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Abstract. The article proposes the technique to investigate the behav-
ior of the moments of numerical characteristics of mixed-type queuing
system with a random number of sources upon the change of demands
input stream intensity and size-limited queues based on the calculation
of boundary values of the number of servicing devices at which the mean
squared deviation (MSD) of the investigated quantity does not exceed its
mathematical expectation. For the first time the linear nature of behavior
of boundary values of the number of service facilities with the change of
the given intensity of demands input stream is determined numerically.
The article also considers various types of queues arising in queuing sys-
tems. The concept of an N -th order queue is introduced, and generalized
Little’s formulas for N -th order queues in queuing systems of various
types are presented.

Keywords: Queue · Physical queue · Real queue · Quality of service
(QoS) · Queuing system · M/M/m/K · Service facility

1 Introduction

Issues of studying combined models of queuing originate from Cohen’s works
(Cohen J.W.) [1], where the combination of Erlang models and classical queuing
system was considered for the first time. A number of formulae for probabilities
of queuing system (QS) steady states, call loss probability, and first moments of
demands number in a queue and waiting time in a queue are given in the paper.

Another specific case of a combined model is a mixed system with losses and
expectation having some servers and finite memory, presented in the work of H.
Takagi [2]. In this case there are two sources of demands in the system, thus
demands from the first source will be lost if all servers are busy at the time of
their arrival in the system. Demands from the second source are accepted in a
queue only if the number of demands in it does not exceed some defined value
K. Streams of demands arriving in the system also have a Poisson character.
Formulae for probabilistic characteristics of the system and for the moments of
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n order of waiting time and common delay time in the system are given in the
paper. In the specific case K → ∞, this model is reduced to J. Cohen’s model.

A more general model of a queuing system which is a combination of a
multi-channel Erlang model, M/M/m/E model, and also multi-channel classical
model (M/M/m models) is considered in the work of authors [3]. A complete
formula derivation for probabilistic characteristics, and also for the first and
second moments of numerical and temporary characteristics of this type of a
queuing system is presented in work [4]; a general algorithm of queuing models
mathematical formalization taken from monographs [5,6] is used.

A mathematical model of an open multi-channel system of queuing having m
service facilities of identical efficiency with exponentially distributed service time
is presented in this paper. A demand input stream in this case is a superposition
of components’random number h, each of which represents a Poisson stream
of demands served in the order of arrival. For each type of demands entering
the system from the j-th source there is a specific size-limited queue εj where
ε0 < ε1 < ε2 < · · · < εh.

A zero (Erlang) component contains demands which are served only if there
is at least one free service facility, and they never stand in a queue. In the case,
if at the time when the next similar demand arrives in the system there is no
free service facility this demand is refused and leaves the system unserved. The
model of a queuing system, containing one such component in an input stream,
is the Erlang model; therefore we will call this component an Erlang component.

The first component includes demands which are served if there is a free
service facility, or they stand in a queue if the number of demands in the queue
is fewer than a particular number ε1. In case when there is already available ε1
or more demands in a queue, a newly arrived demand from the first source is
refused and leaves the system unserved.

The second component contains demands which are served if there is a free
service facility, or they stand in a queue if the number of demands in a queue is
fewer than a particular number ε2 > ε1. In the case when ε2 or more demands
are already available in the queue, an arrived demand from this source is refused
and leaves the system unserved, and so on.

In general, the h-th component includes demands which are served if there is
a free service facility, or they stand in a queue if the number of demands in the
queue are fewer than a particular number εh > εh−1 > · · · > ε1. In case when
there are already εh demands in the queue, a newly arrived demand from the
h-th source is refused and leaves the system unserved.

Let us accept the following designations:

ε0 = E0 = 0; ε1 = E1; ε2 = E1 + E2; · · · εj =
j∑

i=0

Ei =
j∑

i=1

Ei; a size-limited

queue (memory volume) for demands of the j-th component;

Λ0 =
h∑

j=0

λj ; Λ1 =
h∑

j=1

λj ; Λ2 =
h∑

j=2

λj ; · · · Λh = λh; where λj demand

stream intensity of the j-th component;
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R0 =
h∑

j=0

ρj ; R1 =
h∑

j=1

ρj ; R2 =
h∑

j=2

ρj ; · · · Rh = ρh; Ri = Λi

μ , where ρj is

the given demand stream intensity of the j-th component.
Demand streams arriving from each source are Poisson and have intensity

λj ; in this case total streams with intensities Λj also have, as we know, a Poisson
character. Let us designate the mean intensity of demand service by one service
facility as μ. In this case the intensity of an output stream of served demands
before the m-th states is multiple μ and depends on the number of busy channels.
After the m-th state the intensity of served demand stream is equal to mμ. The
served demand stream is also Poisson.

With accepted designations and assumptions taken into account, we will
obtain a continuous-time Markov chain.

2 Probabilistic Characteristics of a Queuing System
in a Steady-State Mode

We make up a set of Kolmogorov-Chapman equations for probabilities of QS
states in a steady-state mode of its functioning. Adding the normalization con-

dition
m+εh∑

i=0

Pi = 1, to this set of equations, we obtain a system that has a unique

solution

P0 =

⎡

⎣em (R0) +
Rm

0

m!

h∑

g=1

g−1∏

j=0

(
Rj

m

)Ej

×
⎧
⎨

⎩

Rg

m−Rg

(

1 −
(

Rg

m

)Eg
)

, Rg �= m

Eg, Rg = m

⎫
⎬

⎭

⎤

⎦

−1

; (1)

Pi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ri
0

i! P0, 0 < i ≤ m,
(

Rj+1
m

)i−m−εj j∏

g=0

(
Rg

m

)Eg Rm
0

m! P0, m + εj ≤ i ≤ m + εj+1,

0 ≤ j ≤ h − 1,

(2)

where the designation em (R0) =
m∑

i=0

Ri
0

i! is accepted - a non-complete exponential

function. The solution (1) and (2) defines expressions for probabilities of all
possible QS states of this type in a steady-state mode of its functioning.

For further calculations it is convenient to introduce the following basic prob-
abilistic characteristics of QS of this type through which all other quantities are
expressed:

- basic probability 1

PB1 =
m+ε1−1∑

i=m

Pi =
1 − (

R1
m

)E1

1 − R1
m

Rm
0

m!
P0;
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- basic probability 2

PB2 =
m+ε2−1∑

i=m+ε1

Pi =
1 − (

R2
m

)E2

1 − R2
m

(
R1

m

)E1 Rm
0

m!
P0;

...

- basic probability h

PBh =
m+εh−1∑

i=m+εh−1

Pi =
1 − (

Rh

m

)Eh

1 − Rh

m

h−1∏

g=1

(
Rg

m

)Eg Rm
0

m!
P0;

- congestion probability of the system

Pm+εh
=

h∏

g=1

(
Rg

m

)Eg Rm
0

m!
P0. (3)

As a result, a general formula for basic probability is written in the form

PBi =
i−1∏

g=0

(
Rg

m

)Eg Rm
0

m!
P0

{
m

m−Ri

(
1 − (

Ri

m

)Ei
)

, Ri �= m

Ei, Ri = m
. (4)

By means of the expression (4) it is possible to present traditional probabilistic
characteristics of a queuing system in the most compact form:

- probability of a newly arrived demand service expectation in the queue

PW =
Λ1

Λ0

m+ε1−1∑

i=m

Pi +
Λ2

Λ0

m+ε2−1∑

i=m+ε1

Pi +
Λ3

Λ0

m+ε3−1∑

i=m+ε2

Pi + · · ·

+
Λh

Λ0

m+εh−1∑

i=m+εh−1

Pi =
1

R0

h∑

i=1

RiPBi;

- probability of a newly arrived demand service refusal (probability of demand
loss)

PL =
Λ0 − Λ1

Λ0

m+ε1−1∑

i=m

Pi +
Λ0 − Λ2

Λ0

m+ε2−1∑

i=m+ε1

Pi +
Λ0 − Λ3

Λ0

m+ε3−1∑

i=m+ε2

Pi + · · ·

+
Λ0 − Λh

Λ0

m+εh−1∑

i=m+εh−1

Pi + Pm+εh
=

1
R0

h∑

i=1

(R0 − Ri) PBi+Pm+εh

=
h∑

i=1

PBi − PW + Pm+εh
= 1 − PIS − PW .

The probability of an immediate service of a newly arrived demand has, appar-
ently, a form

PIS =
m−1∑

i=0

Pi = em−1 (R0) P0. (5)
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3 Numerical Characteristics of a Queuing System

By means of probabilistic characteristics of the system found above, it is possible
to express all main features characterizing a steady-state mode of a queuing
system functioning. So, through put capacity of a queuing system is a number of
demands passing through the system per unit of time A = Λ0q = Λ0 (1 − PL) =
Λ0 (PIS + PW ) . This number includes all demands from a general input stream
except refused demands and those that did not get into the system. Relative
through put capacity of the system, thus, is a share of demands passing through
a queuing system from a general input stream of demands q = 1 − PL. The
average number of demands under service at the same time (or, that is the
same, an average number of busy channels) with formulae (2)–(5) taken into
account has a form

n̄ =
m−1∑

i=1

iPi + m

m+εh∑

i=m

Pi = R0P0em−2(R0) + m (PW + PL)

= R0P0em−2(R0) + m

(
h∑

i=1

PBi + Pm+εh

)

.

The second initial moment of demands number under service is

n2 =
m−1∑

i=1

i2Pi + m2
m+εh∑

i=m

Pi

= R0P0em−2(R0) + R2
0P0em−3(R0) + m2

(
h∑

i=1

PBi + Pm+εh

)

.

An average demands number in a queue (average queue length) are

l̄ =
m+εh∑

i=m+1

(i − m) Pi

=
h∑

i=1

{
Ri

m−Ri
[PBi − EiPm+εi

] , Ri �= m
Ei(Ei+1)

2 Pm+εi−1 , Ri = m

}

+
h∑

i=2

εi−1
Ri

m
PBi.

The second initial moment of demands number in a queue is

l2 =
m+εh∑

i=m+1

(i − m)2 Pi

=
h∑

i=1

⎡

⎢
⎢
⎣ε2i−1PBi +

⎧
⎪⎪⎨

⎪⎪⎩

Ri

m−Ri

(
m+Ri

m−Ri
+ 2εi−1

)
PBi−

− mEi

m−Ri

(
Ei + 2Ri

m−Ri
+ 2εi−1

)
Pm+εi

, Ri �= m

(Ei − 1) Ei

(
2Ei−1

6 + εi−1

)
Pm+εi

, Ri = m

⎫
⎪⎪⎬

⎪⎪⎭

⎤

⎥
⎥
⎦

+ ε2hPm+εh
.
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Further, in the considered queuing system,the queue is possible only when
all service facilities are busy. Thus, the total stream of served demands of the
whole system consists of service streams of each channel and has mμ intensity.
In this case, the probability that the system serves i demands during t time in
the event of queue, will be recorded in the form Bi (t) = (mμ t)i

i ! e−mμ t.
The function of service waiting time distribution for one demand we will find

according to a known dependence FW (t) = 1 − P (tW ≥ t) , where P (tW ≥ t)
- the probability that waiting time in a queue for one demand is more than an
advanced set time t. As it is easy to see, it is possible, firstly, in case when the
queue is absent, but a newly arrived demand finds all service facilities in the
system busy, and during t time none of facilities is released. Secondly, in case
when one demand is already in a queue and during t time the system serves no
more than one demand, or there are two demands in a queue, and during t time
no more than two demands are served, and so on. In this case, according to the
formula of full probability, we have

q [1 − FW (t)]

=
Λ1

Λ

[

B0 (t)
m+ε1−1∑

i=m

Pi + B1 (t)
m+ε1−1∑

i=m+1

Pi + · · ·

+Bε1−1 (t)Pm+ε1−1]

+
Λ2

Λ

[
ε1∑

i=0

Bi (t)
m+ε2−1∑

i=m+ε1

Pi + Bε1+1 (t)
m+ε2−1∑

i=m+ε1+1

Pi + · · ·

+ Bε2−1 (t) Pm+ε2−1]

+
Λ3

Λ

[
ε2∑

i=0

Bi (t)
m+ε3−1∑

i=m+ε2

Pi + Bε2+1 (t)
m+ε3−1∑

i=m+ε2+1

Pi + · · ·

+Bε3−1 (t) Pm+ε3−1] + · · ·

+
Λh

Λ

⎡

⎣
εh−1∑

i=0

Bi (t)
m+εh−1∑

i=m+εh−1

Pi + Bεh−1+1 (t)
m+εh−1∑

i=m+εh−1+1

Pi + · · ·

+Bεh−1 (t) Pm+εh−1] . (6)

After a number of intermediate calculations, it is possible to obtain the fol-
lowing expressions for finite-sums sequence in square brackets in the right-hand
side of this ratio. As a result, substituting obtained ratios into the right member
of a formula (6), we will finally find
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FW (t) = 1 − e−mμt Pm−1

q

+

{
R1

m − R1

[

eε1−1 (R1μt) −
(

R1

m

)E1

eε1−1 (mμt)

]

+
h∑

i=2

Ri

m − Ri

[
i−1∏

g=1

(
Rg

m

)Eg

eεi−1−1 (mμt)

+
i−1∏

g=1

(
Rg

Ri

)Eg [
eεi−1 (Riμt) − eεi−1−1 (Riμt)

]

−
i∏

g=1

(
Rg

m

)Eg

eεi−1 (mμt)

]}

;

Hence, the density of a demand waiting time distribution for service in a queue
is

fW (t) =
dFW (t)

dt
= e−mμt Pm−1

q

×
{

Λ1 eε1−1 (Λ1t) +
h∑

i=2

Λi

i−1∏

g=1

(
Rg

Ri

)Eg [
eεi−1 (Λit) − eεi−1−1 (Λit)

]
}

(7)

and then, mean waiting time of demand service in a queue is

t̄W =

∞∫

0

tfW (t) dt

=
1

Λ0q

h∑

i=1

{
Ri

m − Ri
[PBi − EiPm+εi

] +
Ri

m
εi−1PBi

}

=
l̄

A

in compliance with J. Littl’s formulae. In the same way the second initial moment
of a demand waiting time in a queue is

t2W =

∞∫

0

t2fW (t) dt

=
1

Λ0q

h∑

i=1

Ri

⎧
⎪⎨

⎪⎩

2(PBi−EiPm+εi)
μ(m−Ri)

2

[
1 + εi−1

m (m − Ri)
]

Pm

3m2μ

i−1∏

g =0

(
Rg

Ri

)Eg

+ εi−1(εi−1+1)PBi

m2μ − Ei(Ei+1)Pm+εi

mμ(m−Ri)
, Ri �= m

× [εi (εi + 1) (εi + 2) − εi−1 (εi−1 + 1) (εi−1 + 2)] , Ri = m

}

.

Let us note that the ratio (7) gives a possibility to calculate moments of any
order as a demand waiting time in a queue for service.



On the Problems of Queues in Mixed Type Queuing Systems 75

4 Numerical Investigation of Queue Parameters Behavior
in QS

In actual conditions of objects operating according to the principle of queuing
systems, the problem of queues and delays in service is always topical. It natu-
rally causes desire to organize the process of their exploitation in such a way that
the operation of these objects and systems would proceed in more stable modes.
It should be borne in mind that a single parameter which could be changed
more or less quickly in actual practice for multi-channel devices in practice is
the number of homogeneous service facilities m working in parallel. Therefore,
we will set the task to study the work of QS in the following way.

Let us investigate the nature of behavior of the moments of queue length
and waiting time of the demand in queue with the change of the number of ser-
vice facilities m. For this purpose, let us formally replace factorial dependences
m in formulas for probabilistic characteristics [7] through which the moments
of the number of demands in the queue and waiting time are expressed with
corresponding gamma-functions G(m + 1); m is conditionally regarded as a con-
tinuous quantity. Dependencies of mathematical expectation and variance of
demands number waiting for service in the queue on the number of service facil-
ities show that there is some boundary value m corresponding to a cross point
of the moments of demands number in the queue which divides the axis m into
two parts. The first part is the area in which the mean squared deviation (MSD)
of the queue length is within the limits of mathematical expectation; the second
part is the area in which the dispersion of demands number in the queue exceeds
the mean value. The system functioning mode at which MSD of the queue length
does not exceed its mean value is pretty stable and predictable from the point
of view of operation.

In this case it is interesting to trace the dynamics of m change that is bound-
ary when the given intensity components of demands input stream change and
the queue length for corresponding components of input stream is limited.

A special program was developed to conduct a series of computational exper-
iments to calculate m boundary according to the mathematical model with
known as initial data of given intensity components of the demands input stream
and corresponding size-limited queues. Varying the given components inten-
sity of demands input stream ρi within 1 to 12, we found values m1 bound-
ary for the moments of queue length and m2 boundary for the moments of
demand servicing-waiting moments in a queue at various values of step size
between queue length limitations for various components of demands input
stream Ei = 1; 2; 5; 10.

As an example let us consider the queuing model with a two-component
demand input stream and two queue length limits for each component. For this
purpose let us set λ0 = 0; μ = 1; E0 = 0; h = 2 in the program. As
λ0 = 0, the zero (Erlang) component in this model is absent. Here ε1 = E1 is
queue length limit for demands of the first component of the input stream with
the given intensity ρ1, and ε2 = E1 + E2 is queue length limit for demands of
the second component of the input stream with the given intensity ρ2.
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The behavior of m1 and m2 boundary with the change of given intensity
ρ1 and ρ2 is linearly increasing. We will call obtained straight lines limits of
stability. Each point lying on the stability boundary corresponds to equal values
of mathematical expectation and MSD of the queue length (for m1 ), and waiting
time to service the demand in the queue (for m2 ) at a definite value of the given
intensity of demand input stream. The coefficients of variation of the queue
length and waiting time in the queue are equal to the unity. In fact, it is the
border above which MSD exceeds mathematical expectation. The area below the
straight line corresponds to the stable mode of system operation at which the
mean squared deviation is within mathematical expectation.

When ρ1 > 1 obtained straight lines divide the coordinate plane into 3 areas:
the upper one corresponds to an unstable mode of system operation both accord-
ing to the queue length and waiting time; the middle one corresponds to the
stable mode as for the queue and unstable as for waiting time; the lower – to the
stable mode on the queue and waiting time as well. It turns out that the set of
values of the number of service facilities corresponding to the stable mode of sys-
tem operation is limited from above by the stability boundary for waiting time.
Both straight lines form a multiplicative strip of instability in regard to waiting
time; its width enhances upon increasing of the given stream intensity ρ1.

When the step between queue length limits for demands of different com-
ponents is E1 = E2 = 2, stability boundaries on the queue length and waiting
time when the given intensity of the first component of the stream is changed ρ1,
form a multiplicative instability strip of the system according to waiting time.
In case the given intensity of the second component of the stream changes, ρ2
form the additive instability strip of the system as for waiting time; its width
does not practically change with the increase of ρ2.

When the step between queue length limits for demands of different compo-
nents is E1 = E2 = 5, the further narrowing of instability strips with regard to
waiting time both for multiplicative at increase of the given intensity of the first
component of stream ρ1 and additive is observed when the given intensity of the
second component ρ2 changes.

Finally, when the step between queue length limits for demands of different
components is E1 = E2 = 10, instability strips on waiting time practically
disappear turning into a single boundary of the stability area both in queue and
waiting time as well.

In case of a two-component service model with two queue length limits for
each component of the demands input stream with intervals between limits E1 ≥
10 and E2 ≥ 10, boundary values of the number of service facilities (inside of
which MSD queue lengths and waiting time meet corresponding mathematical
expectations) practically coincide. They are approximately equal to the sum of
given intensity of all components of demands input stream. Also boundaries of
stability on queue length and waiting time are straight lines and at E1 ≥ 10 and
E2 ≥ 10 their slope angle makes 45◦.
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For a two-component queuing model with queue limits there is an opportunity
to investigate behavior of m1 and m2 boundary at simultaneous change of the
given intensity of both components of demands input stream ρ1 and ρ2.

Having conducted a cycle of corresponding computational experiments at
the step between queue length limits for demands of different components E1 =
E2 = 5, we obtain hypersurfaces of stability on queue length and waiting time
of the demand in a queue, very close to planes.

Obtained hypersurfaces break a coordinate space into 3 parts: upper is the
space of system instability on queue and waiting time; low is the space of system
behavior stability both on the queue length and demands waiting time in the
queue; middle – the layer corresponding to an unstable operation mode of the
system only on waiting time.

5 Higher Orders Queues

An N -th order queue will be called the queue calculated in case when there are
N claims in the system as minimum, and some of them are in the memory. If
N = 0 we have a usual mathematical queue, when N = m where m - the
number of channels in the service facility, we have a physical queue which is
explicitly studied in work [8]. At N = m + 1 we have the so-called real queue
[5], [6]; at all values N > m + 1 we have consequently higher orders queues [9].

Apparently, T. Saaty was the first to state the issue of real queues in his clas-
sical monograph [10]; it specified the value for the M/M/m system representing
itself as an average number of demands which stay in the queue for some time
to be served.

The physical sense of the real queue defined in the above-stated sense is that
in this case a newly arrived into the system claim finds busy all service channels
(all devices) and, at least, one more claim in the queue waiting for the service.
Thus, the minimum mean length of a real queue (in case the intensity of an
input stream of claims tends to zero) is unity but not zero as a general and well-
studied mathematical queue has. As we see, the real queue is understood as the
situation when there is at least one claim in the queue for the service on a par.

However, this numerical characteristic is not the only one to characterize real
queues in queuing systems.

Along with real queues in the sense explained above, it is possible to consider
another numerical characteristic of QS which, for example, in the standard report
of the GPSS simulation system has the name “a queue without zero inputs”.
Here, zero input is understood as such arrival of the claim in the system at
which there is, at least, one free service channel in the multi-channel device,
and in this case the claim is served immediately. Let’s emphasize that unlike the
situation considered above, in this case we imply the situation when at the time
of a new claim arrival in the system all service channels of the service facility
are occupied, but the queue, as such, can be absent. In the latter case, the claim
expecting service has no other service waiting claims before it; it is just before
the service facility in which all channels are busy at that time. Thus defined the
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“queue without zero inputs” is calculated considering only those claims which
really expected service, and without taking into account claims which did not
have to wait as at the time of their arrival in the system one serving channel
was free at least. Queue mean length without zero inputs is, apparently, longer
than mean length known for all and more habitual mathematical queue but, in
its turn, it is less than mean length of the real queue considered above. It is
clear, that the minimum mean length of such queue is zero, as well as the usual
mathematical queue is, i.e. on average such a queue, as well as a mathematical
queue, can have any number of claims.

Thus, if the usual mathematical queue is calculated as the average for all
claims which visited the system, then the queue without zero inputs is calculated
as the average value minus those claims which were served immediately as they
got into the system when, at least, one of service channels was free. The so-called
real queue in this case is calculated as the average minus both those claims which
were served without a queue, and those ones which found all service channels
occupied but were the first in the service waiting list as there were no other
claims in the system at this moment. In work [8] it was proposed to call the
queues calculated without zero inputs as physical queues.

It is clear, that this result can be generalized if the concept of higher orders
queues of systems with queues is introduced in the following way.

Let the queuing system have m serving channels with identical service inten-
sity μ. In this case we will call the queue of a 0-th order the average queue
calculated on condition that when a new claim enters the system, there can be
any number of claims including the case when there are no claims at all, i.e.
the system can be the completely free from claims. In this case we will call the
queue of the 1-st order the average queue calculated on condition that when a
new claim enters the system, it already contains at least one claim, and so on. It
is clear, that upon this the physical queue means an average queue in all those
cases that when the claim enters the system, there are at least m claims in it;
thus according to this nomenclature, the physical queue is a queue of the m-th
order, Then the real queue is a queue of the m + 1-th order, etc.

Thus, the N -th order queue is the average queue calculated on condition that
when a new claim enters the system there are already Nclaims in it, and some
of them can be in the memory. At the same time the case N = 0 corresponds
to a usual mathematical queue; for N = m we have a physical queue; let us
remind that in the system of GPSS World simulation modeling this characteristic
has the name “a queue without zero inputs”. In case N = m + 1 we have a
real queue; for those cases when N > m + 1 we have higher orders queues.
In case all serving channels are busy, a newly arrived claim will have to expect
service, the minimum quantity of claims in the physical queue is equal to zero
in the memory; for the real queue it is equal to unity, and so on. It should be
noted that physical and real queues have the greatest deviations from the known
mathematical queue at small values of the intensity of claims stream entering
the system.
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As it is known, mean processing time of one claim in the system t̄S , mean
staying time of claims in the queue t̄W and the common mean staying time of
the claim in the system in general t̄T = t̄S + t̄W for Markov queuing systems
are bound to corresponding discrete characteristics of QS by the following three
formulas [5,6]:

tS = n̄/A; t̄W = l̄/A; t̄T = k̄/A; (8)

where A is throughout capacity of the system, i.e. an average number of claims
served by the system in unity of time. Discrete characteristics of the system
are understood respectively as an average number of busy channels n̄ , mean
length of the queue l̄, and an average number of claims in the system in general
k̄ = n̄ + l̄. Sometimes, these formulas are written in the form

t̄S = n̄/λ; t̄W = l̄/λ; t̄T = k̄/λ,

when the total intensity of claims stream λ coming into the system is in the
denominator.

In fact, however, the denominator of these formulas should not be made of
the total intensity of claims stream but of that part only which corresponds
to those claims that are really transferred through the system (more precisely,
through the service facility), i.e. absolute throughout capacity of the system A.

Formulas (8) are commonly called Little’s formulas. At first, the result which
engineers used for a long time existed as several empirical formulas, i.e. in the
form of some kind of “folkloric theorem”, as it is said. Apparently, J. D. C.
Little was the first person who gave it a strict formulation in 1961. The intuitive
proof of Little’s formulas comes to the fact that in a steady state mode the next
demand entering the system finds in it the same average number of demands
which remains in the system when this demand leaves it. This quantity is just
equal to the product of claims stream intensity transferred through the system
(or its any subsystem) multiplied by the mean time of their staying in this system
(subsystem):

n̄ = A t̄S ; l̄ = A t̄W ; k̄ = A t̄T . (9)

Direct mechanical analog of formulas (9) is a well-known relation for the way
passed at a steady movement s based on moving velocity υ and travel time t.

s = υ t.

The case is somewhat different with QS numerical characteristics concerning
a real queue and higher orders queues in these systems. Let us remind that the
N -th order queue we have called the average queue calculated on condition that
when a new claim enters the system there are already 2N claims in it, and some
of them can be in the memory.

At the same time N = 0 corresponds to a usual mathematical queue; for
N = m we have a physical queue which in the system of GPSS World simulation
modeling has the name “a queue without zero inputs”.

In case N = m + 1 we have a real queue; for those cases when N > m + 1
we respectively have higher orders queues.
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For a physical queue, as it is shown in work [8], the corresponding ratio has
the form quite similar to (8):

t̄Wphys = l̄phys/A (10)

It is possible to ascertain that the relation (10) is applicable for all types
of queues from a mathematical to a physical queue, including the latter one,
however for a real queue and higher orders queues this formula becomes unfair.

Somewhat different is the situation with numerical characteristics of QS con-
cerning real queues and higher orders queues in regard to a real queue in these
systems. In works [5,6] it was found out that the following relation is performed
for the systems of M/M/m and M/M/m/E classes (however, all numerical char-
acteristics of the first ones can be obtained by ultimate passing from numerical
characteristics of the second ones)

t̄Wreal = l̄real/mμ (11)

as the real queue moves with velocity mμ to serve demands by the multi-channel
device. It is possible to show that the same dependence will remain fair for all
types of higher orders queues for which N > m + 1:

t̄WN = l̄N/mμ (12)

Relations (8)–(12) connect parameters of usual mathematical, physical and
real queues in open queuing systems and parameters of higher orders queues in
these systems as well. It is clear that these relations will be absolutely similar for
close-loop queuing systems. At the same time the obtained system of formulas
(8)–(12) may be called as generalized Little’s formulas.

As we see, all higher orders queues in queuing systems of various types from
the point of view of claims traveling velocity in these queues can be divided into
two unequal classes. In this case, the first class will include all types of queues
from mathematical to physical inclusive, which move with a transferring velocity
of claims through system A. Thus m + 1 types of queues of various orders from
zero to m-th are in the first class. The second, a more extensive class, includes
a real queue and all higher orders queues in regard to a real queue for which,
according to the definition, we have N > m + 1. All these queues move with
the service velocity mμ. The number of queues of various orders in this class is
not limited.

Further, the work [8] provides formulas obtained for the mean length of a
physical queue for queuing systems of various types. In particular, the expression
for a mean length of a real queue of the system with an unlimited memory volume
(within M. Kendall’s symbolism – M/M/m model) is the following

l̄phys =
ρ

m − ρ
.
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But for the M/M/m model A = λ, and then according to formulas (10) and
(11) we have

t̄Wphys = l̄phys

λ = 1
μ(m−ρ) ;

t̄Wreal = l̄real

mμ = 1
μ(m−ρ) .

i.e. for the model with an unlimited queue the mean staying time of one claim in a
physical queue coincides with the mean staying time of the claim in a real queue:
t̄Wphys = t̄Wreal. The obtained result can be called the theorem on physical and
real queues in queuing systems with an unlimited memory volume.

6 Conclusion

Generalizing data of all computational experiments submitted in the work it is
possible to draw the following conclusion.

In queuing systems of multicomponent streams stable operation modes of the
system on the queue length and waiting time of demands are possible. Bound-
aries of these modes correspond to single coefficients of queue length variation
and demands servicing-waiting in system. Regardless the number of components
in demands input stream and values of the step between queue length limits
for various components of the stream, boundary values of the number of service
facilities depending on the given intensity of various stream components form
straight lines described by the equation m (ρi) = a + bρi where ρi- given inten-
sity of the i -th component of demands input stream. When the step between
queue length limits for various components of demands input stream is Ei ≥ 10,
coefficients a and b accept values a =

∑

j �=i

ρj , b = 1. Thus, at Ei ≥ 10 the bound-

ary value of the number of service facilities is numerically equal to the sum of
the given intensity of all input stream components. If above this limit, the oper-
ation mode of the system will be unstable both on the queue length and demand
waiting time.

The proposed results of the work can be used to project and operate quite a
wide class of objects and systems to assess their efficiency, and also to develop
projects of modernization or construction of various technical objects working
according to the principle of queuing systems.
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