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Abstract. In this paper, model of inventory system with positive ser-
vice time and perishable inventory is studied. It is assumed that some
demands do not acquire the item after service completion and order
replenishment lead time is a positive random variable. (S − 1, S) order
replenishment policy is applied. The exact and approximate methods
are developed for calculation of joint distributions of the inventory level
and number of customers in the system. The formulas for the system
performance measures calculation are given as well. The high accuracy
of formulas are confirmed by numerical experiments. The problem of
choosing the optimal server rate to minimize the total cost is solved.
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1 Introduction

Service time of demands in classical models of Inventory Systems (IS) is usually
assumed to be equal to zero (or inconsiderable). However, in real systems this
assumption does not always hold. Therefore, IS models where demand service
time is a positive quantity were introduced. These models with positive demand
service time are called Queueing-Inventory Systems (QIS) and were first studied
in [1,2]. Detailed review of QIS models is given in [3].

In QIS model, usually, it is assumed that after service completion the inven-
tory level decreases. However, in works [4,5] are given the real systems where
this condition does not hold and the models of such QIS are studied.

In this paper, studied QIS models are different from the models in [4,5]
in following moments. Firstly, unlike in [4,5], the QIS models with perishable
inventory are studied (Perishable QIS, PQIS). Secondly, we assume that the
arrived demands enter the queue even when the inventory level is zero, while they
become impatient in the queue. Thirdly, the mean service time for demands that
acquire the item is different than for the demands do not acquiring the item.
Finally, it is assumed that the replenishment orders are placed according to
(S − 1, S) policy.
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PQIS models have been extensively studied and developed in a peer-reviewed
scientific literature. Numerous literature references on this subject are given in
the review works [6–9], as well as, in monography [10]. The results of analysis
of PQIS models with positive service time performed in [11–17] could be found
in [18]. It should be noted that, the order replenishment policies (ORP) used in
the most works belong to a (s, S) policy class.

At the same time, studying PQIS models with positive service time using
different ORP in order to find the most optimal policy is a popular research
subject. In this paper, (S − 1, S) policy is used. According to this policy, when
inventory level decreases (after demand service completion or inventory perish-
ing) an order of unit size is placed.

Some serious results of PQIS analysis with (S−1, S) policy could be found in
[19–21]. In these works, service time is assumed to be equal to zero, moreover in
[19] the inventory level is right continuous. Analysis of available literature shows
that the PQIS models with positive service time and (S − 1, S) policy are not
studied. Therefore, methods of exact and asymptotic analysis of PQIS model
with finite queue length are given in this paper.

The paper is organized as follows. In Sect. 2, the description of the investi-
gated PQIS model is presented and main performance measures are introduced.
Exact and approximate methods to calculate the steady-state probabilities as
well as performance measures are developed in Sect. 3. High accuracy of the
developed approximate formulas by using numerical experiments are demon-
strated in Sect. 4. The results of solution of the problem for choosing optimal
server rate to minimize the total cost are shown as well. Conclusion remarks are
given in Sect. 5.

2 Model Description and Problem Statement

The studied system has a finite storage warehouse of size S and continuous
inventory level monitoring. Each inventory item independently perishes after a
random time with exponential distribution function with parameter γ, γ > 0.
At the same time, the item reserved for the demand service is not perishable.
In other words, inventory level decreases not only after the demand service, but
also because of the item perishing.

Demands are arriving into the system according to Poisson arrival process
with the intensity λ for acquiring the inventory items. For the simplicity, we
assume that the demands acquiring the item requires unit resource, that is,
after service completion of such demands inventory level decreases for a single
unit.

If the inventory level is positive upon arrival moment the demand is taken
for the service with probability 1 if the server is idle by that time; otherwise,
demand joins the queue. Demands are assumed to join the queue even if the
inventory level is zero. If upon arrival moment of the demand the inventory
level is zero, then according to Bernoulli trial with the parameter φ1 it joins
the queue and waits for inventory replenishment for a certain time, while with
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the probability φ2 demand leaves the system being unserved, φ1 + φ2 = 1. In
that cases, demands in queue are impatient, that is, if inventory level is zero
every demand independently waits in the queue for an exponentially distributed
random time with mean τ−1.

Queues with finite length is studied in this paper. In the model with finite
queue, it is assumed that if at the moment of demand arrival there are N demands
in the system (including the one that is being served) then it is lost with prob-
ability 1.

After service completion according to Bernoulli trial with parameter σ1

demand refuses to acquire the item, while with probability σ2 acquires, where,
σ1 +σ1 = 1. If the demand refuses to acquire the item its service time has expo-
nential distribution with mean μ−1

1 ; otherwise its service time is exponentially
distributed with mean μ−1

2 , μ2 < μ1.
Inventory replenishment is performed according to (S − 1, S) policy with

delay, that is, the order lead time is a positive random quantity that has an
exponential distribution with mean ν−1. So, if the number of pending orders at
the moment is n, then the replenishment rate is nν.

Problem is to find the joint distributions of inventory level and number of
demands in the system. Solution of this problem will allow to calculate the
performance measures of PQIS model, as well as, to perform its cost analysis. The
main performance measures are the average values of the following quantities:
inventory level Sav, inventory perishing rate Γav, average reorder rate RR, loss
rate of the customers due to balking RLb, loss rate of the demands due to
reneging RLr, average queue length Lav.

3 Methods for Calculation of the System Performance
Measures

System is modeled by 2-D MC with the states (m,n), where m - is inventory
level, n - is number of demands in the system. State Space (SS) of the system is
defined as follows:

E = {(m,n) : m = 0, 1, . . . , S, n = 0, 1, . . . , N} (1)

Transition rate from the state (m1, n1) ∈ E to (m2, n2) ∈ E is denoted by
q((m1, n1), (m2, n2)). All of these rates form generator matrix (Q-Matrix) of the
given 2-D MC. Let’s consider the problem of their calculation.

Transition between the states of the system are related to the following
events: (i) demand arrival, (ii) service completion, (iii) product perishing, (iv)
leaving the queue due to impatience and (v) inventory replenishment.

Taking into account assumed replenishment policy, following cases are consid-
ered while determining the initial state (m1, n1) ∈ E of the system: (1) m1 > 0;
(2) m1 = 0.

When m1 > 0 transition from the state (m1, n1) because of the events (iv) is
impossible, as in that case, demands in the queue are patient. Other transitions
are defined as follows.
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If the number of demands in system is less than N at the moment of demand
arrival (event (i)) then the number of demands increases by one unit, that is,
transition to the state (m1, n1+1) ∈ E occurs; intensity of that transition is equal
to λ. If after service completion the demand refuses to acquire the item (event of
type (ii)), number of demands in the system is decreased by one, while inventory
level remains unchanged, i.e. transition to the state (m1, n1 − 1) ∈ E occurs and
intensity of such transition is μ1σ1. If after service completion demand acquires
the item (event of type (ii)), then both number of demands and inventory level
decreases by one, that is, transition to the state (m1 − 1, n1 − 1) ∈ E occurs;
intensity of such transition is μ2(1−σ1). After inventory item perishes (event of
type (iii)) transition to the state (m1 − 1, n1) ∈ E occurs, the intensity of such
transition is equal to m1γ for case n1 = 0 and to (m1 − 1)γ for case n1 > 0. At
the moment of order replenishment (event of type (v)) transition to the state
(m1 + 1, n1) ∈ E occurs; intensity of such transition is equal to (S − m1)ν.

Consequently, for the case m1 > 0, non-negative elements of Q-matrix are
defined as follows:

q((m1, n1), (m2, n2)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ, if m2 = m1, n2 = n1 + 1
μ1σ1, if m2 = m1, n2 = n1 − 1
μ2σ2, if m2 = m1 − 1, n2 = n1 − 1
m1γ, if m2 = m1 − 1, n2 = n1 = 0
(m1 − 1)γ, if m2 = m1 − 1, n1 > 0, n2 = n1

(S − m1)ν, if m2 = m1 + 1, n2 = n1

0, otherwise

(2)

Now, let at the initial state (m1, n1) ∈ E holds the condition m1 = 0. In
this case transition from the current state because of the events (ii) and (iii) is
impossible, as in these states demand service could not be performed because
of zero inventory level. In these states transitions for the events (i) and (v) are
defined analogously as in (2) and the arrived demand joins the queue with the
probability φ1. Transition intensities because of demand impatience (event of
type (iv)) are defined as follows: after the demand leaves the system because of
impatience demand count decreases by one unit, while, inventory level remains
unchanged, that is, transition to the state (0, n1−1) ∈ E occurs; intensity of such
transition is equal to n1τ . At the moment of the order replenishment transition
to the state (1, n1) occurs; intensity of such transition is equal to Sν. So, for the
case m1 = 0 non-negative elements of Q-matrix are defined as follows:

q((0, n1), (m2, n2)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λφ1, if m2 = 0, n2 = n1 + 1
n1τ, if m2 = 0, n2 = n1 − 1
Sν, if m2 = 1, n2 = n1

0, otherwise

(3)

It is clear from the formulas (2)−(3) that 2-D MC is irreducible and there
exists stationary mode. Consequently, the steady-state probabilities p(m,n),
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(m,n) ∈ E are the only solution of the system of balance equations (SBE),
that are constructed based on the formulas (2) and (3). This SBE represents the
set of linear equations of dimension (S +1)× (N +1). Due to its large dimension
and obviousness the explicit form of SBE is not given in this work.

Required performance measures of the given PQIS are calculated through the
steady state probabilities. So, the mean inventory level and the average number
of demands in the system are calculated as the mathematical expectation of the
corresponding random variables:

Sav =
S∑

m=1

m

N∑

n=0

p(m,n); (4)

Lav =
N∑

n=1

n
S∑

m=0

p(m,n); (5)

As the inventory item reserved for the servicing demand could not perish the
average perishing intensity is calculated as follows:

Γav = γ

(
S∑

m=1

(mp(m, 0) +
N∑

n=1

(m − 1)p(m,n))

)

(6)

Replenishment order is placed either every time after servicing the demands
that require the inventory item or after the item perishing. Consequently, the
average reorder rate is calculated as follows:

RR =
S∑

m=1

(mγp(m, 0) + ((m − 1)γ + μ2σ2)(1 − p(m, 0))) (7)

As it is noted above, the balking occurs if at the moment of demand arrival the
waiting hall (queue) is full. Therefore, the average loss rate of demands due to
balking RLb is given by:

RLb = λ

(
S∑

m=0

p(m,N) + φ2

N − 1∑

n=0

p(0, n)

)

(8)

The reneging occurs only in the case of zero inventory level. Therefore, the
average loss rate of the demands due to reneging RLr is given by:

RLr = τ

N∑

n=1

p(0, n) (9)

Analytic solution for the system could not be found due to the complexity of
Q-matrix. The known numerical methods of linear algebra are only applicable
for the Markov Chains of the moderate dimensions and become useless for the
chains of larger dimension.
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Therefore, approximate method [18] is used in this work that allows to per-
form asymptotic analysis of the performance measures of the given system for
the large sizes of the inventory level and waiting hall for demands.

This method could be effectively applied for the models that work under large
load; in other words, it is assumed that demand arrival intensity is far larger than
the product perishing and replenishment rate, that is, λ � max{γ, ν}. It should
be noted that, this assumption is hold in many real PQIS. Moreover, as it was
stated above, μ1 � μ2.

Taking into account the above conditions, let’s consider the following split of
the initial state space (1):

E =
S⋃

m=0

Em, Em1

⋂
Em2 = 0, m1 �= m2 (10)

where Em = {(m,n) : n = 0, 1, . . . , N}, m = 0, 1, . . . , S.
Additionally, we conclude that the transition intensities inside a row are far

larger than the transition intensities between the rows. Further, based on the
split (10) of the initial state space (1), the following merge function is defined:

U((m,n)) = 〈m〉

where 〈m〉 is merged state that consists of all the states Em, m = 0, 1, . . . , S.
Let’s denote Ω = {〈m〉 : m = 0, 1, . . . , S}.

Approximate values of steady state probabilities p̃(m,n), (m,n) ∈ E of the
current model are defined as follows (see [18]):

p̃(m,n) = ρm(n)π(〈m〉) (11)

where ρm(n) - is the probability of state (m,n) inside the merged model with
the state space Em and π(〈m〉) - is the probability of a merged state 〈m〉 ∈ Ω.

Steady-state probabilities of the split and merged models are calculated as
follows.

In the all states (m,n) within the split model with the state space Em the
first component is a constant, therefore, all the states of such class is determined
only by the second component. Consequently, in the analysis of the split models
with the state space Em the state (m,n) ∈ Em could only be specified with the
second component, so for the convenience, while studying the split models with
the state space Em its states (m,n) are simply denoted by n, n = 0, 1, . . . , N .

It is concluded from the formulas (2) that the state probabilities within all
the split models with the state space Em, m = 1, 2, . . . , S are the same as in
classical model M/M/1/N with load a = λ/μ1σ1, i.e.:

ρm(n) = an 1 − a

1 − aN+1
, m = 1, 2, . . . , S (12)
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Remark 1. As the quantities ρm(n) do not depend on the index m, m =
1, 2, . . . , S below these indexes are omitted.

It is concluded from the formula (3) that the state probabilities within
the merged model with the state space E0 are the same as in Erlang model
M/M/N/0 with load b = λφ1/τ , that is:

ρ0(n) =
θ(n)

N∑

n=0
θ(j)

, n = 0, 1, . . . , N (13)

Further, the following notation is accepted: θ(j) =
bj
j!

Let’s denote the transition intensity from the merged state 〈m1〉 to another
merged state 〈m2〉 with q(〈m1〉, 〈m2〉), 〈m1〉, 〈m2〉 ∈ Ω. According to [18] these
parameters are defined as follows:

q(〈m1〉, 〈m2〉) =
∑

(m1,n1)∈Em1 ,

(m2,n2)∈Em2

q((m1, n1), (m2, n2))p(m1, n1) (14)

Taking into account (2), (3) and (12), (13), (14) after some transformations we
found that the given intensities are calculated as follows:

q(〈m1〉, 〈m2〉) =

⎧
⎪⎨

⎪⎩

Λ(m1), if m2 = m1 − 1
(S − m1)ν, if m2 = m1 + 1
0, otherwise

(15)

where Λ(m1) = m1γρ0 + (1 − ρ(0))(μ2σ2 + (m1 − 1)γ), m1 = 1, 2, . . . , S
Then from (15) we get:

π(〈m〉) =
S!νm

(S − m)!
π(0)

m∏

i=1

Λ(i)
, m = 1, 2, . . . , S (16)

where π(0) =

⎛

⎜
⎜
⎝

S∑

m=0

S!νm

(S − m)!
1

m∏

i=1

Λ(i)

⎞

⎟
⎟
⎠

−1

Remark 2. We assume that
n∏

i=m

xi = 1, if m > n

Afterwards, taking into account (12), (13), (14), (15), (16) from (11) approximate
joint distributions p̃(m,n), (m,n) ∈ E of inventory level and number of demands
in the system are found. Using these probabilities after some transformations
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from (4), (5), (6), (7), (8), (9) following formulas are obtained for the calculation
of performance measures:

Sav ≈
S∑

m=1

mπ(〈m〉)

Γav ≈ γ

S∑

m=1

π(〈m〉)(mρ(0) + (m − 1)(1 − ρ(0)))

RR ≈
S∑

m=1

(mγρ(0)π(m) + (1 − ρ(0)π(〈m〉))((m − 1)γ + μ2σ2))

RLb ≈ λ(ρ(N)(1 − π(〈0〉)) + π(〈0〉)(ρ0(N) + φ2(1 − ρ0(N))))

RLr ≈ τπ(〈0〉)
N∑

n=1

nρ0(n)

Lav ≈ π(〈0〉)
N∑

n=1

nρ0(n) + (1 − π(0))
N∑

n=1

nρ(n)

4 Numerical Results

Due to the limitations to the volume of the work, only accuracy of the steady-
state probabilities of the initial 2-D MC and performance measures is considered.
It should be noted that, the evaluation of the accuracy of given formulas analyt-
ically is impossible. Therefore, comparative analysis of the obtained numerical
results is used. The accuracy of the approximate values are evaluated by using
following norms:

Maximum absolute value of differences:

‖N‖1 = max
n∈E

|p(n) − p̃(n)| (17)

Cosine similarity:

‖N‖2 =

∑

n∈E

p(n)p̃(n)
√ ∑

n∈E

(p(n))2
√ ∑

n∈E

(p̃(n))2
(18)

Jaccard coefficient [22]:

‖N‖3 =

∑

n∈E

min{p(n), p̃(n)}
∑

n∈E

max{p(n), p̃(n)} (19)

Results of the comparative analysis of the steady-state probabilities for the
exact and approximate methods are given in Table 1. The initial parameters of
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Table 1. Estimation of accuracy of the steady-state probabilities versus various norms

Values of parameters Norms

S N λ ‖N‖1 ‖N‖2 ‖N‖3
10 10 60 0.009167 0.999201 0.930769

30 60 0.009354 0.999193 0.931855

50 60 0.00966 0.99913 0.928858

70 60 0.010289 0.998972 0.914683

20 10 60 0.006392 0.999313 0.932304

30 60 0.006392 0.999313 0.932337

50 60 0.006393 0.999312 0.932285

70 60 0.006393 0.999312 0.932011

90 60 0.006393 0.999311 0.931672

110 60 0.006394 0.999311 0.931521

30 10 60 0.005361 0.999334 0.932366

30 60 0.005361 0.999334 0.932366

50 60 0.005361 0.999334 0.932366

70 60 0.005361 0.999334 0.932361

90 60 0.005361 0.999334 0.932355

110 60 0.005361 0.999334 0.932352

40 10 40 0.006973 0.998495 0.900238

60 0.00465 0.999344 0.932367

30 40 0.006973 0.998495 0.900238

60 0.00465 0.999344 0.932367

50 40 0.006973 0.998495 0.900237

60 0.00465 0.999344 0.932367

70 40 0.006973 0.998495 0.900237

60 0.00465 0.999344 0.932367

90 40 0.006973 0.998495 0.900237

60 0.00465 0.999344 0.932367

110 40 0.006973 0.998495 0.900237

60 0.00465 0.999344 0.932367

120 60 0.00465 0.999344 0.932367

50 10 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

30 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

50 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

70 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

90 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

110 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367
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the system are assumed as follows: μ1 = 15, μ2 = 3, γ = 2, ν = 1, τ = 0.5, σ1 =
0.3, φ1 = 0.6

The exact values of steady-state probabilities are calculated from correspond-
ing balance equations using MATLAB package. Solving time of balance equations
depends on its dimension and takes several hours for S × N > 5000 (e.g.: for
S = 50 and N = 100 with quad core CPU Core i7 2.40 Ghz and 8 GB RAM at
least 3–4 h are required). It should be noted that, in the same PC approximately
3–4 s are needed for the calculation of performance measures for S = 100 and
N = 500 while using the approximate method.

It is obvious from the Table 1 that the higher the arrival intensity is, the
better accuracy of the calculated steady state probabilities of the model with
respect to all norms is acquired, that is, with the increase of the arrival intensity
the norm (17) is approaching 0, while the norms (18) and (19) are approaching
1. It is clear from split scheme (10) that with the increase of arrival intensity, the
transition intensities between the state classes Em,m = 1, 2, . . . , S decrease; the
smaller intensities between the classes of states of split model we have, the more
accurate state probabilities of initial model we get. For the above initial data the
analysis of accuracy of the system performance measures was performed as well
(see Tables 2 and 3). It should be noted that, the performance measures (4), (6),
(7), (8), (9) are almost the same when using exact and approximate approaches
(see Table 2). Only the small errors (less than 5%) are observed while calculating
measure (5) and this is acceptable in engineering calculations (see Table 3).

Table 2. Estimation of accuracy of accuracy of the performance measures (4), (6) and
(7) for N ∈ [20, 120], λ ∈ [20, 60] ; EV - Exact Value, AV - Approximate Value

S Sav Γav RR

EV AV EV AV EV AV

10 3.300632 3.300632 4.639206 4.639206 111 111

20 6.633345 6.633345 11.26737 11.26737 422 422

30 9.966667 9.966667 17.933346 17.933346 933 933

40 13.3 13.3 24.6 24.6 1,644.00 1,644.00

50 16.633333 16.633333 31.266667 31.266667 2,555.00 2,555.00

Remark 3. Zero values in Table 3 are not exactly equal to zero and are obtained
after rounding the numbers to the 6th order precision.

Now let’s consider the problem of choosing the most optimal server. Let it
is possible to choose the server from the predefined collection, where with the
increase of the service rate the cost associated with the corresponding server
increases as well. It is required to choose such server that will minimize the
long-run expected total cost (TC).

TC = chSav + crRR + cbRLb + cgRLr + cpΓav + cwLav + csPb (20)
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Table 3. Estimation of accuracy of performance measures (5), (8) and (9)

Values of parameters RLb RLr Lav

S N λ EV AV EV AV EV AV

10 10 60 53.434375 55.491991 0.090831 0.093377 9.873783 9.917505

30 40 33.251864 35.313561 0.273342 0.271806 29.782387 29.850142

60 53.248114 55.307103 0.277091 0.278264 29.864775 29.907871

50 40 33.069064 35.168018 0.456141 0.417349 49.75709 49.761818

60 53.063085 55.128522 0.462121 0.456846 49.851439 49.885624

70 60 52.87945 54.974741 0.645755 0.610626 69.832213 69.813776

20 10 60 53.400653 55.499856 0.001592 0.001674 9.876329 9.918894

30 40 33.397364 35.496658 0.004881 0.004873 29.802009 29.872825

60 53.3973 55.496542 0.004944 0.004989 29.876169 29.918721

50 40 33.394035 35.494048 0.00821 0.007482 49.801639 49.871242

60 53.393956 55.49334 0.008288 0.00819 49.875961 49.918322

70 40 33.390713 35.493373 0.011532 0.008158 69.80117 69.865791

60 53.39062 55.490583 0.011625 0.010947 69.875698 69.917034

90 40 33.387395 35.493368 0.01485 0.008162 89.800598 89.858999

60 53.38729 55.489352 0.014954 0.012178 89.875373 89.912694

110 40 33.38408 35.493368 0.018164 0.008162 109.79992 109.8522

60 53.383966 55.489287 0.018278 0.012243 109.87498 109.90602

30 10 60 53.400012 55.499997 0.000028 0.00003 9.876403 9.918918

30 60 53.399953 55.499939 0.000087 0.000088 29.8764 29.918915

50 40 33.399895 35.499895 0.000145 0.000132 49.802382 49.873204

60 53.399893 55.499882 0.000146 0.000145 49.876396 49.918908

70 40 33.399835 35.499883 0.000204 0.000144 69.802374 69.873108

60 53.399834 55.499833 0.000206 0.000194 69.876392 69.918886

90 40 33.399776 35.499883 0.000264 0.000144 89.802366 89.872988

60 53.399775 55.499812 0.000265 0.000215 89.876387 89.918809

110 40 33.399717 35.499883 0.000323 0.000144 109.80236 109.87287

60 53.399715 55.49981 0.000324 0.000217 109.87638 109.91869

40 10 60 53.4 55.5 0 0.000001 9.876404 9.918919

30 60 53.399999 55.499999 0.000002 0.000002 29.876404 29.918919

50 60 53.399998 55.499998 0.000003 0.000003 49.876404 49.918919

70 60 53.399997 55.499997 0.000004 0.000003 69.876404 69.918918

90 60 53.399996 55.499997 0.000005 0.000004 89.876404 89.918917

110 60 53.399995 55.499997 0.000006 0.000004 109.8764 109.91892

120 40 33.399994 35.499998 0.000006 0.000003 119.80239 119.87323

60 53.399994 55.499997 0.000006 0.000004 119.8764 119.91891

50 10 60 53.4 55.5 0 0 9.876404 9.918919

30 60 53.4 55.5 0 0 29.876404 29.918919

50 60 53.4 55.5 0 0 49.876404 49.918919

70 60 53.4 55.5 0 0 69.876404 69.918919

90 60 53.4 55.5 0 0 89.876404 89.918919

110 60 53.4 55.5 0 0 109.8764 109.91892
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where Pb is probability that server is busy, i.e. Pb =
S∑

m=1

N∑

n=1
p(m,n). Here ch is

inventory carrying cost per unit item, cr is setup cost per order, cb is balking cost
per customer, cg is reneging cost per customer per unit time, cp is the perishing
cost per item per unit time, cw is waiting time cost of a customer per unit time.

We assume that there are four possible options to choose the server: (1)
μ1 = 5, μ2 = 1; (2) μ1 = 8, μ2 = 2; (3) μ1 = 10, μ2 = 4; (4) μ1 = 15, μ2 = 5.
The values of the coefficients cs when choosing the option k, k = 1, 2, 3, 4 are
designated as c

(k)
s and defined as: c

(1)
s = 1, c

(2)
s = 2, c

(3)
s = 3, c

(4)
s = 4. The values

of other parameters in the (20) are constants: ch = 1, cr = 0.1, cb = 3, cg =
2, cp = 2, cw = 1.

Table 4. Results of solution of the problem (20) for N = 150

S λ

5 10 15 30

10 4 4 4 4

50 4 2 2 2

80 1 1 1 1

Some results of the problem solution for the above data are given in Table 4.,
where the numbers 1, 2 and 4 indicate the index of the optimal server selection
option. It is obvious from the Table 4. that if the inventory level is increasing
the optimal option is to choose the server with the lesser service rate, and, vice
versa, for the smaller values of the inventory level the optimal option will be the
servers with the greater service rates.

5 Conclusion

PQIS model with perishable inventory and positive service time is studied in
this paper. It is assumed that some demands do not acquire the item after ser-
vice completion. When inventory level is zero, demands join or leave the system
according to Bernoulli trial. Demands are impatient in the queue when the inven-
tory level is zero. Order lead time, as well as, item perishing time are random
variables with the exponential distributions and finite mean. Inventory replen-
ishment policy belongs to (S − 1, S) class. Exact and approximate formulas are
given for calculation of steady-state probabilities of the given 2-D MC being the
mathematical model of the studied system. Exact method is based on the solving
of balance equations and is suitable for the moderate values of inventory level
and length of the waiting hall for queuing the demands. Approximate approach
is based on the state phase merging algorithms of 2-D Markov Chains and it is
applicable for the systems of any dimension. High accuracy of the given formu-
las are shown using numerical experiments. Finally, the optimization problem of
choosing optimal server for cost minimization is solved.
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