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Abstract. In this paper, we consider an MMPP/M/1/1 retrial queue
where incoming fresh calls arrive at the server according to a Markov
modulated Poisson process. Upon arrival, an incoming call either occu-
pies the server if it is idle or joins an orbit if the server is busy. From
the orbit, an incoming call retries to occupy the server and behaves the
same as a fresh incoming call. The server makes an outgoing call in its
idle time. Our contribution is to derive the asymptotics of the number of
calls in retrial queue under the conditions of high rate of making outgoing
calls and low rate of service time of outgoing calls.
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1 Introduction

In service systems idle time of an operator should be minimized to increase the
productivity. An operator not only receives calls from outside but also makes
outgoing calls in the idle time. The example of that could be the cellphone that
is used for incoming and outgoing calls. In call centers operators could receive
arriving calls but as soon as they have free time and are in standby mode they
could make outgoing calls to sell packages and services of the center [1].

Retrial Queues with two-way communication have been extensively studied
recently [2–7]. In these literatures the arrival process is Poisson process. However,
it is well known that real traffic has a more complex structure. Markov modulated
Poisson process (MMPP) can represent correlated traffic and thus it is more
suitable for modelling real traffic.

A. Nazarov—The publication was financially supported by the Ministry of Education
and Science of the Russian Federation (the Agreement number 02.a03.21.0008).

c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 28–41, 2017.
DOI: 10.1007/978-3-319-68069-9 3



Retrial Queue MMPP/M/1/1 with Two-Way Communication 29

In this paper, we consider asymptotic analysis for the distribution of the
number of customers in the system under two conditions: (i) high outgoing call
rate and (ii) low service rate for outgoing calls. In case (i), the server makes an
outgoing call as soon as it becomes idle while in case (ii), the duration of an
outgoing call is extremely long.

In both cases, the number of incoming calls in the system explodes. How-
ever, using suitable scalings, we prove that the scaled version of the number
of incoming calls in the system follow some simple distributions, i.e. Gaussian
distribution [8] and Gamma distribution, respectively [9].

The remainder of the paper is presented as follows. In Sect. 2, we describe
the model in detail and preliminaries for later asymptotic analysis. In Sects. 3
and 4, we present our main contribution for the model with Markov modulated
Poisson process. In Sect. 5 we show the ranges of parameters under which our
approximations are usable. Section 6 is devoted to concluding remark.

2 Model Description and Problem Definition

We consider a single server queueing model with two types of calls: incoming calls
and outgoing calls. Incoming calls arrive at the system according to a Markov
modulated Poisson process. The incoming call that finds the server idle receives
a service for an exponentially distributed time with rate μ1. Upon entering the
system the call that finds the server being busy immediately joins the orbit,
where it stays during a random time exponentially distributed with rate σ. If
the server is idle (empty) it starts making outgoing calls to the outside with
rate α. If the outgoing call finds the server free the call goes into service for
an exponentially distributed time with rate μ2. If upon entering the system the
outgoing call finds the server being busy the call is lost and is not considered in
the future. Let i(t) denote the number of calls in the system at the time t, k(t)
denote the state of the server: 0 if the server is free, 1 if the server is busy serving
an incoming call, 2 if the server is busy serving an outgoing call and n(t) denote
the state of the background process of the MMPP at time t. The infinitesimal
generator of n(t) is defined by matrix Q. When n(t) = n, the arrival rate is
given by λn (n = 1, 2, ..., N). To determine the condition for the existence of a
stationary regime, we define the matrix Λ in the form Λ = ρμ1Λ1

rΛ1e
, where Λ1 is a

diagonal matrix with nonnegative elements, and the condition for the existence
of a stationary regime is the fulfillment of the inequalities 0 < ρ < 1.

Under the current setting the three-dimensional process {k(t), n(t), i(t)} is
a Markov chain. Under the stability condition, the stationary probability dis-
tribution P{k(t) = k, n(t) = n, i(t) = i} = Pk(n, i) is the unique solution of
Kolmogorov system of equations:

−(λn + iσ + α)P0(n, i) + μ1P1(n, i + 1) + μ2P2(n, i + 1) +
∑N

v=1 P0(v, i)qvn = 0,

−(λn + μ1)P1(n, i) + λn [P1(n, i − 1) + P0(n, i − 1)] + iσP0(n, i)

+
∑N

v=1 P1(v, i)qvn = 0,

− (λn + μ2)P2(n, i) + P0(n, i − 1)α + P2(n, i − 1)λn +
N∑

v=1

P2(v, i)qvn = 0. (1)
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We introduce partial characteristic functions [10], denoting j =
√−1:

H0(n, u) =
∞∑

i=0

ejuiP0(n, i), Hk(n, u) =
∞∑

i=1

ejuiPk(n, i), k = 1, 2.

For k = 1, 2, there will be at least one call in the system. Rewriting system (1)
in the following form:

−(λn + α)H0(n, u) + jσ ∂H0(n,u)
∂u + μ1e

−juH1(n, u) + μ2e
−juH2(n, u)

+
∑N

v=1 H0(v, u)qvn = 0,

−(λn + μ1)H1(n, u) + λneju [H1(n, u) + H0(n, u)] − jσ ∂H0(n,u)
∂u

+
∑N

v=1 H1(v, u)qvn = 0,

− (λn +μ2)H2(n, u)+αejuH0(n, u)+λkejuH2(n, u)+
N∑

v=1

H2(v, u)qvn = 0. (2)

We define I - unit matrix, Λ = diag[λn],

H(u) = {Hk(1, u),Hk(2, u), . . .,Hk(N,u),

H′
k(u) =

{
∂Hk(1, u)

∂u
,
∂Hk(2, u)

∂u
, ...,

∂Hk(N,u)
∂u

}
.

Let’s write system (2) in a matrix form (3):

H0(u)(Q − Λ − αI) + jσH′
0(u) + μ1e

−juH1(u) + μ2e
−juH2(u) = 0,

H1(u)
(
Q +

(
eju − 1

)
Λ − μ1I

)
+ H0(u)ejuΛ − jσH′

0(u) = 0,

H2(u)
(
Q +

(
eju − 1

)
Λ − μ2I

)
+ αejuH0(u) = 0. (3)

Let’s sum the equations of the system (3)

H0(u)
[
Q +

(
eju − 1

)
(Λ + αI)

]
+ H1(u)

[
Q +

(
eju − 1

) (
Λ − μ1e

−juI
)]

+H2(u)
[
Q +

(
eju − 1

) (
Λ − μ2e

−juI
)]

= 0.

Multiplying the last equation by a unit vector e and using Qe = 0, we obtain

H0(u) (Λ + αI) e + H1(u)
(
Λ − μ1e

−juI
)
e + H2(u)

(
Λ − μ2e

−juI
)
e = 0.

Multiplying the last equation by a eju:

H0(u)
(
ejuΛ + αejuI

)
e + H1(u)

(
ejuΛ − μ1I

)
e

+H2(u)
(
ejuΛ − μ2I

)
e = 0.

(4)

We will consider the system (3) and the Eq. (4), i.e. a system of three matrix
equations and one scalar equation:

H0(u)(Q − Λ − αI) + jσH′
0(u) + μ1e

−juH1(u) + μ2e
−juH2(u) = 0,
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H1(u)
(
Q +

(
eju − 1

)
Λ − μ1I

)
+ H0(u)ejuΛ − jσH′

0(u) = 0,

H2(u)
(
Q +

(
eju − 1

)
Λ − μ2I

)
+ αejuH0(u) = 0,

H0(u)
(
ejuΛ + αejuI

)
e + H1(u)

(
ejuΛ − μ1I

)
e

+H2(u)
(
ejuΛ − μ2I

)
e = 0.

(5)

The characteristic function H(u) of the number of incoming calls in the
retrial queue is expressed through partial characteristic functions Hk(u) by the
following equation

H(u) = Eejui(t) = (H0(u) + H1(u) + H2(u))e.

We will find the characteristics of our retrial queue with two-way communication
with Markov modulated Poisson input. The main content of this paper is the
solution of system (5) by using an asymptotic analysis method in two limit
conditions: of the high rate of making outgoing calls and the low rate of service
time of outgoing calls.

3 Asymptotic Analysis of MMPP/M/1/1 Retrial Queue
with Two-Way Communication Under the High Rate
of Making Outgoing Calls (α → ∞)

We will investigate system (5) by asymptotic analysis method under the high
rate of making outgoing calls.

3.1 First Order Asymptotic

Theorem 1. Suppose i(t) is the number of calls in the system of the stationary
MMPP/M/1/1 retrial queue with outgoing calls, then the (6) holds

lim
α→∞ Eejw

i(t)
α = ejwκ1 , (6)

where κ1 is the positive root of the equation

r
{

κ1σ (μ1I − Q)−1 + (μ2I − Q)−1
}−1

×
{
I + κ1σ (μ1I − Q)−1 (Λ − μ1I) + (μ2I − Q)−1 (Λ − μ2I)

}
e = 0.

(7)

The row vector r is the stationary probability distribution of the underlying
process n(t) which is given as the unique solution of the system rQ = 0, re = 1.

Proof. We denote α = 1/ε in the system (5), and introduce the following nota-
tions

u = εw, H0(u) = εF0(w, ε), Hk(u) = Fk(w, ε), k = 1, 2,
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in order to get the following system

F0(w, ε)(εQ− εΛ− I)+ jσ
∂F0(w, ε)

∂w
+μ1e

−jεwF1(w, ε)+μ2e
−jεwF2(w, ε) = 0,

F1(w, ε)
(
Q +

(
ejεw − 1

)
Λ − μ1I

)
+ εejεwF0(w, ε)Λ − jσ

∂F0(w, ε)
∂w

= 0,

F2(w, ε)
(
Q +

(
ejεw − 1

)
Λ − μ2I

)
+ ejεwF0(w, ε) = 0,

F0(w, ε)
(
εejεwΛ + ejεwI

)
e + F1(w, ε)

(
ejεwΛ − μ1I

)
e

+F2(w, ε)
(
ejεwΛ − μ2I

)
e = 0.

(8)

Considering the limit as ε → 0 in the system (8), then we will get

−F0(w) + jσF′
0(w) + μ1F1(w) + μ2F2(w) = 0,

F1(w) (Q − μ1I) − jσF′
0(w) = 0,

F2(w) (Q − μ2I) + F0(w) = 0,

F0(w)e + F1(w) (Λ − μ1I) e + F2(w) (Λ − μ2I) e = 0. (9)

Our idea is to find the solution of (9) in the form of

Fk(w) = Φ(w)rk. (10)

Here rk, k = 1, 2 are vectors with components rkn, where rkn is the probability
that the server is in state k, and the MMPP is in state n; r0 is a vector with
components r0n, and has no sense of probability, since the probability that the
server will be in the zero state (will be free) as α → ∞ is zero.

−r0 + jσ
Φ′(w)
Φ(w)

r0 + μ1r1 + μ2r2 = 0,

r1 (Q − μ1I) − jσ
Φ′(w)
Φ(w)

r0 = 0,

r2 (Q − μ2I) + r0 = 0,

r0e + r1 (Λ − μ1I) e + r2 (Λ − μ2I) e = 0. (11)

As the relation j Φ′(w)
Φ(w) does not depend on w, the function is obtained in the

following form
Φ(w) = exp{jwκ1},

which coincides with (6). The value of the parameter κ1 will be defined below.
We rewrite the system (11) in the form

−r0 − κ1σr0 + μ1r1 + μ2r2 = 0,

r1 (Q − μ1I) + κ1σr0 = 0,
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r2 (Q − μ2I) + r0 = 0,

r0e + r1 (Λ − μ1I) e + r2 (Λ − μ2I) e = 0. (12)

Let’s review the normalization condition for stationary server state probability
distribution

r1 + r2 = r.

The row vector r is the stationary probability distribution of the underlying
process n(t). Vector r is defined as the unique solution of the system rQ = 0,
re = 1. We have

r1 = κ1σr0 (μ1I − Q)−1
,

r2 = r0 (μ2I − Q)−1
,

r1 + r2 = r. (13)

We substitute the values of the vectors rk, k = 1, 2 into the last equation of the
system (13). We obtain an equation that determines the vector r0:

r0 = r
{

κ1σ (μ1I − Q)−1 + (μ2I − Q)−1
}−1

. (14)

Now we substitute the first two equalities of the system (13) into the scalar
equation of system (12). We obtain the equation that determines the value of
r0:

r0
{
I + κ1σ (μ1I − Q)−1 (Λ − μ1I) + (μ2I − Q)−1 (Λ − μ2I)

}
e = 0.

Substituting this equality into Eq. (14), we obtain an equation for κ1, which
coincides with (7):

r
{

κ1σ (μ1I − Q)−1 + (μ2I − Q)−1
}−1

×
{
I + κ1σ (μ1I − Q)−1 (Λ − μ1I) + (μ2I − Q)−1 (Λ − μ2I)

}
e = 0.

(15)

The first order asymptotic i.e. Theorem 1, only defines the mean asymptotic
value κ1α of a number of calls in an system in prelimit situation of α → 0. For
more detailed research of the number i(t) of calls in an system let’s consider the
second order asymptotic.

3.2 Second Order Asymptotic

Theorem 2. In the context of Theorem1 the following equation is true

lim
α→∞ E exp

{
jw

1
α i(t) − κ1√

α

}
= e

(jw)2

2 κ2 , (16)

where parameter κ2 is given by

κ2 =
1
σ

· r0e + r1Λe + r2Λe + [y0 + y1 (Λ − μ1I) + y2 (Λ − μ2I)] e
[−g0 + g1 (μ1I − Λ) + g2 (μ2I − Λ)] e

. (17)
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Here the vector of r0 and the vectors of probabilities r1, r2 are defined above.
The vectors g0, g1, g2, y0, y1, y2 are defined by the two systems:

g0

[
−I − σκ1I + μ2 (μ2I − Q)−1 + μ1σκ1 (μ1I − Q)−1

]

= r0 − r0μ1 (μ1I − Q)−1
,

g1 = (g0σκ1 + r0) (μ1I − Q)−1
,

g2 = g0 (μ2I − Q)−1
,

(g0 + g1 + g2)e = 0. (18)

y0

[
(−I − σκ1I) + μ1σκ1 (μ1I − Q)−1 + μ2 (μ2I − Q)−1

]

= μ1r1

[
I − Λ (μ1I − Q)−1

]
+ μ2

[
r2 − (r0 + r2Λ) (μ2I − Q)−1

]

y1 = (y0σκ1 + r1Λ) (μ1I − Q)−1
,

y2 = (y0 + r0 + r2Λ) (μ2I − Q)−1
,

(y0 + y1 + y2)e = 0. (19)

Proof. We introduce the following notations in the system (5)

Hk(u) = exp (jαuκ1)H
(2)
k (u), (20)

and we get

H(2)
0 (u)(Q − Λ − αI − σακ1) + μ1e

−juH(2)
1 (u) + μ2e

−juH(2)
2 (u)

+ jσ
dH

(2)
0 (u)
du = 0,

H(2)
1 (u)

(
Q +

(
eju − 1

)
Λ − μ1I

)
+ H(2)

0 (u)
(
ejuΛ + σακ1 I

) − jσ
dH

(2)
0 (u)
du

= 0,

H(2)
2 (u)

(
Q +

(
eju − 1

)
Λ − μ2I

)
+ αejuH(2)

0 (u) = 0,

H(2)
0 (u)

(
ejuΛ + αejuI

)
e + H(2)

1 (u)
(
ejuΛ − μ1I

)
e

+H(2)
2 (u)

(
ejuΛ − μ2I

)
e = 0.

(21)

Denoting α = 1/ε2, and introducing the following notations

u = εw, H2
0(u) = ε2F2

0(w, ε), H2
k(u) = F2

k(w, ε), k = 1, 2, (22)

we obtain

F(2)
0 (w, ε)(ε2Q − ε2Λ − I − σκ1I) + μ1e

−jεwF(2)
1 (w, ε) + μ2e

−jεwF(2)
2 (w, ε)

+ jσε
∂F

(2)
0 (w,ε)
∂w = 0,
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F(2)
1 (w, ε)

(
Q +

(
ejεw − 1

)
Λ − μ1I

)
+ F(2)

0 (w, ε)
(
ε2ejεwΛ + σκ1I

)

− jσε
∂F

(2)
0 (w,ε)
∂w = 0,

F(2)
2 (w, ε)

(
Q +

(
ejεw − 1

)
Λ − μ2I

)
+ ejεwF(2)

0 (w, ε) = 0,

F(2)
0 (w, ε)ejεw

(
ε2Λ + I

)
e + F(2)

1 (w, ε)
(
ejεwΛ − μ1I

)
e

+F(2)
2 (w, ε)

(
ejεwΛ − μ2 I

)
e = 0.

(23)

Our idea is to seek a solution of the system (5) in the form

F(2)
k (w, ε) = Φ2(w) {rk + jεwfk} + o

(
ε2

)
. (24)

Substituting (24) to (23), we obtain

r0 (−I − σκ1I) + μ1r1 + μ2r2 + jεw [f0 (−I − σκ1I) + μ1 (f1 − r1) + μ2 (f2 − r2)]

+ jσε dΦ2(w)/dw
Φ2(w)

r0 = o
(
ε2
)
,

r1 (Q − μ1I) + r0σκ1 + jεw [f1 (Q − μ1I) + f0σκ1 + r1Λ]

− jσε dΦ2(w)/dw
Φ2(w)

r0 = o
(
ε2
)
,

r2 (Q − μ2I) + r0 + jεw [f2 (Q − μ2I) + r0 + f0 + r2Λ] = o
(
ε2
)
,

r0e + r1 (Λ − μ1I) e + r2 (Λ − μ2I) e
+ jεw [f0 + f1 (Λ − μ1I) + f2 (Λ − μ2I) + r0 + r1Λ + r2Λ] e = o

(
ε2
)
.

Previously, the system of equations (12) was obtained. Taking this into account,
we have

jε [f0 (−I − σκ1I) + μ1 (f1 − r1) + μ2 (f2 − r2)] + jσε
dΦ2(w)/dw

wΦ2(w)
r0 = o

(
ε2

)
,

jε [f1 (Q − μ1I) + f0σκ1 + r1Λ] − jσε
dΦ2(w)/dw

wΦ2(w)
r0 = o

(
ε2

)
,

jεw [f2 (Q − μ2I) + r0 + f0 + r2Λ] = o
(
ε2

)
,

jεw [f0 + f1 (Λ − μ1I) + f2 (Λ − μ2I) + r0 + r1Λ + r2Λ] e = o
(
ε2

)
.

Dividing these equations by ε and taking the limit as ε → 0 yields

f0 (−I − σκ1I) + μ1 (f1 − r1) + μ2 (f2 − r2) + σ
dΦ2(w)/dw

wΦ2(w)
r0 = 0,

f1 (Q − μ1I) + f0σκ1 + r1Λ − σ
dΦ2(w)/dw

wΦ2(w)
r0 = 0,

f2 (Q − μ2I) + r0 + f0 + r2Λ = 0,

[f0 + f1 (Λ − μ1I) + f2 (Λ − μ2I) + r0 + r1Λ + r2Λ] e = 0.
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These equations imply that Φ′
2(w)

wΦ2(w) doesn’t depend on w and thus the scalar
function Φ2(w) is given in the following form

Φ2(w) = exp
(jw)2

2
κ2,

which coincides with (16). We have Φ′
2(w)

wΦ2(w) = −κ2 and then we obtain the system

f0 (−I − σκ1I) + μ1f1 + μ2f2 = σκ2r0 + μ1r1 + μ2r2,

f1 (Q − μ1I) + f0σκ1 = −r1Λ − σκ2r0,

f2 (Q − μ2I) + f0 = −r0 − r2Λ,

[f0 + f1 (Λ − μ1I) + f2 (Λ − μ2I)] e = − (r0 + r1Λ + r2Λ) e. (25)

System (25) is an inhomogeneous system of linear equations, with respect to
the vectors f0, f1, f2. The determinant of the matrix of the system is zero (the
sums of rows are all zero). The rank of the extended matrix and the rank of
the matrix of coefficients coincide . Consider systems (12) and (25). System (12)
is homogeneous, system (25) is inhomogeneous. Consequently, we can write the
solution of the inhomogeneous system (25) in the form fk = Crk + κ2σgk + yk,
where C is a constant, vectors rn are defined above, vectors gk and yk are
particular solutions of the system (25) and then

C [r0 (−I − σκ1I) + μ1r1 + μ2r2] + κ2σ [g0 (−I − σκ1I) + μ1g1 + μ2g2]
+ μ1y1 + μ2y2 + y0 (−I − σκ1I) = σκ2r0 + μ1r1 + μ2r2,

C [r1 (Q − μ1I) + r0σκ1] + κ2σ [g1 (Q − μ1I) + g0σκ1] + y1 (Q − μ1I) + y0σκ1

= −r1Λ − σκ2r0,
C [r2 (Q − μ2I) + r0] + κ2σ [g2 (Q − μ2I) + g0] + y2 (Q − μ2I) + y0 = −r0 − r2Λ,

C [r0 + r1 (Λ − μ1I) + r2 (Λ − μ2I)] e
+ κ2σ [g0 + g1 (Λ − μ1I) + g2 (Λ − μ2I)] e

+ [y0 + y1 (Λ − μ1I) + y2 (Λ − μ2I)] e = − (r0 + r1Λ + r2Λ) e.

Previously, the system of Eq. (12) was obtained. Taking this into account, the
coefficients of C are zeros and we can rewrite the last system in the form

κ2σ [g0 (−I − σκ1I) + μ1g1 + μ2g2] + μ1y1 + μ2y2 + y0 (−I − σκ1I)
= σκ2r0 + μ1r1 + μ2r2,

κ2σ [g1 (Q − μ1I) + g0σκ1] + y1 (Q − μ1I) + y0σκ1

= −r1Λ − σκ2r0, κ2σ [g2 (Q − μ2I) + g0] + y2 (Q − μ2I) + y0 = −r0 − r2Λ,

κ2σ [g0 + g1 (Λ − μ1I) + g2 (Λ − μ2I)] e
+ [y0 + y1 (Λ − μ1I) + y2 (Λ − μ2I)] e = − (r0 + r1Λ + r2Λ) e.

(26)

We consider the first three equations of the system (26). We equate the
corresponding coefficients for κ2 to obtain

g0 (−I − σκ1I) + μ1g1 + μ2g2 = r0,

g1 (Q − μ1I) + g0σκ1 = −r0,
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g2 (Q − μ2I) + g0 = 0, (27)

and
μ1y1 + μ2y2 + y0 (−I − σκ1I) = μ1r1 + μ2r2,

y1 (Q − μ1I) + y0σκ1 = −r1Λ,

y2 (Q − μ2I) + y0 = −r0 − r2Λ. (28)

From systems (27) and (28) we obtain systems:

g0

[−I − σκ1I + μ2 (μ2I − Q)−1 + μ1σκ1 (μ1I − Q)−1] = r0 − r0μ1 (μ1I − Q)−1 ,

g1 = (g0σκ1 + r0) (μ1I − Q)−1
,

g2 = g0 (μ2I − Q)−1
. (29)

y0

[
(−I − σκ1I) + μ1σκ1 (μ1I − Q)−1 + μ2 (μ2I − Q)−1

]

= μ1r1

[
I − Λ (μ1I − Q)−1

]
+ μ2

[
r2 − (r0 + r2Λ) (μ2I − Q)−1

]
,

y1 = (y0σκ1 + r1Λ) (μ1I − Q)−1
,

y2 = (y0 + r0 + r2Λ) (μ2I − Q)−1
. (30)

The determinants of the coefficient matrices systems (29) and (30) are zero.
Then we define an additional condition for this systems of equations

(g0 + g1 + g2)e = 0,

(y0 + y1 + y2)e = 0.

Thus, the solutions of inhomogeneous systems for g0, g1, g2, y0, y1, y2 are
uniquely determined. We obtain systems that coincide with the systems (18)
and (19). Substituting values g0, g1, g2, y0, y1, y2 into the scalar equation of
the system (26), we obtain

κ2 =
1
σ

· r0e + r1Λe + r2Λe + [y0 + y1 (Λ − μ1I) + y2 (Λ − μ2I)] e
[−g0 + g1 (μ1I − Λ) + g2 (μ2I − Λ)] e

.

This equality coincides with (17).

Second order asymptotic i.e. Theorem2, shows that the asymptotic proba-
bility distribution of the number i(t) of calls in a system is Gaussian with mean
asymptotic κ1α and dispersion κ2α.
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4 Asymptotic Analysis of MMPP/M/1/1 Retrial Queue
with Two-Way Communication Under the Low Rate
of Service Time of Outgoing Calls (μ2 → 0)

We will research system (5) by asymptotic analysis method under the low rate
of service time of outgoing calls.

Theorem 3. Suppose i(t) is a number of calls in an system of stationary
MMPP/M/1/1 retrial queue with two-way communication, then the following
equation is true

H(u) = lim
μ2→0

Eejwμ2i(t) =
(

1 − j
ρμ1

μ2
u

)−( α
σ(1−ρ)+1)

, (31)

where ρμ1 = rΛe and ρ is the trafic intensity.

Proof. We denote μ2 = ε, let’s substitute the following in the system (5)

u = εw, H0(u) = εF0(w, ε), Hk(u) = Fk(w, ε), k = 1, 2.

We will get the system

εF0(w, ε)(Q − Λ − αI) + jσ ∂F0(w,ε)
∂w + μ1e

−jεwF1(w, ε)
+ εe−jεwF2(w, ε) = 0,

F1(w, ε)
(
Q +

(
ejεw − 1

)
Λ − μ1I

)
+ F0(w, ε)εejεwΛ − jσ

∂F0(w, ε)
∂w

= 0,

F2(w, ε)
(
Q +

(
ejεw − 1

)
Λ − εI

)
+ αεejεwF0(w, ε) = 0,

F0(w, ε)ε
(
ejεwΛ + αejεwI

)
e + F1(w, ε)

(
ejεwΛ − μ1I

)
e

+F2(w, ε)
(
ejεwΛ − εI

)
e = 0.

(32)

Considering the limit as ε → 0 in the system (32) then we will get

jσF′
0(w) + μ1F1(w) = 0,

F1(w) (Q − μ1I) − jσF′
0(w) = 0,

F2(w)Q = 0,

F1(w) (Λ − μ1I) e + F2(w)Λe = 0. (33)

From the first and second equations we obtain F1(w)Q = 0, F2(w)Q = 0. We
seek the solution of the system (33) in the form Fk(w) = Φk(w)r, k = 1, 2.
Then, given the fact that rΛe = ρμ1 and

jσF′
0(w) + μ1Φ1(w)r = 0,

Φ1(w)r (Q − μ1I) − jσF′
0(w) = 0,
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Φ2(w)rQ = 0,

Φ1(w)r (Λ − μ1I) e + Φ2(w)rΛe = 0,

we have
jσF′

0(w) + μ1Φ1(w)r = 0,

Φ1(w) (ρ − 1) μ1 + Φ2(w)ρμ1 = 0.

We denote Φ1(w)+Φ2(w) = Φ(w), then Φ1(w) = ρΦ(w), Φ2(w) = (1 − ρ) Φ(w).
Furthermore,

F1(w) = ρΦ(w)r, F2(w) = (1 − ρ) Φ(w)r. (34)

Multiplying the third equation of system (32) by the unit vector e, considering
the limit as ε → 0, we have

(1 − ρ) Φ(w)r (jwΛ − I) e + αF0(w)e = 0.

We denote
F0(w)e = ϕ(w). (35)

Then
α

(1 − ρ) (1 − jwρμ1)
ϕ(w) = Φ(w). (36)

We consider the first equation of system (33), multiplying it by a unit vector e
and taking into account (34), (35) and (36), we obtain

jσϕ′(w) +
αμ1ρ

(1 − ρ) (1 − jwρμ1)
ϕ(w) = 0.

The solution of the differential equation has the form

ϕ(w) = C (1 − jwρμ1)
− α

σ(1−ρ) .

Then
Φ(w) = (1 − jwρμ1)

−( α
σ(1−ρ)+1) .

Making reverse substitutions, we obtain the characteristic function (31).

Theorem 3 shows that the asymptotic probability distribution of i(t) of calls
in the system under the low rate of service time of outgoing calls is Gamma.

5 Approximation Accuracy P (2)(i)

The accuracy of the approximation P (2)(i) is defined by using Kolmogorov range

Δ2 = max
0≤i≤N

∣∣∣∣
i∑

v=0

(
P (v) − P (2)(v)

)∣∣∣∣ , which represents the difference between dis-

tributions P (i) and P (2)(i), where P (i) is obtained by using numerical algorithm
for the MMPP/M/1/1 retrial queue and the approximation P (2)(i) is given by
Gaussian and Gamma approximations.
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Table 1. Kolmogorov range μ1 = 1, μ2 = 2, σ = 1

α = 350 α = 500 α = 600 α = 800 α = 1000

ρ = 0.2 0.054 0.045 0.041 0.036 0.032

ρ = 0.4 0.041 0.034 0.029 – –

Table 2. Kolmogorov range, μ1 = 1, α = 1, σ = 1

μ2 = 0.07 μ2 = 0.05 μ2 = 0.04 μ2 = 0.035

ρ = 0.5 0.05 0.036 0.029 0.026

ρ = 0.6 0.058 0.042 0.034 0.030

Tables 1 contains the values of Δ2 for various values of rate ρ and α for
MMPP/M/1/1 retrial queue with two-way communication. We fix μ1 = 1, μ2 =
2 and σ = 1 in Table 1. Table 2 contains the values of Δ2 for various values of
rate ρ and μ2 for MMPP/M/1/1 retrial queue with two-way communication.
We fix μ1 = 1, α = 1 and σ = 1 in Table 2. We observe in Table 1 that the
approximation accuracy increases with the increase in α and in Table 2 that the
approximation accuracy increases with the decrease in μ2.

6 Conclusions

In this paper, we have considered retrial queue with two-way communication
with MMPP input. We have found the first and the second order asymptotics
of the number of calls in the system under the condition of the high rate of
making outgoing calls. Based on the obtained asymptotics we have built the
Gaussian approximation of the probability distribution of the number of calls in
the system. Our numerical results have revealed that the accuracy of Gaussian
approximation increases while increasing α. We have found the Gamma approx-
imation of the number of calls in the system under the condition of the low
service rate of outgoing calls. Our numerical results have revealed that the accu-
racy of Gamma approximation increases while decreasing μ2. In future we plan
to consider this retrial queueing system in other asymptotic conditions.
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