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Abstract. Tandem queueing systems often arise in wireless networks
modeling. Queueing models are very suitable for network performance
evaluation but the system complexity exponential growth (or state space
explosion) could make the analysis barely feasible. The paper presents
a comparative study of various methods of a state space reduction for
markovian arrival processes (MAP) and phase-type distributions (PH)
applied to tandem queueing systems. The applied methods include non-
linear optimization, EM-algorithm and linear minimization. While most
of the described algorithms are well-studied, a number of issues arises
when applying them to a tandem system of a real wireless network. Par-
ticularly, it is shown that while all the algorithms could be applied to
tandems with a small number of queues, bigger tandems require addi-
tional effort to get the appropriable results. Nevertheless, the results
presented show that the departure MAPs reduction may help to solve
the state space explosion problem.

Keywords: Queueing systems · Random process fitting · Markov chain
space reduction · MAP · PH · Wireless networks modeling

1 Introduction

Wireless backbone networks play essential role in modern communication sys-
tems. One of the crucial applications of wireless networks are backhauls along
the long objects like roads, railways or pipes. Such networks could be used for
data transmission from surveillance cameras or sensors to data centers, as well as
for providing Internet connection. IEEE 802.11 is a frequently used technology
for such networks implementation due to a reasonable data transfer rate and
a wide range of the available inexpensive equipment. While IEEE 802.11-based
networks have many advantages, the performance of multi-hop networks could
be insufficient, thus performance estimation and analysis are required.

A prospective approach for wireless networks performance analysis involves
queueing systems with correlated arrivals. Such models become especially attrac-
tive when Markov random processes are used for both arrivals and service time
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distribution modeling. One of the perspective models are tandem queueing net-
works MAP/PH/1/N → · · · → •/PH/1/N with cross-traffic [20]. In this queue-
ing system data transmission time is modelled with phase-type (PH) distribu-
tions and user traffic is modelled with Markovian arrival processes (MAP) [15].
Representing the user data with Markovian arrival processes allows to take into
account correlated nature of real network traffic [5,13] and PH-distributions
provide sufficient approximation for a complex random process describing data
transmission. The application of the tandem queueing systems described above
for networks with linear topology was studied in general in the previous work [20].

The tandem queueing system analysis is affected by the exponential state
space growth with the number of hops increasing. State space reduction tech-
niques could be applied to solve this problem but their usage may lead to the
precision loss and needs to be analysed carefully. Another issue to solve is to
find a PH-distribution approximating the specific medium access scheme pre-
cisely enough.

While a plenty of MAP fitting approaches exists, their application to the
wireless networks models analysis faces several difficulties. The data transmis-
sion over wireless channels involves a number of constant intervals for channel
listening or scheduling which makes service time distribution more deterministic
and causes additional correlation in departure processes. Another issue relates
to very small values of distributions moments and large values of MAP generator
entries (to be noted, the generator itself may contain hundreds or thousands of
states), leading to the relative errors growth when applying the fitting algorithms
to real data and it further requires an additional effort to improve accuracy. Last
but not least is the performance issue since some algorithms could take hours of
processor time to converge.

The paper presents a comparative study of various methods of state space
reduction for markovian arrival processes and phase-type distributions applied
to tandem queueing systems. We study the application of different methods and
compare their performance and accuracy. We also provide the results of applying
the state reduction techniques to a wireless tandem network containing up to
ten stations and show that the departure process state space reduction methods
could be applied for a real network analysis.

2 Tandem Queueing System

Let us consider MAP/PH/1/N → · · · → •/PH/1/N system as a wireless net-
work model. This system consists of a chain of servers with PH-distributed ser-
vice time and a buffer size N . Each server receives the output flow from a previous
station and a cross-traffic modelling the data flow from the external users as a
Markovian arrival process (MAP), see Fig. 1.

A Markovian arrival process is defined by an irreducible continuous-time
Markov chain νt, t ≥ 0 with a finite state space {0, . . . , W}. The process νt, t ≥ 0
is in state ν during exponentially distributed time with parameter λν , ν ∈ 0,W .
After the time expires the chain jumps from state ν to state ν̃ with probability
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Fig. 1. A tandem network model

p0(ν, ν̃) if the transmission is unobserved and p1(ν, ν̃) otherwise. An observed
transmission generates a message. It is also assumed that the process can not
stay in the same state ν̃ = ν without message generation. Matrices D0,D1 are
used to define the MAP:

(D0)ν,ν′ =

{
−λν , if ν = ν′

λνp0(ν, ν′), otherwise

(D1)ν,ν′ = λνp1(ν, ν′).

The matrix D = D0 + D1 defines an infinitesimal generator of the random
process νt, t ≥ 0. Its stationary probability vector θ is obtained from the system

θD = 0, θ1 = 1,

where 0 is a row vector of zeros and 1 is a column vector of ones. The steady-
state probability vector π of a discrete time Markov chain embedded at arrival
instants with a generator P = (−D0)−1D1 can be obtained as the solution of
the following linear system:

πP = π, π1 = 1.

The average arrival intensity of a MAP is λ = 1/π(−D0)−11. The k-th
moment and lag-k correlation can be expressed as

mk = k!π(−D0)−k1, k ≥ 1, (1)

lk =
λ2π(−D0)−1P k(−D0)−11 − 1

λ2π(−D0)−21 − 1
, k ≥ 1. (2)

A phase-type (PH) distribution is defined as a hitting time of the absorbing
state in a continuous-time Markov chain with a single absorbing state. Formally,
a random variable X is said to have PH-distribution X ∼ PH(S, τ ) if τ ∈
R

V is a probability distribution and S ∈ R
V ×V is a subinfinitesimal matrix

defining initial states probabilities and transition rates between non-absorbing
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states respectively. The background Markov chain has the following generator
matrix: (

S −S1
0 1

)

The k-th moment E[Xk], X ∼ PH(S, τ ) can be found via the expression

mk = k! τ (−S)−k1, k ≥ 1. (3)

Markovian arrival processes and MAP/PH/1/N queues satisfy the following
properties [20–22]:

1. The result of sifting a MAP with constant probability is also a MAP;
2. The composition of a finite number of MAPs is a MAP;
3. The departure process of MAP/PH/1/N system is also a MAP.

Note that MAP/PH/1/N queue can lose packets due to the queue overflow
and the flow of lost packets is also a MAP. Taking into account these properties
it can be shown that a departure process form the first server is a MAP and
consequently the arrival processes to all succeeding servers are also MAPs as
well as the departure processes. Thus an iterative procedure can be built to
compute parameters of a queueing network [20].

However a state space of departure process is expressed as a cartesian prod-
uct of the state spaces of MAP-input, PH-distribution and the queue length (the
number of messages being queued and served). This fact results into an expo-
nential state space growth also referred to as a state space explosion, making
a precise analysis barely feasible for an arbitrary number of servers. To solve
the state space explosion problem, the departure process of each queue can be
approximated with a lower order MAP. Alternative approach is to approximate
a process arriving at the queue, i.e. after the composition with cross-traffic.

Another problem considered is to find a PH-distribution adequately describ-
ing the medium access scheme operation. This problem is closely related to MAP
fitting and will also be discussed further.

3 Related Work

There is a plenty of works describing various MAP and PH fitting. These stud-
ies could be divided into three areas. The first direction is the reconstruction
of MAP and PH-distributions based on the known moments and lag-k corre-
lation coefficients [7]. The second direction is to improve distributions already
constructed and to choose the parameters closest (in the sense of some criterion)
to the parameters of the statistical series [16]. The third one is to find MAPs
and PH distributions maximizing the likelihood function based on the statistical
data. These approaches are often based on the expectation-maximization (EM)
algorithms [11,17,19]. We refer a reader to [2,16] for the state-of-art and open
problems in this area.
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Bodrog et al. [3] describe a method to find second-order matrices for MAP
and phase distributions. To describe MAP with a large number of states and
a specified correlation coefficient, it was suggested in [7] to build a phase-type
distribution with a given number of states first, and then use it to construct
MAP matrices. The inter-arrival time distribution is fitted by a PH distrib-
ution where the PH generator determines matrix D0 of MAP and the initial
probability vector π determines the steady state probability vector of the MAP
embedded process. On the next stage the matrix D1 is constructed by approxi-
mating the lag-k correlation values. Note that the system for matrix D1 contains
2n + 1 equations for n2 unknowns leading to a linearly constrained non-linear
optimization problem. The matching of order 3 and higher phase distributions
was considered in [1,8,9].

Bobbio et al. [1] proposes a method to compose minimal order phase type
distribution with first three moments and present a simple transformation from
APH(n-1) (acyclic phase type distribution of order n − 1) to APH(n) with
an additional phase. The authors also evaluate the bounds for the first three
moments of APH(n).

Telek and Horvath [18] present the minimal representations of PH and MAP
(Markovian, Jordan, Laplace, moments and MRP representations) and trans-
formations between them. They construct an algorithm to optimize D0 and D1

matrices of MAP by means of a transformation matrix B such that matrices
B−1D0B and B−1D1B minimize a goal function (or improve its value). The
method allows improving any MAP fitted by other methods.

Casale et al. [4] propose a MAP fitting algorithm based on the first three
moments and high order autocorrelations. They define a process composition
method called a Kronecker Product Composition (KPC). Given J MAPs with
matrices D

(j)
0 and D

(j)
1 , j = 1, J , the composed MAP is defined as

D0 = (−1)J−1D
(1)
0 ⊗ · · · ⊗ D

(J)
0 , D1 = D

(1)
1 ⊗ · · · ⊗ D

(J)
1 (4)

and can be constructed of any order to fit data traces or reduce a state space of
an arbitrary MAP. The algorithm consists of three steps. The first step fits the
sample squared coefficient of variation and correlation coefficient to minimize the
distance between sample lag-k correlations and numerical ones. On the second
step, the first and third moments for each MAP D

(j)
0 and D

(j)
1 , j = 1, J , are

determined from an acceptable region and further optimized to minimize the
distance between the sample joint moments and their estimated values. Based
on the optimal values of the first three moments and the correlation coefficients,
we can construct J MAPs D

(j)
0 and D

(j)
1 , j = 1, J (e.g., of the second order) and

compose the final form of matrices (4).
In this paper we use three different approaches to reduce the tandem depar-

ture processes state spaces: MAP fitting as a solution of nonlinear optimization
problem, EM-based approach [1,8] and a method of building a phase-type dis-
tribution with a given number of states and construction of a D1 matrix for
fitting lag-k correlation coefficients [7]. We also use G-FIT approach based on
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EM procedure [19] to fit the PH distributions. These methods will be described
in more details in the following sections.

4 MAP and PH Fitting

The fitting methods allow to construct a markovian arrival process or a phase-
type distribution using a given trace (a set of samples) or a set of estimated
metrics including moments and lag-k autocorrelation coefficients. In the tandem
queueing system described above the fitting methods allow to approximate an
operation of a specific communication protocol as well as to reduce the size of
the departure processes (the latter case will be discussed in more details in the
following section). Here we describe several fitting methods as they are; we sup-
pose the data trace or estimated moments and lag-k autocorrelation coefficients
values to be given as an input. The described methods include the expectation
maximization (EM) algorithm [11,17,19], search for the MAP or PH as a solu-
tion of the nonlinear optimization problem constrained by the given moments
and lag-k values, and a sequential independent fitting of the PH distribution
using the trace or estimated moments values and MAP matrix D1 using lag-k
values constraints [7].

4.1 Fitting by Trace

The paper [19] describes a PH distribution fitting technique based on the EM
algorithm (the authors call this algorithm G-FIT). MAP fitting using the EM
algorithm is described in the papers [11,17]. While both algorithms will be used
in numerical experiments, we describe briefly only G-FIT algorithm here due to
the paper space limitations. The details of the algorithms could be found in the
papers cited above.

G-FIT algorithm attempts to find a PH distribution fitting the given trace
as a Hyper-Erlang distribution. Let X be a Hyper-Erlang random variable
with M mutually independent Erlang distributions weighted with probabili-
ties α = (α1, . . . , αM ), m-th chain containing rm phases jointly forms a vector
r = (r1, . . . , rM ) and its intensities describe a vector λ = (λ1, . . . , λM ). Then
the pdf of X is fX(x) =

∑M
m=1 αm

(λmx)rm−1

(rm−1)! λme−λmx.
The parameters (r,α,λ) are chosen while fitting. Consider EM algorithm

to maximize a log-likelihood expression. The authors first apply it for a general
set of independents distributions with density functions pm such that p(x|Θ) =∑M

m=1 αmpm(x|θm) where Θ = (α,θ) and θi is a parameter (or vector) of pm.
Then the authors suggest considering an unobserved random variable Y hav-

ing values in {1, . . . , M} and specifying which component is used to generate a
specific item xk of the trace in order to simplify the a log-likelihood calculation.
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Applying this idea the expected value of complete log-likelihood is

Q(Θ, Θ̂) =
M∑

m=1

K∑
k=1

log(αm)q(m|xk, Θ̂)

+
M∑

m=1

K∑
k=1

log(pm(xk|θm))q(m|xk, Θ̂)
(5)

where Θ̂ is an initially chosen parameter set, required to compute a conditional
pdf of Y :

q(yk|xk, Θ̂) =
α̂yk

pyk
(xk|θ̂yk

)
M∑

m=1
α̂mpm(xk|θ̂m)

. (6)

Computing expression (5) for some vector Θ̂ is a E-step of EM algorithm. For
performing M-step (maximization), parameters Θ = (α,θ) maximizing Q(Θ, Θ̂)
should be found. α can be found by applying Lagrange multipliers to (5); to find
θ a specific pdf required, so let θ = λ for Hyper-Erlang. Then

αm =
1
K

K∑
k=1

q(m|xk, Θ̂), λm =
rm · q(m|xk, Θ̂)

K∑
k=1

q(m|xk, Θ̂) · xk

. (7)

4.2 Fitting as Optimization

The MAP or PH distribution fitting may be described as a solution of the opti-
mization problem constrained by the values of the moments and lag-k autocor-
relation coefficient values. Let mKm

be the vector of the first Km moments of
MAP, lKl

be the vector of the first Kl lags given in (1) and (2) correspondingly;
μ and ν be the vectors of moments and lags of a random process to fit corre-
spondingly. Using this notation the problem of MAP fitting can be formulated
via solution of a nonlinear algebraic system{

mKm
(D0,D1) = μ,

lKl
(D0,D1) = ν.

(8)

System (8) should be solved for D0 and D1 such that D = D0 + D1 is
an infinitesimal generator and D0 is a subgenerator. By these restrictions, the
system may have no solution for some pairs (μ,ν) and the order N thus a MAP
with such lags and moments does not exist. It should be noticed that there are
no known closed form margins for the moments and lags values for MAPs and
PH distributions of an arbitrary order making the problem much harder.

We suggest that approximate solution of the system can be brought to an
optimization problem as follows. Define a loss function L (·) = (| · |)2 and a loss
functional

Q(D0,D1) = L (mKm
(D0,D1) − μ) + L (lKl

(D0,D1) − ν). (9)
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Then a proper MAP is found as a solution of (D0,D1) = arg min
D0,D1

Q(D0,D1).

The fitting procedure is iterative and start with the lower possible N . The tol-
erance ε should be chosen such that min Q(D0,D1) < ε holds. If for given N
there is no solution (D0,D1) the order N should be incremented and the new
fitting procedure starts until the criterion is satisfied or the maximum number of
iteration is exhausted. Otherwise, the pair (D0,D1) with the lower error minQ
is supposed to be a solution. Also another loss function L can be considered.

For PH distribution the optimization problem can be simplified as it has
zero lags and less difficulty in moments computation. The loss functional for PH
fitting is as follows:

Q(τ , S) = L (mKm
(τ , S) − μ).

The problem described is generally nonconvex which leads to local optima
solutions and require additional effort to randomize the initial vectors and look
for the best solution.

4.3 MAP Fitting by Given PH

The MAP moments depend on the matrix D0 and a steady state probability
distribution of the embedded discrete process which allows to fit them indepen-
dently of the lag-k autocorrelation values; the lag-k values could be used to find
the appropriate matrix D1 [10]. Suppose we have a PH(τ , S) distribution. It is
assumed that the MAP(D0,D1) has D0 = S and π = τ where π is a steady
state probability distribution of the embedded Markov chain with the transi-
tion matrix P = (−D0)−1D1. Combining the restrictions for D1 to be held and
considering the autocorrelation ccorr the authors [10] obtained a linear system:

D11 = −D01, π(−D0)−1D1 = π, δD1f = υ

where the values δ, f and υ can be derived from the lag-1 expression (2). Con-
sidering a vector x = [d1,d2, . . . ,dM ]T where di is the i-th column vector of D1,
the authors has transformed these three matrix equations into one that have the
following form: ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

I I . . . I
γ

γ
. . .

γ
f1δ f2δ . . . fMδ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

· x =

⎡
⎢⎢⎢⎢⎣
g

π

υ

⎤
⎥⎥⎥⎥⎦ . (10)

This linear equations should be solved for non-zero elements of x. To find
the higher-order lags the authors suggest to use an optimization procedure.
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5 State Reduction

While the process fitting is the only approach for obtaining PH distributions of
the service time when only the trace is known, the departure MAP processes
state space could be reduce by other methods. Generally any reduction method
supposes the given matrices D0 and D1 of a MAP to decrease the order. For
PH-distribution the problem is set in the same way taking into account a vector
π and a matrix S instead of D0 and D1.

To apply the fitting methods described in the previous section to MAP state
space reduction, the moments and lags of the source MAP should be calculated. If
the fitting method requires a trace (e.g. EM algorithm), the source MAP should
be randomized to get a trace. It should be noticed that for the MAPs with a
huge number of states the consistent trace may contain over a million samples.
To simplify the problem and avoid the randomization, two additional techniques
of state space reduction are described below including the nonlinear optimization
problem solving constrained by the distance between the cumulative distribution
functions and cutting the tail states of the QBD (quasi-death-and-birth) process.

5.1 Reduction as Optimization

The state reduction can be performed by solving an optimization problem. For
that aim let us consider the difference of the stationary cumulative distribution
function of the given MAP and some lower order MAP

ΔF (t) = F (t) − F ′(t) = π′eD′
0t1′ − πeD0t1.

Taking into account that eD0t ≈ I+
∑K

k=1
1
k!D

k
0 tk for some K and π1 = π′1′ = 1

this difference takes a form:

ΔF (t) =
K∑

k=1

tk

k!
(
π′(D′

0)
k1′ − πDk

01
)

=
K∑

k=1

w(k, t)
(
π′(D′

0)
k1′ − πDk

01
)
, (11)

where w(k, a) = ak/k! is a weight for the k-th power of D0. Multiple ways to
define the weights exist; here we define the weights as Tk+1

(k+1)! applying a = T

that arises out of integrating (11) in a range [0, T ]

ΔF =

T∫
0

ΔF (t)dt =
K∑

k=1

⎡
⎣ T∫

0

tk

k!
dt

⎤
⎦ (

π′(D′
0)

k1′ − πDk
01

)

Taking D′
0 = S,D′

1 = τ in case of PH and D0,D1 in case of MAP reduction,
the loss functional can be expressed as

Q(D′
0,D

′
1) = L (ΔF (D′

0,D
′
1)). (12)
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5.2 State Truncation

This method is applied to servers without the memory, i.e. MAP/PH/1 systems
when the utilization coefficient is sufficiently small. A system with a limited
memory could be approximated if it has a very large capacity. The authors of [6]
consider the departure MAP as a pair of block matrices and suggest to trunk the
tail blocks stating with some level N +1 by merging the stationary probabilities
into N -th state: π+

N =
∑∞

i=N+1 πi and considering matrices:

Â0 = A0 + A1,

Â2 = diag(πN )diag−1(πN + π+
N )A2,

Ǎ2 = diag(π+
N )diag−1(πN + π+

N )A2

to describe the reduced matrices of the departure MAP

D0 =

⎡
⎢⎢⎢⎢⎢⎣

B1 B0

A1 A0

. . . . . .
A1 A0

Â0

⎤
⎥⎥⎥⎥⎥⎦ , D1 =

⎡
⎢⎢⎢⎢⎢⎣

O
B2

A2

. . .
Â2 Ǎ2

⎤
⎥⎥⎥⎥⎥⎦ . (13)

The matrices Ai, Bi for i = 0, 1, 2 describing the blocks of the initial departure
MAP and their definition are provided in [6]. This method allows to restrict the
state space growth by decreasing the effective queue length. Unfortunately, the
state space continues exponential increasing along with the number of queues in
the tandem since the size of the service time PH-distribution is greater than 1
which makes the method not applicable to analyse a tandem queuing systems
with an arbitrary number of queues.

6 Experimental Results

In the numerical experiments we used three different methods of MAP fitting:

1. Searching for a MAP (defined by the matrices D0 and D1) as a solution of
an optimization problem constrained by the values of the first moments and
lags (this method is referred to as OPT below).

2. MAP fitting using the EM algorithm [11];
3. Successive independent fitting of D0 matrix as a PH distribution using the

moments or a trace provided and looking for D1 as a solution of the opti-
mization problem constrained by the lag-k correlation coefficients (INDI in
the following text). The algorithm was described in [7].

Queueing system analysis framework [14] was developed in the Python 3
language using NumPy/SciPy packages. We used EM algorithms implementa-
tions from a BuTools [12] package. Simulation models were developed using
OMNeT++ network simulator. All the experiments ran on a generic laptop
with i7 processor and 16 GB of RAM.
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While the OPT method shown good results, it often fell into a local optima
and required initial solutions randomization to converge good. The key problem
is a lack of easy checkable conditions on the solution existence and moments and
lags values, so it was often hard or impossible to find a solution of a given order
under the given constraints while the attempt to find it takes significant time. It
should be noted that algorithm converged rapidly for small MAPs and PHs with
up to 8 states but required lots of time when called for bigger orders (5 min and
more). It was also noticed that order increasing didn’t provide better results in
many cases so we decided to use the algorithm with small orders. The solution
error was also reduced by normalizing the moments and the D0 and D1 matrices
consequently.

The EM algorithm provided good results but required too much time to
converge. Typically, it takes up to 20 min to fit a given trace with 40000 samples
using a MAP with 12 states. While it is possible to speed up the algorithm
as described in [19], it didn’t completely solve the problem and the algorithm
still required lots of processor resources. Since the algorithm had to be applied
several times, we decided to limit the search with MAPs containing up to four
states. The similar problem arose during G-FIT execution while it still allowed
to fit PH distributions with up to 10 states in a reasonable time. Due to the
order limitation, the EM algorithm for MAP fitting provided the worst results
considering moments and lags matching.

The third (INDI) approach was implemented as described in the paper [7].
We tried both nonlinear optimization and G-FIT [19] algorithm for fitting the
PH distribution for D0 matrix construction, and G-FIT provided much better
overall results. To keep the problem of D1 construction linear, we limited the
constraints with lag-1 correlation. In this case the problem could be solved as a
linear minimization problem ‖Ax − b‖2 → min. The key problem was that the
existence of D1 matrix was dependent on the particular D0 and it sometimes
required several D0 fitting iterations to find an appropriate matrix to make the
D1 construction with a reasonable error possible.

First of all, the fitting algorithms were applied to fit the PH-distribution
approximating data transmission intervals. To simplify the analysis, a tandem
consisting of two stations was considered. The wireless channel bitrate was 5
mbps (e.g. a slow sensor network link) and an arrival traffic bitrate was 2.8 mbps.
The arrival traffic was described with a MAP approximating a real network trace
LBL-TCP-3 described in [10]:

D0 =

⎡
⎢⎢⎣

−508.11 0 0 0
0 −526.82 0 0
0 0 −112.88 0
0 0 0 −292.87

⎤
⎥⎥⎦

D1 =

⎡
⎢⎢⎣

281.9 226.06 0 0.15872
526.66 0.024505 0.13422

0 0 82.094 30.79
0.056728 0 38.799 254.01

⎤
⎥⎥⎦
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Fig. 2. Service time fitting. Lines labeled as ‘opt-n’ show solutions of a nonlinear opti-
mization problem and ‘gfit-n’ show G-FIT [19] where ‘n’ is the order of PH

Table 1. Moments and lags of the approximated departure processes from the first
station.

Algorithm Order M1 M2 M3 Std. Lag-1 Lag-2

Original MAP 192 0.00453 0.000048 1.032e-06 7.329e-10 0.176 0.126

Nonlinear opt. 6 0.00453 0.000048 1.032e-06 7.328e-10 0.176 0.126

EM 3 0.004371 0.00005 1.248e-06 9.566e-10 0.109 0.048

G-FIT and linear opt. 8 0.00428 0.000038 6.079e-07 3.982e-10 0.176 0.075

The packets sizes were assumed to have a normal distribution truncated to
positive values with an average value 12 kbit and standard deviation 3 kbit.
We applied G-FIT algorithm [19] and nonlinear optimization approach with a
number of moments equations equal to 3 for PH orders 4, 6 and 8. The results are
shown on Fig. 2 (while more lags could allow to fit the service time distribution
better, it was crucial to use a small distribution due to the state space growth
appearing on the next stations). It should be also noticed that applying G-FIT
for a greater number of states takes a rather long time due to combinatorial
complexity of inspecting various structures of the Hyper-Erlang distributions.

The PH distribution obtained with G-FIT containing 8 states was used for
the later computations. This distribution matched the mean value and had a
32% error in standard deviation. It was used to build the departure process
of the first station having capacity 5, which was approximated with the EM-
algorithm [11], nonlinear optimization with moments and lags constraints and
the approach of independent construction of a D0 matrix as a PH-distribution
and D1 matrix with linear constraints [7]. In the latter approach only the lag-1
correlation coefficient was constrained. The results are shown in Table 1. The last
row describes a separate D0 fitting with G-FIT and D1 as a solution of linear
minimization problem [7]. It should be noticed that EM-algorithm was used for
a small MAP order equal to 3, its stop condition was reduced to 10−3 and the
maximum number of iterations was 100. This could be the reason of the worst
results shown.

The system size distribution of the second station was also investigated. Since
the arrival traffic required more than a half of the modeled channel bandwidth,
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Fig. 3. Number of packets probability distributions of the second station with and
without the cross-traffic and various fitting algorithms.eps

Fig. 4. End-to-end delays and busy ratios computed for a wireless network tandem
model.

adding the cross-traffic caused a system overflow. All the described algorithms
allowed to get sufficient approximation of the system states distributions as
shown on Fig. 3.

Finally, the OPT approach was applied to fit the departure MAP processes in
the model of a real wireless network containing 10 nodes and operating under the
IEEE 802.11 standard. To simplify the simulation a simple DCF channel access
scheme was considered and the wireless channels provided 54 mbps bitrate. Each
arrival process was described with the same MAP as above. The cross-traffic
arrived at each wireless station.

The measured transmission time was fitted by the first three moments with
0.05 relative error with a PH-distribution PH(S, τ):

S =

⎡
⎢⎢⎣

−6267.56 1412.75 0.001814 943.60
1008.28 −3337.85 0.000100 258.21
0.002726 0.0000027 −107.766 2.744
1565.226 1563.65 3.9327 −6778.49

⎤
⎥⎥⎦

τ =
[
0.038351 0.961517 0 0.000132

]
The measured end-to-end delay and busy ratios are shown on Fig. 4. The busy

ratios were approximated well but end-to-end delays approximated values were
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not precise. This problem could be solved with other approximation methods or
fitting PH distributions and MAP arrivals with higher order processes.

7 Conclusion and Future Work

It was shown that departure MAP state space reduction provided sufficient pre-
cision while allowing to analyze the tandem queueing systems of an arbitrary
length. However the fitting algorithms performance along with time limitations
may lead to accuracy degradation. The nonconvex nature of the problems arising
leads to local optima convergence and impossibility to find the optimal solution
in many cases. To face these issues, a randomization of initial parameters should
be applied to find multiple optima and more efficient algorithms along with the
existing algorithms optimization should be explored. These investigations are
the focus of our future work.

The combined PH fitting using G-FIT algorithm with D1 construction using
autocorrelation coefficient constraint provided a good accuracy with sufficient
performance and looks promising. The best results were retrieved with the solu-
tion of the nonlinear optimization problem constrained by the moments and
lag-k autocorrelation coefficient constraints while the EM algorithm application
to MAP fitting was limited by the performance issues. While several approaches
were studied in this paper, there is still a plenty of methods to be examined,
including the KPC approach. These methods would be applied and optimized
in the future works.

Finally, it should be noticed that the lag-k autocorrelation coefficients of the
departure processes grow along with the number of stations in the tandem net-
work. While the typical moments values allowed to fit the service time distribution
with a good precision, it was often a problem to find a valid MAP process with
the precise autocorrelation coefficients values. The solution may be found using
the processes with the greater number of states, but this requires more intelligent
methods of predicting the structure of the approximating MAPs due to perfor-
mance limitations. These methods will also be studied in the future works.
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