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Abstract. A single server retrial queueing model, in which customers
arrive according to a batch Markovian arrival process (BMAP), is consid-
ered. An arriving batch, finding server busy, enters an orbit. Otherwise
one customer from the arriving batch enters for service immediately while
the rest join the orbit. The customers from the orbit try to reach the
server subsequently and the inter-retrial times are exponentially distrib-
uted. Additionally, at each service completion epoch, two different search
mechanisms are switched-on. Thus, when the server is idle, a competition
takes place between primary customers, the customers coming by retrial
and the two types of searches. It is assumed that if the type II search
reaches the service facility ahead of the rest, all customers in the orbit
are taken for service simultaneously, while in the other two cases, only
a single customer is qualified to enter the service. We assume that the
service times of the four types of customers namely, primary, repeated
and those by the two types of searches are arbitrarily distributed with
different distributions. Steady state analysis of the model is performed.

Keywords: Batch Markovian arrival process · Orbit · Retrials · Cus-
tomers search · Group service

1 Intoduction

Retrial queues represent an important, challenging and complicated for math-
ematical analysis class of queueing systems. A retrial queueing system is char-
acterised by the fact that a customer arriving when all servers accessible for
him/her are busy, leaves the service area and joins a group of unsatisfied
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customers called orbit, but after a random amount of time he/she returns
and repeats his/her demand for service. Retrial queueing systems arise fre-
quently in the stochastic modelling of telecommunications, computer systems,
contact centers, etc. Review of retrial queueing literature could be found in
[1,2,24,25,27,32]. In the retrial set up, each service is preceded and followed by
the server(s) idle time because of the ignorance of the status of the server(s) and
orbital customers by each other.

We are interested in designing retrial queueing models that reduce the
server(s) idle time. One way to achieve this is by the introduction of search
of orbital customers immediately after a service completion. Search for orbital
customers was introduced in [3] and the paper [20] generalizes the result in [3] by
introducing a search time, two types of services to customers (primary/orbital)
and by assuming the arrival process to be the batch Markovian process. The
queueing model with customers search in the buffer (not in the orbit) was con-
sidered in [31] where after each service completion the server starts searching
of a customer in the buffer and the rate of the exponentially distributed search
time is proportional to the number of customers presenting in the system.

This paper generalizes the model discussed in [20] by introducing two types of
search and different types of services to primary/orbital customers (retrial/type
I/type II searches) retaining the assumption that the arrival process is batch
Markovian process (BMAP ). A particular case of the proposed model with
batch Poisson arrival process has been considered in [11]. A retrial model with
two types of search, in which the number of customers taken for service depends
on the orbit size, and with the batch Poisson arrival process is considered in
[12]. However, namely BMAP suits well for modelling the correlated bursty
traffic in the modern communication networks. Approximation of such flows in
terms of the stationary Poisson process can cause huge errors in the evaluation
of performance characteristics of the networks. Therefore, analysis of queueing
models with the BMAP is of a great importance. Chakravarthy S.R. in [7]
provides a review of queueing models with the batch Markovian arrivals. Retrial
models with BMAP have been investigated, e.g., in the papers [4,8,9,16–18,26].

The present model is motivated, e.g. by the following practical situation: In
Airport/Bus stations/Railway stations passengers individually get into transport
vehicles to destinations. Also it is common that travel agencies arrange for bulk
transport for all the customers. Broadcasting of information simultaneously to
many customers is possible in various wireless communication networks. More
motivations of group service can be found e.g. in [5,6,8,23].

2 The Mathematical Model

We consider a single server queueing system in which the arrivals occur according
to a BMAP . The BMAP , a special class of tractable Markov renewal process,
is a rich class of point processes that includes many well known processes such as
Poisson, PH-renewal processes and Markov-modulated Poisson process. One of
the most significant features of the BMAP is the underlying Markovian structure
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and it fits ideally in the context of matrix-analytic solutions to stochastic models.
As is well known, Poisson processes are the simplest and most tractable ones used
extensively in stochastic modelling. The idea of the BMAP is to significantly
generalize the Poisson processes and still keep the tractability for modelling
purposes.

The BMAP is described as follows. Let the underlying Markov chain
{νt, t ≥ 0} be irreducible and let Q∗ = (qij) be the generator of this Markov
chain with state space {1, 2, · · · ,m}. At the end of a sojourn time in state i,
that is exponentially distributed with parameter λi ≥ −qii, one of the follow-
ing two events could occur: with probability Pij(l), 1 ≤ i, j ≤ m, the transition
corresponds to an arrival of group size l ≥ 1, and the underlying Markov chain
{νt, t ≥ 0} is in state j; with probability Pij(0), the transition corresponds to no
arrival and the state of the process {νt, t ≥ 0} is j, j �= i. Note that the Markov
chain {νt, t ≥ 0} can go from state i to state i only through an arrival. For l ≥ 0,
define matrices Dl = (dij(l)) such that dii(0) = −λi, 1 ≤ i ≤ m ; dij(0) =
λiPij(0), for j �= i, 1 ≤ i, j ≤ m, and dij(l) = λiPij(l). Assuming D0 to be
a non-singular matrix, the interarrival times will be finite with probability one
and the arrival process does not terminate. Hence, we see that D0 is a stable

matrix. The generator Q∗ is then given by Q∗ =
∞∑

l=0

Dl. Let D(z) be the matrix

generating function of Dl. That is, D(z) =
∞∑

l=0

zlDl.

Thus, the BMAP is described by the matrices {Dl} with D0 governing the
transitions corresponding to no arrival and Dl governing those corresponding
to arrivals of group size l, l ≥ 1. The point process described by the BMAP
is a special class of semi-Markov processes with transition probability matrix
given by

x∫

0

eD0tdtDl =
[
I − eD0x

]
(−D0)−1Dl, l ≥ 1.

For use in the sequel, let e, 0 and I denote, respectively, the (column) vector
of dimension m consisting of 1’s, the (row) vector of dimension m consisting of
0’s, and the identity matrix of order m.

Let θ be the stationary probability vector of the associated Markov process
with generator Q∗. That is, θ is the unique (positive) probability vector satisfying
θQ∗ = 0, θe = 1. The constant

λ = θ

∞∑

k=1

kDke,

referred to as the fundamental rate gives the expected number of arrivals per unit
of time in the stationary version of the BMAP . For further details on BMAP,
its properties, particular cases and usefulness in stochastic modelling, we refer
to [7,29].
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The service mechanism of the present system is described in the following
manner. The primary unit who meets the server idle is served with service times
having the distribution function B0(t), while the rest join the orbit. Each unit in
the arriving batch finding the server busy, enters the orbit and retry to access the
server with the time between two successive retrials, exponentially distributed
having intensity αi, i ≥ 0, when the number of customers in the orbit is i.
Additionally, at a service completion epoch, two different search mechanism
are switched on. Thus, if the server is idle, a competition takes place among
primary customer, retrial customers and those resulting in the two types of
searches to access the server. If a retrial customer reaches the idle server first, the
customer entering the service is served with service times having the distribution
function B3(t) while if the type I search turned out to be successful, the selected
customer is served according to the distribution function B1(t). If type II search
succeeded, all units present in the orbit are taken for service simultaneously and
the service time of the whole group follows distribution function B2(t). Denote by

βi(s) =
∞∫
0

e−stdBi(t), Re s > 0, the Laplace-Stieltjes transform (LST) and b
(i)
r

(assumed to be finite), the rth moment associated with the distribution function

Bi(t), i = 0, 1, 2, 3 : b
(i)
r =

∞∫
0

trdBi(t). The duration of the type I (type II) search

is characterized by the distribution function H1(t)(H2(t)) with LST h1(s)(h2(s))
and finite expectations h1 and h2. Distribution functions Hl(t), l = 1, 2, may
be arbitrary, however, we assume that duration of the searches cannot be both
constant. Otherwise, the search with larger value of hl, l = 1, 2, will never succeed
to be finished earlier that the another search and the search with larger duration
has to be excluded from consideration.

The presence of the additional search mechanism allows to minimize the idle
time of the server. If holding cost (charge paid due to the customers stay in the
system) and costs associated with the different types of the search and service of
customers are introduced, optimal tuning of the parameters of search mechanism
will be possible based on the analysis results of which are presented below.

3 The Stationary Distribution of the Embedded Markov
Chain

Denote by tn the nth service completion epoch; in the number of customers in
the orbit and νn the state of the BMAP process νt at the moment tn +0. Then

ζn = {(in, νn), n ≥ 1}
is a two-dimensional Markov chain with state space {(l, ν) ; l ≥ 0, ν =
1, 2, · · · m}. In the sequel, we need the following auxiliary matrices. Define

Φi =

∞∫

0

e(D0−αiI)t(1 − H1(t))(1 − H2(t))dt, i > 0, Φ0 = (−D0)−1,
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F
(1)
i =

∞∫

0

e(D0−αiI)t(1 − H2(t))dH1(t), F
(2)
i =

∞∫

0

e(D0−αiI)t(1 − H1(t))dH2(t),

F
(3)
i = αiΦi, for i > 0 and F

(1)
0 = F

(2)
0 = F

(3)
0 = (−D0)−1.

Here F
(r)
i , r = 1, 2, 3, give the matrices of probabilities that the idle period

of the server expires through type I search or type II search or retrial.
Let Ω

(r)
k be the matrix of probabilities that exactly k arrivals occur during

a service time of the rth type, r = 0, 1, 2, 3. It is well-known, see, e.g., [29] that
these matrices can be obtained as coefficient matrices in the following matrix
generating function:

Ωr(z) = βr(−D(z)) =
∞∑

k=0

Ω
(r)
k zk =

∞∫

0

eD(z)tdBr(t), r = 0, 1, 2, 3.

Let P (i, l), for i ≥ 0, l ≥ 0, denote the matrix of the one-step transition
probabilities of the Markov chain ζn, n ≥ 1, with the (ν, ν′)th entry defined as

P{in+1 = l, νn+1 = ν′|in = i, νn = ν}, ν, ν′ = 1, 2, · · · ,m.

The following lemma, whose proof follows immediately from the described
customers access mechanism and the formula of total probability, gives expres-
sion for the matrices P (i, l).

Lemma 1. The matrices P (i, l) are calculated as follows:

P (0, l) = Φ0

l+1∑

k=1

DkΩ
(0)
l−k+1 l ≥ 0,

P (i, l) = Φi

l−i+1∑

k=1

DkΩ
(0)
l−i−k+1 + F

(1)
i Ω

(1)
l−i+1 + F

(2)
i Ω

(2)
l + F

(3)
i Ω

(3)
l−i+1, i ≥ 1, l ≥ i − 1,

P (i, l) = F
(2)
i Ω

(2)
l , i ≥ 1, 0 ≤ l < i − 1.

From now on, we make the assumption that the retrial rate αi does not depend
on i. That is αi = α for i > 0. In this case, the matrices Φi, F

(r)
i , r = 1, 2, 3, do

not depend on i and are denoted as Φ, F (r), r = 1, 2, 3, correspondingly.
It can be shown that, due to the possibility of simultaneous service of all

customers presenting in the system, the system is stable under any set of the
system parameters, therefore the stationary probabilities of the chain always
exist.

Let us denote these probabilities by

π(i, ν) = lim
n→∞ P{in = i, νn = ν}, ν = 1, . . . , m,

and let us introduce the following row vectors:

πi = (π(i, 1), · · · · · · , π(i,m)), i ≥ 0.
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Using the obtained transition probabilities, we get the system of linear alge-
braic equations (equilibrium equations) for the steady state probabilities as given
below:

πl = π0Φ0

l+1∑

k=1

DkΩ
(0)
l−k+1 +

∞∑

i=1

πiF
(2)Ω

(2)
l

+
l+1∑

i=1

πi

[
Φ

l−i+1∑

k=1

DkΩ
(0)
l−i−k+1 + F (1)Ω

(1)
l−i+1F

(3)Ω
(3)
l−i+1

]
, l ≥ 0. (1)

To solve this infinite system of equations, we introduce the vector probability

generating function π(z) =
∞∑

l=0

πlz
l, |z| < 1.

Multiplying each of the equations in (1) by the corresponding power of z,
summing up and rearranging the terms, we get

zπ(z) = π0Φ0(D(z) − D0)Ω0(z) + z(π(1) − π0)F (2)Ω2(z) + (π(z) − π0)Y (z)

where
Y (z) = Φ(D(z) − D0)Ω0(z) + F (1)Ω1(z) + F (3)Ω3(z).

Thus, the vector generating function π(z) satisfies the following vector functional
equation

π(z)(zI − Y (z))

= π(0)(Φ0(D(z) − D0)Ω0(z) − zF (2)Ω2(z) − Y (z)) + zπ(1)F (2)Ω2(z). (2)

This equation includes the unknown vector generating function π(z) at three
points: z, 0 and 1. Next we make an attempt to eliminate the unknown vector
π(1) from (2) in the trivial way, i.e., by substituting z = 1 in (2). Then we obtain
the following relation between the vectors π(1) and π(0) = π0 :

π(1)(I − Y (1) − F (2)Ω2(1)) = π0(Φ0 [D(1) − D0] . (3)

However, we cannot eliminate the vector π(1) directly from Eq. (3) because it
is possible to show that the matrix

A = Y (1) + F (2)Ω2(1)

is irreducible stochastic and, consequently, the matrix I − A in the right hand
side of (3) is singular.

To overcome this difficulty, we apply the well-known trick by M. Neuts. Let ρ
be the left probability eigenvector of the matrix A, i.e., it satisfies the equations

ρA = ρ, ρe = 1.

Adding the vector π(1)eρ to both sides of (3), observing that the matrix
I − A + eρ is nonsingular and that

ρ(I − A + eρ)−1 = ρ,
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we obtain from (3) that

π(1) = ρ + π0(Φ0 [D(1) − D0] Ω0(1) − A)C,

where
C = (I − A + eρ)−1.

Then, the vector functional Eq. (2) transforms into equation

π(z)(zI − Y (z)) = π0

[
Φ0(D(z) − D0)Ω0(z) − zF (2)Ω2(z) − Y (z))

+ z(Φ0(D(1) − D0)Ω0(1) − A)CF (2)Ω2(z)
]

+ zρF (2)Ω2(z)

(4)

which includes the unknown vector generating function π(z) only at two points:
z and 0.

The methodologies for solving equations of type (4) in the case when the
matrix Y (1) is stochastic are well-known. One of them is based on the use of M.
Neuts’ approach (see [30]) that exploits the matrix G which is the solution of the
nonlinear matrix equation G = Y (G). Another one uses reasonings of analyticity
of the vector generating function π(z) in the unit disk of the complex plane, see,
e.g. [15].

However, in (4) the matrix Y (1) is the sub-stochastic, but not stochastic.
Solution of Eq. (4) in this case can be derived using the results obtained during
the analysis of BMAP/SM/1 queue with so called disasters, see [13,21] where
the analyticity approach is properly adjusted or the papers [14,22] where the M.
Neuts’ approach is generalized to the corresponding class of multi-dimensional
Markov chains. Disasters have the same effect (removal of all customers from
the system) as simultaneous service of all customers from the orbit after type II
search succeeds to win in competition with type I search and primary or orbital
customers.

4 Stationary Distributions of the Number of Customers
in the Orbit and in the System at Arbitrary Time

Denote by p(i, r), i ≥ 0, r = 0, . . . , 4, the steady state probability vector that at
an arbitrary time there are i customers in the system, and the current service is
in the rth mode. Note that r = 4 corresponds to the case when the server is idle.
The following theorem gives expression for the steady state probability vectors.

Theorem 1. The stationary probability vector p(i, r) are calculated as follows:

p(0, 4) = τ−1π0(−D0)−1,

p(i, 4) = τ−1πiΦ, i ≥ 1,
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p(i, 3) = τ−1
i∑

l=1

πlF
(3)Ω̃

(3)
i−l,

p(i, 2) = τ−1
i∑

l=1

πlF
(2)Ω̃

(2)
i−l,

p(i, 1) = τ−1
i∑

l=1

πlF
(1)Ω̃

(1)
i−l,

p(i, 0) = τ−1π0

i∑

k=1

(−D0)−1DkΩ̃
(0)
i−k +

i−1∑

l=1

πl

i−l∑

k=1

ΦDkΩ̃
(0)
i−l−k, i > 0,

where the matrices Ω̃
(r)
m are the coefficients appearing in the matrix expansion

Ω̃r(z) =
∞∑

k=0

Ω̃
(r)
k zk =

∞∫

0

eD(z)t(1 − Br(t))dt, r = 0, . . . , 3,

and the average inter-departure time, τ , is given by formula

τ = π0((−D0)−1 + b
(0)
1 I)e +

∞∑

i=1

πi

⎛

⎝
3∑

j=1

F (j)b
(j)
1 e + Φ(I − D0b

(0)
1 )e

⎞

⎠ .

Proof follows from the theory of Markov renewal processes (see [10,31]).
In a similar manner, if we define q(i, r), i ≥ 0, r = 0, . . . , 4, as the steady

state probability vectors at an arbitrary time that there are i customers in the
orbit and the current service is in the rth mode, we get the following result:

Theorem 2. Vectors q(i, r), i ≥ 0, r = 0, . . . , 4, are computed as follows:

q(0, 4) = τ−1π0(−D0)−1,

q(i, 4) = τ−1πiΦ, i > 0,

q(i, 3) = τ−1
i+1∑

l=1

πlF
(3)Ω̃

(3)
i−l+1,

q(i, 2) = τ−1
∞∑

l=1

πlF
(2)Ω̃

(2)
i ,

q(i, 1) = τ−1
i+1∑

l=1

πlF
(1)Ω̃

(1)
i−l+1,

q(i, 0) = τ−1

(
π0(−D0)−1

i+1∑

k=1

DkΩ̃
(0)
i+1−k +

i∑

l=1

i+1−l∑

k=1

ΦDkΩ̃
(0)
i+1−l−k

)
, i ≥ 0.
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5 Some Performance Measures

Let us introduce the following vector partial generating functions

P(z, r) =
∞∑

i=0

zip(i, r), Q(z, r) =
∞∑

i=0

ziq(i, r), |z| < 1, r = 0, . . . , 4.

Having computed the stationary distributions for both the system size and orbit
size, we can calculate some important performance characteristics of the model
as follows:

• Probability of the system being empty at an arbitrary moment is defined by
p(0, 4)e;

• Probability that the server is free at an arbitrary moment is defined by
P(1, 4)e;

• Probability that the server is working in the zero mode (primary customer
service) at an arbitrary moment is defined by P(1, 0)e;

• Probability that the server is working in mode 1 (orbital customer service
after the type I search) at an arbitrary moment is defined by P(1, 1)e;

• Probability that the server is working in mode 2 (orbital customer(s) service
after the II search) at an arbitrary moment is defined by P(1, 2)e;

• Probability that the server is working in mode 3 (retrial customer service) at
an arbitrary moment is defined by P(1, 3)e;

• Probability that the orbit is empty at an arbitrary moment is defined by
4∑

j=0

q(0, j)e;

• Probability of having i customers in the orbit at an arbitrary moment is

defined by
4∑

j=0

q(i, j)e;

• Average number of customers in the system is defined by
4∑

j=0

P′(1, j)e;

• Average number of customers in the orbit is defined by
4∑

j=0

Q′(1, j)e.

Remark

Corresponding probabilities for an arbitrary batch arrival epochs are computed
by the analogous formulas only the vector e has to be replaced with the vector
−D0e. Probability of starting the service of an arbitrary customer immediately
upon arrival (probability that the customer receives service in the system without
visiting the orbit) is defined by

λ−1P(1, 4)(−D0)e.
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Some examples of computation of the key performance measures of the sys-
tem for the considered model in case of the group Poisson arrival process are
presented in [11]. Computations for the general case of the BMAP are much
more involved. But they can be successfully done based on the corresponding
modules of software described in [19].

6 Conclusions

We considered retrial queueing model where the usual mechanism of customers
access to the service via the competition of the primary and orbital customers is
supplemented by the mechanisms of customers search in the orbit by the server.
One option of the search leads to the individual service of a customer found in the
orbit. Another one results in simultaneous service of all customers presenting in
the orbit. Stationary distributions of the system states at the embedded service
completion moments and arbitrary moments are computed along with some
important performance measures of the system.

The results can be used for optimization of operation of the system if some
cost criteria accounting the quality and cost of different kinds of customers ser-
vice and access will be introduced. More types of customers search can be con-
sidered. The case when search times have a phase type distribution, in which
the presented analytical results may be more easy implemented in the form of
software, deserves more close consideration.

Extension of the analysis to the case when the total retrial intensity depends
on the current number of customers in orbit is possible based on the results
from [28] with modification that accounts possibility of emptying the system at
the random moment, irrespectively to the current number of customers in the
system.
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