ∞) as
follows

φ
(
QJ (1) · QJ (2) · · · · · QJ (k)

) =
∑

t

pl(Jt ).

Now a filtration of H∗ (BΣ∞) is defined in terms of φ: letΦq be generated additively
by elements QJ (1) · QJ (2) · · · · · QJ (k) such that

φ
(
QJ (1) · QJ (2) · · · · · QJ (k)

) ≥ q. (10.10)

Hence Φq+t ≤ Φq .
In this framework an explicit basis for H∗(BΣ∞,Fp) can be constructed in terms

of Dickson invariants. We note that the products that appear in the description of the
generators, in the next theorem, are the old ones coming from the original products
in the Dickson algebras.

Theorem 10.12 (Theorem 12, [24]) (a) For p = 2, H∗(BΣ∞) is isomorphic to the
polynomial algebra generated by

{
∏

1≤r≤k

dmr
k,k−r | (m1, . . . ,mk) /∈ (2N)k for k ≥ 1

}

.
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(b) For p > 2, H∗(BΣ∞) is isomorphic to the tensor product of exterior, polynomial,
and truncated polynomial algebras at height p. (i) The exterior generators are

{
∏

1≤r≤k

dmr
k,k−r Mk, j L

p−2
k

�∏

t=1

Mεt
k;s2t−1,s2t

L p−2
k | mr ∈ N, εt ∈ {0, 1}, 0 ≤ j < k

}

.

(ii) The polynomial generators are

{
∏

1≤r≤k

dmr
k,k−r | (m1, . . . ,mk) /∈ (pN)k for k ≥ 1

}

.

(iii) The truncated polynomial generators are

{
∏

1≤r≤k

dmr
k,k−r

�∏

t=1

Mεt
k;s2t−1,s2t

L p−2
k | mr ∈ N, (ε1, . . . , εl) 	= 0 for k ≥ 1

}

.

The algebra basis defined in [24] for H∗(BΣ∞,Fp) is more explicit than the one
given by Nakaoka [45] for p = 2 and Adem-Milgram [2]. See also Nguyen Hung
[17].

Following Wellington [59], a description of H∗(Q0S0) by A -algebras will be
given. There exists an increasing sequence of algebras having the property that
although none of these algebras is free, their associated algebras are free as unstable
A -algebras. So H∗(Q0S0) is filtered by an increasing sequence ofA -algebras. First
we need a definition.

An increasing filtration inspired by May on B
(
V
(
SED#

))
is given by

σ : B (V (SED#
))→ N by σ

(
∏

i

dmi
k,i

)

= pk and extend to BV
(
SED#

)

by σ
(
(d1)

m1 . . . (dn)
mn
) =

∑

i

miσ (di ) .

We note that the Steenrod operations respect the filtrations but σ does not respect the
restriction on V

(
SED#

)
. We quote from [24]: Sq1d1,0 = d2

1,0 ≈ (d1,0
)2
(the product

in V
(
SED#

)
), but σ

(
d2
1,0

) = 2 	= σ
((
d1,0
)2) = 22.

We recall that a decreasing filtration
{
Φq
}
was defined on H∗ (BΣ∞) in (10.10).

Here σ defines an increasing filtration Φq on V
(
SED#

)
: let Φq be generated addi-

tively by elements d such that σ (d) ≤ q. Thus Φq ≤ Φq+1 for t a natural number.
We may say that

{
Φq
}
and {Φq} are “dual” to each other.

Using the filtration associated with σ above free objects are defined as follows.
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Definition 10.14 Let SED(s) be theA -submodule of SED generated by the basis
elements d ∈ SED such that σ(d) = s. Thus SED =⊕ SED(s). LetCk = V (

⊕k
1

SED#(s)) and Ak its image in H∗(Q0S0)under the isomorphismbetweenV
(
SED#

)

and H∗(Q0S0) as in Theorem 10.11.

The free objects defined above can be used to approximate H∗(Q0S0). We close
this survey with the following theorem. As we mentioned in the introduction, the
point of our approach is to incorporate modular invariants as computational tools.
We recall that the map e as in Theorem 10.11 is not a map ofA -algebras, but it is a
map ofA -algebras up to filtration as is shown in [24], Proposition 13. This is crucial
in the proof of the next theorem.

Theorem 10.13 (Theorem15, [24])The sequence A1 ⊂ A2 ⊂ · · · ⊂ H∗(Q0S0) is a
complete filtration ofA -subalgebras. There exist isomorphisms of algebras As+1 ∼=
As ⊗ V (SED#(s + 1)) and isomorphisms of A -algebras As+1/As ∼= V (SED#

(s + 1)).

Proof Firstly, As+1 = Im
(
Cs+1 = Cs ⊗ V(SED#(s + 1)

)→ H∗(Q0S0). Thus

As+1 ∼= As ⊗ V (SED#(s + 1)) as algebras.

Secondly, because each element of As+1 is a product of images of elements of
SED#(t) with t ≤ s + 1 and the Steenrod operations are applied by the Cartan
formula As+1 is an A -algebra. For the same reasons As+1/As ∼= V (SED#(s + 1))
as A -algebras.
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Univ. Ser. A. 10, 85–120 (1956)
28. Lima, E.L.: The Spanier-Whitehead duality in new homotopy categories. Summa Brasil. Math.

4(1959), 91–148 (1959)
29. Madsen, I.: On the action of the Dyer-Lashof algebra in H∗(G). Pac. J. Math. 60(1), 235–275

(1975)
30. Madsen, Ib., Milgram, R.J.: The Classifying Spaces for Surgery and Cobordism of Manifolds.

Annals of Mathematics Studies, vol. 92. Princeton University Press, Princeton (1979), xii+279
pp (University of Tokyo Press, Tokyo)

31. May, J.P.: Some remarks on the structure of Hopf algebras. Proc. A. M. S. 23(3), 708–713
(1969)

32. May, J.P.: Categories of Spectra and Infinite Loop Spaces. Lecture Notes in Mathematics, vol.
99, pp. 448–479. Springer, Berlin (1969)

33. May, J.P.: The Geometry of Iterated Loop Spaces. Lectures Notes in Mathematics, vol. 271.
Springer, Berlin (1972), viii+175 pp

34. May, J.P., Thomason, R.: The uniqueness of infinite loop space machines. Topology 17(3),
205–224 (1978)

35. Milgram, R.J.: Iterated loop spaces. Ann. Math. 84(2), 386–403 (1966)
36. Milgram, R.J.: The mod2 spherical characteristic classes. Ann. Math. 92(2), 238–261 (1970)
37. Milnor, J.: Construction of universal bundles. II. Ann. Math. 63(2), 430–436 (1956)
38. Milnor, J.: The Steenrod algebra and its dual. Ann. Math. 67(2), 150–171 (1958)
39. Milnor, J.: On the cobordism ring Ω∗ and a complex analogue. I. Am. J. Math. 82, 505–521

(1960)
40. Milnor, J.: On axiomatic homology theory. Pac. J. Math. 12, 337–341 (1962)
41. Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras. Ann. Math. 81, 211–264 (1965)



234 N.E. Kechagias

42. Mosher, R.E., Tangora, M.C.: Cohomology Operations and Applications in Homotopy Theory.
Harper & Row, Publishers, New York (1968), x+214 pp

43. Mùi, H.: Modular invariant theory and the cohomology algebras of the symmetric groups. J.
Fac. Sci. Univ. Tokyo IA, 319–369 (1975)

44. Mùi, H.: Homology operations derived from modular coinvariants. Algebraic Topology, Gö
ttingen 1984. Lecture Notes in Mathematics, vol. 1172, pp. 85–115. Springer, Berlin (1985)

45. Nakaoka, M.: Homology of the infinite symmetric group. Ann. Math. 73(2), 229–257 (1961)
46. Nishida, G.: Cohomology operations in iterated loop spaces. Proc. Jpn. Acad. 44, 104–109

(1968)
47. Pengelley, D.J., Williams, F.: The global structure of odd-primary Dickson algebras as algebras

over the Steenrod algebra. Math. Proc. Camb. Philos. Soc. 136(1), 67–73 (2004)
48. Pengelley, D.J., Peterson, F.P., Williams, F.: A global structure theorem for the mod 2 Dickson

algebras, and unstable cyclic modules over the Steenrod and Kudo-Araki-May algebras. Math.
Proc. Camb. Philos. Soc. 129(2), 263–275 (2000)

49. Quillen, D.: The spectrum of an equivariant cohomology ring. I, II. Ann. Math. 94(2), 549–572
(1971); 94(2), 573–602 (1971)

50. Ravenel, D.C., Wilson, W.S.: The Hopf ring for complex cobordism. J. Pure Appl. Algebra
9(3), 241–280 (1976/1977)

51. Segal, G.: Configuration-spaces and iterated loop-spaces. Invent. Math. 21, 213–221 (1973)
52. Serre, J.-P.: Homologie singuli ére des espaces fibrés. Ann. Math. 54(2), 425–505 (1951)
53. Serre, J.-P.: Groupes d’homotopie et classes de groupes abéliens. Ann. Math. 58(2), 258–294

(1953)
54. Stasheff, J.: Homotopy associativity of H -spaces. I. Trans. Am. Math. Soc. 108, 275–292

(1963)
55. Steenrod, N.E.: Products of Cocycles and Extensions of Mappings. Annals of Mathematics.

Second Series, vol. 48, pp. 290–320 (1947)
56. Steenrod, N.E., Epstein, D.B.A.: Cohomology Operations, vol. 50. Princeton University Press,

Princeton (1962)
57. Thom, R.: Quelques propriét és globales des variétés différentiables. Comment. Math. Helv.

28, 17–86 (1954)
58. Turner, P.R.: Dickson coinvariants and the homology of QS0. Math. Z. 224(2), 209–228 (1997)
59. Wellington, R.J.: The Unstable Adams Spectral Sequence for Free Iterated Loop Spaces.Mem-

oirs A.M.S., vol. 258 (1982)
60. Whitehead, G.W.: Generalized homology theories. Trans. Am.Math. Soc. 102, 227–283 (1962)
61. Whitehead, G.W.: Fifty years of homotopy theory. Bull. Am. Math. Soc. (N.S.) 8(1), 1–29

(1983)



Part II
Algebraic Modeling of Applications



Chapter 11
Linking in Systems with One-Dimensional
Periodic Boundaries

Kenneth C. Millett and Eleni Panagiotou

Abstract With a focus on one-dimensional periodic boundary systems, we describe
the application of extensions of the Gauss linking number of closed rings to open
chains and, then, to systems of such chains via the periodic linking and periodic
self-linking of chains. These lead to the periodic linking matrix and its associated
eigenvalues providing measures of entanglement that can be applied to complex
systems. We describe the general one-dimensional case and applications to one-
dimensional Olympic gels and to tubular filamental structures.

11.1 Introduction

The objective of this report is to describe the application of the Gauss linking number
[1] to collections of open chains inmodels of filamental systems that employ periodic
boundary conditions (PBC). These enable one to define periodic linking and periodic
self-linking numbers [2, 3] that quantify the linking between pairs of filaments and,
thereby, define the periodic linking matrix. The information they provide has been
studied in several one-dimensional PBC models, for example: general systems such
as polymer gels [4], Olympic gels [5], and filamental structures in a long tube [6],
see Fig. 11.1.

In the next section we describe the Gauss linking and self-linking numbers, one-
dimensional periodic boundary condition models, the extension to periodic linking
and self linking, and the definition of the periodic linking matrix whose eigenvalues
quantify the extent of entanglement in the systems to which they are applied. We
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Fig. 11.1 A general 1PBC example, an Olympic system, and filamental structure in a tube

will then describe instances in which the periodic linking matrix provides important
information in the study of general systems such as polymer gels, Olympic gels, and
filamental structures such as vortex flow lines in tubes.

11.2 Gauss Linking, Periodic Boundary Condition (PBC)
Models, Periodic Linking, and the Periodic Linking
Matrix

11.2.1 Gauss Linking and Self-linking

The linking number between two oriented chains, l1 and l2, is defined using parame-
terizations of the chains, γ1(t) and γ2(s), via the Gauss linking integral:

Definition 11.1 The Gauss linking number of two disjoint (closed or open) oriented
curves l1 and l2, whose arc-length parametrizations are γ1(t), γ2(s) respectively, is
defined as a double integral over l1 and l2 [1]:

L(l1, l2) = 1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t) − γ2(s))

||γ1(t) − γ2(s)||3 dtds, (11.1)

where (γ̇1(t), γ̇2(s), γ1(t) − γ2(s)) is the triple product of the derivatives, γ̇1(t) and
γ̇2(s), and of the difference γ1(t) − γ2(s).

Definition 11.2 (Self-linking number) Let l denote a chain, parameterized by γ (t),
then the self-linking number of l is defined as:

Sl (l) = 1

4π

∫
[0,1]∗

∫
[0,1]∗

(γ̇ (t) , γ̇ (s) , γ (t) − γ (s))

||γ (t) − γ (s) ||3 dtds

+ 1

2π

∫
[0,1]

(γ̇ (t), γ̈ (t),
...
γ (t))

||γ̇ (t) × γ̈ (t)||2 dt. (11.2)

where γ̇ (t), γ̈ (t), and
...
γ (t) are the first, second, and third derivatives of γ (t), respec-

tively, and (γ̇ (t), γ̈ (t),
...
γ (t)) is their triple product.
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The self-linking number consists of two terms, the first being the Gauss integral
and the second being the total torsion of the curve.

11.2.2 One-Dimensional Periodic Boundary Conditions

The underlying structure of thePeriodic Boundary Condition, PBC,model employed
in this study consists of a cube or a solid right cylinder whose x length is one and
whose y and z coordinates liewithin the unit square or, respectively, in a disc of radius
a > 0. The three-dimensional body contains a collection of arcs whose endpoints
either lie in the interior or intersect the x = 0 or x = 1 faces under the constraint that
the pattern on both faces is identical, see Fig. 11.1. The latter condition allows one to
create and infinite structure by taking the union of integer translates of the cells and
taking the unions of the resulting one-chains to define a collection of one dimensional
chains. As, in general, these chains may be non-compact, we will require that each
chain has precisely the same number of edges, N , thereby imposing one aspect of
homogeneity. Due to the PBC structure, there is also a large scale homogeneity in
the collection of chains.

11.2.3 Periodic Linking and Self-linking

In a PBCmodel, each chain is translated to give an infinite collection copies of itself.
As a consequence, one is faced with quantifying the linking of one chain, l0 with
infinitelymany translation copies of itself, Iv = I0+v, or with infinitelymany copies
of another chain, Jv = J0 + v. This is achieved by employing Panagiotou’s periodic
linking and self-linkings numbers described next. In the periodic system we define
linking at the level of free chains (i.e. the collection of translation copies of a chain,
I0; see [2] for a discussion of the motivation for this definition). The underlying idea
is to calculate the linking between a chain in one free chain with all the chains in the
other free chain.

Definition 11.3 (Periodic linking number) Let I and J denote two (closed, open
or infinite) free chains in a periodic system. Suppose that I0 is an image of the free
chain I in the periodic system. The periodic linking number, LKP , between two free
chains I and J is defined as:

LKP(I, J ) =
∑
v �=0

L(I0, J0 + v), (11.3)

where the sum is taken over all the images of the free chain J in the periodic system.

The periodic linking number has the following properties with respect to the
structure of the cell, see [2], which follow directly by its definition:
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(i) The infinite sum defining LKP converges, i.e. LKP makes sense mathematically.
(ii) LKP captures all the linking that all the images of a free chain impose to an
image of the other.
(iii) LKP is independent of the choice of the image I0 of the free chain I in the
periodic system.
(iv) LKP is independent of the choice, the size and the shape of the generating cell.
(v) LKP is symmetric.

The quantification of the linking of a free chain with itself is a bit special and
requires a bit more care as there are two contributing cases, the linking of a chain
with itself and the linking of a chain with translations of itself. As a consequence,
one is led to the following definitions [2]:

Definition 11.4 (Periodic self-linking number) Let I denote a free chain in a periodic
systemand let I0 be an imageof I , then theperiodic self-linkingnumber of I is defined
as:

SLP(I ) = Sl(I0) +
∑
v �=u

L(I0, Iv), (11.4)

where the index v runs over all the images of I , except I0, in the periodic system.

As with the periodic linking number, the mathematical proof of the existence of
this quantity and its properties are proved in [2].

11.2.4 Periodic Linking Matrix

In order to analyze the linking entanglement present in our PBC system, L , consisting
of a finite number of free chains, l1, l2, ..., ln , we employ an n x n real symmetric
matrix, LMC , whose i, j th entry is defined by equation

LMCi,i = SLP(li )

LMCi, j = LKP(li , l j )
(11.5)

In the case of a single generating chain, l, the periodic linking matrix consists
of a single entry, the periodic self-linking number, Sl(l). From the definition, there
are two contributing factors, the self-linking given by the Eq. (11.2) and the linking
between distinct copies, reflecting distinct features of periodic self-linking.

For systems with two independent chain types, the periodic linking matrix adds
entanglement information due to the linking between the two distinct chains. Asso-
ciated to the periodic linking matrix are two real eigenvalues, e1(L) and e2(L), given
in decreasing order. The larger of these, e1(L) is proposed as the dominant charac-
terization of the linking entanglement of the PBC system. The set of eigenvalues is
the periodic linking spectrum of the system.
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Similarly, for systems with n independent chain types, one defines the periodic
linking matrix, LMC . The associated ordered collection of eigenvalues, e1(L), . . . ,

en(L) define the spectrum of the PBC system.

11.3 General Systems, Olympic Systems, Tubular Systems

11.3.1 General Systems

For computational efficiency, only a small portion of the physical system is simulated
and periodic boundary constraints are used to avoid boundary effects. The size of the
simulation cell may influence the results of a computational experiment.We examine
how the periodic linking matrix changes with respect to the size of the simulation
cell.

By concatenatingm cells we obtain a larger cell that we denotemC , which applies
PBC to the chains that touch its faces in the x-direction. We can concatenate cells
of the type mC by gluing their x-faces with respect to the PBC, in order to create
the same periodic system that is generated by the cell C . In this section we study
the periodic linking matrix of a periodic system as the size of the cell used for its
simulation, characterized bym, increases.Wewill see that the linkingmatrix depends
on the size of the cell used for the simulation of a system. Since the periodic system
simulated is the same, one would expect the periodic linking matrix to retain certain
entanglement information. However, we will see that in a topological sense, these
systems are different. With our study we extract entanglement information that is
invariant of the cell size as well as information that depends on it.

Let C denote a cell composed by n generating chains, and let LMC denote the
corresponding periodic linking matrix of size n × n. Without loss of generality we
will concatenate cells always to the positive direction of the x-axis. Let mC denote
the cell that results by gluing m copies of C respecting the PBC. Then mC has more
chains. More precisely:

Lemma 11.1 Let C be a cell with n generating chains. Then the cell mC that results
by gluing m copies of C respecting the PBC, has mn generating chains.

Remark 11.1 The different generating chains in mC generate different free chains
in the periodic system. We denote the free chains in mC generated by i ( j), j =
0, . . . ,m − 1, as I ( j) = I (0) + v j .

Thus the corresponding periodic linkingmatrix, LMmC has sizemn×mn. Indeed,
the cells C and mC describe different topological objects. If we identify the faces of
the cell, then we will get an n-component link in the solid torus in the first case and a
mn-component link in the second case. The 3-manifolds are the same in both cases
even though the links that they contain are different, related by an m-fold covering
space of the second manifold over the first. So, we notice that the linking matrices
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Fig. 11.2 One chain in a system with one PBC. Left: the original cell C contains 1 generating
chain. Right: the cell 2C contains 2 generating chains

LMC and LMmC are different, but the periodic system that the cells generate and
whose entanglement we wish to measure, is the same. For this purpose, we will study
the dependence of the periodic linking matrix on the cell size and we will look for
quantities that remain invariant of cell size.

In the following we will prove that some of the eigenvalues of the periodic linking
matrix are independent of cell size. Firstwewill study the simplest case of the periodic
linkingmatrix of a single chain in a cell with one PBC.Next, wewill generalize this to
the case of n chains in a cell with one PBC. This case will facilitate the understanding
of the general case of systems employing one PBC. The methods presented here can
also be used to obtain similar results in 2 and 3 PBC.

We will next study the case of a cell with one PBC that contains one generating
chain that unfolds in k cells. The periodic linkingmatrix of that system has size 1×1,
LMC = SLP(I ) = Sl(I0) + ∑

i L(I0, Ii ).
If we concatenate m cells to create a larger cell mC , then by Lemma 11.1 there

arem generating chains in k1C , we denote I (0), I (1) = I (0) + (1, 0, 0), . . . , c, I (m) =
I (0) + (m, 0, 0) (see Fig. 11.2). The linking matrix for this cell has size m × m and
has the following form:

LMmC =

⎡
⎢⎢⎣

SLP(I (0)) LKP(I (0), I (1)) . . . LKP(I (0), I (m−1))

LKP(I (0), I (1)) SLP(I (1)) . . . LKP(I (1), I (m−1))

. . . . . . . . . . . .

LKP(I (0), I (m−1)) LKP(I (1), I (m−1)) . . . SLP(I (m−1))

⎤
⎥⎥⎦ (11.6)

Lemma 11.2 Let C denote a cell with one PBC that consists of only one chain,
I . Let mC denote the cell that results after gluing m copies of C, then LMmC is a
symmetric centrosymmetric matrix.

Proposition 11.1 Let I denote a chain in a cell C with one PBC. Let mC denote
the cell that results after gluing m copies of C. Then the j th eigenvalue of LMmC is
given by:

λ j = SLP(I (0)) + 2

m−1
2∑

k=1

LKP(I (0), I (k)) cos

(
2π

m
k( j − 1)

)
(11.7)
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for m odd and

λ j = SLP(I (0)) + (−1)( j−1)LKP(I (0), I (� m−1
2 �+1))

+ 2

� m−1
2 �∑

k=1

LKP(I (0), I (k)) cos

(
2π

m
k( j − 1)

) (11.8)

for m even.

Remark 11.2 (i) λ1 is independent of cell-size, m and λ1 = SLP(I ) for all m.
(ii) There are at most 1 + �m−1

2 � distinct eigenvalues, as expected for real cir-

culant matrices [7]. Indeed, notice that sin2
(
2π( j−1)

m

)
= sin2

(
2π(m−( j−1))

m

)
and

cos
(
2π( j−1)

m

)
= cos

(
2π(m−( j−1))

m

)
. Therefore, λ j = λm− j+2 for all j > 1.

(iii) For closed chains and for m > 2|mu(I0)|, the j th eigenvalue of the linking
matrix has a simpler formula, namely:

λ j = Sl(I0) + 2

m−1
2∑

k=1

L(I0, I0 + (k, 0, 0)) cos

(
2π

m
k( j − 1)

)
(11.9)

for m odd and

λ j = Sl(I0) + (−1)( j−1)L(I0, I0 +
((

�m − 1

2
� + 1

)
, 0, 0

)

+ 2

� m−1
2 �∑

k=1

L(I0, I0 + (k, 0, 0)) cos

(
2π

m
k( j − 1)

) (11.10)

for m even.

Remark 11.3 The difference between the first two eigenvalues of LMmC is:

λ1 − λ2 = SLP(I (0)) + 2

m−1
2∑

k=1

LKP(I (0), I (k)) − SLP(I (0))

− 2

m−1
2∑

k=1

LKP(I (0), I (k)) cos

(
2π

m
k

)

= 2

m−1
2∑

k=1

LKP(I (0), I (k))

(
1 − cos

(
2π

m
k

))
(11.11)

for m odd and
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λ1 − λ2 = SLP (I (0)) + LKP (I (0), I (�m−1
2 �+1)) + 2

�m−1
2 �∑

k=1

LKP (I (0), I (k)) − SLP (I (0))

− LKP (I (0), I (�m−1
2 �+1)) − 2

�m−1
2 �∑

k=1

LKP (I (0), I (k)) cos

(
2π

m
k

)

= 2

�m−1
2 �∑

k=1

LKP (I (0), I (k))

(
1 − cos

(
2π

m
k

))

(11.12)

for m even.
The above formula shows that the difference between the first eigenvalues does

not depend on the self-linking number of the chain. The formula indicates that the
difference, which is a measure of the homogeneity of the entanglement, is a weighted
function of the linking numbers of the chain with its images. Interestingly, for large
m, the linking with the nearest images contributes less than the linking with further
images.

Remark 11.4 Often in applications one is interested in the average properties of fila-
ments. Cancellations may occur when using the Gauss and periodic linking number.
For this reason, one may want to use the absolute values of all the entries of the
periodic linking matrix, we call the absolute periodic linking matrix. The absolute
periodic linking matrix is also symmetric centrosymmetric. Lower bounds on the
maximum eigenvalue of nonnegative real symmetric centrosymmetric matrices can
be found in [7].

Next, we will extend our previous results to the case of n chains in a system with
one PBC.

Let us consider n chains, say H1, H2, . . . , Hn in a system with one PBC that
unfold in ki , i = 1, . . . , n cells each. The periodic linking matrix of that system has
size n × n,

LMC =

⎡
⎢⎢⎣

SLP(H1) LKP(H1, H2) . . . LKP(H1, Hn)

LKP(H1, H2) SLP(H2) . . . LKP(H2, Hn)

. . .

LKP(H1, Hn) LKP(H2, Hn) . . . SLP(Hn)

⎤
⎥⎥⎦ (11.13)

Then the matrix LMmC has size mn × mn, since to each free chain, H j , of the
cell C , correspond m free chains, H j (i), i = 0, . . . ,m − 1, in the cell mC (see
Lemma 11.1) (see Fig. 11.3). We make the convention that the uth row of LMmC ,
where u = rm + l corresponds to the free chain H(r + 1)(l−1). Therefore, the
(q, w)th element of LMmC , where q = q1m+q2, w = w1m+w2, is: LKP(H(q1 +
1)(q2−1), H(w1 + 1)(w2−1)).

Proposition 11.2 Let C denote a cell with one PBC that consists of n chains. Let mC
denote the cell that results after gluing m copies of C, then LMmC can be expressed
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Fig. 11.3 2 chains in a system with one PBC. Left: the original cellC contains 2 generating chains.
Right: the cell 2C contains 4 generating chains

as an n × n block matrix of m × m symmetric circulant matrices. Moreover, the
diagonal block matrices are symmetric centrosymmetric matrices. The eigenvalues
of the (i, i)th block of LMmC, i = 1, . . . , n, are:

λs = SLP(Hi (0)) + 2

m−1
2∑

k=1

LKP(Hi (0), Hi (k)) cos

(
2π

m
k(s − 1)

)
(11.14)

for m odd and

λs = SLP(Hi (0)) + (−1)(s−1)LKP(Hi (0), Hi (�
m−1
2 �+1))

+ 2

� m−1
2 �∑

k=1

LKP(Hi (0), Hi (k)) cos

(
2π

m
k(s − 1)

) (11.15)

for m even, s = 1, . . . ,m.
The eigenvalues of the (i, j)th block of LMmC, 1 ≤ i < j ≤ n, are:

λs = LKP(Hi (0), H j (0)) + 2

m−1
2∑

k=1

LKP(Hi (0), H j (k)) cos

(
2π

m
k(s − 1)

)
,

(11.16)

for m odd and

λs = LKP(Hi (0), H j (0)) + (−1)(s−1)LKP(Hi (0), H j (�
m−1
2 �+1))

+ 2

� m−1
2 �∑

k=1

LKP(Hi (0), H j (k)) cos

(
2π

m
k(s − 1)

) (11.17)

for m even, s = 1, . . . ,m.
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Notice that in the case of n chains in a system with 1 PBC the periodic linking
matrix is no longer a circulantmatrix and its eigenvalues are not known. However, the
eigenvalues of its blockmatrices are known.More precisely, LMmC can be expressed
as

LMmC = ΣM + ΛM (11.18)

where ΣM,ΛM are m ×m block matrices. ΣM is a diagonal block matrix, whose
blocks represent the linking of a chain Hi with its own images and are symmetric
centrosymmetric. ΛM is a block matrix whose diagonal matrices are zero and its
off-diagonal matrices represent the linking between different generating chains, and
are symmetric circulant matrices

The following proposition shows that some of the eigenvalues of the periodic
linking matrix are invariant of cell-size, m.

Proposition 11.3 Let LMC be the periodic linking matrix of a periodic system gen-
erated by the cell C with one PBC, which contains n chains. Then any other periodic
linking matrix LMmC of the same periodic system generated by the cell mC is of the
form

LMmC =
[
LMC E
0 F

]
(11.19)

where E has size 1 × (m − 1) and F has size (m − 1) × (m − 1).

Remark 11.5 From Proposition 11.3 it follows that the eigenvalues of LMC are
among the eigenvalues of LMmC , for all m.

11.3.2 Olympic Systems

Olympic systems are collections of small ring polymers whose aggregate properties
are largely characterized by the extent (or absence) of topological linking in contrast
with the topological entanglement arising from physical movement constraints asso-
ciated with excluded volume contacts or arising from chemical bonds. These were
first discussed by de Gennes [8] and have been of interest ever since due to their
particular properties and their occurrence in natural organisms, for example as inter-
mediates in the replication of circular DNA in the mitochondria of malignant cells or
in the kinetoplast DNA networks of trypanosomes [9–15]. In this project, we studied
systems that have an intrinsic one, two, or three dimensional character and consist
of large collections of ring polymers modeled using periodic boundary conditions.
In this report we will focus on the one-dimensional facets of these structures, see
Fig. 11.4. We identified and discussed the evolution of the dimensional character of
the large scale topological linking as a function of density. We identified the critical
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Fig. 11.4 1D PBC systems: unlinked and saturated

densities at which infinite linked subsystems arise, the onset of percolation, in the
periodic boundary condition systems. We showed that, with increasing density, the
topological entanglement of these systems increases in complexity, dimension, and
probability.

11.3.2.1 Analysis of One-Dimensional PBC Olympic Systems

The mean absolute linking number in saturated systems in 1 PBC becomes greater
than zero at density ρ ≈ 0.08, when the mean valence and the probability of percola-
tion become non-zero, see Fig. 11.5. It is interesting to notice that the mean absolute
linking number exceeds one, showing that, even though the polygons are not knotted
and are just close enough to link, there exist polygons with absolute linking greater
than one. At the critical density themean absolute linking becomes 1.3, indicating the
presence of many pairs of polygons with absolute linking number greater than one.
The mean absolute linking number continues to increase with density, approaching
the value 2. This suggests that at high densities unknotted polygons can have high
linking numbers, a conclusion supported by the growth of the total absolute linking
as a function of the density.

Fig. 11.5 The mean absolute linking of two chains and the mean total absolute linking per chain
as a function of density for 1PBC saturated systems
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11.3.2.2 Percolation Analysis

For PBC Olympic systems, we proposed the following relationship between the
probability of total saturation as a function of the density of the system:

p(ρ) = 1

1 + ρ−αe−kρ

as inspired by the logistic equation where ρ is the density, α = n + 1
2 , n is the

dimension of the PBC system, and k is a constant.
Note that a polygon can link with one of its translations when the size of the

simulation box is similar to the size of the chain. On average, a polygon will link
with its own imagewhen the length of the simulation cell is l ≈ 2〈R2

g〉1/2 ≈ 2·3.23 =
9.12, which corresponds to a density of ρ = 1

6.45 = 0.15 for rings. More precisely,
in a system with one, two, or three PBC, when the length of the cell is l < 2λn .This
implies that we should expect linking to occur when l ≤ 2λ1 giving a critical density
of ρC1 > 1

11.94 = 0.0837521 for a one-dimensional system.
In a one dimensional PBC system, see Fig. 11.6, we notice that the probability

of saturation becomes greater than 0 at ρ ≈ 0.12, in agreement with our analysis.
In a one dimensional PBC system, more than half of the conformations are fully
saturated once the density has exceeded 0.28. Using Matlab’s non-linear fitting, we
find k = 7.032 with an R2 = 0.9918, see Fig. 11.6. This suggests that the probability
of linking between two translations of a polygon as a function of density is:

p(ρ) = 1

1 + ρ−1.5e−7.032ρ

to be compared with the probability of linking between two random unknotted poly-
gons provided in [16].

Fig. 11.6 The observed probability of saturation in a one dimensional PBC system as a function
of density plotted against its fitting curve p(ρ)
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11.3.2.3 Analysis of Valence, |V |

In this section we discuss the mean valence, |V |, of a polygon in a percolated
system, i.e. the average number of polygons with which an individual polygon
may link. Recalling that the typical enveloping ellipsoid has characteristic radii of
λ1 = 5.97, λ2 = 4.09, and λ3 = 2.9 [17], let us denote by I0 a random polygon of N
unit length edges in a system with n =1, 2, or 3 PBC and defined by its generating
cell of dimensions lx , ly, lz . We propose that I0 may link any of its own translations
if the enveloping ellipsoid of the translation intersects the enveloping ellipsoid of I0.
To obtain an estimate of the valence, we first consider the enveloping ellipsoid of I0
and form a shell around it by adding a thickness proportional to the characteristic
radii in the nearest direction ie. λn

〈Rg2〉1/2
λ1

. The respective radii defining this shell are

then (λ1 + λ1
〈Rg2〉1/2

λ1
), (λ2 + λ2

〈Rg2〉1/2
λ1

), (λ3 + λ3
〈Rg2〉1/2

λ1
). We estimate the valence

by counting the number of images whose center of gravity are contained within this
volume by dividing by the volume of the generating cell. Setting the static dimen-
sions of the generating cell equal to 2 ∗ λn , we find the following estimates for mean
valence in an n-PBC system:

〈|V |〉n−PBC ≤
4
3πλ1λ2λ3

(
1 + 〈Rg2〉1/2

λ1

)
ρn

(2λn+1)(3−n)
.

Using the appropriate values of n, we bound the mean valence in each system of
PBC’s by:

〈|V |〉1PBC ≤ 16.28ρ

〈|V |〉2PBC ≤ 296.61ρ2

〈|V |〉3PBC ≤ 1089.03ρ3

We expect these to be upper bound estimates, especially at higher densities, due to
the over counting of some portion of cells whose centers are not within the shell.
However, the combined volume of those on the boundary of the shell could add to
this count.

The mean valence of a saturated system in 1 PBC becomes non-zero at 2 for ρ ≥
0.12 correspondingwith the critical density for filamental percolationρC1 > 0.0836.
The mean valence continues to increase non-monotonically thereafter, see Fig. 11.7.
Notice that, at the saturation density of ρ = 0.28, we have a mean valence of
approximately 2.53, indicating that at least a fourth of the linked polygons link with
their second order neighbors. This saturation density corresponds to an edge length
of l ≈ 3.57 < 2λ1, which explains why the mean valence becomes greater than
two.
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Fig. 11.7 Mean valence of the total 1PBC system superimposed with the analytical model. We
notice that < |V | >1PBC ≤ 16.28ρ, as expected

Fig. 11.8 PBC examples: unit radius disc cross-section, single chain of length 25. Left, 0.00
alignment constraint (random) and, second, 0.50 alignment constraint

11.3.3 Vortex Flow in Tubular Systems

In Fig. 11.8 we show a simple example of a length 25 chains contained in a tube
whose cross-sectional disc of radius 1 under an alignment constraint scaled to 0.00
and 0.50. In the context of this study, the alignment constraint is scaled from 0 to 1 by
a continuous control, c, of the proposed step angle in reference to the tube axis and the
radius of the tube, r . If a vertex of the chainwere to lie on the boundary of the tube, the
magnitude of the azimuthal angle, θ , is limited, for 0 < r ≤ 1

2 , by s(r) = ArcSin(2r)
in the implementation of the generation of the chain. Furthermore, for each step in
the generation of the chain, a random number, δ, in [0,1] is selected:
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If δ ≥ 5 c
4 then either, equally and uniformly,

(π − (1 − c)s(r)) ≤ θ ≤ (π + (1 − c)s(r))

or
−(1 − c)s(r) ≤ θ ≤ ((1 − c)s(r).

If 5 c
4 > δ ≥ 0 then, uniformly,

−(1 − c)s(r) < θ < (1 − c)s(r).

We interpret these chains as representing short vortex flow lines in a tubular
system and will focus on the case in which there are three independent PBC families
of chains generating the structure representing the flow lines, see Fig. 11.8. They
may, however, be understood as representing polymeric chains subject to tubular
confinement and an alignment constraint.

For these filamental structures, we systematically studied a range of lengths, tube
cross-sections, and scaled alignment conditions in order to estimate how these fun-
damental parameters influenced the shape and entanglement that depend upon them.
For example, for a sample size of 500, the random chains in the unit radius tube have
an average tube length of 7.86 units with an average radius of gyration of 3.57, see
Fig. 11.9. The average absolute self-linking is 1.09, see Fig. 11.10. As a measure of
entanglement, we find the averagemaximal, medial, minimal absolute eigenvalues of
the linkingmatrix to be 1.18, 1.01 and, 0.46 respectively. In contrast, for an alignment
condition of 0.50, one has an average tube length of 18, 35 with a radius of gyration
of 22.77 and an average absolute self-linking of 1.34. The absolute eigenvalues have
averages of 2.20, 1.27, and 0.57 respectively. The increased level of entanglement
found in aligned systems compared to a fully random system is a key result of our
analysis of the filamental structure’s dependence upon cross-sectional constraints
and alignment.

In Fig. 11.11 we show the evolution of the absolute values of the three eigenvalues
of a PBC system generated by three independent filaments of length 25. Here, one
observes a decreasing tendency in the magnitude of the eigenvalues with increasing
tube radius and an increasing tendency with increasing alignment constraint. While
one may expect a random system to exhibit a stronger degree of entanglement, we
have seen that these filaments have smaller diameter (or squared radius of gyration)
thereby offering them a significantly smaller opportunity to entangle with nearby
filaments whereas filaments subject to an alignment constraint have a significantly
larger number of adjacent filaments with which they may entangle. Thus, we see that
the magnitude of the eigenvalues increase with increasing alignment. In addition,
for a fixed alignment constraint, the magnitude of the eigenvalues decreases with
increasing tube radius across the range of radii presented here, i.e. from 0.1 through
5.0 showing that the filamental structure widely explores the cylindrical tube leading
to a decreasing density leading to decreasing entanglement.
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Fig. 11.9 The mean squared radius of gyration and diameter of 25 step chains as a function of the
tube radius and alignment constraint

Fig. 11.10 Absolute self-linking of single 25 step chains as a function of alignment constraint and
tubular radius
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Fig. 11.11 Effect of tube radius and alignment constraint on the mean absolute eigenvalues of a
PBC system generated by three independent filaments of length 25
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Fig. 11.12 Effect of random alignment, fixed at 0.00, on length 25 filament; radial scale 0.10–5.00

Fig. 11.13 Effect of alignment constraint, fixed at 0.50, on length 25 filament; radial scale 0.10–
5.00

Consistent with our earlier analysis, we find that a random system displays
the smallest entanglement as measured by the magnitude of the eigenvalues, see
Fig. 11.12. In Fig. 11.13 we see that the two eigenvalues of larger magnitudes are
rather larger than the random system but tend to get smaller with increasing tube
radius while the smallest is relatively stable in magnitude. Since the character of this
decrease in the magnitude of the eigenvalues holds across the scale of the alignment
constraint, we expect that it is an artifact of the decrease in density of the filaments
with increasing tube radius. Considering, in Fig. 11.14, the change in magnitude
of the eigenvalues for alignment constraint of 0.85, we do not see any meaningful
change in magnitude with increasing tube radius as the magnitudes remain roughly
constant at the largest eigenvalue measures of entanglement.

We now wish to characterize the consequences of increasing the alignment con-
straint for a fixed tube radius. For a tube of radius equal to 0.10, 1.00 or 5.00, in
Fig. 11.15 we see that there is a visible increase in the magnitude of the largest
eigenvalue as the alignment constraint increases independent of the radius of the
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Fig. 11.14 Effect of alignment constraint, fixed at 0.85, on length 25 filament; radial scale 0.10–
5.00

Fig. 11.15 Effect of alignment constraint on the mean largest magnitude eigenvalue for length 25
filaments for tube radii 0.10, 1.00, and 5.00

tube. Indeed, the actual values of the magnitude of the largest eigenvalue are quite
similar, independent of the radius of the tube though a bit lower for the very largest
tube.

11.4 Conclusions

The entanglement in polymermelts, Olympic gels, and systems of vortex flow lines is
fundamentally a many body problem. Our goal is to describe its principal properties
with ameasure of entanglement that takes into consideration the overall conformation
of the system. For this purpose we defined the linkingmatrix. For systems employing
PBC, we then defined the periodic linking matrix using the periodic linking and self-
linkingmeasures. In the simulation of a polymer system, the size of the cell may vary.
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It is necessary to know how the data obtained from different cell sizes are related.
By focusing on an arbitrary fixed periodic system simulated by a varying cell-size
simulation box with one PBC, we proved that some of the eigenvalues of the periodic
linking matrix are invariant of cell size. This information can be used to characterize
such a one dimensional periodic system. This led to results concerning the evolution
of these structural measures as the size of the basic cell changes [4]. The analysis
of one dimensional PBC systems was applied to Olympic systems and to tubular
systems to give the results reported here [5, 6] giving new insight into the structure
of these systems.

Acknowledgements This research has been cofinanced by the European Union (European Social
Fund— ESF) and Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) — Research Funding Program:
THALIS.

References

1. Gauss, K.F.: Zur mathematischen theorie der electrodynamischen wirkungen. Werke Konigl.
Ges. Wiss. Gottingen, vol. 5, p. 605 (1877)

2. Panagiotou, E.: The linking number in systems with periodic boundary conditions. J. Comput.
Phys. 300, 533–573 (2015)

3. Panagiotou, E., Millett, K.C., Lambropoulou, S.: The linking number and the writhe of uniform
random walks and polygons in confined spaces. J. Phys. A: Math. Theor. 43(4), 045208 (2010)

4. Panagiotou, E., Millett, K.C.: Linking matrices in systems with periodic boundary conditions
(2016)

5. Igram, S., Millett, K.C., Panagiotou, E.: Resolving critical degrees of entanglement in olympic
ring systems. J. Knot Theory Ramif. 25(14), 1650081 (2016)

6. Millett, K.C., Panagiotou, E.: Entanglement transitions in one-dimensional confined fluid flow.
Fluid Dyn. Res. tbd(tbd), tbd (2016)

7. Rojo, O., Rojo, H.: Some results on symmetric circulant matrices and on symmetric centrosym-
metric matrices. Linear Algebra Appl. 392, 211–233 (2004)

8. DeGennes, P.-G.: ScalingConcepts in Polymer Physics. CornellUniversity Press, Ithaca (1979)
9. Chen, J., Rauch, C.A., White, J.H., Englund, P.T., Cozarelli, N.R.: The topology of kinetoplast

DNA network. Cell 80, 61–69 (1995)
10. Lukes, J., Guilbride, D.L., Votypka, J., Zikova, A., Benne, R., Englund, P.T.: Kinetoplast DNA

network: evolution of an improbable structure. Eukaryot. Cell 1(4), 495–502 (2002)
11. Micheletti, C., Marenduzzo, D., Orlandini, E.: Polymers with spatial or topological constraints:

theoretical and computational results. Phys. Rep. 504, 1–73 (2011)
12. Diao, Y., Hinson, K., Arsuaga, J.: The growth of minicircle networks on regular lattices. J.

Phys. A: Math. Theor. 45(3), 035004 (2012)
13. Diao, Y., Hinson, K., Kaplan, R., Vazquez, M., Arsuaga, J.: The effects of density on the

topological structure of the mitochondrial DNA from trypanosomes. J. Math. Biol. 64(6),
1087–1108 (2012)

14. Arsuaga, J., Diao, Y., Hinson, K.: The effect of angle restriction on the topological character-
istics of minicircle networks. J. Stat. Phys. 146(2), 434–445 (2012)



11 Linking in Systems with One-Dimensional Periodic Boundaries 257

15. Diao, Y., Hinson, K., Sun, Y., Arsuaga, J.: The effect of volume exclusion on the formation
of DNA mini circle networks: implications to kinetoplast DNA. J. Phys. A: Math. Theor. 48,
1–11 (2015)

16. Hirayama, N., Tsurusaki, K., Deguchi, T.: Linking probabilities of off-lattice self-avoiding
polygons and the effects of excluded volume. J. Phys. A: Math. Theor. 42, 105001 (2009)

17. Millett, K.C., Plunkett, P., Piatek, M., Rawdon, E.J., Stasiak, A.: Effect of knotting on polymer
shapes and their enveloping ellipsoids. J. Chem. Phys. 130(16), 165104 (2009)



Chapter 12
On the Height of Knotoids

Neslihan Gügümcü and Louis H. Kauffman

Abstract Knotoid diagrams are defined in analogy to open ended knot diagrams
with two distinct endpoints that can be located in any region of the diagram. The
height of a knotoid is the minimal crossing distance between the endpoints taken
over all equivalent knotoid diagrams. We define two knotoid invariants; the affine
index polynomial and the arrow polynomial that were originally defined as virtual
knot invariants given in (Kauffman, J Knot Theory Ramif 21(3), 37, 2012) [6],
(Kauffman, J Knot Theory Ramif 22(4), 30, 2013) [8], respectively, but here are
described entirely in terms of knotoids in S2. We reprise here our results given in
(Gügümcü, Kauffman, Eur J Combin 65C, 186–229, 2017) [3] that show that both
polynomials give a lower bound for the height of knotoids.

12.1 Introduction

The theory of knotoids was introduced by V. Turaev [17] in 2012.A knotoid diagram
[17] is an open ended knot diagram with two endpoints that can be located in any
region of the diagram. The theory of knotoids forms a new diagrammatic theory that
is an extension of the classical knot theory. In this paper, we give an exposition of
two new polynomial knotoid invariants that were constructed in [3].

It is natural to examine knotoids in the context of virtual knot theory [5, 6]. Virtual
knots are knots in thickened surfaces (or knot diagrams in surfaces) taken up to handle
stabilization. There is a diagrammatic theory for virtual knots, as we explain briefly
in this paper. The endpoints of a knotoid diagram can be connected to form what
we call the virtual closure of the diagram. This way of connecting the endpoints of
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a knotoid diagram forms a well-defined map from the set of knotoids to the set of
virtual knots. Virtual knot invariants can be then applied to extract knotoid invariants
by using the virtual closure map.

Section12.2 recollects the fundamental concepts of knotoids. Knotoid diagrams
can be defined both in S2 and R

2. There is an inclusion map between two sets of
knotoids; knotoids in R

2 and knotoids in S2, induced by the inclusion R
2 ↪→ S2.

Knotoids in R
2 are a part of geometric 3-dimensional knot theory, and, as such,

are related to open-ended embeddings of intervals in three-dimensional space. We
discuss this point of view in Sect. 2.4.

Given a knotoid K in S2, we can ask how far apart the endpoints need to be
in all instances of diagrams for the equivalence class of K . The smallest distance
between two endpoints of K (in terms of number of classical crossings created while
connecting the endpoints with an embedded arc that goes under) is called the height
of the knotoid. The height is an invariant of knotoids in S2 [17]. In Sect. 12.3 we
define the height of a knotoid as in [17]. We then make a remark on virtual knot
theory and discuss the virtual closure map. In Sect. 3.2, we mention two conjectures
from [3]. One of the conjectures asserts that there are virtual knots of genus 1 which
are not in the image of the virtual closure map. We have proved this conjecture by
a use of surface bracket polynomial of virtual knots/links and we will present the
prof in a subsequent paper. The other conjecture asserts that the normalized bracket
polynomial (the Jones polynomial) detects the trivial knotoid.This conjecture extends
the well-known conjecture on the Jones polynomial of knots.

Section12.4 is devoted to two polynomial invariants of knotoids; the affine index
polynomial and the arrow polynomial. Both of these polynomials are examined by
the authors in full detail in [3]. The affine index polynomial and the arrow polynomial
were originally defined as virtual knot invariants [2, 8, 14]. We observe in [3] that
they can be defined as invariants of knotoids by considering only knotoid diagrams.
In this paper we present our main results given in [3], that consist in lower bound
estimations for the height of knotoids via these two polynomials. We give sketches
of the proofs for our results. We end the section with examples for the use of these
estimations.

12.2 About Knotoids

A knotoid diagram K in S2 or in R2 is defined as a generic immersion,

K : [0, 1] → S2 orR2 such that

• K has finitely many transversal double points. These points are endowed with
over/under-crossing data and called the crossings of K .

• The images of 0 and 1 are two points distinct from each other, and from any of
crossings of K . These two points are the endpoints of a knotoid diagram and called
the tail and the head of K , respectively. A knotoid diagram is always oriented from
its tail to its head.

http://dx.doi.org/10.1007/978-3-319-68103-0_2
http://dx.doi.org/10.1007/978-3-319-68103-0_3
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Fig. 12.1 Some examples of knotoid diagrams

Fig. 12.2 Ω-moves

Fig. 12.3 Forbidden knotoid moves

The trivial knotoid diagram is an embedding of the unit interval into S2 (or inR2).
It is depicted by an arc without any crossings as shown in Fig. 12.1a.

The three Reidemeister moves shown in Fig. 12.2, are defined on knotoid dia-
grams, and denoted by Ω1, Ω2, Ω3, respectively. These moves modify a knotoid
diagram within a small disk as shown in the figure without utilizing the endpoints.
The moves in Fig. 12.3 that consist of pulling an endpoint over or under a strand, are
the forbidden over and under moves, and denoted by Φ+ and Φ−, respectively. It is
clear that if both Φ+ and Φ−- moves were allowed, any knotoid diagram could be
turned into the trivial knotoid diagram.

TheΩi=1,2,3-moves plus isotopy of S2 generate an equivalence relation on knotoid
diagrams in S2 (for knotoid diagrams in the plane we consider the isotopy of the
plane). A knotoid is defined to be an equivalence class of all equivalent knotoid
diagrams up to this equivalence relation. The set of all knotoid classes in S2 and in
R

2 are denoted by K (S2) and K (R2), respectively.
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There is a well-defined map between the two knotoid sets,

ι : K (R2) → K (S2),

that is induced by the inclusion R
2 ↪→ S2 = R

2∪{∞}. Any knotoid in S2 can be
represented by a knotoid diagram in R

2 by pushing a representative diagram in S2

away from the ∞ ∈ S2. Considering the equivalence class of this planar represen-
tation inK (R2), there is a well-defined map ρ : K (S2) → K (R2). It is clear that
ι ◦ ρ = id so that ι is surjective. However, there are examples of nontrivial knotoids
inR2 which are trivial inK (S2) showing that the map ι is not injective. An example
for this is given in Fig. 12.1b. The knotoid diagram in the figure which represents
a nontrivial planar knotoid [17] although it represents the trivial knotoid in S2. In
this paper, we study the knotoids in S2 and we mean knotoids in S2 unless otherwise
stated.

Definition 12.1 LetM be a category of mathematical structures (e.g. polynomials,
Laurent polynomials, the integers modulo five, commutative rings, groups, · · · ). An
invariant of knotoids is a mapping I : K (S2) → M such that equivalent knotoid
diagrams map to equivalent structures inM .

12.2.1 Knots via Knotoid Diagrams

In [17] the study of knotoid diagrams is suggested as a new diagrammatic approach to
the study of knots in three dimensional spaceR3 in the following way. The endpoints
of a knotoid diagram can be connected with an embedded arc in S2 that is declared
to go under each strand it crosses. In this way we obtain an oriented classical knot
diagram in S2 representing a knot in R

3. The resulting knot diagram is called the
underpass closure of the knotoid diagram. Note that the arc connecting the endpoints
is unique up to isotopy. We say that a knotoid diagram K represents a classical knot
κ if κ is represented by the underpass closure of K .

Alternatively, the endpoints of a knotoid diagram in S2 can be connected with an
embedded arc in S2 which is declared to go over every strand it crosses. The resulting
oriented knot diagram is called the overpass closure of the knotoid diagram. Note
that this type of connection arc is also unique up to isotopy. The underpass closure
and the overpass closure of a knotoid diagram may represent inequivalent knots. For
instance, the knotoid diagram given in Fig. 12.4 represents a trefoil via the underpass
closure and represents the trivial knot via the overpass closure. In order to have awell-
defined representation of knots via knotoid diagrams, we should fix the closure type.
The closure type is chosen to be the underpass closure and the following proposition
follows.

Proposition 12.1 ([17] Two knotoid diagrams K1 and K2 represent the same classi-
cal knot if and only if they are related to each other by finitely many Ωi=1,2,3- moves,
Φ−-moves (forbidden under moves) and isotopy of S2.
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Fig. 12.4 Two types of
closures

Given a knot in R
3, we take an oriented diagram of the knot in S2. Cutting out

an underpassing arc which may contain no crossing or one or more crossings from
this diagram, results in a knotoid diagram that represents the given knot. In fact, any
knot in R3 can be represented by a knotoid diagram in S2.

Representing knots in three dimensional space via knotoid diagrams may ease
the computation or give finer estimations for knot invariants. See [17] for the knot
group computation via knotoid diagrams and for the lower bound estimation for the
Seifert genus of knots.

12.2.2 Knotoids as an Extension of Knot Theory

There is a well-defined injective map,

α : {Knot Diagrams in S2/ 〈Ω1,Ω2,Ω3〉} → K (S2),

where 〈Ω1,Ω2,Ω3〉 denotes the equivalence on knot diagrams given by the three
Reidemeister moves defined on knot diagrams. Let D be an oriented knot diagram
in S2. Cutting out an open arc of D which is apart from the crossings of D results in
a knotoid diagram with two endpoints in the same local region of the diagram. The
map α is induced by assigning D to the resulting knotoid diagram. It is verified in
[17] that the knotoid obtained via the map α does not depend on the knot diagram
chosen or the arc that is cut out from the knot diagram. Therefore α is a well-defined
map. It is also verified in [17] that the map α is injective.

Definition 12.2 Knotoids that are in the image of the α map, are called knot-type
knotoids.

A knot-type knotoid has at least one diagram in its equivalence class whose
endpoints lie in the same local region of the diagram. Such a diagram is called a
knot-type knotoid diagram. The Fig. 12.1a, b and e set some examples of knot-type
knotoid diagrams.

Definition 12.3 The knotoids that are not in the image of α, are called proper or
pure knotoids.
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The endpoints of a proper knotoid can lie in any but different local regions of the
diagram for any its representative diagram. The set of knotoids in S2 can be regarded
as a union of these two types of knotoids, that is,

K (S2) = {Knot-type knotoids} ∪ {Proper knotoids}.

The map α, being an injective map, gives a one-to-one correspondence between
the set of equivalence classes of knots and the set of knot-type knotoids. Thus the
theory of knotoids extends the theory of classical knots (knots in R3). Notice that by
the allowance of the Φ−-move on knotoid diagrams, the theory of knotoids becomes
an equivalent theory to the theory of classical knots.

12.2.3 The Algebraic Structure on the Set of Knotoids

Amultiplication operation is defined on the set of knotoids,K (S2) in [17] as follows.
Let k1, k2 be two knotoids represented by two knotoid diagrams K1 and K2. Take
2-disk neighborhoods B1, B2 of the head of K1, and the tail of K2, respectively,
such that both discs intersect the diagrams along a radius. We glue S2 − Int(B1) to
S2 − Int(B2) through a homeomorphism taking ∂ B1 to ∂ B2 and carrying the single
intersection point of ∂ B1 and K1 to the single intersection point of ∂ B2 and K2. Then
K1 − Int(B1)meets with K2 − Int(B2) at one point and form a knotoid diagram in S2

that is denoted by K1K2. The knotoid diagram K1K2 represents the product knotoid
k1k2 in S2.

It can be verified by the reader that the multiplication operation on knotoids is
associative and the trivial knotoid is the identity element. The set of knotoids,K (S2)

endowed with the multiplication forms a semigroup with identity element [17].

12.2.4 A Geometric Interpretation of Knotoids

It is natural to see a knotoid diagram in R2 as a generic projection of an open-ended,
oriented space curve. Given an open-ended, smooth, oriented curve that is embedded
in R3 with a generic projection to a plane. The endpoints of the curve determine two
lines that pass through the endpoints and are perpendicular to the plane. The generic
projection of the curve to the plane along the lines is a knotoid diagram in that plane
when self-crossings of the projection curve are endowedwith over andunder-crossing
data accordingly with the weaving of the space curve. We call an open-ended curve
embedded inR3 that has a generic projection to a plane, a generic curve with respect
to the plane.

Any knotoid diagram in R
2 determines an open-ended oriented curve embedded

in R3. Let K be a knotoid diagram in R2. The plane of the diagram is identified with
R

2 × {0} ⊂ R
3. The overpasses of the diagram are pushed into the upper half-space
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Fig. 12.5 Space curves obtained by the knotoid diagram in Fig. 12.1c

and the underpasses are pushed into the lower half-space in the vertical direction.
The tail and the head of the diagram are attached to the two lines, t × R and h × R

that pass through the tail and the head, respectively, and are perpendicular to the
plane of the diagram. Moving the endpoints of K along these special lines gives
rise to several open-ended oriented curves in R3 with endpoints lying on these lines.
Figure12.5 illustrates three space curves obtained from the same knotoid diagram in
the xy-plane.

Definition 12.4 Let c1, c2 be two open-ended, smooth, oriented curves that are
embedded in R

3 with a generic projection to the same plane, and t and h denote
their endpoints. The curves c1 and c2 are said to be line isotopic if there is a smooth
ambient isotopy of the pair (R3 \ {t × R, h × R}, t × R ∪ h × R), taking one curve
to the other curve in the complement of the lines, taking endpoints to endpoints, and
taking the lines to the lines; t × R to t × R and h × R to h × R.

Theorem 12.1 ([3, Theorem 2.2]) Two oriented curves in R
3 that are both generic

with respect to a given plane, are line isotopic (with respect to the lines determined
by the endpoints of the curves and the plane) if and only if the projections of the
curves to the plane when endowed with over/under data at each self-crossing points
accordingly to the weaving of the curves, are equivalent knotoid diagrams.

Note that the equivalence classes of knotoid diagrams that are the projections of
the same open-ended curve embedded in three-dimensional space, may vary with
respect to the projection plane. Figure12.6 depicts a space curve and the projections
of the curve to the xy- and the xz-plane. It is clear that the xz-projection gives the
trivial knotoid. The projection to the xy- plane, however, gives the knotoid diagram
given in Fig. 12.1c and one can show that this diagram represents a nontrivial knotoid
in S2 and in R

2 (see Sect. 1.3.1 and [3] for more details). In [3] we suggest that one
can study the set of all knotoids assigned to one space curve for understanding the
physical properties of the space curve.
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Fig. 12.6 Knotoids in
different projection planes

12.3 The Height of a Knotoid

The height (or the complexity as used in [17]) of a knotoid diagram in S2 is the
minimum number of crossings that a connection arc creates during the underpass
closure. The height of a knotoid K , h(K ) is defined as the minimum of the heights,
taken over all knotoid diagrams equivalent to K . The height is a knotoid invariant
[17]. We note that we use the term height instead of complexity for knotoids to focus
on this concept and allow us to use the word complexity more freely. One often
refers to the complexity of a knot or a knotoid in terms of its crossing number or the
virtual crossing number of the closure and other measures of how complicated is the
topological type of the object. We hope that the reader will agree that this choice of
terminology is useful in this case.

The height of a knotoid is preserved under the basic involutions of knotoid dia-
grams that are the reversion, mirror image, and the symmetry [17]. That is, for a
knotoid K ,

h(K ) = h(mir(K )) = h(sym(K )) = h(rev(K )).

The height is also invariant under the isotopy of S2 so that we can consider only planar
knotoid diagrams and connection arcs in R2 for the computation of the height.

Theorem 12.2 ([17, Theorem 4.3]) The height of a product knotoid k1k2, h(k1k2) =
h(k1) + h(k2) for any k1, k2∈ K (S2).

As pointed out in [17], a knotoid is of knot-type if and only if it has zero height
or equivalently, a knotoid is a proper knotoid if and only if it has a nonzero height.
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Thus the height is an efficient tool to measure how far a knotoid is from being a knot
and for the classification of knotoids. The following conjecture has been made by
V.Turaev.

Conjecture 12.1 [17] Minimal diagrams (with respect to the crossing number) of
knot-type knotoids have zero height.

We have found a proof of this conjecture and we will give the proof in [4].

12.3.1 The Bracket Polynomial of a Knotoid

The bracket polynomial of a knotoid [17] is defined by extending the state expansion
of the bracket polynomial of knots [9, 10]. Each crossing of a knotoid diagram K is
smoothed either by A- or B-type smoothing, as shown in Fig. 12.7. A smoothing site
is labeled by 1 if A-smoothing is applied and labeled by−1 if B-smoothing is applied
at a particular crossing. A state of the knotoid diagram K is a choice of smoothing
each crossing of K with the labels at smoothing sites. Each state of K consists of
disjoint embedded circular components and a single long segment component with
two endpoints. The initial conditions given in Fig. 12.7 are sufficient for the skein
computation of the bracket polynomial of a knotoid.

Definition 12.5 The bracket polynomial of a knotoid diagram K is defined as

K = d K

= 1

A-smoothing B-smoothing

= A + A−1

=A−1 A+

Fig. 12.7 Skein relations of the bracket polynomial
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< K >=
∑

S
Aσ(S)d‖S‖−1,

where the sum is taken over all states, σ(S) is the sum of the labels of the state S,
‖S‖ is the number of components of S, and d = −A2 − A−2.

The writhe of a knotoid diagram K , wr(K ) is the number of positive crossings
(crossingswith sign+1, see Fig. 12.8)minus the number of negative crossings (cross-
ings with sign −1) of K . The writhe is invariant under the Ω2 and Ω3 moves but
Ω1-move changes the writhe by ±1. The bracket polynomial turns into an invariant
for knotoids with a normalization by the writhe. The normalized bracket polynomial
of a knotoid K , fK is defined as the multiplication, fK = (−A3)−wr(K ) < K > [17].

The normalized bracket polynomial of knotoids in S2 generalizes the Jones poly-
nomial of knots inR3 with the substitution A = t−1/4. Note that the Jones polynomial
of the trivial knotoid is trivial.

Example 12.1 Let K1 be the knotoid diagram illustrated in Fig. 12.9 with wr(K1) =
+2.Aswe show in thefigure, the bracket polynomial of K1,< K1 >= A2 + 1 − A−4

and so fK1 = A−4 + A−6 + A−10. This implies that K1 is a non-trivial knotoid.

positive negative

Fig. 12.8 Crossing types

A + A−1
=

A ( A + A−1 + A−4
= )

= (A2+1−A−4)

Fig. 12.9 Computation of the bracket polynomial of K1
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The Jones polynomial conjecture asserts that the Jones polynomial detects the
trivial knot. This well-known conjecture can be extended to the following conjecture
for knotoids in S2.

Conjecture 12.2 The normalized bracket polynomial of knotoids in S2 (or the Jones
polynomial) detects the trivial knotoid.

12.3.2 Briefly on Virtual Knots

The theory of virtual knots that was introduced by the econd listed author [5, 6] in
1996, studies the embeddings of circles in thickened surfaces modulo isotopies and
diffeomorphisms and one-handle stabilization of the surfaces.

Virtual knot theory has a diagrammatic formulation. In the diagrammatic the-
ory, virtual knots and links are represented by diagrams with finitely many classical
crossings (transversal self-crossings of the underlying curve that are endowed with
over/under- data) and virtual crossings which are neither over-crossings or under-
crossings. A virtual crossing is a combinatorial structure of the diagram that is indi-
cated by two crossing segments with a small circle placed around the crossing point.
A knot/link diagram with virtual crossings is called a virtual knot/link diagram.

The moves on virtual knot/link diagrams are generated by the classical Reide-
meister moves plus the detour move. The detour move allows a segment with a
consecutive sequence of virtual crossings to be excised and replaced by any other
such a segment with a consecutive virtual crossings, as shown in Fig. 12.10. Local
expressions that generate the detour move are illustrated in Figs. 12.11 and 12.12.

Virtual knot and link diagrams that can be connected by a finite sequence of
these moves are said to be equivalent or virtually isotopic. Corresponding equiva-
lence classes of virtual knot/link diagrams with respect to the equivalence relation
generated by these moves, are called virtual knots/links.

There is a one-to-one correspondence between topological and diagrammatic
approach. Further information on virtual knots and their association with thickened
surfaces can be found in [5–7, 12, 13, 15, 16]. Here we state the following theorem.

Fig. 12.10 The detour move
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Fig. 12.11 Local detour
moves

Fig. 12.12 The virtual
forbidden moves

Theorem 12.3 ([6, 11, 16, Theorems 1, 3.3, 4.1 ]) Two virtual link diagrams are
virtually isotopic if and only if their surface embeddings are equivalent up to isotopy
and diffeomorphism of the surface, and addition/removal of empty handles.

12.3.3 A Transition to Virtual Knot Theory

Aknotoid diagram in S2 represents a virtual knot as pointed out in [17]. The endpoints
of a knotoid diagram can be connected with an embedded arc in S2 in the virtual
fashion, that is, a virtual crossing is created every time the connection arc crosses
through a strand of the diagram. The resulting diagram is a virtual knot diagram
that can also be represented in a torus without any virtual crossings by attaching a
1-handle to the sphere of the diagram which holds the connection arc.
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Fig. 12.13 Nonequivalent
knotoid diagrams with the
same virtual closure

v v

a

b
c

a
a

a

Connecting the endpoints of a knotoid diagram in S2 in the virtual fashion induces
a well-defined map that is called the virtual closure map and is denoted by v,

v : {Knotoids in S2} → {Virtual knots of genus ≤ 1}.

Figure12.13 illustrates a pair of knotoid diagrams whose virtual closures are the
same virtual knot. It can be shown that the knotoid group [17] of the left hand side
knotoid diagram has the presentation < x, y|x2 = y3 > (it is isomorphic to the knot
group of the trefoil knot). On the other hand, the knotoid group of the right hand side
knotoid diagram is isomorphic to Z. Since the knotoid group is a knotoid invariant
[17], we conclude that these two diagrams are nonequivalent knotoid diagrams. One
other way to distinguish these two knotoid diagrams is the tricolorability of knotoids.
The tricolorability of classical knots can be extended to an invariant of knotoids by
applying the rules of tricolorability directly to knotoid diagrams. A knotoid diagram
K in S2 is tricolorable if each overpassing strand of K (a strand of K that initiates at
an undercrossing and terminates at the next undercrossing or terminates at the head
of K or initiates at the tail of K and terminates at the next undercrossing) can be
colored with one of three colors with respect to the following rules.

• At least two colors must be used.
• At each crossing, the three incident strand should be colored either with the same
color or with three different colors.

In Fig. 12.13 shows that the left hand side knotoid diagram is tricolorable with the
colors a, b, c and the right hand side knotoid diagram is not tricolorable; the diagram
can be colored with only one color. Since tricolorability is a knotoid invariant it
follows that they are not equivalent knotoid diagrams. Therefore, the virtual closure
map is not an injective map [3]. We will discuss on tricolorability and in general
coloring of knotoids in detail in a subsequent paper.

In our paper [3] we conjectured that there are genus 1 virtual knots that do not lie
in the image of the virtual closure map.We have proved this conjecture by examining
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of the surface states of the surface bracket polynomial of virtual knots which lie in
the image of the virtual closure map. Our proof will appear in [4]. In this paper we
state the following.

Proposition 12.2 ([4]) The virtual closure map is not surjective.

The virtual closure map, being a well-defined map forms a machinery to define
knotoid invariants by virtual knot invariants. In fact for any invariant of a virtual
knot, denoted by Inv, we can define a knotoid invariant, denoted by I through the
following formula.

I (K ) = Inv(v(K )), for a knotoid K in S2.

In fact, many invariants obtained from the virtual closure can be defined directly
for the knotoids in their own category, without the consideration of the virtual closure
map. This is the case for the affine index polynomial and the arrow polynomial as
described in the next section.

Remark 12.1 There is a rich subject of virtual knotoids where we allow knotoid dia-
grams with virtual crossings. This subject was firstly proposed in [17] and discussed
briefly in [3] and will be the subject of further papers.

12.4 Estimation of Height

12.4.1 Affine Index Polynomial of a Knotoid

The affine index polynomial of a knotoid is constructed in terms of weights assigned
to crossings. Theunderlying flat diagram of a knotoid diagram is obtained byomitting
the over/under-data at each crossing of the knotoid diagram and turning them into
flat crossings. An arc of a flat knotoid diagram either connects an endpoint of the
diagram to a flat crossing or connects a flat crossing to the next flat crossing. There
is an integer labeling rule assigned to the arcs of the underlying flat diagram of a
knotoid diagram which is set as follows. If an arc crosses a (flat) crossing towards
right then its label is decreased by one and if it crosses a node towards left then its
label is increased by one. See Fig. 12.14 for the labeling at a flat crossing.

Fig. 12.14 Integer labeling
at a flat crossing

a

a−1b+1

b
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Let K be a knotoid diagram. The labeling procedure begins by the arc that is
adjacent to the tail of K and it is labeled by 0 conventionally. Note that the adjacent
arcs to the tail and the head take the same label.

There are two integer outcomes by the labeling rule at each crossing of K . The
positive and negative weights of a crossing c, denoted by w+(c) and w−(c), respec-
tively, are defined as the differences of the labels around c. That is,

w+(c) = a − (b + 1)

w−(c) = b − (a − 1)

where a and b are the labels for the left and the right incoming arcs at the corre-
sponding node to c, respectively.
The weight of c is defined as

wK (c) =
{

w+(c), if the sign of c is positive

w−(c), if the sign of c is negative.

Definition 12.6 The affine index polynomial of a knotoid diagram K is defined by
the equation,

PK (t) =
∑

c
sign (c)(twK (c) − 1) =

∑
c
sign (c)twK (c) − wr(K )

where wr(K ) is the writhe of K .

Theorem 12.4 ([3, Theorem 5.1]) The affine index polynomial is an invariant of
knotoids in S2.

Proof It is sufficient to check the change in the weights under oriented Ωi=1,2,3-
moves. The labeling is uniquely inherited by these moves. It is left to the reader the
check the crossing added/removed by an Ω1-move has zero weight. Two crossings
added/removed by an Ω2-move have opposite weights so their contributions cancel
each other. The weights of the crossings in an Ω3-move do not change. Therefore
the polynomial remains the same under these moves.

Theorem 12.5 ([3, Theorem 4.12]) Let K be a knotoid in S2. The height of K is
greater than or equal to the maximum degree of the affine index polynomial of K .

Proof (Sketch of the proof) The proof of the theorem relies mostly on the following
observation. Each crossing of a knotoid diagram determines a unique loop (a con-
tinuous path obtained by traversing the diagram starting and ending at a crossing
accordingly to the orientation of the diagram) throughout the diagram. A loop that is
determined by a crossing is called the loop at the crossing. The algebraic intersection
number of a loop at a crossing, with other strands of the diagram is equal to either the
positive weight or the negative weight of that crossing, depending to the orientation
of the loop. On the left hand side of Fig. 12.15, a small portion of the loop l(C) at
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a

a+1

a

a−1C C a

a−1

a

a+1

−1

+1

l(C)

Fig. 12.15 Two possible loops at the crossing C with different orientations

Fig. 12.16 Seifert
smoothing of a crossing

a crossing C is illustrated and we see the convention for the algebraic intersection
number of the loop with other strands. On the right-hand side of the figure, two
possible types of loops at C that may be observed accordingly to the orientation of
the diagram, are shown. The algebraic intersection number of the strands shown in
the figure with the loops are +1 and −1, respectively. By the same figure, it can
also be verified that w−(C) = +1 for the first loop that is oriented counterclockwise
and w+(C) = −1 for the second loop that is oriented clockwise (See [3] for more
details).

Let K̃ be a representative knotoid diagram of K . A crossing of K̃ is a maximal
weight crossing if wK̃ (c) is maximal among the weights of crossings of K̃ . Let c be
a maximal weight crossing of K̃ . All crossings which are seen twice along the loop
at the crossing c are smoothed in the oriented way (Seifert smoothing), as shown in
Fig. 12.16.

This smoothing results in disjoint oriented embedded circles in S2 (Seifert circles)
and a long segment containing the endpoints with an orientation on it from the tail
to head. Let IK̃ be the algebraic intersection number of the long segment with the
Seifert circles. It is observed that,

• |IK̃ | ≤ the number of the resulting Seifert circles enclosing the endpoints,
• IK̃ is equal to the algebraic intersection number of the loop at c with the rest of
the diagram since the crossings on the loop which contribute to the intersection
number non-trivially are not smoothed. Then,
|IK̃ | = wK̃ (c),

• The number of the Seifert circles enclosing the endpoints ≤ h(K̃ ), by the Jordan
curve theorem.
Therefore we have the following inequality,

• wK̃ (c) ≤ h(K̃ ).
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Fig. 12.17 Flat spiral knotoid diagrams

Themaximum degree of the affine index polynomial is an invariant since the poly-
nomial is an invariant. This implies that there exists a crossing at each representative
diagram whose weight is equal to wK̃ (c). By applying the same procedure given
above to each representative diagram, we can conclude that the maximum degree of
the affine index polynomial is a lower bound for the height of K .

Example 12.2 The height of a knotoid represented with a standard n-fold spiral
diagram can be read by Theorem 12.5. In particular, the affine index polynomials
of the knotoid diagrams K1, K2 and K3 that are overlying the flat diagrams given
in Fig. 12.17 with all positive crossings, are PK1(t) = t + t−1 − 2, PK2(t) = t2 +
t + t−1 + t−2 − 4 and PK3(t) = t3 + t2 + t + t−1 + t−2 + t−3 − 6, respectively. It
can be verified by the figure that the heights of the diagrams K1, K2, K3 are 1, 2, 3,
respectively. Then by Theorem 12.5 we conclude that the heights of the knotoids
represented by K1, K2, K3 are 1, 2 and 3, respectively. This argument is generalized
as follows. The affine index polynomial of a knotoid represented by an n-fold spiral
knotoid diagram is of the form tn + tn−1 + · · · + t + t−1 + · · · + t−(n−1) + t−n −
2n if all crossings of the diagram are positive. The maximal degree of the affine
index polynomial is n. Then by Theorem 12.5, the height of the knotoid is at least
n. The height of the n-fold spiral diagram is n. Therefore, the height of a knotoid
represented by a n-fold spiral diagram is equal to n. This implies that we have an
infinite set of knotoids whose heights are given by themaximal degrees of their affine
index polynomials.

Proposition 12.3 The height of a product knotoid k1k2, h(k1k2) ≥ deg P(k1) + deg
P(k2) ≥ deg P(k1k2), where deg P(ki ) is the maximal degree of the affine index
polynomial of ki , i = 1, 2.
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= A + A−1

= A−1 + A

K = (−A2−A−2)K

Fig. 12.18 Oriented state expansion

Proof The inequality deg P(k1k2) ≤ deg P(k1) + deg P(k2) can be verified by the
reader. By Theorem 12.2 given in Sect. 1.3 we know that the height is an additive
invariant. Then it follows that h(k1k2) ≥ deg P(k1) + deg P(k2).

12.4.2 The Arrow Polynomial of a Knotoid

The arrow polynomial of a knotoid is constructed by the oriented state expansion of
the bracket polynomial for knotoids; consisting of oriented and disoriented smooth-
ings of crossings, shown in Fig. 12.18.

Smoothing out all the crossings of a knotoid diagram results in oriented states con-
taining circular components and a long segment component. There is an extra combi-
natorial structure on the state components coming out by the disoriented smoothings.
This new structure is seen in the form of a pair of cusps, each of cusps has two arcs
either going into the cusp or going out from the cusp. Each cusp generates two angles;
one is an acute, the other one is an obtuse angle. The local region which is spanned
by the acute angle is called the inside of the cusp.

There is a list of rules given in Fig. 12.19 to reduce the number of cusps in state
components. The rules essentially eliminate two consecutive cusps with insides
located on the same side of the segment connecting them. As a consequence of
the Jordan curve theorem, all cusps on circular state components of a knotoid dia-
gram are eliminated so that circular components are free of cusps. Each circular and
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Fig. 12.19 Reduction rules
for the arrow polynomial

1 2

K1

K2

Long State Components

the long state component without cusps contributes as a −A2 − A−2 factor to the
polynomial. The long state components with consecutive cusps whose insides are
located at different sides cannot be saved from the cusps and contribute to the arrow
polynomial as variables Λi .

Definition 12.7 The arrow polynomial of a knotoid diagram K in S2 is defined as
follows.

A [K ] =
∑

S
< K |S >(−A2 − A−2)‖S‖−1Λi ,

where the sum runs over the oriented bracket states, < K |S > is the usual vertex
weights of the bracket polynomial, ‖S‖ is the number of components of the state S
andΛi is the variable associated to the long segment component of S with irreducible
cusps.

Theorem 12.6 ([3, Theorem 5.1]) The normalization of the arrow polynomial by
(−A3)−wr(K ), where K is a knotoid diagram and wr(K ) is its writhe, is a knotoid
invariant.
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Proof The proof follows similarly with the proof for the invariance of the normalized
arrow polynomial for virtual knots/links [2].

Definition 12.8 The Λ-degree of a summand of the arrow polynomial of a knotoid
in S2 which is of the form, AmΛi is equal to i . TheΛ-degree of the arrow polynomial
of a knotoid is defined to be the maximum Λ-degree among the Λ-degrees of the
summands.

The arrow polynomial was firstly defined as a virtual knot invariant by H. Dye and
the second listed author [2] and independently byY.Miyazawa [14]. It also utilizes the
oriented state expansion and is defined in a similar way as it is defined for knotoids.
Oriented state components of a virtual knot diagram consist of circular components.
Circular components may have irreducible cusps as illustrated in Fig. 12.19. A cir-
cular component with 2i irreducible cusps contributes as a Ki -variable to the arrow
polynomial. Since oriented states of a classical knot are cusp-free, no Ki -variables
occur in the arrow polynomial of classical knots [6]. Similarly, circular components
of an oriented state of a knotoid are cusp-free and so no Ki -variables occur in the
arrow polynomial of a knotoid in S2. However, closing the endpoints of a knotoid
diagram via the virtual closure map turns Λi -variables into Ki -variables that are
assigned to the circular components obtained via this closure.

Definition 12.9 The K-degree of a summand of the arrow polynomial of a virtual
knot which is of the form, Am(Ki1

j1 Ki2
j2 . . . Kin

jn ) is equal to

i1 × j1 + · · · + in × jn.

TheK-degree of the arrow polynomial of a virtual knot is themaximummonomial
degree in K .

Definition 12.10 The least number of virtual crossings that a virtual knot can have
among its virtual equivalence class is the virtual crossing number.

Theorem 12.7 ([2, Theorem 2.3]) The virtual crossing number of a virtual knot/link
is greater than or equal to the maximal K-degree of the arrow polynomial of that
virtual knot/link.

Theorem 12.8 ([3, Theorem 5.4]) The height of a knotoid K in S2, h(K ) is greater
than or equal to the Λ-degree of its arrow polynomial.

Proof Closing a knotoid diagram virtually corresponds, in the states, to closing
the endpoints of the long state components in the virtual fashion. Therefore the
Λi -variables assigned to long state components with surviving cusps transform to
Ki -variables assigned to the circular components with surviving cusps in the arrow
polynomial of the virtual knot obtained by the virtual closure. By this observation
and Theorem 12.7, we have the following inequality for the knotoid k.

The Λ-degree of A [K ] ≤ # of virtual crossings of the knot v(K ).
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The least number of virtual crossings obtained by closing a knotoid diagram
virtually, is equal to the height of that diagram. Thus,

# of virtual crossings of the knot v(K ) ≤ h(K̃ ),

for any knotoid diagram K̃ representing K . This gives the following inequality,

The Λ − degree of A [K ] ≤ h(K̃ ).

The inequality above holds for any knotoid diagram in the equivalence class of K
since the Λ-degree of the polynomial is invariant under Ωi=1,2,3-moves. Therefore
we have,

The Λ − degree of A [K ] ≤ h(K ).

Proposition 12.4 The height of a product knotoid k1k2, h(k1k2) ≥ degΛA [k1] +
degΛA [k2] ≥ degΛA [k1k2], where degΛA [ki ] is the Λ-degree of A [ki ], i = 1, 2.

Proof It can be verified by the reader that degΛA [k1k2] ≤ degΛA [k1] + degΛ

A [k2]. By Theorem 12.2 given in Sect. 1.3 we have h(k1k2) = h(k1) + h(k2). Then
by Theorem 12.8 it follows that h(k1k2) ≥ degΛA [k1] + degΛA [k2].

12.4.3 A Discussion on Two Polynomials

The arrow polynomial coincides with the bracket polynomial of knotoids [3, 17] if
theΛi -variables assigned to long segment components of oriented states are set to be
equal to 1. Thus the arrow polynomial is a generalization of the bracket polynomial
of knotoids. The affine index polynomial uses the flat biquandle structure [8] of a
knotoid diagram. It is quite a different concept than both the arrow and the bracket
polynomial.

Two estimations of the height given by the affine index and the arrow polynomials
are used to determine the height of many knotoids. Here we present one example
where the arrow polynomial gives a more accurate estimation of the height than
the affine index polynomial and another example where both polynomials are not
sufficient to make an exact estimation of the height.

Example 12.3 The knotoid diagram K in Fig. 12.20 represents the knotoid listed
as knotoid 5.7 [1]. The affine index polynomial of the knotoid 5.7 is trivial (the
reader can verify this by the weight chart of K given in the figure). However, the
arrow polynomial of the knotoid is nontrivial. In fact we have, A [K ] = (−A−3 +
A − 2A5 + A9) + (A−9 − 2A−5 + 2A−1 − 2A3 + A7)Λ1. Thus theΛ-degree of the
arrow polynomial of the knotoid 5.7 is 1. Also, it is clear that the height of the diagram
K is one. By Theorem 12.8, it follows that the height of the knotoid 5.7 is 1 and this
knotoid is in fact a proper knotoid.
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Fig. 12.20 The knotoid
diagram K and its weight
chart
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Fig. 12.21 The knotoid
diagram K and its weight
chart
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Example 12.4 The knotoid diagram K given in Fig. 12.21 represents the knotoid
listed as knotoid 5.24 [1]. It can be verified that the affine index polynomial
of the knotoid is PK (t) = t + t−1 − 2. The arrow polynomial of the knotoid is
A [K ]=(−A−7 + A−3 − A − A5 + A9) + (2A−1 − 3A3 + A7)Λ1. Both the maxi-
mal degree of the affine index polynomial polynomial and the Λ-degree of the arrow
polynomial are equal to 1. Thus the height of the knotoid is at least 1, by Theorems
12.5 and12.8. It is clear that the diagram K has height 2. Thuswehave 1 ≤ h(K ) ≤ 2.
We conclude that the knotoid 5.24 is a proper knotoid but both the affine index poly-
nomial and the arrow polynomial cannot give an exact height estimation for this
knotoid.

Acknowledgements The first author would like to thank her supervisor Sofia Lambropoulou for
several fruitful discussions and for her suggestion of the subject of knotoids for the author’s PhD
study.
This research has been co-financed by the EuropeanUnion (European Social Fund - ESF) andGreek
national funds through the Operational Program “Education and Lifelong Learning” of the National
Strategic Reference Framework (NSRF) - Research Funding Program: THALES: Reinforcement
of the interdisciplinary and/or inter-institutional research and innovation.



12 On the Height of Knotoids 281

References

1. Bartholomew, A.: Andrew Bartholomew’s Mathematics Page: Knotoids (2015). http://www.
layer8.co.uk/maths/knotoids/index.htm

2. Dye, H.A., Kauffman, L.H.: Virtual crossing number and the arrow polynomial. J. Knot Theory
Ramif. 18(10), 1335–1357 (2009)

3. Gügümcü, N., Kauffman, L.H.: New invariants of knotoids. Eur. J. Combin. 65C, 186–229
(2017). https://doi.org/10.1016/j.ejc.2017.06.004

4. Gügümcü, N., Kauffman, L.H.: Parity in Knotoids, (in preparation)
5. Kauffman, L.H.: Virtual knot theory. Eur. J. Combin. 20, 663–690 (1999)
6. Kauffman, L.H.: Introduction to virtual knot theory. J. Knot Theory Ramif. 21(13), 37 (2012)
7. Kauffman, L.H.: Detecting virtual knots. Atti. Sem. Mat. Fis. Univ. Modena, 49, (Suppl.),

241–282 (2001)
8. Kauffman, L.H.: An affine index polynomial invariant of virtual knots. J. Knot Theory Ramif.

22(4), 30 (2013)
9. Kauffman, L.H.: Knots and Physics. Series on Knots and Everything, 4th edn., vol. 53, pp.

xviii+846. World Scientific Publishing Co. Pte. Ltd., Hackensack (2013)
10. Kauffman, L.H.: New invariants in the theory of knots. Am. Math. Mon. 95, 195–242 (1988)
11. Kamada, N., Kamada, S.: Abstract link diagrams and virtual knots. J. Knot Theory Ramif. 9(1),

93106 (2000)
12. Kuperberg, G.: What is a virtual link? Algebraic Geometric Topol. 3, 587–591 (2003)
13. Manturov, V.O., Ilyutko, D.P.: The State of Art: Virtual Knots. Series on Knots and Everything,

vol. 51. World Scientific Publishing Co.Pte. Ltd., Hackensack (2013)
14. Miyazawa, Y.: A multivariable polynomial invariant for unoriented virtual knots and links. J.

Knot Theory Ramif. 17(11), 1311–1326 (2008)
15. Satoh, S.: Virtual knot presentation of ribbon torus-knots. J. Knot Theory Ramif. 9(4), 531–542

(2000)
16. Scott Carter, J., Kamada, S., Saito,M.: Stable equivalence of knots and virtual knotCobordisms,

Knots 2000 Korea, Vol. 1 (Yongpyong). J. Knot Theory Ramifications 11(3), 311–322 (2002)
17. Turaev, V.: Knotoids. Osaka J. Math. 49(1), 195–223 (2012)

http://www.layer8.co.uk/maths/knotoids/index.htm
http://www.layer8.co.uk/maths/knotoids/index.htm
https://doi.org/10.1016/j.ejc.2017.06.004


Chapter 13
Fourier Braids

Stephan Klaus

Abstract By the closure operation, knots can be represented by cyclic braids, which
can be unfolded as periodic complex valued functions. Their description by Fourier
series allows an approximation by finite Laurent polynomials g(z). We define an
algebraic discriminant Δn

g(z), such that an n-braid is given by those g(z) satisfying
the condition (S) of having all roots not on the unit circle. We study property (S)
from the algebraic and topological viewpoint. Using further algebraic conditions for
g(z)we obtain algebraic representations of cyclic braids in thickened surfaces, which
represent periodic boundary conditions.

Keywords Braid · Knot · Fourier degree · Laurent polynomial · Discriminant
Surface knots · Periodic boundary conditions

MSC 2010 12D10 · 42A05 · 42A10 · 57M25 · 57M27

13.1 Cyclic Braids and the Closure Operation

We note that this research is based on earlier results of the author on algebraic con-
structions of knots given in [2–4, 6]. The author has also given a talk on these results
in the Oberwolfach Workshop 2014 on Algebraic Structures in Low-Dimensional
Topology [5].

Because of Alexander’s Theorem, knots and links can be obtained by closing
braids. We recall the basic notions. Let

Cn(C) := {(z1, z2, . . . , zn) | zi ∈ C, zi �= zj ∀i, j}
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be the ordered configuration space of n points in the complex plane. There is
a free operation of the symmetric group Σn on Cn(C) and the quotient gives us
the (unordered) configuration space Cn(C)/Σn. As a base point in these spaces
we can use the configuration (1, 2, . . . , n) or the configuration (1, ε, . . . , εn−1) with
ε := e2πi/n.

An n-braid is a closed loop in the configuration space, i.e. a continuous function

b : S1 → Cn(C)/Σn.

In the following, we often jump between the equivalent descriptions f : I → X with
f (0) = f (1) and f : S1 → X for periodic functions with values in some topological
space X. Here the identification I/0∼1

∼= R/Z ∼= S1 ⊂ C is given by the map t �→
e2πit .

The set of pointed homotopy classes of n-braids starting and ending in a fixed
configuration is just the braid group

Brn := π1(C
n(C)/Σn).

The group structure is given by loop sum which we denote by ⊥, i.e. concatenation
of braids. If we do not specify the initial configuration as a base point and consider
free homotopy classes, then the set of free homotopy classes of braids is given by
the set of conjugacy classes of the group Brn.

In order to define the closure operation we use the open unit disc Ḋ2 instead of
the complex plane. As the strands are images of the closed interval I , they always
lie in a bounded region and hence we can shrink them to the unit disc by a suitable
contraction factor for any braid. (Alternatively, we could use a fixed diffeomorphism
C ∼= Ḋ2.) Then then strands of the braidb are embedded in the cylinderD2 × I1 ⊂ R

3

by (b(t), t) and the closure b̂ of b is defined by connecting the initial points and end
points of the strands in the bottom and top disc of the cylinder, where the connecting
paths lie outside the cylinder and have to be ‘parallel’.

Here is an equivalent (isotopic) definition of the closure operation which utilizes
the torus parametrization:

τ : D2 × I → R
3

τ (z, t) :=
⎛
⎝
cos(2πt)(2 + Re(z))
sin(2πt)(2 + Re(z))

Im(z)

⎞
⎠ .

Then the closure b̂ is defined by τ (b(t), t).
For a general n-braid b the closure does not give a knot but a link in R

3. In fact,
the strands of a braid b define a permutation ρ(b) of the set of initial points. Then the
closure b̂ is a knot if and only if ρ(b) is an n-cycle. We call a braid with this property
a cyclic braid.
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In the general case, the link components of b̂ correspond to the cycles in the cycle
decomposition of the permutation ρ(b). The other extreme is the case of a pure braid
which is defined by the condition that ρ(b) is the identity. Because of the covering
map

Cn(C) → Cn(C)/Σn

we get an exact sequence of fundamental groups

1 → PBrn → Brn → Σn → 1

where PBrn := π1(Cn(C)) denotes the pure braid group.
It is also well-known that the braid group has a presentation by generators and

relations
Brn = 〈σ1,σ2, . . . ,σn−1 | R1,R2〉

R1 : σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n − 2

R2 : σiσj = σjσi ∀i, j = 1, . . . , n − 2, |i − j| > 1

where the σi are the standard braid generators (half-twists of the ith and (i + 1)th
strands). The homomorphism ρ is just given by sending σi to the transposition of i
and i + 1.

We note that n, the number of strands of a cyclic n-braid, gives a bound for
the bridge number of the closure b̂. This fact can be seen from the well-known
result that the bridge number of a knot k : S1 → R

3 can be defined by the following
minimum. (See [8] for background in differential topology.) Let v ∈ S2 be a direction
in R

3 and consider the projection of k on the line spanned by v, i.e. pk,v : S1 → R,
pk,v := 〈k(t), v〉 (scalar product). By transversality, it is possible to find a direction
v and to change k slightly up to isotopy such that pk,v is a Morse-function which has
the property that the finite set of singular points consist of local minima and maxima
only (i.e. no saddle points) and pk,v takes different values on them. Then the number
of local minima equals the number of local maxima because the Euler characteristics
of S1 vanishes. It is well-known that the minimal possible number degM(k) ∈ N of
local minima (where we allow to change k up to isotopy) gives just the bridge number
of the knot. Obviously it holds

degM(k) = 1 ⇐⇒ k is the unknot.

Proposition 13.1 Let b be a cyclic n-braid, then the bridge number of its closure b̂
satisfies degM(b̂) ≤ n.

Proof Consider the closure as above and chose v in the plane spanned by x and
y. After a suitable isotopy (e.g., center the braid along a small disc around 0 such
that the closed braid is contained in a small tube around the unit circle), each strand
contributes with one local minimum (and one local maximum) to the singular points
of pk,v . �
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13.2 Unfolding of Cyclic Braids

A general n-braid is given by n functions I → C which start and end in the same
configuration and whose graphs do not intersect. For a cyclic braid b, we can give a
representation by only one complex periodic function:

Proposition 13.2 Concatenation of strands defines a homeomorphism from the set
of cyclic n-braids to the space of continuous functions

UCBn := {f : S1 → C | f (εkz) �= f (z) ∀z ∈ S1, k = 1, 2, . . . , �n/2�}

with ε := e2πi/n and �r� the largest integer smaller than or equal a real number r. In
particular, the set of free homotopy classes of cyclic n-braids is given by π0(UCBn).
The closure of a cyclic n-braid b (such that the associated function f takes values in
the unit disk) is given as

b̂(t) =
⎛
⎝
cos(2πnt)(2 + Re(f (e2πit)))
sin(2πnt)(2 + Re(f (e2πit)))

Im(f (e2πit))

⎞
⎠ .

Proof For a cyclic braid b, we pick one of the points u ∈ C of the initial configuration
as a start point with time parameter t = 0 and then we concatenate the n strands
b1, b2, . . . , bn which are numerated in the order of the associated n-cycle ρ(b), i.e.
bk starts at ρ(b)k−1(u) and ends in ρ(b)k(u). This defines a function

b1⊥b2⊥ . . . ⊥bn : [0, n] → C

which starts and ends in the same point u, see Fig. 13.1 (drawing by the author).
Rescaling this function to [0, 1] and using I/0∼1

∼= S1 we obtain a periodic function

Fig. 13.1 Unfolding of a
cyclic three-braid
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f : S1 → C. Now, multiplication of z by εk is just a time shift for the function f
which changes the start point to the kth strand (according to the cyclic order given by
ρ(b)). Hence the condition f (εkz) �= f (εlz)∀z ∈ S1 is equivalent to the condition that
the strands bk+i and bl+i do not intersect for all i. Because of εn = 1 and symmetry,
we only need the condition f (εkz) �= f (z)∀z ∈ S1, k = 1, 2, . . . , �n/2� in order to
guarantee that the n strands b1, b2, . . . , bn do not intersect. If a periodic function f :
I → C satisfies this condition it can in turn be interpreted as a cyclic braid by defining
the kth strand as the (rescaled) restriction of f to the segment [k/n, (k + 1)/n]. This
transformation from cyclic n-braids to functions inUCBn and back is clearly bijective
and continuous which proves the statement on π0. As the closure can be given by
b̂(t) = τ (b(t), t) and as b̂ winds n times around the z-axis, the last formula follows.
�

We call the transformation of a cyclic n-braid b to the associated function f (z) ∈
UCBn the unfolding of the braid (and ‘UCB’ is the abbreviation for ‘unfolded cyclic
braids’). Moreover, the defining property of UCBn can be formulated with the n-th
discriminant of the function f (z)

Δ
(n)
f (z) :=

�n/2�∏
k=1

(f (εkz) − f (z))

by the condition Δ
(n)
f (z) �= 0 for all z ∈ S1.

As an example, we consider the torus knot

Tn,m : R/Z → R
3

Tn,m(z) :=
⎛
⎝
cos(2πnt)(2 + cos(2πmt))
sin(2πnt)(2 + cos(2πmt))

sin(2πmt)

⎞
⎠

with (n,m) = 1. By definition, Tn,m is the closure of a cyclic braid bm,n with n strands
which ‘wind around’m/n times starting from the initial configuration (1, ε, . . . , εn−1)

(see Fig. 13.2 as an example, drawing by the author). In particular, the Morse
index satisfies degM(Tn,m) ≤ n. As Tn,m and Tm,n are isotopic in R

3, it holds also
degM(Tn,m) ≤ m. Hence degM(T2,m) = 2 for m > 1 odd because these torus knots
are known to be non-trivial.

Hence the unfolded function has winding number m around the core of the
torus and is given by f (z) = zm. Here, the discriminant is given by Δ

(n)
zm (z) =∏�n/2�

k=1 zm(εkm − 1) which is non-zero on S1.
As another example, we consider the figure-eight knot k4 (see Fig. 13.3, drawing

by the author) which can be obtained as the closure of the cyclic 3-braid given by
the braid word σ1σ

−1
2 σ1σ

−1
2 . In particular degM(k4) ≤ 3, but it is well-known that

actually degM(k4) = 2.
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Fig. 13.2 Torus knot T3,8

Fig. 13.3 Figure-eight knot

In order to construct a ‘nice’ explicit unfolding f (z) for the figure-eight knot, we
note that we should first construct an unfolding g(z) for the cyclic 3-braid σ1σ

−1
2

(which closes to the unknot!) and then we can set f (z) := g(z2). The reason is that
the braid word for f (z) is the square of the braid word for g(z) and squaring of
z has the effect that we run two times through the unfolding function g(z). Now,
inspection shows that g(z) = (z + z̄)(1 + z − z̄) is an element of UCB3 and serves
as an unfolding for σ1σ

−1
2 . (It is remarkable that the image of g(z) in C gives a

lemniscate, i.e. the true figure-8 curve!) Hence

f (z) = (z2 + z̄2)(1 + z2 − z̄2) = z4 − z̄4 + z2 + z̄2

gives an unfolding for the figure-eight knot. The discriminant is given by Δ
(3)
f (z) =

(z4 + z̄2)(ε − 1) + (−z̄4 + z2)(ε̄ − 1) with ε = e2πi/3.
The preceding examples show that certain manipulations on unfolding functions

have a geometric meaning for the corresponding cyclic braids. Now we list some
connections in this direction. Note that z̄ = z−1 for all z ∈ S1.

Proposition 13.3 For cyclic n-braids b and their associated unfoldings f (z) ∈
UCBn, the following correspondences hold true:
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unfolding: cyclic n-braid:
a + f (z) translation by a

af (z) rotation/dilatation by a
f (z) mirror braid

znf (z) Dehn twist
f (z̄) time reversal, inverse braid
f (uz) time/phase shift by t
f (zk) k-fold concatenation

where a ∈ C, u = e2πit ∈ S1 and (n, k) = 1.

Proof The statements on translation, rotation/dilatation and mirror image are clear
as they hold in C. If we multiply f (z) by zn, then the new function is also an element
in UCBn and in the corresponding braid, each strand is multiplied by the function z
which just yields a full Dehn twist of the whole braid. We note that a multiplication
by a power zk with 0 < k < n would in general not give back a cyclic braid (this
can also be checked with the defining property Δ

(n)
f (z) �= 0 which then would not be

respected). The statements on f (z̄) and f (uz) are also clear as they hold in S1. The
last statement for f (zk) follows as zk gives a k-fold covering of S1. �

One can ask if the concatenation of two braids also corresponds to a similar
operation for their unfoldings. Unfortunately, this seems not to be the case. The
reason is that the concatenation of cyclic braids in general does not yield again a
cyclic braid, as this does not even hold on the level of permutations. In order to
obtain from a cyclic braid b again a cyclic braid, we could concatenate b with a
pure braid c. Now a pure braid has no unfolding but is given by n loop functions
c1, c2, . . . , cn which do not intersect. Then the concatenation b⊥c is again a cyclic
braid which has a (rescaled) unfolding b1⊥c1⊥b2⊥c2⊥ . . . ⊥bn⊥cn and there seems
to exist no nice way to express this on the level of unfolded functions.

Also the Markov stabilization seems to have no nice description using unfolded
functions. Recall that the Markov stabilization of a cyclic n-braid to a cyclic (n + 1)-
braid is defined by concatenation with σ±1

n . After closure, it corresponds to the first
Reidemeister Move.

13.3 The Winding Number of a Cyclic Braid

Now we introduce the winding number of a cyclic n-braid using its unfolding f (z).
As the ‘kth phase difference’

δk(z) := f (εkz) − f (z)

has to be non-zero on S1 for all k = 1, 2, . . . , �n/2�, we can define its winding
number (induced maps on the fundamental group π1(S1) = Z)
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deg(δk : S1 → C−{0} � S1) ∈ Z.

Proposition 13.4 The winding numbers deg(δk) all are equal. The winding num-
ber of the discriminant deg(Δ

(n)
f : S1 → C−{0}) is given by deg(Δ

(n)
f ) = deg(δf ) ·

�n/2�.
Proof For α : S1 → C−{0} note that deg(α(z)) = deg(α(uz)) where u ∈ S1 is any
phase shift. Now we have

f (εkz) − f (z) = (f (εkz) − f (εk−1z)) + (f (εk−1z) − f (z))

where the first bracket on the right side is just δ1 with a phase shift of εk−1 and the
second bracket is δk−1, thus

δk(z) = δ1(ε
k−1z) + δk−1(z).

We prove the following general result: If α,β : S1 → C−{0} have the property
that also their sum α + β takes values in C−{0} then it holds deg(α) = deg(β) =
deg(α + β) for their winding numbers. For the proof, consider the diagram

C−{0} × C−{0} +→ C

∪ ∪
(C−{0} × C−{0}) − D

+→ C−{0}

where D := {z,−z | z ∈ C−{0}} is the anti-diagonal of C−{0}. With C−{0} � S1,
it is straightforward to check that (C−{0} × C−{0}) − D � S1, that the inclusion
in C−{0} × C−{0} induces in π1 the diagonal Z → Z × Z, and that addition in the
lower line of the diagram induces the identity map of Z. The general result follows
as (α,β) take values in (C−{0} × C−{0}) − D by assumption.

Now the statement on deg(δk) follows by induction from the above splitting of
δk . The statement on the winding number of the discriminant follows as complex
multiplication C−{0} × C−{0} → C−{0} induces addition in π1. �

Definition: This number deg(δf ) ∈ Z is called the winding number of the cyclic
n-braid.

13.4 Finite Fourier Approximations

In this section we will consider approximations of the functions inUCBn by Fourier
sums

∑
cke2πikt , i.e. by Laurent polynomials

∑
ckzk . We recall that a continuous

periodic function f : S1 → C can be approximated by a finite Fourier sum given any
error bound r > 0, i.e. there exists a Laurent polynomial with
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|f (z) −
∑

N−≤k≤N+
ckz

k| < r

for all z ∈ S1. We call (N−,N+) (with cN− �= 0 and cN+ �= 0) the bidegree of the
Laurent polynomial g(z) := ∑

N−≤k≤N+ ckzk .
When approximating an unfolding f (z) ∈ UCBn we have to be careful that we

stay in the same component of UCBn.
Definition: For f (z) ∈ UCBn we define its width by

w(f ) := min{|f (εkz) − f (z)| | ∀z ∈ S1, k = 1, 2, . . . , �n/2�},

which is a positive real number.

Lemma 13.1 A continuous function g : S1 → C which approximates f (z) by an
error bound smaller than the width 1

2w(f ) is a function in UCBn which lies in the
same path component as f (z), i.e. f (z) and g(z) yield (freely) isotopic cyclic n-braids.

Proof w(f ) is non-zero as |f (εkz) − f (z)| > 0 on S1 and the minimum is realized by
some z as S1 is compact. By the triangle inequality, g(z) also satisfies g(εkz) − g(z) �=
0 for all z ∈ S1, k = 1, 2, . . . , �n/2�. More general, this is true for all functions ht in
the linear homotopy h : S1 × I → C, which is defined by ht(z) := f (z) + t(g(z) −
f (z)). Hence all ht lie in UCBn which shows that f and g lie in the same path
component of UCBn and hence are associated to isotopic cyclic n-braids. �

In particular, this holds for a suitable approximation of f (z) by a Laurent polyno-
mial g(z) = ∑

N−≤k≤N+ ckzk . For N−,N+ ∈ Z, denote by

C[z, z−1](N−,N+)

the complex (N+ − N− + 1)-dimensional vector space of Laurent polynomials g(z)
with bidegree (n−, n+) such that N− ≤ n− ≤ n+ ≤ N+. We also denote for N ∈ N

the complex (2N + 1)-dimensional vector space of Laurent polynomials of order
≤ N by

C[z, z−1]±N := C[z, z−1](−N,+N).

Now we define:
UCB±∞

n := UCBn ∩ C[z, z−1]

UCB(N−,N+)
n := UCBn ∩ C[z, z−1](N−,N+)

UCB±N
n := UCBn ∩ C[z, z−1]±N

This gives a stratification of the space UCBn of cyclic n-braids

UCB±1
n ⊂ UCB±2

n ⊂ UCB±3
n ⊂ . . . ⊂ UCB±∞

n ⊂ UCBn.
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Corollary 13.1 Finite Fourier approximation defines a sequence of isotopy types of
cyclic n-braids

π0UCB±1
n → π0UCB±2

n → π0UCB±3
n → · · · → π0UCB±∞

n ≈ π0UCBn.

Every cyclic n-braid b can be represented up to isotopy by a Laurent polynomial.

Definition:Wecall the smallest possible orderN of aLaurent polynomial representing
a cyclic n-braid b up to isotopy its Fourier degree degF(b).

As an example, the ‘canonical’ cyclic n-braid bn,m which gives the torus knot Tn,m
as a closure has degF(bn,m) ≤ m because zm serves as an unfolding of b. As the torus
knots Tn,m and Tm,n are isotopic in R

3, we see that degF is primarily an invariant of
cyclic n-braids (like the number of strands). For the cyclic 3-braid b = σ1σ

−1
2 σ1σ

−1
2

with closure the figure-eight knot, we get degF(b) ≤ 4 by our computation of an
unfolding in the preceding section.

In fact, L. Kauffman [1] and A. Trautwein [12] defined the Fourier degree for
knots in a similar way. A knot can be considered as a periodic function k : R1 → R

3

and it is also possible to approximate such functions by finite Fourier sums, although
the details are a little different as k takes values in real 3-dimensional space, not in
C as in our case. Then Kauffman’s Fourier degree DegF(k) of a knot type is defined
as the minimal Fourier order (i.e. largest frequency) that one needs for a Fourier
approximation for k (up to isotopy). Here is a connection between our Fourier degree
for cyclic braids and that of Kauffman for knots:

Proposition 13.5 Let b be a cyclic n-braid and b̂ its knot closure. Then it holds

DegF(b̂) ≤ n + degF(b).

Proof Let d := degF(b). By definition, there is a unfolding of b given by a Laurent-
Polynomial g(z) = ∑

−d≤k≤d ckz
k . Now we use the explicit formula for the closure

map

b̂(t) =
⎛
⎝
cos(2πnt)(2 + Re(

∑
−d≤k≤d cke

2πikt))

sin(2πnt)(2 + Re(
∑

−d≤k≤d cke
2πikt))

Im(
∑

−d≤k≤d cke
2πikt)

⎞
⎠ .

Because of the trigonometric sum and product formulas which can be derived from
e2πi(r+s)t = e2πi(r)te2πi(s)t , the largest frequency in a product of two periodic functions
is the sumof largest frequencies of the factors. Hence the first two coordinates contain
maximal frequencies of order n + d, whereas d is the largest frequency in the last
coordinate. �

This result can be interpreted in the following way: The maximal frequency in the
unfolded braid is enlarged by n because of the n-fold winding of the braid around
the z-axis in order to get the closure.
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13.5 Property S and the Discriminant Variety

Now we consider the discriminant varieties in the spaces of Laurent polynomials

Δ±∞
n := {g(z) ∈ C[z, z−1] | Δ(n)

g (z) has a zero on S1},

Δ±N
n := {g(z) ∈ C[z, z−1]±N | Δ(n)

g (z) has a zero on S1},

which are the complements of the subspaces UCB±∞
n and UCB±N

n .
This leads us to consider the following open subset S of complex polynomials:

S := {p(z) ∈ C[z] | p(z) �= 0 on S1}.

By definition, S is the complement in C[z] of a codimension-1 discriminant variety

Δ := {p(z) ∈ C[z] | p(z) has a zero on S1}.

As every Laurent polynomial g(z) can be written as g(z) = zN
−
p(z) with a uniquely

defined complex polynomial p(x) := z−N−
g(z) (with p(0) �= 0), the condition of

having no zeros on S1 depends only on the polynomial p(z) which can be considered
as the essential part of g(z).

Here is a result which connects the winding numbers of p(z) and g(z) (as functions
from S1 to C−{0}) with the number of zeros of p(z) in the unit disc.

Proposition 13.6 The winding numbers of p(z) ∈ S and g(z) = zN
−
p(z) are given

by
deg(p) = number of zeros of p in the open unit disc Ḋ2

deg(g) = deg(p) + N−.

Proof Let a(x), b(x) ∈ C[z] be polynomials which are non-zero on S1. As com-
plex multiplication C−{0} × C−{0} → C−{0} induces addition in π1, we see that
deg(ab) = deg(a) + deg(b). If b has no zeros on the unit disc, we get a homotopy
b : D2 → C−{0} of b : S1 → C−{0} to the constant map b(0) ∈ C−{0}, hence
deg(b) = 0. Assume that a is normed and has all zeros on the open unit disc, i.e.
a(z) = ∏d

i=1(z − zi) with all zi ∈ Ḋ2. Then for t ∈ I we define

at(z) :=
d∏

i=1

(z − tzi) ∈ C[z]

which gives a homotopy at : S1 × I → C−{0} from a to a0(z) = zd . Hence deg(a)
= deg(zd) = d. Now every polynomial p(z) can be split as p(z) = a(z)b(z) with a
and b as above and the statement on deg(p) follows. The last statement on deg(g)

follows just from g(z) = zN
−
p(z). �
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Nowwe consider S from the algebraic viewpoint. Given a polynomial p(z) ∈ C[z],
we look for an algebraic invariant δp which detects the properties p ∈ S or p ∈ Δ. This
leads to the following construction. We assume that p is normed with decomposition
into linear factors p(z) = ∏d

i=1(z − zi). Then we define

δp(z) :=
d∏

i=1

(z − ziz̄i).

By definition, δp(z) is a polynomial of the same order as p(z) with zeros the real
numbers ziz̄i. Hence δp(1) = 0 is equivalent to the condition that p(z) has a zero on
S1, i.e. p ∈ Δ. Thus

δp := δp(1) =
d∏

i=1

(1 − ziz̄i) ∈ R

serves as an invariant we are looking for. Unfortunately, δp cannot be expressed as a
polynomial invariant in the coefficients of p(z) and their complex conjugates. It is not
possible to apply here the fundamental theorem for symmetric polynomials (in con-
trast to e.g.

∏d
i=1(z − z2i )) because C[z1, . . . , zn, z̄1, . . . , z̄n]Σn is not the polynomial

ring in the elementary symmetric functions on the zi and that on their conjugates z̄i.
As an example, we consider S in low degrees. Clearly, a linear complex poly-

nomial p(z) = z + a0 is in S if and only if a0 /∈ S1. Already the case of a quadratic
complex polynomial p(z) = z2 + a1z + a0 demonstrates the difficulty to describe S
by conditions on the coefficients. We have a1 = −(z1 + z2) and a0 = z1z2, whereas

δp = (1 − z1z̄1)(1 − z2z̄2) = 1 − (z1z̄1 + z2z̄2) + z1z̄1z2z̄2.

Now z1z̄1z2z̄2 = a0ā0, but a1ā1 = (z1z̄1 + z2z̄2) + (z1z̄2 + z2z̄1) and there is noway to
express the mixed sum by polynomials in the coefficients a0, a1 and their conjugates.
Instead it is possible to give δp by a complicated real algebraic function of a0 and a1.

13.6 Cylic Braids Avoiding Fixed Links and Knots in
Spaces with Periodic Boundary Conditions

We have seen that cyclic n-braids are given by unfoldings f (z) which can be chosen
as Laurent polynomials

UCB∞
n = {f (z) ∈ Z[z, z−1] | Δ

(n)
f (z) �= 0 on S1}.

Now we consider the additional condition

f (z) �= 0 on S1



13 Fourier Braids 295

which means that we exclude the soul {0} × S1 from the solid torus D2 × S1. Then
the closure operation b �→ b̂ gives us a knot in R

3 − (S1 × {0}) which itself is dif-
feomorphic to an open full torus with an interior point (corresponding to infinity)
removed. If we compactify R

3 to S3, we do not have to remove this inner point, but
removing finitelymany points from the space where a knot, link or braid is embedded
does not change the isotopy classes of embeddings. Hence the algebraic space

UCB∞
n,1 := {f (z) ∈ Z[z, z−1] | f (z)Δ(n)

f (z) �= 0 on S1}.

serves as a model for knots in the solid torus. See the work of S. Lambropoulou [7]
for more details on the theory of knots in thickened surfaces.

More generally,

UCB∞
n,m := {f (z) ∈ Z[z, z−1] |

m−1∏
k=0

(f (z) − k)Δ(n)
f (z) �= 0 on S1}

is the algebraic space of unfolded n-braids which avoid in S1 × C the unlink
with m components given by S1 × {k} for k = 0, 1, . . . ,m − 1. Their homotopy
classes just form the subset of cyclic braids in the relative braid group Brn,m,
see [7]. Hence UCB∞

n,m is a model space for certain knots in the ambient space
R

3 − (S1 × {0, 1, . . . ,m − 1})which is diffeomorphic to the complement ofm solid
tori in R3 which are unknotted and unlinked.

In order to obtain knots in the thickened torus S1 × S1 × I , we have to modify our
construction by using the Hopf link H in S1 × C instead of the trivial 2-link (S1 ×
{0, 1}). The reason is that the complement ofH is diffeomorphic to the thickened torus
(minus the point at infinity). As the Hopf link can be constructed by the embedding
z �→ {0, z} and as each of the n strands has to avoid it, the unfolded cyclic braid has
to avoid the n-fold Hopf link. Thus the algebraic space

UCB∞
n,H := {f (z) ∈ Z[z, z−1] | f (z)(f (z) − zn)Δ(n)

f (z) �= 0 on S1}

is a model for knots in the thickened torus S1 × S1 × I .
In particular, these algebraic spaces approximate knots in the spaces S1 × I × I

and S1 × S1 × I with one- and two-periodic boundary conditions. I.e. these spaces
are formed from the cube I3 by identifying one or two antipodal pairs of faces. It
would be interesting to model by this method more general knotted configurations
in spaces with periodic boundary conditions. This could produce new connections
of Fourier series and Laurent polynomials to applications of knot theory in polymer
physics, see [9–11].
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Chapter 14
Molecular Simulation of Ionic Liquids:
Complex Dynamics and Structure

Niki Vergadou

Abstract Ionic Liquids (ILs) are organic salts with melting temperatures below
100◦ C. They are characterized by an exceptional combination of properties that
renders them very good candidates for use in many cutting-edge technological appli-
cations. The organic and simultaneously ionic nature of the constitutive ions results
in diverse interactions that directly affect the microscopic structure and the dynami-
cal behaviour of ILs. Molecular simulation methods using optimized force fields are
applied for the study of the complex dynamics and the spatial organization in ILs.

14.1 Introduction to Ionic Liquids

Ionic fluids consist entirely of ions. Within this category of materials, a new class of
fluids has emerged in the last few decades under the term “Ionic Liquids” (ILs) [1, 2].
ILs differ from molten salts due to the fact that they are usually composed of one
large asymmetric cation and one organic or inorganic anion and the combination of
this type of ionic chemical structures leads to salts with lower melting temperatures.
Following the description of Paul Walden who was one of the first [3, 4] to observe
organic salts in 1914, ILs are considered as the salts that are in the liquid state at
room temperature and by convention below 100◦ C. In Fig. 14.1, some typical anions
and cations are shown. There is a vast number of anions and cations that can be
combined to form millions of potential ILs [5], revealing an enormous territory that
despite having attracted great scientific interest in recent years, still remains largerly
unexplored.

ILs are identified as novel designer solvents and advanced materials that can be
utilized in a wide range of processes and applications. This fact is predominantly
attributed to their great chemical tunability due to the diverse chemical structure of
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Fig. 14.1 Chemical structure of commonly used cations and anions

the anions and cations involved that enables the design of task specific ILs (TSILs)
with controlled macroscopic properties. Apart from this important characteristic,
ILs also combine a number of other exceptional properties [6–9] such as negligible
vapour pressure, non-flammability, good thermal and electrochemical stability, wide
range of temperatures over which they remain in the liquid state as well as very
good solvation properties and in many cases high CO2 absorption and separation
capacity [10, 11]. Their range of application constantly grows and extends from
green chemistry and electrochemistry to biotechnology, environmental engineering
and novel separation processes (Fig. 14.2).

14.2 Molecular Simulation

The plethora of ILs and the multitude of technologies in which ILs can be used, neces-
sitates the unraveling of the underlying mechanisms [12] that are responsible for their
macroscopic behaviour. Molecular simulation [13, 14] is based on the fundamental
principles of statistical mechanics and provides a unique systematic way in this direc-
tion, enabling at the same time the prediction of a number of materials properties.
Among the properties that can be calculated from molecular simulations are: (i) ther-



14 Molecular Simulation of Ionic Liquids … 299

Fig. 14.2 Important properties of ILs and indicative range of applications

modynamic properties such as density, isothermal and isobaric compressibility, heat
capacities, Gibbs free energy, Helmholtz free energy, activity coefficients, (ii) struc-
tural properties, (iii) dynamical and transport properties including local dynamics,
diffusion coefficients, viscosities and ionic conductivities, (iv) surface and interfacial
properties such as surface tension, (v) phase equilibria, (vi) mechanical properties
and (vi) selectivity and permeability properties.

Various molecular simulation methods can be implemented depending on the
materials under study and the time- and length-scales involved in the specific problem
at hand, ranging from ab initio quantum mechanical methods, atomistic simulations
(Monte Carlo, Molecular Dynamics, Transitions State Theory of Infrequent Events)
to mesoscopic methods (Coarse-grained simulations, Kinetic Monte Carlo etc.). This
chapter involves the computational study of ILs at the atomistic level using molecular
dynamics (MD) simulation [15, 16].

The accuracy in the predictions of molecular simulation relies to a large extend on
the force field used for the representation of the inter- and intramolecular interactions
in the system. The interaction potential is typically of the form:
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U =
∑
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∑
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(
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)6
]

+ qiqi
4πε0ri j

}

(14.1)

where l, θ , χ and ψ denote bond length, bond angle, dihedral and improper angle,
respectively, and the subscript “0” refers to the equilibrium values. In the dihedral
potential term, parameter n is the multiplicity of the dihedral angle and δ is the
phase shift of the dihedral potential over the full range of rotation. Partial charges
are denoted by qi , ε0 is the vacuum permittivity and ε, σ are the Lennard-Jones (LJ)
parameters.

There are several difficulties and challenges in the molecular simulation of ILs
[17–19]. The intense chemical diversity that characterizes the ions in ILs, prohibits
the use of general force fields and necessitates the development and optimization
of system specific interaction potentials. At the same time, complex inter-ionic and
strong electrostatic interactions are present in these systems, hence polarizability and
charge transfer effects have to be taken into account in order to simulate accurately
their behaviour.

14.3 IL Structure and Dynamics

ILs exhibit a wide range of time scales in the relaxation of their various modes
of motion. They retain their structural organization at much longer distances com-
pared to ordinary liquids and are characterized by a sluggish dynamical behavior.
ILs are glass-forming materials and therefore the prediction of their transport prop-
erties, especially at low temperatures, is a very demanding task. The discussion
that follows focuses on molecular simulation results on ILs with imidazolium-based
cations, specifically the 1-alkyl-3-methylimidazolium ([Cnmim+]) cations, varying
the cations alkyl tail, coupled with bis(trifluoromethylsulfonyl)imide ([TF2N−]) or
tricyanomethanide ([TCM−]) anions. MD simulations of several tens of nanoseconds
were performed in a wide temperature range, and at atmospheric pressure using clas-
sical force fields that have been optimized and extensively validated for these two
imidazolium-based IL families [20, 21].

14.3.1 Spatial Organization

ILs are heterogeneous fluids that due to the ionic interactions, form polar and non-
polar domains [22]. Structural order is retained at long distances and is clearly
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Fig. 14.3 Radial
discribution functions (RDF)
between the ions
centers-of-mass of
[C8mim+][TCM−] IL at 298
K [21]
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Fig. 14.4 Radial
discribution functions (RDF)
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depicted by intense oscillations in the radial distribution functions (RDF) [21, 23]
of the ions center of mass. The anion-cation RDF reveals the strong ionic cou-
pling of the counterions (Figs. 14.3 and 14.4) and exhibits multiple coordination
shells (not in phase with the anion-anion RDF) while cation-cation RDFs show a
much broader distribution. The spatial distribution function of the central carbon in
[TCM−] around [C4mim+] at 298K (using an iso-surface value equal to 8.1 nm−3)
is shown in Fig. 14.5.

The effect of the alkyl tail length on these properties was also investigated and tail
aggregation phenomena (Fig. 14.6), which become more evident for the longer alkyl
chain lengths, were detected by calculating radial distribution functions between dif-
ferent sites on the ions [20, 21, 23]. The microscopic local structure reflects a spatially
heterogeneous environment that evolves from the interplay between short-range col-
lective interactions (non-polar tail groups) and long-range electrostatic interactions
(cation’s head groups). For a larger number of carbon atoms in the cation’s alkyl tail,
liquid crystalline-like structures emerge [24].
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Fig. 14.5 Spatial
distribution function of the
central carbon in [TCM−]
around [C4mim+]
(iso-surface value equal to
8.1 nm−3)

Fig. 14.6 Radial distribution
function (RDF) between the
terminal carbon atoms in the
cation alkyl chain of
[C2mim+][TCM−] (black),
[C4mim+][TCM−] (red),
[C6mim+][TCM−] (blue)
and [C8mim+][TCM−]
(green) at 298 K [21]

2.5

2.0

1.5

1.0

0.5

0.0

g 
(r

)

0 5 10 15 20

r (Å)

[C2mim+][TCM-]

[C4mim+][TCM-]

[C6mim+][TCM-]

[C8mim+][TCM-]

14.3.2 Dynamical Heterogeneity

ILs are viscous liquids and their dynamics often resembles the one of the supercooled
liquids. Cooperative motion and caging effects are present in these systems leading
to heterogeneity phenomena [25–30] and to a non-Arrhenius behaviour. In glass-
forming materials, at short times the particles are trapped in “cages” of adjacent
particles, while the escape from the cage takes place at longer time scales as the
temperature decreases. Complex and heterogeneous dynamics has been detected in
ILs both experimentally [31–35] and computationally [20, 21, 35–43]

An estimation of the time scales at which dynamic heterogeneity appears can
be obtained from the non-Gaussian parameters αn(t), n = 2, 3, . . . [44], with α2(t)
defined as:
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Fig. 14.7 Non-Gaussian parameter α2(t) at 298, 348 and 398 K for a cation and b anion of
[C8mim+][TF2N−] IL [20]

α2 (t) = 3〈|ri (t) − ri (t0)|4〉
5〈|ri (t) − ri (t0)|2〉2 − 1 (14.2)

where |ri (t) − ri (t0)| represents the displacement of a particle (or an ion’s center
of mass) at a time interval t − t0 and the brackets denote the mean over all parti-
cles. Non-zero values in α2(t) signify dynamical heterogeneity phenomena with the
maximum being only indicative of the time of maximum heterogeneity, as the non-
Gaussian behaviour may be preserved at much longer times [45, 46]. The ballistic
motion is characterised by zero α2 (t) values and α2 (t) begins to increase at time
scales associated with β relaxation, dropping again at the long time limit to zero (α
relaxation) [47].

The non-Gaussian parameter is plotted in Fig. 14.7 for the cation and the anion
in [C8mim+][TF2N−] IL at three temperatures [20]. These plots clearly depict a
non-Gaussian nature in both ions that is preserved at longer times, with the cation
exhibiting a higher a2 peak than the anion. This is also true for the ILs with the shorter
alkyl tails [20] and is indicative of a more pronounced heterogeneous behaviour for
the cation. The maxima obtain a higher value as the temperature decreases and at
longer times. In case of [Cnmim+][TCM−], the anion is the one with the more intense
maximum [21, 48] as shown in Fig. 14.8 for [C8mim+][TCM−] cation and anion at
298 K.

A quantification of the dynamic heterogeneity can be achieved by measuring a
time-space correlation function corresponding to a classical expression of van Hove
function [49]:

G (r, t) = 1

N

〈
N∑

i=1

N∑

j=1

δ
(
r − ri (t) + r j (0)

)
〉

(14.3)

where δ is Dirac delta and the brackets denote time average from an equilibrium
trajectory in phase space. Therefore, although G (r, t) is a dynamic function, it
is simultaneously a measure of an equilibrium property. The function G (r, t) is
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Fig. 14.8 Non-Gaussian
parameter α2(t) for the
cation (red) and the anion
(black) of [C8mim+]
[TCM−] IL at 298K [21]
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proportional to the probability that a particle is located at position r at time t given
that a particle was located at r(0) at t = 0 and can be separated in a self (Gs) for
i = j and a distinct part (Gd ) for i �= j :

G (r, t) = Gs (r, t) + Gd (r, t) (14.4)

Single-ion dynamics can be quantified by the self-part of the van Hove correlation
function [50] that provides the distribution of particle dispacements for different
times:

Gs (r, t) = 1

N

〈
N∑

i=1

N∑

j=1

δ (r − ri (t) + ri (0))

〉
(14.5)

At time t = 0, Gs (r, 0) = δ and for all times, it is normalized by:

∫
Gs (r, t) dr = 1 (14.6)

At the long time limit, the particle is independent of its initial position:

lim
r→∞ Gs (r, t) = lim

t→∞ Gs (r, t) = 1

V
≈ 0 (14.7)

where V is the system volume. The probability density that a particle displaces by
distance r [51] is given by:

gs(r, t) =
∫ π

θ=0

∫ 2π

φ=0
Gs (r, t) r2 sin θdφdθ (14.8)

and for an isotropic medium Gs (r, t) = Gs (r, t) and gs(r, t) = 4πr2Gs (r, t).
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Fig. 14.9 Self-part of the Van Hove function Gs (r, t) as a function of distance at 298 K plotted
against the expected Gaussian distribution for a the cation and b the anion of [C6mim+][TCM−]

In the case of Fickian diffusion, the self-part of the Van Hove function follows
the Gaussian approximation [52]:

Gs
g (r, t) =

[
3

2π
〈
Δr2(t)

〉
] 3

2

exp

[
−3r2

2
〈
Δr2(t)

〉
]

(14.9)

with
〈
Δr2(t)

〉
being the mean square displacement (MSD) at a time interval t.

In Fig. 14.9, the self-part of the Van Hove function Gs (r, t) for (a) the cation and
(b) the anion of [C6mim+][TCM−] [21] is plotted against the expected Gaussian
distribution at 298 K and for t = 100, 500, 1000, 3000 ps. Deviations of the Gs (r, t)
from the expected Gaussian are evidence of dynamic heterogeneity, which for the
systems under study is present at time intervals typically ranging from a few ps
up to several ns. For the longer alkyl tail IL, the non-Gaussian behavior persists at
longer times, while these deviations are diminished as the temperature is increased.
A multifractal character has been also reported [42] in relation to the heterogeneous
nature of ILs.

The divergence between the Gs (r, t) and Gs
g (r, t) curves depicts the existence

at intermediate times of ions with “faster” or “slower” mobility than expected based
on that distance that each ion has travelled at time t . The crossing points of the two
curves at short and long distances are used to identify dynamically distinguishable
ions at a specific time interval [47].

The spatial correlation of these subsets of fast and slow ions manifests the occur-
rence of clustering phenomena between mobile and immobile ions. This is clearly
shown in Fig. 14.10, in which the RDFs between the centers of mass of slow anions
– slow cations, fast anions – fast cations and fast – slow anions and cations are shown
for (a) [C4mim+][TCM−] [21] and (b) [C6mim+][TCM−] at 298 K for t = 500 ps.
These RDFs are plotted against the RDF that corresponds to the anion-cation centers
of mass as calculated from all ions, exhibiting maxima at the same distances with
much higher peaks, though, in the case of ions of same mobility. The evolution of
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Fig. 14.10 Radial distribution functions (RDF) between the centers of mass of slow anions slow
cations (magenta), fast anions fast cations (blue) and fast slow anions and cations (black) plotted
against the total RDF (red) calculated for a [C6mim+][TCM−] [21] and b [C6mim+][TCM−] at
298 K for t = 500 ps. The red line corresponds to the radial distribution functions between the
anion-cation centers of mass as calculated from all ions

Fig. 14.11 Radial
distribution functions
between the centers of mass
of fast cations and fast anions
calculated at 298 K for t =
10, 50, 100, 300 and 1000 ps
of [C8mim+][TF2N−] [20]
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the clustering tendency in time is shown in Fig. 14.11 as calculated for fast cations
and fast anions of [C8mim+][TF2N−] at 298 K and t = 10, 50, 100, 300 and 1000 ps
[20].

14.3.3 Diffusional Anisotropy

Anisotropy in the ions translational motion is present in some ionic species in ILs [20,
21, 40, 53]. Such phenomena can be traced by examining the ions diffusional motion
along specific axes dictated by the geometry of the ions. In Fig. 14.12, four axes are
defined for the case of imidazolium-based cations: the vector NN that connects the
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Fig. 14.12 The vectors defined on the imidazolium-based cation along which the translational
motion of the center of mass was analyzed
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Fig. 14.13 Mean square displacement (MSD) at 298 K calculated along the direction of the vector
that is normal to the imidazolium plane (black), the vectors NN (red) and NNp (green), and along
the the end-to-end vector N3-Ct of the alkyl tail (blue) of the cation compared to the 1/3 of the total
MSD of the center of mass (magenta dashed line) for a [C2mim+][TCM−], b [C4mim+][TCM−],
c [C6mim+][TCM−] and d [C8mim+][TCM−] [21]

two nitrogen atoms in the imidazolium ring, the normal vector to the imidazolium
ring, the vector NNp that is perpendicular to the former two vectors and the end-to-
end vector N3-Ct of the alkyl tail.

Diffusional anisotropy can be extracted by comparing the MSD along each
axis to the one third of the total MSD, as shown in Fig. 14.13 for the cations in
[C2mim+][TCM−], [C4mim+][TCM−], [C6mim+][TCM−] and [C8mim+][TCM−]
ILs at 298K. In case of an isotropic diffusional motion the MSD along any axis
would coincide with the total MSD/3. For all systems presented, there is a more
facile movement along the NN and N3-Ct vectors, which becomes more intense for
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the cations with the longer alkyl tails. For [C8mim+][TCM−] IL in particular, the
movement along the N3-Ct vector deviates from the one of NN vector, exhibiting at
1.5ns an MSD almost by a factor of two higher than the 1/3 of the total MSD. The
movement along the NNp vector and the vector that is normal to the imidazolium
plane appears to be rather hindered compared to the other two directions. At 298K,
diffusional anisotropy is maintained over long timescales that extend even to the Ein-
stein regime. Similar behaviour is observed for the [Cnmim+][TF2N−] ILs in which,
apart from the cation, there is also a preferential movement along the direction of
the vector that connects the two sulfurs of the [TF2N−] anion [20].

14.3.4 Transport Properties

Long MD simulations in the order of several tens of nanoseconds have been per-
formed for the determination of the transport properties of the ILs under study. The
self-diffusion coefficients of the ions were calculated using the Einstein relation [54]:

D = 1

2d
lim
t→∞

d

dt

〈|ri (t) − ri (0)|2〉 (14.10)

where the brackets indicate the mean square displacement (MSD) over all ions’
centers of mass and d is the dimensionality of the conducted diffusivity.

The determination of the diffusion coefficients from an MD simulation pre-
supposes that the system is simulated long enough, so that it has reached the
Fickian regime. Normal diffusivity can be identified by a slope equal to unity
in the log(MSD) versus log(t) plot. Self-diffusion coefficients were calculated for
imidazolium-based ILs under study [20, 21, 48]. The self-diffusion coefficients for
the ions in [C8mim+][TCM−] IL are shown in Fig. 14.14 at various temperatures
and at atmospheric pressure. The calculated diffusivities for the cation are in excel-

Fig. 14.14 Self-diffusion
coefficients [21, 48] of the
anion (squares) and the
cation (circles) versus
temperature for
[C8mim+][TCM−] IL. The
open points correspond to
NMR experimental
measurements for the
cation [55]
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Fig. 14.15 Viscosity
calculations from MD
simulations (full points) [21,
48] as a function of
temperature plotted against
experimental data (lines with
open points) [48, 56] for
[C8mim+][TCM−]
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lent agreement with NMR experimental measurements [55] of the same IL system,
confirming the ability of the recently optimized force field [21] to reproduce the
properties of the [Cnmim+][TCM−] IL family with great accuracy. No experimental
results are currently available for the [TCM−] anion.

Shear viscosity was extracted from the autocorrelation function of the pressure
tensor using the Green-Kubo relation:

η = V

kBT

∫ ∞

0
dt

〈
Pαβ(t)Pαβ(0)

〉
(14.11)

where Pαβ(t) is the αβ-element of the pressure tensor at time t (α �= β). The tem-
perature dependence of the viscosity is captured very well [20, 21, 48] for all ILs
with good agreement with available experimental data. In Fig. 14.15, viscosities cal-
culated from MD in a wide temperature range for [C8mim+][TCM−] are plotted
against experimental measurements exhibiting a very good agreement.

14.4 Conclusions

Ionic fluids inherently carry a higher degree of complexity than systems comprised
of neutral species. ILs, in particular, exhibit an exceptional combination of properties
that originate significantly from their dual organic and ionic nature. A fundamental
understanding of the diverse interactions and the microscopic mechanisms that give
rise to the non-trivial spatial and dynamical behaviour in ILs is required, especially
considering more complex IL systems such as multi-compound IL fluids, ILs as gas
separation media [10, 57] and under confinement in solid substrates [58, 59] or IL-IL
mixtures [60, 61]. Theoretical and computational studies combined in a synergistic
manner with high-resolution experimental techniques should target in elucidating the
underlying complex phenomena, extending the fundamental knowledge and reveal-
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ing the chemical structure – property relations in this class of advanced materials
with enormous applicability in a wide range of state-of-the art technologies.
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Chapter 15
Topological Surgery in Nature

Stathis Antoniou and Sofia Lambropoulou

Abstract In this paper, we extend the formal definition of topological surgery by
introducing new notions in order to model natural phenomena exhibiting it. On the
one hand, the common features of the presented natural processes are captured by our
schematic models and, on the other hand, our new definitions provide the theoretical
setting for examining the topological changes involved in these processes.
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Introduction

Topological surgery is more than a mathematical definition allowing the creation of
new manifolds out of known ones. As we point out in [2], it is a process triggered
by forces that appear in both micro and macro scales. For example, in dimension 1
topological surgery canbe seen inDNArecombination andduring the reconnection of
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cosmicmagnetic lines, while in dimension 2 it happens when genes are transferred in
bacteria and during the formation of black holes. Inspired by these natural processes,
in [2, 6] we enhance the formal definition of topological surgery with the observed
forces and dynamics, thus turning it into a continuous process.

Furthermore, in [2] we observe that phenomena like tension on soap films or
the merging of oil slicks are undergoing 1-dimensional surgery but they happen on
surfaces instead of 1-manifolds. Similarly, moving up one dimension, during the
biological process of mitosis and during tornado formation, 2-dimensional surgery
is taking place on 3-dimensional manifolds instead of surfaces. Thus, in order to fit
natural phenomena where the interior of the initial manifold is filled in, in [2, 6] we
extend the formal definition by introducing the notion of solid topological surgery
in both dimensions 1 and 2.

Finally, in [2] we notice that in some phenomena exhibiting topological surgery,
the ambient space is also involved. For example in dimension 1, during DNA recom-
bination the initial DNAmolecule which is recombined can also be knotted. In other
words, the initial 1-manifold can be a knot (an embedding of the circle) instead of
an abstract circle. Similarly in dimension 2, the processes of tornado and black hole
formation are not confined to the initial manifold and topological surgery is causing
(or is caused by) a change in the whole space. We therefore define the notion of
embedded topological surgery which allows us to model these kind of phenomena
but also to view all natural phenomena exhibiting topological surgery as happening
in 3-space instead of abstractly.

The notions and ideas presented in this paper can be found in [2, 6]. However, [2,
6] contain a much deeper analysis of the dynamical system modeling 2-dimensional
surgery, which is discussed here very briefly.

The paper is organized as follows: it starts by recalling the formal definitions
of surgery in Sect. 15.1. Dynamic topological surgery is then presented in natural
processes and introduced as a schematic model in Sect. 15.2. Next, solid surgery is
defined in Sect. 15.3 where the dynamical system modeling 2-dimensional surgery
is also presented. Finally, embedded surgery and its differences in dimensions 1 and
2 are discussed in Sect. 15.4.

We hope that the presented definitions and phenomena will broaden our under-
standing of both the topological changes exhibited in nature and topological surgery
itself.

15.1 The Formal Definitions of Surgery

We recall the following well-known definition:

Definition 15.1 An m-dimensional n-surgery is the topological procedure of cre-
ating a new m-manifold M ′ out of a given m-manifold M by removing a framed
n-embedding h : Sn × Dm−n ↪→ M and replacing it with Dn+1 × Sm−n−1, using the
‘gluing’ homeomorphism h along the common boundary Sn × Sm−n−1. Namely, and
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denoting surgery by χ :

M ′ = χ(M) = M \ h(Sn × Dm−n) ∪h|Sn×Sm−n−1 (Dn+1 × Sm−n−1).

Further, the dual m-dimensional (m − n − 1)-surgery on M ′ removes a dual framed
(m − n − 1)-embedding g : Dn+1 × Sm−n−1 ↪→ M ′ such that g|Sn×Sm−n−1 = h−1

|Sn×Sm−n−1 , and replaces it with Sn × Dm−n , using the ‘gluing’ homeomorphism g
(or h−1) along the common boundary Sn × Sm−n−1. That is:

M = χ−1(M ′) = M ′ \ g(Dn+1 × Sm−n−1) ∪h−1|Sn×Sm−n−1 (Sn × Dm−n).

From the above definition it follows that M = χ−1(χ(M)) and n + 1 ≤ m. For fur-
ther reading see [9–11]. We shall now apply the above definition to dimensions 1
and 2.

15.1.1 1-Dimensional 0-Surgery

We only have one kind of surgery on a 1-manifold M , the 1-dimensional 0-surgery:

M ′ = χ(M) = M \ h(S0 × D1) ∪h|S0×S0
(D1 × S0).

The above definitionmeans that two segments S0 × D1 are removed from M and they
are replaced by two different segments D1 × S0 by reconnecting the four boundary
points S0 × S0 in a different way. In Figs. 15.1a and 15.2a, S0 × S0 = {1, 2, 3, 4}. As
one possibility, if we start with M = S1 and use as h the standard (identity) embed-
ding denoted with hs , we obtain two circles S1 × S0. Namely, denoting by 1 the

identity homeomorphism, we have hs : S0 × D1 = D1 � D1 1�1−−→ S0 × D1 ↪→ M ,
see Fig. 15.1a. However, we can also obtain one circle S1 if h is an embedding
ht that reverses the orientation of one of the two arcs of S0 × D1. Then in the
substitution, joining endpoints 1 to 3 and 2 to 4, the two new arcs undergo a
half-twist, see Fig. 15.2a. More specifically, if we take D1 = [−1,+1] and define
the homeomorphism ω : D1 → D1; t → −t , the embedding used in Fig. 15.2a is

ht : S0 × D1 = D1 � D1 1�ω−−→ S0 × D1 ↪→ M which rotates one D1 by 180◦. The
difference between the embeddings hs and ht of S0 × D1 can be clearly seen by
comparing the four boundary points 1, 2, 3 and 4 in Figs. 15.1a and 15.2a.

Note that in dimension one, the dual case is also an 1-dimensional 0-surgery.
For example, looking at the reverse process of Fig. 15.1a, we start with two circles
M ′ = S1 � S1 and, if each segment of D1 × S0 is embedded in a different circle, the
result of the (dual) 1-dimensional 0-surgery is one circle: χ−1(M ′) = M = S1.
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Fig. 15.1 Formal (a)1-dimensional 0-surgery (b1) 2-dimensional 0-surgery and (b2) 2-dimensional
1-surgery using the standard embedding hs

Fig. 15.2 Formal (a)1-dimensional 0-surgery (b1) 2-dimensional 0-surgery and (b2) 2-dimensional
1-surgery using a twisting embedding ht
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15.1.2 2-Dimensional 0-Surgery

Starting with a 2-manifold M , there are two types of surgery. One type is the 2-
dimensional 0-surgery, whereby two discs S0 × D2 are removed from M and are
replaced in the closure of the remaining manifold by a cylinder D1 × S1, which gets
attached via a homeomorphism along the common boundary S0 × S1 comprising two
copies of S1. The gluing homeomorphism of the common boundary may twist one or
both copies of S1. For M = S2 the above operation changes its homeomorphism type
from the 2-sphere to that of the torus. View Fig. 15.1b1 for the standard embedding
hs and Fig. 15.2b1 for a twisting embedding ht . For example, the homeomorphism
μ : D2 → D2; (t1, t2) → (−t1,−t2) induces the 2-dimensional analogue ht of the

embedding defined in the previous example, namely: ht : S0 × D2 = D2 � D2 1�μ−−→
S0 × D2 ↪→ M which rotates one D2 by 180◦. When, now, the cylinder D1 × S1 is
glued along the common boundary S0 × S1, the twisting of this boundary induces
the twisting of the cylinder, see Fig. 15.2b1.

15.1.3 2-Dimensional 1-Surgery

The other possibility of 2-dimensional surgery on M is the 2-dimensional 1-surgery:
here a cylinder (or annulus) S1 × D1 is removed from M and is replaced in the
closure of the remaining manifold by two discs D2 × S0 attached along the common
boundary S1 × S0. For M = S2 the result is two copies of S2, see Fig. 15.1b2 for the
standard embedding hs . Unlike Fig. 15.1b1 where the cylinder is illustrated vertically,
in Fig. 15.1b2, the cylinder is illustrated horizontally. This choicewasmade so that the
instances of 1-dimensional surgery can be obtained by crossections of the instances
of both types of 2-dimensional surgeries, see further Remark 15.1. Figure15.2b2
illustrates a twisting embedding ht , where a twisted cylinder is being removed. In
that case, taking D1 = {h : h ∈ [−1, 1]} and homeomorphism ζ :

ζ : S1 × D1 → S1 × D1;
ζ : (t1, t2, h) →

(
t1 cos

(1 − h)π

2
− t2 sin

(1 − h)π

2
, t1 sin

(1 − h)π

2
+ t2 cos

(1 − h)π

2
, h

)

the embedding ht is defined as: ht : S1 × D1 ζ−→ S1 × D1 ↪→ M . This operation
corresponds to fixing the circle S1 bounding the right side of the cylinder S1 × D1,
rotating the circle S1 bounding the left side of the cylinder by 180◦ and letting the
rotation propagate from left to right. This twisting of the cylinder can be seen by
comparing the second instance of Fig. 15.1b2 with the second instance of Fig. 15.2b2,
but also by comparing the third instance of Fig. 15.1b1 with the third instance of
Fig. 15.2b1.
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It follows from Definition 15.1 that a dual 2-dimensional 0-surgery is a 2-
dimensional 1-surgery and vice versa. Hence, Fig. 15.1b1 shows that a 2-dimensional
0-surgery on a sphere is the reverse process of a 2-dimensional 1-surgery on a torus.
Similarly, as illustrated in Fig. 15.1b2, a 2-dimensional 1-surgery on a sphere is the
reverse process of a 2-dimensional 0-surgery on two spheres. In the figure the symbol
←→ depicts surgeries from left to right and their corresponding dual surgeries from
right to left.

Remark 15.1 The stages of the process of 2-dimensional 0-surgery on S2 can be
obtained by rotating the stages of 1-dimensional 0-surgeries on S1 by 180◦ around a
vertical axis, see Fig. 15.1b1. Similarly, the stages of 2-dimensional 1-surgery on S2

can be obtained by rotating the stages of 1-dimensional 0-surgeries on S1 by 180◦
around a horizontal axis, see Fig. 15.1b2. It follows from the above that 1-dimensional
0-surgery can be obtained as a cross-section of either type of 2-dimensional surgery.

15.2 Dynamic Topological Surgery in Natural Processes

In this section we present natural processes exhibiting topological surgery in dimen-
sions 1 and 2 and we incorporate the observed dynamics to a schematic model show-
ing the intermediate steps that are missing from the formal definition. This model
extends surgery to a continuous process caused by local forces. Note that these inter-
mediate steps can also be explained through Morse theory, see Remark 15.2 for
details.

15.2.1 Dynamic 1-Dimensional Topological Surgery

We find that 1-dimensional 0-surgery is present in phenomena where 1-dimensional
splicing and reconnection occurs. It can be seen for example during meiosis when
new combinations of genes are produced, see Fig. 15.3c, and during magnetic recon-
nection, the phenomenawhereby cosmicmagnetic field lines fromdifferentmagnetic
domains are spliced to one another, changing their pattern of conductivitywith respect
to the sources, see Fig. 15.3b from [3]. It is worth mentioning that 1-dimensional 0-
surgery is also present during the reconnection of vortex tubes in a viscous fluid
and quantized vortex tubes in superfluid helium. As mentioned in [5], these cases
have some common qualitative features with the magnetic reconnection shown in
Fig. 15.3b.

In fact, all the above phenomena have similar dynamics.Namely, 1-dimensional 0-
surgery is a continuous process for all of them. Furthermore, as detailed in [2], inmost
cases, surgery is the result of local forces. These common features are captured by our
model in Fig. 15.3a which describes the process of dynamic 1-dimensional 0-surgery
locally. The process starts with the two points (in red) specified on any 1-dimensional
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Fig. 15.3 a Dynamic 1-dimensional surgery locally b The reconnection of cosmic magnetic lines
c Crossing over of chromosomes during meiosis

manifold, on which attracting forces are applied (in blue). We assume that these
forces are caused by an attracting center (also in blue). Then, the two segments
S0 × D1, which are neighborhoods of the two points, get close to one another. When
the specified points (or centers) of the two segments reach the attracting center
they touch and recoupling takes place, giving rise to the two final segments D1 ×
S0, which split apart. In Fig. 15.3a, case (s) corresponds to the identity embedding
hs described in Sect. 15.1.1, while (t) corresponds to the twisting embedding ht

described in Sect. 15.1.1.
As also mentioned in Sect. 15.1.1, the dual case is also a 1-dimensional 0-surgery,

as it removes segments D1 × S0 and replaces them by segments S0 × D1. This is the
reverse process which starts from the end and is illustrated in Fig. 15.3a as a result
of the orange forces and attracting center which are applied on the ‘complementary’
points.

Finally, for details about the described dynamics and attracting forces in the afore-
mentioned phenomena, the reader is referred to the analysis done in [2].

Remark 15.2 It is worth mentioning that the intermediate steps of surgery presented
in Fig. 15.3a can also be viewed in the context of Morse theory [7]. By using the
local form of a Morse function, we can visualize the process of surgery by varying
parameter t of equation x2 − y2 = t . For t = −1 it is the hyperbola shown in the
second stage of Fig. 15.3a where the two segments get close to one another. For
t = 0 it is the two straight lines where the reconnection takes place as shown in the
third stage of Fig. 15.3a while for t = 1 it represents the hyperbola of the two final
segments shown in case (s) of the fourth stage of Fig. 15.3a. This sequence can be
generalized for higher dimensional surgeries as well, however, in this paper we will
not use this approach as we are focusing on the introduction of forces and of the
attracting center.



320 S. Antoniou and S. Lambropoulou

15.2.2 Dynamic 2-Dimensional Topological Surgery

We find that 2-dimensional surgery is present in phenomena where 2-dimensional
merging and recoupling occurs. For example, 2-dimensional 0-surgery can be seen
during the formation of tornadoes, see Fig. 15.4b (this phenomenon will be detailed
in Sect. 15.4.2.2). Further, it can be seen in the formation of Falaco solitons, see
Fig. 15.4c (note that each Falaco soliton consists of a pair of locally unstable but
globally stabilized contra-rotating identations in the water-air discontinuity surface
of a swimming pool, see [4] for details). It can also be seen in gene transfer in bacteria
where the donor cell produces a connecting tube called a ‘pilus’ which attaches to
the recipient cell, see Fig. 15.4d; in drop coalescence, the phenomenon where two
dispersed drops merge into one, and in the formation of black holes (this phenomena
will be discussed in Sect. 15.4.2.1), see Fig. 15.8(ii) (Source:www.black-holes.org).

On the other hand, 2-dimensional 1-surgery can be seen during soap bubble split-
ting, where a soap bubble splits into two smaller bubbles, see Fig. 15.4e (Source:
soapbubble.dk);when the tension applied onmetal specimens by tensile forces results
in the phenomena of necking and then fracture, see Fig. 15.4f; also in the biological
process of mitosis, where a cell splits into two new cells, see Fig. 15.4g.

Phenomena exhibiting 2-dimensional 0-surgery are the results of two colinear
attracting forces which ‘create’ a cylinder. These phenomena have similar dynamics
and are characterized by their continuity and the attracting forces causing them,
see [2] for details. These common features are captured by our model in Fig. 15.4a

Fig. 15.4 a Dynamic 2-dimensional surgery locally b Tornadoes c Falaco solitons d Gene transfer
in bacteria e Soap bubble splitting f Fracture g Mitosis

www.black-holes.org
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which describes both cases of dynamic 2-dimensional surgeries locally. Note that we
have used non-trivial embeddings (recall Sect. 15.1.2) which are more appropriate
for natural processes involving twisting, such as tornadoes and Falaco solitons. In
Fig. 15.4a, both initial discs have been rotated in opposite directions by an angle of
3π/4 and we can see how this rotation induces the twisting of angle 3π/2 of the final
cylinder.

The process of dynamic 2-dimensional 0-surgery starts with two points, or poles,
specified on the manifold (in red) on which attracting forces caused by an attracting
center are applied (in blue). Then, the two discs S0 × D2, neighbourhoods of the two
poles, approach each other.When the centers of the two discs touch, recoupling takes
place and the discs get transformed into the final cylinder D1 × S1, see Fig. 15.4a.
The cylinder created during 2-dimensional 0-surgery can take various forms. For
example, it is a tubular vortex of air in the case of tornadoes, a transverse torsional
wave in the case of Falaco solitons and a pilus joining the genes in gene transfer in
bacteria.

On the other hand, phenomena exhibiting 2-dimensional 1-surgery are the result of
an infinitum of coplanar attracting forces which ‘collapse’ a cylinder, see Fig. 15.4a
from the end. As mentioned in Sect. 15.1.3, the dual case of 2-dimensional 0-surgery
is the 2-dimensional 1-surgery and vice versa. This is illustrated in Fig. 15.4a where
the reverse process is the 2-dimensional 1-surgery which starts with the cylinder and
a specified circular region (in red) on which attracting forces caused by an attracting
center are applied (in orange). A ‘necking’ occurs in the middle which degenerates
into a point and finally tears apart creating two discs S0 × D2. This cylinder can be
embedded, for example, in the region of the bubble’s surface where splitting occurs,
on the region ofmetal specimens where necking and fracture occurs or on the equator
of the cell which is about to undergo a mitotic process.

Remark 15.3 From Definition 15.1 we know that surgery always starts by removing
a thickened sphere Sn × Dm−n from the initial manifold. As seen in Fig. 15.4a, in the
case of 2-dimensional 0-surgery, forces (in blue) are applied on two points, or S0,
whose thickening comprises the two discs, while in the case of the 2-dimensional
1-surgery, forces (in orange) are applied on a circle S1, whose thickening is the
cylinder. In other words the forces that model a 2-dimensional n-surgery are always
applied to the core n-embedding e = h| : Sn = Sn × {0} ↪→ M of the framed n-
embedding h : Sn × D2−n ↪→ M . Also, note that Remark 15.1 is also true here. One
can obtain Fig. 15.4a by rotating Fig. 15.3a and this extends also to the dynamics and
forces. For instance, by rotating the two points, or S0, on which the pair of forces of
1-dimensional 0-surgery acts (shown in red in the last instance of Fig. 15.3a) by 180◦
around a vertical axis we get the circle, or S1, on which the infinitum of coplanar
attracting forces of 2-dimensional 1-surgery acts (shown in red in the last instance
of Fig. 15.4a).

Finally, it is worth pointing out that these local dynamics produce different mani-
folds depending on the initial manifold where they act. For example, 2-dimensional
0-surgery transforms an S0 × S2 to an S2 by adding a cylinder during gene transfer
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in bacteria (see Fig. 15.4d) but can also transform an S2 to a torus by ‘drilling out’
a cylinder during the formation of Falaco solitons (see Fig. 15.4c) in which case S2

is the pool of water and the cylinder is the boundary of the tubular neighborhood
around the thread joining the two poles.

15.3 Defining Solid Topological Surgery

Looking closer at the phenomena exhibiting 2-dimensional surgery shown in
Fig. 15.4, one can see that, with the exception of soap bubble splitting that involves
surfaces, all others involve 3-dimensional manifolds. For instance, what really hap-
pens during a mitotic process is that a solid cylindrical region located in the center of
the cell collapses and a D3 is transformed into an S0 × D3. Similarly, during tornado
formation, the created cylinder is not just a cylindrical surface D1 × S1 but a solid
cylinder D2 × S1 containing many layers of air (this phenomena will be detailed in
Sect. 15.4.2.2). Of course we can say that, for phenomena involving 3-dimensional
manifolds, the outer layer of the initialmanifold is undergoing 2-dimensional surgery.
In this section we will define topologically what happens to the whole manifold.

The need of such a definition is also present in dimension 1 for modeling phe-
nomena such as the merging of oil slicks and tension on membranes (or soap films).
These phenomena undergo the process of 1-dimensional 0-surgery but happen on
surfaces instead of 1-manifolds.

We will now introduce the notion of solid surgery (in both dimensions 1 and 2)
where the interior of the initial manifold is filled in. There is one key difference
compared to the dynamic surgeries discussed in the previous section. While the local
dynamics described in Figs. 15.3 and 15.4 can be embedded in anymanifold, here we
also have to fix the initialmanifold in order to define solid surgery. For example, aswe
will see next, we define separately the processes of solid 1-dimensional 0-surgery on
D2 and solid 1-dimensional 0-surgery on D2 × S0. However, the underlying features
are common in both.

15.3.1 Solid 1-Dimensional Topological Surgery

The process of solid 1-dimensional 0-surgery on D2 is equivalent to performing 1-
dimensional 0-surgeries on the whole continuum of concentric circles included in
D2, see Fig. 15.5a. More precisely, and introducing at the same time dynamics, we
define:

Definition 15.2 Solid 1-dimensional 0-surgery on D2 is the following process. We
start with the 2-disc of radius 1 with polar layering:

D2 = ∪0<r≤1S1
r ∪ {P},
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Fig. 15.5 (a) Solid 1-dimensional 0-surgery on D2 (b1) Solid 2-dimensional 0-surgery on on D3

(b2) Solid 2-dimensional 1-surgery on D3

where r the radius of a circle and P the limit point of the circles, which is the center
of the disc and also the circle of radius zero. We specify colinear pairs of antipodal
points, all on the same diameter, with neighbourhoods of analogous lengths, on
which the same colinear attracting forces act. See Fig. 15.5a where these forces and
the attracting center are shown in blue. Then the antipodal segments get closer to one
another or, equivalently, closer to the attracting center. Note that here, the attracting
center coincides with the limit point of all concentric circles, which is shown in green
from the second instance and on. Then, we perform 1-dimensional 0-surgery on the
whole continuum of concentric circles. We define 1-dimensional 0-surgery on the
limit point P to be the two limit points of the resulting surgeries. That is, the effect
of solid 1-dimensional 0-surgery on a point is the creation of two new points. Next,
the segments reconnect until we have two copies of D2.

The above process is the same as first removing the center P from D2, doing the
1-dimensional 0-surgeries and then taking the closure of the resulting space. The
resulting manifold is

χ(D2) := ∪0<r≤1χ(S1
r ) ∪ χ(P),

which comprises two copies of D2.
We also have the reverse process of the above, namely, solid 1-dimensional 0-

surgery on two discs D2 × S0. This process is the result of the orange forces and
attracting center which are applied on the ‘complementary’ points, see Fig. 15.5a in
reverse order. This operation is equivalent to performing 1-dimensional 0-surgery
on the whole continuum of pairs of concentric circles in D2 � D2. We only need to
define solid 1-dimensional 0-surgery on two limit points to be the limit point P of the
resulting surgeries. That is, the effect of solid 1-dimensional 0-surgery on two points
is their merging into one point. The above process is the same as first removing the
centers from the D2 × S0, doing the 1-dimensional 0-surgeries and then taking the
closure of the resulting space. The resulting manifold is
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χ−1(D2 × S0) := ∪0<r≤1χ
−1(S1

r × S0) ∪ χ−1(P × S0),

which comprises one copy of D2.

15.3.2 Solid 2-Dimensional Topological Surgery

Moving up one dimension, there are two types of solid 2-dimensional surgery on the
3-ball, D3, analogous to the two types of 2-dimensional surgery. More precisely we
have:

Definition 15.3 We start with the 3-ball of radius 1 with polar layering:

D3 = ∪0<r≤1S2
r ∪ {P},

where r the radius of the 2-sphere S2
r and P the limit point of the spheres, that is,

their common center and the center of the ball. Solid 2-dimensional 0-surgery on
D3 is the topological procedure whereby 2-dimensional 0-surgery takes place on
each spherical layer that D3 is made of. More precisely, as illustrated in Fig. 15.5b1,
on all spheres S2

r colinear pairs of antipodal points are specified, all on the same
diameter, on which the same colinear attracting forces act. The poles have disc
neighborhoods of analogous areas. Then, 2-dimensional 0-surgeries are performed
on thewhole continuumof the concentric spheres using the same embedding h (recall
Sect. 15.1.2). Moreover, 2-dimensional 0-surgery on the limit point P is defined to
be the limit circle of the nested tori resulting from the continuum of 2-dimensional
0-surgeries. That is, the effect of 2-dimensional 0-surgery on a point is defined to be
the creation of a circle.

The process is characterized on one hand by the 1-dimensional core L of the solid
cylinder which joins the two selected antipodal points of the outer shell and intersects
each spherical layer at its two corresponding antipodal points, and on the other hand
by the embedding h. The process results in a continuum of layered tori and can be
viewed as drilling out a tunnel along L according to h. Note that in Fig. 15.5, the
identity embedding has been used. However, a twisting embedding, which is the
case shown in Fig. 15.4a, agrees with our intuition that, for opening a hole, drilling
with twisting seems to be the easiest way. Examples of these two embeddings can be
found in Sect. 15.1.2.

Furthermore, solid 2-dimensional 1-surgery on D3 is the topological procedure
where on all spheres S2

r nested cylindrical peels of the solid cylinder of analogous
areas are specified and the same coplanar attracting forces act on all spheres, see
Fig. 15.5b2. Then, 2-dimensional 1-surgeries are performed on the whole continuum
of the concentric spheres using the same embedding h. Moreover, 2-dimensional
1-surgery on the limit point P is defined to be the two limit points of the nested pairs
of 2-spheres resulting from the continuum of 2-dimensional surgeries. That is, the
effect of 2-dimensional 1-surgery on a point is the creation of two new points. The
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process is characterized by the 2-dimensional central disc of the solid cylinder and the
embedding h, and it can be viewed as squeezing the central disc C or, equivalently,
as pulling apart the left and right hemispheres with possible twists, if h is a twisting
embedding. This agrees with our intuition that for cutting a solid object apart, pulling
with twisting seems to be the easiest way. Examples of the identity and the twisting
embedding can be found in Sect. 15.1.3.

For both types of solid 2-dimensional surgery, the above process is the same as:
first removing the center P from D3, performing the 2-dimensional surgeries and
then taking the closure of the resulting space. Namely we obtain:

χ(D3) := ∪0<r≤1χ(S2
r ) ∪ χ(P),

which is a solid torus in the case of solid 2-dimensional 0-surgery and two copies of
D3 in the case of solid 2-dimensional 1-surgery.

As seen in Fig. 15.5, we also have the two dual solid 2-dimensional surgeries,
which represent the reverse processes. As already mentioned in Sect. 15.1.3, the dual
case of 2-dimensional 0-surgery is the 2-dimensional 1-surgery and vice versa. More
precisely:

Definition 15.4 The dual case of solid 2-dimensional 0-surgery on D3 is the solid
2-dimensional 1-surgery on a solid torus D2 × S1. This is the reverse process shown
in Fig. 15.5b1 which results from the orange forces and attracting center. Given that
the solid torus can be written as a union of nested tori together with the core circle:
D2 × S1 = (∪0<r≤1S1

r ∪ {0}) × S1, solid 2-dimensional 1-surgeries are performed
on each toroidal layer starting from specified annular peels of analogous sizes where
the same coplanar forces act on the central rings of the annuli. These forces are
caused by the same attracting center lying outside the torus. It only remain to define
the solid 2-dimensional 1-surgery on the limit circle to be the limit point P of the
resulting surgeries. That is, the effect of solid 2-dimensional 1-surgery on the core
circle is that it collapses into one point, the attracting center. The above process is
the same as first removing the core circle from D2 × S1, doing the 2-dimensional
1-surgeries on the layered tori, with the same coplanar acting forces, and then taking
the closure of the resulting space. Hence, the resulting manifold is

χ−1(D2 × S1) := ∪0<r≤1χ
−1(S1

r × S1) ∪ χ−1({0} × S1),

which comprises one copy of D3.
Further, the dual case of solid 2-dimensional 1-surgery on D3 is the solid 2-

dimensional 0-surgery on two 3-balls D3. This is the reverse process shown in
Fig. 15.5b2 which results from the blue forces and attracting center. We only need to
define the solid 2-dimensional 0-surgery on two limit points to be the limit point P
of the resulting surgeries. That is, as in solid 1-dimensional surgery (see Fig. 15.5a),
the effect of solid 2-dimensional 0-surgery on two points is their merging into one
point. The above process is the same as first removing the centers from the D3 × S0,
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doing the 2-dimensional 0-surgeries on the nested spheres with the same colinear
forces and then taking the closure of the resulting space. The resulting manifold is

χ−1(D3 × S0) := ∪0<r≤1χ
−1(S2

r × S0) ∪ χ−1(P × S0),

which comprises one copy of D3.

Note that Remarks 15.1 and 15.3 are also true here. One can obtain Fig. 15.5b1
and Fig. 15.5b2 by rotating Fig. 15.5a respectively by 180◦ around a vertical axis and
by 180◦ around a horizontal axis.

Remark 15.4 The notions of 2-dimensional (resp. solid 2-dimensional) surgery, can
be generalized from S2 (resp. D3) to a surface (resp. a handlebody) of genus g
creating a surface (resp. a handlebody) of genus g ± 1 or a disconnected surface
(resp. handlebody).

15.3.3 A Dynamical System Modeling Solid 2-Dimensional
0-Surgery

In [2, 6] we present and analyze a dynamical system for modeling 2-dimensional
0-surgery. This system was introduced in [12] and is a generalization of the classical
Lotka–Volterra system in three dimensions where the classic predator-prey popula-
tion model is generalized to a two-predator and one-prey system. The parameters of
the system affect the dynamics of the populations and they are analyzed in order to
determine the bifurcation properties of the system.

In Fig. 15.6 we reproduce the numerical simulations done in [12, 13], illustrating
how by changing the parameters space, solid 2-dimensional 0-surgery is performed
on the trajectories of the system. We have used the same colors as in Fig. 15.5b1

Fig. 15.6 Solid 2-dimensional 0-surgery by changing parameter space from a–b
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to make comparison easier. What is even more striking is that the new topological
definition stating that the effect of 2-dimensional 0-surgery on a point is defined to
be the creation of a circle (recall Sect. 15.3.2) also has a meaning in the language
of dynamical systems. More precisely, the limit point in the spherical nesting of
trajectories shown in green in Fig. 15.6a is a steady state point and the core of the
toroidal nesting of trajectories shown in green in Fig. 15.6b is a limit cycle. This
connection is detailed in [2, 6].

15.4 Defining Embedded Topological Surgery

Asmentioned in the Introduction,wenoticed that the ambient space is also involved in
some natural processes exhibiting surgery. As we will see in this section, depending
on the dimension of the manifold, the ambient space either leaves ‘room’ for the
initial manifold to assume a more complicated configuration or it participates more
actively in the process. Independently of dimensions, embedding surgery has the
advantage that it allows us to view surgery as a process happening inside a space
instead of abstractly. We define it as follows:

Definition 15.5 An embedded m-dimensional n-surgery is a m-dimensional n-
surgery where the initial manifold is an m-embedding e : M ↪→ Sd , d ≥ m of some
m-manifold M , and the result is also viewed as embedded in Sd . Namely, according
to Definition 15.1:

M ′ = χ(e(M)) = e(M) \ h(Sn × Dm−n) ∪h|Sn×Sm−n−1 Dn+1 × Sm−n−1 ↪→ Sd .

Since in this analysis we focus on phenomena exhibiting embedded 1- and 2-
dimensional surgery in 3-space, from now on we fix d = 3 and, for our purposes, we
consider S3 or R3 as our standard 3-space.

15.4.1 Embedded 1-Dimensional Surgery

In dimension 1, the notion of embedded surgery allows the topological modeling
of phenomena with more complicated initial 1-manifolds. Let us demonstrate this
with the example of site-specific DNA recombination. In this process, the initial
manifold is a (circular or linear) DNA molecule. With the help of certain enzymes,
site-specific recombination performs a 1-dimensional 0-surgery on the molecule,
causing possible knotting or linking of the molecule.

The first electronmicroscope picture of knottedDNAwas presented in [14]. In this
experimental study, we see how genetically engineered circular DNA molecules can
form DNA knots and links through the action of a certain recombination enzyme. A
similar picture is presented in Fig. 15.7, where site-specific recombination of a DNA
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Fig. 15.7 DNA Recombination as an example of embedded 1-dimensional 0-surgery

molecule produces the Hopf link. It is worth mentioning that there are infinitely
many knot types and that 1-dimensional 0-surgery on a knot may change the knot
type or even result in a two-component link (as shown in Fig. 15.7). Since a knot is by
definition an embedding of M = S1 in S3 orR3, in this case embedded 1-dimensional
surgery is the so-called knot surgery. A good introductory book on knot theory is [1]
among many others.

We can summarize the above by stating that for M = S1, embedding in S3 allows
the initial manifold to become any type of knot. More generally, in dimension 1
the ambient space which is of codimension 2 gives enough ‘room’ for the initial
1-manifold to assume a more complicated homeomorphic configuration.

Remark 15.5 Of course we also have, in theory, the notion of embedded solid
1-dimensional 0-surgery whereby the initial manifold is an embedding of a disc
in 3-space.

15.4.2 Embedded 2-Dimensional Surgery

Passing now to 2-dimensional surgeries, let us first note that an embedding of a
sphere M = S2 in S3 presents no knotting because knotting requires embeddings
of codimension 2. However, in this case the ambient space plays a different role.
Namely, embedding 2-dimensional surgeries allows the complementary space of
the initial manifold to participate actively in the process. Indeed, while some natural
phenomena undergoing surgery can be viewed as ‘local’, in the sense that they can be
considered independently from the surrounding space, some others are intrinsically
related to the surrounding space. This relation can be both causal, in the sense that
the ambient space is involved in the triggering of the forces causing surgery, and
consequential, in the sense that the forces causing surgery, can have an impact on
the ambient space in which they take place.

Let us recall here that the ambient space S3 can be viewed asR3 with all points at
infinity compactified to one single point: S3 = R

3 ∪ {∞}. Further, it can be viewed
as the union of two 3-balls along the common boundary: S3 = B3 ∪ D3 where a
neighbourhood of the point at infinity can stand for one of the two 3-balls. Finally,
S3 can be viewed as the union of two solid tori along their common boundary:
S3 = V1 ∪ V2.
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As mentioned in the introduction of Sect. 15.3, in most natural phenomena that
exhibit 2-dimensional surgery, the initial manifold is a solid 3-dimensional object.
Hence, in the next subsections, we describe natural phenomena undergoing solid
2-dimensional surgeries which exhibit the causal or consequential relation to the
ambient space mentioned above and are therefore better described by considering
them as embedded in S3 or in R

3. In parallel, we describe how these processes are
altering the whole space S3 or R3.

15.4.2.1 A Topological Model for Black Hole Formation

Let us start by considering the formation of black holes. Most black holes are formed
from the remnants of a large star that dies in a supernova explosion.Their gravitational
field is so strong that not even light can escape. In the simulation of a black hole
formation in [8], the density distribution at the core of a collapsing massive star is
shown. Figure15.8(ii) shows three instants of this simulation, which indicate that
matter performs solid 2-dimensional 0-surgery as it collapses into a black hole. In
fact, matter collapses at the center of attraction of the initial manifold M = D3

creating the singularity, that is, the center of the black hole (shown as a black dot
in instance (c) of Fig. 15.8(ii)), which is surrounded by the toroidal accretion disc
(shown in white in instance (c) of Fig. 15.8(ii)). Let us be reminded here that an
accretion disc is a rotating disc of matter formed by accretion.

Fig. 15.8 (i)Embedded solid 2-dimensional 0-surgery on M = D3 (inR3) (ii)Black hole formation
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Fig. 15.9 Embedded solid 2-dimensional 0-surgery on M = D3 (in S3)

Note now that the strong gravitational forces have altered the space surrounding
the initial star and that the singularity is created outside the final solid torus. This
means that the process of surgery in this phenomenon has moreover altered matter
outside themanifold inwhich it occurs. In otherwords, the effect of the forces causing
surgery propagates to the complement space, thus causing a more global change in
3-space. This fact makes black hole formation a phenomenon that topologically
undergoes embedded solid 2-dimensional 0-surgery.

In Fig. 15.8(i), we present a schematic model of embedded solid 2-dimensional 0-
surgery on M = D3. From the descriptions of S3 in Sect. 15.4.2, it becomes apparent
that embedded solid 2-dimensional 0-surgery on one 3-ball describes the passage
from the two-ball description to the two-solid tori description of S3. This can be seen
inR3 in instances (a) – (c) of Fig. 15.8(i) but is more obvious by looking at instances
(a) – (c) of Fig. 15.9 which show the corresponding view in S3.

We will now detail the instances of the process of embedded solid 2-dimensional
0-surgery on M = D3 by referring to both the view in S3 and the corresponding
decompacified view in R3. Let M = D3 be the solid ball having arc L as a diameter
and the complement space be the other solid ball B3 containing the point at infinity;
see instances (a) of Fig. 15.9 and (a) of Fig. 15.8.Note that, in both cases B3 represents
the hole space outside D3 which means that the spherical nesting of B3 in instance
(a) of Fig. 15.8 extends to infinity, even though only a subset of B3 is shown. This
joining arc L is seen as part of a simple closed curve l passing by the point at infinity.
In instances (b) of Fig. 15.9 and (b) of Fig. 15.8, we see the ‘drilling’ along L as
a result of the attracting forces. This is exactly the same process as in Fig. 15.5b1
if we restrict it to D3. But since we have embedded the process in S3 or R3, the
complement space B3 participates in the process and, in fact, it is also undergoing
solid 2-dimensional 0-surgery. Indeed, the ‘matter’ that is being drilled out from the
interior of D3 can be viewed as ‘matter’ of the outer sphere B3 invading D3. In
instances (c) of Fig. 15.9 and (c) of Fig. 15.8, we can see that, as surgery transforms
the solid ball D3 into the solid torus V1, B3 is transformed into V2. That is, the nesting
of concentric spheres of D3 (respectively of B3) is transformed into the nesting of
concentric tori in the interior of V1 (respectively of V2). The point at the origin (in
green), which is also the attracting center, turns into the core curve c of V1 (in green)
which, by Definition 15.3 is 2-dimensional 0-surgery on a point. As seen in instance
(c) of Fig. 15.9 and (c) of Fig. 15.8(i), the result of surgery is the two solid tori V1

and V2 forming S3.
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The described process can be viewed as a double surgery resulting from a single
attracting center which is inside the first 3-ball D3 and outside the second 3-ball B3.
This attracting center is illustrated (in blue) in instance (a) of Fig. 15.8 but also in (a)
of Fig. 15.9, where it is shown that the colinear attracting forces causing the double
surgery can be viewed as acting on D3 (the two blue arrows) and also as acting on
the complement space B3 (the two dotted blue arrows), since they are applied on the
common boundary of the two 3-balls. Note that in both cases, the attracting center
coincides with the limit point of the spherical layers that D3 is made of, that is, their
common center and the center of D3 (shown in green in (a) of Fig. 15.8 and (a) of
Fig. 15.9). For more details on the descriptions of S3 and their relation to surgery,
the reader is referred to [2].

The reverse process of embedded solid 2-dimensional 0-surgery on D3 is an
embedded solid 2-dimensional 1-surgery on the solid torus V2, see instances of
Fig. 15.9 in reverse order. This process is the embedded analog of the solid 2-
dimensional 1-surgery on a solid torus D2 × S1 defined in Definition 15.4 and shown
in Fig. 15.5b1 in reverse order. Here too, the process can be viewed as a double surgery
resulting from one attracting center which is outside the first solid torus V1 and inside
the second solid torus V2. This attracting center is illustrated (in orange) in instance
(c) of Fig. 15.9 where it is shown that the coplanar forces causing surgery are applied
on the common boundary of V1 and V2 and can be viewed as attracting forces along
a longitude when acting on V1 and as attracting forces along a meridian when acting
on the complement space V2.

One can now directly appreciate the correspondence of the physical phenomena
(instances (a), (b), (c) of Fig. 15.8(ii)) with our schematic model (instances (a), (b),
(c) of Fig. 15.8(i)). Indeed, if one looks at the formation of black holes and examines
it as an isolated event in space, this process shows a decompactified view of the
passage from a two 3-ball description of S3, that is, the core of the star and the
surrounding space, to a two solid tori description, namely the toroidal accretion disc
surrounding the black hole (shown in white in instance (c) of Fig. 15.8(ii)) and the
surrounding space.

Remark 15.6 It is worth pinning down the following spatial duality of embedded
solid 2-dimensional 0-surgery for M = D3: the attraction of two points lying on
the boundary of segment L by the center of D3 can be equivalently viewed in the
complement space as the repulsion of these points by the center of B3 (that is, the
point at infinity) on the boundary of the segment l − L (or the segments, if viewed
in R3). Hence, the aforementioned duality tells us that the attracting forces from the
attracting center that are collapsing the core of the star can be equivalently viewed
as repelling forces from the point at infinity lying in the surrounding space.

15.4.2.2 A Topological Model for the Formation of Tornadoes

Another example of global phenomenon is the formation of tornadoes, recall
Fig. 15.4b. As mentioned in Sect. 15.3 this phenomenon can be modelled by solid
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Fig. 15.10 a Attracting force between the cloud and the earth b Funnel-shaped clouds c Tornado

2-dimensional 0-surgery, recall Fig. 15.5b2 (from right to left). However, here, the
initial manifold is different than D3. Indeed, if we consider a 3-ball around a point of
the cloud and another 3-ball around a point on the ground, then the initial manifold
is M = D3 × S0. If certain meteorological conditions are met, an attracting force
between the cloud and the earth beneath is created. This force is shown in blue in
see Fig. 15.10a. Then, funnel-shaped clouds start descending toward the ground, see
Fig. 15.10b. Once they reach it, they become tornadoes, see Fig. 15.10c. The only
difference compared to our model is that here the attracting center is on the ground,
see Fig. 15.10a, and only one of the two 3-balls (the 3-ball of cloud) is deformed by
the attraction. This lack of symmetry in the process can be obviously explained by
the big difference in the density of the materials.

During this process, a solid cylinder D2 × S1 containing many layers of air is
created. Each layer of air revolves in a helicoidal motion which is modeled using
a twisting embedding as shown in Fig. 15.4a (for an example of a twisting embed-
ding, the reader is referred Sect. 15.1.2). Although all these layers undergo local
dynamic 2-dimensional 0-surgeries which are triggered by local forces (shown in
blue in Fig. 15.10a), these local forces are not enough to explain the dynamics of the
phenomenon. Indeed, the process is triggered by the difference in the conditions of
the lower and upper atmosphere which create an air cycle. This air cycle lies in the
complement space of the initial manifold M = D3 × S0 and of the solid cylinder
D2 × S1, but is also involved in the creation of the funnel-shaped clouds that will
join the two initial 3-balls. Therefore in this phenomenon, surgery is the outcome
of global changes and this fact makes tornado formation an example of embedded
solid 2-dimensional 0-surgery on M = D3 × S0.

It is worth mentioning that the complement space containing the aforementioned
air cycle is also undergoing solid 2-dimensional 0-surgery. The process can be seen
inR3 in instances (a) to (d) of Fig. 15.11 while the corresponding view in S3 is shown
in instances (a′) to (d′) of Fig. 15.11.

More precisely, let us name the two initial 3-balls D3
1 and D3

2, hence M = D3 ×
S0 = D3

1 � D3
2. Further, let B3 be the complement of D3

1 in S3. This setup is shown
in (a′) of Fig. 15.11 where S3 is viewed as the union of the two 3-balls D3

1 ∪ B3,
and here too, B3 represents everything outside D3

1. The complement space of the
initial manifold, S3 \ M = B3 \ D3

2, is the 3-ball B3 where D3
2 has been removed

from its interior and its boundary consists in two spheres S2 × S0, one bounding B3

or, equivalently, D3
1 (the outside sphere) and one bounding D3

2 (the inside sphere).
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Fig. 15.11 Embedded solid 2-dimensional 0-surgery on D3
1 � D3

2 (from left to right) and embedded
solid 2-dimensional 1-surgery on D′3 (from right to left)

Next, D3
1 and D3

2 approach each other, see Fig. 15.11b′. In (c′) of Fig. 15.11, D3
1

and D3
2 merge and become the new 3-ball D′3, see Fig. 15.11c′ or Fig. 15.11d′ for a

homeomorphic representation.
At the moment of merging, the spherical boundary of D3

2 punctures the boundary
of B3; see the passage from (b′) – (c′) of Fig. 15.11. As a result, the complement
space is transformed from B3 \ D3

2 to the new deformed 3-ball B ′3, see Fig. 15.11c′
or Fig. 15.11d′ for a homeomorphic representation. Note that, although the comple-
ment space undergoes a type of surgery that is different from the ones defined in
Sect. 15.3 and shown in Fig. 15.5, it can still be defined analogously. In short, we
have a double solid 2-dimensional 0-surgery which turns M = D3

1 � D3
2 into D′3

and the complement space S3 \ (D3
1 � D3

2) into B ′3. This process is initiated by the
attracting center shown (in blue) in Fig. 15.11a′. The created colinear forces can be
viewed as acting on D3

1 � D3
2 or, equivalently, as acting on the complement space

S3 \ (D3
1 � D3

2) (see the two blue arrows for both cases).
Going back to the formation of tornadoes, the above process describes what hap-

pens to the complement space and provides a topological description of the behavior
of the air cycle during the formation of tornadoes. The complement space B3 \ D3

2
inR3 is shown in red in Fig. 15.11a and its behavior during the process can be seen in
instances (b) – (d) of Fig. 15.11. Note that in Fig. 15.11a, B3 \ D3

2 represents the hole
space outside D3

1, which means that the red layers of Fig. 15.11a extend to infinity
and only a subset is shown.
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15.4.2.3 Embedded Solid 2-Dimensional 1-Surgery on M = D3

We will now discuss the process of embedded solid 2-dimensional 1-surgery in S3.
Taking M = D′3 as the initial manifold, embedded solid 2-dimensional 1-surgery is
the reverse process of embedded solid 2-dimensional 0-surgery on D3 × S0 and is
illustrated in Fig. 15.11 from right to left. The process is initiated by the attracting
center shown (in orange) in (d′) of Fig. 15.11. The created coplanar attracting forces
are applied on the circle which is the common boundary of the meridian of D′3 and
the meridian of B ′3 and they can be viewed as acting on the meridional disc D of
the 3-ball D′3 (see orange arrows) or, equivalently, in the complement space, on the
meridional disc d of B ′3 (see dotted orange arrows). As a result of these forces,
in Fig. 15.11c′, we see that while disc D of D′3 is getting squeezed, disc d of B ′3
is enlarged. In Fig. 15.11b′, the central disc d of B ′3 engulfs disc D and becomes
d ∪ D, which is a separating plane in R

3, see Fig. 15.11b. At this point the initial
3-ball D′3 is split in two new 3-balls D3

1 and D3
2; see Fig. 15.11b′ or 15.11a′ for a

homeomorphic representation. The center point of D′3 (which coincides with the
orange attracting center) evolves into the two centers of D3

1 and D3
2 (in green) which

by Definition 15.3, is 2-dimensional 1-surgery on a point. This is exactly the same
process as in Fig. 15.5b2 if we restrict it to D′3, but sincewe are in S3, the complement
space B ′3 is also undergoing, by symmetry, solid 2-dimensional 1-surgery.

All natural phenomena undergoing embedded solid 2-dimensional 1-surgery take
place in the ambient 3-space. The converse, however, is not true. For example,
the phenomena exhibiting 2-dimensional 1-surgery discussed in Sect. 15.2.2 are all
embedded in 3-space, but they do not exhibit the intrinsic properties of embedded
2-dimensional surgery, since they do not demonstrate the causal or consequential
effects discussed in Sect. 15.4.2 involving the ambient space. Yet one could, for
example, imagine taking a solid material specimen, stress it until necking occurs and
then immerse it in some liquid until its pressure causes fracture to the specimen. In
this case the complement space is the liquid and it triggers the process of surgery.
Therefore, this is an example of embedded solid 2-dimensional 1-surgery where
surgery is the outcome of global changes.

Remark 15.7 Note that the spatial duality described in embedded solid 2-dimensional
0-surgery, inRemark 15.6, is also present in embedded solid 2-dimensional 1-surgery.
Namely, the attracting forces from the circular boundary of the central disc D to the
center of D′3 shown in (d′) of Fig. 15.11, can be equivalently viewed in the comple-
ment space as repelling forces from the center of B ′3 (that is, the point at infinity) to
the boundary of the central disc d, which coincides with the boundary of D.

Remark 15.8 One can sum up the processes described in this section as follows.
The process of embedded solid 2-dimensional 0-surgery on D3 consists in taking a
solid cylinder such that the part S0 × D2 of its boundary lies in the boundary of D3,
removing it from D3 and adding it to B3. Similarly, the reverse process of embedded
solid 2-dimensional 1-surgery on V2 consists of taking a solid cylinder such that
the part S1 × D1 of its boundary lies in the boundary of V2, removing it from V2
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and adding it to V1. Following the same pattern, embedded solid 2-dimensional 1-
surgery on M = D3 consists of taking a solid cylinder in D′3 such that the part
S1 × D1 of its boundary lies in the boundary of D′3, removing it from D′3 and
adding it to B ′3. Similarly, the reverse process of embedded solid 2-dimensional
0-surgery on S3 \ (D3

1 � D3
2) consists of taking a solid cylinder such that the two

parts S0 × D2 = D2
1 � D2

2 of its boundary lie in the corresponding two parts of
the boundary of S3 \ (D3

1 � D3
2), removing it from S3 \ (D3

1 � D3
2) and adding it

to D3
1 � D3

2. Note that, for clarity, in the above descriptions the attracting centers
causing surgery are always inside the initial manifold. Of course a similar description
starting with the complement space as an initial manifold and the attracting center
outside of it would also have been correct.

15.5 Conclusions

In this paper, inspired by natural phenomena exhibiting topological surgery, we
introduced the notions of dynamic, solid and embedded surgery in dimensions 1, 2
and3. There aremanymore natural phenomena exhibiting surgery andwebelieve that
the understanding of their underpinning topologywill lead to the better understanding
of the phenomena themselves, as well as to new mathematical notions, which will
in turn lead to new physical implications.
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Chapter 16
Automorphisms of Curves

Jannis A. Antoniadis and Aristides Kontogeorgis

Abstract This is a survey article concerning the groups of automorphisms of curves
definedover algebraically closedfields of positive characteristic, their representations
and applications to their deformation theory.

16.1 Introduction

By an (algebraic) curve we will mean a projective non-singular one-dimensional
variety, defined over an algebraically closed field k of characteristic p ≥ 0. Over the
field C of complex numbers the notion of a projective algebraic curve coincides with
the notion of compact Riemann surface. Every compact Riemann surface X is known
to be an orientable two-dimensional real manifold and to any such surface we can
attach a natural number gX ∈ N ∪ {0}, called the genus, which topologically counts
the number of holes of the surface X . Over an arbitrary field of positive characteristic
we can still define the genus, by setting gX to be the dimension of the space of global
holomorphic differentials H 0(X,ΩX ), although a topological interpretation is less
clear, see [72]. In Sect. 16.2.2 a topological interpretation can be given as the number
of cycles of the graph of analytic reduction.

An automorphism of a curve X is an isomorphism σ : X → X , and the set
Autk(X) of all automorphisms form a group under composition. Since we assumed
that the constant field is algebraically closed we will omit the index k from the
notation, and we will denote the automorphism group by Aut(X).

If the genus is zero, then X is isomorphic to the projective lineP
1 and the automor-

phism group is the group of Möbius transformations PGL(2, k), which is infinite. If
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gX = 1, then the curve X admits a group structure and X acts on X by translations,
hence X ⊂ Aut(X), so X is infinite as well.

When gX ≥ 2 the automorphism group is finite. In characteristic zero this can be
proved by applying the Riemann–Roch theorem, in order to see that every automor-
phism fixing more than 2gX + 2 points is the identity, and then obtaining a faithful
representation on the set ofWeierstrass points. For the case of positive characteristic,
the same argument does not work. In order to prove that the automorphism group is
finite, we first prove that the decomposition group G(P) is finite, for every P ∈ X .
Then we need the existence of a finite non-empty Aut(X)-invariant set �. We can
use as � the set of Weierstrass points, since they are invariant under the action of the
automorphism group. A notion of Weierstrass points in positive characteristic was
given first by F.K. Schmidt [75] using the theory of Hasse derivatives. For a modern
account of this topic we refer to [26, Sect. 6], [29, Chap.11].

Moreover, it is known that for any finite group G there exists a curve X such
that Aut(X) ∼= G, see [52]. Notice that most of the curves have trivial automorphism
group [57, 67], since curves with non-trivial automorphisms correspond to singulari-
ties of the moduli space of curves of fixed genus. However, finding specific examples
of curves without automorphisms is not easy, see [65].

Understanding the automorphism group is an interesting problem on its own and
has many applications to counting points, moduli problems, etc. In Sect. 16.2 we
will present results concerning the order of the group and we will give upper bounds
in terms of constants of topological nature, like the genus and the p-rank of the
Jacobian.

In Sect. 16.5 we will study automorphisms of relative curves π : X → SpecR,
where R is a discrete valued ring with algebraically closed residue field. We will
restrict ourselves to maps π which have fibers X of genus gX ≥ 2 and which vary
“nicely”. Both these properties are formulated by the notion of “stable curve”. The
precise definition is given in [14, Definition I.1]. If the relative curve is stable, then
the automorphism group of the special fibre contain the automorphism group of the
generic fibre [14, Lemma I.12]. The study of automorphisms of relative curves is
a difficult problem even at the infinitesimal level. In this section we also discuss
reduction, lifting and the deformation problem. Automorphisms of relative curves
are related to the representation theory of the automorphism group on several natural
objects of the curve like global sections of global polydifferentials and this will be
explained in Sect. 16.3. In Sect. 16.6 we study integral representations of a fibrewise
action in relative holomorphic polydifferentials.

The theory of automorphisms of curves is a vast object of study and this article
does not have the ambition to describe it completely. It is rather focused on subjects
closer to the research interests of the authors. For more general information about
automorphisms of curves in characteristic zero we refer to [15, Chap.V], while
for curves defined over fields of positive characteristic we refer to [29, Chap.11],
[13, par. 14.3].
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16.2 Size of the Group

The automorphism group of a curve X of genus gX ≥ 2 is finite. However if the genus
is fixed, then the size of the groups that can appear is bounded. In characteristic zero,
for gX ≥ 2, using the theory of Riemann–Hurwitz formula and by a case by case
examination, Hurwitz [31] proved the bound:

|Aut(X)| ≤ 84(gX − 1). (16.1)

16.2.1 Ramification Filtration

In order to explain the situation in characteristic p > 0 we have to introduce the
ramification filtration at a closed point x ∈ X . Let G be a subgroup of Aut(X) and
let mX,x be the maximal ideal of the local ring OX,x . We will denote by k(x) the
residue field of x . For i ≥ 0, the i th lower ramification subgroup Gx,i of G at x is the
subgroup of all elements σ ∈ G which fix x and which act trivially on OX,x/m

i+1
X,x .

These groups form a decreasing finite sequence

Gx,0 � Gx,1 � · · · � Gx,n � Gx,n+1 = {1}, n ∈ N. (16.2)

When the characteristic p = 0 it is known that Gx,1 = {1}. In general Gx,0/Gx,1 is
a cyclic group of order prime to the characteristic, while for i ≥ 1 Gx,i/Gx,i+1 is an
elementary abelian group, i.e. isomorphic to the direct sum of finitely many cyclic
groups of order p. If Gx,1 = {1} for every x ∈ X , then the cover X → X/G is said
to be tame, otherwise it is called wild. If Gx,2 = {1}, then the ramification is called
weak.

The Riemann–Hurwitz formula [82, Sect. 3.4 p. 90] relates the genera of the
curves X and X/G = Y as follows:

2(gX − 1) = 2(gY − 1)|G| +
∑

x∈X

∞∑

i=1

(|Gx,i | − 1
)
. (16.3)

Notice that this equation can be obtained by taking degrees on Eq. (16.11).
For tame covers the Hurwitz bound remains the same. For the general wildly

ramified curve H. Stichtenoth [80, 81] proved that the following bound holds:

|Aut(X)| ≤ 16g4X , (16.4)

with the Hermitian Fermat curve as only exception, given by the equation:

0 = x ph+1 + y ph+1 + z p
h+1 = x

(
xt
)ph

, where we have set x = (x, y, z). (16.5)
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Notice that for h = 0 the above Fermat curve is a quadratic form, while for h > 0 it
behaves as Frobenious shifted quadratic form and has PGU(3, p2h) as automorphism
group, [43, 51]. The result of H. Stichtenoth was improved by H. Henn [27] who
proved that

|Aut(X)| ≤ 8g3X , (16.6)

with a finite list of exceptions. The result of Henn contained a gap which was filled
by M. Giulietti and Gábor Korchmáros, see [20].

All exceptions in the list of Henn, have a large p-subgroup compared to its genus.
C. Lehr and M. Matignon [50] defined the notion of “big action”, when the Aut(X)

contains a p-subgroup P , such that

|P| >
2p

p − 1
gX . (16.7)

M. Matignon and M. Rocher [55, 70, 71], and M. Giulietti and G. Korchmáros [19]
studied and classified “big actions” defined by an equation similar to Eq. (16.7).

In characteristic p > 0 the p-rank of the Jacobian γX plays a role analogous to
the rank of the homology group and as a matter of fact 0 ≤ γX ≤ gX . Curves with
gX = γX are called ordinary and they form a Zariski-dense set in the moduli space
of curves of fixed genus. For such curves S. Nakajima [62] proved the bound:

|Aut(X)| ≤ 84(gX − 1)gX . (16.8)

He further notices that his bound could not be best possible and by studying the
Artin–Schreier–Mumford curve

(x ph − x)(y ph − y) = c, c ∈ k (16.9)

he conjectured that the best possible bound is given by a cubic polynomial in
√
gX .

16.2.2 Mumford Curves

It is well known that an algebraic curve X , defined over C can be uniformized by
a discrete subgroup Γ of PSL(2, R), i.e. X ∼= Γ \H, and the Hurwitz upper bound
given in Eq. (16.1) is equivalent to Siegel’s lower bound π/21 on the volume of the
fundamental domain of a Fuchsian group ([15, Exercise 6 p. 245], [49]).

Let K be a non-archimedean valued field. D. Mumford [59] showed that curves
defined over K , whose stable reduction is split multiplicative, i.e. a union of rational
curves intersecting at K̄ -rational points, are isomorphic to an analytic space of the
form Γ \(P1

K − LΓ ), where Γ is a discontinuous group in PGL(2, K ) andLΓ is the
set of limit points. The automorphism group of the curve X is then isomorphic to the
group N/Γ , where N equals the normalizer of Γ ∈ PGL(2, K ), [12], [18, p. 216].
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Wewill call such curvesMumford curves. Notice that not all curves defined over K
admit such a uniformisation. For example theArtin–SchreierMumford curve has split
multiplicative reduction and is a Mumford curve only if |c| < 1. The uniformization
theory can give stronger results when applied to Mumford curves.

Herrlich [28] has shown that for p-adic Mumford curves of genus gX ≥ 2 and
p ≥ 7 the Hurwitz bound can be strengthened to 12(gX − 1).

Notice that by the work of Manin-Drinfeld [53] and Gerritzen [17], Mumford
curves are known to be ordinary, therefore the Nakajima bound given in Eq. (16.8)
holds. For Mumford curves defined over non-archimedean fields of positive charac-
teristic G. Cornelissen, F. Kato and the second author [12], proved that Nakajima’s
conjecture was correct for Mumford curves and the following bound holds:

|Aut(X)| ≤ max
{
12(gX − 1), 2

√
gX (

√
gX + 1)2

}
. (16.10)

They also classified those curves for which |Aut(X)| ≥ 12(gX − 1). Moreover, the
above bound is best possible since it is attained for the Artin–Schreier–Mumford
curves given by Eq. (16.9).

This theorem can also be reformulated in the style of Siegel lower bound as
follows: the μ(N ) invariant [37, Eq.2] of its normalizer N is bounded from below
by

μ(N ) ≥ min

{
1/12,

√
gX − 1

2
√
gX (

√
gX + 1)

}
.

Notice that μ(N ) plays the role of a Gauss–Bonnet “volume” and the index [N : Γ ]
which equals the order of automorphism group can be evaluated in terms of theorems
of HNN groups as in Theorem 2 in [37].

Concerning the Nakajima conjecture for ordinary curves X over a field of charac-
teristic p > 0, R. Guralnik andM. Zieve in aWorkshop in Leiden onAutomorphisms
of curves in 2004, announced that there exists a sharp bound of the order of g8/5X for
|Aut(X)|.

For automorphisms groups of Mumford curves with a specific structure we can
have better bounds. For example S. Nakajima in [61] used the Hasse-Arf theorem in
order to prove that

|Aut(X)| ≤ 4gX + 4,

and this bound has been further improved for abelian automorphisms groups of
Mumford curves by V. Rotger and the second author in [47], to the bound

|Aut(X)| ≤ 4(gX − 1).
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16.3 Representation Theory

The next step is to understand representations of Aut(X) in some naturally defined
vector spaces. Let ΩX denote the sheaf of relative differentials of X over k and by
H 0(X,Ω⊗m

X ) the space of global holomorphic polydifferentials of X . The automor-
phism group acts on both ΩX and H 0(X,Ω⊗m

X ), therefore H 0(X,Ω⊗m
X ) becomes

a k[G]-module of k-dimension equal to (2m − 1)(g − 1) if m �= 1 or g if m = 1.
By the work of B. Köck and J. Tait [41] we know that this action is faithful, unless
Aut(X) contains a hyperelliptic involution and either m = 1 and p = 2 or m = 2
and gX = 2.

It is a classical problem proposed first by Hecke [25], to analyse the k[G]-module
structure of H 0(X,Ω⊗m

X ), i.e. analyse the indecomposable components together with
their multiplicities. If the characteristic does not divide |G|, this problem was solved
by Chevalley and Weil [9].

If the ramification of X → X/G is tame, then Nakajima [60, Theorem 2] and,
independently, Kani [32, Theorem 3] determined the k[G]-module structure of
H 0(X,ΩX ). B. Köck in [40] studied weakly ramified covers, he generalized Kani’s
and Nakajima’s work and corrected a criterion for the projectivity of the space of
holomorphic differentials given by Kani, see remark 2.4b.

K. Ward in [85] studied the Galois module structure of holomorphic differentials
for the cyclotomic function fields obtained by the torsion points of Carlitz modules
CM for a totally split polynomial M ∈ Fq(T ).

The case when G is a cyclic group was first studied by Valentini and Madan [84,
Theorem1]who considered cyclic p-groups (and also revisited cyclic groups of order
prime to the characteristic, [84, Theorem 2]). The case of a general cyclic G was
treated by S. Karanikolopoulos and the second author [35, Theorem 7]. A different,
general approach to determining the decomposition of global sections of coherent
OX − G-modules into decomposable direct summands was developed by Borne in
[7], using the notion of rings with several objects. Some formulas concerning the
case of cyclic groups and curves are given in [7, Sect. 7.2].

The situation in positive characteristic is more difficult, because phenomena of
modular representation theory appear; for example, the notion of irreducible repre-
sentation is different than the notion of indecomposable representation. Moreover
wild ramification appears: the decomposition groups are not cyclic groups and higher
ramification groups appear, see Eq. (16.2). Also the classification of non-cyclic p-
groups even for the simplest group G = Z/pZ × Z/pZ, for a prime p > 2 is con-
sidered to be impossible [3, p.13 Sect. 1.2].

For each closed point x ∈ X , let mX,x be the maximal ideal of the local ring OX,x

and let k(x) be the residue field of x . The fundamental character of the inertia group
Gx,0 of x is the character θx : Gx,0 → k(x)∗ = Aut(mX,x/m2

X,x ) giving the action of
Gx,0 on the cotangent space of x . Here θx factors through the maximal p′-quotient
Gx,0/Gx,1 of Gx,1.
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In [5] F. Bleher, T. Chinburg and the second author studied the structure of
H 0(X,ΩX ), when G is any group such that the p-Sylow subgroup of G is cyclic. It
turns out that the k[G]-module structure depends only on the ramification data and
the fundamental characters of closed points of X , ramified under the action of G.

16.4 Bases of Holomorphic Differentials

16.4.1 Boseck Theory

A strategy for studying the k[G]-module structure is to first write explicit bases of
the spaces H 0(X,Ω⊗m

X ). Usually, a curve with a non-trivial automorphism group
comes with a natural Galois cover π : X → X/H = Y , where Y is a known curve
(usually P

1 or an elliptic curve) and H is a subgroup of the full automorphism group
G. In this way the divisor of the H -invariant differential divπ∗dx can be computed
in terms of the pullback formula [24, prop. 2.3 p. 301]

divπ∗dx ∼= π∗div(dx) + RX/Y , (16.11)

where RX/Y denotes the ramification divisor of the cover.
Once the divisor div(dx) is computed, finding the space of holomorphic (poly)

differentials is the same as computing the Riemann–Roch space L(divdx). This
method was used by H. Boseck in [8], who gave precise formulas for both Kummer
and Artin–Schreier extensions of the projective line. Once a basis is constructed,
one has to identify the indecomposable summands. For the case of cyclic group
action the last computation essentially is equivalent to the computation of the Jordan
normal form. Notice that Boseck’s article has an error concerning the computation
of Weierstrass points, see the article of A. Garcia [16] for more details.

This method was used in [35, 84] and also by articles of Rzedowski–Calderón
Villa-Salvador and Madan [73] and Marques and Ward [54] for some other groups
under additional hypotheses on the cover X → X/G.

16.4.2 Mumford Curves

For the case of Mumford curves there is a pure group theoretic approach to the
determination of global sections of holomorphic differentials initiated by the work
of V. Drinfeld and Y. Manin [53]. For holomorphic polydifferentials there is also a
group theoretic approach, the theory of harmonic measures studied by J. Teitelbaum
and P. Schneider see [76, 83].
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Let K be a complete non-archimedeanvaluedfield,Γ ⊆ PGL(2, K )be aSchottky
subgroup, and XΓ the Mumford curve obtained from Γ . We will denote by N the
normalizer of Γ in PGL(2, K ). The quotient group G = N/Γ , which acts on XΓ

from the left, is the automorphism group Aut(XΓ ) of XΓ over K . Recall that Γ

is a free group of finite rank, whose rank, say g, is equal to the genus of XΓ . Let
us fix a free generating set {γ1, . . . , γg} of Γ . For any right K [Γ ]-module P , each
derivation d : Γ → P is uniquely determined by its values hi = d(γi ) for 1 ≤ i ≤ g,
and conversely, since Γ is free, such values hi ∈ P can be freely chosen to obtain
a derivation d; indeed, once hi ’s are chosen, then d(w) for any w ∈ Γ is uniquely
determined by the derivation rules.

For a positive integer n, we consider the 2n − 1 dimensional vector space of
polynomials Pn ⊆ K [T ] of degree ≤ 2(n − 1). The group PGL(2, K ) acts on Pn

from the right as follows: for γ =
(
a b
c d

)
∈ PGL(2, K ) and F ∈ Pn , we define

Fγ (T ) := (cT + d)2(n−1)

(ad − bc)n−1
F

(
aT + b

cT + d

)
∈ K [T ]. (16.12)

Now, consider the (2n − 1)gXΓ
-dimensional space Der(Γ, Pn) of derivations,

which can be seen as an N -module as follows: for δ ∈ N and d ∈ Der(Γ, Pn), define

(dδ)(γ ) = [d(δγ δ−1)]δ (16.13)

for γ ∈ Γ . There is then a well defined G = N/Γ action on the group cohomology
H 1(Γ, Pn), since Γ acts trivially modulo principal derivations.

Theorem 16.1 ([83, Theorem 1]) For any n ≥ 1, the space H 0(XΓ ,Ω⊗n
XΓ

) of n-
differentials on the curve XΓ is naturally isomorphic to the space group cohomology
H 1(Γ, Pn). Moreover, this identification is G-equivariant with respect to the natural
right G-action on H 0(XΓ ,Ω⊗n

XΓ
). �

F. Kato and the second author [38] used this approach to study the K [G]-module
structure of polydifferentials for the case of Artin–Schreier–Mumford curves, where
N = A ∗ B, Γ = [A, B] and A, B ⊂ PGL(2, K ) are cyclic groups of order p gen-
erated by

εA =
(
1 1
0 1

)
and εB =

(
1 0
s 1

)
, (16.14)

respectively, where s ∈ K× and |s| > 1.
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16.5 Curves in Families

16.5.1 Stable Curves

LetX → R be a family of curves of genus g ≥ 2 over a base scheme S := SpecR,
where R is a discrete valuation ring with algebraically closed residue field. For every
point P : Speck → S, we will consider the absolute automorphism group of the
fibre P to be the automorphism group Autk̄(X ×S Speck̄) where k̄ is the algebraic
closure of k. Any automorphism σ acts like the identity on k̄ so in our setting there
is no Gal(k̄/k) contribution to the automorphism group of any special fibre. The
following theorem due to P. Deligne and D. Mumford [14, Lemma I.12] compares
the automorphism groups of the generic and special fibres:

Theorem 16.2 Consider a stable curveX → S and letXη denote its generic fibre.
Every automorphism φ : Xη → Xη can be extended to an automorphism φ : X →
X .

The example of the Fermat curve given in Eq. (16.5), shows that the automorphism
group of the special fibre can be strictly bigger. A special fibre Xp := X ×S S/p
with Aut(Xp) > Aut(Xη) will be called exceptional. In general we know that there
are finitemany exceptional fibres and it is an interesting problem to determine exactly
all of them.

There are some results towards this problem for some curves of arithmetic inter-
est. A. Adler [1] and C.S. Rajan [68] proved for the modular curves X (N ), that
X (11)3 := X (11) ×SpecZ SpecF3 has the Mathieu group M11 as the full automor-
phism group. C. Ritzenthaler in [69] and P. Bending, A. Carmina, R. Guralnick in
[2] studied the automorphism groups of the reductions X (q)p of modular curves
X (q) for various primes p. It turns out that the reduction X (7)3 of X (7) at the prime
3 has an automorphism group PGU(3, 3), and X (7)3 and X (11)3 are the only cases
where AutX (q)p > AutX (q) ∼= PSL(2, p). Also Y. Yang together with the second
author in [48] studied special fibers of hyperelliptic modular curves.

In this spirit, a particular interesting problem is the lifting of automorphisms in
characteristic zero: Let X be a curve defined over a field of characteristic p and a
group G ⊂ Aut(X). Is there a smooth family X → SpecS, where S is a local ring
with closed point k and generic point a field of characteristic zero, such that G acts
fibrewise on the family and the special fibre is the initial curve X?

These types of lifting problems where initiated by J.P. Serre in [79] in his attempt
(before étale cohomology was invented) to define an appropriate cohomology theory,
which could solve the Weil conjectures.

The answer is no for general G. For example in zero characteristic the Hurwitz
bound holds, while in positive characteristic there are known examples of automor-
phism groups that exceed this bound. Frans Oort in 1987 conjectured that such a lift
always exists if the group G is cyclic. This was known in the literature as the Oort
Conjecture until recently. Florian Pop proved in [66] that this conjecture is true in
a stronger sense: in the case where G has only cyclic groups as inertia groups. We
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must mention that Pop’s proof is based on recent results by Obus and Wewers [64].
For a survey article and for a complete list of the protagonists for this effort see [63]
and the historical note in [66].

16.5.2 Deformations of Curves

We will now explain infinitesimal deformation problems from the viewpoint of M.
Schlessinger [74]. A deformation of the curve X is a relative curve X → Spec(R)

(proper, smooth) over a local ring R with maximal ideal m and R/m ∼= k, such that
X ∼= X ×SpecR SpecR/m, i.e. we have the following commutative diagram:

X ∼= X ×SpecR SpecR/m X

Spec(k) ∼= R/m Spec(R)

Two deformationsX1 X2 are considered to be equivalent if there is an isomorphism
ψ : X1 → X2 making the diagram

X1
ψ

X2

SpecR

commutative, such that ψ gives the identity on the special fibres.

Definition 16.1 We consider a deformation functor from the category C of local
Artin algebras R with R/mR

∼= k, to the category of sets:

D : C → Sets,

R �→
{
Equivalence classes of
deformations of X over R

}
.

We define the tangent space to the deformation functor to be D(k[ε]/〈ε2〉).
The space D(k[ε]/〈ε2〉) is known to be a vector space [74] and by Chech theory

and affine triviality we can show [23, p. 89] that:

D(k[ε]/〈ε2〉) = H 1(X, TX ), (16.15)

where TX
∼= Ω∗

X is the tangent sheaf of the curve X .
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We now fix a pair (X,G) of curves together with a subgroup G of the automor-
phism group. A deformation of (X,G) over the local ring R is a deformation of the
curve X over R together with a group isomorphism G → AutR(X ), such that there
is a G-equivariant isomorphism φ from the fibre over the closed point of A to the
original curve X :

φ : X ⊗Spec(A) Spec(k) → X.

The notion of equivalence of (X,G) deformations is similar to the non equivariant
case, but we now assume that ψ is also G-equivariant. A deformation functor is then
defined:

D(X,G) : C → Sets,

R �→
⎧
⎨

⎩

Equivalence classes
of deformations of
couples (X,G) over R

⎫
⎬

⎭

J. Bertin andA.Mézard [4] proved that there is an equivariant analogon of Eq. (16.15)

T := D(X,G)(k[ε]/〈ε2〉) ∼= H 1(G, X, TX ),

where H 1(G, X, TX ) is Grothendiecks’s equivariant cohomology as defined in [21].
Cohomology theories appear as derived functors of appropriate left exact functors.
For example for group cohomology we apply the functor of invariant elements of G-
modules, and for Zarisky cohomology the functor of global sections. Grothendieck’s
equivariant cohomology [21] appears naturally when we consider the composition of
two left exact functors. In this setting we consider both the functor of global sections
and the functor of group invariants.

Geometrically the space H 1(X, TX ) can be interpreted as the tangent space to
the moduli space of curves of genus gX , computed at the point-curve X . It consists
of equivalence classes of infinitesimal deformations of the curve X . Similarly the
space H 1(G, X, TX ) can be interpreted as the subspace of H 1(X, TX ) consisted of
G-invariant elements, which give rise to infinitesimal deformations acted on by G
(Fig. 16.1).

16.5.3 Dimension of the Tangent Space to the Deformation
Functor

The study of the space D(X,G)(k[ε]) can be reduced to the short exact sequence [4]:

0 → H 1
(
X/G, πG

∗ (TX )
) → H 1(G, X, TX ) → H 0

(
X/G, R1πG

∗ (TX )
) → 0.
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Fig. 16.1 Tangent space to
the deformation functor

Suppose that in the cover X → X/G there are r ramified points x1, . . . , xr and
set e(μ)

i = |Gxi ,μ|, for i = 1, . . . , r , μ ∈ N. The first factor can be computed using
Riemann–Roch theorem [4]

dim H 1(X/G, πG
∗ (TX )) = 3gX/G − 3 +

r∑

μ=1

⌈ nμ∑

i=0

e(μ)

i − 1

e(μ)
0

⌉
.

The second functor can be expressed in terms of group cohomology:

H 0 (X/G, R1πG
∗ (TX )

) ∼=
r⊕

i=1

H 1(G0,xi , T̂X,xi ), (16.16)

where the later sum runs over all wildly ramified points and by H 1(G0,xi , T̂X,xi ) we
mean the first cohomology groups, and T̂X,xi = k[[t]]d/dt is the local tangent space
at xi , while the action of G is the adjoint action:

(
f (t)

d

dt

)σ

= f (t)σ σ
d

dt
σ−1 = f (t)σ σ

(
dσ−1(t)

dt

)
d

dt
.

The computation of group cohomology in Eq. (16.16) is manageable only for
explicit covers, in particular for Artin–Schreier extensions [11]. One idea exploited
by the second author in [44] is to use that the decomposition groupGxi admits a ram-
ification filtration given in Eq. (16.2), where the successive quotients are elementary
abelian groups given by Artin–Schreier extensions.

Therefore one can use the Lyndon-Hochshild-Serre spectral sequence [30] which
connects the cohomology of the extensions of groups

1 → H → G → G/H → 1,
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giving rise to a 5-term exact sequence:

0 → H1(G/H, AH )
inf−→ H1(G, A)

res−→ H1(H, A)G/H tg−→ H2(G/H, AH )
inf−→ H2(G, A)

Unfortunately, the transgression map can be effectively computed only in special
cases like the next theorem [44], which limits the usage of this method.

Theorem 16.3 If G is an abelian group and G/H ∼= Z/p, G ∼= G/H × H then the
transgression map is zero.

16.5.4 Representation Theory and the Tangent Space

Serre duality allows us to compute

H 1(X, TX ) ∼= H 0(X,Ω⊗2)∗, (16.17)

and the dimension of the later space can be effectively computed using Riemann–
Roch theorem to be 3gX − 3. In [45] the second author proposes an equivariant form
of Eq. (16.17)

Dgl(k[ε]/〈ε2〉) = H 1(X, TX )G ∼= H 0(X,Ω⊗2
X )G .

Notice that the space of invariants becomes the space of the co-invariants on the dual
space,where for aG-module A, the spaces of invariants and coinvariants respectively,
are given by

AG := {a ∈ A : ag = a} AG := A/〈ga − a : a ∈ A, g ∈ G〉.

For G = Z/p we have AG ∼= AG , but if G is a more complicated group like G =
Z/p × · · · × Z/p we can have AG

� AG .
The idea of this construction is that the knowledge of k[G]-module structure can

lead to the computation of dim Dgl(k[ε]).
S. Karanikolopoulos [33] pursued this idea by studying elementary abelian exten-

sions given as Artin-Schreier extensions: F/K (x) with

y pn − y = g(x)

(x − a1)Φ(1) · · · (x − as)Φ(s)

using amodifiedBoseck construction in order to compute theGaloismodule structure
of global polydifferentials. It turns out that

H 0(X,Ω⊗m
X ) ∼=

pn⊕

j=1

W
dj

j ,
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where

Γk(m) =
s∑

i=1

⌊
m(pn − 1)(Φ(i) + 1) − kΦ(i)

pn

⌋
,

dpn = Γpn−1(m) − 2m + 1, d j = Γ j−1(m) − Γ j (m), j = 1, . . . , pn − 1,

Wj = 〈θ0, . . . , θ j−1〉K , σα(θi ) =
i∑

�=0

(
i

�

)
αi−�θ�.

Moreover if j has the p-adic expansion j = ∑n
i=1 ai p

i and χ be the map

χ : {0, . . . , p − 1} → {0, 1}

defined by:

χ(a) :=
{
1 if a �= 0,

0 if a = 0

then

dim((Wj )G) =
n∑

i=1

χ(ai ).

Finally

dim(H 1(X,G, TX )) =

⎧
⎪⎨

⎪⎩

s(n + 2) − 3 if p > 3

s(n + 1) − 3 if p = 3

sn − 3 if p = 2

16.5.5 Weakly Ramified Covers

For the case of weakly ramified covers B. Köck [40] proved that one can extend the
global section of holomorphic polydifferentials H 0(X,Ω⊗m

X (D)) by considering a
suitable G-invariant divisor D such that the Euler characteristic χ(G, X,ΩX (D))

lifts to a class in the Grothendieck group of projective k[G]-modules. This implies
that if H 1(X,ΩX (D)) = 0 vanishes then H 0(G,ΩX (D)) is projective.

B. Köck together with the second author in [42] used this idea in order to write
the short exact sequence

0 → H 0(X,Ω⊗2
X ) → H 0(X,Ω⊗2

X (D)) → H 0(X, �) → 0,

where D is selected so that the G-module H 0(X,Ω⊗2(D)) is projective, and �
is a skyscraper sheaf supported at ramified points. Then, the coinvariant functor is
applied and the following long exact homology sequence is obtained:
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0 → H1(G, H0(X, �)) → H0(X, Ω⊗2
X )G → H0(X,Ω⊗2

X )(D))G → H0(X, �)G → 0.

Using the above exact sequence, they arrived at the dimension formula, where gY is
the genus of the quotient curve Y = X/G:

dimH 0(X,Ω⊗2
X )G = 3gY − 2 +

r∑

j=1

logp |G(x j )| +
{
2r if p > 3

r if p = 2 or 3.

16.5.6 Galois Weierstrass Points and Harbater–Katz–Gabber
Covers

In 1986 Ian Morrison and Henry Pinkham [58], connected the k[G]-structure of the
space H 0(X,ΩX ) to the theory of Weierstrass semigroups of Galois Weierstrass
points for the case of Riemann surfaces. A point P on a compact Riemann sur-
face is called Galois Weierstrass, if for a meromorphic function f on X such that
( f )∞ = dP , where d is the least pole number in the Weierstrass semigroup at P
the induced cover f : X → P

1 is Galois. Morrison and Pinkham’s study was based
on the monodromy representation of the Galois group at a ramified point, on the
fact that the stabilizer of a point in characteristic zero is cyclic and on character
theory of cyclic groups. The character of the associated representation of the group
G := Gal( f ) is called a Hurwitz character ofG, and the authors were able to classify
all such characters.

As a wild replacement of the Galois Weierstrass points we can consider the
Harbater–Katz–Gabbercovers. A p-order Harbater-Katz-Gabber cover, which from
now on will be called HKG-cover, see [22], is a Galois cover X → P

1 with Galois
group a p-group G which has a unique totally ramified point.

Let G act on the complete local ring k[[t]]. The Harbater–Katz–Gabber compact-
ification theorem [22, 39], asserts that there is a HKG-cover XHKG → P

1 ramified
only at one point P of X with Galois group G = Gal(XHKG/P

1) = G0 such that
G0(P) = G0 and the action of G0 on the completed local ring ÔXHKG,P coincides
with the original action of G0 on O . There is a lot of recent interest on HKG-covers
see [6, 10].

By considering the Harbater–Katz–Gabber compactification to an action on the
local ring k[[t]], we have the advantage to attach global invariants, like genus, p-
rank, differentials etc., in the local case. Also finite subgroups of the automorphism
group Autk[[t]], which is a difficult object to understand (and is a crucial object
in understanding the deformation theory of curves with automorphisms, see [4])
become subgroups of GL(V ) for a finite dimensional vector space V .

More precisely, let P be a ramified point and letG(P) be the decomposition group
at P . There is a representation:

ρ : G(P) → Aut(k[[t]]),
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expressing the action of the decomposition group to the completed local ring at a
point. The local deformation functor is defined:

DP : C → Sets, R �→
⎧
⎨

⎩

liftsG(P) → Aut(R[[t]]) of ρ mod−
ulo conjugation with an element
of ker(AutR[[t]] → k[[t]])

⎫
⎬

⎭

The representation ρ maps G(P) inside the group of automorphisms of formal pow-
erseries, which is a group hard to understand. The following theorem introduced by
the second author in [46] gives us a linear representation instead.

Theorem 16.4 Let P be a fully ramified point of X → X/G1(P). Assume that
gX ≥ 2, p ≥ 2, 3. Consider the Weierstrass semigroup at P up to the first pole
number mr not divisible by p:

0 = m0 < · · · < mr−1 < mr ,

and select functions in k(X) f0, . . . , fr with ( fi )∞ = mi P. Then the natural repre-
sentation

ρ : G1(P) → GL(L(mr P))

is faithful.

This theorem allows us to write in explicit form the action on the formal powerseries
ring. Indeed, by Hensel’s lemma we can select the uniformizer t such that fr = t−m ,
m = mr . Then the action is given in closed form:

σ(t) = t

(
1 + tm

r∑

ν=1

aν,r fν

)−1/m

.

This allows us to work with a general linear group instead of Aut(k[[t]]) and define a
representation functor of linearGalois representations as used in the proof of Fermat’s
last theorem [56].

16.5.7 Representation Filtration

S. Karanikolopoulos and the second author in [34] defined a filtration similar to the
ramification filtration, the representation filtration. More precisely for each 0 ≤ i ≤
r , consider the representations:

ρi : G1(P) → GL(L(mi P)),

which give rise to the decreasing sequence of groups:
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G1(P) = ker ρ0 ⊇ ker ρ1 ⊇ ker ρ2 ⊇ · · · ⊇ ker ρr = {1},

corresponding to the tower of function fields:

FG1(P) = Fker ρ0 ⊆ Fker ρ1 ⊆ · · · ⊆ Fker ρr = F.

Theorem 16.5 If X → X/G is a HKG-cover, then the representation and the ram-
ification filtrations coincide.

Select a function fi0 ∈ k(X) such that k(X)G = k( fi0).

div(d f ⊗m
i0

) =
(

−2mph0 + m
n∑

i=1

(bi − bi−1)(p
h−1 − 1)

)
P,

where

b0 = −1, ph0 = |G1(P)|, phi = | ker ρci+1 | = |Gbi+1 |, for i ≥ 1.

The following theorems give some information for k[G]-module structure of
holomorphic polydifferentials for the case of HKG-covers.

Theorem 16.6 For every pole numberμ select a function fμ such that ( fμ)∞ = μP.
The set

{ fμd f ⊗m
i0

: deg( fi ) ≤ m(2gX − 2)}

forms a basis for the space of m-holomorphic (poly)differentials of X.

Theorem 16.7 The module H 0(X,Ω⊗m
X ) is a direct sum of N =

⌊
m(2g−2)

ph0

⌋
direct

indecomposable summands.

Corollary: If |G1(P)| ≥ m(2g − 2), then N = 1. In particular curves with big-
action (in the sense ofM.Matignon-M.Rocher) have one indecomposable summand.

16.6 Integral Representation Theory

Suppose that a relative curve X → SpecR with a fibrewise action of G is given.
When R is a principal ideal domain then one can show that the spaces Mn =
H 0(X ,Ω⊗n

X ) are free R-modules.
Problem: Describe the module structure of Mn within the theory of integral

representations. Notice that usually the term integral representation is reserved for
Z[G]-modules. Our situation is a little bit easier since we work over complete local
rings, and we also add the eigenvalues R = W (k)(ζn).

S. Karanikolopoulos and the second author in [36] used the model of Bertin-
Mézard [4] based on thework of Sekiguchi, Oort and Suwa theory [77, 78] in order to
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study this problem for cyclic groups. More precisely, the generic fibre for the Bertin-
Mézard model is a Kummer extenrion defined over the Witt ring S := W (k)(ζp) of
k with a p-th root of unity ζp adjoined, given by:

(X + λ−1)p = x−m + λ−p,

where λ = ζp − 1 such that λ ≡ 0 mod mS . We set m = pq − l, 0 < l ≤ p − 1
and λX + 1 = y/xq . The model then becomes

y p = (λp + xm)xl = λpxl + xqp.

More generally xq can be replaced by a(x) = xq + x1xq−1 + · · · + xq , where xq = 0
if l �= 1, and consider the Kummer extension

(λξ + a(x))p = λpxl + a(x)p,

where ξ = Xa(x), y = λξ + a(x) = a(x)(λX + 1). This more general model is
given by

y p = λpxl + a(x)p = xl(λp + a(x)px−l).

Let R denote the Oort-Sekiguchi-Suwa factor of the versal deformation ring [4]:

R =
{
W (k)[ζp][x1, . . . , xq ] if l = 1

W (k)[ζp][x1, . . . , xq−1] if l > 1

The Bertin-Mézard model is a relative curve X → SpecR, where the horizontal
branch locus is given in Fig. 16.2.

Using the theory of Boseck for the generic fibre of R we see that the set of
differentials of the form

Fig. 16.2 Splitting the
branch locus
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xNa(x)a
(λX + 1)a

a(x)p−1(λX + 1)p−1
dx, (16.18)

where

0 ≤ a < p − 1 and l −
⌈

(1 + a)l

p

⌉
≤ N ≤ (p − 1 − a)q − 2, (16.19)

forms a basis of holomorphic differentials. This base is not suitable for taking the
reduction modulo the maximal ideal of the ring S = W (k)[ζ ] since in the reduction
λ = 0. The idea is to change the basis of the generic fibre so that no λ appears in the
numerator of the differentials. Then we use the special fibre Boseck basis to show
that the reductions are holomorphic, therefore the relative differentials are indeed
holomorphic over SpecR.

In this way, we arrive at:

Theorem 16.8 Let σ be an automorphism of X of order p �= 2 and conductor m
with m = pq − l, 1 ≤ q, 1 ≤ l ≤ p − 1. Consider the modules

Va0,a1 :=S 〈(λX + 1)a0Xi : 0 ≤ i < a1〉.

which are indecomposable S[G]-modules and define Va := V1−p,a.
The free R-module H 0(X ,ΩX ) has the following R[G] structure:

H 0(X ,ΩX ) =
p−2⊕

ν=0

V δν

ν ,

where

δν =
{
q +

⌈
(ν+1)l

p

⌉
−
⌈

(2+ν)l
p

⌉
if ν ≤ p − 3,

q − 1 if ν = p − 2.
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Chapter 17
Building and Integrating Semantic Theories
over Institutions

Nicola Angius, Maria Dimarogkona and Petros Stefaneas

Abstract This paper constitutes a first attempt at constructing semantic theories
over institutions and examining the logical relations holding between different such
theories. Our results show that this approach can be very useful for theoretical com-
puter science (and may also contribute to the current philosophical debate regarding
the semantic and the syntactic presentation of scientific theories). First we provide a
definition of semantic theories in the institution theory framework - in terms of a set
of models satisfying a given set of sentences - using the language-independent satis-
faction relation characterizing institutions (Definition17.3). Then we give a proof of
the logical equivalence holding between the syntactic and the semantic presentation
of a theory, based on the Galois connection holding between sentences and models
(Theorem17.1). We also show how to integrate and combine semantic theories using
colimits (Theorem17.2). Finally we establish when the output of a model-based soft-
ware verification method applied to a semantic theory over an institution also holds
for a semantic theory defined over a different institution (Theorem17.3).

Keywords Abstract model theory · Semantic view of theories
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17.1 Introduction

Abstract model theory studies the general properties of extensions of first-order logic
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and models. The various properties of different logics are usually explored by the
construction of a theory over a logical system. In standard abstract model theory [2],
theories are conceived as syntactic entities introduced by some set of statements. In
Institutions Theory [13], a Σ-theory over an institution is defined by a signature Σ

and a set ofΣ-sentences that are closed under semantic entailment.Morphisms of the
formΣ → Σ ′ provide language translations for theories over institutions.Σ-models
are those structures that satisfy a given set of Σ-sentences, and every Σ-theory is
associated with a collection of Σ-models satisfying Σ-statements in the Σ-theory.
The duality between sets of Σ-sentences and sets of Σ-models can be defined in
terms of Galois connections.

In this paper we use the duality characterizing sentences and models (Galois con-
nection) to define a theory over an institution as a semantic entity.Drawing inspiration
from the work of [20, 21, 23], semantic theories are here defined by a signature Σ

and a set of Σ-models. Our first main result is a proof of the logical equivalence
holding between the syntactic and the semantic presentation of a theory over the
same institution (Theorem17.1 in Sect. 17.2). Theorem17.1 provides a categorical
framework to the discussion about the logical relation holding between syntactic and
semantic theories [10, 14, 15].

The theory of institutions has been successfully applied, among other areas of
theoretical computer science, to the field of algebraic specification [8]. In particular,
theories over institutions are used to provide program specifications based on sets
of sentences describing allowed program behaviors [19]. One of the main results in
[13]was that of constructing, using institutions, “larger”specifications from“smaller”
specifications.More specifically, given two institutions I and I ′ whose signatures can
be integrated or combined, syntactic theories over I can be integrated and combined
via colimits with syntactic theories over I ′, thereby denoting “larger”specifications.
Building software specifications fromsmall specifications is very helpfulwhendevel-
oping modular systems, such as those involving object oriented programs. In such
cases, system specifications can be obtained by combining and integrating class
specifications [9].

However, many program specifications used today in software verification are
defined semantically in terms of state transition systems, including Kripke Struc-
tures or Büchi Automata. This is often the case when model checking is performed
to evaluate program correctness [3]. By defining a theory over an institution semanti-
cally we acquire ameans bywhich to build up extended and combined state transition
systems using elementary semantic specifications (Theorem17.2 in Sect. 17.3).

Finally we examine the logical relations holding between semantic theories intro-
duced using different institutions. By establishing proper morphisms between the
two different institutions, Goguen and Burstall have managed to determine when
a theorem prover successfully applied on a theory over the first institution can be
successfully applied on theories over the second institution [13]. Correspondingly,
Theorem17.3 (Sect. 17.4) establishes when the output of a model-checker applied to
a semantic theory over an institution also holds for a semantic theory defined over a
different institution.
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17.2 Syntactic and Semantic Definition of Theories
and Theory Morphisms

Institutions define logical systems abstracting away from any actual linguistic for-
mulation, focusing on the abstract satisfaction relation holding between sentences
and models. This is achieved using category theory to introduce a category Sign of
signatures, a set Set of sentences, a category Catop of models, and a satisfaction
relation |=Σ . The main intuition underpinning institution theory, and well expressed
by Tarski’s [22] motto ‘truth is invariant under the change of notation’, is that given
any two signatures Σ and Σ ′ in Sign, a Σ-sentence f is satisfied by a Σ-model m
iff the Σ ′ translation f ′ of f is satisfied by the Σ ′ translation m ′ of m. Institutions
are formally defined as follows:

Definition 17.1 (Institution) An institution I = (Sign, Sen,Mod, |=Σ) is defined
by:

1. a category Sign having signatures as objects, and signature morphisms as arrows;
2. a functor Sen : Sign → Set mapping each signature Σ in Sign to a set of Σ-

sentences;
3. a functor Mod : Sign → Catop assigning to each Σ in Sign a category whose

objects are Σ-models and whose morphisms are Σ-model morphisms;
4. a relation |=Σ⊆ |Mod(Σ)| × Sen(Σ) for eachΣ ∈ |Sign|, calledΣ-satisfaction,

such that for each signature morphism φ : Σ → Σ ′, the satisfaction condition
m ′ |=Σ ′ Sen(φ)(e) iff Mod(φ)(m ′) |=Σ e holds for each m ′ ∈ ∣

∣Mod(Σ ′)
∣
∣ and

each e ∈ Sen(Σ). �
According to Goguen and Burstall [13, p. 11], a specification provides a mathe-

matical theory of a program behavior in terms of the set of sentences describing this
behavior. Given an institution I , mathematical theories of this sort are introduced by
a signature Σ and a closed set of Σ-sentences.

Definition 17.2 (Syntactic (standard) theory over an institution)

1. A syntactic Σ-theory presentation is a pair 〈Σ, E〉 where Σ is a signature and
E is a set of Σ-sentences.

2. A Σ-model A satisfies a syntactic theory presentation 〈Σ, E〉 if A satisfies each
sentence in E , in which case we write A |= E .

3. If E is a set of Σ-sentences, let E∗ be the set1 of all Σ-models that satisfy each
sentence in E .

4. If M is a set of Σ-models, let M∗ be the set of all Σ-sentences that are satisfied
by each model in M ; M∗ also denotes 〈Σ, M∗〉.

5. By the closure of a set E of Σ-sentences we mean the set E∗∗, written E•.2

1In the terminology of axiomatic set theory, E∗ is a class of Σ-models, rather than a set [12]. For
the sake of simplicity, this paper will nonetheless consider E∗ as a set.
2E• is a model-theoretic closure of the set of Σ-sentences. For some institutions, including equa-
tional logic, a corresponding proof-theoretic notion can be given, insofar as there is a complete set
of inference rules [13].
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6. A set E of Σ-sentences is closed iff E = E•. Then a Σ-theory is a syntactic
theory presentation 〈Σ, E〉 such that E is closed.

7. The syntactic theory presented by the syntactic presentation 〈Σ, E〉 is 〈Σ, E•〉.
�

Now let us define a theory semantically, that is, as the set of models representing
a program’s potential behaviors. It should be noted how semantic Σ-theories here
defined are still mathematical theories of programs, insofar as the Σ-models intro-
ducing them prescribe program’s computations, and they do not represent observed
executions. However, the following definition of a semantic theory using institution
can be used to build empirical theories of computational systems as well [1].

Definition 17.3 (Semantic theory over an institution)

1. A semantic Σ-theory presentation is a pair 〈Σ, M〉 where Σ is a signature and
M is a set of Σ-models.

2. A Σ-model A satisfies a set of sentences E if A satisfies each sentence in E , in
which case we write A |= E .

3. If M is a set of Σ-models, let M∗ be the set of all Σ-sentences that are satisfied
by each model in M .

4. If E is a set of Σ-sentences, let E∗ be the set of all Σ-models that satisfy each
sentence in E .

5. By the closure of a set M of Σ-models we mean the set M∗∗, written M◦.3
6. A set M of Σ-sentences is closed iff M = M◦. Then a Σ-theory is a semantic

theory presentation 〈Σ, M〉 such that M is closed.
7. The semantic theory presented by the semantic presentation 〈Σ, M〉 is 〈Σ, M◦〉.

�

Definitions17.2 and 17.3 above show the particular duality existing between a
set of Σ-sentences and the closed set of Σ-models satisfying those sentences, and
between a set ofΣ-models and the closed set ofΣ-sentences satisfied by those mod-
els. Such duality constitutes aGalois connection, reflecting ‘the view that syntax and
semantics are adjoint’ [16]. In institution theory the Galois connection is formulated
as follows:

Proposition 17.1 (Galois connection) The two functions ∗:sets of Σ-sentences →
sets ofΣ-models, ∗:sets ofΣ-models→ sets ofΣ-sentences, given inDefinitions17.2
and 17.3, formwhat is known as aGalois connection, in that they satisfy the following
properties, for any sets E, E ′ of Σ-sentences and sets M, M ′ of Σ-models:

1. E ⊆ E ′ implies E ′∗ ⊆ E∗
2. M ⊆ M ′ implies M ′∗ ⊆ M∗
3. E ⊆ E∗∗
4. M ⊆ M∗∗

3In the equational institution, closed sets of models are usually called varieties. A set of models is
called closed iff its objects are all the models of some set of sentences.
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These imply the following properties:

5. E∗ = E∗∗∗
6. M∗ = M∗∗∗
7. There is a dual (i.e. inclusion reversing) isomorphism between the closed set of

sentences and the closed set of models.
8. (∪n, En)

∗ = ∩E∗
n

9. φ(E∗) = (φE)∗, for φ : Σ → Σ ′ a signature morphism. �

Proof The proofs of 1 and 2 are straightforward. We now prove 3.
Assume that E ⊆ Sen(Σ). Then E∗ = {m | (∀e ∈ E)m |= e}.
It follows that E∗∗ = {

e′ | (∀m ∈ E∗)m |= e′} = {

e′ | (∀m)m ∈ E∗ ⇒ m |= e′} =
{

e′ | (∀m) [(∀e ∈ E)m |= e] ⇒ m |= e′} .

If e′ ∈ E , and if (∀e ∈ E)m |= e, then m |= e′. It follows that
{

e′ | e′ ∈ E
} = E .

In a similar way we prove 4, and 5–9 are familiar from lattice theory [17]. In fact 8
and 9 follow easily from 7. �

Corollary17.1 below shows that any syntactically presented theory T determines
an equivalent semantically presented theory T ∗ and every semantically presented
theory V determines an equivalent syntactically presented theory V ∗; in other words,
the syntactic and semantic presentation of a theory, as defined above, are essentially
equivalent.

Corollary 17.1 (fromGalois connection)For every syntacticΣ-theory T = 〈Σ, E•〉
and every semantic Σ-theory V = 〈Σ, M◦〉:
1. T determines the semantic theory T ∗ = 〈Σ, E∗〉, consisting of all the Σ-models

that satisfy all the sentences in T . (E∗ = E∗∗∗: Galois connection 5);
2. V determines the syntactic theory V ∗ = 〈Σ, M∗〉, consistingof thoseΣ-sentences

satisfied by all models in V . (M∗ = M∗∗∗: Galois connection 6). �

In the theory of institutions, (syntactic) theories give rise to the category Th
of (syntactic) theories whose morphisms from a syntactic theory T = 〈Σ, E•〉 to
another syntactic theory T ′ = 〈Σ ′, E ′•〉 are signature morphisms of the form φ :
Σ → Σ ′ such that, for any sentence e ∈ E•, φ(e) ∈ E ′•. In a similar way, semantic
theories give rise to the category Vth of semantic theories.

Definition 17.4 (category of semantic theories) If V and V ′ are semantic theories,
say 〈Σ, M◦〉 and 〈Σ ′, M ′◦〉, then a semantic theory morphism from V to V ′ is a
signature morphism G : Σ → Σ ′ such that G(m) is in M ′◦ for each m in M◦; we
will write G : V → V ′. The category of semantic theories has semantic theories as
objects and semantic theory morphisms as morphisms, with their composition and
identities defined as for signature morphisms; let us denote it Vth (it is easy to see
that this is a category). �

In the context of a current philosophical debate regarding the syntactic and seman-
tic presentation of scientific theories, Halvorson [14] advanced the thesis that seman-
tic presentations differ from the corresponding syntactic ones in that two equivalent
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syntactic theories may result to be non-equivalent when model-theoretically pre-
sented and, vice versa, twoequivalent semantic theoriesmay turn to benon-equivalent
when syntactically defined. The notion ofmodel-theoretical equivalence that allowed
supporting such claims involves isomorphisms between non-interpreted structures
[10]. Only when models are interpreted in a fixed language, isomorphisms enable
one to establish equivalence relations between syntactic and corresponding semantic
theories [15]. However, according to some construal of the notion of semantic the-
ories (such as the one in [24]), the latter are to be identified with a set of language
independent structures and the standard notion of isomorphism in model theory can-
not be applied to prove the logic equivalence of syntactic and semantic presentations
of a given theory [15]. An institutions-based formalisation of theories allows for a
straightforward definition of both syntactic and semantic-theoretical equivalence in
a completely language independent context.

Definition 17.5 (equivalence of syntactic theories) Given an institution I , two syn-
tactic theories T = 〈Σ, E•〉 and T ′ = 〈Σ ′, E ′•〉 over I are said to be equivalent iff
there exists F : T → T ′ such that F is an isomorphism.

A morphism F : T → T ′ in category Th is an isomorphism if there exists another
morphism H : T ′ → T such that H ◦ F = 1T and F ◦ H = 1T ′ , where 1T and 1T ′

are the identity morphisms of T and T ′ respectively. �

Definition 17.6 (equivalence of semantic theories) Given an institution I , two
semantic theories V = 〈Σ, M◦〉 and V ′ = 〈Σ ′, M ′◦〉 over I are said to be equiv-
alent iff there exists G : V → V ′ such that G is an isomorphism.

A morphism G : V → V ′ in category Vth is an isomorphism if there exists another
morphism Z : V ′ → V such that Z ◦ G = 1V and G ◦ Z = 1V ′ , where 1V and 1V ′

are the identity morphisms of T and T ′ respectively. �

Theorem 17.1 Given an institution I , two syntactic theories T = 〈Σ, E•〉 and T ′ =
〈Σ ′, E ′•〉 over I are equivalent iff the semantic theories T ∗ = 〈Σ, E∗〉, and T ′∗ =
〈Σ ′, E ′∗〉 that they define are equivalent.
Proof “⇒ Suppose that T ∼= T ′. From corollary of Galois connection we know
that T and T ′ determine the equivalent semantic theories T ∗,T ′∗, that is, T ∼= T ∗
and T ′ ∼= T ′∗. Because equivalence relations are symmetric we have that T ∗ ∼= T .
Thus T ∗ ∼= T ∼= T ′ ∼= T ′∗ from which we get T ∗ ∼= T ′∗ (equivalence relations are
transitive).”

“⇐” Suppose that the semantic theories T ∗,T ′∗ determined by T , T ′ are equiva-
lent, that is T ∗ ∼= T ′∗. We know (from corollary of Galois connection) that T ∼= T ∗
and T ′ ∼= T ′∗. Because equivalence relations are symmetric we have that T ′∗ ∼= T ′.
Thus T ∼= T ∗ ∼= T ′∗ ∼= T ′, from which we get T ∼= T ′ (equivalence relations are
transitive). �
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17.3 Putting Semantic Theories Together

Theories over an institution can be used to describe a program’s behavior and thereby
to provide system specifications representing the allowed computations. One of the
main benefits coming from the application of category theory to software specifica-
tion languages is that of exploiting common categorical constructs, chiefly colimits,
to construct overall program specifications from modular, smaller, specifications
[11]. Users requirements for complex systems created the need for specifications
to become as modular as possible, built from small, understandable and re-usable
pieces. This not only facilitates understanding and writing specifications, but also
proving theorems about them, as well as proving that a given program actually sat-
isfies its specification.

Institutions allowed to considerably decrease the complexity of building software
specifications by obtaining the required modularity using parameterized abstrac-
tions. The original approach developed in [4, 5] was based on a syntactic speci-
fication language called Clear. Today, many specifications are model-theoretically
conceived, especially when dealing with model-based verification methods such as
model-checking [6]. In model-checking, system specifications are mostly provided
in terms of Kripke Structures, i.e. labelled state transition systems depicting the
allowed computations. Model-checking and many other formal methods are largely
accomplished modularly by formally verifying each program’s module in isolation
[18]. By formalising the concept of a semantic theory using institutions we get a
means by which to compose several model specifications into larger model spec-
ifications. This may be managed by considering proper theory-morphisms among
different semantic theories, each providing a module specification [1].

Definition 17.7 (diagrams and colimits in Vth)

• A diagram D : G → Vth in the category Vth of semantic theories is a graph
G = (N , E, l,m) defined by a set of nodes N , a set of edges E ⊆ N × N
between nodes, a function l : N → obj (Vth) labelling each node n ∈ N by an
object Dn of Vth, that is, a semantic theory Dn = 〈Σn, M◦

n 〉, and a function
m : E → morph(Vth) labelling each edge e ∈ E from node n to node n′ by a
theory morphism D(e) in Vth from Dn to Dn′ .

• A cone α in Vth over the diagram D consists of an object A of Vth, that is, a
semantic theory A = 〈ΣA, M◦

A〉, and a family of morphisms an : Dn ← A, one for
each n ∈ N such that for each edge e : n → n′, the diagram in Fig. 17.1 commutes
in Vth. We call diagram D base of the cone α, A its apex, graph G its shape, and
we write α : D ⇒ A.

• One can consider now the category of cones Cone(D,Vth) over D in Vth whose
objects are cones with base D and whose morphisms are cone morphisms. Given
two cones α and β with base D and apexes A = 〈ΣA, M◦

A〉 and B = 〈ΣB, M◦
B〉,

a morpshism of cones α → β is a theory morphism f : A → B in Vth such that
for each node in G the diagram of Fig. 17.2 commutes in Vth.

• Finally, a colimit of D in Vth is an initial object in Cone(D,Vth). �
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Fig. 17.1 A cone α over a
diagram D in the category of
semantic theories Vth

Fig. 17.2 A diagram
showing a morphism of
cones α → β

Colimits in the category of semantic theories Vth provide larger specifications
resulting from the combination of starting module-semantic theories. Consistently
with the analysis of [13], the existence of such colimits may be ascertained by veri-
fying that colimits are given in the corresponding category of signatures Sign. Infor-
mally, if there is a theory morphism in Vth for every signature morphism in Sign,
we assume that colimits in Sign reflect colimits in Vth. To prove this formally,
let us first introduce the forgetful functor Sign : Vth → Sign defined by mappings
V = 〈Σ, M◦〉 → Σ from semantic theories to signatures, and ψ → ψ from theory
morphisms to signature morphisms. Then:

Theorem 17.2 The forgetful functor Sign : Vth → Sign reflects colimits.

Proof Suppose that D : G → Vth is a diagram in Vth, say with Dn = 〈Σn, Mn〉 for
n ∈ |G|. Let D′ = Sign ◦ D : G → Sign be the corresponding diagram in Sign, in
which D′

n = Σn .
Now let α′ : D′ ⇒ Σ be a colimit cone for D′. We have to find a colimit cone α

for D such that Sign(α) = α′.We define D = 〈Σ, M〉whereM = (∪n∈|G|αn(Mn))
◦

and we define αn = α
′
n for all n ∈ |G|. Then each αn is a theory morphism and we

claim that α = 〈αn : 〈Σn, Mn〉 → 〈Σ, M〉|n ∈ |G|〉 is a colimit cone over D in Vth.
For suppose that β

′′ = 〈βn : 〈Σn, Mn〉 → 〈�, O〉|n ∈ |G|〉 is another cone over D
in Vth. Then applying Sign to everything, we get a unique φ : Σ → � such that
αn ◦ φ = βn for each n ∈ |G|. Thus, there is at most oneψ : 〈Σ, M〉 → 〈�, O〉 such
that αn ◦ ψ = βn for all n ∈ |G|, namely φ. Therefore all we need to show is that φ
is a theory morphism. Because βn : 〈Σn, Mn〉 → 〈�, O〉 is a theory morphism, we
have βn(Mn) ⊆ O . Therefore ∪n∈|G|βn(Mn) ⊆ 0 and so
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φ(M) = φ

((
⋃

n

αnM(n)

)◦)
⊆

(
⋃

n

αn ◦ φM(n)

)◦
=

(
⋃

n

βnM(n)

)◦
⊆ 0

where the first inclusion follows from the Closure Lemma.4 �

17.4 Using More Than One Institution

Institutions theory allows not only to examine relations between theories over the
same institution in terms of theory morphisms, but also to consider relations that
can be established between theories over different institutions. Indeed, the same pro-
gram specification may be formalised into different languages requiring the usage
of different institutions, especially when different formal verification techniques are
to be applied, and different institutions might be essential when providing speci-
fications for different modules of a program. Institution morphisms are mappings
holding between two heterogeneous institutions which are commonly defined in the
following way:

Definition 17.8 (Institutionmorphism)Given two institutions I = (Sign, Sen,Mod,

|=Σ) and I ′ = (Sign′, Sen′,Mod′, |=′
Σ), an institution morphism φ : I → I ′ is

defined by:

1. a functor φ : Sign → Sign′ expressing a translation of signatures;
2. a natural transformation α : φ ◦ Sen′ ⇒ Sen, that is, a natural family of functions

αΣ : Sen′(φ(Σ)) → Sen(Σ);
3. a natural transformationβ : Mod ⇒ φ ◦ Mod′, that is, a natural family of functors

βΣ : Mod(Σ) → Mod′(φ(Σ)), such that the following satisfaction condition
holds

A |=Σ αΣ(e′) iff βΣ(A) |=′
φ(Σ) e

′

for A a Σ-model from I and e′ a φ(Σ)-sentence from I ′. �
The natural transformations of 2 and 3 above translate sentences and models satisfy-
ing those sentences according to some signature translation provided by the proper
functor; note that the satisfaction condition is still required to be independent from
those translations.

Establishing morphisms between different institutions providing specifications
for the same program (module) allowed institutions theory to be very useful in defin-
ing when a theorem prover appropriate for a particular institution could be used on
specifications within a different institution, this being a further fundamental result
advanced in [13] in the application of the Theory of Institution to the program verifi-
cation problem. Similarly, when program specifications are expressed semantically

4Closure Lemma: For any morphism φ : Σ → Σ
′
and sets F, F

′
of Σ− sentences: φ(F◦) ⊆

φ(F)◦.
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using institutions, morphisms holding between different institutions for the same
program (module) may establish when the output of a model checker applied to a
particular institution also holds for another.

Definition 17.9 (sound institution morphism) An institution morphism φ : I → I ′
is sound iff for every signature Σ ′ and every Σ ′-model m ′ from I ′, there are a
signature Σ and a Σ-model m from I such that m

′ = βΣ(m). �

For example, the institution morphism FOEQ → EQ, from first order equational
logic to equational logic, is sound.

Theorem 17.3 Given a sound institution morphism φ : I → I ′, for any model m ′ ∈
M ′◦ in a theory 〈Σ ′

, M ′◦〉 and any set of sentences E ′, if m ′ |= E ′, then there is a
model m ∈ M◦ in 〈Σ, M◦〉 such that m |= αΣ(E ′).

Proof Assume that m
′ |= E

′
. Because φ is a sound institution morphism we have

that there is a signature Σ and a Σ-model m such that m
′ = βΣ(m). Thus we have

βΣ(m) |= E
′ ⇐⇒ m |= αΣ(E

′
) because of the definition of an institutionmorphism

(point 3). �

17.5 Conclusions and Future Developments

This paper showed how institutions theory can be used to construct semantic theories
formalising programs’ module specifications. Proving that syntactic and semantic
theories over an institution are logically equivalent, paves the way for extending
extant work on algebraic specifications to the case of semantic specifications. We
provided some initial results in this direction, showing how to integrate semantic
theories over the same institution using colimits, and to establish when two semantic
theories built over different institutions share the same properties (i.e. satisfy the
same set of sentences, independently of the chosen signature).

Future developments will deal with the problem of representing, and specifying,
new program behaviors resulting from the interactions of different program mod-
ules. This may be achieved by considering categorical constructs between semantic
theories over different institutions, in particular, colimit theories defining models
representing, besides the executions of the source modules, module-interaction com-
putations. Constructs of this sort are very useful in modular specification activities,
in case different logics are required to provide module specifications. To do so, it will
be required to build duplex institutionswhich be model-theoretically defined, that is,
the new institutions are to be obtained by linking models of theories over the source
and target institutions. Depending on the kind of morphism one establishes between
the two starting institutions, duplex institutions may specify different typologies of
module interactions in programming and verification. Indeed, institution morphisms
in the category of institutions Ins can be used to model refinements, integrations,
and compositions of modules in a program [9]. Semantic theories over integrating
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or composing duplex institutions will thereby be able to provide specifications over
those module interactions and compositions.

As stated in the introduction, theories representing specified program behaviors
are defined here on the basis of the semantic approach to scientific theories developed
in philosophy of science [20, 21, 23]. The examination of the logical relations holding
among different semantic theories advanced in this paper sheds new light on the
nature of semantic theories and their logical properties, which are usually examined
using model theory.

One straightforward application concerns the debate, mentioned in Sect. 17.2,
about the theoretical equivalence between syntactic and semantic presentations of
theories. Institutions allow one to define a notion of logical equivalence which
is language-independent, thereby satisfying the language-independence condition
demanded for semantic theories.Moreover, morphisms in the categoriesTh andVth,
and specified functors mapping those morphisms, can be used to clarify the relations
holding between sentences and their model classes. Indeed, a related problem in
formal philosophy of science is that of establishing whether that is a one-to-many
or a many-to-many relation [14, 15]. Institutions theory can be applied to specify
the categorical structure of the many-to-many relation between sentences and model
classes. Another area of application for institutions theory finally concerns themodu-
lar nature ofmany scientific theories (see for instance [7]).Morphisms in the category
Vth of semantic theories may be used to define logic relations holding among the
different models of themodular theory. Not only: refinements, integrations, and com-
positions of models in a modular theory can be expressed by considering institution
morphisms in the category Ins of institutions. Refinements in particular can be very
useful to provide a logical analysis of the theory-revision processes for semantic
theories.
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Chapter 18
Generic Constructions and Generic Limits

Sergey V. Sudoplatov, Yiannis Kiouvrekis and Petros Stefaneas

Abstract We collect results related to generic constructions and generic limits for
semantic and syntactic cases. It is considered both by pure model theory approach
and by the institutional approach.

Appeared first in Fraïssé’s papers [7, 8] generic constructions allowed, via generic
limits, to solve a series of known model-theoretic problems and to apply for the
solutions of related questions.

At present survey we consider both semantic and syntactic generic constructions
and their applications. These constructions are considered both from pure model
theory and institutional viewpoints.

The survey is organized as follows. In Sect. 18.1 we recall the semantic generic
constructions and Theorem on existence of generic structure being a generic limit.
Section18.2 contains references for some known applications of semantic generic
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constructions. In Sect. 18.3 we describe, in details, the syntactic approach to generic
constructions, some valuable variations of this approach and results on properties of
generic structures. Section18.4 deals with so-called adapted generic classes allow-
ing to construct structures following the structures of formulas in given diagrams.
Properties of structural diagrams and corresponding generic structures are described
in Sect. 18.5. In Sect. 18.6, we propose an application of the syntactic approach for
the class of cubic theories producing the description of spectrum functions for the
class of cubic theories. In Sect. 18.7, we consider related topological objects for
generic classes producing a classification of models with respect these objects. An
institutional generalization of generic constructions and generic limits is considered
in Sect. 18.8.

18.1 Semantic Generic Constructions and Generic Limits

Definition 18.1 [1, 13, 24, 42] Let K0 be a class of finite structures of at most
countable predicate language, endowed with a partial order relation � which is
invariant under the transition to isomorphic structures, connoting the property of
being a self-sufficient structure, or strong substructure. The class (K0;�) is called
generic, generative, or amalgamation if it satisfies the following axioms:

(1) if A � B, then A ⊆ B;
(2) if A � C ,B ∈ K0, and A ⊆ B ⊆ C , then A � B;
(3) ∅ is the least element of the system (K0;�);
(4) (the amalgamation property) for any structures A , B, C ∈ K0, having

embeddings f0 : A → B and g0 : A → C such that f0(A ) � B and g0(A ) � C ,
there are a structure D ∈ K0 and embeddings f1 : B→ D and g1 : C → D for
which f1(B) � D , g1(C ) � D and f0 ◦ f1 = g0 ◦ g1; the structure D is called the
amalgam ofB and C over the structure A and the four ( f0, g0, f1, g1).

With the partially ordered class (K0;�), being defined above and with at most
countably many isomorphism types, taking finite structures in K0 and using the
amalgamation (i. e., embedding the structuresB and C overA in structures D so
as to comply with the amalgamation property), we construct step-by-step a countable
(K0;�)-generic structureM , that is also called aHrushovski limit for (K0;�)), i. e.,
a structure satisfying the following conditions:

(a) for any finite substructure A ⊆M , there is a structure B ∈ K0, A ⊆ B ⊆
M , forwhichB �M , i. e.,B � B′ for any structureB′ ∈ K0 withB ⊆ B′ ⊆M ;

(b) for any finite substructure A ⊆M and any structure B ∈ K0 such that
A � B, there is a structureB′ �M for which B 	A B′.

Note that for particular cases, when a generic class (K0;�) have the relation �
which is equal to ⊆ (i. e., K0 is closed under substructures), the class (K0;�) is
called the Fraïssé class and the Hrushovski limit is called the Fraïssé limit [9, 15].
In such a case finite structures can be replaced by finitely generated structures.

By the definition of Hrushovski limit, the following theorem holds.
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Theorem 18.1 ([1, Theorem 2.12]) For any partially ordered class (K0;�), satis-
fying conditions 1–4 and having at most countably many isomorphism types, there
exists a (K0;�)-generic structure.

The scheme above represents a semantic approach to constructing a generic
structure M and the corresponding generic theory Th(M ).

The utility of the semantic approach for realizations of desired model-theoretic
properties has confirmed by numerous examples (see the bibliography, reflected in
the historical survey) for the cases when predicates are independent, i. e., are not
definable in terms of each other.

18.2 Applications for Model-Theoretic Purposes

Fraïssé limits used in constructions of ω-categorical structures with quantifier elim-
ination, random and induced structures [15].

E. Hrushovski [16] has refuted Zilber conjecture constructing examples of
strongly minimal theories which are not locally modular and in which infinite groups
are not interpreted.His original construction, being a basis for constructions of related
examples and for the further solutions of others known model theoretical problems,
stimulated intensive investigations of Hrushovski construction itself and its various
modifications (in wide sense), capable to create “pathological” theories with given
properties as well as axiomatic bases and their applications, allowing to determine
applicability bounds for that construction (see [38] for references).

Topological applications of semantic generic constructions are represented in
[17–19].

18.3 Syntactic Generic Constructions and Generic Limits

18.3.1 Notions and Properties

We consider collections of sentence and formulas in first order logic over a language
�. Thus, as usual, 
means proof from no hypotheses deducing 
 ϕ for a formula ϕ

of language �, which may contain function symbols and constants. If deducing ϕ,
hypotheses in a set Φ of formulas can be used, we write Φ 
 ϕ. Usually � will be
fixed in context and not mentioned explicitly.

Belowwewrite X,Y, Z , . . . for finite sets of variables, and denote by A, B,C, . . .

finite sets of elements, as well as finite sets in structures, or else the structures with
finite universes themselves.

In diagrams, A, B,C, . . . denote finite sets of constant symbols disjoint from
the constant symbols in � and �(A) is the vocabulary with the constants from
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A adjoined. Φ(A),�(B),X(C) stand for �-diagrams (of sets A, B, C), that is,
consistent sets of �(A)-, �(B)-, �(C)-sentences, respectively.

Below we assume that for any considered diagram Φ(A), if a1, a2 are distinct
elements in A then ¬(a1 ≈ a2) ∈ Φ(A). This means that if c is a constant symbol in
�, then there is at most one element a ∈ A such that (a ≈ c) ∈ Φ(A).

If Φ(A) is a diagram and B is a set, we denote by Φ(A)|B the set {ϕ(ā) ∈ Φ(A) |
ā ∈ B}. Similarly, for a language �, we denote by Φ(A)|� the restriction of Φ(A)

to the set of formulas in the language �.

Definition 18.2 [30, 31, 34, 36, 38] We denote by [Φ(A)]AB the diagram Φ(B)

obtained by replacing a subset A′ ⊆ A by a set B ′ ⊆ B of constants disjoint from
� and with |A′| = |B ′|, where A \ A′ = B \ B ′. Similarly we call the consistent
set of formulas denoted by [Φ(A)]AX the type Φ(X) if it is the result of a bijective
substitution into Φ(A) of variables of X for the constants in A. In this case, we
say that Φ(B) is a copy of Φ(A) and a representative of Φ(X). We also denote the
diagram Φ(A) by [Φ(X)]XA .
Remark 18.1 If the vocabulary contains functional symbols then diagrams Φ(A)

containing equalities and inequalities of terms can generate both finite and infinite
structures. The same effect is observed for purely predicate vocabularies if it is
written in Φ(A) that the model for Φ(A) should be infinite. For instance, diagrams
containing axioms for finitely axiomatizable theories have this property.

By the definition, for any diagram Φ(A), each constant symbol in � appears in
some formula of Φ(A). Thus, Φ(A) can be considered as Φ(A ∪ K ), where K is
the set of constant symbols in �.

We now give conditions on a partial ordering of a collection of diagrams which
suffice for it to determine a structure.Wemodify some of the conditions for structures
by d to signify they are conditions on diagrams not structures.

Definition 18.3 [30, 31, 34, 36, 38] Let � be a vocabulary. We say that (D0;�)

(or D0) is generic, or generative, if D0 is a class of �-diagrams of finite sets so that
D0 is partially ordered by a binary relation � such that � is preserved by bijective
substitutions, i. e., if Φ(A) � �(B), and A′ ⊆ B ′ such that [Φ(A)]AA′ = Φ(A′) and
[�(B)]BB ′ = �(B ′) are defined, then [Φ(A)]AA′ , [�(B)]BB ′ are in D0 and [Φ(A)]AA′ �[�(B)]BB ′ .1 Furthermore:

(i) if Φ(A) ∈ D0 then for any quantifier free formula ϕ(x̄) and any tuple ā ∈ A
either ϕ(ā) ∈ Φ(A) or ¬ϕ(ā) ∈ Φ(A);

(ii) if Φ � � then Φ ⊆ �2;
(iii) if Φ � X, � ∈ D0, and Φ ⊆ � ⊆ X, then Φ � �;
(iv) some diagram Φ0(∅) is the least element of (D0;�);

1Note that D0 is closed under bijective substitutions since � is preserved by bijective substitutions
and � is reflexive.
2Note that Φ(A) � �(B) implies A ⊆ B, since if a ∈ A then (a ≈ a) ∈ Φ(A), so Φ(A) � �(B)

implies Φ(A) ⊆ �(B) and we have (a ≈ a) ∈ �(B), whence a ∈ B.
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(v) (the d-amalgamation property) for any diagrams Φ(A), �(B), X(C) ∈ D0,
if there exist injections f0 : A→ B and g0 : A→ C with [Φ(A)]Af0(A) � �(B) and
[Φ(A)]Ag0(A) � X(C), then there are a diagram �(D) ∈ D0 and injections f1 : B →
D and g1 : C → D for which [�(B)]Bf1(B) � �(D), [X(C)]Cg1(C) � �(D) and f0 ◦
f1 = g0 ◦ g1; the diagram �(D) is called the amalgam of �(B) and X(C) over the
diagram Φ(A) and witnessed by the four maps ( f0, g0, f1, g1);

(vi) (the local realizability property) if Φ(A) ∈ D0 and Φ(A) 
 ∃x ϕ(x),
then there are a diagram�(B) ∈ D0,Φ(A) � �(B), and an element b ∈ B forwhich
�(B) 
 ϕ(b);

(vii) (the d-uniqueness property) for any diagrams Φ(A),�(B) ∈ D0 if A ⊆ B
and the set Φ(A) ∪�(B) is consistent then Φ(A) = {ϕ(b̄) ∈ �(B) | b̄ ∈ A}.

A diagram Φ is called a strong subdiagram of a diagram � if Φ � �.
A diagramΦ(A) is said to be (strongly) embeddable in a diagram�(B) if there is

an injection f : A→ B such that [Φ(A)]Af (A) ⊆ �(B) ([Φ(A)]Af (A) � �(B)). The
injection f , in this instance, is called a (strong) embedding of diagram Φ(A) in
diagram �(B) and is denoted by f : Φ(A)→ �(B). A diagram Φ(A) is said to be
(strongly) embeddable in a structure M if Φ(A) is (strongly) embeddable in some
diagram �(B), where M |= �(B). The corresponding embedding f : Φ(A)→
�(B), in this case, is called a (strong) embedding of diagram Φ(A) in structure M
and is denoted by f : Φ(A)→M .

Let D0 be a class of diagrams, P0 be a class of structures of some language, and
M be a structure in P0. The class D0 is cofinal in the structure M if for each finite
set A ⊆ M , there are a finite set B, A ⊆ B ⊆ M , and a diagram Φ(B) ∈ D0 such
that M |= Φ(B). The class D0 is cofinal in P0 if D0 is cofinal in every structure of
P0. We denote by K(D0) the class of all structures M with the condition that D0 is
cofinal in M , and by P a subclass of K(D0) such that each diagram Φ ∈ D0 is true
in some structure in P.

Now we extend the relation � from the generative class (D0;�) to a class of
subsets of structures in the class K(D0).

LetM be a structure inK(D0), A and B be finite sets inM with A ⊆ B. We call
A a strong subset of the set B (in the structure M ), and write A � B, if there exist
diagrams Φ(A),�(B) ∈ D0, for which Φ(A) � �(B) and M |= �(B).

A finite set A is called a strong subset of a setM0 ⊆ M (in the structureM ), where
A ⊆ M0, if A � B for any finite set B such that A ⊆ B ⊆ M0 and Φ(A) ⊆ �(B)

for some diagrams Φ(A),�(B) ∈ D0 with M |= �(B). If A is a strong subset of
M0 then, as above, we write A � M0. If A � M in M then we refer to A as a self-
sufficient set (inM ).

Notice that, by the d-uniqueness property, the diagramsΦ(A) and�(B) specified
in the definition of strong subsets are defined uniquely. A diagram Φ(A) ∈ D0,
corresponding to a self-sufficient set A in M , is said to be a self-sufficient diagram
(inM ).
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Definition 18.4 [30, 31, 34, 36, 38] A class (D0;�) possesses the joint embedding
property (JEP) if for any diagramsΦ(A),�(B) ∈ D0, there is a diagram X(C) ∈ D0

such that Φ(A) and �(B) are strongly embeddable in X(C).

Clearly, every generative class has JEP since JEP means the d-amalgamation
property over the empty set.

Definition 18.5 [30, 31, 34, 36, 38] A structure M ∈ P has finite closures with
respect to the class (D0;�), or is finitely generated over �, if any finite set A ⊆ M
is contained in some finite self-sufficient set in M , i. e., there is a finite set B
with A ⊆ B ⊆ M and�(B) ∈ D0 such thatM |= �(B) and�(B) � X(C) for any
X(C) ∈ D0 withM |= X(C) and �(B) ⊆ X(C). A class P has finite closures with
respect to the class (D0;�), or is finitely generated over �, if each structure in P has
finite closures (with respect to (D0;�)).

Clearly, an at most countable structure M has finite closures with respect to
(D0;�) if and only if M = ⋃

i∈ω
Ai for some self-sufficient sets Ai with Ai � Ai+1,

i ∈ ω.
Note that the finite closure property is defined modulo � and does not correlate

with the cardinalities of algebraic closures. For instance, if � contains infinitely
many constant symbols then acl(A) is always infinite whereas a finite set A can or
can not be extended to a self-sufficient set.

Besides, for the finite closures of sets A we consider finite self-sufficient exten-
sions B in a given structure M with respect to (D0;�) only and B can be both a
universe of a substructure ofM or not. Moreover, it is permitted that corresponding
diagrams �(B) can have only finite, finite and infinite, or only infinite models.

Thus, for instance, a finitely axiomatizable theory without finite models and with
a generative class (D0;⊆), containing diagrams for all finite sets and with axioms in
diagrams, has identical finite closures whereas each diagram in D0 has only infinite
models.

Definition 18.6 [30, 31, 34, 36, 38] A structure M ∈ K(D0) is (D0;�)-generic,
or a generic limit for the class (D0;�) and denoted by glim(D0;�), if it satisfies the
following conditions:

(a) M has finite closures with respect to D0;
(b) if A ⊆ M is a finite set, Φ(A),�(B) ∈ D0,M |= Φ(A) and Φ(A) � �(B),

then there exists a set B ′ � M such that A ⊆ B ′ and M |= �(B ′).

Theorem 18.2 ([34, 36, 38]) For any generative class (D0;�) with at most count-
ably many diagrams whose copies formD0, there exists a (D0;�)-generic structure.

Note that [23, Theorem 2.1] implies that Theorem 18.2 does not hold for some
generative classes (D0;�)with uncountable languages and corresponding to seman-
tic amalgamation classes. It means that for some uncountable languages there are
amalgamation classes (K0;⊆) without Fraïssé limits, i. e., without (K0;⊆)-generic
structures. In such a case the class (K0;⊆) can be extended to an amalgamation
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class (K′0;⊆) with (K′0;⊆)-generic structure. The classK′0 can be defined taking all
finitely generated substructures of a structure M which collects copies of all struc-
tures inK0 and should have new isomorphism types with respect toK0. The classK′0
can be considered as a “closure” of the classK0 (with respect toM ). Clearly,K′0 can
vary depending onM and the question is: is it possible to find the leastK′0 ⊃ K0, or
at least a minimal one, with (K′0;⊆)-generic structure? The same question arises for
generative classes (D0;�) with uncountable languages, modulo classes generating
isomorphic structures.

Considering these questions we note that the only obstacle for the existence of a
(D0;�)-generic structure, actually noticed by Kudaibergenov [23], is an imbalance
between cardinalities of definable sets forced by diagrams in D0 with their amal-
gams and cardinalities of definable links forced by formulas in these diagrams. By
Theorem 18.2 this imbalance can start with generative classes (D0;�) having at
least uncountably many copies which are not linked by substitutions. In particular, it
can be forced by generative classes with uncountable vocabularies. Thus, if the least
(minimal) “closure” exists, then it can be achieved adding the least (minimal) class
of diagrams which removes that imbalance.

Theorem 18.3 ([30]) Every ω-homogeneous structure M is (D0;�)-generic for
some generative class (D0;�).

Thus any first-order theory has a generic model and therefore can be represented
by it.

Definition 18.7 [30, 31, 34, 36, 38] A generic class (D0;�) is self-sufficient if the
following axiom of self-sufficiency holds:

(viii) if Φ,�,X ∈ D0, Φ � �, and X ⊆ �, then Φ ∩ X � X.

Theorem 18.4 ([34, 36, 38]) Let (D0;�) be a self-sufficient class, M be at most
countable (D0;�)-generic structure, and K be the class of all models of T =
Th(M ) which has finite closures. Then the generic structureM is homogeneous.

Thus, since any ω-homogeneous structure can be considered as generic with
respect to a generic class with complete diagrams, a countable structureM is homo-
geneous if and only if it is generic for an appropriate self-sufficient generic class
(D0;�).

18.3.2 Pre-generative Classes

Definition 18.8 [30] Consider the following modification of the d-amalgamation
property for a class (D0;�):

(v′) for any diagramsΦ(A), �(B),X(C) ∈ D0, if there exist injections f0 : A→
B and g0 : A→ C with [Φ(A)]Af0(A) � �(B) and [Φ(A)]Ag0(A) � X(C) such that

B \ A = B \ f0(A),C \ A = C \ g0(A), (B \ A) ∩ (C \ A) = ∅ and [�(B)] f0(A)

A ∪
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[X(C)]g0(A)

A is consistent, then there are a diagram �(D) ∈ D0 and injections f1 :
B → D and g1 : C → D for which [�(B)]Bf1(B) � �(D), [X(C)]Cg1(C) � �(D) and
f0 ◦ f1 = g0 ◦ g1.
Note that replacing the d-amalgamation property in the definition of generative

class by (v′) it suffices to use only identical embeddings for the construction of
(D0;�)-generic structure.

By the definition every generative class (D0;�) is generated by a set D′0 of dia-
grams in D0 such that each Φ(A) ∈ D0 has a copy Φ(A′) ∈ D′0.

Let D′0 be a class (in particular, a set) of diagrams Φ(A) over finite sets A, in a
language �, such that a set of some copies for all elements in D′0 is consistent and
for eachΦ(A) ∈ D′0, ϕ(ā) ∈ Φ(A) or¬ϕ(ā) ∈ Φ(A) for any quantifier-free formula
ϕ(x̄) and any tuple ā ∈ A.

Definition 18.9 [30] We say that D′0 is pre-generic, or pre-generative, if it is
equipped with a partial order �′0 satisfying conditions (ii), (iii), (vii) for (D′0;�0) as
well as the property of invariance for �0 under bijective substitutions as follows:

if Φ(A) �0 �(B), A′ ⊆ B ′ and [Φ(A)]AA′, [�(B)]BB ′ ∈ D′0 then [Φ(A)]AA′ �0

[�(B)]BB ′ .
In this case, we also say that (D′0;�0) is pre-generic, or pre-generative.

By the definition every generative class is pre-generative but not vice versa.
Having the axiom (viii) for a pre-generative class (D′0;�0) we also say that

(D′0;�0) is self-sufficient.

Definition 18.10 [30] A (pre-)generative class (D′0;�0) is regular if for any copies
Φ1(A1), . . . , Φn(An) of elements in D′0 with consistent Φ1(A1) ∪ . . . ∪Φn(An), we
have Φ1(A1) ∩ . . . ∩Φn(An) = Φi (Ai )|(A1∩...∩An), i = 1, . . . , n.

A (pre-)generative class (D′0;�0) is non-refinable if for any Φ(A) ∈ D′0 and B
with B ⊂ A, there is �(B) ∈ D′0 such that �(B) ⊂ Φ(A), and �0 = ⊆.

By the axiomofd-uniqueness, every non-refinable (pre-)generative class is regular
and self-sufficient. Note that each consistent set of complete diagrams, in a given
language, is regular and its closure under complete subdiagrams is non-refinable.

Clearly, if (D0;�) is a generative class then for any D′0 ⊆ D0 the restriction
(D0;�)|D′0 is pre-generative. At the same time the following theorem holds:

Theorem 18.5 ([30]) Any regular pre-generative class (D′0;�0) can be extended to
a non-refinable generative class (D0;�).

18.4 Adapted Generative Classes

Definition 18.11 [34, 36, 38] Let (D0;�) and (D′0;�′) be generative classes of
languages � and �′, respectively, with � ⊆ �′. We say that the class (D′0;�′)
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dominates the class (D0;�), and writeD0 ≤ D′0, if for any diagramΦ(A) ∈ D0 there
is a diagramΦ ′(A′) ∈ D′0 such thatΦ(A) ⊆ Φ ′(A′), and the condition of there being
some systems, which are extensions over A, together with available information on
interrelations of elements in these extensions written in the diagram Φ(A), implies
that the same extensions exist over A, and that similar information is available on
interrelations of elements in those extensions written in the diagram Φ ′(A′).

If D0 ≤ D′0 and D′0 ≤ D0 we say that generative classes (D0;�) and (D′0;�′) are
domination-equivalent and write D0 ∼ D′0.

It is easy to see that ∼ is an equivalence relation, and by uniqueness of homo-
geneous structures realizing same set of types if generative classes are domination-
equivalent then these classes produce isomorphic generic structures. We have the
converse implication for quantifier-free generative classes.

At the same time, there are generative classes, being not∼-equivalent but forming
isomorphic generic structures. For instance, the structure 〈Q;≤〉, having a finitely
axiomatizable theory with an axiom ϕ0, is generated both by the quantifier-free
generative class (D0;�) (whose diagrams describe ≤-links of elements for finite
subsets ofQ) and by the generative class (D′0;�′), where each diagram contains the
axiom ϕ0. Clearly, D0 ≤ D′0 and D′0 �≤ D0.

Similar the skolemization of theories we define special generative classes adapted
to the semantic of given formulae.

Definition 18.12 [31] Let (D0;�) be a generative class, M be a (D0;�)-generic
structure,

ϕ(x1, . . . , xm) � Q1y1 . . .Qn ynψ(x1, . . . , xm, y1, . . . , yn)

be a formula in prenex normal form, Qi ∈ {∀, ∃}, ψ is a quantifier-free formula,
M |= ϕ(a1, . . . , am) for some a1, . . . , am ∈ M . (D0;�) is called ϕ(a1, . . . , am)-
adapted, or briefly ϕ-adapted, if it satisfies the following conditions:

(1) if ϕ is an existential formula then for any diagram Φ(A) ∈ D0, where
A �= ∅ andΦ(A) ∪ {ϕ(a1, . . . , am)} is consistent, there are a′1, . . . , a′n ∈ A such that
Φ(A) 
 ψ(a1, . . . , am, a′1, . . . , a′n);

(2) if ϕ has the form ∀y′1, . . . , y′k∃y′′1 , . . . , y′′l χ and for Φ(A) ∈ D0, Φ(A) 

ϕ(a1, . . . , am) then for any�(B) ∈ D0 with�(B) ⊃ Φ(A), and for any a′1, . . . , a′k ∈
A, there are b1, . . . , bl ∈ B such that

�(B) 
 χ(a1, . . . , am, a′1, . . . , a
′
k, b1, . . . , bl).

Theorem 18.6 ([31]) For any generative class (D0;�) of language � and for any
formula ϕ satisfied in a (D0;�)-generic structure, there is a ϕ-adapted generative
class (D′0;�′) such that D′0 ∼ D0.
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18.5 Structural Diagrams and Canonical Structures

Definition 18.13 [31]Let (D0;�)be a generative class in a language�,Φ(A) ∈ D0.
The diagram Φ(A) is called structural if it satisfies the following modification of

the local realizability property:
(vi′) if Φ(A) 
 ∃x ϕ(x) then there is a constant term t (ā), ā ∈ A, such that

Φ(A) 
 ϕ(t (ā)).

Theorem 18.7 ([31])For any diagramΦ(A) ∈ D0, A �= ∅, the following conditions
are equivalent:

(1) Φ(A) is structural;
(2) there exists a structureM consisting of some constant terms in the language

� ∪ A and such that M |= Φ(A).

By Theorem 18.7, any structural diagram Φ(A), for A �= ∅, defines the algebra
with the universe N/∼ being the restriction of N /∼ to the functional sublanguage
and finitely generated by A (relative constant symbols in �). At the same time, for
quantifier-free diagrams, this condition is sufficient:

Corollary 18.1 [31] Any quantifier-free diagram Φ(A) ∈ D0 is structural.

Theorem 18.7 also implies

Corollary 18.2 [31] If a generative class (D0;�) consists of structural diagrams
then the (D0;�)-generic structure is isomorphic to a union of representations of
canonical structures for diagrams in D0.

Corollary 18.3 [31] If (D0;�) is a quantifier-free generative class then the (D0;�)-
generic structure is isomorphic to a union of representations of canonical structures
for diagrams in D0.

Definition 18.14 [31] A diagram Φ(A) ∈ D0 is called self-structural if A �= ∅ and
Φ(A) satisfies the following:

(vi′′) if Φ(A) 
 ∃x ϕ(x) then there is an element a ∈ A such that Φ(A) 
 ϕ(a).

Proposition 18.1 ([31]) For any diagram Φ(A) ∈ D0, A �= ∅, the following condi-
tions are equivalent:

(1) Φ(A) is self-structural;

(2) if Φ(A) 
 ∃x ϕ(x) then Φ(A) 
 ∃x
(

ϕ(x) ∧ ∨

a∈A
(x ≈ a)

)

;

(3) there exists a structure A having the universe A and such that A |= Φ(A).

Proposition 18.1 implies

Corollary 18.4 [31] A quantifier-free diagram Φ(A) ∈ D0, where A �= ∅, is self-
structural if and only if for the sublanguage �F consisting of all functional symbols
in�, there exists an algebraA having the universe A and such thatA |= Φ(A)|�F .
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Corollary 18.5 [31] Any quantifier-free diagram Φ(A) ∈ D0 in a relational lan-
guage, where A �= ∅, is self-structural.
Corollary 18.6 [31] If a generative class (D0;�), in a language �, consists of a
diagram Φ0(∅) and of self-structural diagrams (over non-empty sets) then (D0;�)

is ϕ-adapted for any formula ϕ in the language �.

Proposition 18.2 ([31]) LetM be a (D0;�)-generic structure, for a quantifier-free
generative class (D0;�), such that its restriction to the sublanguage �F consisting
of all functional symbols in� is a locally finite algebra. Then (D0;�) is domination-
equivalent to a generative class (D′0;�′) consisting of a diagram Φ0(∅) and only
self-structural diagrams Φ(A) for A �= ∅.

18.5.1 Generative Classes for Finite Structures

Let (D0;�) is a generative class. IfΦ(A) is a diagram inD0 having a proper extension
in D0 and such that A �= ∅ then removing Φ(A) and all its copies from (D0;�) we
get the generative class (D0;�) \ {Φ(A)} domination-equivalent to (D0;�). At the
same time, staying in the family of generative classes, we can not remove from
(D0;�) the diagram Φ0(∅) as well as, preserving the domination-equivalence, a
maximal diagram Φ(A) such that it does not have proper extensions in (D0;�).
Clearly,maximal diagramsΦ(A) are self-structural and,moreover, describe (D0;�)-
generic structures with the universe A ∪ C , where C is the set of constant symbols.
It means that Φ0(∅) and copies of Φ(A) form a minimal generative class being
domination equivalent to (D0;�). Moreover, the maximal diagram Φ(A) producing
a representation, with the universe A ∪ C , ofΦ(A)-canonical structure can be chosen
quantifier-free.

Thus we get

Theorem 18.8 ([31]) For a generative class (D0;�)with a language having a finite
set C of pairwise distinct constants, the following conditions are equivalent:

(1) the (D0;�)-generic structure is finite;
(2) (D0;�) has maximal diagrams;
(3) (D0;�) is domination-equivalent to a minimal generative class consisting of

a diagram Φ0(∅) and of copies of a self-structural diagram Φ(A);
(4) the (D0;�)-generic structure is isomorphic, for a quantifier-free diagram

Φ(A), to a representation, with the universe A ∪ C, of Φ(A)-canonical structure.

18.6 Applications of Syntactic Generic Constructions

Syntactic generic constructions were used to get a classification of countable models
of complete theories. This classification is divided in classifications of Ehrenfeucht
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theories (i.e., theories with finitely many but more than one countable models) [33,
38], of small theories (i.e., countable theories with countably many types) [35, 37,
38], and of theories with continuum many types [26, 38].

Using syntactic generic construction for Ehrenfeucht theories and modifying
Hrushovski–Herwig construction [13], the known Lachlan’s problem on the exis-
tence of stable (i.e., without infinite definable orders) Ehrenfeucht theory was solved:

Theorem 18.9 For any natural n ≥ 3 there is a stable Ehrenfeucht theory with
exactly n countable models.

Illustrating the syntactic approach for generic constructions, spectra and structures
of models of cubic theories are described [32, 39].

18.7 Classes of Structures and Their Generic Limits

18.7.1 Neighbourhoods

Let (D0;�) be a self-sufficient generic class of a language� andΦ(A) be a diagram
in D0. Denote by [[Φ(A)]] the class {M |M |= Φ(A)} of all potential structures
M , of the language �, containing A and satisfying Φ(A).

By the definition, the classes [[Φ(A)]] are neighborhoods for structures satisfying
Φ(A). Some variations of these neighborhoods and related topologies introduced in
[14].

Proposition 18.3 ([40]) For any consistent diagrams Φ(A),�(B) ∈ D0, Φ(A) ⊆
�(B) if and only if [[Φ(A)]] ⊇ [[�(B)]], moreover, Φ(A) ⊂ �(B) if and only if
[[Φ(A)]] ⊃ [[�(B)]].

By the definition, classes [[Φ(A)]] are closed under isomorphisms and it is natural
to consider isomorphism types instead of structures in [[Φ(A)]].

For a diagram Φ(A) ∈ D0 we denote
• by [[Φ(A)]]Iso the quotient of [[Φ(A)]] by the isomorphism relation;
• by [[Φ(A)]]Iso,λ the restriction of [[Φ(A)]]Iso to the isomorphism types of struc-

tures of cardinality ≤ λ;
• by [[Φ(A)]]Iso,h the restriction of [[Φ(A)]]Iso to the isomorphism types of ω-

homogeneous structures;
• by [[Φ(A)]Iso,h,λ the restriction of [[Φ(A)]]Iso,h to the isomorphism types of

structures of cardinality ≤ λ.
By the definition, we have the following relations:

[[Φ(A)]]Iso ⊇ [[Φ(A)]]Iso,λ, (18.1)

[[Φ(A)]]Iso ⊇ [[Φ(A)]]Iso,h, (18.2)
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[[Φ(A)]]Iso,λ ∩ [[Φ(A)]]Iso,h = [[Φ(A)]]Iso,h,λ). (18.3)

The inclusion (18.1) is strict if andonly if [[Φ(A)]] contains infinite structures orΦ(A)

is satisfied by a finite structure having a cardinality > λ. The strict inclusion (18.2)
means that Φ(A) is satisfied by a structureM having a theory Th(M ) with models
which are not ω-homogeneous. In particular, that theory is not totally categorical.

Since there are generic structures of a cardinality ≤ max{|�|, ω} and each struc-
ture of cardinality ≤ max{|�|, ω} has a ω-homogeneous elementary extension pre-
serving the cardinality ≤ max{|�|, ω}, by Proposition 18.3 and relations (18.1)–
(18.3) we have

Corollary 18.7 [40] For any consistent diagrams Φ(A),�(B) ∈ D0, the following
conditions are equivalent:

(1) [Φ(A)]AA′ ⊆ �(B) for A′ ⊆ B;
(2) [[Φ(A)]]Iso ⊇ [[�(B)]]Iso;
(3) [[Φ(A)]]Iso,max{|�|,ω} ⊇ [[�(B)]]Iso,max{|�|,ω};
(4) [[Φ(A)]]Iso,h ⊇ [[�(B)]]Iso,h;
(5) [[Φ(A)]]Iso,h,max{|�|,ω} ⊇ [[�(B)]]Iso,h,max{|�|,ω}.

At the same time, strict inclusions [Φ(A)]AA′ ⊂ �(B)may not imply [[Φ(A)]]Iso ⊃
[[�(B)]]Iso. For instance, if Φ(A) contains a totally categorical countable theory T ,
of language �, then [[Φ(A)]]Iso and [[�(B)]]Iso contain unique element for every
cardinality λ ≥ ω, and all models are infinite. Thus, [[Φ(A)]]Iso = [[�(B)]]Iso as well
as [[Φ(A)]]Iso,ω = [[�(B)]]Iso,ω, [[Φ(A)]]Iso,h = [[�(B)]]Iso,h and [[Φ(A)]]Iso,h,ω =
[[�(B)]]Iso,h,ω.

As classes [[Φ(A)]] are neighborhoods for structures satisfying Φ(A), classes
[[Φ(A)]]Iso, [[Φ(A)]Iso,λ, [[Φ(A)]]Iso,h , [[Φ(A)]Iso,h,λ form neighborhoods for corre-
sponding isomorphism types.

Let Φ(A),�(B),X(C),�(D) ∈ D0, and �(D) be an amalgam of �(B) and
X(C) over Φ(A). The neighborhood [[�(D)]], [[�(D)]]Iso and its restrictions are
called amalgams of corresponding neighborhoods of �(B) and X(C) over neigh-
borhoods of Φ(A). By Corollary 18.7, we have the following inclusions for Iso-
neighborhoods: [[�(D)]]Iso ⊆ [[�(B)]]Iso ∩ [[X(C)]]Iso, [[�(B)]]Iso ∪ [[X(C)]]Iso
⊆ [[Φ(A)]]Iso. Similar inclusions hold for λ- h- and (h, λ)-neighborhoods. Thus,
for the generic class (D0;�), there are partially ordered, by inclusion, downward
directed sets AIso, AIso,λ, AIso,h , AIso,h,λ (with the greatest elements corresponding
to Φ0(∅)) of corresponding neighborhoods, each of which consists of isomorphism
types of potential structures and contains the isomorphism type of (D0;�)-generic
structure M (for λ ≥ |M |).

Below we consider limits with respect to these posets, i. e., intersections

⋂

Φ(A)∈D0

[[Φ(A)]]Iso, ⋂

Φ(A)∈D0

[[Φ(A)]]Iso,λ,

⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h, ⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h,λ.

(18.4)
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Since these intersections can be represented as unions for completions D′0 of D0,
obtained by adding of complete theories T to diagrams inD0, we can assume thatD0

is already complete, i. e., all diagrams in D0 contain a complete theory T . Moreover,
since all neighborhoods are singletons for complete classes having finite generic
structures, we shall additionally assume that (D0;�)-generic structures are infinite.
In such a case, intersections (18.4) contain isomorphism types of models of T real-
izing sets of types [Φ(A)]AX for Φ(A) ∈ D0. Thus, the problem of description for
intersections (18.4) is reduced to the problem of description for models of T realiz-
ing a given set of types.

By Löwenheim–Skolem theorem, intersections
⋂

Φ(A)∈D0

[[Φ(A)]]Iso have models

of unbounded cardinalities, are not sets, and, in particular, can not be single-
tons. By same reason, intersections

⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h,λ are not singletons for

λ > max{|�|, ω}, as well as we have at least two structures in ⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h,ω

if a (D0;�)-generic structureM is at most countable and there are types in S(T ) that
are not realized by diagrams in D0. At the same time, if a countable (D0;�)-generic
structureM is saturated then

⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h,ω is a singleton containing the iso-

morphism type of M , since there exists unique homogeneous structure realizing
exactly given set of types. Thus we have

Theorem 18.10 ([40])Let (D0;�)be a complete self-sufficient generic class andM
be a countable (D0;�)-generic structure. The following conditions are equivalent:

(1)
⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h,ω is a singleton (consisting of the isomorphism type of

M );
(2) the structureM is saturated.

Theorem 18.10 means that intersection of neighborhoods for isomorphism types
of countable homogeneous models contains unique limit point if and only if this
point, being a generic limit, corresponds to the saturated model.

Definition 18.15 ([2]) A type p(x̄) ∈ S(T ) is said to be powerful in a theory T if
every model M of T realizing p also realizes every type q ∈ S(T ), that is, M |=
S(T ).

By Theorem 18.10, the set Z = ⋂

Φ(A)∈D0

[[Φ(A)]]Iso,ω is a singleton if and only if

it consists only of isomorphism type of a saturated structure M . Since there exists
a countable saturated structure M if and only if the theory T = Th(M ) is small
(i. e., |S(T )| = ω), and all countable models of small T are isomorphic to unions of
elementary chains of prime models over tuples [38] (these unions are either again
prime models over tuples or limitmodels), we have |Z | = 1 if and only if T is either
countably categorical or T does not have powerful types and there is unique, up to
isomorphism, union of elementary chains of primemodels over tuples which realizes
all types in S(T ).
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Indeed, if T is countably categorical then |Z | = 1. If there are no powerful types,
the uniqueness of considered elementary chains implies that Z is a singleton con-
sisting of isomorphism type of saturated model. Conversely, if T is not countably
categorical and there is a powerful type p then the isomorphism type of modelMp,
prime over a realization of p, belongs to Z . We haveMp �	M , isomorphism types
for Mp and M both belong to Z , whence |Z | ≥ 2. We get again the inequality
|Z | ≥ 2 if there are at least two non-isomorphic unions of elementary chains of
prime models over tuples. Thus we have

Theorem 18.11 ([40])Let (D0;�)be a complete self-sufficient generic class andM
be a countable (D0;�)-generic structure. The following conditions are equivalent:

(1)
⋂

Φ(A)∈D0

[[Φ(A)]]Iso,ω is a singleton (consisting of the isomorphism type ofM );

(2) the structureM is saturated and the theory T = Th(M ) is either countably
categorical or there are nopowerful types of T and there is unique, up to isomorphism,
union of elementary chains of prime models over tuples which realizes all types in
S(T ).

18.7.2 Classification of Countable Models of Complete
Theories for Neighborhood Structures

Classification of countable models of complete theories [36, 38] allows to describe
intersections (1) for countablemodels as well as links between them.We consider the
description for theories T with finite Rudin–Keisler preorders. It is known [36, 38]
that every countable model of T is either prime over a finite set or limit over a type.
Recall that the preordered set CM(T ) consists of all isomorphism types of countable
models of T and the Rudin–Keisler preorder ≤RK defined by the following way: for
isomorphism types M1 and M2, M1 ≤RK M2 if and only if for models M1 ∈M1

andM2 ∈M2,M2 realizes all types in S(∅) being realized inM1. Thus the Rudin–
Keisler preorders ≤RK define links between models reflecting corresponding links
between sets of realized types. Moreover, the following theorems hold:

Theorem 18.12 ([38]) The set of isomorphism types for countable model of an arbi-
trary small theory T with a finite Rudin–Keisler preorder has a partition into classes
P̃M ∪ L forming a partially ordered setCM(T )with a least and a greatest elements,
where P̃M are sets of isomorphism types for prime models over tuples, L are iso-
morphism types of limit models related to P̃M. Each class P̃M ∪ L contains at most
one isomorphism type of homogeneous model. Moreover, the following conditions
are satisfied:

(a) the least element of CM(T ) is a singleton and contains the isomorphism type
of prime model;

(b) the greatest element of CM(T ) contains the isomorphism type of the homoge-
neous saturated model, which is limit if |CM(T )| > 1;
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(c) each element P̃M ∪ L is either a singleton and does not contain isomorphism
types of limitmodels, or the sets P̃M andLare non-empty and, having a homogeneous
model, the isomorphism type of that homogeneous model belongs to L.

Theorem 18.13 ([38]) For any finite partially ordered set 〈X;≤〉 with a least and
a greatest elements, there is a small theory T such that the restriction CM(T )h of
CM(T ) to the set of isomorphism types of homogeneous models of T is isomorphic
to 〈X;≤〉.

Let T be a generic theory, D be the class of all complete self-sufficient generic
classes D0 such that T is (D0;�)-generic for appropriate �. Denote by B(T )Iso the
structure 〈B(T )Iso;≤〉, where B(T )Iso consists of all intersections

⋂

Φ(A)∈D0

[[Φ(A)]]Iso
forD0 ∈ D, and≤=⊆. Similarly we denote by B(T )Iso,λ the structure 〈B(T )Iso,λ;≤
〉, where B(T )Iso,λ consists of all intersections

⋂

Φ(A)∈D0

[[Φ(A)]]Iso,λ; by B(T )Iso,h

the structure 〈B(T )Iso,h;≤〉, where B(T )Iso,h consists of all intersections⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h, and B(T )Iso,h,λ is the structure 〈B(T )Iso,h,λ;≤〉, where

B(T )Iso,h,λ consists of all intersections
⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h,λ, D0 ∈ D, ≤=⊆.
Note that for any (D0;�)-generic structureM and for any (D′0;�′)-generic struc-

ture M ′, where D0,D′0 ∈ D and |M | ≤ |M ′| ≤ λ, M is elementary embeddable in
M ′ if and only if all types realized in M are also realized in M ′. It means that⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h,λ ⊇ ⋂

Φ ′(A′)∈D′0
[[Φ ′(A′)]]Iso,h,λ. Thus, for any countable complete

theory T without finite models, we have a canonical isomorphism φ between the
poset CM(T )h and the poset B(T )Iso,h,ω mapping the isomorphism type of count-
able (D0;�)-generic homogeneous model M to

⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h,ω. Having the

isomorphism φ: CM(T )h
∼→ B(T )Iso,h,ω, by Theorem 18.13, we get

Theorem 18.14 ([40]) For any finite partially ordered set 〈X;≤〉 with a least and
a greatest elements, there is a small theory T such that the structure B(T )Iso,h,ω is
isomorphic to 〈X;≤〉.

Using Theorem 18.12 the isomorphism φ produces the isomorphism

ψ : CM(T )h
∼→ B(T )Iso,ω

such that ψ(x) = ⋂

Φ(A)∈D0

[[Φ(A)]]Iso,ω for x ∈ CM(T )h with

φ(x) =
⋂

Φ(A)∈D0

[[Φ(A)]]Iso,h,ω.

Thus we obtain the following
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Theorem 18.15 ([40]) For any finite partially ordered set 〈X;≤〉 with a least and
a greatest elements, there is a small theory T such that the structure B(T )Iso,ω is
isomorphic to 〈X;≤〉.

18.7.3 Spectra of Theories and Cardinalities Of Intersections
of Neighborhoods

In this section we consider complete countable theories T without finite models.
As usual we denote by I (T, λ) the spectrum function giving the number of non-

isomorphic modelsM of T with |M | = λ. It is known that I (T, ω) ∈ (ω \ {0, 2}) ∪
{ω,ω1, 2ω}.

Clearly, if T has a prime model M0 being (D0;�)-generic for a complete self-

sufficient class (D0;�), then

∣
∣
∣
∣
∣

⋂

Φ(A)∈D0

[[Φ(A)]]Iso,ω
∣
∣
∣
∣
∣
= I (T, ω). Thus this cardinality

belongs to (ω \ {0, 2}) ∪ {ω,ω1, 2ω}.
More generally, for any λ ≥ ω we have

∣
∣
∣
∣
∣
∣

⋂

Φ(A)∈D0

[[Φ(A)]]Iso,λ
∣
∣
∣
∣
∣
∣
=

∑

ω≤μ≤λ

I (T, μ). (18.5)

Using correspondences, as in Sect. 18.3, for homogeneous models and neighbor-
hoods for generic classes, the equality (18.5) can be adapted for an arbitrary generic
class.

Let β be an ordinal number, λ a limit ordinal number, and κ a cardinal number.We
define �β(κ) recursively: �0(κ) = κ , �β+1(κ) = 2�β (κ), and �λ(κ) = ⋃

β<λ

�β(κ).

Theorem 18.16 ([12, 28]) For any complete theory T in a countable language
and without finite models the uncountable spectrum ℵα �→ I (T,ℵα) (α > 0) is the
minimum of the map ℵα �→ 2ℵα and one of the following maps:

(1) 2ℵα ;
(2) �d+1(|α + ω|) for some d ∈ [ω,ω1);
(3) �d−1(|α + ω|2ℵ0 ) for some finite d > 0;
(4) �d−1(|α + ω|ℵ0 + �2(ℵ0)) for some finite d > 0;
(5) �d−1(|α + ω| + �2(ℵ0)) for some finite d > 0;
(6) �d−1(|α + ω|ℵ0) for some finite d > 0;
(7) �d−1(|α + ω| + 2ℵ0) for some finite d > 1;
(8) �d−1(|α + ω|) for some finite d > 0;
(9) �d−2(|α + ω||α+1|) for some finite d > 1;
(10) identically �2(ℵ0);
(11) |α| for infinite α and, for finite α, |(α + 1)n/G| − |αn/G| for some finite

n > 1 and some normal subgroup G of Sym(n);
(12) identically 1.
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Each of these 12 possibilities occurs as the spectrum of some complete theory in
a countable language.

By Theorem 18.16 we have an explicit description for the sum
∑

ω≤μ≤λ

I (T, μ)

in (18.5).

18.8 A Path to Institutional Generalization of Generic
Limits

The Theory of Institutions was introduced by Goguen and Burstall [11] as a system-
atic way of studying logical systems using category theory. Institution theory is an
abstract mathematical study of formal logical systems that is not committed to any
particular concrete logical system. The definition of Institutions takes into account
both syntax and semantics as well as the relationship between them. Furthermore
the high level of abstraction allows the accommodation of not only well-established
logical systems but also unconventional systems.

The aim of this section is to presenting the basic definitions and results of Insti-
tution Theory.

18.8.1 The Concept of Institution Theory

We shall start with the definitions, which are the basic tools employed in our demon-
stration. As noted in [11], a specification provides a mathematical theory of the
behaviour of a program and if a theory consists of all the sentences that are true
under that behaviour then it is important to define the fundamental properties of
theories over an arbitrary institution.

Definition 18.16 ([11]) An Institution I = (
SigI ,SenI ,ModI , |=I

)
consists

of:

1. A category SigI , whose objects are called signatures,
2. A functor SenI : SigI → Set giving for each signature a set whose elements

are called sentences over that signature,
3. A functor ModI : (SigI )op → CAT giving for each signature � a category

whose objects are called �-models and whose arrows are called �-morphisms,
and

4. A relation |=I
� ⊆

∣
∣ModI (�)

∣
∣× SenI (�) for each� ∈ ∣

∣SigI
∣
∣, called�-satis-

faction

such that for each morphism φ : �→ �′ in SigI , the satisfaction condition

M ′ |=I
�′ Sen

I (φ)(ρ) if and only if ModI (φ)(M ′) |=I
� ρ
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holds for each M ′ ∈ ∣
∣ModI

∣
∣ and ρ ∈ SenI (�).

Example 18.1 (Propositional Logic [11]) As examplewewill givePL the institution
of Propositional Logic.

• The category SigPL has as objects sets of propositional variables and the arrows
are the functions between them.
• A signature morphism σ is a mapping between the propositional variables.
• The functor SenPL acts and mapping for each signature � the SenPL (�) the set
of propositional variables from � and connectives for conjunction, disjunction,
implication and negation.
• The SenPL(σ ) is the extension of σ to all formulas.
• Models of � are truth valuations, i.e. mappings from � into the standard Boolean
algebra Bool = {0, 1}.
• A model morphism between �-models M and m ′ exists iff M(p) ≤ M ′(p).
• Given σ : �1→ �2 and a �2-model M2 : �2 → Bool, then the reduct M2 �σ is
the composition M2 ◦ σ .
• And M |=PL

� φ if and only if φ evaluates 1 under the standard extension of M to
all formulas.

18.8.1.1 The Galois Connection

Regarding Goguen’s fundamental paper, we observed that one of the most useful
results is duality between theories andmodels. In institutional framework a�-theory
is a set of �-sentences, and respectively a �-model class is a class of �-models.
A more formal definition follows.

Definition 18.17 ([11]) Let I be a fixed but arbitrary institution. Then

1. A �-presentation is a pair 〈�, E〉, where � is a signature and E is collection of
�-sentences.

2. A �-model M satisfies a presentation 〈�, E〉 if it satisfies each sentence in E ;
we write M |= E in this case.

3. Given a collection E of �-sentences, let E∗ be the collection of all �-models
that satisfy each sentence in E .

4. Given a collection M of �-models, let M∗ be the collection of all �-sentences
that are satisfied by each model in M ; also let M∗ denote 〈�, M∗〉 called the
theory of M .

5. The closure of a collection E of �-sentences is E∗∗, denoted E•.
6. A collection E of �-sentences is closed if and only if E = E•.
7. A �-theory is a presentation 〈�, E〉 such that E is closed.
8. The �-theory presented by a presentation 〈�, E〉 is 〈�, E•〉.
9. A�-sentence e is semantically entailed by a collection E of�-sentences, written

E |= e, if and only if e ∈ E•.
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Proposition 18.4 For any institution I and signature �, the closed �-theories,
and the closed �-model classes, are complete lattices under inclusion. Moreover
there is a dual isomorphism between these complete lattices.

18.8.1.2 Internal Logic

The semantics of Boolean connectives as well quantifiers have been introduced by
Tarrlecki [41].

Definition 18.18 (Internal Boolean Connectives [4]) Let � a signature in an insti-
tution then:

• the �-sentence φ is a (semantic) negation of ψ when
φ∗ = |Mod(�)| \ ψ∗;
• the�-sentenceφ is the (semantic) conjunction of the�-sentencesψ1 andψ2 when

φ∗ = ψ∗1 ∩ ψ∗2 .

Remark 18.2 The least Boolean connectives, such as disjunction ∨, implication⇒,
equivalence⇔, etc. can be derived as usually from negations and conjunctions.

Definition 18.19 (Internal Quantifiers [4]) For any signature morphism χ : �→
�′ in an arbitrary institution:

• a �-sentence φ is a (semantic) existential χ -quantification of a χ -sentence ψ

when φ∗ = (ψ∗) �χ ; in this case we write φ as ∃χψ ;
• a�-sentence φ is a (semantic) universal χ -quantification of a χ -sentence φ when

φ∗ = |Mod(�)| \ (∣
∣Mod(�′)

∣
∣ \ ψ∗

)
�χ ; in this case we write φ as ∀χψ .

In order to complete the generalizations at the level of Institution theory, it is necessary
to define the basic sentences and the representable signature morphisms.

Definition 18.20 (Basic sentences [4]) Given a signature � in any institution, a
�-sentence e is basic if there exists a �-model Me, called the basic modal of e such
that for each�-modelM ,M |=� e if and only if there exists amodal homomorphism
Me → M . The sentence e is epic basic when the homomorphism Me → M is an epi.

Definition 18.21 (Representable signature morphims [4]) In any institution, a sig-
nature morphism χ : �→ �′ is representable if and only of there exists a �-model
Mχ and a isomorphism iχ of categories such that the following diagram commutes.

18.8.2 Institution-Independent Model Theory

Several important model theory methods and results have been developed in the
abstract institutional framework. These results form the field of Institution-
independent model theory or Institutional model theory.
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The institutional approach to completeness of generalized first order logic at
the level of a framework which is institutional-independent is a breakthrough for
abstract model theory. This methodology allows us to obtain in a universal manner
completeness results for several logical systems.

In [10] the writers have developed an institutional expression and proofing for
completeness of infinitary first order logics. It is shown in [25] that there exists an
institutional version of Gödel’s Completeness Theorem and directions for general-
ized completeness in a branch of non-standard logical systems. Furthermore in [3],
Downward Löwenheim–Skolem and Omitting Types Theorems are studied at the
institutional framework.

In standard model theory, the method of diagrams is one of the most popular
methods. Here we present it in the institutional framework.

Definition 18.22 (The methods of diagrams [29]) An institution I has diagrams
when for each signature � and each �-model M there exists a signature �M and
a signature morphism i�(M) : �→ �M , functorial in � and M , and a set EM of
�M -sentences such that Mod(�M , EM) and the comma category M/Mod(�) are
naturally isomorphic, i.e., the diagram bellow commutes,

The signature morphism i�(M) : �→ �M is called the elementary extension of
� via M and the set EM of �M -sentences is called the diagram of the model M .

The institution-independent method of diagrams has been used widely in institu-
tional model theory. For example, the co-limits of models, interpolation, definability,
Tarski’s elementary chain theorem, saturated models, axiomatizability [4] etc.

In the paper [29] Diaconescu, Stefaneas developed possible semantics at the cat-
egorical abstract model theoretic level provided by the institution theory framework.
They also extended the Institution-independent method of Ultraproducts to possible
worlds and proved a fundamental preservation theorem for abstract modal satisfac-
tion.

The fundamental ultraproducts theorem gives a preservation property for the satis-
faction condition by ultraproducts of models for a variety of logical systems, includ-
ing unconventional ones for which such development was difficult to establish.

Formal proof systems also constitute a basic part of institution theory. There are
several results as generation of freely proof systems, the freely addition of quantifica-
tion to any proof system such that its sentence part has a syntax for quantifiers, com-
pactness of the proof systems, automatic transfer of compactness [29] and recently
the study of entailment topology of a proof system as a complete semantic [20].

18.8.3 Institutional Path

Ravi Rajani is developing [27] the theory of generic structures at a general, unified
level but it is not strictly categorical. Furthermore, Kubis in [22] is developing a
category-theoretic approach to homogeneous structures and in [21] introducing the
Katetov functors which provides a universal way to construct Fraïssé limits.
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Our goal is to unify all these different approaches under the Institution-Independent
model theory. The institution theory gives us a tool to expand the main results of the
generic constructions and generic limits in abstract logical systems.

Regarding the theory of generic limits and generic constructions for the standard
first order logic we will work in the institutional first order logic framework, based
on D-first order fragment [10]. The first goal is to merge the institutional definition
of diagrams with the standard theory of diagrams under an universal way. Further-
more, we will attempt to give abstract categorical conditions on partial ordering of
a collection of �-diagrams with respect to Definition 18.3. Therefore we introduce
the �d -amalgamation property, the semantic existential local realizability property
and the �d -uniqueness property expanding Definition 18.3.

As far as cardinalities of generic structures as well as their languages can
unbounded it is natural to generalize generic constructions for the restrictions
Ih =

(
SigIh ,SenIh ,ModIh , |=Ih

)
of institutionsI to the class of homogeneous

structures. These restrictions Ih are called h-institutions.
Taking ah-institutionIh andusingTheorem18.3wecan replace theories and their

homogeneous models by appropriate generative classes obtaining a g-institutionIg .
Since by Theorems 18.2 and 18.3 generative classes allow to reconstruct countable
generic structures, up to isomorphism, and their theories, we have

Theorem 18.17 Any h-institutionIh can be transformed to a g-institutionIg such
that countable models in ModIh can be reconstructed by generative classes in Ig,
up to isomorphism, and sentences in SenI satisfied by these models as well.

An advantage of g-institutions is that these categories are syntactic, do not contain
semantic objects allowing to describe semantic links in syntactic way.

Again applying Theorems 18.2 and 18.3 we immediately get the following theo-
rem clarifying links between institutions and generic structures via first order frag-
ments of these institutions.

Theorem 18.18 Let I = (
SigI ,SenI ,ModI , |=I

)
be an Institution with D ⊆

Sig of signature morphisms then every countable D-First Order Fragment has
generic models and therefore can be represented by them.
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Abstract We present a verification framework developed by researchers of the
National Technical University of Athens as part of the Research Project Thalis “Alge-
braicModeling of Topological and Computational Structures andApplications”. The
proposed framework combines two different specification and theorem-proving sys-
tems, in order to facilitate the modeling and analysis of critical software systems.
On the one hand, the CafeOBJ algebraic specification language offers executable,
composable specifications, and insightful information about the proofs of desired
invariant properties. On the other hand, Athena, an interactive theorem-proving sys-
tem, provides automation and soundness guarantees for its results, as well as detailed
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19.1 Introduction

Algebraic specification techniques have been developed in the area of formal meth-
ods and several algebraic specification languages and processors have been proposed.
In algebraic specification methods, systems are specified based on algebraic mod-
eling, and then the specifications are verified against requirements using algebraic
techniques. Algebraic specification languages such as CafeOBJ [1], Maude [2] and
CASL [3] have well-known advantages for modeling and reasoning about digital
systems. The specifications are relatively simple, readable and writable, and can
be executed and analyzed in various ways to provide valuable information to the
modelers.

Sometimes, however, specification languages can be more effective when inte-
grated with more conventional theorem-proving systems. CASL, for instance, has
been interfaced with HOL/Isabelle [4], through HOL-CASL [5]. Also the Hetero-
geneous Tool Set (Hets) [6] has connections with the algebraic specification lan-
guages Maude and CASL and external theorem provers (SPASS, Vampire, Darwin,
KRHyper and MathServe).

In this paper we present a methodology that combines the CafeOBJ algebraic
specification language with the Athena theorem proving system [7], and a common
interface that trasforms equational specifications written in CafeOBJ into Athena
specifications. The aim of the proposed framework is to exploit both the nice proper-
ties of CafeOBJ specifications and the soundness and automation offered by Athena.
This framework was developed by researchers of the National Technical University
of Athens as part of the Research Project Thalis “Algebraic Modeling of Topological
and Computational Structures and Applications”.

Inmore details, CafeOBJ providesmechanized implementations of Observational
Transition Systems (OTSs), a species of behavioral specifications, that allow users to
specify distributed systems using multi-sorted conditional equational logic with sub-
sorting [8]. The specifications are executable via rewriting, which is useful for build-
ing up computational intuitions about the underlying system. In addition, CafeOBJ
allows users to compose proof scores that establish certain invariant properties, typi-
cally by induction. Athena on the other hand, is a system based on general polymor-
phic multi-sorted first-order logic. It integrates computation and deduction, allows
for readable and highly structured proofs, guarantees the soundness of results that
have been proved, and also has built-in mechanisms for general model-checking and
theorem-proving, as well as seamless connections to state-of-the-art external systems
for both.

By combining these two methodologies we wish to combine the strengths of
CafeOBJ, most notably succinct, composable, executable specifications based on
conditional equational logic with those of Athena, namely, structured and readable
proofs, soundness of the results, and greater automation both for proof and for coun-
terexample discovery. The goal of this paper is to give an overview of the theo-
retical foundations of our framework (Sect. 19.2) and to provide an easy to follow
introduction to the proposed methodology (together with a tool that automates the
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transformation process from OTS/CafeOBJ into Athena specifications) using a sim-
ple and illustrative example (Sect. 19.3). Finally, we discuss related work and advan-
tages of the proposed framework in Sect. 19.4 and future directions in Sect. 19.5.

We should mention here that the proposed methodology has been successfully
applied to much larger and complicated use cases as well. To this end we encourage
the interested reader to visit [9] for the application of the proposed methodology to
the verification of the Alternating Bit Protocol, which is considered the traditional
benchmark used for testing mechanical verification of protocols [10].

19.2 Theoretical Background

19.2.1 CafeOBJ Algebraic Specification Language

CafeOBJ [1] is an algebraic specification language and processor that can be used to
specify abstract data types and abstract state machines. The basic units of a CafeOBJ
specification are its modules. There are two kinds of modules in CafeOBJ, tight
and loose modules. A tight module only accepts the smallest implementation that
satisfies what are specified in the module, while a loose module can accept any
implementations (that satisfy them). A tight module is declared with the keyword
mod!, and a loose module with the keyword mod∗.

In CafeOBJ modules, we can declare module imports, sorts, operators, variables
and equations. Operators without arguments are called constants. Built-in operators
denoting logical connectives can be used to declare negation, conjunction, disjunc-
tion, implication, and exclusive disjunction. Operators can have attributes such as
comm that specifies that the binary operator is commutative. Operators are declared
with the keyword op (or ops if there are many). The constructor operators of the
sorts are declared with the attribute constr. The non-constructor operators, or some
properties of the operators are defined in equations. Conditional equations can also
be declared inside a module, using the keyword ceq.

19.2.2 Observational Transition Systems (OTSs)

An Observational Transition System (OTS) is a transition system written in terms of
equations and is a proper subclass of behavioral specifications [11]. Assuming that
there exists a universal state space Y and that each datatype we need to use has been
declared in advance, an OTS S is defined as the triplet S = 〈O, I, T 〉 where [12]:
• O is a set of observers. Each o ∈ O is a function o : Y Do1 . . . Dom → Do, that
takes as input a state of the system and maybe other datatypes (not necessarily
in that order) and return a datatype value. Given an OTS S and two states u1, u2

the equivalence between them is defined with respect to the values returned by
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the observers, i.e. u1 =S u2 if and only if for each o ∈ O , o(u1, x1, . . . , xm) =
o(u2, x1, . . . , xm) for all x1 ∈ Do1, . . . , xm ∈ Dom .

• I is the set of initial states, such that I ⊆ Y .
• T is a set of conditional transitions. Each t ∈ T is a function t : Y Dt1 . . . Dtn → Y .
Each transition t , together with any other parameters, preserves the equivalence
between two states, i.e. if u1 =S u2, then for each t ∈ T , t (u1, y1, . . . , yn) =S

t (u2, y1, . . . , yn) for all y1 ∈ Dt1, . . . , yn ∈ Dtn . Each t has an effective condition
c-t : Y Dt1 . . . Dtn → Bool. If ∼ c-t (u, y1, . . . , yn), then t (u, y1, . . . , yn) =S u.
t (u, y1, . . . , yn) is called a successor state of a state u. We write u �S u′ iff a state
u′ ∈Y is a successor state of a state u ∈ Y .

An execution of an OTS S is an infinite sequence u0, u1, . . . of states satisfying:

– Initiation: u0 ∈ I and
– Consecution: For each i ∈ N , there exists t ∈ T such that ui+1 =S t (ui ).

Let εs be the set of all executions obtained from S. A state u ∈ Y appears in an
execution u0, u1, . . . of an OTS S, denoted by u ∈ u0, u1, . . . if there exists i ∈ N
such that u =S ui . A state u ∈ Y is called reachable with respect to an OTS S, if
and only if there exists an execution e ∈ εs such that u ∈ e. Let RS be the set of all
reachable states with respect to S.1

Roughly speaking, in the OTS/CafeOBJmethod the transitions between the states
of the system are modelled with constructor operators. The structure of a state is
abstracted by the observers, each one returning some observable information about
the state. Themeaning of an observer is formally described bymeans of (conditional)
equations [14].

19.2.3 Proof Scores in CafeOBJ

CafeOBJ is equipped with its processor called the CafeOBJ system, which is used
as an interactive theorem prover. The CafeOBJ system verifies the desired properties
by using the equations of the theory that defines an OTS as left to right re-write rules.
This method is called proof score approach and is computer-human interactive [15].
A proof score is a plan to verify that a property holds for a specification. This is
implemented as a set of instructions written by a human to a proof engine, such that
when executed, and if everything evaluates as expected, a desired theorem is proved.

In order to prove an invariant property using CafeOBJ the following steps need
to be taken. First, we formally express the property we want to prove as a predicate
in CafeOBJ terms in a module. Next, we write the inductive step as a predicate that
defines that if the invariant holds in an arbitrary state s then that implies that it holds
in its successor state s ′. Then we ask CafeOBJ to prove via term rewriting (using the

1RS is the type denoting the set of all reachable states wrt S. Also Sys denotes RS but not Y if the
constructor-based logic is adopted, which is the current logic underlying the OTS/CafeOBJ method
[13].
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reduce command), if the property holds for an arbitrary initial state. Finally, using
all the transition rules in turn, we must instantiate s ′ and ask CafeOBJ to prove the
inductive step for each case.

After asking CafeOBJ to prove such an expression three results might be returned
by the system. If true is returned this means that the proof is successful. If a CafeOBJ
term is returned, this means that there exist some terms that the system cannot fully
reduce. The user must then split the case, by stating that the returned term equals to
true and false in turn (computer-human interactive method). This creates two new
proof obligations and is known as case splitting. Finally, if false is returned, either the
property does not hold, or the case that returned false is unreachable for our system.

19.2.4 Athena

Athena [7] is an interactive theorem proving environment for polymorphic multi-
sorted first-order logic, with separate (but intertwined) languages for computation
and deduction. The main tool for constructing proofs is the method call. A method
call represents an inference step and can be primitive or complex.Methods can accept
as arguments other methods and/or procedures, and thus are higher-order.

Athena proofs are machine-checkable and expressed in a true natural-deduction
style, a style of proof that was explicitly designed to capture the essential aspects of
mathematical reasoning as it has been practiced for thousands of years [16], whose
semantics are formalized in terms of assumption bases. An assumption base is a
set of sentences serving as working hypotheses—typically axioms and previously
derived theorems. Initially the system starts with a small assumption base, containing
defining axioms for some built-in function symbols. When an axiom is postulated
or a theorem is proved, the corresponding sentence is inserted into the assumption
base. During the evaluation of a proof, methods interact with the assumption base,
checking to see if some arguments are present in the set and/or making new entries
[17].

Another important point here is that Athena guarantees the soundness of every
defined method, meaning that if and when a method call manages to derive a conclu-
sion p, we can be assured that p is a logical consequence of the assumption base in
which the call occurred. This guarantee stems from the formal semantics of Athena.
The larger point to keep in mind is that defined methods can never produce a result
that is not logically entailed by the assumption base [16].

Additionally, Athena is integratedwithmodel builders.Model generation is useful
for consistency checking, and in particular for falsifying conjectures: If we are not
sure whether a formula follows from a given set of premises, we can try to find a
counter-model, i.e., a model in which all the premises are true but the formula in
question is false. Model generators can be used to find such models automatically.
If we manage to find a counterexample in Athena, then any attempt to prove the
property would be pointless and therefore model checking can be quite a time saver
[16].
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Athena provides also a significant degree of proof automation, through seamless
interfaces to powerful automated theorem provers likeVampire [18] and SPASS [19],
as well as SAT and SMT solvers.

19.3 Proposed Framework: Combining CafeOBJ
and Athena Environments

TheOTS/CafeOBJ approach presentsmany advantages, themost important ofwhich,
in our opinion and experience, is that the proof scores can easily and effectively guide
the user to discover the required case splittings and occasional lemmas for the proof.
However, we believe that it could benefit by being combined with proof systems like
Athena, for the following reasons.

At first, each proof conducted in Athena is checked for soundness by the system.
Thus, Athena could act as a validator for the proofs conducted in CafeOBJ. Also,
Athena as we have already mentioned is integrated with some powerful automated
theorem provers (ATPs). Thus, via Athena, access to these highly efficient ATPs can
be enabled for OTS/CafeOBJ specifications as well, which could help to streamline
the verification process. Finally, Athena uses a Fitch-style natural-deduction proof
system. Expressing OTS/CafeOBJ in a high-level and structured natural-deduction
style such as Athena’s could help to make them comprehensible and accessible to a
wider audience.

Accordingly, we propose a methodology which combines both environments
(CafeOBJ and Athena) and consists of the following steps:

• Step 1: Create the OTS specification in CafeOBJ.
• Step 2: Generate an equivalent Athena specification, automatically.
• Step 3:Attempt to falsify the property of interest inAthena. If unsuccessful proceed
to the next step, else either the property or the specification should be revised.

• Step 4: Apply the proof score methodology in CafeOBJ until a lemma is required.
Discover a candidate lemma in CafeOBJ that can discard the problematic case.

• Step 5: Attempt to falsify the candidate lemma using Athena. If unsuccessful
proceed to the next step, else either the property or the specification should be
revised.

• Step 6: Iterate steps 4 to 5 until the proof scores methodology is completed for the
property in question and also for all the lemmas used.

• Step 7: Using the insights gained by the proof scores (case splittings and lemmas)
generate an Athena proof and check its soundness.

With the proposed methodology (steps 1 to 3), the user could save considerable
time byfirst attempting to falsify the property in question. If indeed a counter example
is returned by Athena, then either the property in question is not invariant for the
specification, or there might be a bug in the specification itself. In the first case, the
proof is completed and the property falsified. In the second case the output of Athena
usually provides sufficient information for the discovery and correction of the bug.
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During the verification of complex systems with the proof score methodology, it
is possible that the user will consider as lemmas, properties which while successfully
discard the problematic cases, are not invariant for the specification. This is usually
discovered at a late stage of the verification of the lemmas, in which case the proof
needs to be recreated using a different candidate lemma. This, can at times become
an important time sink for the verification effort. Athena, could potentially inform
the user of the error in the candidate lemmas at a much earlier stage (steps 4 to 5)
and thus save the user valuable time.

Also once the proof score methodology is completed, by transferring the insights
gained by it toAthenawe can easily create a formal proof for the property in question.
Athena can thus inform us about the soundness of the proof or point to reasoning
errors.

Finally, as we mentioned earlier the final proof constructed in Athena will be in
a style easy to understand and thus could help provide explanation as to why the
property is invariant or not for the system, in other words act as a sort of software
documentation.

19.3.1 Rules of Translation

In order to obtain an Athena specification from an OTS/CafeOBJ specification we
have defined an appropriate translation schema. The basic units of OTS/CafeOBJ
specifications and their transformation into Athena notation are shown in Table19.1.

In more details, in Athena initial algebras (with tight semantics) are specified
using the keyword datatype, whereas an arbitrary carrier (with loose semantics)
is introduced with the domain keyword. An induction principle is automatically
generated for every new datatype. States are formalized as a structure and state
transitions as its constructors. Structures are very much like datatypes, except that
theremaybe confusion, i.e. different constructor termsmight denote one and the same
object. An induction principle is also automatically generated (and, of course, valid).
We continue with the declaration of the observers. They are defined as functions with
the constraint that they take as input a state (and maybe additional input) and return

Table 19.1 The basic units of
OTS/CafeOBJ specifications
and their transformation into
Athena notation

OTS/CafeOBJ notation Athena notation

Tight modules Datatypes

Loose modules Domains

State Structure

Initial state State constructor

State transitions State constructors

Observers Functions

Equations Axioms
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some datatype. Finally, the equations that define the initial state, as well as the pre-
and post-conditions of the state transitions are defined as axioms.

Informally, an arbitrary OTS specification written in CafeOBJ terms is translated
into an Athena specification through the operator cafe2athena as follows:

Datatype modules:

cafe2athena(mod! M1 {[m1] . . .})
=
datatype m1 cafe2athena(. . .)

cafe2athena(mod* M2 {[m2] . . .})
=
domain m2 cafe2athena(. . .)

OTS modules (sort representing state space, initial state, transitions):

cafe2athena(mod S {∗[Sys]∗ op ini t : → Sys .
bop a : Sys Vj 1 ... Vj n → Sys . . .})
=
structure Sys := ini t | (a Sys Vj 1 . . . Vj n)

Observers:

cafe2athena(bop o : Sys Vi 1 . . . Vi n → V )
=
declare o := [Sys Vi 1 . . . Vi n] → V

Variables:

cafe2athena(Var xi 1 : Vi 1 . . . Var xi n : Vi n)
=
define [xi 1 ... xi n] := [?Vi 1 . . . ?Vi n]

Init axiom:

cafe2athena(eq o(ini t, xi 1, . . . , xi n) = f (xi 1, . . . , xi n))

=
assert* ini t-axiom := ((o ini t xi 1 . . . xi n) = f xi 1 . . . xi n)

where xi 1,...,xi n are Vi 1 ...Vi n sorted CafeOBJ variables and f (xi 1, ..., xi n) is the
value of the observer at the initial state.

Effective condition:

cafe2athena(op c-a : Sys Vj 1 ... Vj n → Bool .
eq c-a(w, x j 1, ..., x j n) = g(w, x j 1, ..., x j n) .)

=
define c-a := lambda (w x j 1 ... x j n) (g w x j 1 ... x j n)

where w is a hidden sorted variable and x j 1, ..., x j n are Vj 1...Vj n sorted CafeOBJ
variables.
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Transition axioms:

cafe2athena(eq o(a(w, x j 1, ..., x j n), xi 1, ..., xi n) = e-a(w, x j 1, ..., x j n , xi 1, ..., xi n)

if c-a(w, x j 1, ..., x j n) .)

=
assert a-axiom :=
((o(a w x j 1 ...x j n) xi 1 ... xi n) = (e-a w x j 1 ... x j n xi 1 ... xi n)

if (c-a w x j 1 ... x j n ))

where e-a(w, x j 1, ..., x j n, xi 1, ..., xi n) is the changed value of the observer after the
application of the transition. The definition of a proof score in Athena terms can be
found in Appendix 5

19.3.1.1 Semantic Correctness of the Translation.

Some readers may have noticed that we restricted the translation to non-parametric
modules. The parametric module system does not add to the expressiveness of the
language, however not supporting it may result in an overhead in specification code.
By enforcing this restriction on the style of the OTS/CafeOBJ specifications it is
safe to claim the semantic correctness of the translation, since in both languages
the underlying semantics is basically Order-sorted Conditional Equational Logic (in
which constructors are explicitly used). For details about the semantic correctness
of the translation we refer readers to [9].

19.3.1.2 Cafe2Athena Tool.

In order to make the proposed methodology more agile, we have developed a tool
that takes as input an OTS/CafeOBJ specification and automatically produces an
Athena specification, implementing the rules of translation we previously presented.
The tool is written in Java and hides the details of the translation, since the user
loads a CafeOBJ specification file, presses the “Translate to Athena” button and
gets the corresponding Athena specification. Cafe2Athena tool was a deliverable of
the Research Program Thalis “Algebraic modeling of topological and computational
structures” and can be downloaded from [20].

19.3.2 Illustrating Example: A Mutual Exclusion Protocol
Using an Atomic Instruction (Mutex)

We present in this section the application of the proposed methodology to a mutex
algorithm so as to explain it better and demonstrate its effectiveness. In this system,
we have a set of processes, each of which is executing code. A process, at any system
state, is either in some critical section of the code or in some remainder (waiting)
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section. Also, we have two transitions; the first corresponds to a process entering the
critical section and the second to a process exiting the critical section (and entering
the remainder section).

When a process p enters its critical section, the resulting state becomes locked.
When p exits the critical section, the resulting state is unlocked. For p to enter its
critical section in some state s, p must be enabled in s. A process p is enabled in s iff
p is in its remainder section in s and s is not locked. This is, therefore, the effective
condition of the enter state transition for a given process. The effective condition of
the exit transition is for the process to be in its critical section. We also have two
observer functions, one that takes a state s and a process id p and tells us what section
of the code p is executing in s (critical or remainder), and a function that takes a
state s and tells us whether s is locked.

19.3.2.1 Step 1. Specification in CafeOBJ.

The specification of the mutex OTS in CafeOBJ can be seen in Appendix 5

19.3.2.2 Step 2. Specification in Athena.

Using the ‘Cafe2Athena’ toolweobtain the specification of themutexOTS inAthena.
Some parts of the specification are explained below.

A domain of process identifiers (Pid) and a datatype for code labels (cs and rs,
for critical and remainder section, respectively) have been introduced:

domain Pid
datatype Label := rs | cs
assert label-axioms := (datatype-axioms"Label")

Here, rs and cs are the (nullary) constructors of the Label algebra. The
datatype-axioms of Label are quantified sentences that assert no-confusion
and no-junk conditions for the constructors. The effect of the assert command is
to insert those conditions into the global assumption base. States are formalized as
a structure and the state transitions as constructors of this structure, as follows:

structure State := init | (enter Pid State)
| (exit Pid State)

The declaration of the observer functions can be seen below:

declare at: [Pid State] -> Label
declare locked: [State] -> Boolean

The “at” function tells us the label of a given process in a given state. Binary
function symbols can be used in infix in Athena (the default notation is prefix), so if
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p and s are terms of sort Pid and State, respectively, then (p ats) gives us the label
of p in state s. The term (lockeds) tells us whether or not s is locked.

We now present the axioms that define the initial state, as well as the pre- and
post-conditions of the two state transitions (entering and exiting). First, appropriate
variables for the given sorts are defined.

define [i j s s’] := [?i:Pid ?j:Pid ?s s’:State]
assert* init-axioms := [(_ at init = rs)

(~ locked init)]

The initial-state axioms are simple enough: every process in the initial state is in
the remainder section, and the initial state is not locked. For the transition axioms of
enter we see it is helpful to define the effective condition as a separate procedure,
called enabled-at:

define (enabled-at i s) := (s at i = rs & ~ locked s)

The axioms for the enter and exit transitions, respectively, are presented below:

assert* enter-axioms :=
[(i enabled-at s ==> locked i enter s)
(i enabled-at s ==> i at i enter s = cs)
(i enabled-at s & j =/= i ==> j at i enter s = j at s)
(~ i enabled-at s ==> i enter s = s)]

assert* exit-axioms :=
[(i at s = cs ==> i at i exit s = cs)
(i at s = cs & j =/= i ==> j at i enter s = j at s)
(i at s = cs ==> ~ locked i exit s)
(i at s =/= cs ==> i exit s = s)]

19.3.2.3 Step 3. Define the Desired Goal and Falsify It with Athena.

The desired mutual exclusion property satisfied by the algorithm, is that there is at
most one process in the critical section at any given moment. This property can be
rephrased as “if there are two processes in the critical section, then those processes
are identical”. In Athena, the desired goal is defined as follows:

define (goal-property s) :=
(forall i j . i at s = cs & j at s = cs ==> i = j)

define goal := (forall s . goal-property s)

Before we try to prove a conjecture p, it is often useful to first try to falsify it
in Athena by finding a counterexample to it. This falls under a class of techniques
collectively known as model checking, or model building. If we manage to find a
counterexample, then any attempt to prove p would be useless (because Athena’s
proofs are guaranteed to be sound, so we can never prove something that doesnt
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follow logically from the assumption base, and if we find a counterexample to p
then p does not follow from the assumption base), and therefore model checking can
be quite a time saver. Moreover, the feedback provided by the model checker, given
in the form of a specific counterexample to the conjecture, is often very valuable in
helping us to debug and, in general, to better understand the theory or system we are
developing [16].

Athena is integrated with a number of external systems that can be used for model
building/checking, most notably SMT and SAT solvers, but there is also a built-in
model checker which is perhaps the simplest to use and can be surprisingly effective
[16].

To falsify a conjecture p, we simply call (falsify p N ). Here N is the desired
quantifier bound, namely, the number of values of the corresponding sort that we
wish to examine (in connection with the truth value of p) at each quantifier of p.
When falsification fails within the given bound, the term ’failure is returned. When
falsification succeeds, it returns specific values for the quantified variables that make
the conjecture false. Let us see in our example, if we can falsify the goal by examining
100 states:

> (falsify goal 100)
List: [’success
|{
?i:Pid := Pid_1
?j:Pid := Pid_2
?s:State := (enter Pid_2

(exit Pid_1
(enter Pid_1 init )))

}|]

As we can see, Athena falsified the property in question and returned a state in
which the goal is violated. This state can be reached after the application of the
transitions enter, exit and enter in the initial state of our system, as Athena informed
us (enter p2 exit p1 enter p1 init).

In order to understand better why the property is violated in a particular state
we have written a procedure, simulate, that takes as input a sequence of states
s1, . . . , sn , and prints out each state in the sequence by applying all observer functions
to the given state, and specifically by evaluating the applications of those observer
functions (by using the relevant axioms as rewrite rules).

Since we know which transitions cause the falsification of the goal, we can use
the simulate method to see the value of the observers in this problematic state. In our
case, calling simulate (p2 enter p1 exit p1 enter init), results
in the following output:
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State after (p1 enter init):
locked: p1 at:
------------ -------------------
true cs

State after (p1 exit (p1 enter init )):
locked: p1 at:
------------ -------------------
false cs

State after (p2 enter (p1 exit (p1 enter init ))):
locked: p2 at:
------------ -------------------
true cs

If we observe the returned values in this state we see that while p2 exits the critical
section it basically remains in the critical section. Thus we understand that theremust
exist an error in the definition of the exit axioms (in particular, the first axiom was
mis-written as (i at s = cs ==> i at i exit s = cs) instead of (i
at s = cs ==> i at i exit s = rs)). After redefining the axiom, we
falsify again the desired goal, and Athena returns the term ’failure. Thus we proceed
to the next step of our methodology.

19.3.2.4 Step 4. Start the Proof of the Desired Goal Using Proof Scores
Approach (until a Lemma Is Needed).

We start to work with proof scores in CafeOBJ, until we reach the following case
where CafeOBJ returns false:

open ISTEP .
-- arbitrary values
op k : -> Pid .
-- assumptions
-- eq c-enter(s,k) = true .
eq at(s,k) = rs .
eq locked(s) = false .
eq i = k .
eq (j = k) = false .
eq at(s,j) = cs .
-- successor state
eq s’ = enter(s,k) .
red istep1 .
close

This means that in order to discard this case we must use a lemma. By taking a
close look at the equations that define this statewe can observe that eq at(s,j) =
cs and eq locked(s) = false cannot hold together. This means that a possi-
ble lemma could be the following:inv2(S,J) = (at(S,J) = cs implies
locked(S) = true). To test if this lemma actually discards the problematic
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case we use the above proof score with the reduction red inv2(s,j) implies
istep1 and CafeOBJ returns true.

19.3.2.5 Step 5. Falsify the Discovered Lemma with Athena.

After defining the lemma in Athena, we try to falsify it and Athena returns the term
’failure, so we continue the proof score using this lemma.

19.3.2.6 Step 6. Continue the Proof Using Proof Scores in CafeOBJ.

Checking the rest of the cases in CafeOBJ will result in the completion of the proof
score. It is interesting to point out that in our example, during the proof score of the
lemma the original property under verification was required as part of the inductive
hypothesis. This case is shown below.

open ISTEP .
-- arbitrary values
op k : -> Pid .
-- assumptions
eq at(s,k) = cs .
eq (j = k) = false .
eq at(s,j) = cs .
-- successor state
eq s’ = exit(s,k) .
red inv1(s,j,k) implies istep2 .
close

19.3.2.7 Step 7. Create an Athena Proof Based on the Gained Insights.

The above pattern in a proof score denotes a situation where simultaneous induction
must performed. Together with the case splits and lemmas used, such information
is essential to the construction of the Athena proof. Also, by taking a closer look
at the invariant and the lemma used ((i at s = cs and j at s = cs ==>
i = j and j at s = cs ==> locked s, respectively) it is not difficult to
understand that a strengthened goal can be formulated out of them: i at s = cs
& j at s = cs ==> i = j & locked s, which we will attempt to verify
in Athena. The new goal is defined as follows:

define (new-goal-property s) :=
(forall i j . i at s = cs & j at s = cs ==> i = j & locked s)
define new-goal := (forall s . new-goal-property s)
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A method for completely automated inductive reasoning is automatically defined
whenever a new structure or datatype is introduced, as we have already mentioned.
The name of the method is the name of the corresponding structure joined with
the string -induction, in lower case. If we try to prove the new goal using the
state-induction we get the following output, which means that the goal is
automatically proved.

> (! state-induction new-goal)
Theorem: (forall ?s:State

(forall ?i:Pid
(forall ?j:Pid

(if (and (= (at ?i:Pid ?s:State)
cs)

(= (at ?j:Pid ?s:State)
cs))

(and (= ?i:Pid ?j:Pid)
(locked ?s:State ))))))

However, a completely automatic proof does not shed much light on a system’s
workings. A structured proof that derives the desired result in a piecemeal fashion can
be much more valuable in explaining the underlying system, i.e., in explaining why
a given property holds. In addition, the effort invested in constructing the proof often
pays off in increased understanding, and also in the discovery of errors, unintended
consequences of design constraints, and so on.

Athena uses a natural-deduction style of proof, as we have already mentioned,
which allows for structured and readable proofs that resemble in certain key respects
the informal proofs one encounters in practice [16]. Part of a detailed structured
Athena proof of the goal property for our example is shown below.2

by-induction (forall s . new-goal s) {
init => (!spf (new-goal init) (ab))

| (s’ as (k enter s)) =>
pick-any i:Pid j:Pid
let {IH := (forall i j . i at s = cs & j at s = cs

==> i = j & locked s)}
assume hyp := (i at s’ = cs & j at s’ = cs)
conclude goal := (i = j & locked s’)
(! two-cases
assume case1 := (k enabled-at s)
let {s’-locked := (!chain- > [case1

==> (locked s’) [enter-axioms ]]);
s-not-locked := (!chain- > [case1

==> (~ locked s) [right-and ]]);
i=j := (! by-contradiction (i = j)

assume h := (i =/= j)
let {D := {(i =/= k | j =/= k) from h}}

(!cases D
assume i=/=k := (i =/= k)
(!M i=/=k case1 IH)

assume j=/=k := (j =/= k)
(!M j=/=k case1 IH)))}

2For the full proof we refer readers to Appendix 5.
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(!both i=j s’-locked)
assume case2 := (~ k enabled-at s)
(! direct-ih hyp s case2 IH enter-axioms ))

...
}

In this way, Athena takes us one step closer to the goal of enabling proofs that can
serve to explain and communicate our reasoning, but which are nevertheless entirely
formal and checkable by machine [16].

19.4 Discussion

Some approaches that deal with the integration of algebraic specifications with more
conventional proving systems are briefly presented. A methodology that offers pars-
ing, static analysis and proof management is the tool Hets - the Heterogeneous Tool
Set [6]. Hets has among others, connections with the algebraic specification lan-
guages Maude and CASL and external theorem provers and is based on a graph of
logics and logic translations. Another interesting methodology for proving inductive
properties of OTSs that aims at automating the proof scores approach to verification,
can be found in [14]. In this paper, authors revise the entailment systemof proof scores
and enrich it with proof rules and tactics. Also, a prototype tool (Constructor-based
Inductive Theorem Prover - CITP) implementing the methodology is demonstrated.
CITP is implemented in Maude.

This last approach is the closest to ours but with a different point of view. While
both methodologies aim at providing soundness to the OTS/CafeOBJ method, CITP
focuses on the automation of the proofswhereaswe aremore concernedwith combin-
ing the benefits of CafeOBJ and Athena specification and verification methodologies
into one. For example, in [14] authors discharge automatically a desired property and
the required lemmas but they do not describe how the lemmas are formulated. Also
they do not support detailed proofs or simulation of the system’s behavior. Thus, we
believe that our approach offers better explanation and understanding of the verifi-
cation of the desired properties and the behavior of the specified system.

In the following we summarize the benefits of the proposed methodology; One
advantage is that the proof scores approach can provide feedback to the user when
a proof fails, and can be used to discover the required case splittings and occasional
lemmas for the proof, in contrast with most automated theorem provers including
Athena. Another advantage is that you can use the model-checking tools of Athena
to obtain some first insights about the specified system and thus save valuable time.
Also, the simulate procedure, can become really helpful in understanding how the
specified system behaves. Especially when you deal with a complex system where it
is almost impossible to “follow” its execution process, such visualization techniques
can provide a clear overview of the system and help in the discovery of possible
errors. For example in [21] authors state that among the lessons learned from a non
trivial, real life protocol case study of the OTS/CafeOBJ method, is the delay arose
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from errors in the specification and the expression of system’s property. These errors
would be found easilywith the proposed integration. In addition, the structured proofs
supported by Athena can provide valuable information and explanation as to why a
property is invariant or not for the specified system. Another important advantage of
our approach is that Athena does a thorough check of the overall proof and provides
a guarantee that if and when you get a theorem, that result follows logically from the
assumption base and the primitive methods (which in this case include the external
ATP). This is really helpful because on the other hand, with CafeOBJ’s proof scores
approach there is much greater room for human oversight. Finally, the automation
offered by Athena through its connection with external systems is another advantage
of the proposed framework.

19.5 Conclusion

We proposed a hybrid methodology that combines the proof scores approach of
CafeOBJ with Athena’s reasoning and verification tools, together with a tool that
translates equational CafeOBJ specifications into Athena code, and demonstrated
our approach with a mutex algorithm. Also we presented several features of the
methodology that can be used to: better understand the specified system,model-check
desired properties and verify them via theorem proving, both automatically and in
a structured and more detailed way. The proposed method aims at combining the
strengths of the languages, CafeOBJ and Athena, by working with proof scores and
CafeOBJ but also taking advantage ofmore conventional formal-methods techniques
that have traditionally lied outside of the rewriting community.

This methodology has been applied in larger case studies as well [9] and as future
work we plan to push the automation level further for complex systems and to inves-
tigate possible connections with tools incorporating various provers and different
specification languages. Also, we plan to extend the proposed framework in order to
include the behavioral aspects of CafeOBJ as well.

Acknowledgements This research has been co-financed by the European Union (European Social
Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program:
THALIS. The authors would like to acknowledge the insightful feedback provided by Dr. Konstan-
tine Arkoudas. The authors would also like to warmly thank Prof. Dr. Sofia Lambropoulou, Project
Coordinator of the Research Project Thalis “AlgebraicModeling of Topological and Computational
Structures and Applications” for their excellent collaboration.



416 K. Ksystra et al.

Appendix A

Here we present the CafeOBJ specification of the mutex system.

mod* PID {
[Pid]
op _=_ : Pid Pid -> Bool {comm}
var I : Pid
eq (I = I) = true .}

mod! LABEL {
[Label]
ops rs cs : -> Label
op _=_ : Label Label -> Bool {comm}
var L : Label
eq (L = L) = true .
eq (rs = cs) = false .}

mod* MUTEX {
pr(LABEL + PID)
*[Sys]*
-- an arbitrary initial state
op init : -> Sys
-- observation functions
bop at : Sys Pid -> Label
bop locked : Sys -> Bool
-- transition functions
bop enter : Sys Pid -> Sys
bop exit : Sys Pid -> Sys
-- CafeOBJ variables
var S : Sys
vars I J : Pid
-- init
eq at(init ,I) = rs .
eq locked(init) = false .
-- enter
op c-enter : Sys Pid -> Bool
eq c-enter(S,I) = ((at(S,I) = rs) and not locked(S)) .
ceq at(enter(S,I),J) = cs if (I = J) and c-enter(S,I) .
ceq at(enter(S,I),J) = at(S,J) if not((I = J) and c-enter(S,I)) .
ceq locked(enter(S,I)) = true if c-enter(S,I) .
ceq enter(S,I) = S if not c-enter(S,I) .
-- exit
op c-exit : Sys Pid -> Bool
eq c-exit(S,I) = (at(S,I) = cs) .
ceq at(exit(S,I),J) = rs if (I = J) and c-exit(S,I) .
ceq at(exit(S,I),J) = at(S,J) if not((I = J) and c-exit(S,I)) .
ceq at(exit(S,I),J) = at(S,J) if not(I = J) and not c-exit(S,I) .
ceq locked(exit(S,I)) = false if c-exit(S,I) .
ceq exit(S,I) = S if not c-exit(S,I) .}
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Appendix B

The declaration of an invariant property in CafeOBJ terms and the definition of the
induction schema, are shown below:

-- declaration of the invariant property
mod INV {
-- arbitrary values
op s : -> Sys .
ops i j : -> Pid .
-- name of invariant to prove
op inv1 : Sys Pid Pid -> Bool
-- CafeOBJ variables
var S : Sys
vars I J : Pid
-- invariant to prove
eq inv1(S,I,J) = (at(S,I) = cs and at(S,J) = cs implies I = J) .
}
-- declaration of the inductive step
mod ISTEP {
pr(INV)
-- arbitrary values
op s’ : -> Sys

-- name of formula to prove in each inducion case
op istep1 : -> Bool
-- formula to prove in each induction case
eq istep1 = inv1(s,i,j) implies inv1(s’ ,i,j) .
}

The definition of the corresponding invariant in Athena is presented here (the
induction schema is automatically defined in Athena).

define (inv1 s) := (forall ?i ?j . at s ?i = cs & at s ?j = cs
==> ?i = ?j)

The proof score of the desired invariant property in CafeOBJ, for the initial state
and when a transition, called enter(s,k), is applied can be seen below:

-- proof score
-- I. Base case
open INV .

red inv1(init ,i,j) .
close .

-- II. Induction case
-- 1. enter(s,k)
open ISTEP .
-- arbitrary values

op k : -> Pid .
-- successor state

eq s’ = enter(s,k) .
-- check

red istep1 .
close

The corresponding proof skeleton in Athena can be defined as follows.
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by-induction (forall ?s . goal-property ?s) {
init => (! prove (goal-property init))
| (state as (enter s k)) =>
pick-any i:Pid j:Pid

assume hyp := (state at i = cs & state at j = cs) {
goal := (i = j);

goal from (ab)
}

}

Finally, the following proof scores present a case splitting in CafeOBJ. In the
first case we assume that at(s,k) = cs while the second proof score assumes
its symmetrical case, i.e. (at(s,k) = cs) = false.

open ISTEP .
-- arbitrary values

op k : -> Pid .
-- case 1
eq at(s,k) = cs .
-- successor state

eq s’ = enter(s,k) .
-- check

red istep1 .
close

open ISTEP .
-- arbitrary values

op k : -> Pid .
-- case 2
eq (at(s,k) = cs) = false .
-- successor state

eq s’ = enter(s,k) .
-- check

red istep1 .
close

The same case splitting can be defined in Athena terms as follows:

(! two-cases
assume case1 := (k at s = cs)
...
assume case2 := (k at s =/= cs))

Appendix C

A detailed structured Athena proof of the (strengthened) goal for our example is
shown below.

Theorem 19.1 For all states s ′ and processes i and j , if i and j are in their critical
sections in s ′, then i = j and s ′ is locked. �
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Proof By structural induction on s ′. When s ′ is the initial state the result is trivial
because the antecedent is false, as all processes are in their remainder sections ini-
tially. Suppose now that s ′ is of the form (k enter s). Pick any processes i and j and
assume both are in their critical sections in s ′. We then need to show that i = j and
that s ′ = (kenters) is locked. The inductive hypothesis here is:

i at s = cs & j at s = cs ==> i = j & locked s (19.1)

We distinguish two cases:

1. Case 1: k is enabled at s. Then (k ats ′ = cs)and (lockeds ′) follow from the enter
axioms. Thus, we only need to show i = j . By contradiction, suppose that i 
= j .
Then either i 
= k or j 
= k. 3 So assume first that i 
= k (the reasoning for the
case j 
= k is symmetric). Then, from the enter axioms and the assumption that
k is enabled at s, we conclude i ats ′ = i ats, hence i at s = cs. Now applying the
inductive hypothesis to the above assumption, we conclude (locked s). However,
that contradicts the assumption that k is enabled at s, as that assumption means
that s is not locked.

2. Case 2: k is not enabled at s. In that case, by the enter axioms, we get

(k enter s = s)

i.e., s ′ = s, and the result now follows directly from the inductive hypothesis.

Finally, suppose that s ′ is of the form (k exit s). Again pick any processes i and j
and assume both are in their critical sections in s ′. We again need to show that i = j
and that s ′ = (kexits) is locked. The inductive hypothesis here is the same as before,
(19.1). We distinguish two cases again, depending on whether or not the effective
condition of the exit transition holds:

1. Case 1: (k at s = cs).We proceed by contradiction. First, by applying the inductive
hypothesis to the conjunction of (k at s = cs) with itself, we obtain (locked s).
Also, by the exit axioms, we get

k at s ′ = (k exi t s) = rs

i.e.,
k at s ′ = rs. (19.2)

The exit axioms also imply that s ′ is not locked. We can now conclude that

i 
= k (19.3)

3Clearly, if neither of these hold, i.e., if i = k and j = k, thenwe could also have i = j , contradicting
our hypothesis.
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because otherwise, if i = k, the assumption that i is in cs in state s ′ would con-
tradict (19.2). Hence, by the exit axioms, we get

i at s ′ = i at s. (19.4)

Therefore, from (19.4) and the assumption that i is in cs in s ′, we get i at s =
cs. But now applying the inductive hypothesis to i at s = cs and to (k at s = cs)
yields i = k, contradicting (19.3).

2. Case 2: (k at s 
= cs). In that case the exit axioms give (k exit s = s, i.e., s ′ = s,
and the result follows directly from the inductive hypothesis.

The above informal proof can be formulated inAthena at the same level of abstrac-
tion and with the exact same structure. Moreover, the proof colloquialism “the rea-
soning for that case is symmetric” that appears in the enter transition can be directly
accommodated by abstracting the symmetric reasoning into amethod and then apply-
ing that method to multiple instances. Likewise, the treatment of enter and exit is
symmetric when their effective conditions are violated, in which case the result fol-
lows directly from the inductive hypothesis, and this commonality too can be easily
factored out into a general method. The entire proof, along with these two methods,
can be seen below. Note that the proof doesn’t use external theorem provers. Instead,
it uses Athena’s own library chain method, which allows for limited proof search.
The chain method extends the readability benefits of equational chains into arbitrary
implication chains.

# T h i s i s t h e ‘ ‘ s y m m e t r i c ’ ’ r e a s o n i n g t h a t a p p e a r s i n t w o
# p l a c e s i n t h e t r e a t m e n t o f e n t e r . We a b s t r a c t i t h e r e
# i n t o o n e s i n g l e g e n e r i c m e t h o d M .

define (M inequality enabled-premise IH) :=
match [inequality enabled-premise] {

[(~ (i = k)) (((k at s) = rs) & (~ (locked s)))] =>
(!chain- >
[inequality

==> (enabled-premise & inequality) [augment]
==> (i at k enter s = i at s) [enter-axioms]
==> (i at s = i at k enter s) [sym]
==> (i at s = cs) [(i at k enter s = cs)]
==> (i at s = cs & i at s = cs) [augment]
==> (locked s) [IH]
==> (locked s & ~ locked s) [augment]
==> false [prop-taut ]])

}

# T h i s m e t h o d h a n d l e s a l l c a s e s w h e r e t h e e f f e c t i v e c o n d i t i o n
# i s v i o l a t e d .

define (direct-ih hyp s failed-ec IH transition-axioms) :=
match hyp {

(((i at s’) = cs) & ((j at s’) = cs)) =>
let {s=s’ := (!chain- >

[failed-ec ==> (s’ = s) [transition-
axioms ]])}

(!chain- > [hyp ==> (i at s = cs & j at s = cs) [s=s’]
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==> (i = j & locked s) [IH]
==> (i = j & locked s’) [s=s’]])

}

# Th e m a i n p r o o f :

by-induction (forall s . gp s) {
init => (!spf (gp init) (ab))

| (s’ as (k enter s)) =>
pick-any i:Pid j:Pid
let {IH := (forall i j . i at s = cs & j at s = cs

==> i = j & locked s)}
assume hyp := (i at s’ = cs & j at s’ = cs)
conclude goal := (i = j & locked s’)
(! two-cases
assume case1 := (k enabled-at s)
let {s’-locked := (!chain- > [case1

==> (locked s’) [enter-axioms ]]);
s-not-locked := (!chain- > [case1

==> (~ locked s) [right-and ]]);
i=j := (! by-contradiction (i = j)

assume h := (i =/= j)
let {D := {(i =/= k | j =/= k) from h}}

(!cases D
assume i=/=k := (i =/= k)
(!M i=/=k case1 IH)

assume j=/=k := (j =/= k)
(!M j=/=k case1 IH)))}

(!both i=j s’-locked)
assume case2 := (~ k enabled-at s)
(! direct-ih hyp s case2 IH enter-axioms ))

| (s’ as (k exit s)) =>
pick-any i:Pid j:Pid
let {IH := (forall i j . i at s = cs & j at s = cs

==> i = j & locked s)}
assume hyp := (i at s’ = cs & j at s’ = cs)
conclude goal := (i = j & locked s’)
(! two-cases
assume case1 := (k at s = cs)
(! by-contradiction goal
assume -goal := (~ goal)
let {locked-s :=

(!chain- > [case1
==> (case1 & case1) [augment]
==> (locked s) [IH]]);

p2 := (!chain- > [case1
==> (k at s’ = rs) [exit-axioms ]]);

i=/=k :=
(! by-contradiction (i =/= k)
assume h := (i = k)
(!chain- > [p2

==> (i at s’ = rs) [h]
==> (cs = rs) [(i at s’ = cs)]
==> (cs = rs & cs =/= rs) [augment]
==> false [prop-taut ]]))}

(!chain- > [i=/=k
==> (i at s’ = i at s) [exit-axioms]
==> (i at s = cs) [(i at s’ = cs)]
==> (i at s = cs & k at s = cs) [augment]
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==> (i = k) [IH]
==> (i = k & i =/= k) [augment]
==> false [prop-taut ]]))

assume case2 := (k at s =/= cs)
(! direct-ih hyp s case2 IH exit-axioms ))

}
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Chapter 20
A Rule-Based Approach for Air Traffic
Control in the Vicinity of the Airport

Theodoros Mitsikas, Petros Stefaneas and Iakovos Ouranos

Abstract The constantly augmenting loads of the aviation industry inevitably define
the evolutions in the field ofAir Traffic Control. Relevant regulations are changing, in
order to accommodate the increase in passenger, flight, and cargonumbers. This paper
presents the design of an innovative rule base for the Air Traffic Control regulations
during the take-off and landing phases, covering both current and future separation
standards of ICAO and FAA. The rule base consists of the rules implementing the
Air Traffic Control regulations, and a database containing characteristics of airports
and aircraft. The proposed rule base constitutes a flexible tool for the computation of
the aircraft separation according to current and future regulations, useful in the fields
of conflict detection, conflict avoidance, and scheduling aircraft landings. A further
application will be as a decision support tool in real-time environments, guaranteeing
the enforcement of all the separation standards.

Keywords RuleML · Rule base · Aircraft separation · Air traffic control
AMS Subject Classifications 68Q60 · 68N30 · 68T30 · 03B70

20.1 Introduction

Air Traffic Control (ATC) is an important factor for the airliner operations, guiding
the aircraft on the air and on the ground. ATC is responsible for organizing the air
traffic flow in an efficient way, while ensuring the safety.
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The separation of aircraft is the concept of keeping a minimum distance between
aircraft to avoid collisions and possible accidents caused by wake turbulence. The
lift that the aircraft’s wing is designed to produce directly affects the intensity and
lifespan of the generated vortex. Therefore, the separation minima is based upon
wake vortex categories of the preceding and the following aircraft which, in turn, are
derived from the maximum takeoff weight (MTOW) or the maximum takeoff mass
(MTOM) [8, 10, 13, 14].

Due to the increasing traffic and congested airports, regulation changes are cur-
rently being planned, with the aim of increasing airport capacity [6, 12, 14, 17]. The
first step is the wider adaptation of RECAT, which recategorizes aircraft and sets
new standards for wake turbulence separation minima. Therefore, the wingspan is
used as an additional to MTOW/MTOM parameter. As a result, aircraft are placed
into six wake vortex categories, common for departure and arrival separation, which
enhance both safety and efficiency [8, 11, 14]. The second step is a static separation
matrix of distance and time for both arrivals and departures for the common commer-
cial aircraft, called RECAT-2 [7]. The third step, RECAT-3, will provide dynamic
pair-wise spacing that will vary with atmospheric conditions and aircraft perfor-
mance [7]. However, if in the future the concepts of Free Flight and Self-Separation
are employed, the management of air traffic will be revolutionized. They consist of
decentralized methods of ATC, using computer communication to reserve parts of
the airspace dynamically and automatically in a distributed way [20].

The abovementioned changesmandate themodernizationof the current infrastruc-
ture, as their application necessitates the operation of relevant computer systems. For
example, a specialized tool will be required to apply RECAT-2, because of the size of
the separationmatrix. Besides, after the realization of Free Flight and Self-Separation
concepts, conflict avoidance will be totally automated, relying only on computer sys-
tems and computer communication between aircraft.

Our research project aspires to support the evolution of ATC. We propose a rule-
based approach to model ATC regulations in the terminal airspace. Our approach
allows the validation and verification of its formal properties [15], without compro-
mising the compliance with the regulations. We have used the reference Naf Hornlog
implementation of RuleML rule language, OO jDREW, taking advantage of its suit-
able built-in predicates and functions, and its vastmulti-agent and distributed systems
compatible API. Furthermore, our approach can serve as a tool for the application
of both current and future regulations on the field.

Our main contributions are as follows: (i) we developed rules, derived from the
regulations, for the definition of wake vortex categories; (ii) we developed rules con-
cerning the separation minima during the landing phases; (iii) a large database of
more than 200 types of aircraft was developed, containing the characteristics required
to compute the above. Additionally, we developed a reference airport database, con-
taining characteristics of airports in Greece; (iv) we developed the mathematical
background within the rule base, capable of handling the heading of aircraft as well
as angles and angle comparison, as a base for future work; (v) we developed rules
and a methodology of handling not fully established future regulations, covering
different orientations that may follow.
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The rest of the paper is organized as follows. Section20.2 presents related work,
while Sect. 20.3 introducesRuleML.Section20.4, themain part of our paper, presents
the design of the rule-base. Finally, Sect. 20.5 concludes the paper and proposes future
work.

20.2 Related Work

To the best of our knowledge, no strict rule-based approach for ATC in the airport
area exists. However, a convergence point can be found in other lines of research
concerning decision support tools, landing scheduling, and Free Flight. Below, the
most related previous work is discussed.

Prototype decision support tools for terminal area and controllers, such as FAST
[5], have been developed and evaluated in operation with live air traffic. More com-
plete systems have been developed and tested, such as [17]. An overview of a method
for formal requirements capture and validation, in the domain of oceanic ATC is pre-
sented in [16]. The obtained model focuses on conflict prediction, while being com-
pliant to the regulations governing aircraft separation in oceanic airspace. The design
approach, the specification structure, and some examples of the rules and axioms of
the formal specification are provided. Those examples, expressed in Many-Sorted
First Order Logic or in the Prolog notation, include rules about conflict prediction and
aircraft separation. Supplementary, the model was validated by automated processes,
formal reasoning and domain experts.

The objective of landing scheduling is to position all arriving aircraft to a runway
and to a specific timewindow,while respecting separation constraints andminimizing
delays [2, 5, 6, 18, 19, 21]. Different algorithms and heuristics are used, the simplest
one being first-come first-served (FCFS). Aircraft separation is used as a scheduling
constraint. However, it has to be underlined that the regulations requirements are not
strictly followed, but constant values or simplified forms are used.

Research in the field of Free Flight concept focuses on model principles and dif-
ferent algorithms for conflict detection and avoidance. In [20], a general platform
(NAMA), which is oriented towards agent-based Free Flight implementations, was
presented. In the same work, a conflict detection and resolution, based on utility
functions without any negotiations between agents, was proposed. However, the
separation constraints were not explained. In [12], the authors focused on airport
airspace. They developed a multi-agent architecture, and a software prototype. The
latter implements an ATC system with distributed policy of conflict resolution, pre-
dictive analysis and P2P interaction-based autonomous coordination of aircraft’s
motions. Nevertheless, aircraft classes serve only for the estimation of airspeed range
and not for the differences in separation between classes.



426 T. Mitsikas et al.

20.3 RuleML Basics

RuleML is a markup language, designed to express both top–down and bottom–
up rules in XML schema; a shorthand is POSL, that follows a Prolog-like syntax.
More specifically, we usedOO jDREW, a RuleML implementation that followsHorn
Clauses in implication form, supports negation as failure, and is written in the Java
programming language.

A Horn Clause in implication form is written as h ← p ∧ q ∧ . . . ∧ r , where h,
p, q, r are atoms. An atom is of the form r(t1, . . . , tn), where r is a predicate of arity
n, and ti are terms.

In POSL, a clause has the general form:

h :- p,q,...,r.

The head of the clause is h and the body is p, q, . . . , r . A clause is called a fact
if the body is empty. Neither disjunction nor negation is supported on the body [3].
In this paper, we take advantage of OO jDREW’s built-in equality and inequality
predicates, as well as of math functions. The English sentence: “A customer is pre-
mium if their spending has been min 5000 euro in the previous year”, part of the
classic RuleML example which can be found in [4], can be written in POSL form,
using inequality predicates, as follows:

premium(?customer) :-
spending(?customer, ?amount,"previous year"),
greaterThanOrEqual(?amount, 5000ˆˆReal).

The relation atoms are premium and spending, ?customer and ?amount
are variables representing customer’s name and amount spent, respectively, while
"previous year" and 5000 are constants and ˆˆReal is the type. The built-
in predicate greaterThanOrEqual is satisfied iff the first argument is equal to or
greater than the second argument. By asserting e.g., the following fact in the Knowl-
edge Base:

spending(Peter, 6000ˆˆReal, "previous year").

the query premium(?x) binds Peter to the variable ?customer, as shown
in Fig. 20.1.

The notation used in this paper is: (i) variables are denoted by xk , (ii) constants
and bindings are lower or upper case alphanumericals, (iii) atoms, predicates and
functions can be either in the form Rn

k (t1, . . . tn), or in the simplified form —e.g.
(t1 < t2)— for equality and inequality predicates.
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Fig. 20.1 The query execution tab of OO JDREW

20.4 The Rule Base

In this section we present the design of our approach. We express in terms of rules,
ATC regulations concerning aircraft separation standards in the airport vicinity under
instrument flight rules (IFR). We follow weight classes and the separation of aircraft
of different classes according to International Civil Aviation Organization (ICAO)
and Federal Aviation Administration (FAA) regulations. Additionally, we decscribe
rules regarding airport layout, heading and turns, and weather conditions in order to
cover future regulations or complex cases.

The design of the rule base aims to (i) implement ATC regulations adhering to
ICAO and FAA standards. (ii) study complex cases (iii) be easily integrated with any
existing or future framework (iv) be flexibly adapted to each framework’s require-
ments.

Handling intersection departures, intersecting runways, intersecting flight path
operations and parallel approaches is presented as example of how our proposed rule
base efficiently solves complex cases.
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20.4.1 Database

The database, written in RuleML/POSL, contains more than 200 types of aircraft
defined by ICAO aircraft designation (a three- or four-character alphanumeric code
designating aircraft), with the characteristics needed to compute the separation min-
ima. The data were obtained from [9]. Each entry has a general form of an atom of
arity 4 as follows:

aircraftChar(xtype, xkg, x f t , xkt ) (20.1)

where xtype denotes the type of the aircraft as defined by ICAO aircraft designation,
xkg denotes the MTOM in kilograms, x f t the wingspan of the aircraft measured in
feet, and xkt is the approach speed, measured in knots. The corresponding code, for
the Airbus A321 (ICAO aircraft designation code: A321), in RuleML/POSL, is as
follows:

aircraftChar(A321,93500ˆˆReal,111.9ˆˆReal,138ˆˆReal).

For each characteristic an individual atom of arity 1 is obtained by the following
Horn Clauses, written in an implication form:

mtom(xkg) ← aircra f tChar(xtype, xkg, x f t , xkt ) ∧ aircra f t (xtype)

(20.2)

wingspan(x f t ) ← aircra f tChar(xtype, xkg, x f t , xkt ) ∧ aircra f t (xtype)

(20.3)

appSpeed(xkt ) ← aircra f tChar(xtype, xkg, x f t , xkt ) ∧ aircra f t (xtype)

(20.4)

where aircra f t (xtype) must be defined —e.g. aircraft(A321) for the Airbus
A321— in the knowledge base as a fact.

Similar atoms are defined for the preceding aircraft:

mtomPreceding(xkg) ← (20.5)

aircra f tChar(xtype, xkg, x f t , xkt ) ∧ precedingAircra f t (xtype)

wingspanPreceding(x f t ) ← (20.6)

aircra f tChar(xtype, xkg, x f t , xkt ) ∧ precedingAircra f t (xtype)

where precedingAircra f t (xtype) must be defined as a fact.
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Furthermore, the database contains a reference implementation of airports. Each
entry in the database is of the form:

airportChar(xcode, xor1 , xor2 , xor3 , xor4 , xname1 , xname2 , xname3 , xname4 , (20.7)

xd , xrules)

where xcode is representing the ICAO airport code (a four-character alphanumeric
code designating airports), xor1 , xor2 , xor3 and xor4 are representing the the exact
heading of each runway in degrees in ascending order respectively, xname1 , xname2 ,
xname3 , and xname4 are the variables representing the runway designation, xd is the
distance between the two runways and, the regulations applicable to each airport are
denoted by xrules .

Those characteristics are needed to compute the airport layout, the heading during
landing, and the initial heading after take-off. Currently, the rule base supports up to
two runways in both directions.

As above, atoms of arity 1 are obtained for each characteristic, by the following
Horn Clauses, written in an implication form:

runwayOneOr(xor1) ← airportChar(xcode, xor1 , . . . ) ∧ airport Name(xcode)

(20.8)
...

runwayOneName (xname1) ← (20.9)

airportChar(xcode, . . . , xname1 , . . . ) ∧ airport Name(xcode)

...

distanceBtwnRunw(xd) ← airportChar(xcode, .., xd , ..) ∧ airport Name(xcode)

(20.10)

where airport Name(xcode) must be defined as a fact in the knowledge base, e.g.
aiportName(LGTS) for the Thessaloniki Airport “Macedonia” (ICAO airport
code: LGTS), an airport with two intersecting runways (10/28 and 16/34). The cor-
responding entry in the database, in RuleML/POSL, is

airportChar(LGTS, 103.9ˆˆReal, 166.3ˆˆReal,
283.9ˆˆReal, 346.3ˆˆReal, 10ˆˆString, 16ˆˆString,
28ˆˆString, 34ˆˆString, 0ˆˆReal, icao).

Weather information can be useful for simultaneous operations on different run-
ways, or for future expansion to support RECAT-3, Weather Dependent Separations
(WDS), and Time-Based Separation (TBS) in strong headwind conditions [7]. The
form of the atoms in the database concerning weather information is as follows:
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weather(xcode, xkt , xdir ) (20.11)

where xcode is representing the ICAO airport code, xkt denotes the wind speed,
measured in knots, and xdir denotes the wind direction.

The following is an example according to METAR information of March, 21st ,
18:20UTC, for LGTS:

weather(LGT S, 3, variable). (20.12)

As above, atoms of arity 1 can be obtained by the following Horn Clauses, written
in an implication form:

windSpeed(xkt ) ← weather(xcode, xkt , xdir ) ∧ airport Name(xcode)

(20.13)

windDirection(xdir ) ← weather(xcode, xkt , xdir ) ∧ airport Name(xcode)

(20.14)

20.4.2 ICAO Regulations

Current regulations of ICAO categorize aircraft as follows [13, 14]:

Light MTOM of 7000kg or less.
Medium MTOM of greater than 7000kg, but less than 136000kg.
Heavy MTOM of 136000kg or greater.
Super - A separate designation that currently only refers to theAirbusA380 (MTOM

575000kg, ICAO designation A388).

The categorization can be specified using the following Horn Clauses, (for Light
and Medium categories):

icaoCategory(light) ← mtom(xkg) ∧ (xkg ≤ 7000) (20.15)

icaoCategory(medium) ← mtom(xkg) ∧ (xkg > 7000) ∧ (xkg < 136000)

(20.16)

AirbusA380would normally belong toHeavy category. Consequently, the definition
of Heavy and Super classes is additionally using the aircraft type.

icaoCategory(heavy) ← mtom(xkg) ∧ (xkg ≥ 136000) ∧ (20.17)

aircra f t (xtype) ∧ (xtype �= A380)

icaoCategory(super) ← aircra f t (A380) (20.18)
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Table 20.1 Current ICAO weight categories and associated separation minima [14]

ICAO separation standards (nautical miles)

Follower

Super Heavy Medium Light

Leader Super MRS 6 7 8

Heavy MRS 4 5 6

Medium MRS MRS MRS 5

Light MRS MRS MRS MRS

MRS: Minimum Radar Separation

Inequality predicates are built-ins of OO jDREW. The computation of aircraft’s
category can be made by defining the type of an aircraft, which must be present
at the database as a fact —e.g. aircraft(A321)— and executing the query
icaoCategory(?x). Similar rules exist for the preceding aircraft, defining the
atom icaoCategoryPreceding(xclass).

ICAO separation standards for flights on instrument flight rules (IFR) are pre-
sented at Table20.1.

Those separations standards can be represented by Horn Clauses. For instance,
the derived Horn Clauses for the categories heavy, medium are as follows:

icaoSeparation(mrs) ← icaoCategory(heavy) ∧ icaoCategoryPreceding(medium)

(20.19)

icaoSeparation(5) ← icaoCategory(medium) ∧ icaoCategoryPreceding(heavy)
(20.20)

icaoSeparation(mrs) ← icaoCategory(medium) ∧ icaoCategoryPreceding(medium)

(20.21)

icaoSeparation(4) ← icaoCategory(heavy) ∧ icaoCategoryPreceding(heavy)
(20.22)

By defining the type of the preceding and following aircraft, the needed separation
can be obtained by executing the query icaoSeparation(?x).

20.4.3 FAA Regulations

Themethodology for constructing the rules concerning aircraft classes and separation
according to FAA regulations is similar. The FAA is using the following classes [10]:



432 T. Mitsikas et al.

Small - Aircraft of 41000pounds (19000kg) or less MTOW.
Large -Aircraft ofmore than 41000pounds (19000kg)MTOW,up to, but not includ-

ing, 300000pounds (140000kg).
Heavy - Aircraft capable of takeoff weights of 300000pounds (140000kg) or more.
Super - A separate designation that currently only refers to the Airbus A380 and the

Antonov An-225
B757 - Different separation standards are applied for the Boeing 757.

The Horn Clauses defining the above regulations, after conversion of pounds to
kilograms has been applied, are:

f aaCategory(small) ← mtom(xkg) ∧ (xkg ≤ 19000) (20.23)

Boeing 757 would normally belong to Large class, while Airbus A380 and Antonov
A225 would belong to Heavy class. Therefore, similar to ICAO categorization, the
definition of those classes additionally needs the aircraft type:

f aaCategory(large) ← aircra f t (xtype) ∧ (xtype �= B757) ∧ (20.24)

mtom(xkg) ∧ (xkg > 7000) ∧ (xkg < 136000)

f aaCategory(heavy) ← mtom(xkg) ∧ (xkg ≥ 136000) ∧ (20.25)

aircra f t (xtype) ∧ (xtype �= A380) ∧ (xtype �= A225)

f aaCategory(super) ← aircra f t (A380) ∨ aircra f t (A225) (20.26)

f aaCategory(B757) ← aircra f t (B757) (20.27)

The lack of disjunction in the head of Horn Clauses and in RuleML/POSL, mandates
two rules for B757 and Super classes, one for each ICAO aircraft code designation
(B752, B753 for Boeing 757, A225 for Antonov An-225). Executing the query
faaCategory(?x), answers the class of the aircraft. Similar rules exist for the
preceding aircraft, defining the atom f aaCategoryPreceding(xclass).

The separation standards at the runway threshold for flights under IFR are defined
by the Table20.2.

The derived Horn Clauses for e.g. the categories heavy, B757, are as follows:

f aaSeparation(5) ← f aaCategory(B757) ∧ f aaCategoryPreceeding(heavy)
(20.28)

f aaSeparation(4) ← f aaCategory(heavy) ∧ f aaCategoryPreceeding(B757)
(20.29)

f aaSeparation(4) ← f aaCategory(heavy) ∧ f aaCategoryPreceeding(heavy)
(20.30)
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Table 20.2 FAA wake separation standards (nautical miles, at the threshold) [8]

Leader/Follower Super Heavy B757 Large Small

Super MRS 6 7 7 8

Heavy MRS 4 5 5 6

B757 MRS 4 4 4 5

Large MRS MRS MRS MRS 4

Small MRS MRS MRS MRS MRS

MRS: minimum radar separation

f aaSeparation(4) ← f aaCategory(B757) ∧ f aaCategoryPreceeding(B757)
(20.31)

20.4.4 RECAT Regulations

For the purposes of wake turbulence separation minima, aircraft are categorized
as Category A through Category F. Each aircraft is assigned a category based on
wingspan, and maximum takeoff weight (MTOW) [8, 11]:

Category A. Aircraft capable of MTOW of 300,000pounds or more and wingspan
greater than 245 feet.

Category B. Aircraft capable of MTOW of 300,000pounds or more and wingspan
greater than 175 feet and less than or equal to 245 feet.

Category C. Aircraft capable of MTOW of 300,000pounds or more and wingspan
greater than 125 feet and less than or equal to 175 feet.

Category D. Aircraft capable of MTOW of less than 300,000pounds and wingspan
greater than 125 feet and less than or equal to 175 feet; or aircraft with wingspan
greater than 90 feet and less than or equal to 125 feet.

Category E. Aircraft capable of MTOW greater than 41,000pounds with wingspan
greater than 65 feet and less than or equal to 90 feet.

Category F. Aircraft capable of MTOW of less than 41,000pounds and wingspan
less than or equal to 125 feet, or aircraft capable of MTOW less than 15,500
pounds regardless of wingspan, or a powered sailplane.

The derived definite clauses in implication form, after conversion of pounds to kilo-
grams are as follows:

recat (A) ← mtom(xkg) ∧ (xkg ≥ 136000) ∧ wingspan(x f t ) ∧ (x f t > 245)
(20.32)

recat (B) ← mtom(xkg) ∧ (xkg ≥ 136000) ∧ (20.33)

wingspan(x f t ) ∧ (x f t ≤ 245) ∧ (x f t > 175)
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recat (C) ← mtom(xkg) ∧ (xkg ≥ 136000) ∧ (20.34)

wingspan(x f t ) ∧ (x f t ≤ 175) ∧ (x f t > 125)

recat (D) ← (wingspan(x f t ) ∧ (x f t ≤ 125) ∧ (x f t > 90)) ∨ (20.35)

(mtom(xkg) ∧ (xkg < 136000) ∧
wingspan(x f t ) ∧ (x f t ≤ 175) ∧ (x f t > 125))

recat (E) ← mtom(xkg) ∧ (xkg > 18000) ∧ (20.36)

wingspan(x f t ) ∧ (x f t ≤ 90) ∧ (x f t > 65)

recat (F) ← (mtom(xkg) ∧ (xkg < 7000)) ∨ (20.37)

(mtom(xkg) ∧ (xkg ≤ 18000) ∧ wingspan(x f t ) ∧ (x f t ≤ 125))

The lack of disjunction in the body of Horn Clauses and in RuleML/POSL, man-
dates two rules for categoriesD and F. Executing the queryrecatCategory(?x)
answers about aircraft’s category. Similar rules exist for the preceding aircraft, defin-
ing the atom recat Preceding(xclass).

RECAT separation standards for IFR flights are presented in Table20.3. For
instance, the separation values for the pair B, C are captured from the following
Horn Clauses:

recat Separation(mrs) ← recat (B) ∧ recat Preceding(C) (20.38)

recat Separation(4) ← recat (C) ∧ recat Preceding(B) (20.39)

Table 20.3 RECAT wake separation standards (nautical miles) [8, 11]

Follower

A B C D E F

Leader A MRS 5 6 7 7 8

B MRS 3 4 5 5 7

C MRS MRS MRS 3.5 3.5 6

D MRS MRS MRS MRS MRS 4

E MRS MRS MRS MRS MRS MRS

F MRS MRS MRS MRS MRS MRS

MRS: Minimum Radar Separation
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20.4.5 Airport Layout

ICAO and FAA rules are covering cases such as intersecting runway/intersecting
flight path separation, intersection departures, parallel approaches, etc. Furthermore,
different separation standards may exist when aircraft operate in different runways
separated by at least 2500 ft or 760m [10, 13]. Finally, the rule base must cover
situations where a runway is closed for maintenance of for emergency reasons. In
order to implement the above, it is necessary to define rules concerning the airport
layout.

Reasoning on airport layout is realized by using information about airport char-
acteristics described in Sect. 20.4.1, combined with additional rules. Currently, the
rule base supports up to two runways, used both ways. In accordance with ICAO
and FAA regulations, the basic layouts supported are: (i) single runway, (ii) two
intersecting runways, (iii) two close parallel runways, less than 2500 feet (760m for
ICAO regulations) apart, (iv) parallel runways more than or equal to 2500 feet, and
(v) non parallel and non intersecting runways, denoted as npni.

layout (closeparallel) ← (R1(x1) ∧ R2(x2) ∧ (x1 = x2)) ∧ Rd(x3 < 2500)

(20.40)

layout ( f arparallel) ← (R1(x1) ∧ R2(x2) ∧ (x1 = x2)) ∧ Rd(x3 ≥ 2500)

(20.41)

layout (npni) ← (R1(x1) ∧ R2(x2) ∧ (x1 �= x2)) ∧ Rd(x3 �= 0)

(20.42)

where Rlayout is defined by layout, R1 is the heading of the first runway,
defined as runwayOneOr, R2 is the heading of the second runway, defined as
runwayTwoOr and Rd is the distance between runways, defined by the atom
distanceBtwnRunw. Equality predicate is built-in of OO jDREW. The query
layout(?x) is shown in Fig. 20.2.

20.4.6 Angles and Heading

Solving complex cases, as mentioned in Sect. 20.4.5, require reasoning over heading
and turns, as well as weather information. Representing spatial information for the
purpose of an ATC rule base mandates the use of quantitative terms for angle and
heading, since qualitative spatial terms cannot be used for precise arithmetic calcu-
lations. Previous work (e.g. [1]), can be useful only in cases of fuzzy terms, as wind
heading variations as expressed by METAR information.
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Fig. 20.2 Executing the query about airport layout, for the Thessaloniki Airport “Macedonia”

During landing phase, aircraft’s heading is derived from the orientation of the
runway on which the aircraft operates (denoted by the atom onRunway(x2)). Four
rules are needed to match runway name with the corresponding heading.

heading(xdeg) ← runwayOneOr(xdeg) ∧ (20.43)

runwayOneName(x1) ∧ onRunway(x2) ∧ (x1 = x2)

Heading and angle changes require two Horn Clauses for each computation, due
to the possible, greater than 360◦ result. Angle subtraction also requires additional
rules, covering cases from 0◦ to 180◦ and from 180◦ to 360◦. Negative values have
been taken in to consideration, using the built-in function abs(xabs, x1), where, given
that the first argument is a variable then it will be bound to the absolute value of the
second argument.

20.4.7 Future Regulations

The final form of the pair-wise separation matrix of RECAT-2 is not yet known;
therefore it was not possible to include those regulations in the rule base. However,
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a 120 × 120 matrix was implemented for testing purposes. The computational time
was sufficient for use in real-time environments, or at large simulations (∼5ms per
query on a laptop with AMD A6-6310 APU, 8GB RAM).

Other planned regulation changes asWDS or TBS can be handled by the rule base
and the database, according to known information. One advantage of the current rule
base is the inclusion of approach speed for each type of aircraft which makes the
precise computation of the time-based separation needed possible, in contrast with
[12, 17, 21].

20.5 Conclusions and Future Work

A rule base for ATC regulations has been developed for the vicinity of the airport.
This rule base, equipped with a large database consisting of characteristics of aircraft
and airports, can compute the separation minima during landing phases, as mandated
from current and future ATC regulations concerning operations under IFR.

The rule base is derived from interpretation of ATC regulations as Horn Clauses,
which allows validation and verification of formal properties. The reasoner used, OO
jDREW, provides adequate built-in predicates and functions for the implementation
of the subset of ATC regulations studied.

This approach is suitable for building a database of aircraft and airports, containing
their characteristics. Furthermore, it is possible to develop rules for categorization
of aircraft using only characteristics which are present in the database, according to
current ICAO, FAA and RECAT regulations, and subsequently, the implementation
of separation tables defined by the above.

Other aspects of regulations and existing models were investigated, leading to
the preliminary implementation of a mathematical background capable of handling
angles and angle comparison, headings of aircraft, turns, airspeed, airport layout and
future regulations.

In the future, we plan to extend the rule base to include a more complete set of
regulations, such as cases of separation minima reduction, incident management,
and transition zones. Further extensions may include lateral and vertical separation,
and 4-D rules, which, given the position, heading, airspeed and time, will generate
advisories to avoid possible conflicts. Finally, a collision avoidance method, external
or embedded in the rule base, will be necessary to utilize the rule base in Free Flight
concepts.
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Chapter 21
Sequential Machines and Affine Musical
Contours

Marianthi Bozapalidou

Abstract Affine contours may be viewed as an abstraction of the notion of musical
intervals and are closely related to sequential machines. We show that every commu-
tative affine musical contour actually simulates the classical one c : Z12 × Z12 →
Z12, c(s, t) = t − s.

21.1 Sequential Machines and Musical Contours

Sequentialmachines aremathematical tools suitable to describe and represent various
phenomena in music. Classically, a sequential machine SM can be depicted by a
finite directed graphM whose vertices are its states and whose transitions are of the
form

meaning that ifM is in state q and is fed with the input letter σ then it goes to state
q ′ and outputs the string u [3]. In addition the model is deterministic. This implies
that for any input string σ1 · · · σk , there is a unique path

and the emitted string is u1 · · · uk (i denoting the single initial state).
Functions computed by such systems are called sequential and have the fundamen-

tal property to preserve initial segments. The preservation of initial segments enables
the securing of similarities, necessary for outlining the dynamics of the musical flow,
by rendering SMs as a considerable tool to classify musical strings.
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Let X be an alphabet of musical entities and N a cancellative monoid of minimal
features. A contour from X to M is a function c : X × X → M assigning a feature
c(x, y) to any pair (x, y) of elements of X [1, 10]. Bozapalidou [2] studied contours
of the form c : X × X → R (real numbers) counting quantitative features of musical
strings.

Consider the contour c : X × X → M and its associated function f : X∗ → M
defined by the formulas:

• f (σ ) = e = f (ε), for all σ ∈ X (e the neutral element of M)
• f (σ1σ2 · · · σk) = c(σ1, σ2) � c(σ2, σ3) � · · · � c(σk−1, σk), σi ∈ X , k ≥ 2 where
the operation � in the right hand side is that of the monoid M . Such a contour
function f : �∗ → M is initial segment preserving and its minimal SM is

21.2 Affine Contours

Following Lewin [8, 9], generalized interval system is a contour (X, (M,�, e), c)
which satisfies the additional two axioms:

int1) for every x, y, z ∈ X

c(x, y) � c(y, z) = c(x, z)

int2) for every x ∈ X andm ∈ M , there exists a unique y ∈ X such that c(x, y)=m.

These two axioms are exactly the definition axioms of an affine space inGeometry,
where int1) is known as the Chasles axiom. Under this light such a system will be
more suitably called an affine contour (AC).

Proposition 21.1 If (X, M, c) is an AC, then M is a group.

Proof Applying int1) for x = y = z we obtain

c(x, x) � c(x, x) = c(x, x) = c(x, x) � e

and by left cancellation we get c(x, x) = e, where e is the neutral element of M .
Furthermore, given m ∈ M , let x, y ∈ X be such that c(x, y) = m (axiom int2)).
Then

m � c(y, x) = c(x, y) � c(y, x) = c(x, x) = e

and similarly
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c(y, x) � m = c(y, x) � c(x, y) = c(y, y) = e.

In other words c(y, x) is the symmetric of the element m and so M is a group.

Example 21.1 The standard AC is (Z12, (Z12,⊕, 0), di f ) with

di f : Z12 × Z12 → Z12, di f (s, t) = t − s

its minimal SM is

Likewise from any group (M,�, e) we get the AC (M, (M,�, e), cM ) where the
interval function cM : M × M → M is given by cM(m1,m2) = m ′

2 � m ′
1 (m1’ being

the symmetric of m1 in M). The associated minimal SM is similar to the previous
one.

It is interesting to see that any AC over a commutative group is of the form of
the previous example (up to isomorphism). To prove this we need some additional
notation. For every x ∈ X , axiom int2) ensures that the function

(1) ϕx : X → M , ϕx (y) = c(x, y), for all y ∈ X

is bijective and thus so is its inverse function ϕ−1
x : M → X given by

(2) ϕ−1
x (m) = y ⇐⇒ c(x, y) = m.

Moreover, it holds

(3) c(x, ϕ−1
x (m)) = m for all m ∈ M , x ∈ X .

Indeed, we have

c(x, ϕ−1
x (m)) = ϕx (ϕ

−1
x (m)) = (ϕx ◦ ϕ−1

x )(m) = id(m) = m

with id denoting identity function. Now a binary operation �x : X × X → X is
defined by setting

(4) y1 �x y2 = ϕ−1
x (c(x, y1) � c(x, y2)), for all y1, y2 ∈ X .

Clearly the element x is the neutral element:

x �x y = ϕ−1
x (c(x, x) � c(x, y)) = ϕ−1

x (e � c(x, y)) = ϕ−1
x (c(x, y))

(2)= y

for all y ∈ X , e the neutral element of M . From ϕx (x) = c(x, x) = e, we get

(5) ϕ−1
x (e) = x .
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Proposition 21.2 The triple (X,�x , x) is a group and the function ϕ−1
x : M → X

is a group isomorphism.

Proof We show that the symmetric y′ of the element y ∈ X is ϕ−1
x (c(y, x)), i.e. that

y �x ϕ−1
x (c(y, x)) = x and ϕ−1

x (c(y, x)) �x y = x .

Indeed, we have

y �x ϕ−1
x (c(y, x)) =ϕ−1

x (c(x, y) � c(x, ϕ−1
x (c(y, x)))

(3)=ϕ−1
x (c(x, y) � c(y, x)) = ϕ−1

x (e)
(5)= x .

The associativity law is obtained after long calculations.
The bijective function ϕx : X → M preserves binary operations:

ϕx (y1 �x y2) = ϕx (y1) � ϕx (y2), for all y1, y2 ∈ X.

In fact we have

ϕx (y1 �x y2) = ϕx (ϕ
−1
x (c(x, y1) � c(x, y2)))

= (ϕx ◦ ϕ−1
x )(c(x, y1) � c(x, y2))

= id(c(x, y1) � c(x, y2)) = c(x, y1) � c(x, y2) = ϕx (y1) � ϕx (y2).

Consequently ϕx is a group isomorphism and thus is its inverse ϕ−1
x .

Now, a morphism from AC (X, M, c) to the AC (X, M ′, c′) is a group morphism
ϕ : M → M ′ commuting with the contour functions, i.e.

ϕx (c(s, t)) = c′(s, t), for all s, t ∈ X.

This means that the next triangle

is commutative, Fiore, Noll and Satyendra [5]. Now we are in a position to establish
the main result.

Theorem 21.1 Any AC (X, (M,�, e), c), with (M,�, e) commutative group, is
the image via the isomorphism ϕx (x ∈ X) of the standard AC (X, (X,�x , x), cx ),
where
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cx : X × X → X, cx (y1, y2) = y2 �x y
′
1,

y′
1 being the symmetric element of y1.

Proof We have to show the equality

c(y1, y2) = ϕx (y2 �x y
′
1), for all y1, y2 ∈ X

As we have seen in the proof of the previous proposition, the symmetric of y1 is the
element

(6) y′
1 = ϕ−1

x (c(y1, x)).

Then

y2 �x y
′
1 = ϕ−1

x (c(x, y2) � c(x, y′
1)) by definition of �x

= ϕ−1
x (c(x, y2) � c(x, ϕ−1

x (c(y1, x))) by (6)

= ϕ−1
x (c(x, y2) � c(y1, x)) by (3)

= ϕ−1
x (c(y1, x) � c(x, y2)) by commutativity

= ϕ−1
x (c(y1, y2)) by axiom int1)

that is
y2 �x y

′
1 = ϕ−1

x (c(y1, y2)).

Applying the isomorphism ϕx in both members of the above equality we get

ϕx (y2 �x y
′
1) = c(y1, y2)

and the proof is complete.

Let us apply the previous theorem to determine all the ACs on Z12. Such an AC
is obtained by composing the standard system:

di f f : Z12 × Z12 → Z12 by an automorphism

of Z12. But all the automorphisms of Z12 are the dilatations

ha : Z12 → Z12, ha(x) = ax, for all x ∈ Z12

where a = 1, 5, 7, 11. We conclude that four ACs can be defined on Z12, namely,

ca : Z12 × Z12 → Z12, ca(s, t) = a(t − s), s, t ∈ Z12, a = 1, 5, 7, 11.

In the sequelwe investigate an interesting non-commutative AC taken fromFiore [4].
From now on, upper (lower) case letters will represent major (minor) triad chords.
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Consider the group S(Xch) of permutations of the set of triad chords Xch =
{G, g, E�, e�, B, b} and its subgroup M(Xch) generated by the permutations

P =
(
G E� B g e� b
g e� b G E� B

)

L =
(
G E� B g e� b
b g e� E� B G

)

where P = parallel and L = leading tone exchange. We have

PL =
(
G E� B g e� b
B G E� e� b g

)

LP =
(
G E� B g e� b
E� B G b g e�

)

PLP =
(
G E� B g e� b
e� b g B G E�

)

and M(Xch) = {id,P,L,PL,LP,PLP} hence the table
c(Xch) G E� B g e� b
G id LP PL P PLP L
E� PL id LP L P PLP
B LP PL id PLP L P
g P L PLP id PL LP
e� PLP P L LP id PL
b L PLP P PL LP id

It is not hard to verify that the triple (Xch, M(Xch), c(Xch)) is indeed a AC . It can
be viewed as a sequential machine in two different ways, either

with output the group M(Xch) or

with output the groupM(Xch)
∗ (id is the identity permutation and ε the emptyword).

Feeding the latter SM with the string of chords u = GgE�e�BbG, the created path is
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and its output PLPLPL classifies u as an hexatonic sequence.
Also, the lattermachine simulates the former one, via the pair (id, ϕ) consisting of

the identity state function and the canonical monoid epimorphism ϕ : M(Xch)
∗ →

M(Xch) interpreting the symbols P and L as the transformations parallel and leading
tone exchange.
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Chapter 22
A Formal Representation of Video Content
with the Picture Hyperoperation

Antonios Kalampakas, Nikolaos Triantafyllou, Katerina Ksystra
and Petros Stefaneas

Abstract A hyperoperation on the pixels of a two-dimensional picture is introduced
and studied. In this setup pictures are defined as a specific type of rectangular graphs
and the picture hyperoperation is given by virtue of the notion of the path inside such
a picture. Using this hyperoperation objects can naturally be defined inside pictures
in an algebraic way and this concept can be utilized in order to formally represent
and compare video content using algebraic semiotics.

22.1 Introduction

Hyperstructures have been thoroughly examined in the previous decades, for an
overview see [6]. In particular, hypergroupoids deriving from binary relations,
namely C-hypergroupoids, where introduced by Corsini in [3], see also [2, 13, 16]
and [17, 19]. Since then, the correlation between hyperstructures and binary relations
has been examined by several researchers in [4–9], see also [11, 14, 15, 17–20]. In a
broader view, these studies where the first step towards a more general investigation
of the correlation between Graph Theory and algebraic hyperstructures. Recently
several more definite and interesting results were obtained towards this direction. In
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particular different types of graph hyperoperations, i.e., hyperoperations defined on
a specific corresponding graph, where introduced and investigated.

The first graph hyperoperation, namely the path hyperoperation was introduced
in [12] as a generalization of Corsini’s hyperoperation which was associated with a
binary relation. More specifically, given a graph G = (V, R), where V is the set of
nodes and R the set of edges,we introduce the path hyperoperation �G : V × V → V
assigning to every pair (x, y) ∈ V × V the set consisting of every element of V that
belongs to at least one directed path from x to y. It is clear that for any binary relation
R ⊆ V × V and elements x, y ∈ V , their Corsini product is a subset of x �G y. In the
same paper the connection of the associated path hyperstructure with mixed model
assembly line designing was also investigated. The commutativity property for the
class of all path hypergroupoids is examined and its connection with Graph Theory is
delineated by specifying a sufficient and necessary condition for the corresponding
graph in order to obtain a commutative path hyperoperation. As a result a path
hypergoupoid is commutative if and only if it can be obtained as a disjoint union of
non-partial hypergroupoids.

In this paperwe extend this approach in order to introduce and investigate the prop-
erties of a hyperoperation defined on the elementary elements of rectangular grids.
Many approaches exist in the literature for the representation of two-dimensional
pictures in an algebraic formalism. In the present setup a picture is a subset of a rec-
tangular array (frame) which consists of elementary pieces (pixels). This definition
is very close to the one introduced by Bozapalidis in [1], see also [10] for a similar
representation. We then employ this simple set-theoretic definition of a picture in
order to introduce a hyperoperation on pictures similar to the path hyperoperation
for graphs [12]. Our aim is to utilize the resulting hyperstructure in order to formally
represent and compare video content using algebraic semiotics.

22.2 The Picture Hyperoperation

In this section the notion of a a picture as a subset of a rectangular array consisting
of elementary pieces is presented and a natural set-theoretic approach is adopted in
order to introduce a hyperoperation on pictures similarly to the path hyperoperation
for graphs.

Formally a frame of dimension (m, n), where m, n ∈ N, is a set

F = {(i, j) | i, j ∈ N, 1 ≤ i ≤ m and 1 ≤ j ≤ n}

Its elements are called pixels. A picture P in the frame F is now defined as a subset
P ⊆ F . Hence a picture is just a set of pixels. Notice that for the sake of simplicity
this definition is appropriate only for black and white pictures but it can be easily
generalized for color pictures by taking multiple subsets, i.e., pictures P ⊆ F - one
for each color.
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Definition 22.1 Given a frame F and pixels p = (m, n) ∈ F and p′ = (m ′, n′) ∈ F ,
we say that p and p′ are neighbors in F if it holds

m = m ′ and |n − n′| = 1

or
|m − m ′| = 1 and n = n′.

Definition 22.2 A path inside a picture P is a sequence

(p1, . . . , pk)

such that p1, . . . , pk ∈ P and for all 1 ≤ i ≤ k − 1, pi and pi+1 are neighbors.

Wewill employ the above set-theoretic definition of pictures to introduce a picture
hyperoperation which operates in a way similar to the path and the simple hyperop-
erations. More precisely, given an (m, n) frame F and a picture P ⊆ F , the picture
hyperoperation (or picture product)

�P : F × F → P(F)

is defined for every p, p′ ∈ F by:

p �P p′ = {q ∈ F | q belongs to a path inside P from p to p′}.

Notice that, from the definition of the path,we deduce that necessary but not sufficient
condition for p �P p′ �= ∅ is that p, p′ ∈ P .

The so obtained (partial) hyperstructure (F, �P) is called the (partial) picture
hypergroupoid associated with P . In the case that it holds

p �P p′ �= ∅, for allp, p′ ∈ F,

then �P is a non-partial hyperoperation and the related picture hypergroupoid is
called non-partial. Non-partial picture hypergroupoids are characterized as follows.

Proposition 22.1 Given a frame F and a picture P ⊆ F the following conditions
are equivalent

(i) �P is non-partial,
(ii) �P is total,
(iii) it holds

P = F

An object inside a picture P ⊆ F is now naturally defined as a subset O ⊆ P
such that for every pixel p ∈ P it holds
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p �P p′ �= ∅ if and only if p′ ∈ O.

It is straightforward to check that for every p, p′ ∈ O it holds

p �P p′ = O

Moreover,

Proposition 22.2 If for two objects O, O ′ ∈ P it holds O ∩ O ′ �= ∅ then O = O ′.

It turns out that every picture P ⊆ F can be written as the union of all its objects
O1, . . . , On , i.e.,

P = O1 ∪ · · · ∪ On

with Oi ∩ Oj = ∅, for i �= j , 1 ≤ i, j ≤ n.

Definition 22.3 Given an (m, n) frame F , a picture P ⊆ F and an object O ⊆ P ,
we say that a pixel p ∈ O belongs to the interior of the object O if for all neighbor
pixels p′ ∈ F it holds

p �P p′ �= ∅

or equivalently p′ ∈ O .

Definition 22.4 Given an (m, n) frame F , a picture P ⊆ F and an object O ⊆ P ,
we say that a pixel p ∈ O belongs to the boundary of the object O , if it does not
belong to the interior, i.e., if there exists a neighbor pixel p′ ∈ F such that it holds

p �P p′ = ∅

or equivalently p′ /∈ O .

As opposed to path and simple path hyperoperations the picture hyperoperation
is commutative and associative.

Proposition 22.3 Every picture hypergroupoid (F, �P) is commutative and asso-
ciative.

Proof Given u, v ∈ P , we distinguish two cases: if u and v belong to the same object
O ⊆ P then u �P v = v �P u = O , else u �P v = v �P u = ∅.

Similarly, for associativity, given u, v,w ∈ P , if there exists O ⊆ P with u, v,
w ∈ O then u �P (v �P w) = (u �P v) �P w = O , else u �P (v �P w) = (u �P v) �P

w = ∅.
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Chapter 23
Novel Approaches to Medical Information
Processing and Analysis

Evi Karali

Abstract The purpose of this article is to present scientific research results of Karali
et al (Proceedings of 8th International Conference on Bioinformatics and Bioengi-
neering (BIBE), 2008, [14]), Karali et al (Inf Technol Biomed, 15(13):381–6, 2011,
[15]), Karali et al (J Biosci Med (JBM), 1:6–9, 2013, [16]), Karali et al (Int J Com-
put Vis, 321–331, 1988 [24]) concerning medical imaging, especially in the fields
of image reconstruction in Emission Tomography and image segmentation. Image
reconstruction in Positron Emission Tomography (PET) uses the collected projec-
tion data of the object/patient under examination. Iterative image reconstruction
algorithms have been proposed as an alternative to conventional analytical methods.
Despite their computational complexity, they become more and more popular, mostly
because they can produce images with better contrast-to-noise (CNR) and signal-to-
noise (SNR) ratios at a given spatial resolution, compared to analytical techniques. In
Sect. 23.1 of this study we present a new iterative algorithm for medical image recon-
struction, under the name Image Space Weighted Least Squares (ISWLS) (Karali et
al, Proceedings of 8th International Conference on Bioinformatics and Bioengineer-
ing (BIBE), 2008, [14]). In (Karali et al, Proceedings of 8th International Conference
on Bioinformatics and Bioengineering (BIBE), 2008, [14]) we used phantom data
from a prototype small-animal PET system and the methods presented are applied
to 2D sinograms. Further, we assessed the performance of the new algorithm by
comparing it to the simultaneous versions of known algorithms (EM-ML, ISRA
and WLS). All algorithms were compared in terms of cross-correlation coefficient,
reconstruction time and CNRs. ISWLS have ISRA’s properties in noise manipulation
and WLS’s acceleration of reconstruction process. As it turned out, ISWLS presents
higher CNRs than EM-ML and ISRA for objects of different sizes. Indeed ISWLS
shows similar performance to WLS during the first iterations but it has better noise
manipulation. Section 23.5 of this study deals with another important field of med-
ical imaging, the image segmentation and in particular the subject of deformable
models. Deformable models are widely used segmentation methods with scientifi-
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cally accepted results. In Karali et al (Int J Comput Vis, 321–331, 1988 [24]) various
methods of deformable models are compared, namely the classical snake (Kass et al,
Int J Comput Vis, 321–331, 1988, [25]), the gradient vector field snake (GVF snake)
(Xu, IEEE Proceedings on Computer Society Conference on Computer Vision and
Pattern Recognition, 1997, [36]) and the topology-adaptive snake (t-snake) (Mcin-
erney, Topologically Adaptable Deformable Models For medical Image Analysis,
1997, [29]), as well as the method of self-affine mapping system (Ida and Sambon-
sugi, IEEE Trans Imag Process, 9(11), 2000 [22]) as an alternative to snake models.
In Karali et al (Int J Comput Vis, 321–331, 1988 [24]) we modified the self-affine
mapping system algorithm as far as the optimization criterion is concerned. The
new version of self-affine mapping system is more suitable for weak edges detec-
tion. All methods were applied to glaucomatic retinal images with the purpose of
segmenting the optical disk. The methods were compared in terms of segmentation
accuracy and speed. Segmentation accuracy is derived from normalized mean square
error between real and algorithm extracted contours. Speed is measured by algorithm
segmentation time. The classical snake, T-snake and the self-affine mapping system
converge quickly on the optic disk boundary comparing to GVF-snake. Moreover
the self-affine mapping system presents the smallest normalized mean square error
(nmse). As a result, the method of self-affine mapping system presents adequate
segmentation time and segmentation accuracy, and significant independence from
initialization.

23.1 Part I

23.1.1 Introduction

Medical Imaging is a vital component of a large number of clinical applications.
Such applications occur at all stages of medical treatment, from diagnosis to the
areas of design, implementation and assessment of the effectiveness of treatment.
The development of tomography, the breakthrough of modern computer systems, the
evolution of specialized computer signal processing packages and the advancements
on medical data analysis, has brought a real revolution in radiology and diagnostic
radiology. The result of the medical technology development is the noninvasive obtain
of precise functional and/or anatomical information of the interior of the human body.

The modern techniques of computed tomography (x-ray, CT), positron emission
tomography (PET), single photon emission tomography (SPECT) use detector arrays
mounted or rotatable around the test object in order to collect multiple different
angular views (projections) of the object. The collected projection data are used by
mathematical algorithms to reconstruct images of the areas of interest in the subject
matter. These images are either anatomical or images of biochemical activity of
structures of interest.
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Positron Emission Tomography (PET) is a medical imaging technique, which
utilizes the unique features of β + nuclear decay of specific radionuclides for imaging
metabolic activity of the anatomy of the tested structures. Radionuclides are produced
in a cyclotron and are used for labeling molecules with particular biological interest.
The labeled molecules are introduced intravenously in the body under examination
and distributed by the bloodstream to tissues in a manner that is determined by their
biochemical properties. Specifically when the radioactive atom of a labeled molecule
decays a positron e + is emitted, which is annihilated, near the point of generation, by
an individual electron e- resulting in the emission of two gamma-ray energy 511 keV
each. The two emitted photons travel diametrically and can escape from the human
body [17].

A PET system consists of a set of detectors which surround the patient and the
aim is to detect and convert the high energy photons emitted to an electrical signal.
The electrical signal is then fed to signal processing electronic devices. In a typical
PET examination the annihilation events detected, are corrected for various factors
and reconstructed into tomographic images using special mathematical algorithms.
The result of the reconstruction is a whole tomographic image. The luminance value
of each pixel of the image is proportional to the amount of the radioactive molecule
in the region showing the pixel. Therefore PET images allow the in vivo quantitative
recording of the spatial distribution of the radioactive tracer in the body [5, 18, 19].

Methods of medical data reconstruction that have been developed so far are divided
into two major categories [5, 17, 18]:

• Analytical methods, which use the mathematics of the computed tomography,
which connect projection data with the spatial distribution of radioactivity within
the subject matter.

• Iterative methods, which model the data collection process by the PET scan and
attempt, relying on predefined criteria and a number of successful iterations, to
approach the real image of the spatial distribution of the radioactive tracer.

The analytical reconstruction methods are based on linear calculation of the
inverse Radon transform and offer direct mathematical solution for the image forma-
tion. The core of the analytical reconstruction methods is the Filtered Backprojec-
tion algorithm (FBP). Variations or extensions of FBP methods are the Fast Volume
Reconstruction Algorithm (FAVOR [7]) and the 3D Reprojection algorithm (3DRP)
[17].

The analytical methods are standard reconstruction techniques, which are applied
in clinical systems. The reason for their prevalence of the preceding decades lies
in their low computational cost. The big disadvantage of analytical techniques is
their inability to include correction models of all factors involved in the making
of PET data (such as the scope of the positron, the production of two gamma rays
at angles between them of less than 180◦, scattering phenomena, the attenuation,
random coincidences, the different performance and sensitivity of the detectors,
etc.) during the reconstruction process. Further analytical methods do not maintain
the non-negativity of the image values and can export images reconstructed with
star-like artifacts [17].
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The iterative methods are based on stochastic models for the entire data-making
process taking into account all of the physical and technical factors involved dur-
ing a PET examination. They fall into two major categories, the algebraic tech-
niques (algebraic techniques-ART [12]) and the statistical methods which in turn are
divided into maximum likelihood techniques (maximum-likelihood algorithms-ML)
and least squares methods (least squares-LS, weighted- least squares-WLS [2], iter-
ated space reconstruction algorithm (ISRA) [3]). The algebraic techniques are the
first iterative techniques used. Then the algorithm of maximum likelihood (ML) 1982
by Shepp and Vardi [18] has been applied. Since then, multitude of variants have
appeared (SAGE [8], RAMLA [4], OSEM [11], MAP-EM [10]), in order to improve
efficiency and reconstruction time and the further improvement of the quality of
medical image.

The progress in research and clinical application of iterative techniques is closely
associated with the development and optimization of electronic circuits and computer
systems. They require large computational reconstruction times, high computing and
memory storage. However they have great research interest due to the high image
quality they produce, compared to analytical methods. These are techniques that
allow modeling of the whole data acquisition process in the reconstruction, and
most, especially statistical methods, guarantee positive solutions.

The purpose of this part of the study is to present a new iterative image recon-
struction algorithm, under the short name ISWLS [14] (Image Space Weighted Least
Squares), produced by the maximization of an objective function. This algorithm was
introduced in [14] and studied in [14]. To maximize the objective function, the Kuhn–
Tucker condition must be satisfied. ISWLS is expected to have ISRA properties in
noise manipulation and WLS acceleration of the reconstruction process. To assess
the performance of the new iterative reconstruction method, we have used phantom
data produced from simulating a prototype small-animal PET system. We com-
pare ISWLS reconstruction data with those from EM-ML, ISRA, and WLS. We also
present the OS (ordered subsets) version of ISWLS (OS-ISWLS) and compare it with
the OSEM, OS-ISRA, and OS-WLS [15]. Moreover the MRP (median-root-prior)
[1] version of ISWLS is presented and compared with MRP-EMML, MRP-ISRA and
MRP-WLS [16]. The methods presented here are applied to 2D sinograms. We have
implemented simultaneous versions of the aforementioned algorithms. The simul-
taneous version of an algorithm is an algorithm where all image pixels are simulta-
neously updated in every iteration. These methods are of great interest, because of
their ability to be implemented in parallel computing architectures, which decreases
drastically the total reconstruction time.

23.2 Theory

In general, every iterative method relies on the hypothesis that the projection data
y are linearly connected to the image x of radiopharmaceutical spatial distribution,
according to the equation:
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y = AT x (23.1)

where A is a matrix that characterizes the PET system being used for data acquisition.
In bibliography this matrix is called system or probabilitymatrix and it projects image
data to sinogram domain (the term sinogram refers to the projection data matrix).
Every element αi j of the system matrix A represents the probability an annihilation
event emitted in image pixel i to be detected in LOR j . The significance of the
probability matrix lies on the valuable information, related to the data acquisition
process, that it can contain (e.g. number of detector rings, number of detector elements
in every ring, ring diameter, diameter of transaxial field of view, detector size, image
size, spatial and angular sampling).

The most commonly used least squares algorithms, that are based on simultaneous
iterative schemes, are ISRA (Image Space Reconstruction Algorithm) and WLS
(Weighted Least Squares) with updating step in the kth iteration:

ISRA: xki = xk−1
i

M∑

j=1
ai j y j

M∑

j=1
ai j

N∑

i ′=1
ai ′ j xk−1

i ′

(23.2)

WLS: xki = xk−1
i

M∑

j=1

ai j y2
j

(
N∑

i ′=1
ai ′ j x

k−1
i ′

)2 (23.3)

Expectation Maximization Maximum Likelihood (EM-ML) algorithm has an updat-
ing step in the kth iteration:

EM-ML: xki = xk−1
i

M∑

j=1

ai j y j
(

N∑

i ′=1
ai ′ j x

k−1
i ′

) (23.4)

23.2.1 ISWLS Algorithm

In the current work, we propose a new algorithm under the short name ISWLS.
Consider an image discretized into N pixels and the measured data y collected by
M detector tubes. We can propose the following ISWLS estimator of x in Eq. 23.1:

x̂ = arg max
x

φ(x) subject to xi ≥ 0, i = 1, 2, . . . , N (23.5)



458 E. Karali

where

φ(x) =
M∑

j=1

⎡

⎢
⎢
⎢
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)3

3
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⎥
⎥
⎦

(23.6)

Under the conditions in problem (23.5), x̂ is a solution if and only if the Kuhn-
Tucker condition is satisfied, namely:

xi
∂φ(x)

∂xi

∣
∣
∣
∣
x̂

= 0 (23.7)

where:

∂φ(x)

∂xi
=

M∑

j=1

⎡
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(

y j −
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)2

ai j + 2ai j y j

(
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− 2ai j
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2
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)2⎞

⎠ (23.8)

According to (23.7) Eq. 23.8 is written as:

xi

M∑

j=1

⎛

⎝ai j y
2
j − ai j

(
N∑

i ′=1

ai ′ j xi

)2
⎞

⎠ = 0 (23.9)

So, we obtain the fixed point iterative formula for the i th pixel’s update as follows:

ISWLS: xki = xk−1
i

M∑

j=1
ai j y2

j

M∑

j=1
ai j

N∑

i ′=1

(
ai ′ j x

k−1
i ′

)2
(23.10)

Moreover, we can derive the ordered subsets version of ISWLS, (OS-ISWLS)
with updating scheme in kth iteration for subset Sn:

OS-ISWLS: xki = xk−1
i

∑

j∈Sn
ai j y2

j

∑

j∈Sn
ai j

(
N∑

i ′=1
ai ′ j x

k−1
i ′

)2 (23.11)
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The OS version of an iterative algorithm accelerates the reconstruction process
without image deterioration. An OS algorithm divides sinogram data into subsets
and applies the simple version of the reconstruction algorithm to every subset. The
approximation of the image xs that the simple version provides after processing the
s subset consists the initial solution for the next subset s + 1. Every OS iteration is
completed after the application of the simple algorithm to all subsets of sinogram
data.

In addition we can present the MRP (median-root-prior) [1] version of ISWLS.
MRP versions belong to regularization’s reconstruction algorithms. These methods
take into account a priori information for the radioactivity spatial distribution inside
the object under examination. For the reduction of the noise many regularization
methods have been proposed, which reduce drastically the noise with a small image
resolution reduction. The success of a regularization method depends on the mathe-
matical formula of the prior. Median root prior (MRP) belongs to the most popular
priors. It is derived from a Gaussian distribution with mean value the median value
of reconstructed image pixels in the vicinity of pixel i. The use of MRP results in
noise component reduction while at the same time it preserves the edges.

Suppose that:

f (xi ) ≈ e−b (xi−M)2

2M (23.12)

where M = med(xi, i), the median value of reconstructed image pixels in the vicinity
of pixel i . Then:

u(xi ) = ∂ ln( f (xi ))

∂xi
= −b

xi − med(xi , i)

med(xi , i)
(23.13)

The term b∈ [0,2] determines the degree of smoothing in reconstruction images. If
b = 0 no prior is applied. Big values of b cause over-smoothing, while small values
of b result in images with high resolution but with increased noise.

According to the one-step-late philosophy [9], where the prior is applied to the
previous radiopharmaceutical distribution estimation, we can extract an empirical
iterative formula for the ISWLS algorithm in combination with MRP prior. The new
iterative algorithm has updating scheme:

xki = xk−1
i

1 + b
xk−1
i

−med(xk−1
i ,i)

med(xk−1
i

,i)

M∑

j=1
ai j y2

j

M∑

j=1
ai j

(
N∑

i ′=1
ai ′ j xk−1

i ′

)2 (23.14)

The MRP-EM-ML updating scheme in kth iteration is:

xki = xk−1
i

1 + b
xk−1
i

−med(xk−1
i ,i)

med(xk−1
i

,i)

M∑

j=1

ai j y j
(

N∑

i ′=1
ai ′ j x

k−1
i ′

) (23.15)
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The MRP-ISRA updating scheme in kth iteration is:

xki = xk−1
i

1 + b
xk−1
i

−med(xk−1
i ,i)

med(xk−1
i

,i)

M∑

j=1
ai j y j

M∑

j=1
ai j

N∑

i ′=1
ai ′ j xk−1

i ′

(23.16)

The MRP-WLS updating scheme in kth iteration is

xki = xk−1
i

1 + b
xk−1
i

−med(xk−1
i ,i)

med(xk−1
i

,i)

M∑

j=1

ai j y2
j

(
N∑

i ′=1
ai ′ j xk−1

i ′

)2 (23.17)

23.3 Results

For the evaluation of the iterative reconstruction methods presented in THEORY,
projection data of a Derenzo-type phantom have been used. The Derenzo-type phan-
tom consists of sets of rods filled with F18, with diameters 4.8, 4, 3.2, 2.4, 1.6 and
1.2 mm, and the same separation between surfaces in the corresponding sets. The
rods were surrounded by plastic (polyethylene). Data were produced using Monte
Carlo simulation of a small-animal PET scanner.

Further, 18 × 106 coincidence events were collected. Projection data were binned
to a 2D sinogram, 55 ×170 pixels in size, which means that data from 55 TORs (Tube
of Response) per rotation angle were collected and 170 totally angular samples were
used. Since the two detector heads rotate from 0◦ to 180◦ the angular step size was
1.0647◦.

The system matrix was derived from an analytical method and calculated once
before reconstruction. Each element ai j was computed as the area of intersection
Ei j , of TOR j (Tube-of-Response) with image pixel i . The calculated system matrix
is a sparse matrix. It consists of zero-valued elements in majority that have no contri-
bution during iterative reconstruction process. So, only the non-zero elements were
stored, resulting in significant reduction in system matrix size and consequently in
required storage. The reconstructed 2D images were 128 ×128 pixels in size, thus
the system matrix consisted of 55 × 170 × 128 × 128 elements with 4.33% sparsity.

The initial image estimate for all algorithms was:

xoi =

M∑

j=1
y j

N
, i = 1, 2, . . . , N (23.18)

where y j is the value of the j th sinogram element and N represents the total number
of image pixels (N = 128 × 128 in this implementation).



23 Novel Approaches to Medical Information … 461

Fig. 23.1 Reconstructed
images with: (a) EM-ML, (b)
ISRA, (c) WLS, (d) ISWLS,
after 1, 10 and 50 iterations
respectively

1 iter 10 iter 50 iter 

(a)

(b)

(c)

(d)

Fig. 23.2 Cross-correlation
coefficient versus the number
of iterations for EM-ML,
ISRA, WLS, and ISWLS



462 E. Karali

Fig. 23.3 CNRs versus iterations for: (a) 4.8 mm, (b) 3.2 mm and (c) 1.6 mm object diameter

23.3.1 Comparative Evaluation of Normal Versions

Figure 23.1 shows the reconstructed transaxial images with EMML, ISRA, WLS,
and ISWLS after 1, 10 and 50 iterations.
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Fig. 23.4 Reconstruction time/slice as a function of the number of iterations

Fig. 23.5 Cross-correlation
coefficient of OSEM,
OS-ISRA, OS-WLS and
OS-ISWLS versus the
number of iterations

In Fig. 23.2 cross-correlation coefficient c [13] of every iterative method is plotted,
versus the number of iterations. The cross-correlation coefficient c was calculated
according to the equation:

c =

N∑

i=1

N∑

j=1

(
I reconi j − Ī recon

) (
I reali j − Ī real

)

√
N∑

i=1

N∑

j=1

(
I reconi j − Ī recon

)2 N∑

i=1

N∑

j=1

(
I reali j − Ī real

)2

, (23.19)

where Ī recon and Ī real are the reconstructed image and the true phantom activity
image mean values, respectively. Cross-correlation coefficient is a similarity measure
between reconstructed and real radiodistribution image. Its values are in the range
[−1, 1]. Value c = 1 corresponds to fully correlated images.

Except for the cross-correlation coefficient that shows the average performance
of the reconstruction methods, local contrast-to-noise ratios (CNR) [6] for rods with
different diameters were calculated. CNRs for 4.8, 3.2, and 1.6 mm rods diameter
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Fig. 23.6 Reconstructed images with: (a) OSEM, (b) OS-ISRA, (c) OS-WLS and (d) OS-ISWLS,
after 1, 3 and 5 iterations using 15 subsets

were computed, using squared regions-of-interest (ROIs), 4.55, 3.85 and 1.15 mm
in size, respectively. The ROIs were placed inside the corresponding objects. The
number of selected ROIs was equal to the number of same sized objects. ROIs of the
same sizes were positioned in three different background areas, each.

CNRROI was defined as: CN RROI = RobjROI − RBackgROI

σBackgROI

(23.20)

where RobjROI is the mean value of reconstructed objects in the corresponding ROIs,
and RBackgROI is the mean value of the three background ROIs in each case.
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Fig. 23.7 CNRs versus iterations for (a) 4.8 mm, (b) 1.6 mm object diameter for the different OS
algorithms

Further, σBackgROI is the standard deviation of background values in the correspond-
ing ROIs. The graphs in Fig. 23.3 illustrate the variation of CNRROI with respect to
the number of iterations, for the three different objects diameters.

In Fig. 23.4 the reconstruction time for every iterative algorithm is presented
as a function of the number of iterations. Reconstruction time calculations were
performed on a Pentium M processor 1400 MHz (Intel Corp.) personal computer
(RAM 1280 MB) under Windows XP Professional.

23.3.2 Comparative Evaluation of OS Versions

For the evaluation of the ordered subsets, iterative reconstruction methods projection
data of the same Derenzo-type phantom has been used as in the comparative study
of the simple algorithms.

In Fig. 23.5 cross-correlation coefficient c of every ordered subsets iterative
method is plotted versus the number of iterations.
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Fig. 23.8 Reconstructed images with: (a) MRP-EMML, (b) MRP-ISRA, (c) MRP-WLS, and (d)
MRP-ISWLS, after 1, 10 and 50 iterations respectively

Fig. 23.9 Cross-correlation
coefficient versus the number
of iterations for
MRP-EMML, MRP-ISRA,
MRP-WLS, and
MRP-ISWLS
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Fig. 23.10 CNRs versus iterations for: (a) 4.8 mm, (b) 3.2 mm and (c) 1.6 mm object diameter

Figure 23.6 presents reconstructed images with OSEM, OS-ISRA, OS-WLS and
OS-ISWLS after 1, 3 and 5 iterations for 15 subsets.
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In Fig. 23.7 CNRs for two objects of different diameter are plotted versus the num-
ber of iterations. CNRs are derived with the same method as explained in Eq. 23.20.
Reconstruction time is the same for all ordered subsets algorithms under study. One
iteration lasts 29 s for all ordered subsets methods.

23.3.3 Comparative Evaluation of MRP Versions

Figure 23.8 shows the reconstructed transaxial images with MRP-EMML, MRP-
ISRA, MRP-WLS and MRP-ISWLS after 1, 10 and 50 iterations.

In Fig. 23.9 cross-correlation coefficient c of every iterative method is plotted
versus the number of iterations.

The graphs in Fig. 23.10 illustrate the variation of CNRROI with respect to the
number of iterations for the three different object diameter.

23.4 Discussion

According to results (Figs. 23.2, 23.3) EM-ML and ISRA presents similar behavior
at the first 50 iterations. EM-ML converges slowly during the first 50 iterations to the
best approximation of the true image. After the 50th iteration the algorithm enhances
more small-sized objects but in general image contrast decreases and noise compo-
nent starts to increase. ISRA on the contrary presents better noise manipulation. ISRA
reaches constant CNRs values for big and small-sized objects. WLS shows almost
identical noise manipulation as EM-ML algorithm. It reaches faster than EM-ML
and ISRA the same CNRs values. ISWLS combines WLS’s acceleration and ISRA’s
noise manipulation.

Reconstruction time of EM-ML and WLS is almost the same as a function of
the number of iterations (≈3.8 s/iteration). Although it is not obvious from Fig. 23.4,
ISRA and ISWLS are slower than EM-ML and WLS during the first 9 iterations.
Their reconstruction speed is gradually improved by increasing the number of itera-
tions. ISWLS and ISRA reconstruction time converges to the others’ reconstruction
time after 10 iterations. The reason for slow reconstruction process during the first

iterations lies in the time needed for backprojection computations (
M∑

i=1
ai j y j for ISRA

and
M∑

i=1
ai j y2

j for ISWLS) in the first iteration.

The OS versions reach faster than the simple versions the same cross-correlation
coefficient and CNRs values, as expected. For example they reach the value of 0.75 of
cross-correlation coefficient earlier (during the first 10 iterations) than the simple ver-
sions, which they present the same results after 50 iterations. In general OS-ISWLS
is comparable to OSEM and shows better performance than OS-WLS, according
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to CNRs graph, which indicates a better noise manipulation than OS-WLS. ISWLS
reaches to the best approximation of the true image during the first 3 iterations for big
and small-sized objects. OS-ISRA and OSEM needs few more iterations especially
for small-sized objects.

The choice of 15 subsets was made after a comparative study of ISWLS and OS-
ISWLS. We compared OS-ISWLS to ISWLS using 3, 9, 15, and 24 subsets. The
comparative criterion was CNR, calculated as described in Eq. 23.20. Small number
of subsets resulted in CNRs similar to ISWLS. Increasing the number of subsets
resulted in images with high CNRs during the first ten iterations. Using 15 or 24
subsets the reconstructed images reach the highest CNR values before ten iterations.
ISWLS achieves the same highest CNRs after 50 iterations. We chose 15 subsets
to 24 because this number of subsets presented smaller image degradation as the
number of iteration increased.

MRP-ISWLS presents higher cross-correlation values than MRP-EM-ML and
MRP-ISRA. It shows the same high values of cross-correlation coefficient as MRP-
WLS. As illustrated in Fig. 23.10 MRP-ISWLS presents high CNR ratios from the
first iterations, higher than MRP-EM-ML and MRP-ISRA. Although it shows similar
performance to MRP-WLS, its CNR ratios do not degrade after 50 iterations but tend
to be stabilized. So, MRP-ISWLS presents a better noise manipulation than MRP-
WLS.

Reconstruction time of MRP-EM-ML and MRP-WLS is almost the same (77.5 s/
iteration). MRP-ISRA and MRP-ISWLS are slower than MRP-EM-ML and MRP-
WLS during the first 9 iterations (79 s/iteration). Their reconstruction speed is gradu-
ally improved by the increasing of iterations number. MRP-ISWLS and MRP-ISRA
reconstruction time converges to the others’ reconstruction time after 10 iterations.
The reason for slow reconstruction process during the first iterations lies in the time
needed for backprojection computations in the first iteration.

In order to determine a satisfactory value of b, various values were applied to
MRP-ISWLS. These values were 0.001, 0.01, 0.1, 1, 1.5. The value b = 0.001
presented higher CNR values in comparison to ISWLS’s results.

In this study, data were corrected for scanner sensitivity prior to the reconstruction
process. Such a correction could be incorporated during the reconstruction process,
but that exceeds our research purpose.

23.5 Part II

23.5.1 Introduction

Extracting useful medical information, for the inside of the human body, from medical
images belongs to the field of medical image segmentation. In recent years the com-
putational medical image segmentation plays an increasingly important role in med-
ical imaging. The image segmentation is an important pretreatment step in medical
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imaging, especially in automatic detection of anatomical structures and pathological
conditions. It is the separation process of structures of interest, the implementation
of which resulted in the development of numerous algorithms. Because of the wide
variety of objects, shapes and variations in image quality, segmentation remains a
difficult process. A global segmentation method, which produces satisfactory results
for all imaging applications, does not exist. The medical images more often contain
high levels of noise, and defects due to incomplete data collection. This could cause
appreciable difficulties when applying classical segmentation methods, such as edge
detection and thresholding. As a result, these techniques either fail completely or
they need an image processing stage after segmentation to remove false limits of
the object of interest. Furthermore, subsequent analysis and interpretation of the
segmented structures is prevented by the dimensions of the pixel or the voxel.

Each segmentation algorithm aims to identify the pixels belonging to the object
of interest or to determine the pixels of the object contour. Detection methods of the
object region are based on the intensity values or the texture of the pixels. Contour
determination techniques use the derivative of the image, which has high values at
the boundaries of objects.

One of the most popular methods of segmentation is the use of deformable models
[20, 40]. According to these techniques, near the region of interest an elastic contour
model is placed which, through repetitive processes, is adapted to the actual contour.
The widely recognized ability of the deformable models comes from their ability
to segment, match and trace images of anatomical structures, utilizing restrictions
arising from imaging data combined with a priori information relative to the location,
size and shape of these structures. The deformable models are capable of resolving
the often considerable variation in biological structures over time and from person
to person. For this reason they are the focus of research in the segmentation and have
been used extensively in medical applications with promising results. Also, they sup-
port intuitive interaction mechanisms that allow experts to interpret the results. The
deformable models are especially suitable for segmentation of images characterized
by intense artifacts, noise, limited spatial resolution and hardly detectable borders
between the structures. However, deformable models may result in false contour if
the original outline is not placed close to real. They can also present problems in
areas of intense curvature of the contour.

The deformable models in the literature are referred to as snakes, active contours or
active surfaces, balloons, deformable contours or deformable surfaces. These models
are curves or surfaces defined on image domain that deform under the influence of
internal and external forces. Internal forces are related to the curve or the surface itself
and are designed to keep the model smooth during the deformation process. External
forces adjust the model to the real object boundary and their computation is based
on image information. In theory, because of the constrain for smooth contours and
their ability to incorporate a priori information of object shape, deformable models
can handle noise problems in images and contour discontinuities. So, they permit
the description of the contour as a continuous mathematical model and they are able
to achieve inter-pixel segmentation accuracy.
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In this work various methods of deformable models are presented, namely, the
classical snake [21, 25, 28], the gradient vector field snake (GVF snake) [36–39] and
the topology-adaptive snake (t-snake) [29–32, 34]. Also, the method of self-affine
mapping system [22, 23] is presented as an alternative to the snakes. The self-affine
mapping system was implemented using an adapting scheme for determining the
size of areas with similarity [22]. The minimum distance was used as optimization
criterion which, according to Sect. 23.7, is more suitable for weak edges detection. All
methods were applied to glaucomatic retinal images with the purpose of segmenting
the optical disk. Moreover, the aforementioned methods were compared in terms of
segmentation accuracy.

The optical disk is the optical nerve and the vessels’ entrance point in the retina.
In fundus gray images it appears as a luminous white area. It has an almost round
shape that is interrupted by the outgoing vessels. Sometimes the optical disk has an
elliptical shape because of the small but not negligible angle between the planes of
the image and the object. Optical disk size varies from patient to patient.

Optical disk segmentation is a very important preprocessing stage of many algo-
rithms, which have been designed for automatic detection of retinal anatomical struc-
tures and pathological conditions. For example, the detection methods of some ves-
sels and their junctions start from the optical disk area, where the big vessels lie.
These can serve as starting points for the detection of the other vessels [35]. Another
important feature in retinal images is macula. Macula’s position usually is estimated
according to the optical disk’s position under the condition that the distance between
the macula and the optical disk is constant [26, 27]. Moreover, optical disk camou-
flage contributes to better and easier lesions detection related to different retinopathies
[20]. Furthermore, the optical disk center can be used as a reference point for dis-
tance measurements in retinal images. In addition, the segmented optical disk can
be a reference area for the registration of retinal images acquired in different time or
with a different method. Retinal images registration can reveal changes in vessels’
size and disposition inside the optical disk, as well as changes in optical disk size
related to serious eye diseases, such as glaucoma and vessels neoplasia [33].

23.6 Theory

23.6.1 Classical Snake

The classical snakes are used widely in image processing, in computer vision and in
medical imaging applications for allocating object boundaries. The classical para-
metric elastic models (classical snakes), due to Kass, Witkin and Terzopoulos, change
shape and finally are adapted to the real object boundary according to the minimiza-
tion process of an energy function. The energy function reaches its global minimum
when the active contour is smooth and coincides with the real object boundary.
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23.6.2 Gradient Vector Flow Snake (GVF Snake)

The use of classical snake is unfortunately limited because it must be initialized close
to the true contour and because of its inefficient convergence in boundary concavities.
Xu and Prince proposed an improved snake model in order to overcome classical
snakes’ limitations. In particular, they introduced a new external force, the gradient
vector flow (GVF), that is computed as the diffusion of gradient vectors of a gray or
binary edge map of the image. According to Xu and Prince, the usual external forces
are conservative forces that make the active contour unable to successfully approxi-
mate boundary concavities. GVF is a non- conservative force. Mathematically, it is
based on the Helmholtz theorem, according to which a general static vector field can
be separated in a conservative and tubular field. GVF snake was designed to have
conservative and tubular characteristics in order to present the desirable properties
of adequate initialization range and convergence in boundary concavities.

23.6.3 Topologically Adaptable Snake (T-Snake)

T-snake comprises another variant of classical snake. It is based on a space partition-
ing technique to create a topologically adaptable snake. The difference between the
classical snake and T-snake is the use of an affine cell image decomposition, so as to
iteratively reparametrize the snake and to make topological transformations. Image
is partitioned into a net of discrete triangular cells. As the snake evolves under the
influence of internal and external forces, it is reparametrized with a new set of nodes
and elements. The reparametrization process consists of an efficient calculation of
the intersections of the snake with the image net. These intersection points might
be nodes of the updated T-snake. In 2D the T-snake is a 2D curve consisting of N
nodes connected in series. The T-snake is a discrete version of the classical snake
and retains many of its properties.

23.6.4 Self-Affine Mapping System

The self-affine mapping system is a technique similar to the snake model that adjusts
an initial curve to the real object contour, using a self-affine mapping system which
is used widely in fractal encoding. This particular method has an advantage over
conventional snakes, mostly because of its ability to detect distinct and blurred edges
with significant accuracy. It has replaced the process of energy minimization of
the classical snake with a contractive self-affine mapping system that is used in
the creation of fractal shapes. The parameters of the system are determined after a
blockwise self-similarity analysis of the gray image through a simplified algorithm
of fractal coding. The use of the self-affine mapping system is due to the fact that the
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points of the initial map, when they are positioned near image edges, after iterative
contractions of the map, they are finally attached to the edges. This attraction can be
exploited for contour extraction that has the shape of a curve of similar points rather
than a curve of smooth points which are detected by the snake model.

Suppose an image g(x) is defined in G ⊂ Rn . If there exist affine transformations
ai : Ai → Rn and βi : R1 → R1 so that

∀x ∈ Ai , g(x) = βi (g(ai (x))), i = 1, 2, . . . , I (23.21)

for some image regions Ai ⊂ G then the texture in Ai is similar to the texture in
ai (Ai ) and the image presents self-similarity in these two regions Ai and ai (Ai ). The
set {Ai , ai , βi |i = 1, 2, . . . , I }, where I is the total number of regions Ai , is called
self-affine model of the image. If Eq. 23.21 holds then it can be written that:

∀x ∈ ai (Ai ), g(x) = β−1
i (g(a−1

i (x))), i = 1, 2, . . . , I (23.22)

so there arises another self-affine model of the image the set {ai (Ai ), a
−1
i , β−1

i |i =
1, 2, . . . , I }. The transformations ai dilate maps Ai and βi are unit operators. If � is
the set of subsets of G then the self-affine map S : � → � is defined as:

S(X) =
{

I⋃

i=1

ai (Ai ∩ X)

}

∪ C (23.23)

where X is a subset of G and C a fixed set. When X is known its intersection with
Ai is mapped through the affine transformation ai and the union of all these mapped
regions with C results in the final map S(X).

For a 2D image n = 2, Ai are squared image regions, subsets of G, and transfor-
mations ai are defined as:

∀x ∈ Ai , ai (x) = ri (x − x̄i ) + (τi + x̄i ) (23.24)

and
ri > 1 (23.25)

where x̄i the central point of Ai . Moreover, the self-affine model assumes that:

βi (g(ai (x))) = pi g(ai (x)) + qi , pi ∈ [0, 1] (23.26)

In order for map S to be determined, the regions Ai are first defined. Then an adequate
algorithm searches for the best values of the parameters ri , pi , qi and τi = (si , ti )
of the map, so that Eq. 23.25 is satisfied for every Ai , so the self-affine models
{Ai , ai , βi } and

{
ai (Ai ), a

−1
i , β−1

i

}
are determined. The searching is performed

through a block-matching algorithm. The block-matching algorithm consists of the
following steps:



474 E. Karali

STEP 1: Initialization of r , s and t . Also, the difference E = g(x) − βi (g(ai (x))) is
assigned a very large value.

STEP 2: For every x ∈ Ai the value of g(ai (x)) is computed. Because the sampling
points x may be between image pixels, the values g(ai (x)) are computed using
bilinear interpolation.

STEP 3: Initialization of p and q.
STEP 4: Computation of βi (g(ai (x))) for every x ∈ Ai .
STEP 5: Computation of the difference E . For this computation the Mean Square

Error (MSN) or the Absolute Mean Distance (AMD) are usually used. If the new
E is smaller than the initial value then the initial value is replaced by the new E
and the values of r , s, t , p and q are registered as ri , si , ti , pi and qi respectively.

STEP 6: If all p and q are checked then the algorithm moves to STEP 7, otherwise
it goes back to STEP 4.

STEP 7: If all r , s, and t are checked the algorithm is terminated, otherwise it goes
back to STEP 2.

As in the conventional snake model this method must be initialized by a rough
contour. The pixels inside the initial curve take value 1 and the rest belongs to the
background having value 0. This way a binary image is created, called alpha mask.
The purpose of the self-affine mapping system is the fitting of the alpha mask contour
to the real object boundary. In order for the initial curve b to be attached to the real
contour c three conditions must be satisfied:

1. the set c must equal the invariable set S
2. the transformations a−1

i must be systolic
3. the set b should be adequately close to c

Moreover, parameters s, t which are defined during the block-matching process
should be determined, so that every set ai (Ai ) contains the corresponding Ai , namely:
− r−1

2 e ≤ s and t ≤ r−1
2 e, where eis the size of regions Ai . Finally, the total number

of iterations ν should be: ν >
log e

2
log r .

23.7 Results

23.7.1 New Self-Affine Mapping System Optimization
Criterion

In the self-affine mapping system the size of the areas ai (Ai ) was chosen to be twice
the size of the areas Ai , namely r = 2 so as condition 2 to holds. The searching
area for the block-matching process was [− n

4 , n
4 ], where n the size of the area A.

When the value of n is small (e.g. n = 8) condition 3 is not satisfied, while when
it is large (e.g. n = 32) condition 3 is satisfied, but the final contour is a rough
approximation of the optic disk true boundary and condition 1 is now not satisfied
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Fig. 23.11 (a) Final contours with n = 8 (curve a (blue)) and n = 32 (curve β (white)), (b) Final
contour using the adapting scheme (curve β), curve a is the initial contour

and fine details of the object’s boundary are not detected. So, we chose an adapting
scheme where n was assigned an initial big value (n = 32), which is gradually
decreased to n = 4, namely emax = 32 and emin = 4. The number of iterations was
set to ν = log e

2
log r + 1. In Eq. 23.26 p was set to 1 and q to 0. As optimization criteria

of measuring the difference between g(x) and βi (g(ai (x))), two criteria were tested
and optically evaluated. The first was the classical AMD and the second was the
Minimum Distance (MD).

Figure 23.11 presents the final contours using n = 8 and n = 32 fused in the
same optical image (Fig. 23.11a) and the final contour using the adapting scheme
(Fig. 23.11b).

From Fig. 23.11b one can observe the strong attraction of mask boundary points
from the vessels in the area of the optic disk. Vessels are strong edges. The AMD
function is minimized towards these strong edges and the mask boundary points are
caged from the edges of the vessels. Figure 23.12 shows two examples of a self-affine
mapping system application, where AMD (left column) and MD (right column) were
used as optimization functions. MD application results in the detection of optic disk
boundary and not the detection of points that belong to strong edges like the vessels.
However, the detection of weak edges reduces the degrees of freedom in mapping
out the initial contour.

23.7.2 Comparison of Elastic Models

The different segmentation methods were applied to 26 retinal images 512 × 512 pix-
els in size, in order for the optic disk boundary to be extracted. For the implementation
of the classical snake the external force, derived from a Gaussian potential field with
σ = 3, was used accompanied with a pressure force with constant weights. In every
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Fig. 23.12 Final contours using AMD (left column) and MD (right column) for (a) big and (b)
small sized objects (optic disk)

position of the snake nodes, external force values were calculated using the bilinear
interpolation method. Constant weights were also used for the internal forces. Initial
contours were placed close to the real object boundary.

The GVF field v(x, y) = [u(x, y), υ(x, y)], was calculated according to the equa-
tions:

ui+1 = ui + μ4∇2ui − |∇ f | (ui − fx ) (23.27)

υi+1 = υi + μ4∇2υi − |∇ f | (υi − fy
)

(23.28)

were fx and fy the first derivatives of the edge map f of the image I . The edge map
was derived as f (x, y) = |∇ [Gσ (x, y)∗I (x, y)]|, with σ = 3. Initial values for u
and υ were uinit = fx and υini t = fy . Moreover, μ = 0.29 and 80 total iterations
were used for the calculation of the GVF field for all the 26 applications. Initial
contours were placed close to the real ones.

For the implementation of the T-snake the external force derived from a Gaussian
potential field with σ = 3 was used, accompanied with a pressure force with con-
stant weights. The initial seed point was chosen to be inside the object of interest.
According to this seed point the algorithm initializes a square snake.
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Fig. 23.13 Optic disk extraction with (a) manual by expert, (b) the classical snake (α = 2, β = 2,
γ = 1, w = 7, wp = 0.05, 125 total iterations), (c) the GVF snake (α = 2, β = 2, γ = 1, w =
7, wp = 0.05, μ = 0.29, 80 iterations for GVF calculation and 125 total iterations), (d) the T-
snake (α = 20, β = 20, w = 71, wp = 70, 45 total iterations), (d) the self-affine mapping system
(emin = 4, emax = 32, r = 2)

The self-affine mapping system was implemented according to Sect. 23.7.1.
Figure 23.13 presents comparatively optic disk extraction using the classical snake

model, the GVF model, the T-snake and the self- affine mapping system.
For the comparative evaluation of the different deformable models normalized

mean square error (nmse), between the real optic disk contour (Ireal) and the final
contour (Ide f ormabls) extracted by every deformable model method applied to 26
retinal images, was computed. The real contours were drawn by an expert. The nmse
was calculated according to the equation:

nmse =

N∑

i=1

N∑

j=1
(Ide f ormablei j − Ireal)2

N∑

i=1

N∑

j=1
I 2
real

(23.29)

Fig. 23.14 presents nmse for the four deformable model techniques and for the 26
retinal images.

Figure 23.15 shows the total segmentation time for the four deformable models
for the 26 retinal images.
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Fig. 23.14 Nmse curves for the four deformable model techniques applied to 26 retinal images

Fig. 23.15 Total
segmentation time (s) for the
four deformable models
applied to 26 retinal images

23.8 Discussion

From Fig. 23.13 the final contour of the classical model is smooth and approximates
the real one. GVF snake is an alternative of the classical snake designed to detect
complicated boundaries with high curvature and sharp edges. The optic disk boundary
does not have such characteristics, it is almost round. The range of the two methods
is almost the same. The classical snake and the GVF snake must be initialized close
to the real contour. According to Fig. 23.15 the GVF snake algorithm is also slower
than the classical snake method, mostly because of the extra time it needs to calculate
the external GVF force.

T-snake results in a satisfying optic disk contour (Fig. 23.13d). The biggest advan-
tage of the T-snake algorithm is its range. It is initialized in a point inside the optic
disk. Moreover, the total segmentation time of T-snake is small, smaller than any
other deformable method. So, T-snake presents a robust and efficient segmentation
technique.
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Fig. 23.16 Examples of contour initialization for (a) the classical snake and the GVF snake and
(b) the self-affine mapping system

The self-affine mapping system is superior in optic disk boundary extraction than
the other techniques, according to Figs. 23.13 and 23.14. Furthermore the algorithm
is independent from optic disk size and image intensity. Also, with the choice of
minimum distance as a matching criterion the caging of the model from the vessels
is avoided. Self-affine mapping system seems to present bigger independence from
initialization than the classical snake and the GVF snake (Fig. 23.16). The initial
contour is placed away from the real one (Fig. 23.16b). The total segmentation time
of the algorithm is also adequate, according to Fig. 23.15, since it is faster than
the classical snake and the GVF snake. The self-affine mapping system succeeds
also in small nmse values (Fig. 23.14). Another advantage of the self-affine mapping
system is that this method is self-terminated, a characteristic that the other deformable
methods do not present.

In general self-affine mapping system succeeds in approximating very well the
true optic disk boundary. The distance between the real and the initial contour depends
on the value of emax. If emax is increased the degrees of freedom in lining the initial
contour are increased.

23.9 Conclusions

Iterative image reconstruction algorithms have been proposed as an alternative to con-
ventional analytical methods. Despite their computational complexity, they become
more and more popular, mostly because they can produce images with better contrast-
to-noise (CNR) and signal-to-noise ratios at a given spatial resolution, compared to
FBP techniques. Iterative methods are able to incorporate a model of all the physical
phenomena during the acquisition process, including scanner characteristics. Based
on predetermined criteria and after a series of successful iterations, they attempt to
find the best approach to the true image of radioactivity spatial distribution.
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In this paper, different simultaneous iterative reconstruction schemes were applied
to data acquired from a simulation of a small-animal PET scanner. A new iterative
scheme was discussed named ISWLS. EM-ML, ISRA, WLS, and ISWLS and their
OS and MRP versions were implemented and evaluated in terms of task-dependent
measures for quantization and detection. ISWLS combines WLS’s reconstruction
acceleration with ISRA’s good noise manipulation. ISWLS could be preferable
for use in 3-D reconstruction applications, where the precalculation of the factor∑M

j=1ai j y j which is constant, will lessen the computational cost and demands for
high computational memory.

Another important field of medical imaging is image segmentation. It is used espe-
cially in automatic anatomical structure and pathological areas detection. Because
of the variety of object shapes and the variance in image quality, image segmenta-
tion remains a difficult task. Every segmentation algorithm aims at the detection of
the image pixels that belong to the object of interest. Deformable models are the
most popular image segmentation techniques. They are designed to approximate the
significant variance of biological structures with time and from person to person.

In this work various methods of deformable models were compared, which are
the classical snake, the gradient vector field snake (GVF snake) and the topology-
adaptive snake (t-snake). Also, the method of self-affine mapping system was pre-
sented as an alternative of the snake models. The self-affine mapping system was
implemented using an adapting scheme. Moreover, Minimum Distance was intro-
duced as an optimization criterion more suitable for optic disk boundary detection.
All methods were applied to glaucomatic retinal images with the purpose of segment-
ing the optical disk. The methods were compared in terms of segmentation accuracy.
The self-affine mapping system presents efficient segmentation time, segmentation
accuracy and significant independence from initialization.
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