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Abstract. In this paper we consider a generalization of M/GI/N/∞
queues, in which customer capacity is an additional parameter of the
system and it is independent of the service time. In more detail we focus
on the distributions of the total capacity of customers in the different ele-
ments of the queue (waiting line, service and entire system) and provide
approximate expressions for the corresponding characteristic functions.
To verify the goodness of the proposed approximation, several sets of
simulations have been carried out, considering discrete and continuous
distributions of the customer capacity and using the Kolmogorov dis-
tance as a measure of similarity.

Keywords: N -server queuing system · Customer with random capac-
ity · Approximation of the probability distribution

1 Introduction

Queuing theory is one of the most relevant branches of probability theory and
applied mathematics [3,6,12,13]. Indeed, queuing systems represent a powerful
mathematical tool for performance analysis of a wide variety of real-life systems,
including, for instance, telecommunication networks, financial markets, supply
chain management and airplane traffic control.

In many application customers are simply characterized in terms of arrival
and service processes [1,8,9]. For instance, in computer networks it is typically
assumed that the customer volume (i.e., the packet length) is proportional to the
service time (namely, the time needed to transmit the packet itself). In this work,
we consider a more general model and assume that customer volume and service
time are described by independent random variables with arbitrary distributions.
As highlighted in the next section, customer capacity plays a relevant role in
modeling new network architectures.

In more detail, we consider a queuing system with Poisson arrivals, N servers
and unlimited capacity (such assumption is widely used in modeling for sake
of analytical tractability). Extending the approach developed by some of the
authors in [4] (in which an approximate expression for the distribution of the
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number of customers was derived), we will be able to find an explicit approxima-
tion for the distribution of the customers’ total capacity in the queuing system
as well as in its elements (waiting line and service).

The rest of the paper is organized as follows. In Sect. 2, we review the most
relevant works on queuing systems with random capacity of customers and high-
light the novelty of our contribution. Section 3 properly defines the analyzed
queuing model and recalls an approximation for the probability distribution of
the number of customers in the system, while Sect. 4 presents the original con-
tribution of the paper, i.e. provides a general expression for the characteristic
function of the total customers’ capacity. Then, in Sect. 5 the goodness of the
approximation (in terms of Kolmogorov distance) is verified through discrete-
event simulations for different values of the system parameters. Finally, Sect. 6
concludes the paper with some final remarks.

2 Related Work

In recent years queuing systems with random customer capacity have attracted
the interest of researchers for their applicability in different fields, mainly in
the framework of computer networks. In this section some of the most relevant
contributions are discussed.

In the paper [2] an efficient analytical model that evaluates the behavior of the
downlink LTE (Long-Term Evolution) channel with CLA (Cross-Layer Adapta-
tion) is presented. Since video traffic is resource–intensive, it is a challenging
issue to stream video over low bandwidth networks, whereas video communi-
cation over LTE becomes an open research topic nowadays due to LTEs high
throughput capabilities.

The paper [11] deals with a model of a multi-server queuing system with
losses caused by lack of resources necessary to service claims. A claim accepted
for servicing occupies a random amount of resources of several types with given
distribution functions. Random vectors that define the requirements of claims
for resources are independent of the processes of customer arrivals and servicing,
mutually independent, and identically distributed. Under the assumptions of a
Poisson arrival process and exponential service times, the authors analytically
find the joint distribution of the number of customers in the system and the
vector of amounts of resources occupied by them. Moreover, sample computa-
tions are presented to illustrate an application of the model to analyzing the
characteristics of a videoconferencing service in an LTE wireless network.

In [10] the authors consider queuing systems, in which customers occupy
some resources that are released after customer departure. Arriving customers
are lost if there are not enough free resources required for their servicing. In
such systems for each customer it is necessary to record the vector of occupied
resources until its departure.

Multi-server queuing systems with AQM-type (Active Queue Management)
mechanisms are considered in [16,17]. In more detail, in the first work M/M/n-
type (n ≥ 1) queuing systems with a bounded total volume and finite queue
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size are considered. It is assumed that the volumes of the arriving packets are
generally distributed random variables. Moreover, an AQM-type (Active Queue
Management) mechanism is used to control the actual buffer state: each of the
arriving packets is dropped with a probability depending on its volume and the
occupied volume of the system at the pre-arrival epoch. The stationary queue-
size distribution and the loss probability are derived, and numerical examples
illustrating theoretical results are also provided. Then, in [17] the analysis is
extended to the case of arbitrary distribution of the service time.

The main aim of the paper [14] is to develop a simulation model for queuing
systems with non-priority cyclic service RR (round robin) discipline and to com-
pare, in terms of queuing performance, such service discipline with traditional
FCFS (first come-first served).

Finally, the paper [15] investigates single server queuing systems with batch
Poisson arrivals and without demands losses under assumption that each demand
has some random capacity (generally, each demand is characterized by an l-
dimensional indication vector). Service time of the demand arbitrary depends
on its capacity (indications). The Laplace-Stieltjes transform of total capacities
(random vector of sum of indications) of demands that were served during a
busy period of the system is determined.

The main novelty of our approach is that it deals with systems without losses
and, in this way, permits to dimension the system resources (in terms of buffer
space) in order to have loss probabilities below any given threshold (as well-
known in the literature, the complementary probability provides an upper bound
for the loss probability in the corresponding finite-buffer system). Moreover, our
approach is quite general and may be applied to any distribution (discrete or
continuous) of the customer capacity, provided that its characteristic function is
well-defined. Finally, we also provide the distribution of the overall capacity for
the customers in the different components of the queue (waiting line and buffer);
such information may be useful to dimension the different elements of the real
system under analysis.

3 Approximation of Probability Distribution
of the Customers’ Number in the System

We consider the M/GI/N/∞ queue. The arrival process is distributed by Poisson
law with rate λ. The system has N servers and service times on each server are
i.i.d. with distribution function A(x). The arriving customer occupies any free
server or goes to the queue in case of all servers are busy. Let each customer
have some random capacity v > 0 with distribution function G(y). Customers’
capacities and service times are mutually independent and do not dependent on
the epochs of customers’ arrivals.

Denote by i(t) and V (t) =
i(t)∑

i=1

vi the number of customers in the system at

time t and their total capacity, respectively.
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Let P (i) = P {i(t) = i} be the stationary probability distribution of the
number of customers in the system. We denote by πi an approximation of P (i),
which is defined as a composite distribution [4]:

πi =
{

C1P1(i), 0 ≤ i ≤ N,
C2P2(i − N + 1), i ≥ N.

(1)

Note that the equality of the two expression for i = N provides an additional
condition to determine the constants C1 and C2.

The probabilities P1(i), where 0 ≤ i ≤ N , are the probabilities of the number
of occupied servers in an N -server M/GI/N/0 queue with customer losses when
all servers are busy. Hence, they can be determined by the Erlang B formula:

P1(i) =
(λa)i

i!

(
N∑

k =0

(λa)k

k!

)−1

where a is the mean service time.
The probabilities P2(i) refers to states in which all servers are busy. In this

case, the block of occupied servers is considered as a single one, characterized
by an equivalent service time distribution B(x) and an equivalent mean ser-
vice time b. Therefore, the probabilities P2(i), where i ≥ 1, are defined as the
probabilities of having i customers in a single-server queuing system with wait-
ing (i.e., the classical M/GI/1 queue). Hence, they can be determined by the
Pollaczek-Khinchin formula [4] and we can write

P2(i) = (1 − λb)
i∑

k =0

αkbi−k,

where the coefficients of the expansion are given by

α0 =
1
β0

, αn =
1
β0

[

αn−1 −
n−1∑

k =0

αkβn−k

]

,

b0 = β0, bn = βn − βn−1,

βn =

∞∫

0

e−λz (λz)n

n!
dB(z),

and the distribution function B(x) has the form

B(x) = 1 − (1 − A(x))

⎛

⎝1 − 1
a

x∫

0

(1 − A(z)) dz

⎞

⎠

N−1

.

The constants C1 and C2 in (1) can be found from the normalization condi-
tion and the conditions of “stitching” [4]. So the expression (1) becomes:

πi =

⎧
⎪⎪⎨

⎪⎪⎩

P2(1)
P2(1) + P1(N) (1 − (P2(0) + P2(N)))

P1(i), 0 ≤ i ≤ N,

P1(N)
P2(1) + P1(N) (1 − (P2(0) + P2(N)))

P2(i − N + 1), i ≥ N.
(2)



60 E. Lisovskaya et al.

4 Characteristic Function for the Total Capacity

Starting from the definition of conditional expectation, we can write the char-
acteristic function of the total capacity in the form

h(u) = M
{

ejuV (t)
}

= M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e

ju

i∑

k =1

vk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

i(t) = i

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=
∞∑

i=0

M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e

ju

i∑

k =1

vk

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

P {i(t) = i} =
∞∑

i=0

(
M

{
ejuv

})i

P {i(t) = i} ,

where we took into account that for i = 0 the queue is empty and the sum at
the exponent is 0.

Then, using approximation (2), the characteristic function can be rewritten
as

h(u) =
∞∑

i=0

(
M

{
ejuv

})i

πi,

and, taking the inverse Fourier transform, we obtain an approximation of the
density function of the customers’ total capacity in the M/GI/N/∞ queue:

fV (x) =

∞∫

−∞
e−juxh(u)du. (3)

Similarly, we can obtain the characteristic functions of the total capacity of
the customers in the service and in the waiting line. These results have practical
relevance since the customers in each element of the queue typically require
specific resources (for instance, in routers there is a physical separation between
input buffers and output ports).

In more detail, for the customers in the service we obtain:

hserv(u) =
N∑

i=0

(
M

{
ejuv

})i P2(1)P1(i)
P2(1) + P1(N) (1 − (P2(0) + P2(N)))

,

and for the customers in the waiting queue:

hwait(u) =
∞∑

i=0

(
M

{
ejuv

})i+N P1(N)P2(i + 1)
P2(1) + P1(N) (1 − (P2(0) + P2(N)))

.
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5 Simulation and Numerical Examples

Several simulation experiments, performed in the same way as [5], have been
carried out to estimate the distribution function of the customers number and the
total customers capacity and verify the goodness of the proposed approximation.
To this aim, it was also necessary to calculate numerically the approximations
(2) and (3) since a close-form solution is, in general, not available.

As a measure of the similarity between simulation and approximation results,
we consider the Kolmogorov distance

Δ = sup
x

|F (x) − D(x)| .

Here F (x) represents the approximation based on (2) or (3), respectively for i(t)
and V (t), and D(x) is the cumulative distribution function built on the basis
of the simulation results (in order to reduce the variance of the estimates 1010

arrivals have been generated). As typically done in the literature [7], we suppose
that an approximation is applicable if its Kolmogorov distance is less than 0.03.

In the following we present the result for three different scenarios, in order to
highlight the applicability of our approximation in different settings. Note that
the parameters for the arrival and service processes were selected in such a way
that the condition for the stationary regime existence is always met (N > λa).

Example 1. Let us consider the following parameters for the queue:

– arrival rate λ = 25
– number of servers N = 10
– exponential distribution (with parameter μ) of the service time, i.e.

A(x) =
{

1 − e−μx, x ≥ 0,
0, x < 0,

– uniform distribution (in the interval [a, b]) of customers’ capacity, i.e.

G(y) =

⎧
⎪⎨

⎪⎩

0, y < a,
y − a

b − a
, a ≤ y ≤ b,

1, y > b.

Furthermore, we used the following numerical values: μ = 5, a = 0 and b = 1.
It is easy to verify that the distributions are very similar both for the customer
numbers and the total capacity, as highlighted by Figs. 1 and 2; indeed, we obtain
that Δi = 0.007 and ΔV = 0.012, respectively for i(t) and V (t).

Example 2. In the second set of simulation we changed the distribution of the
service time. In more detail, the parameters of the queuing system are as follows:

– arrival rate λ = 25
– number of servers N = 10
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Fig. 1. Example 1 – Distributions of the customers number

Fig. 2. Example 1 – Distributions of the total capacity

– gamma distribution (with parameters α and β) of the service time, i.e.

A(x) =

⎧
⎨

⎩

γ(α, βx)
Γ (α)

, x ≥ 0,

0, x < 0,
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Fig. 3. Example 2 – Distributions of the customers number

– uniform distribution (in the interval [a, b]) of customers’ capacity, i.e.

G(y) =

⎧
⎪⎨

⎪⎩

0, y < a,
y − a

b − a
, a ≤ y ≤ b,

1, y > b.

In this case (with α = 0.5, β = 2.5 and, as before, a = 0, b = 1), the approx-
imation is even closer since Δi = 0.009 and ΔV = 0.007 (see Figs. 3 and 4).

Example 3. In the third set of simulations we verified the goodness of the approx-
imation in case of discrete distribution of the customer capacity. In more detail,
we considered the following set of parameters:

– arrival rate λ = 45
– number of servers N = 6, 7, 8
– gamma distribution (with parameters α and β) of the service time, i.e.

A(x) =

⎧
⎨

⎩

γ(α, βx)
Γ (α)

, x ≥ 0,

0, x < 0,

– geometric distribution (in the form representing the number of failures before
the first success, with parameter p) of customers’ capacity:

G(y) = P {v = y} = p (1 − p)y
.
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Fig. 4. Example 2 – Distributions of the total capacity

Fig. 5. Example 3 (N = 6) – Distributions of the customers number

In all the scenarios we assumed α = 3.5, β = 29.7, p = 0.4 and checked how
the value of N influences the goodness of the approximation. Figures 5 and 6
points out that the approximation is rather poor for N = 6 (indeed, in this
case the values of the Kolmogorov distance are Δi = 0.064 and ΔV = 0.048),
while it improves when the number of servers is increased, as highlighted by
the corresponding values of the Kolmogorov distance (namely Δi = 0.029 and
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Fig. 6. Example 3 (N = 6) – Distributions of the total capacity

Fig. 7. Example 3 (N = 8) – Distributions of the customers number

ΔV = 0.016 for N = 7, Δi = 0.017 and ΔV = 0.005 for N = 8) that are clearly
below the admissibility threshold. Finally, a visual evidence of the goodness of
the proposed approximation is provided by Figs. 7 and 8, referring to N = 8 (for
sake of brevity, the graphs for N = 7 are omitted).

We can conclude that the accuracy of the total capacity approximation is
suitable over a wide range of system parameters and improves with the increase
of the number of servers in the system.
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Fig. 8. Example 3 (N = 8) – Distributions of the total capacity

6 Conclusions

In this paper we analyzed a generalization of M/GI/N/∞ queues with customers
of random capacity. Such models present not only theoretical interest, but also
practical relevance in modeling new network architectures (eg., CLA in LTE)
and AQM mechanisms in queues.

In more detail we considered the distribution of the total capacity of cus-
tomers in the system and, starting from our previous results in [4] and the
definition of conditional expectation, derived an approximate expression for its
characteristic function. Then, we extended the proposed methodology to the
total capacity of the customers in the waiting line and in the service, providing
the general expressions of the corresponding characteristic functions.

Finally, the goodness of the proposed approximation was verified (in terms of
Kolmogorov distance) through several sets of simulations, considering continuous
as well as discrete distributions of the customer capacity.
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2012. CCIS, vol. 291, pp. 393–400. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31217-5 41

16. Tikhonenko, O., Kempa, W.M.: On the queue-size distribution in the multi-server
system with bounded capacity and packet dropping. Kybernetika 49(6), 855–867
(2013)

17. Tikhonenko, O., Kempa, W.M.: Performance evaluation of an M/G/n-type queue
with bounded capacity and packet dropping. Int. J. Appl. Math. Comput. Sci.
26(4), 841–854 (2016)

http://dx.doi.org/10.1007/978-3-319-30843-2_38
http://dx.doi.org/10.1007/978-3-319-44615-8_24
http://dx.doi.org/10.1007/978-3-319-44615-8_24
http://dx.doi.org/10.1007/978-3-642-31217-5_41
http://dx.doi.org/10.1007/978-3-642-31217-5_41

	On the Total Customers' Capacity in Multi-server Queues
	1 Introduction
	2 Related Work
	3 Approximation of Probability Distribution of the Customers' Number in the System
	4 Characteristic Function for the Total Capacity
	5 Simulation and Numerical Examples
	6 Conclusions
	References


