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Preface

The series of scientific conferences Information Technologies and Mathematical
Modelling (ITMM) was started in 2002. In 2012, the series acquired an international
status, and selected revised papers have been published in Communication in Computer
and Information Science since 2014. The conference series is named after Alexander
Terpugov, one of the first organizers of the conference, an outstanding scientist of
Tomsk State University, a leader of the famous Siberian school on applied probability,
queueing theory, and applications.

Traditionally, the conferences have about 10 sections in various fields of mathe-
matical modelling and information technologies. Throughout the years, the sections on
probabilistic methods and models, queueing theory, and communication networks have
been the most popular ones at the conference. These sections gather many scientists
from different countries. During the last years, we accepted participants from Austria,
Azerbaijan, Belarus, Bulgaria, China, Hungary, India, Italy, Kazakhstan, Korea, The
Netherlands, Poland, United States. Many of these foreign participants come to this
Siberia conference every year because we have a warm acceptance and serious sci-
entific discussions here. This year the conference was held in Kazan, the capital of
Tatarstan Republic, whose universities, research institutes and engineering firms are
well-known in the world.

This volume presents selected papers from 16th ITMM conference. The papers are
devoted to new results in the queueing theory and its applications. It is targeting to be
used by specialists in probabilistic theory, random processes, mathematical modelling
as well as engineers engaged into logical and technical design and operational man-
agement of data processing systems, communication and computer networks.

September 2017 Alexander Dudin
Anatoly Nazarov

Alexander Kirpichnikov
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On a BMAP/G/1 Retrial System with Two
Types of Search of Customers from the Orbit

Alexander Dudin1(B), T.G. Deepak2, Varghese C. Joshua3,
Achyutha Krishnamoorthy3, and Vladimir Vishnevsky4

1 Department of Applied Mathematics and Computer Science,
Belarusian State University, 220030 Minsk, Belarus

dudin@bsu.by
2 Department of Mathematics, Indian Institute of Space Science and Technology,

Thiruvananthapuram, India
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3 Department of Mathematics, CMS College, Kottayam, India
{vcjoshua,krishnamoorthy}@cmscollege.ac.in

4 Institute of Control Sciences, Russian Academy of Sciences,
Moscow, Russia
vishn@inbox.ru

Abstract. A single server retrial queueing model, in which customers
arrive according to a batch Markovian arrival process (BMAP), is consid-
ered. An arriving batch, finding server busy, enters an orbit. Otherwise
one customer from the arriving batch enters for service immediately while
the rest join the orbit. The customers from the orbit try to reach the
server subsequently and the inter-retrial times are exponentially distrib-
uted. Additionally, at each service completion epoch, two different search
mechanisms are switched-on. Thus, when the server is idle, a competition
takes place between primary customers, the customers coming by retrial
and the two types of searches. It is assumed that if the type II search
reaches the service facility ahead of the rest, all customers in the orbit
are taken for service simultaneously, while in the other two cases, only
a single customer is qualified to enter the service. We assume that the
service times of the four types of customers namely, primary, repeated
and those by the two types of searches are arbitrarily distributed with
different distributions. Steady state analysis of the model is performed.

Keywords: Batch Markovian arrival process · Orbit · Retrials · Cus-
tomers search · Group service

1 Intoduction

Retrial queues represent an important, challenging and complicated for math-
ematical analysis class of queueing systems. A retrial queueing system is char-
acterised by the fact that a customer arriving when all servers accessible for
him/her are busy, leaves the service area and joins a group of unsatisfied
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 1–12, 2017.
DOI: 10.1007/978-3-319-68069-9 1



2 A. Dudin et al.

customers called orbit, but after a random amount of time he/she returns
and repeats his/her demand for service. Retrial queueing systems arise fre-
quently in the stochastic modelling of telecommunications, computer systems,
contact centers, etc. Review of retrial queueing literature could be found in
[1,2,24,25,27,32]. In the retrial set up, each service is preceded and followed by
the server(s) idle time because of the ignorance of the status of the server(s) and
orbital customers by each other.

We are interested in designing retrial queueing models that reduce the
server(s) idle time. One way to achieve this is by the introduction of search
of orbital customers immediately after a service completion. Search for orbital
customers was introduced in [3] and the paper [20] generalizes the result in [3] by
introducing a search time, two types of services to customers (primary/orbital)
and by assuming the arrival process to be the batch Markovian process. The
queueing model with customers search in the buffer (not in the orbit) was con-
sidered in [31] where after each service completion the server starts searching
of a customer in the buffer and the rate of the exponentially distributed search
time is proportional to the number of customers presenting in the system.

This paper generalizes the model discussed in [20] by introducing two types of
search and different types of services to primary/orbital customers (retrial/type
I/type II searches) retaining the assumption that the arrival process is batch
Markovian process (BMAP ). A particular case of the proposed model with
batch Poisson arrival process has been considered in [11]. A retrial model with
two types of search, in which the number of customers taken for service depends
on the orbit size, and with the batch Poisson arrival process is considered in
[12]. However, namely BMAP suits well for modelling the correlated bursty
traffic in the modern communication networks. Approximation of such flows in
terms of the stationary Poisson process can cause huge errors in the evaluation
of performance characteristics of the networks. Therefore, analysis of queueing
models with the BMAP is of a great importance. Chakravarthy S.R. in [7]
provides a review of queueing models with the batch Markovian arrivals. Retrial
models with BMAP have been investigated, e.g., in the papers [4,8,9,16–18,26].

The present model is motivated, e.g. by the following practical situation: In
Airport/Bus stations/Railway stations passengers individually get into transport
vehicles to destinations. Also it is common that travel agencies arrange for bulk
transport for all the customers. Broadcasting of information simultaneously to
many customers is possible in various wireless communication networks. More
motivations of group service can be found e.g. in [5,6,8,23].

2 The Mathematical Model

We consider a single server queueing system in which the arrivals occur according
to a BMAP . The BMAP , a special class of tractable Markov renewal process,
is a rich class of point processes that includes many well known processes such as
Poisson, PH-renewal processes and Markov-modulated Poisson process. One of
the most significant features of the BMAP is the underlying Markovian structure
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and it fits ideally in the context of matrix-analytic solutions to stochastic models.
As is well known, Poisson processes are the simplest and most tractable ones used
extensively in stochastic modelling. The idea of the BMAP is to significantly
generalize the Poisson processes and still keep the tractability for modelling
purposes.

The BMAP is described as follows. Let the underlying Markov chain
{νt, t ≥ 0} be irreducible and let Q∗ = (qij) be the generator of this Markov
chain with state space {1, 2, · · · ,m}. At the end of a sojourn time in state i,
that is exponentially distributed with parameter λi ≥ −qii, one of the follow-
ing two events could occur: with probability Pij(l), 1 ≤ i, j ≤ m, the transition
corresponds to an arrival of group size l ≥ 1, and the underlying Markov chain
{νt, t ≥ 0} is in state j; with probability Pij(0), the transition corresponds to no
arrival and the state of the process {νt, t ≥ 0} is j, j �= i. Note that the Markov
chain {νt, t ≥ 0} can go from state i to state i only through an arrival. For l ≥ 0,
define matrices Dl = (dij(l)) such that dii(0) = −λi, 1 ≤ i ≤ m ; dij(0) =
λiPij(0), for j �= i, 1 ≤ i, j ≤ m, and dij(l) = λiPij(l). Assuming D0 to be
a non-singular matrix, the interarrival times will be finite with probability one
and the arrival process does not terminate. Hence, we see that D0 is a stable

matrix. The generator Q∗ is then given by Q∗ =
∞∑

l=0

Dl. Let D(z) be the matrix

generating function of Dl. That is, D(z) =
∞∑

l=0

zlDl.

Thus, the BMAP is described by the matrices {Dl} with D0 governing the
transitions corresponding to no arrival and Dl governing those corresponding
to arrivals of group size l, l ≥ 1. The point process described by the BMAP
is a special class of semi-Markov processes with transition probability matrix
given by

x∫

0

eD0tdtDl =
[
I − eD0x

]
(−D0)−1Dl, l ≥ 1.

For use in the sequel, let e, 0 and I denote, respectively, the (column) vector
of dimension m consisting of 1’s, the (row) vector of dimension m consisting of
0’s, and the identity matrix of order m.

Let θ be the stationary probability vector of the associated Markov process
with generator Q∗. That is, θ is the unique (positive) probability vector satisfying
θQ∗ = 0, θe = 1. The constant

λ = θ

∞∑

k=1

kDke,

referred to as the fundamental rate gives the expected number of arrivals per unit
of time in the stationary version of the BMAP . For further details on BMAP,
its properties, particular cases and usefulness in stochastic modelling, we refer
to [7,29].
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The service mechanism of the present system is described in the following
manner. The primary unit who meets the server idle is served with service times
having the distribution function B0(t), while the rest join the orbit. Each unit in
the arriving batch finding the server busy, enters the orbit and retry to access the
server with the time between two successive retrials, exponentially distributed
having intensity αi, i ≥ 0, when the number of customers in the orbit is i.
Additionally, at a service completion epoch, two different search mechanism
are switched on. Thus, if the server is idle, a competition takes place among
primary customer, retrial customers and those resulting in the two types of
searches to access the server. If a retrial customer reaches the idle server first, the
customer entering the service is served with service times having the distribution
function B3(t) while if the type I search turned out to be successful, the selected
customer is served according to the distribution function B1(t). If type II search
succeeded, all units present in the orbit are taken for service simultaneously and
the service time of the whole group follows distribution function B2(t). Denote by

βi(s) =
∞∫
0

e−stdBi(t), Re s > 0, the Laplace-Stieltjes transform (LST) and b
(i)
r

(assumed to be finite), the rth moment associated with the distribution function

Bi(t), i = 0, 1, 2, 3 : b
(i)
r =

∞∫
0

trdBi(t). The duration of the type I (type II) search

is characterized by the distribution function H1(t)(H2(t)) with LST h1(s)(h2(s))
and finite expectations h1 and h2. Distribution functions Hl(t), l = 1, 2, may
be arbitrary, however, we assume that duration of the searches cannot be both
constant. Otherwise, the search with larger value of hl, l = 1, 2, will never succeed
to be finished earlier that the another search and the search with larger duration
has to be excluded from consideration.

The presence of the additional search mechanism allows to minimize the idle
time of the server. If holding cost (charge paid due to the customers stay in the
system) and costs associated with the different types of the search and service of
customers are introduced, optimal tuning of the parameters of search mechanism
will be possible based on the analysis results of which are presented below.

3 The Stationary Distribution of the Embedded Markov
Chain

Denote by tn the nth service completion epoch; in the number of customers in
the orbit and νn the state of the BMAP process νt at the moment tn +0. Then

ζn = {(in, νn), n ≥ 1}
is a two-dimensional Markov chain with state space {(l, ν) ; l ≥ 0, ν =
1, 2, · · · m}. In the sequel, we need the following auxiliary matrices. Define

Φi =

∞∫

0

e(D0−αiI)t(1 − H1(t))(1 − H2(t))dt, i > 0, Φ0 = (−D0)−1,
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F
(1)
i =

∞∫

0

e(D0−αiI)t(1 − H2(t))dH1(t), F
(2)
i =

∞∫

0

e(D0−αiI)t(1 − H1(t))dH2(t),

F
(3)
i = αiΦi, for i > 0 and F

(1)
0 = F

(2)
0 = F

(3)
0 = (−D0)−1.

Here F
(r)
i , r = 1, 2, 3, give the matrices of probabilities that the idle period

of the server expires through type I search or type II search or retrial.
Let Ω

(r)
k be the matrix of probabilities that exactly k arrivals occur during

a service time of the rth type, r = 0, 1, 2, 3. It is well-known, see, e.g., [29] that
these matrices can be obtained as coefficient matrices in the following matrix
generating function:

Ωr(z) = βr(−D(z)) =
∞∑

k=0

Ω
(r)
k zk =

∞∫

0

eD(z)tdBr(t), r = 0, 1, 2, 3.

Let P (i, l), for i ≥ 0, l ≥ 0, denote the matrix of the one-step transition
probabilities of the Markov chain ζn, n ≥ 1, with the (ν, ν′)th entry defined as

P{in+1 = l, νn+1 = ν′|in = i, νn = ν}, ν, ν′ = 1, 2, · · · ,m.

The following lemma, whose proof follows immediately from the described
customers access mechanism and the formula of total probability, gives expres-
sion for the matrices P (i, l).

Lemma 1. The matrices P (i, l) are calculated as follows:

P (0, l) = Φ0

l+1∑

k=1

DkΩ
(0)
l−k+1 l ≥ 0,

P (i, l) = Φi

l−i+1∑

k=1

DkΩ
(0)
l−i−k+1 + F

(1)
i Ω

(1)
l−i+1 + F

(2)
i Ω

(2)
l + F

(3)
i Ω

(3)
l−i+1, i ≥ 1, l ≥ i − 1,

P (i, l) = F
(2)
i Ω

(2)
l , i ≥ 1, 0 ≤ l < i − 1.

From now on, we make the assumption that the retrial rate αi does not depend
on i. That is αi = α for i > 0. In this case, the matrices Φi, F

(r)
i , r = 1, 2, 3, do

not depend on i and are denoted as Φ, F (r), r = 1, 2, 3, correspondingly.
It can be shown that, due to the possibility of simultaneous service of all

customers presenting in the system, the system is stable under any set of the
system parameters, therefore the stationary probabilities of the chain always
exist.

Let us denote these probabilities by

π(i, ν) = lim
n→∞ P{in = i, νn = ν}, ν = 1, . . . , m,

and let us introduce the following row vectors:

πi = (π(i, 1), · · · · · · , π(i,m)), i ≥ 0.
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Using the obtained transition probabilities, we get the system of linear alge-
braic equations (equilibrium equations) for the steady state probabilities as given
below:

πl = π0Φ0

l+1∑

k=1

DkΩ
(0)
l−k+1 +

∞∑

i=1

πiF
(2)Ω

(2)
l

+
l+1∑

i=1

πi

[
Φ

l−i+1∑

k=1

DkΩ
(0)
l−i−k+1 + F (1)Ω

(1)
l−i+1F

(3)Ω
(3)
l−i+1

]
, l ≥ 0. (1)

To solve this infinite system of equations, we introduce the vector probability

generating function π(z) =
∞∑

l=0

πlz
l, |z| < 1.

Multiplying each of the equations in (1) by the corresponding power of z,
summing up and rearranging the terms, we get

zπ(z) = π0Φ0(D(z) − D0)Ω0(z) + z(π(1) − π0)F (2)Ω2(z) + (π(z) − π0)Y (z)

where
Y (z) = Φ(D(z) − D0)Ω0(z) + F (1)Ω1(z) + F (3)Ω3(z).

Thus, the vector generating function π(z) satisfies the following vector functional
equation

π(z)(zI − Y (z))

= π(0)(Φ0(D(z) − D0)Ω0(z) − zF (2)Ω2(z) − Y (z)) + zπ(1)F (2)Ω2(z). (2)

This equation includes the unknown vector generating function π(z) at three
points: z, 0 and 1. Next we make an attempt to eliminate the unknown vector
π(1) from (2) in the trivial way, i.e., by substituting z = 1 in (2). Then we obtain
the following relation between the vectors π(1) and π(0) = π0 :

π(1)(I − Y (1) − F (2)Ω2(1)) = π0(Φ0 [D(1) − D0] . (3)

However, we cannot eliminate the vector π(1) directly from Eq. (3) because it
is possible to show that the matrix

A = Y (1) + F (2)Ω2(1)

is irreducible stochastic and, consequently, the matrix I − A in the right hand
side of (3) is singular.

To overcome this difficulty, we apply the well-known trick by M. Neuts. Let ρ
be the left probability eigenvector of the matrix A, i.e., it satisfies the equations

ρA = ρ, ρe = 1.

Adding the vector π(1)eρ to both sides of (3), observing that the matrix
I − A + eρ is nonsingular and that

ρ(I − A + eρ)−1 = ρ,
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we obtain from (3) that

π(1) = ρ + π0(Φ0 [D(1) − D0] Ω0(1) − A)C,

where
C = (I − A + eρ)−1.

Then, the vector functional Eq. (2) transforms into equation

π(z)(zI − Y (z)) = π0

[
Φ0(D(z) − D0)Ω0(z) − zF (2)Ω2(z) − Y (z))

+ z(Φ0(D(1) − D0)Ω0(1) − A)CF (2)Ω2(z)
]

+ zρF (2)Ω2(z)

(4)

which includes the unknown vector generating function π(z) only at two points:
z and 0.

The methodologies for solving equations of type (4) in the case when the
matrix Y (1) is stochastic are well-known. One of them is based on the use of M.
Neuts’ approach (see [30]) that exploits the matrix G which is the solution of the
nonlinear matrix equation G = Y (G). Another one uses reasonings of analyticity
of the vector generating function π(z) in the unit disk of the complex plane, see,
e.g. [15].

However, in (4) the matrix Y (1) is the sub-stochastic, but not stochastic.
Solution of Eq. (4) in this case can be derived using the results obtained during
the analysis of BMAP/SM/1 queue with so called disasters, see [13,21] where
the analyticity approach is properly adjusted or the papers [14,22] where the M.
Neuts’ approach is generalized to the corresponding class of multi-dimensional
Markov chains. Disasters have the same effect (removal of all customers from
the system) as simultaneous service of all customers from the orbit after type II
search succeeds to win in competition with type I search and primary or orbital
customers.

4 Stationary Distributions of the Number of Customers
in the Orbit and in the System at Arbitrary Time

Denote by p(i, r), i ≥ 0, r = 0, . . . , 4, the steady state probability vector that at
an arbitrary time there are i customers in the system, and the current service is
in the rth mode. Note that r = 4 corresponds to the case when the server is idle.
The following theorem gives expression for the steady state probability vectors.

Theorem 1. The stationary probability vector p(i, r) are calculated as follows:

p(0, 4) = τ−1π0(−D0)−1,

p(i, 4) = τ−1πiΦ, i ≥ 1,
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p(i, 3) = τ−1
i∑

l=1

πlF
(3)Ω̃

(3)
i−l,

p(i, 2) = τ−1
i∑

l=1

πlF
(2)Ω̃

(2)
i−l,

p(i, 1) = τ−1
i∑

l=1

πlF
(1)Ω̃

(1)
i−l,

p(i, 0) = τ−1π0

i∑

k=1

(−D0)−1DkΩ̃
(0)
i−k +

i−1∑

l=1

πl

i−l∑

k=1

ΦDkΩ̃
(0)
i−l−k, i > 0,

where the matrices Ω̃
(r)
m are the coefficients appearing in the matrix expansion

Ω̃r(z) =
∞∑

k=0

Ω̃
(r)
k zk =

∞∫

0

eD(z)t(1 − Br(t))dt, r = 0, . . . , 3,

and the average inter-departure time, τ , is given by formula

τ = π0((−D0)−1 + b
(0)
1 I)e +

∞∑

i=1

πi

⎛

⎝
3∑

j=1

F (j)b
(j)
1 e + Φ(I − D0b

(0)
1 )e

⎞

⎠ .

Proof follows from the theory of Markov renewal processes (see [10,31]).
In a similar manner, if we define q(i, r), i ≥ 0, r = 0, . . . , 4, as the steady

state probability vectors at an arbitrary time that there are i customers in the
orbit and the current service is in the rth mode, we get the following result:

Theorem 2. Vectors q(i, r), i ≥ 0, r = 0, . . . , 4, are computed as follows:

q(0, 4) = τ−1π0(−D0)−1,

q(i, 4) = τ−1πiΦ, i > 0,

q(i, 3) = τ−1
i+1∑

l=1

πlF
(3)Ω̃

(3)
i−l+1,

q(i, 2) = τ−1
∞∑

l=1

πlF
(2)Ω̃

(2)
i ,

q(i, 1) = τ−1
i+1∑

l=1

πlF
(1)Ω̃

(1)
i−l+1,

q(i, 0) = τ−1

(
π0(−D0)−1

i+1∑

k=1

DkΩ̃
(0)
i+1−k +

i∑

l=1

i+1−l∑

k=1

ΦDkΩ̃
(0)
i+1−l−k

)
, i ≥ 0.
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5 Some Performance Measures

Let us introduce the following vector partial generating functions

P(z, r) =
∞∑

i=0

zip(i, r), Q(z, r) =
∞∑

i=0

ziq(i, r), |z| < 1, r = 0, . . . , 4.

Having computed the stationary distributions for both the system size and orbit
size, we can calculate some important performance characteristics of the model
as follows:

• Probability of the system being empty at an arbitrary moment is defined by
p(0, 4)e;

• Probability that the server is free at an arbitrary moment is defined by
P(1, 4)e;

• Probability that the server is working in the zero mode (primary customer
service) at an arbitrary moment is defined by P(1, 0)e;

• Probability that the server is working in mode 1 (orbital customer service
after the type I search) at an arbitrary moment is defined by P(1, 1)e;

• Probability that the server is working in mode 2 (orbital customer(s) service
after the II search) at an arbitrary moment is defined by P(1, 2)e;

• Probability that the server is working in mode 3 (retrial customer service) at
an arbitrary moment is defined by P(1, 3)e;

• Probability that the orbit is empty at an arbitrary moment is defined by
4∑

j=0

q(0, j)e;

• Probability of having i customers in the orbit at an arbitrary moment is

defined by
4∑

j=0

q(i, j)e;

• Average number of customers in the system is defined by
4∑

j=0

P′(1, j)e;

• Average number of customers in the orbit is defined by
4∑

j=0

Q′(1, j)e.

Remark

Corresponding probabilities for an arbitrary batch arrival epochs are computed
by the analogous formulas only the vector e has to be replaced with the vector
−D0e. Probability of starting the service of an arbitrary customer immediately
upon arrival (probability that the customer receives service in the system without
visiting the orbit) is defined by

λ−1P(1, 4)(−D0)e.
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Some examples of computation of the key performance measures of the sys-
tem for the considered model in case of the group Poisson arrival process are
presented in [11]. Computations for the general case of the BMAP are much
more involved. But they can be successfully done based on the corresponding
modules of software described in [19].

6 Conclusions

We considered retrial queueing model where the usual mechanism of customers
access to the service via the competition of the primary and orbital customers is
supplemented by the mechanisms of customers search in the orbit by the server.
One option of the search leads to the individual service of a customer found in the
orbit. Another one results in simultaneous service of all customers presenting in
the orbit. Stationary distributions of the system states at the embedded service
completion moments and arbitrary moments are computed along with some
important performance measures of the system.

The results can be used for optimization of operation of the system if some
cost criteria accounting the quality and cost of different kinds of customers ser-
vice and access will be introduced. More types of customers search can be con-
sidered. The case when search times have a phase type distribution, in which
the presented analytical results may be more easy implemented in the form of
software, deserves more close consideration.

Extension of the analysis to the case when the total retrial intensity depends
on the current number of customers in orbit is possible based on the results
from [28] with modification that accounts possibility of emptying the system at
the random moment, irrespectively to the current number of customers in the
system.
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Abstract. Heterogeneous servers which can differ in service speed and
reliability are getting more popular in modeling of modern communica-
tion systems. For a two-server queueing system with unreliable servers
the allocation of customers between the servers is performed via a thresh-
old control policy which prescribes to use the fastest server whenever it is
free and the slower one only if the number of waiting customers exceeds
some threshold level depending on the state of faster server. The main
task of the paper consists in reliability analysis of the proposed system
including evaluation of the stationary availability and reliability function.
The effects of different parameters on introduced reliability characteris-
tics are analyzed numerically.

Keywords: Reliability analysis · Quasi-birth-and-death process · Het-
erogeneous servers · Threshold policy · Matrix-geometric solution
method

1 Introduction

To make modern communication systems superior in performance and reliabil-
ity to the previous generation systems they can be supplied with heterogeneous
communication links. Such links can differ in availability, link data throughputs,
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96öu8.

c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 13–27, 2017.
DOI: 10.1007/978-3-319-68069-9 2



14 D. Efrosinin et al.

power consumption and reliability characteristics. To model the dynamic behav-
iour of the data transmission links subject to breakdowns a queueing system with
non-reliable servers can be used. The analysis of multi-server queueing systems
generally assume the servers to be homogeneous. Mitrany and Avi-Izhak [11] and
Neuts and Lucantoni [13] have studied the M/M/s queueing system with server
breakdowns and repairs. In paper of Levi and Yechiali [9] the queue M/M/s
with servers’ vacations was analyzed. A recent paper of Efrosinin et al. [3] deals
with an stationary analysis performed on the busy period for the multi-server
Markovian queueing system with simultaneous failures of servers. The queues
with heterogeneous non-reliable servers occur quite rarely as a research subject.
A queueing system with two heterogeneous servers and multiple vacations was
studied by Kumar and Madheswari [6], who obtained the stationary queue length
distribution by using matrix geometric method and provided analysis of busy
period and waiting time. In Kumar et al. [7] the same authors have introduced
the M/M/2 queueing system with heterogeneous servers subject to catastrophes
and provided a transient solution for the system under study. A heterogeneous
two-server queueing system with balking and server breakdowns has been studied
by Yue et al. [16]. In their study, some stationary mean performance measures
are obtained using the matrix-geometric solution method.

In heterogeneous queueing system with one common queue, especially in
case of the service without preemption, when the customer can not change the
server during a service time, the customer allocation mechanism between the
servers must be specified. The majority of heterogeneous systems investigated use
heuristic service policies (e.g. the Fastest Free Server (FFS) or Random Service
Selection (RSS) policies). In fact these policies are not optimal, if e.g. the mean
response time must be minimized. As it is already known, see. e.g. the results of
Efrosinin [1], Koole [5], Legros and Jouini [8], Lin and Kumar [10], Rykov and
Efrosinin [15], for the heterogeneous queueing systems the optimal allocation
policy belongs to a class of threshold policies, where the less effective server
must be used only if the number of customers in the queue has reached some pre-
specified threshold level. The same result was confirmed for the queueing system
with faster non-reliable server and absolutely reliable slower server in Efrosinin
[2], Özkan and Kharoufeh [14] and for two non-reliable heterogeneous servers
in system with a constant retrial discipline in Efrosinin and Sztrik [4]. In the
latter paper it was shown that for the fixed threshold policy the corresponding
Markov process is of the QBD (Quasi-birth-and-death) type with a tri-diagonal
block infinitesimal matrix with a large number of bounding states.

While the first steps in performance analysis of controllable heterogeneous
queueing systems have already been performed for completely reliable servers, a
missing link to an applicability of heterogeneous models is a reliability analysis
of such queues with servers subject to failures. In this paper we use a forward-
elimination-backward-substitution method expressed in matrix form in terms
of the Laplace-Stiltjes transforms (LST) combined with probability generating
function (PGF) approach to evaluate reliability measures such as reliability func-
tion, which represents the complementary cumulative distribution function of the
life time, and mean time to the first failure for each server separately and for the
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group of servers under the fixed threshold allocation control policy. The reliabil-
ity functions are obtained in terms of the Laplace transform (LT) and numerical
inversion algorithm is used to get the time dependent functions. Additionally
a new discrete reliability metric in form of the distribution of the number of
failures during a certain life time is introduced. We expect that the proposed
results can be generalized to the case of an arbitrary controllable non-reliable
queueing model with a QBD structure.

The rest of the paper is organized as follows. In Sect. 2, we describe the mathe-
matical model and give a presentation of the stationary distribution of the system
state using a matrix-geometric solution method. In Sect. 3, we develop compu-
tational analysis for the stationary reliability characteristics, for the reliability
function and mean time to failure. The number of failures during a certain life
time is investigated in Sect. 4. In Sect. 5, numerical illustrations are provided to
highlight the effect of some parameters on the derived reliability characteristics.

Hereafter, the notations e(n), ej(n), and In are used respectively for the
column-vector consisting of 1’s, the column vector with 1 in the j-th (beginning
from 0-th) position and 0 elsewhere, and an identity matrix of the dimension n.
When there is no need to emphasize the dimension of these vectors the suffix
will be suppressed and dimension is determined by the context. The expressions
diag(a1, . . . , an), diag+(a1, . . . , an), and diag−(a1, . . . , an) denote respectively
the diagonal matrix, the upper diagonal matrix, and the lower diagonal matrix
with entries a1, . . . , an that could be scalars or matrices.

2 Mathematical Model and Stationary Distribution

In the present paper we deal with a two-server heterogeneous non-reliable queue-
ing model of the type M/M/2. The customers arrive according to a Poisson
process with arrival rate λ. The service times are exponentially distributed with
rates μ1 and μ2, where μ1 ≥ μ2. We assume that the server fails respectively
at an exponential rate α1 and α2. The servers can fail only if they are busy.
The failed server is repaired immediately and the time required to repair it is
exponentially distributed respectively with rate β1 and β2. The customer being
served at the failure moment is left at this server during the repair time and can
be served when the server becomes operational again. The allocation mechanism
between two servers is based on a threshold policy: depending on the state of
faster server the slower one is used whenever the number of customers in the
queue exceeds a certain threshold level.

Let Q(t) and D(t) = {D1(t),D2(t)} denote, respectively, the number of cus-
tomers in the queue and the vector state of servers at time t, where

Dj(t) =

⎧
⎪⎨

⎪⎩

0, the server j is idle,
1, the server j is busy and operational,
2, the server j is failed.

The threshold policy f = (q1, q2) is defined by two threshold levels 1 ≤ q2 ≤
q1 < ∞. According to this policy server 1 must be activated whenever it is free
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and there are customers in the queue, whereas server 2 is used only if server 1 is
in state 1 or 2 and the number of customers in the queue has reached the value
q1 or q2. The process

{X(t)}t≥0 = {Q(t),D(t)}t≥0 (1)

is a continuous-time Markov chain with a state space given by

E = {x = (q, d1, d2); q ∈ N0, (d1, d2) ∈ ED}, (2)

where ED is a set of states of servers which is defined as

ED =

⎧
⎪⎪⎨

⎪⎪⎩

(d1, d2);

dj ∈ {0, 1, 2}, j ∈ {1, 2}, q = 0
d1 ∈ {1, 2}, d2 ∈ {0, 1, 2}, 1 ≤ q ≤ q2 − 1,
d1 ∈ {1, 2}, d2 ∈ {0, 1, 2}, (d1, d2) �= (2, 0), q2 ≤ q ≤ q1 − 1,
dj ∈ {1, 2}, j ∈ {1, 2}, q ≥ q1,

⎫
⎪⎪⎬

⎪⎪⎭

.

Next we partition E in blocks as follows,

(0,0) = {(0, 0, d2); d2 ∈ {0, 1, 2}},

(q,1) =

⎧
⎪⎨

⎪⎩

{(q, 1, 0), (q, 2, 0), (q, 1, 1), (q, 2, 1), (q, 1, 2), (q, 2, 2)}, 0 ≤ q ≤ q2 − 1,

{(q, 1, 0), (q, 1, 1), (q, 2, 1), (q, 1, 2), (q, 2, 2)}, q2 ≤ q ≤ q1 − 1,

{(q, 1, 1), (q, 2, 1), (q, 1, 2), (q, 2, 2)}, q ≥ q1.

Due to above notation, the infinitesimal generator olude the rates of transi-
tion fromf the Markov chain {X(t)}t≥0 has the block-tridiagonal structure,

Λ = [λxy]x,y∈E = diag(Q1,0, Q1,1, . . . , Q1,1
︸ ︷︷ ︸

q2−1

, Q1,2, Q1,3, . . . , Q1,3
︸ ︷︷ ︸

q1−q2−1

, Q1,4, Q1,5, . . . )

+ diag+(Q0,1, Q0,2, . . . , Q0,2
︸ ︷︷ ︸

q2−1

, Q0,3, Q0,4, . . . , Q0,4
︸ ︷︷ ︸

q1−q2−1

, Q0,5, Q0,6, . . . )

+ diag−(Q2,1, Q2,2, . . . , Q2,2
︸ ︷︷ ︸

q2−1

, Q2,3, Q2,4, . . . , Q2,4
︸ ︷︷ ︸

q1−q2−1

, Q2,5, Q2,6, . . . ).

The square matrices Q1,n, 0 ≤ n ≤ 5, include the rates of the output from
the current block of states,

Q1,0 =

⎛

⎝
−λ 0 0
μ2 −(λ + α2 + μ2) α2

0 β2 −(λ + β2)

⎞

⎠ ,
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Q1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(λ + μ1 + α1) α1 0 0 0 0

β1 −(λ + β1) 0 0 0 0

μ2 0 −(λ + μ + α) α1 α2 0

0 μ2 β1 −(λ + α2 + β1 + μ2) 0 α2
0 0 β2 0 −(λ + α1 + β2 + μ1) α1
0 0 0 β2 β1 −(λ + β)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Q1,2 = Q1,1 + λe1(6) ⊗ e
′
3(6),

Q1,3 =

⎛
⎜⎜⎜⎜⎜⎝

−(λ + μ1 + α1) 0 0 0 0

μ2 −(λ + μ + α) α1 α2 0

0 β1 −(λ + α2 + β1 + μ2) 0 α2
0 β2 0 −(λ + α1 + β2 + μ1) α1
0 0 β2 β1 −(λ + β)

⎞
⎟⎟⎟⎟⎟⎠

,

Q1,4 = Q1,3 + λe0(5) ⊗ e
′
1(5),

Q1,5 =

⎛
⎜⎜⎜⎝

−(λ + μ + α) α1 α2 0

β1 −(λ + α2 + β1 + μ2) 0 α2
β2 0 −(λ + α1 + β2 + μ1) α1
0 β2 β1 −(λ + β)

⎞
⎟⎟⎟⎠ .

The rectangular matrices Q0,n, 1 ≤ n ≤ 6, include the rates of transitions
from subsequent block to the current one,

Q0,1 = λ

⎛

⎝
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞

⎠ , Q0,3 = λ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q0,5 = λ

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

Q0,2 = λI6, Q0,4 = λI5, Q0,6 = λI4, μ = μ1 + μ2, α = α1 + α2, β = β1 + β2.

The rectangular matrices Q2,n, 1 ≤ n ≤ 6, include the rates of transition
from the previous block to the current one,

Q2,1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ1 0 0
0 0 0
0 μ1 0
0 0 0
0 0 μ1

0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q2,2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ1 0 0 0 0 0
0 0 0 0 0 0
0 0 μ1 0 0 0
0 0 0 0 0 0
0 0 0 0 μ1 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q2,3 =

⎛

⎜
⎜
⎜
⎜
⎝

μ1 0 0 α1 0 0
0 0 μ1 0 0 0
0 0 0 μ2 0 0
0 0 0 0 μ1 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

Q2,4 =

⎛

⎜
⎜
⎜
⎜
⎝

μ1 0 α1 0 0
0 μ1 0 0 0
0 0 μ2 0 0
0 0 0 μ1 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, Q2,5 =

⎛

⎜
⎜
⎝

0 μ 0 0 0
0 0 μ2 0 0
0 0 0 μ1 0
0 0 0 0 0

⎞

⎟
⎟
⎠ , Q2,6 =

⎛

⎜
⎜
⎝

μ 0 0 0
0 μ2 0 0
0 0 μ1 0
0 0 0 0

⎞

⎟
⎟
⎠ .

Denote by π = (π0,0,π0,1,π1,1,π2,1, . . . ) the stationary probability vector
of Λ which satisfies

πΛ = 0, πe = 1. (3)

The computation of the stationary distribution is reduced to solving a block-
tridiagonal system. The process {X(t)}t≥0 is in the format of a quasi-birth-
and-death (QBD) process which allows to apply the matrix-analytic approach.
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By [12, Theorem 3.1.1] it is well known that the stationary probability vector π
of the QBD process exists if and only if

pQ0,6e(4) < pQ2,6e(4),

where p = (p1, p2, p3, p4) is the invariant probability of the matrix Q0,6 +Q1,5 +
Q2,6. This vector can be obtained by solving the system p(Q0,6 + Q1,5 + Q2,6) =
0 and pe(4) = 1. After some routine manipulation we can obtain the condition

ρ =
λ

∑2
j=1

βjμj

αj+βj

< 1. (4)

Theorem 1. The vectors of stationary probabilities πq,i, q ≥ 0, can be com-
puted as follows,

π0,0 = πq1,1

q1∏

j=0

Mq1−j , (5)

πq,1 = πq1,1

q1−q−1∏

j=0

Mq1−j , 0 ≤ q ≤ q1 − 1,

πq,1 = πq1,1R
q−q1 , q ≥ q1,

where the matrices Mi, 0 ≤ i ≤ q1, are recursively defined

M0 = −Q2,1Q
−1
1,0, M1 = −Q2,2(M0Q0,1 + Q1,1)−1, (6)

Mq = −Q2,2(Mq−1Q0,2 + Q1,1)−1, 2 ≤ q ≤ q2 − 1,

Mq2 = −Q2,3(Mq2−1Q0,2 + Q1,2)−1, Mq2+1 = −Q2,4(Mq2Q0,3 + Q1,3)−1,

Mq = −Q2,4(Mq−1Q0,4 + Q1,3)−1, q2 + 2 ≤ q ≤ q1 − 1,

Mq1 = −Q2,5(Mq1−1Q0,4 + Q1,4)−1.

The vector πq1,1 is a unique solution of the system of equations

πq1,1

[ q1−1∑

q=−1

q1−q−1∏

j=0

Mq1−j + (I − R)−1
]
e(4) = 1, (7)

πq1,1(Mq1Q0,5 + Q1,5 + RQ2,6) = 0.

The matrix R is a minimal solution of the matrix quadratic equation,

R2Q2,6 + RQ1,5 + Q0,6 = 0. (8)

Proof. The last row of (5) and equation R2Q2,6 + RQ1,5 + Q0,6 = 0 follow from
the properties of the QBD process [12]. If the stability condition holds, then (3)
yields the system,
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π0,0Q1,0 + π0,1Q2,1 = 0,

πq−1,1Q0,1 + πq,1Q1,1 + πq+1,1Q2,2 = 0, 2 ≤ q ≤ q2 − 1,

πq2−1,1Q0,2 + πq2,1Q1,2 + πq2+1,1Q2,3 = 0,

πq2,1Q0,3 + πq2+1,1Q1,3 + πq2+2,1Q2,4 = 0,

πq−1,1Q0,4 + πq,1Q1,3 + πq+1,1Q2,4 = 0, q2 + 2 ≤ q ≤ q1 − 1,

πq1−1,1Q0,4 + πq1Q1,4 + πq1+1Q2,5 = 0,

πq1,1R
q−q1−1Q0,5 + πq1,1R

q−q1Q1,5 + πq1,1R
q−q1+1Q2,6 = 0, q ≥ q1 + 1.

The routine of substitution applied to the previous system leads to recursive
relations,

π0,0 = π0,1M0, (9)
πq,1 = πq+1,1Mq+1, 1 ≤ q ≤ q1 − 1,

where Mq is defined by (6). Hence it implies the first two rows of (5). Finally
the vector πq1,1 is obviously a unique solution of the system of equations (7)
which consists of the normalizing condition and the balance equation for the
probability vector πq1,1 of the boundary states.

3 Reliability Characteristics of the System and Servers

In this section we consider some reliability quantities of the system and servers.
Denote by

A1(t) = P[X(t) = (q, d1, d2); d1 �= 2 ∨ d2 �= 2],
A2(t) = P[X(t) = (q, d1, d2); d1 �= 2 ∧ d2 �= 2],
A3(t) = P[X(t) = (q, d1, d2); d1 �= 2],
A4(t) = P[X(t) = (q, d1, d2); d2 �= 2],

the pointwise availability of the system and servers. The stationary availability
in case n, 1 ≤ n ≤ 4, is defined as An = limt→∞ An(t).

Corollary 1. The stationary availability can be computed by

An = π0,0xn,1 +
q2−1∑

q=0

πq,1xn,2 +
q1−1∑

q=q2

πq,1xn,3 + πq1,1(I − R)−1xn,4, 1 ≤ n ≤ 4,
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where A2 = A3 + A4 − A1 and

x1,1 = e(3), x1,2 =
4∑

k=0

ek(6), x1,3 =
3∑

k=0

ek(5), x1,4 =
2∑

k=0

ek(4),

x2,1 =
1∑

k=0

ek(3), x2,2 =
1∑

k=0

e2k(6), x2,3 =
1∑

k=0

ek(5), x2,4 = e0(4),

x3,1 = e(3), x3,2 =
2∑

k=0

e2k(6), x3,3 = e0 +
1∑

k=0

e2k+1(5), x3,4 =
1∑

k=0

e2k(4),

x4,1 =
1∑

k=0

ek(3), x4,2 =
3∑

k=0

ek(6), x4,3 =
2∑

k=0

ek(5), x4,4 =
1∑

k=0

ek(4).

Corollary 2. The stationary failure frequency of the server l ∈ {1, 2} can be
computed by

Bl = αlπ0,0yl,1 +
q2−1∑

q=0

πq,1yl,2 +
q1−1∑

q=q2

πq,1yl,3 + πq1,1(I − R)−1yl,4, 1 ≤ l ≤ 2,

where

y1,1 = 0, y1,2 =
2∑

k=0

e2k(6), y1,3 = e0(5) +
1∑

k=0

e2k+1(5), y1,4 =
1∑

k=0

e2k(4),

y2,1 = e1(3), y2,2 =
3∑

k=2

ek(6), y2,3 =
2∑

k=1

ek(5), y2,4 =
1∑

k=0

ek(4).

Denote by T the random time to the first failure of one of server. The corre-
sponding reliability function, which is the same as the complementary cumulative
distribution function of the life time T , is then defined as

R(t) = P[T > t].

In this section we intend to obtain this function in terms of the Laplace
transform R̃(s) =

∫ ∞
0

R(s)e−stdt,Re[s] > 0. In order to realize it we let the cor-
responding failure states be absorbing states. In this case we obtain new process
which can be modelled by the auxiliary continuous-time absorbing Markov chains
{X̂(t)}t≥0 with state space Ê = E \ {x = (q, d1, d2); q ∈ N0, d1 = 2 ∨ d2 = 2}.
We describe two main approaches to get the function R̃(s): By means of the
transient solution of the absorbing Markov chain and using the remaining life
time.

Theorem 2. The Laplace transform of R(t) is given by

R̃(s) = P̃1,0(s, 1) + P̃1,1(s, 1) + P̃1,2(s, 1), (10)
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where

P̃1,0(s, 1) =
1 + α1π̃(0,0,0)(s) − λπ̃(q1−1,1,0)(s) + μ2P̃1,1(s, 1)

s + α1
, (11)

P̃1,1(s, 1) =
α1π̃(0,0,1)(s) + λ(π̃(q1−1,1,0)(s) − π̃(q1−1,1,1)(s)) + μπ̃(q1,1,1)(s)

s + α + μ2
,

P̃1,2(s, 1) =
λπ̃(q1−1,1,1)(s) − μπ̃(q1,1,1)(s)

s + α
,

the functions π̃x(s) are of the form,

π̃(q1,1,1)(s) =
λz(s)L̃q1(s)e1(2)

μ − λz(s)M̃q1(s)e1(2)
, (12)

(π̃(q1−1,1,0)(s), π̃(q1−1,1,1)(s)) = π̃(q1,1,1)(s)M̃q1(s) + L̃q1(s), (13)

(π̃(0,0,0)(s), π̃(0,0,1)(s)) = π̃(q1,1,1)(s)
q1∏

i=0

M̃q1−i(s) (14)

+
q1∑

i=0

L̃q1−i(s)
q1∏

j=i+1

M̃q1−j(s),

the matrices M̃i(s) and L̃i(s) are evaluated recursively,

M̃0(s) = μ1Ñ0(s), L̃0(s) = e
′
0(2)Ñ0(s), Ñ0(s) = −(Q̂1,0 − sI2)

−1
, (15)

M̃q(s) = μ1Ñq(s), L̃q(s) = λL̃q−1(s)Ñq(s), Ñq(s) = −(Q̂1,1 − sI2 + λM̃q−1(s))
−1

q = 1, q1 − 1,

M̃q1 (s) = −μe
′
1(2)Ñq1 (s), L̃q1 (s) = −λL̃q1−1Ñq1 (s), Ñq1 (s) = (Q̂1,2 − sI2 + λM̃q1−1(s))

−1
,

the matrices Q̂1,0, Q̂1,1 and Q̂1,2 are of the form

Q̂1,0 =
(−λ 0

μ2 −(λ + α2 + μ2)

)

, Q̂1,1 =
(−(λ + α1 + μ1) 0

μ2 −(λ + α + μ)

)

,

Q̂1,2 =
(−(λ + α1 + μ1) λ

μ2 −(λ + α + μ)

)

,

the function z(s) is defined as

z(s) =
s + α + λ + μ

2λ
−

√
(s + α + λ + μ

2λ

)2

− μ

λ
. (16)

Proof. The absorbing states of the process {X̂2(t)} are x = (q, 2, d2), d2 ∈
{0, 1, 2} and x = (q, d1, 2), d1 ∈ {0, 1, 2}. Using the same notations as in pre-
vious section we can get the following set of Kolmogorov differential equations,
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π′
(0,0,0)(t) = −λπ(0,0,0)(t) + μ1π(0,1,0)(t) + μ2π(0,0,1)(t), (17)

π′
(q,1,0)(t) = −(α1 + λ + μ1)π(q,1,0) + λπ(q−1,1,0)(t) + μ1π(q+1,1,0)(t) + μ2π(q,1,1)(t),

0 ≤ q ≤ q1 − 2,

π′
(q1−1,1,0)(t) = −(α1 + λ + μ1)π(q1−1,1,0) + λπ(q1−2,1,0)(t) + μ2π(q1−1,1,1),

π′
(0,0,1)(t) = −(α2 + λ + μ2)π(0,0,1)(t) + μ1π(0,1,1)(t),

π′
(0,1,1)(t) = −(α2 + λ + μ2)π(0,0,1)(t) + λπ(0,0,1)(t) + μ1π(0,1,1)(t),

π′
(q,1,1)(t) = −(α + λ + μ)π(q,1,1)(t) + λπ(q−1,1,1)(t) + μ1π(q+1,1,1)(t), 1 ≤ q ≤ q1 − 2,

π′
(q1−1,1,1)(t) = −(α + λ + μ)π(q1−1,1,1)(t) + λπ(q1−1,1,0)(t) + λπ(q1−2,1,1)(t) + μπ(q1,1,1)(t)

with initial conditions π(0,0,0)(0) = 1 and πx(0) = 0,x ∈ Ê2. By taking Laplace
transforms of these equations, where π̃x(s) =

∫ ∞
0

πx(t)e−stdt, Re[s] ≥ 0, and
using then their partial generating functions,

P̃1,0(s, z) = π̃(0,0,0)(s) +
q1−1∑

q=0

π̃(q,1,0)(s)zi+1,

P̃1,1(s, z) = π̃(0,0,1)(s) +
q1−1∑

q=0

π̃(q,1,1)(s)zi+1,

P̃1,2(s, z) =
∞∑

q=q1

π̃(q,1,1)(s)zi+1

for |z| < 1, after some manipulation the system (17) is transformed into the set
of equations for the introduced double transforms,

P̃1,0(s, z) =
z + π̃(0,0,0)(s)(μ1(z − 1) + α1z) − λzq1+2π̃(q1−1,1,0)(s) + μ2zP̃1,1(s, z)

−λz2 + (s + α1 + λ + μ1)z − μ1
,

P̃1,1(s, z) =
π̃(0,0,0)(s)(z(α1 + μ1) − μ1) + λ(π̃(q1−1,1,0)(s) − zq1+1π(q1−1,1,1)(s)) + μπ̃(q1,1,1)(s)

−λz2 + (s + α + λ + μ)z − μ1
,

P̃1,2(s, z) =
zq1+1(λzπ̃(q1−1,1,1)(s) − μπ̃(q1,1,1)(s))

−λz2 + (s + α + λ + μ)z − μ
.

Denote by F (s, z) = −λz2 + (s + α + λ + μ)z − μ the auxiliary function for
the denominator of P̃1,2(s, z). It is easy to see that

F (s, 0) = −μ < 0, F (s, 1) = s + α ≥ 0.

Thus the square equation F (s, z) = 0 has for any s > 0 two roots and the
minimal of them takes the value in the interval [0, 1]. This root we denote by

z(s) =
s + α + λ + μ

2λ
−

√
(s + α + λ + μ

2λ

)2

− μ

λ
.

Since the function P̃1,2(s, z) is analytical, the numerator of this function must
be zero at point z = z(s) as well, i.e.

λz(s)π̃(q1−1,1,1)(s) − μπ̃(q1,1,1)(s) = 0. (18)
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To have a second equation for the boundary transforms π̃(q1−1,1,1)(s) and
π̃(q1,1,1)(s) denote by

π̃0,0(s) = (π̃(0,0,0)(s), π̃(0,0,1)(s)), π̃q,1(s) = (π̃(q,1,0)(s), π̃(q,1,1)(s)), 1 ≤ q ≤ q1 − 1.

For the system of the Laplace transforms π̃x(s) obtained from (17) we can
get the following relations in matrix form,

π̃0,0(s) = −μ1π̃0,1(s)(Q̂1,0 − sI2)
−1 − e′

0(2)(Q̂1,0 − sI2)
−1 = π̃0,1(s)M̃0(s) + L̃0(s).

The substitution of the last expression into the matrix relation for π̃0,1(s)
yields

π̃0,1(s) = −μ1π̃1,1(s)(Q̂1,1 − sI2 + λM̃0(s))
−1 − λL̃0(s)(Q̂1,1 − sI2 + λM̃0(s))

−1

= π̃1,1(s)M̃1(s) + L̃1(s).

Sequential application of such forward-elimination-backward-substitution
method leads to the following recursive relations

π̃q−1,1(s) = π̃q,1(s)M̃q(s) + L̃q(s), 1 ≤ q ≤ q1 − 2,

π̃q1−1,1(s) = π̃(q1,1,1)(s)M̃q1(s) + L̃q1(s),

where M̃q(s) and L̃q(s) can be calculated by (15). By combining the relation

π̃(q1−1,1,1)(s) = (πq1,1,1(s)M̃q1(s) + L̃q1(s))e1(2)

and (18), we may express π̃(q1,1,1)(s) in form (12). The transforms for the rest of
boundary states can be hence evaluated as a functions of π̃(q1−1,1,1)(s). Finally
the double transforms are calculated at point z = 1 and substituted into (10).

4 Numerical Results

In this section we present some numerical examples to study the effect of system
parameters on proposed reliability measures. First we fix the systemparameters
at values

λ = 1.7, μ1 = 2.4, μ2 = 0.4, α1 = 0.1, α2 = 0.2,

β1 = 0.3, β2 = 0.3, ρ = 0.83, q1 = 9, q2 = 6.

In all cases presented below the parametric values are chosen in such a way
that the ergodicity condition holds.

In Figs. 1 and 2 the stationary availabilities Ai, 1 ≤ i ≤ 4, are plotted against
the arrival rate λ versus failure rates α1, α2 and repair rates β1, β2, respectively.
As we expect, Ai decreases with increasing λ. The upper curves correspond to the
lower value of α1 and α2 and to the higher value of β1and β2. The availabilities
A1, A2 and A3 take different values by changing of failure and repair rates of
servers. We notice that descriptor A3 changes by varying α1 and β1 but it is
insensitive to the change of α2 and β2. It happens since the parameters α1 and
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)b()a(

Fig. 1. The availability Ai, 1 ≤ i ≤ 4, for α1 = 0.1, 0.3 (a) and α2 = 0.1, 0.3 (b) vs. λ

)b()a(

Fig. 2. The availability Ai, 1 ≤ i ≤ 4, for β1 = 0.2, 0.4 (a) and β2 = 0.2, 0.4 (b) vs. λ

)b()a(

Fig. 3. The failure frequency Bi, i = 1, 2, for α1 = 0.1, 0.2, 0.3 (a) and α2 = 0.1, 0.2, 0.3
(b) vs. λ

β1 influences the busy state of server 2 due to the threshold policy, which in turn
makes a contribution to the availability A3.

In Figs. 3 and 4 we plot the failure frequency Bl for

αl = {0.1, 0.2, 0.3} and βl = {0.2, 0.3, 0.4}, l = 1, 2,
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)b()a(

Fig. 4. The failure frequency Bi, i = 1, 2, for β1 = 0.2, 0.3, 0.4 (a) and β2 = 0.2, 0.3, 0.4
(b) vs. λ

Fig. 5. The function R(t) vs. λ

respectively. These characteristics monotonously increase by increasing of λ.
Moreover we notice that B1 > B2, since the probability to be in state x with
d1(x) = 1 is higher than the probability for d2(x) = 1, since server 2 is used
according to the threshold control policy. We observe that the function B1 is
insensitive to changes of α2, β1 and β2, and the function B2 is almost insensitive
to change of β2.

In Fig. 5 we analyze the effect of the arrival rate λ to the reliability function
R(t). To evaluate this function we have used a numerical inversion algorithm for
the corresponding Laplace transforms R̃(s), which must be calculated in sym-
bolic form. For the calculations we have used the program Mathematica of the
Wolfram Research. This program has some limitation on the volume of sym-
bolic representations. Due to this reason and in order to reduce the algorithm’s
evaluation time, we had to restrict the number of items of the sums in (10) by
assuming that q1 = 2 and q2 = 1. We notice that the illustrated function for the
higher values of λ exhibit heavier tails.
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)b()a(

Fig. 6. The function R(t) vs. α1 (a) and α2 (b)

)b()a(

Fig. 7. The function R(t) vs. μ2 for μ1 = 2.4 (a) and μ1 = 4.8 (b)

In Figs. 6 and 7 we illustrate respectively the influence of α1, α2, μ1 and μ2

on the reliability function R(t). Obviously, for

α1 = 0.01, α2 = 0.01, μ1 = 4.8, μ2 = 1.2

we observe that the corresponding distribution function exhibits a heavier tail.
Finally, we calculate the moment of the life time E[T ] by varying λ,

λ = {0.5, 0.8, 1.2, 1.7}, E[T ] = {42.81, 23.51, 13.81, 9.03}.

As is to be expected, the mean life time is decreasing function of λ.

5 Conclusion

The paper provides reliability analysis of a two-server heterogeneous unreliable
queueing system with a threshold control policy for the allocation of customers
between the servers. The proposed results complement the classical performance
analysis of the unreliable queueing models which can be described by the quasi-
birth-and-death processes. The matrix-geometric solution method has been used
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to obtain the stationary state probabilities and some stationary reliability mea-
sures like availability and failure frequency. The combination of the forward-
elimination-backward-substitution method for the boundary states with gener-
ating function approach for the states above the highest threshold level has led to
a closed form solution in terms of Laplace transform for the reliability function
and as a consequence for the mean time to the first failure. We finally performed
numerical experiments to explore the effect of various system parameters on
reliability of servers.
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Abstract. In this paper, we consider an MMPP/M/1/1 retrial queue
where incoming fresh calls arrive at the server according to a Markov
modulated Poisson process. Upon arrival, an incoming call either occu-
pies the server if it is idle or joins an orbit if the server is busy. From
the orbit, an incoming call retries to occupy the server and behaves the
same as a fresh incoming call. The server makes an outgoing call in its
idle time. Our contribution is to derive the asymptotics of the number of
calls in retrial queue under the conditions of high rate of making outgoing
calls and low rate of service time of outgoing calls.

Keywords: Retrial queueing system · Incoming and outgoing calls ·
Asymptotic analysis method · Markov modulated Poisson process ·
Gaussian approximation · Gamma approximation

1 Introduction

In service systems idle time of an operator should be minimized to increase the
productivity. An operator not only receives calls from outside but also makes
outgoing calls in the idle time. The example of that could be the cellphone that
is used for incoming and outgoing calls. In call centers operators could receive
arriving calls but as soon as they have free time and are in standby mode they
could make outgoing calls to sell packages and services of the center [1].

Retrial Queues with two-way communication have been extensively studied
recently [2–7]. In these literatures the arrival process is Poisson process. However,
it is well known that real traffic has a more complex structure. Markov modulated
Poisson process (MMPP) can represent correlated traffic and thus it is more
suitable for modelling real traffic.
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In this paper, we consider asymptotic analysis for the distribution of the
number of customers in the system under two conditions: (i) high outgoing call
rate and (ii) low service rate for outgoing calls. In case (i), the server makes an
outgoing call as soon as it becomes idle while in case (ii), the duration of an
outgoing call is extremely long.

In both cases, the number of incoming calls in the system explodes. How-
ever, using suitable scalings, we prove that the scaled version of the number
of incoming calls in the system follow some simple distributions, i.e. Gaussian
distribution [8] and Gamma distribution, respectively [9].

The remainder of the paper is presented as follows. In Sect. 2, we describe
the model in detail and preliminaries for later asymptotic analysis. In Sects. 3
and 4, we present our main contribution for the model with Markov modulated
Poisson process. In Sect. 5 we show the ranges of parameters under which our
approximations are usable. Section 6 is devoted to concluding remark.

2 Model Description and Problem Definition

We consider a single server queueing model with two types of calls: incoming calls
and outgoing calls. Incoming calls arrive at the system according to a Markov
modulated Poisson process. The incoming call that finds the server idle receives
a service for an exponentially distributed time with rate μ1. Upon entering the
system the call that finds the server being busy immediately joins the orbit,
where it stays during a random time exponentially distributed with rate σ. If
the server is idle (empty) it starts making outgoing calls to the outside with
rate α. If the outgoing call finds the server free the call goes into service for
an exponentially distributed time with rate μ2. If upon entering the system the
outgoing call finds the server being busy the call is lost and is not considered in
the future. Let i(t) denote the number of calls in the system at the time t, k(t)
denote the state of the server: 0 if the server is free, 1 if the server is busy serving
an incoming call, 2 if the server is busy serving an outgoing call and n(t) denote
the state of the background process of the MMPP at time t. The infinitesimal
generator of n(t) is defined by matrix Q. When n(t) = n, the arrival rate is
given by λn (n = 1, 2, ..., N). To determine the condition for the existence of a
stationary regime, we define the matrix Λ in the form Λ = ρμ1Λ1

rΛ1e
, where Λ1 is a

diagonal matrix with nonnegative elements, and the condition for the existence
of a stationary regime is the fulfillment of the inequalities 0 < ρ < 1.

Under the current setting the three-dimensional process {k(t), n(t), i(t)} is
a Markov chain. Under the stability condition, the stationary probability dis-
tribution P{k(t) = k, n(t) = n, i(t) = i} = Pk(n, i) is the unique solution of
Kolmogorov system of equations:

−(λn + iσ + α)P0(n, i) + μ1P1(n, i + 1) + μ2P2(n, i + 1) +
∑N

v=1 P0(v, i)qvn = 0,

−(λn + μ1)P1(n, i) + λn [P1(n, i − 1) + P0(n, i − 1)] + iσP0(n, i)

+
∑N

v=1 P1(v, i)qvn = 0,

− (λn + μ2)P2(n, i) + P0(n, i − 1)α + P2(n, i − 1)λn +
N∑

v=1

P2(v, i)qvn = 0. (1)
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We introduce partial characteristic functions [10], denoting j =
√−1:

H0(n, u) =
∞∑

i=0

ejuiP0(n, i), Hk(n, u) =
∞∑

i=1

ejuiPk(n, i), k = 1, 2.

For k = 1, 2, there will be at least one call in the system. Rewriting system (1)
in the following form:

−(λn + α)H0(n, u) + jσ ∂H0(n,u)
∂u + μ1e

−juH1(n, u) + μ2e
−juH2(n, u)

+
∑N

v=1 H0(v, u)qvn = 0,

−(λn + μ1)H1(n, u) + λneju [H1(n, u) + H0(n, u)] − jσ ∂H0(n,u)
∂u

+
∑N

v=1 H1(v, u)qvn = 0,

− (λn +μ2)H2(n, u)+αejuH0(n, u)+λkejuH2(n, u)+
N∑

v=1

H2(v, u)qvn = 0. (2)

We define I - unit matrix, Λ = diag[λn],

H(u) = {Hk(1, u),Hk(2, u), . . .,Hk(N,u),

H′
k(u) =

{
∂Hk(1, u)

∂u
,
∂Hk(2, u)

∂u
, ...,

∂Hk(N,u)
∂u

}
.

Let’s write system (2) in a matrix form (3):

H0(u)(Q − Λ − αI) + jσH′
0(u) + μ1e

−juH1(u) + μ2e
−juH2(u) = 0,

H1(u)
(
Q +

(
eju − 1

)
Λ − μ1I

)
+ H0(u)ejuΛ − jσH′

0(u) = 0,

H2(u)
(
Q +

(
eju − 1

)
Λ − μ2I

)
+ αejuH0(u) = 0. (3)

Let’s sum the equations of the system (3)

H0(u)
[
Q +

(
eju − 1

)
(Λ + αI)

]
+ H1(u)

[
Q +

(
eju − 1

) (
Λ − μ1e

−juI
)]

+H2(u)
[
Q +

(
eju − 1

) (
Λ − μ2e

−juI
)]

= 0.

Multiplying the last equation by a unit vector e and using Qe = 0, we obtain

H0(u) (Λ + αI) e + H1(u)
(
Λ − μ1e

−juI
)
e + H2(u)

(
Λ − μ2e

−juI
)
e = 0.

Multiplying the last equation by a eju:

H0(u)
(
ejuΛ + αejuI

)
e + H1(u)

(
ejuΛ − μ1I

)
e

+H2(u)
(
ejuΛ − μ2I

)
e = 0.

(4)

We will consider the system (3) and the Eq. (4), i.e. a system of three matrix
equations and one scalar equation:

H0(u)(Q − Λ − αI) + jσH′
0(u) + μ1e

−juH1(u) + μ2e
−juH2(u) = 0,
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H1(u)
(
Q +

(
eju − 1

)
Λ − μ1I

)
+ H0(u)ejuΛ − jσH′

0(u) = 0,

H2(u)
(
Q +

(
eju − 1

)
Λ − μ2I

)
+ αejuH0(u) = 0,

H0(u)
(
ejuΛ + αejuI

)
e + H1(u)

(
ejuΛ − μ1I

)
e

+H2(u)
(
ejuΛ − μ2I

)
e = 0.

(5)

The characteristic function H(u) of the number of incoming calls in the
retrial queue is expressed through partial characteristic functions Hk(u) by the
following equation

H(u) = Eejui(t) = (H0(u) + H1(u) + H2(u))e.

We will find the characteristics of our retrial queue with two-way communication
with Markov modulated Poisson input. The main content of this paper is the
solution of system (5) by using an asymptotic analysis method in two limit
conditions: of the high rate of making outgoing calls and the low rate of service
time of outgoing calls.

3 Asymptotic Analysis of MMPP/M/1/1 Retrial Queue
with Two-Way Communication Under the High Rate
of Making Outgoing Calls (α → ∞)

We will investigate system (5) by asymptotic analysis method under the high
rate of making outgoing calls.

3.1 First Order Asymptotic

Theorem 1. Suppose i(t) is the number of calls in the system of the stationary
MMPP/M/1/1 retrial queue with outgoing calls, then the (6) holds

lim
α→∞ Eejw

i(t)
α = ejwκ1 , (6)

where κ1 is the positive root of the equation

r
{

κ1σ (μ1I − Q)−1 + (μ2I − Q)−1
}−1

×
{
I + κ1σ (μ1I − Q)−1 (Λ − μ1I) + (μ2I − Q)−1 (Λ − μ2I)

}
e = 0.

(7)

The row vector r is the stationary probability distribution of the underlying
process n(t) which is given as the unique solution of the system rQ = 0, re = 1.

Proof. We denote α = 1/ε in the system (5), and introduce the following nota-
tions

u = εw, H0(u) = εF0(w, ε), Hk(u) = Fk(w, ε), k = 1, 2,
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in order to get the following system

F0(w, ε)(εQ− εΛ− I)+ jσ
∂F0(w, ε)

∂w
+μ1e

−jεwF1(w, ε)+μ2e
−jεwF2(w, ε) = 0,

F1(w, ε)
(
Q +

(
ejεw − 1

)
Λ − μ1I

)
+ εejεwF0(w, ε)Λ − jσ

∂F0(w, ε)
∂w

= 0,

F2(w, ε)
(
Q +

(
ejεw − 1

)
Λ − μ2I

)
+ ejεwF0(w, ε) = 0,

F0(w, ε)
(
εejεwΛ + ejεwI

)
e + F1(w, ε)

(
ejεwΛ − μ1I

)
e

+F2(w, ε)
(
ejεwΛ − μ2I

)
e = 0.

(8)

Considering the limit as ε → 0 in the system (8), then we will get

−F0(w) + jσF′
0(w) + μ1F1(w) + μ2F2(w) = 0,

F1(w) (Q − μ1I) − jσF′
0(w) = 0,

F2(w) (Q − μ2I) + F0(w) = 0,

F0(w)e + F1(w) (Λ − μ1I) e + F2(w) (Λ − μ2I) e = 0. (9)

Our idea is to find the solution of (9) in the form of

Fk(w) = Φ(w)rk. (10)

Here rk, k = 1, 2 are vectors with components rkn, where rkn is the probability
that the server is in state k, and the MMPP is in state n; r0 is a vector with
components r0n, and has no sense of probability, since the probability that the
server will be in the zero state (will be free) as α → ∞ is zero.

−r0 + jσ
Φ′(w)
Φ(w)

r0 + μ1r1 + μ2r2 = 0,

r1 (Q − μ1I) − jσ
Φ′(w)
Φ(w)

r0 = 0,

r2 (Q − μ2I) + r0 = 0,

r0e + r1 (Λ − μ1I) e + r2 (Λ − μ2I) e = 0. (11)

As the relation j Φ′(w)
Φ(w) does not depend on w, the function is obtained in the

following form
Φ(w) = exp{jwκ1},

which coincides with (6). The value of the parameter κ1 will be defined below.
We rewrite the system (11) in the form

−r0 − κ1σr0 + μ1r1 + μ2r2 = 0,

r1 (Q − μ1I) + κ1σr0 = 0,



Retrial Queue MMPP/M/1/1 with Two-Way Communication 33

r2 (Q − μ2I) + r0 = 0,

r0e + r1 (Λ − μ1I) e + r2 (Λ − μ2I) e = 0. (12)

Let’s review the normalization condition for stationary server state probability
distribution

r1 + r2 = r.

The row vector r is the stationary probability distribution of the underlying
process n(t). Vector r is defined as the unique solution of the system rQ = 0,
re = 1. We have

r1 = κ1σr0 (μ1I − Q)−1
,

r2 = r0 (μ2I − Q)−1
,

r1 + r2 = r. (13)

We substitute the values of the vectors rk, k = 1, 2 into the last equation of the
system (13). We obtain an equation that determines the vector r0:

r0 = r
{

κ1σ (μ1I − Q)−1 + (μ2I − Q)−1
}−1

. (14)

Now we substitute the first two equalities of the system (13) into the scalar
equation of system (12). We obtain the equation that determines the value of
r0:

r0
{
I + κ1σ (μ1I − Q)−1 (Λ − μ1I) + (μ2I − Q)−1 (Λ − μ2I)

}
e = 0.

Substituting this equality into Eq. (14), we obtain an equation for κ1, which
coincides with (7):

r
{

κ1σ (μ1I − Q)−1 + (μ2I − Q)−1
}−1

×
{
I + κ1σ (μ1I − Q)−1 (Λ − μ1I) + (μ2I − Q)−1 (Λ − μ2I)

}
e = 0.

(15)

The first order asymptotic i.e. Theorem 1, only defines the mean asymptotic
value κ1α of a number of calls in an system in prelimit situation of α → 0. For
more detailed research of the number i(t) of calls in an system let’s consider the
second order asymptotic.

3.2 Second Order Asymptotic

Theorem 2. In the context of Theorem1 the following equation is true

lim
α→∞ E exp

{
jw

1
α i(t) − κ1√

α

}
= e

(jw)2

2 κ2 , (16)

where parameter κ2 is given by

κ2 =
1
σ

· r0e + r1Λe + r2Λe + [y0 + y1 (Λ − μ1I) + y2 (Λ − μ2I)] e
[−g0 + g1 (μ1I − Λ) + g2 (μ2I − Λ)] e

. (17)
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Here the vector of r0 and the vectors of probabilities r1, r2 are defined above.
The vectors g0, g1, g2, y0, y1, y2 are defined by the two systems:

g0

[
−I − σκ1I + μ2 (μ2I − Q)−1 + μ1σκ1 (μ1I − Q)−1

]

= r0 − r0μ1 (μ1I − Q)−1
,

g1 = (g0σκ1 + r0) (μ1I − Q)−1
,

g2 = g0 (μ2I − Q)−1
,

(g0 + g1 + g2)e = 0. (18)

y0

[
(−I − σκ1I) + μ1σκ1 (μ1I − Q)−1 + μ2 (μ2I − Q)−1

]

= μ1r1

[
I − Λ (μ1I − Q)−1

]
+ μ2

[
r2 − (r0 + r2Λ) (μ2I − Q)−1

]

y1 = (y0σκ1 + r1Λ) (μ1I − Q)−1
,

y2 = (y0 + r0 + r2Λ) (μ2I − Q)−1
,

(y0 + y1 + y2)e = 0. (19)

Proof. We introduce the following notations in the system (5)

Hk(u) = exp (jαuκ1)H
(2)
k (u), (20)

and we get

H(2)
0 (u)(Q − Λ − αI − σακ1) + μ1e

−juH(2)
1 (u) + μ2e

−juH(2)
2 (u)

+ jσ
dH

(2)
0 (u)
du = 0,

H(2)
1 (u)

(
Q +

(
eju − 1

)
Λ − μ1I

)
+ H(2)

0 (u)
(
ejuΛ + σακ1 I

) − jσ
dH

(2)
0 (u)
du

= 0,

H(2)
2 (u)

(
Q +

(
eju − 1

)
Λ − μ2I

)
+ αejuH(2)

0 (u) = 0,

H(2)
0 (u)

(
ejuΛ + αejuI

)
e + H(2)

1 (u)
(
ejuΛ − μ1I

)
e

+H(2)
2 (u)

(
ejuΛ − μ2I

)
e = 0.

(21)

Denoting α = 1/ε2, and introducing the following notations

u = εw, H2
0(u) = ε2F2

0(w, ε), H2
k(u) = F2

k(w, ε), k = 1, 2, (22)

we obtain

F(2)
0 (w, ε)(ε2Q − ε2Λ − I − σκ1I) + μ1e

−jεwF(2)
1 (w, ε) + μ2e

−jεwF(2)
2 (w, ε)

+ jσε
∂F

(2)
0 (w,ε)
∂w = 0,
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F(2)
1 (w, ε)

(
Q +

(
ejεw − 1

)
Λ − μ1I

)
+ F(2)

0 (w, ε)
(
ε2ejεwΛ + σκ1I

)

− jσε
∂F

(2)
0 (w,ε)
∂w = 0,

F(2)
2 (w, ε)

(
Q +

(
ejεw − 1

)
Λ − μ2I

)
+ ejεwF(2)

0 (w, ε) = 0,

F(2)
0 (w, ε)ejεw

(
ε2Λ + I

)
e + F(2)

1 (w, ε)
(
ejεwΛ − μ1I

)
e

+F(2)
2 (w, ε)

(
ejεwΛ − μ2 I

)
e = 0.

(23)

Our idea is to seek a solution of the system (5) in the form

F(2)
k (w, ε) = Φ2(w) {rk + jεwfk} + o

(
ε2

)
. (24)

Substituting (24) to (23), we obtain

r0 (−I − σκ1I) + μ1r1 + μ2r2 + jεw [f0 (−I − σκ1I) + μ1 (f1 − r1) + μ2 (f2 − r2)]

+ jσε dΦ2(w)/dw
Φ2(w)

r0 = o
(
ε2
)
,

r1 (Q − μ1I) + r0σκ1 + jεw [f1 (Q − μ1I) + f0σκ1 + r1Λ]

− jσε dΦ2(w)/dw
Φ2(w)

r0 = o
(
ε2
)
,

r2 (Q − μ2I) + r0 + jεw [f2 (Q − μ2I) + r0 + f0 + r2Λ] = o
(
ε2
)
,

r0e + r1 (Λ − μ1I) e + r2 (Λ − μ2I) e
+ jεw [f0 + f1 (Λ − μ1I) + f2 (Λ − μ2I) + r0 + r1Λ + r2Λ] e = o

(
ε2
)
.

Previously, the system of equations (12) was obtained. Taking this into account,
we have

jε [f0 (−I − σκ1I) + μ1 (f1 − r1) + μ2 (f2 − r2)] + jσε
dΦ2(w)/dw

wΦ2(w)
r0 = o

(
ε2

)
,

jε [f1 (Q − μ1I) + f0σκ1 + r1Λ] − jσε
dΦ2(w)/dw

wΦ2(w)
r0 = o

(
ε2

)
,

jεw [f2 (Q − μ2I) + r0 + f0 + r2Λ] = o
(
ε2

)
,

jεw [f0 + f1 (Λ − μ1I) + f2 (Λ − μ2I) + r0 + r1Λ + r2Λ] e = o
(
ε2

)
.

Dividing these equations by ε and taking the limit as ε → 0 yields

f0 (−I − σκ1I) + μ1 (f1 − r1) + μ2 (f2 − r2) + σ
dΦ2(w)/dw

wΦ2(w)
r0 = 0,

f1 (Q − μ1I) + f0σκ1 + r1Λ − σ
dΦ2(w)/dw

wΦ2(w)
r0 = 0,

f2 (Q − μ2I) + r0 + f0 + r2Λ = 0,

[f0 + f1 (Λ − μ1I) + f2 (Λ − μ2I) + r0 + r1Λ + r2Λ] e = 0.
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These equations imply that Φ′
2(w)

wΦ2(w) doesn’t depend on w and thus the scalar
function Φ2(w) is given in the following form

Φ2(w) = exp
(jw)2

2
κ2,

which coincides with (16). We have Φ′
2(w)

wΦ2(w) = −κ2 and then we obtain the system

f0 (−I − σκ1I) + μ1f1 + μ2f2 = σκ2r0 + μ1r1 + μ2r2,

f1 (Q − μ1I) + f0σκ1 = −r1Λ − σκ2r0,

f2 (Q − μ2I) + f0 = −r0 − r2Λ,

[f0 + f1 (Λ − μ1I) + f2 (Λ − μ2I)] e = − (r0 + r1Λ + r2Λ) e. (25)

System (25) is an inhomogeneous system of linear equations, with respect to
the vectors f0, f1, f2. The determinant of the matrix of the system is zero (the
sums of rows are all zero). The rank of the extended matrix and the rank of
the matrix of coefficients coincide . Consider systems (12) and (25). System (12)
is homogeneous, system (25) is inhomogeneous. Consequently, we can write the
solution of the inhomogeneous system (25) in the form fk = Crk + κ2σgk + yk,
where C is a constant, vectors rn are defined above, vectors gk and yk are
particular solutions of the system (25) and then

C [r0 (−I − σκ1I) + μ1r1 + μ2r2] + κ2σ [g0 (−I − σκ1I) + μ1g1 + μ2g2]
+ μ1y1 + μ2y2 + y0 (−I − σκ1I) = σκ2r0 + μ1r1 + μ2r2,

C [r1 (Q − μ1I) + r0σκ1] + κ2σ [g1 (Q − μ1I) + g0σκ1] + y1 (Q − μ1I) + y0σκ1

= −r1Λ − σκ2r0,
C [r2 (Q − μ2I) + r0] + κ2σ [g2 (Q − μ2I) + g0] + y2 (Q − μ2I) + y0 = −r0 − r2Λ,

C [r0 + r1 (Λ − μ1I) + r2 (Λ − μ2I)] e
+ κ2σ [g0 + g1 (Λ − μ1I) + g2 (Λ − μ2I)] e

+ [y0 + y1 (Λ − μ1I) + y2 (Λ − μ2I)] e = − (r0 + r1Λ + r2Λ) e.

Previously, the system of Eq. (12) was obtained. Taking this into account, the
coefficients of C are zeros and we can rewrite the last system in the form

κ2σ [g0 (−I − σκ1I) + μ1g1 + μ2g2] + μ1y1 + μ2y2 + y0 (−I − σκ1I)
= σκ2r0 + μ1r1 + μ2r2,

κ2σ [g1 (Q − μ1I) + g0σκ1] + y1 (Q − μ1I) + y0σκ1

= −r1Λ − σκ2r0, κ2σ [g2 (Q − μ2I) + g0] + y2 (Q − μ2I) + y0 = −r0 − r2Λ,

κ2σ [g0 + g1 (Λ − μ1I) + g2 (Λ − μ2I)] e
+ [y0 + y1 (Λ − μ1I) + y2 (Λ − μ2I)] e = − (r0 + r1Λ + r2Λ) e.

(26)

We consider the first three equations of the system (26). We equate the
corresponding coefficients for κ2 to obtain

g0 (−I − σκ1I) + μ1g1 + μ2g2 = r0,

g1 (Q − μ1I) + g0σκ1 = −r0,
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g2 (Q − μ2I) + g0 = 0, (27)

and
μ1y1 + μ2y2 + y0 (−I − σκ1I) = μ1r1 + μ2r2,

y1 (Q − μ1I) + y0σκ1 = −r1Λ,

y2 (Q − μ2I) + y0 = −r0 − r2Λ. (28)

From systems (27) and (28) we obtain systems:

g0

[−I − σκ1I + μ2 (μ2I − Q)−1 + μ1σκ1 (μ1I − Q)−1] = r0 − r0μ1 (μ1I − Q)−1 ,

g1 = (g0σκ1 + r0) (μ1I − Q)−1
,

g2 = g0 (μ2I − Q)−1
. (29)

y0

[
(−I − σκ1I) + μ1σκ1 (μ1I − Q)−1 + μ2 (μ2I − Q)−1

]

= μ1r1

[
I − Λ (μ1I − Q)−1

]
+ μ2

[
r2 − (r0 + r2Λ) (μ2I − Q)−1

]
,

y1 = (y0σκ1 + r1Λ) (μ1I − Q)−1
,

y2 = (y0 + r0 + r2Λ) (μ2I − Q)−1
. (30)

The determinants of the coefficient matrices systems (29) and (30) are zero.
Then we define an additional condition for this systems of equations

(g0 + g1 + g2)e = 0,

(y0 + y1 + y2)e = 0.

Thus, the solutions of inhomogeneous systems for g0, g1, g2, y0, y1, y2 are
uniquely determined. We obtain systems that coincide with the systems (18)
and (19). Substituting values g0, g1, g2, y0, y1, y2 into the scalar equation of
the system (26), we obtain

κ2 =
1
σ

· r0e + r1Λe + r2Λe + [y0 + y1 (Λ − μ1I) + y2 (Λ − μ2I)] e
[−g0 + g1 (μ1I − Λ) + g2 (μ2I − Λ)] e

.

This equality coincides with (17).

Second order asymptotic i.e. Theorem2, shows that the asymptotic proba-
bility distribution of the number i(t) of calls in a system is Gaussian with mean
asymptotic κ1α and dispersion κ2α.
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4 Asymptotic Analysis of MMPP/M/1/1 Retrial Queue
with Two-Way Communication Under the Low Rate
of Service Time of Outgoing Calls (μ2 → 0)

We will research system (5) by asymptotic analysis method under the low rate
of service time of outgoing calls.

Theorem 3. Suppose i(t) is a number of calls in an system of stationary
MMPP/M/1/1 retrial queue with two-way communication, then the following
equation is true

H(u) = lim
μ2→0

Eejwμ2i(t) =
(

1 − j
ρμ1

μ2
u

)−( α
σ(1−ρ)+1)

, (31)

where ρμ1 = rΛe and ρ is the trafic intensity.

Proof. We denote μ2 = ε, let’s substitute the following in the system (5)

u = εw, H0(u) = εF0(w, ε), Hk(u) = Fk(w, ε), k = 1, 2.

We will get the system

εF0(w, ε)(Q − Λ − αI) + jσ ∂F0(w,ε)
∂w + μ1e

−jεwF1(w, ε)
+ εe−jεwF2(w, ε) = 0,

F1(w, ε)
(
Q +

(
ejεw − 1

)
Λ − μ1I

)
+ F0(w, ε)εejεwΛ − jσ

∂F0(w, ε)
∂w

= 0,

F2(w, ε)
(
Q +

(
ejεw − 1

)
Λ − εI

)
+ αεejεwF0(w, ε) = 0,

F0(w, ε)ε
(
ejεwΛ + αejεwI

)
e + F1(w, ε)

(
ejεwΛ − μ1I

)
e

+F2(w, ε)
(
ejεwΛ − εI

)
e = 0.

(32)

Considering the limit as ε → 0 in the system (32) then we will get

jσF′
0(w) + μ1F1(w) = 0,

F1(w) (Q − μ1I) − jσF′
0(w) = 0,

F2(w)Q = 0,

F1(w) (Λ − μ1I) e + F2(w)Λe = 0. (33)

From the first and second equations we obtain F1(w)Q = 0, F2(w)Q = 0. We
seek the solution of the system (33) in the form Fk(w) = Φk(w)r, k = 1, 2.
Then, given the fact that rΛe = ρμ1 and

jσF′
0(w) + μ1Φ1(w)r = 0,

Φ1(w)r (Q − μ1I) − jσF′
0(w) = 0,
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Φ2(w)rQ = 0,

Φ1(w)r (Λ − μ1I) e + Φ2(w)rΛe = 0,

we have
jσF′

0(w) + μ1Φ1(w)r = 0,

Φ1(w) (ρ − 1) μ1 + Φ2(w)ρμ1 = 0.

We denote Φ1(w)+Φ2(w) = Φ(w), then Φ1(w) = ρΦ(w), Φ2(w) = (1 − ρ) Φ(w).
Furthermore,

F1(w) = ρΦ(w)r, F2(w) = (1 − ρ) Φ(w)r. (34)

Multiplying the third equation of system (32) by the unit vector e, considering
the limit as ε → 0, we have

(1 − ρ) Φ(w)r (jwΛ − I) e + αF0(w)e = 0.

We denote
F0(w)e = ϕ(w). (35)

Then
α

(1 − ρ) (1 − jwρμ1)
ϕ(w) = Φ(w). (36)

We consider the first equation of system (33), multiplying it by a unit vector e
and taking into account (34), (35) and (36), we obtain

jσϕ′(w) +
αμ1ρ

(1 − ρ) (1 − jwρμ1)
ϕ(w) = 0.

The solution of the differential equation has the form

ϕ(w) = C (1 − jwρμ1)
− α

σ(1−ρ) .

Then
Φ(w) = (1 − jwρμ1)

−( α
σ(1−ρ)+1) .

Making reverse substitutions, we obtain the characteristic function (31).

Theorem 3 shows that the asymptotic probability distribution of i(t) of calls
in the system under the low rate of service time of outgoing calls is Gamma.

5 Approximation Accuracy P (2)(i)

The accuracy of the approximation P (2)(i) is defined by using Kolmogorov range

Δ2 = max
0≤i≤N

∣∣∣∣
i∑

v=0

(
P (v) − P (2)(v)

)∣∣∣∣ , which represents the difference between dis-

tributions P (i) and P (2)(i), where P (i) is obtained by using numerical algorithm
for the MMPP/M/1/1 retrial queue and the approximation P (2)(i) is given by
Gaussian and Gamma approximations.



40 A. Nazarov et al.

Table 1. Kolmogorov range μ1 = 1, μ2 = 2, σ = 1

α = 350 α = 500 α = 600 α = 800 α = 1000

ρ = 0.2 0.054 0.045 0.041 0.036 0.032

ρ = 0.4 0.041 0.034 0.029 – –

Table 2. Kolmogorov range, μ1 = 1, α = 1, σ = 1

μ2 = 0.07 μ2 = 0.05 μ2 = 0.04 μ2 = 0.035

ρ = 0.5 0.05 0.036 0.029 0.026

ρ = 0.6 0.058 0.042 0.034 0.030

Tables 1 contains the values of Δ2 for various values of rate ρ and α for
MMPP/M/1/1 retrial queue with two-way communication. We fix μ1 = 1, μ2 =
2 and σ = 1 in Table 1. Table 2 contains the values of Δ2 for various values of
rate ρ and μ2 for MMPP/M/1/1 retrial queue with two-way communication.
We fix μ1 = 1, α = 1 and σ = 1 in Table 2. We observe in Table 1 that the
approximation accuracy increases with the increase in α and in Table 2 that the
approximation accuracy increases with the decrease in μ2.

6 Conclusions

In this paper, we have considered retrial queue with two-way communication
with MMPP input. We have found the first and the second order asymptotics
of the number of calls in the system under the condition of the high rate of
making outgoing calls. Based on the obtained asymptotics we have built the
Gaussian approximation of the probability distribution of the number of calls in
the system. Our numerical results have revealed that the accuracy of Gaussian
approximation increases while increasing α. We have found the Gamma approx-
imation of the number of calls in the system under the condition of the low
service rate of outgoing calls. Our numerical results have revealed that the accu-
racy of Gamma approximation increases while decreasing μ2. In future we plan
to consider this retrial queueing system in other asymptotic conditions.
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Abstract. In this paper, we investigate a queueing system consisting
of an infinite buffer and two unreliable heterogeneous servers which fail
alternately. If both servers are able to provide the service, they serve a
customer in parallel, independently of each other. The service of a cus-
tomer is completed when his/her service by any of two servers ends. The
service times at the servers have PH-type (Phase-type) distributions.
The input flow and the flow of breakdowns are described by the MAP
(Markovian Arrival Process). An arriving breakdown is directed to the
first server with some probability and to the second server with com-
plementary probability. After a breakdown occurrence a server fails and
the repair period starts immediately. A customer, whose service is inter-
rupted by the breakdown, goes to another server if it is idle, or enters
the queue otherwise We derive a condition for the stable operation of
the system, calculate its stationary distribution and base performance
measures. Illustrative numerical examples are presented.

Keywords: Unreliable queueing system · Markovian Arrival Process ·
Phase-type service time distribution · Stationary distribution · Perfor-
mance measures

1 Introduction

At the present time, the requirements for the speed and reliability of information
transmission in wireless communication systems have increased significantly. In
recent years, the FSO - Free Space Optics technologies have become widespread
due to their undoubted advantages. The main advantages of atmospheric opti-
cal (laser) communication link are high capacity and quality of communication.
However, optical communication systems have also disadvantages, the main of
which is the dependence of the communication channel on the weather condi-
tions. The unfavorable weather conditions which reduce visibility significantly
reduce the effectiveness of atmospheric optical communication link.

As it is mentioned in [1], one of the main directions of creating the ultra-
high speed and reliable wireless means of communication is the development
of hybrid communication systems based on laser and radio-wave technologies.
Hybrid radio-optical equipment is based on the use of the FSO channel and a
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 42–55, 2017.
DOI: 10.1007/978-3-319-68069-9 4
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backup radio channel. Because the increased interest in hybrid communication
systems, a considerable amount of studies of this class of systems have appeared
in the last decade. It should be noted that most of the studies are devoted to sim-
ulation modeling, see, e.g. [2–4]. Among the works devoted to the mathematical
modeling of hybrid communication systems, we note [5–8]. The papers [5,6] deals
with hybrid communication channel with so called “hot” redundancy, where the
backup IEEE 802.11n radio channel continuously transmits data along with the
FSO channel, but, unlike the latter, at low speed. In the papers [7,8], the hybrid
communication system with “cold” redundancy is considered, where the radio-
wave link is assumed to be absolutely reliable and backs up the atmospheric
optical communication link only in cases when the latter interrupts its function-
ing because of the unfavorable weather conditions. It is assumed in [5,7] that
an input flow is a stationary Poisson one and the service and repair times have
exponential distributions. More realistic assumptions have been made in [6,8]
where the BMAP (Batch Markovian Arrival Process) and the PH service and
repair times distributions are under consideration.

The paper [1] is devoted to the study of a hybrid communication system
which consists of FSO channel and a millimeter-wave radio channel which is
used as a backup one. The peculiarity of such reservation is that the unfavorable
weather conditions for one of the channel do not affect the other one. The FSO
channel is unable to transfer data in fog or mist and mm-wave radio channel is
unable to transfer data in case of precipitation (rain, snow, etc.). Thus, the hybrid
communication system is able to transfer data under almost any weather condi-
tions. To model this hybrid channel, the authors consider two-channel queueing
system with unreliable heterogeneous servers which fail alternately. An arriving
breakdown is directed to the first server with some probability and to the second
server with complementary probability. After a breakdown occurrence a server
fails and the repair period (period of unfavorable weather conditions for this
server) starts immediately. It is assumed that fault-free periods for both chan-
nels alternate with periods of repair period for one of the channels. At every
moment, a customer is served by one of the fault-free channels. If this chan-
nel breaks down, the customer occupies the other server, if it is idle, or enters
the queue otherwise. Customers and breakdowns arrive to the system according
to the stationary Poisson flow, the service and repair times are exponentially
distributed.

In the present paper, we consider more complicated queueing system which
differs from the system considered in [1] in the following: (i) a customer is
processed by two servers simultaneously if both servers are fault-free accord-
ing to “hot” reservation technology. Otherwise, it is processed by a fault-free
channel; (ii) the input flow and the flow of breakdowns are described by MAP s,
the service and repair times have PH distributions. We describe operation of
the system by a multi-dimensional continuous time Markov chain, derive the
ergodicity condition for this Markov chain and give the brief description of the
algorithm for computation of its stationary distribution. We derive formulas for
computation of some performance measures of the system and present illustra-
tive numerical examples.
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2 Model Description

We consider a queueing system consisting of two unreliable servers (server 1 and
server 2) and an infinite buffer. Customers arrive to the system according to
the MAP . The MAP is defined by the underlying process νt, t ≥ 0, which is an
irreducible continuous-time Markov chain with the finite state space {0, . . . , W},
and the (W + 1) × (W + 1) matrices Dk, k = 0, 1. The matrix D1 (non-diagonal
entries of the matrix D0) define the rates of the process νt, t ≥ 0, transitions
which are accompanied by generating a customer. The matrix D = D0 + D1

is an infinitesimal generator of the process νt, t ≥ 0. The fundamental rate of
the MAP is defined as λ = θD1e where the vector θ is the unique solution
of the system θD = 0, θe = 1. Here and in the sequel e(0) is a column (row)
vector of appropriate size consisting of 1’s (0’s). The coefficient of variation of
inter-arrival intervals is given by c2var = 2λθ(−D0)−1e − 1 while the coefficient
of correlation of intervals between successive arrivals is calculated as ccor =
(λθ(−D0)−1(D − D0(−D0)−1e − 1)/c2var. For more information about MAP
see, e.g. [9].

If an arriving customer or the first customer from the queue sees two servers
idle and ready for service, he/she starts the service at both servers. If the servers
are busy at an arrival epoch or one of the servers is busy while the other server
is under repair, the customer is placed at the end of the queue in the buffer
and is picked-up for a service later on, according the FIFO discipline. If one of
the servers is under repair and the other server is idle, the idle server begins
the service of the customer. If the service of a customer at one of the servers is
not finished until the end of repair period on the other server, the latter server
immediately connects to the service of the customer. The service of the customer
is considered be completed when his/her service by any of two servers is finished.

Breakdowns arrive to the servers according to a MAP which is defined by the
(V +1)× (V +1) matrices H0 and H1. An arriving breakdown is directed to the
server 1 with probability p and to the server 2 with complementary probability
1 − p. The breakdowns fundamental rate is calculated as h = ϑH1e where the
row vector ϑ is the unique solution of the system ϑ(H0 + H1) = 0, ϑe = 1.

The service time of a customer by the kth server, k = 1, 2, has PH type
distribution with an irreducible representation (β(k),S(k)). The service process
on the kth server is directed by the Markov chain m

(k)
t , t ≥ 0, with state space

{1, . . . , M (k),M (k) + 1} where M (k) + 1 is an absorbing state. The intensities of
transitions into the absorbing state are defined by the vector S(k)

0 = −S(k)e. The
service rates are calculated as μk = −[β(k)(S(k))−1e]−1. For more information
about the PH type distribution, see, e.g., [10].

The repair period at the kth server, k = 1, 2, has PH type distribution with
an irreducible representation (τ (k), T (k)). The repair process at the kth server
is directed by the Markov chain r

(k)
t , t ≥ 0, with state space {1, . . . , Rk, Rk +

1} where Rk + 1 is an absorbing state. The intensities of transitions into the
absorbing state are defined by the vector T(k)

0 = −T (k)e. The repair rate is
æk = −(τ (k)(T (k))−1e)−1.
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3 Process of the System States

Let at the moment t

• it be the number of customers in the system, it ≥ 0,
• nt = 0, if both server are fault-free, nt = k, if the server k is under repair,

k = 1, 2;
• m

(k)
t be the state of the directing process of the service at the kth busy server,

m
(k)
t = 1,M (k), k = 1, 2;

• r
(k)
t be the state of the directing process of the repair time at the kth server,

r
(k)
t = 1, Rk, k = 1, 2;

• νt and ηt be the states of the underlying process of the MAP of customers
and the MAP of breakdowns respectively, νt = 0,W , ηt = 0, V .

The process of the system states is described by the regular irreducible con-
tinuous time Markov chain, ξt, t ≥ 0, with state space

Ω = {(0, n, ν, η), n = 0, 1, 2, ν = 0,W , η = 0, V }
⋃

{(i, 0, ν, η,m(1), m(2)), i > 0, ν = 0,W , η = 0, V , m(k) = 1,Mk, k = 1, 2}
⋃

{(i, 1, ν, η,m(2), r(1)), i > 0, ν = 0,W , η = 0, V ,m(2) = 1,M2, r
(1) = 1, R1}

⋃

{(i, 2, ν, η,m(1), r(2)), i > 0, ν = 0,W , η = 0, V ,m(1) = 1,M1, r
(1) = 1, R2}.

In the following, we assume that the states of the chain ξt, t ≥ 0, are ordered
as follows. Within the indicated above subsets of the set Ω the states of the
chain are enumerated in the lexicographic order. Denote the obtained ranked
sets as Ω(0, 0), Ω(0, 1), Ω(i, n, r), i ≥ 1, n = 0, 1, 2, and arrange these sets in the
lexicographic order. Let Qij , i, j ≥ 0, be the matrices formed by rates of the chain
transition from the state corresponding to the value i of the component in to the
state corresponding to the value j of this component. Denote as Q = (Qij)i,j≥0

the generator of the chain.

Lemma 1. Infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has the
following block structure

Q =

⎛

⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 O O · · ·
Q1,0 Q1 Q2 O · · ·
O Q0 Q1 Q2 · · ·
O O Q0 Q1 · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎠
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where non-zero blocks have the following form:

Q0,0 =

⎛

⎜⎝
D0 ⊕ H0 IW̄ ⊗ pH1 ⊗ τ 1 IW̄ ⊗ p̄H1 ⊗ τ 2

Ia ⊗ T
(1)
0 D0 ⊕ H ⊕ T (1) O

Ia ⊗ T
(2)
0 O D0 ⊕ H ⊕ T (2)

⎞

⎟⎠ ,

Q0,1 =

⎛

⎝
D1 ⊗ IV̄ ⊗ β1 ⊗ β2 O O

O D1 ⊗ IV̄ ⊗ β2 ⊗ IR1 O
O O D1 ⊗ IV̄ ⊗ β1 ⊗ IR2

⎞

⎠ ,

Q1,0 =

⎛

⎜⎝
Ia ⊗ S̃0 O O

O Ia ⊗ S
(2)
0 ⊗ IR1 O

O O Ia ⊗ S
(1)
0 ⊗ IR2

⎞

⎟⎠ ,

Q0 =

⎛

⎜⎝
Ia ⊗ S̃0(β1 ⊗ β2) O O

O Ia ⊗ S
(2)
0 β2 ⊗ IR1 O

O O Ia ⊗ S
(1)
0 β1 ⊗ IR2

⎞

⎟⎠ ,

Q1 =

⎛
⎜⎝

D0 ⊕ H0 ⊕ S1 ⊕ S2 IW̄ ⊗ pH1 ⊗ eM1 ⊗ IM2 ⊗ τ1 IW̄ ⊗ p̄H1 ⊗ IM1 ⊗ eM2 ⊗ τ2

Ia ⊗ β1 ⊗ IM2 ⊗ T
(1)
0 D0 ⊕ H ⊕ S2 ⊕ T (1) O

Ia ⊗ IM1 ⊗ β2 ⊗ T
(2)
0 O D0 ⊕ H ⊕ S1 ⊕ T (2)

⎞
⎟⎠ ,

Q2 =

⎛

⎝
D1 ⊗ IV̄ M1M2

O O
O D1 ⊗ IV̄ M2R1

O
O O D1 ⊗ IV̄ M1R2

⎞

⎠

where H = H0 + H1, S̃0 = −(S1 ⊕ S2)e, ⊗, ⊕ are the symbols of Kronecker’s
product and sum of matrices, W̄ = W + 1, V̄ = V + 1, a = W̄ V̄ , p̄ = 1 − p.

The proof of the lemma is implemented by means of calculation of proba-
bilities of transitions of the components of the Markov chain ξt during a time
interval having infinitesimal length.

Corollary 1. The Markov chain ξt, t ≥ 0, belongs to the class of quasi-birth-
and-death (QBD) processes, see [10].

The proof of the corollary follows from the definition of QBD given in [10]
and the structure of the generator Q.
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4 Stationary Distribution

Theorem 1. The necessary and sufficient condition for existence of the station-
ary distribution of the Markov chain ξt, t ≥ 0, is the fulfillment of the inequality

λ < δ0S̃0 + δ̂1S
(2)
0 + δ̂2S

(1)
0 , (1)

where δ̂0 = δ0(eV̄ ⊗ IM1M2), δ̂1 = δ1(eV̄ ⊗ IM2 ⊗eR1), δ̂2 = δ2(eV̄ ⊗ IM1 ⊗eR2),
and the vector δ = (δ0, δ1, δ2) is the unique solution of the system

δΦ = 0, δe = 1 (2)

where

Φ =

⎛
⎜⎝

IV̄ ⊗ S̃0(β1 ⊗ β2) + H0 ⊗ IM1M2 pH1 ⊗ eM1 ⊗ IM2 ⊗ τ1 p̄H1 ⊗ IM1 ⊗ eM2 ⊗ τ2

IV̄ ⊗ β1 ⊗ IM2 ⊗ T
(1)
0 IV̄ ⊗ S

(2)
0 β2 ⊗ IR1 O

IV̄ ⊗ IM1 ⊗ β2 ⊗ T
(2)
0 O IV̄ ⊗ S

(1)
0 β1 ⊗ IR2

⎞
⎟⎠ .

+ diag{IV̄ ⊗ S1 ⊕ S2, IV̄ ⊗ S2 ⊕ T
(1)

, IV̄ ⊗ S1 ⊕ T
(2)}.

Proof. It follows from [10], that a necessary and sufficient condition for the
existence of the stationary distribution of the chain ξt, t ≥ 0, is the fulfillment
of the following inequality:

xQ2e < xQ0e (3)

where the vector x is the unique solution of the system of linear algebraic
equations

x(Q0 + Q1 + Q2) = 0, (4)

xe = 1. (5)

Let x be a stochastic vector separated into parts as

x = (x0, x1, x2) (6)

where the vectors x0, x1, x2 have sizes aM1M2, aM2R1 aM1R2 respectively.
Then the system (4) can be written as

x0[Ia ⊗ S̃0(β1 ⊗ β2) + D0 ⊕ H0 ⊕ S1 ⊕ S2 + D1 ⊗ IV̄ M1M2
] (7)

+x1[Ia ⊗ β1 ⊗ IM2 ⊗ T
(1)
0 ] + x2[Ia ⊗ IM1 ⊗ β2 ⊗ T

(2)
0 ] = 0,

x0[IW̄ ⊗ pH1 ⊗ eM1 ⊗ IM2 ⊗ τ 1] (8)

+x1[Ia ⊗ S
(2)
0 β2 ⊗ IR1 + D0 ⊕ H ⊕ S2 ⊕ T (1) + D1 ⊗ IV̄ M2R1

] = 0,

x0[IW̄ ⊗ (1 − p)H1 ⊗ IM1 ⊗ eM2 ⊗ τ 2] (9)

+x2[Ia ⊗ S
(1)
0 β1 ⊗ IR2 + D0 ⊕ H ⊕ S1 ⊕ T (2) + D1 ⊗ IV̄ M1R2

] = 0.
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Represent the vectors x0, x1, x2 in the form

x0 = θ ⊗ δ0, x1 = θ ⊗ δ1, x2 = θ ⊗ δ2. (10)

Substituting the vector x of form (10) into Eqs. (7)−(9) and taking into
account that θ(D0 + D1) = 0, and x is a stochastic vector, the system (7)−(9)
reduces to the first equation in (2).

Further, substituting the vector x of form (10) into (3) and using the relation
λ = θD1e, we reduce (3) to the following inequality:

λ < δ0(eV̄ ⊗ S̃0) + δ1(eV̄ ⊗ S
(2)
0 ⊗ eR1) + δ2(eV̄ ⊗ S

(1)
0 ⊗ eR2).

Using notation for δ̂n, n = 0, 1, 2, introduced in the statement of the theorem,
we obtain ergodicity condition (1). ��
Remark 1. We can give the intuitive explanation of stability condition (3).
The vectors δ̂n, n = 0, 1, 2, have the following sense: the vector δ̂0 describes the
probabilities that both servers are fault-free and serve a customer, the vector
δ̂n describes the probabilities that only the server n, n = 1, 2, serves a customer
under overload condition. Than the right hand side of inequality (3) is the rate
of customers leaving the system after service under overload condition while
the left hand side of this inequality is the rate λ of customers arriving into the
system. It is obvious that in steady state the latter rate must be less that the
former one.

Remark 2. The stability condition (1) can be formulated in terms of the system
load ρ as follows:

ρ =
λ

δ0S̃0 + δ̂1S
(2)
0 + δ̂2S

(1)
0

< 1.

Corollary 2. In the case of stationary Poisson flow of breakdowns and expo-
nential distribution of service and repair times, the stable condition (1)−(2) is
reduced to the following inequality:

λ <
æ1æ2

æ1æ1 + phæ2 + (1 − p)hæ1
(μ1 + μ2 +

ph

æ1
μ2 +

(1 − p)h
æ2

μ1). (11)

In what follows, we assume inequality (3) be fulfilled. Introduce the steady
state probabilities of the chain under consideration

p
(n)
0 (ν, η) = lim

t→∞ P{it = 0, nt = n, ν = 0,W , η = 0, V }, n = 0, 1, 2,

p
(0)
i = lim

t→∞ P{it = i, nt = 0, νt = ν, ηt = η,m
(1)
t = m(1), m

(2)
t = m(2)),

p
(1)
i = lim

t→∞ P{it = i, nt = 1, νt = ν, ηt = η,m
(2)
t = m(2), r

(1)
t = r(1)),
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p
(2)
i = lim

t→∞ P{it = i, nt = 2, νt = ν, ηt = η,m
(1)
t = m(1), r

(2)
t = r(2)),

i > 0, ν = 0,W , η = 0, V ,m(k) = 1,Mk, r(k) = 1, Rk, k = 1, 2.}.

Let us enumerate the steady state probabilities in accordance with the intro-
duced above order of the states of the Markov chain ξt and form the row vectors
pi of steady state probabilities corresponding the value i of the first component
of the chain, i ≥ 0.

To calculate the vectors pi, i ≥ 0, we use the algorithm for calculating the
stationary distribution of QBD process, see [10].

Algorithm

1. Calculate the matrix R as the minimal nonnegative solution of the non-linear
matrix equation

R2Q0 + RQ1 + Q2 = O.

2. Calculate the vector p1 as the unique solution of the system

p1[Q1 + Q1,0(−Q0,0)−1Q0,1 + RQ0] = 0,

p1[e + Q1,0(−Q0,0)−1e + R(I − R)−1e] = 1.

3. Calculate the vectors p0, pi, i ≥ 2, as follows:

p0 = p1Q1,0(−Q0,0)−1, pi = p1R
i−1, i ≥ 2.

5 Stationary performance measures

Having the stationary distribution pi, i ≥ 0, been calculated we can find a
number of stationary performance measures of the system. Some of them are
listed below.

• Throughput of the system


 = δ0S̃0 + δ̂1S
(2)
0 + δ̂2S

(1)
0 .

In case of exponential distributions of service and repair times the throughput
of the system is calculated as


 =
æ1æ2

æ1æ1 + phæ2 + (1 − p)hæ1
(μ1 + μ2 +

ph

æ1
μ2 +

(1 − p)h
æ1

μ1).

• Mean number of customers in the system L =
∞∑

i=1

ipie.
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• Variance of the number of customers in the system V =
∞∑

i=1

i2pie − L2.

• Probability that the system is idle and both servers are fault-free

P
(0)
0 = p0

(
ea

0a(R1+R2)

)
,

• Probability that the system is idle and the server 1 (server 2) is under repair

P
(1)
0 = p0

⎛

⎝
0a

eaR1

0aR2

⎞

⎠ , P
(2)
0 = p0

(
0a(1+R1)

eaR2

)
,

• Probabilities that there are i, i > 0, customers in the system and both server
are fault-free (serve a customer) at an arbitrary time and at an arrival epoch

P
(0)
i = pi

(
eaM1M2

0a(M2R1+M1R2)

)
, P

(0,i)
arrival = λ−1pi

(
IW̄ ⊗ eV̄ M1M2

Oa(M2R1+M1R2)×W̄

)
D1e.

• Probabilities that there are i, i > 0, customers in the system, the server 1 is
under repair and the server 2 serves a customer at an arbitrary time and at
an arrival epoch

P
(1)
i = pi

⎛

⎝
0aM1M2

eaM2R1

0aM1R2

⎞

⎠ , P
(1,i)
arrival = λ−1pi

⎛

⎝
OaM1M2×W̄

IW̄ ⊗ eV̄ M2R1

OaM1R2×W̄

⎞

⎠ D1e.

• Probability that there are i, i > 0, customers in the system, the server 2 is
under repair and the server 1 serves a customer at an arbitrary time and at
an arrival epoch

P
(2)
i = pi

⎛

⎝
0aM1M2

0aM2R1

eaM1R2

⎞

⎠ , P
(2,i)
arrival = λ−1pi

(
Oa(M1M2+M2R1)×W̄

IW̄ ⊗ eV̄ M1R2

)
D1e.

• Probability that the servers are in the state n at an arbitrary time and at an
arrival epoch

Pn =
∞∑

i=0

P
(n)
i , P̂n =

∞∑

i=0

P (n,i), n = 0, 1, 2.

• Probability that an arriving breakdown sees both servers fault-free and will
be directed to the kth server

P
(k)
break = h−1[δ1,kp + δ2,k(1 − p)]pi

(
eW̄ ⊗ IV̄ ⊗ eM1M2

Oa(M2R1+M1R2)×W̄

)
H1e, k = 1, 2,

where δi,j is Kronecker’s symbol.
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6 Numerical Examples

In this section, we demonstrate feasibility of the developed algorithms and inves-
tigate numerically the behavior of the mean number of customers in the system
depending on the parameters of the system. To this end, we present the results
of two numerical experiments .

Experiment 1. In this experiment, we investigate the behavior of the mean
number of customers in the system, L, as a function of input rate λ under the
different rates of breakdowns, h.

Define the parameters of the system.
The MAP of customers is defined by the following matrices:

D0 =
( −1.349076 1.09082 × 10−6

1.09082 × 10−6 −0.043891

)
, D1 =

(
1.340137 0.008939
0.0244854 0.0194046

)
.

This MAP has the coefficient of variation cvar = 3.1 and the coefficient of
correlation ccor = 0.4.

The MAP of breakdowns is defined by the following matrices:

H0 =
(−8.110725 0

0 −0.26325

)
, H1 =

(
8.0568 0.053925

0.146625 0.116625

)
.

For this MAP cvar = 3.5, ccor = 0.2.
The service time distribution at the server 1 is assumed to be Erlangian of

order 2 with parameter 20. This distribution is defined by the vector β = (1, 0)

and the matrix S =
(−20 20

0 −20

)
. The service rate μ = 10 and the coefficient of

variation cvar = 0.7.
The service time distribution at the server 2 is assumed to be Erlangian of

order 2 with parameter 150. This distribution is defined by the vector β = (1, 0)

and the matrix S =
(−15 15

0 −15

)
. The service rate μ = 7.5 and the coefficient

of variation cvar = 0.7.
The repair time of the server 1 and the server 2 has hyper-exponential dis-

tribution of order 2. It is defined by the vector (0.05, 0.95) and the matrix

T (1) =
(−0.003 0

0 −0.245

)
. The coefficient of repair time variation cvar = 5.

Let us vary the MAP fundamental rate λ by multiplying the matrices D0,D1

by a certain positive number. In this way, any desired value of λ can be obtained
while the coefficient of correlation is not changed. Similarly, we obtain three dif-
ferent values of h(h = 0.0001, h = 0.001, h = 0.001) by multiplying the matrices
H0,H1 by a positive numbers.

Figure 1 shows the dependence of the mean number of customers in the sys-
tem, L, on the fundamental rate λ under the different values of breakdown rate
h. It is seen from Fig. 1, that the mean L expectable increases with λ and h
increasing and the rate of increasing grows with increasing λ. It is worth to note
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Fig. 1. Mean number of customers in the system, L, as a function of input rate λ for
different values of breakdowns rate h

that the curves in Fig. 1 are terminated when λ approaches to the point where
the load coefficient ρ becomes sufficiently large (greater than 0.78). To make
clear this fact, we present in Table 1 the values of λ,L and the load coefficient ρ
corresponding to the curves in Fig. 1.

Experiment 2. In this experiment, we are interested in how the correlation
in the input flow impacts on the mean number of customers in the system. To
this end, we consider three MAP s: MAP1, MAP2 and MAP3 having different
coefficients of correlation.

Table 1. Experiment 1: the values of λ, h, L, ρ

λ 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

h = 0.0001

ρ 0.071 0.143 0.214 0.287 0.355 0.426 0.498 0.569 0.639 0.711 0.780

L 0.077 0.167 0.277 0.422 0.575 0.809 1.138 1.651 2.711 5.515 13.661

h = 0.001

ρ 0.072 0.144 0.215 0. 298 0.358 0.430 0.502 0.574 0.646 0.718 0.782

L 0.078 0.169 0.280 0.484 0.618 0.958 1.741 3.883 8.519 18.347 41.433

h = 0.01

ρ 0.075 0.151 0.226 0.301 0.377 0.452 0.528 0.603 0.679 0.754 0.830

L 0.084 0.187 0.318 0.501 0.817 1.730 4.955 15.889 40.159 90.742 210.924
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MAP1 is defined as the stationary Poisson process. It has the coefficient of
variation of inter-arrival times cvar = 1 and the coefficient of correlation ccor = 0.
We define this process by the scalars D0 = −1 and D1 = 1.

MAP2 has the coefficient of variation cvar = 3.5 and the coefficient of corre-
lation ccor = 0.2 and is defined by the matrices

D0 =
(−1.3526 0

0 −0.04391

)
, D =

(
1.3436 0.009
0.02446 0.01945

)
.

MAP3 is the same as MAP in Experiment 1. It has the coefficient of variation
cvar = 3.5 and the coefficient of correlation ccor = 0.4. The MAP of breakdowns
and the PH distributions of service and repair times are assumed to be the same
as in Experiment 1.

Figure 2 shows the dependence of the mean L on the fundamental rate λ under
the different coefficients of correlation in the MAP of customer.

Fig. 2. Mean number of customers in the system, L, as a function of λ for MAP s with
different coefficients of correlation

Besides, in Table 2 we present the values of λ,L and the load coefficient ρ
corresponding to the curves in Fig. 2.

It is seen from Fig. 2, that the mean number of customers in the system, L,
expectable increases when the input rate λ increases and, under the same value
of λ, the mean L increases with the coefficient of correlation increasing although
the load coefficient ρ does not depend on the correlation in the input flow (the
latter follows from Remarks 1 and 2).
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Table 2. Experiment 2: the values of λ, ccor, L, ρ

λ 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

ρ 0.075 0.151 0.226 0.301 0.376 0.451 0.526 0.602 0.678 0.753 0.828

BMAP1 : ccor = 0

L 0.082 0.177 0.288 0.423 0.597 0.846 1.393 9.254 29.481 66.723 169.774

BMAP2 : ccor = 0.2

L 0.085 0.182 0.301 0.456 0.679 1.122 3.265 12.691 33.583 77.115 179.661

BMAP3 : ccor = 0.4

L 0.094 0.187 0.318 0.501 0.818 1.730 4.955 15.889 40.159 90.742 210.924

7 Conclusion

In this paper, we investigate unreliable queueing system with Markovian flows of
customers and breakdowns and two heterogeneous servers. This queueing system
can be used as a mathematical model of hybrid communication system consisting
of a laser channel and a millimeter-wave radio channel. We described behavior
of the system by the QBD process, derived stability condition, computed sta-
tionary distribution and presented the expressions for performance measures of
the system. We present some numerical results which illustrate feasibility of the
proposed algorithms, effect of correlation in arrival process and behavior of the
queue depending on the rate of input flow and the rate of breakdown. The results
can be exploited for capacity planning and performance evaluations of real world
hybrid communication systems.
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Abstract. In this paper we consider a generalization of M/GI/N/∞
queues, in which customer capacity is an additional parameter of the
system and it is independent of the service time. In more detail we focus
on the distributions of the total capacity of customers in the different ele-
ments of the queue (waiting line, service and entire system) and provide
approximate expressions for the corresponding characteristic functions.
To verify the goodness of the proposed approximation, several sets of
simulations have been carried out, considering discrete and continuous
distributions of the customer capacity and using the Kolmogorov dis-
tance as a measure of similarity.

Keywords: N -server queuing system · Customer with random capac-
ity · Approximation of the probability distribution

1 Introduction

Queuing theory is one of the most relevant branches of probability theory and
applied mathematics [3,6,12,13]. Indeed, queuing systems represent a powerful
mathematical tool for performance analysis of a wide variety of real-life systems,
including, for instance, telecommunication networks, financial markets, supply
chain management and airplane traffic control.

In many application customers are simply characterized in terms of arrival
and service processes [1,8,9]. For instance, in computer networks it is typically
assumed that the customer volume (i.e., the packet length) is proportional to the
service time (namely, the time needed to transmit the packet itself). In this work,
we consider a more general model and assume that customer volume and service
time are described by independent random variables with arbitrary distributions.
As highlighted in the next section, customer capacity plays a relevant role in
modeling new network architectures.

In more detail, we consider a queuing system with Poisson arrivals, N servers
and unlimited capacity (such assumption is widely used in modeling for sake
of analytical tractability). Extending the approach developed by some of the
authors in [4] (in which an approximate expression for the distribution of the
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 56–67, 2017.
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number of customers was derived), we will be able to find an explicit approxima-
tion for the distribution of the customers’ total capacity in the queuing system
as well as in its elements (waiting line and service).

The rest of the paper is organized as follows. In Sect. 2, we review the most
relevant works on queuing systems with random capacity of customers and high-
light the novelty of our contribution. Section 3 properly defines the analyzed
queuing model and recalls an approximation for the probability distribution of
the number of customers in the system, while Sect. 4 presents the original con-
tribution of the paper, i.e. provides a general expression for the characteristic
function of the total customers’ capacity. Then, in Sect. 5 the goodness of the
approximation (in terms of Kolmogorov distance) is verified through discrete-
event simulations for different values of the system parameters. Finally, Sect. 6
concludes the paper with some final remarks.

2 Related Work

In recent years queuing systems with random customer capacity have attracted
the interest of researchers for their applicability in different fields, mainly in
the framework of computer networks. In this section some of the most relevant
contributions are discussed.

In the paper [2] an efficient analytical model that evaluates the behavior of the
downlink LTE (Long-Term Evolution) channel with CLA (Cross-Layer Adapta-
tion) is presented. Since video traffic is resource–intensive, it is a challenging
issue to stream video over low bandwidth networks, whereas video communi-
cation over LTE becomes an open research topic nowadays due to LTEs high
throughput capabilities.

The paper [11] deals with a model of a multi-server queuing system with
losses caused by lack of resources necessary to service claims. A claim accepted
for servicing occupies a random amount of resources of several types with given
distribution functions. Random vectors that define the requirements of claims
for resources are independent of the processes of customer arrivals and servicing,
mutually independent, and identically distributed. Under the assumptions of a
Poisson arrival process and exponential service times, the authors analytically
find the joint distribution of the number of customers in the system and the
vector of amounts of resources occupied by them. Moreover, sample computa-
tions are presented to illustrate an application of the model to analyzing the
characteristics of a videoconferencing service in an LTE wireless network.

In [10] the authors consider queuing systems, in which customers occupy
some resources that are released after customer departure. Arriving customers
are lost if there are not enough free resources required for their servicing. In
such systems for each customer it is necessary to record the vector of occupied
resources until its departure.

Multi-server queuing systems with AQM-type (Active Queue Management)
mechanisms are considered in [16,17]. In more detail, in the first work M/M/n-
type (n ≥ 1) queuing systems with a bounded total volume and finite queue
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size are considered. It is assumed that the volumes of the arriving packets are
generally distributed random variables. Moreover, an AQM-type (Active Queue
Management) mechanism is used to control the actual buffer state: each of the
arriving packets is dropped with a probability depending on its volume and the
occupied volume of the system at the pre-arrival epoch. The stationary queue-
size distribution and the loss probability are derived, and numerical examples
illustrating theoretical results are also provided. Then, in [17] the analysis is
extended to the case of arbitrary distribution of the service time.

The main aim of the paper [14] is to develop a simulation model for queuing
systems with non-priority cyclic service RR (round robin) discipline and to com-
pare, in terms of queuing performance, such service discipline with traditional
FCFS (first come-first served).

Finally, the paper [15] investigates single server queuing systems with batch
Poisson arrivals and without demands losses under assumption that each demand
has some random capacity (generally, each demand is characterized by an l-
dimensional indication vector). Service time of the demand arbitrary depends
on its capacity (indications). The Laplace-Stieltjes transform of total capacities
(random vector of sum of indications) of demands that were served during a
busy period of the system is determined.

The main novelty of our approach is that it deals with systems without losses
and, in this way, permits to dimension the system resources (in terms of buffer
space) in order to have loss probabilities below any given threshold (as well-
known in the literature, the complementary probability provides an upper bound
for the loss probability in the corresponding finite-buffer system). Moreover, our
approach is quite general and may be applied to any distribution (discrete or
continuous) of the customer capacity, provided that its characteristic function is
well-defined. Finally, we also provide the distribution of the overall capacity for
the customers in the different components of the queue (waiting line and buffer);
such information may be useful to dimension the different elements of the real
system under analysis.

3 Approximation of Probability Distribution
of the Customers’ Number in the System

We consider the M/GI/N/∞ queue. The arrival process is distributed by Poisson
law with rate λ. The system has N servers and service times on each server are
i.i.d. with distribution function A(x). The arriving customer occupies any free
server or goes to the queue in case of all servers are busy. Let each customer
have some random capacity v > 0 with distribution function G(y). Customers’
capacities and service times are mutually independent and do not dependent on
the epochs of customers’ arrivals.

Denote by i(t) and V (t) =
i(t)∑

i=1

vi the number of customers in the system at

time t and their total capacity, respectively.
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Let P (i) = P {i(t) = i} be the stationary probability distribution of the
number of customers in the system. We denote by πi an approximation of P (i),
which is defined as a composite distribution [4]:

πi =
{

C1P1(i), 0 ≤ i ≤ N,
C2P2(i − N + 1), i ≥ N.

(1)

Note that the equality of the two expression for i = N provides an additional
condition to determine the constants C1 and C2.

The probabilities P1(i), where 0 ≤ i ≤ N , are the probabilities of the number
of occupied servers in an N -server M/GI/N/0 queue with customer losses when
all servers are busy. Hence, they can be determined by the Erlang B formula:

P1(i) =
(λa)i

i!

(
N∑

k =0

(λa)k

k!

)−1

where a is the mean service time.
The probabilities P2(i) refers to states in which all servers are busy. In this

case, the block of occupied servers is considered as a single one, characterized
by an equivalent service time distribution B(x) and an equivalent mean ser-
vice time b. Therefore, the probabilities P2(i), where i ≥ 1, are defined as the
probabilities of having i customers in a single-server queuing system with wait-
ing (i.e., the classical M/GI/1 queue). Hence, they can be determined by the
Pollaczek-Khinchin formula [4] and we can write

P2(i) = (1 − λb)
i∑

k =0

αkbi−k,

where the coefficients of the expansion are given by

α0 =
1
β0

, αn =
1
β0

[

αn−1 −
n−1∑

k =0

αkβn−k

]

,

b0 = β0, bn = βn − βn−1,

βn =

∞∫

0

e−λz (λz)n

n!
dB(z),

and the distribution function B(x) has the form

B(x) = 1 − (1 − A(x))

⎛

⎝1 − 1
a

x∫

0

(1 − A(z)) dz

⎞

⎠

N−1

.

The constants C1 and C2 in (1) can be found from the normalization condi-
tion and the conditions of “stitching” [4]. So the expression (1) becomes:

πi =

⎧
⎪⎪⎨

⎪⎪⎩

P2(1)
P2(1) + P1(N) (1 − (P2(0) + P2(N)))

P1(i), 0 ≤ i ≤ N,

P1(N)
P2(1) + P1(N) (1 − (P2(0) + P2(N)))

P2(i − N + 1), i ≥ N.
(2)
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4 Characteristic Function for the Total Capacity

Starting from the definition of conditional expectation, we can write the char-
acteristic function of the total capacity in the form

h(u) = M
{

ejuV (t)
}

= M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e

ju

i∑

k =1

vk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

i(t) = i

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=
∞∑

i=0

M

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e

ju

i∑

k =1

vk

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

P {i(t) = i} =
∞∑

i=0

(
M

{
ejuv

})i

P {i(t) = i} ,

where we took into account that for i = 0 the queue is empty and the sum at
the exponent is 0.

Then, using approximation (2), the characteristic function can be rewritten
as

h(u) =
∞∑

i=0

(
M

{
ejuv

})i

πi,

and, taking the inverse Fourier transform, we obtain an approximation of the
density function of the customers’ total capacity in the M/GI/N/∞ queue:

fV (x) =

∞∫

−∞
e−juxh(u)du. (3)

Similarly, we can obtain the characteristic functions of the total capacity of
the customers in the service and in the waiting line. These results have practical
relevance since the customers in each element of the queue typically require
specific resources (for instance, in routers there is a physical separation between
input buffers and output ports).

In more detail, for the customers in the service we obtain:

hserv(u) =
N∑

i=0

(
M

{
ejuv

})i P2(1)P1(i)
P2(1) + P1(N) (1 − (P2(0) + P2(N)))

,

and for the customers in the waiting queue:

hwait(u) =
∞∑

i=0

(
M

{
ejuv

})i+N P1(N)P2(i + 1)
P2(1) + P1(N) (1 − (P2(0) + P2(N)))

.
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5 Simulation and Numerical Examples

Several simulation experiments, performed in the same way as [5], have been
carried out to estimate the distribution function of the customers number and the
total customers capacity and verify the goodness of the proposed approximation.
To this aim, it was also necessary to calculate numerically the approximations
(2) and (3) since a close-form solution is, in general, not available.

As a measure of the similarity between simulation and approximation results,
we consider the Kolmogorov distance

Δ = sup
x

|F (x) − D(x)| .

Here F (x) represents the approximation based on (2) or (3), respectively for i(t)
and V (t), and D(x) is the cumulative distribution function built on the basis
of the simulation results (in order to reduce the variance of the estimates 1010

arrivals have been generated). As typically done in the literature [7], we suppose
that an approximation is applicable if its Kolmogorov distance is less than 0.03.

In the following we present the result for three different scenarios, in order to
highlight the applicability of our approximation in different settings. Note that
the parameters for the arrival and service processes were selected in such a way
that the condition for the stationary regime existence is always met (N > λa).

Example 1. Let us consider the following parameters for the queue:

– arrival rate λ = 25
– number of servers N = 10
– exponential distribution (with parameter μ) of the service time, i.e.

A(x) =
{

1 − e−μx, x ≥ 0,
0, x < 0,

– uniform distribution (in the interval [a, b]) of customers’ capacity, i.e.

G(y) =

⎧
⎪⎨

⎪⎩

0, y < a,
y − a

b − a
, a ≤ y ≤ b,

1, y > b.

Furthermore, we used the following numerical values: μ = 5, a = 0 and b = 1.
It is easy to verify that the distributions are very similar both for the customer
numbers and the total capacity, as highlighted by Figs. 1 and 2; indeed, we obtain
that Δi = 0.007 and ΔV = 0.012, respectively for i(t) and V (t).

Example 2. In the second set of simulation we changed the distribution of the
service time. In more detail, the parameters of the queuing system are as follows:

– arrival rate λ = 25
– number of servers N = 10
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Fig. 1. Example 1 – Distributions of the customers number

Fig. 2. Example 1 – Distributions of the total capacity

– gamma distribution (with parameters α and β) of the service time, i.e.

A(x) =

⎧
⎨

⎩

γ(α, βx)
Γ (α)

, x ≥ 0,

0, x < 0,
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Fig. 3. Example 2 – Distributions of the customers number

– uniform distribution (in the interval [a, b]) of customers’ capacity, i.e.

G(y) =

⎧
⎪⎨

⎪⎩

0, y < a,
y − a

b − a
, a ≤ y ≤ b,

1, y > b.

In this case (with α = 0.5, β = 2.5 and, as before, a = 0, b = 1), the approx-
imation is even closer since Δi = 0.009 and ΔV = 0.007 (see Figs. 3 and 4).

Example 3. In the third set of simulations we verified the goodness of the approx-
imation in case of discrete distribution of the customer capacity. In more detail,
we considered the following set of parameters:

– arrival rate λ = 45
– number of servers N = 6, 7, 8
– gamma distribution (with parameters α and β) of the service time, i.e.

A(x) =

⎧
⎨

⎩

γ(α, βx)
Γ (α)

, x ≥ 0,

0, x < 0,

– geometric distribution (in the form representing the number of failures before
the first success, with parameter p) of customers’ capacity:

G(y) = P {v = y} = p (1 − p)y
.



64 E. Lisovskaya et al.

Fig. 4. Example 2 – Distributions of the total capacity

Fig. 5. Example 3 (N = 6) – Distributions of the customers number

In all the scenarios we assumed α = 3.5, β = 29.7, p = 0.4 and checked how
the value of N influences the goodness of the approximation. Figures 5 and 6
points out that the approximation is rather poor for N = 6 (indeed, in this
case the values of the Kolmogorov distance are Δi = 0.064 and ΔV = 0.048),
while it improves when the number of servers is increased, as highlighted by
the corresponding values of the Kolmogorov distance (namely Δi = 0.029 and
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Fig. 6. Example 3 (N = 6) – Distributions of the total capacity

Fig. 7. Example 3 (N = 8) – Distributions of the customers number

ΔV = 0.016 for N = 7, Δi = 0.017 and ΔV = 0.005 for N = 8) that are clearly
below the admissibility threshold. Finally, a visual evidence of the goodness of
the proposed approximation is provided by Figs. 7 and 8, referring to N = 8 (for
sake of brevity, the graphs for N = 7 are omitted).

We can conclude that the accuracy of the total capacity approximation is
suitable over a wide range of system parameters and improves with the increase
of the number of servers in the system.
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Fig. 8. Example 3 (N = 8) – Distributions of the total capacity

6 Conclusions

In this paper we analyzed a generalization of M/GI/N/∞ queues with customers
of random capacity. Such models present not only theoretical interest, but also
practical relevance in modeling new network architectures (eg., CLA in LTE)
and AQM mechanisms in queues.

In more detail we considered the distribution of the total capacity of cus-
tomers in the system and, starting from our previous results in [4] and the
definition of conditional expectation, derived an approximate expression for its
characteristic function. Then, we extended the proposed methodology to the
total capacity of the customers in the waiting line and in the service, providing
the general expressions of the corresponding characteristic functions.

Finally, the goodness of the proposed approximation was verified (in terms of
Kolmogorov distance) through several sets of simulations, considering continuous
as well as discrete distributions of the customer capacity.
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Abstract. The article proposes the technique to investigate the behav-
ior of the moments of numerical characteristics of mixed-type queuing
system with a random number of sources upon the change of demands
input stream intensity and size-limited queues based on the calculation
of boundary values of the number of servicing devices at which the mean
squared deviation (MSD) of the investigated quantity does not exceed its
mathematical expectation. For the first time the linear nature of behavior
of boundary values of the number of service facilities with the change of
the given intensity of demands input stream is determined numerically.
The article also considers various types of queues arising in queuing sys-
tems. The concept of an N -th order queue is introduced, and generalized
Little’s formulas for N -th order queues in queuing systems of various
types are presented.

Keywords: Queue · Physical queue · Real queue · Quality of service
(QoS) · Queuing system · M/M/m/K · Service facility

1 Introduction

Issues of studying combined models of queuing originate from Cohen’s works
(Cohen J.W.) [1], where the combination of Erlang models and classical queuing
system was considered for the first time. A number of formulae for probabilities
of queuing system (QS) steady states, call loss probability, and first moments of
demands number in a queue and waiting time in a queue are given in the paper.

Another specific case of a combined model is a mixed system with losses and
expectation having some servers and finite memory, presented in the work of H.
Takagi [2]. In this case there are two sources of demands in the system, thus
demands from the first source will be lost if all servers are busy at the time of
their arrival in the system. Demands from the second source are accepted in a
queue only if the number of demands in it does not exceed some defined value
K. Streams of demands arriving in the system also have a Poisson character.
Formulae for probabilistic characteristics of the system and for the moments of
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 68–82, 2017.
DOI: 10.1007/978-3-319-68069-9 6
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n order of waiting time and common delay time in the system are given in the
paper. In the specific case K → ∞, this model is reduced to J. Cohen’s model.

A more general model of a queuing system which is a combination of a
multi-channel Erlang model, M/M/m/E model, and also multi-channel classical
model (M/M/m models) is considered in the work of authors [3]. A complete
formula derivation for probabilistic characteristics, and also for the first and
second moments of numerical and temporary characteristics of this type of a
queuing system is presented in work [4]; a general algorithm of queuing models
mathematical formalization taken from monographs [5,6] is used.

A mathematical model of an open multi-channel system of queuing having m
service facilities of identical efficiency with exponentially distributed service time
is presented in this paper. A demand input stream in this case is a superposition
of components’random number h, each of which represents a Poisson stream
of demands served in the order of arrival. For each type of demands entering
the system from the j-th source there is a specific size-limited queue εj where
ε0 < ε1 < ε2 < · · · < εh.

A zero (Erlang) component contains demands which are served only if there
is at least one free service facility, and they never stand in a queue. In the case,
if at the time when the next similar demand arrives in the system there is no
free service facility this demand is refused and leaves the system unserved. The
model of a queuing system, containing one such component in an input stream,
is the Erlang model; therefore we will call this component an Erlang component.

The first component includes demands which are served if there is a free
service facility, or they stand in a queue if the number of demands in the queue
is fewer than a particular number ε1. In case when there is already available ε1
or more demands in a queue, a newly arrived demand from the first source is
refused and leaves the system unserved.

The second component contains demands which are served if there is a free
service facility, or they stand in a queue if the number of demands in a queue is
fewer than a particular number ε2 > ε1. In the case when ε2 or more demands
are already available in the queue, an arrived demand from this source is refused
and leaves the system unserved, and so on.

In general, the h-th component includes demands which are served if there is
a free service facility, or they stand in a queue if the number of demands in the
queue are fewer than a particular number εh > εh−1 > · · · > ε1. In case when
there are already εh demands in the queue, a newly arrived demand from the
h-th source is refused and leaves the system unserved.

Let us accept the following designations:

ε0 = E0 = 0; ε1 = E1; ε2 = E1 + E2; · · · εj =
j∑

i=0

Ei =
j∑

i=1

Ei; a size-limited

queue (memory volume) for demands of the j-th component;

Λ0 =
h∑

j=0

λj ; Λ1 =
h∑

j=1

λj ; Λ2 =
h∑

j=2

λj ; · · · Λh = λh; where λj demand

stream intensity of the j-th component;
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R0 =
h∑

j=0

ρj ; R1 =
h∑

j=1

ρj ; R2 =
h∑

j=2

ρj ; · · · Rh = ρh; Ri = Λi

μ , where ρj is

the given demand stream intensity of the j-th component.
Demand streams arriving from each source are Poisson and have intensity

λj ; in this case total streams with intensities Λj also have, as we know, a Poisson
character. Let us designate the mean intensity of demand service by one service
facility as μ. In this case the intensity of an output stream of served demands
before the m-th states is multiple μ and depends on the number of busy channels.
After the m-th state the intensity of served demand stream is equal to mμ. The
served demand stream is also Poisson.

With accepted designations and assumptions taken into account, we will
obtain a continuous-time Markov chain.

2 Probabilistic Characteristics of a Queuing System
in a Steady-State Mode

We make up a set of Kolmogorov-Chapman equations for probabilities of QS
states in a steady-state mode of its functioning. Adding the normalization con-

dition
m+εh∑

i=0

Pi = 1, to this set of equations, we obtain a system that has a unique

solution

P0 =

⎡

⎣em (R0) +
Rm

0

m!

h∑

g=1

g−1∏

j=0

(
Rj

m

)Ej

×
⎧
⎨

⎩

Rg

m−Rg

(

1 −
(

Rg

m

)Eg
)

, Rg �= m

Eg, Rg = m

⎫
⎬

⎭

⎤

⎦

−1

; (1)

Pi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ri
0

i! P0, 0 < i ≤ m,
(

Rj+1
m

)i−m−εj j∏

g=0

(
Rg

m

)Eg Rm
0

m! P0, m + εj ≤ i ≤ m + εj+1,

0 ≤ j ≤ h − 1,

(2)

where the designation em (R0) =
m∑

i=0

Ri
0

i! is accepted - a non-complete exponential

function. The solution (1) and (2) defines expressions for probabilities of all
possible QS states of this type in a steady-state mode of its functioning.

For further calculations it is convenient to introduce the following basic prob-
abilistic characteristics of QS of this type through which all other quantities are
expressed:

- basic probability 1

PB1 =
m+ε1−1∑

i=m

Pi =
1 − (

R1
m

)E1

1 − R1
m

Rm
0

m!
P0;
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- basic probability 2

PB2 =
m+ε2−1∑

i=m+ε1

Pi =
1 − (

R2
m

)E2

1 − R2
m

(
R1

m

)E1 Rm
0

m!
P0;

...

- basic probability h

PBh =
m+εh−1∑

i=m+εh−1

Pi =
1 − (

Rh

m

)Eh

1 − Rh

m

h−1∏

g=1

(
Rg

m

)Eg Rm
0

m!
P0;

- congestion probability of the system

Pm+εh
=

h∏

g=1

(
Rg

m

)Eg Rm
0

m!
P0. (3)

As a result, a general formula for basic probability is written in the form

PBi =
i−1∏

g=0

(
Rg

m

)Eg Rm
0

m!
P0

{
m

m−Ri

(
1 − (

Ri

m

)Ei
)

, Ri �= m

Ei, Ri = m
. (4)

By means of the expression (4) it is possible to present traditional probabilistic
characteristics of a queuing system in the most compact form:

- probability of a newly arrived demand service expectation in the queue

PW =
Λ1

Λ0

m+ε1−1∑

i=m

Pi +
Λ2

Λ0

m+ε2−1∑

i=m+ε1

Pi +
Λ3

Λ0

m+ε3−1∑

i=m+ε2

Pi + · · ·

+
Λh

Λ0

m+εh−1∑

i=m+εh−1

Pi =
1

R0

h∑

i=1

RiPBi;

- probability of a newly arrived demand service refusal (probability of demand
loss)

PL =
Λ0 − Λ1

Λ0

m+ε1−1∑

i=m

Pi +
Λ0 − Λ2

Λ0

m+ε2−1∑

i=m+ε1

Pi +
Λ0 − Λ3

Λ0

m+ε3−1∑

i=m+ε2

Pi + · · ·

+
Λ0 − Λh

Λ0

m+εh−1∑

i=m+εh−1

Pi + Pm+εh
=

1
R0

h∑

i=1

(R0 − Ri) PBi+Pm+εh

=
h∑

i=1

PBi − PW + Pm+εh
= 1 − PIS − PW .

The probability of an immediate service of a newly arrived demand has, appar-
ently, a form

PIS =
m−1∑

i=0

Pi = em−1 (R0) P0. (5)
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3 Numerical Characteristics of a Queuing System

By means of probabilistic characteristics of the system found above, it is possible
to express all main features characterizing a steady-state mode of a queuing
system functioning. So, through put capacity of a queuing system is a number of
demands passing through the system per unit of time A = Λ0q = Λ0 (1 − PL) =
Λ0 (PIS + PW ) . This number includes all demands from a general input stream
except refused demands and those that did not get into the system. Relative
through put capacity of the system, thus, is a share of demands passing through
a queuing system from a general input stream of demands q = 1 − PL. The
average number of demands under service at the same time (or, that is the
same, an average number of busy channels) with formulae (2)–(5) taken into
account has a form

n̄ =
m−1∑

i=1

iPi + m

m+εh∑

i=m

Pi = R0P0em−2(R0) + m (PW + PL)

= R0P0em−2(R0) + m

(
h∑

i=1

PBi + Pm+εh

)

.

The second initial moment of demands number under service is

n2 =
m−1∑

i=1

i2Pi + m2
m+εh∑

i=m

Pi

= R0P0em−2(R0) + R2
0P0em−3(R0) + m2

(
h∑

i=1

PBi + Pm+εh

)

.

An average demands number in a queue (average queue length) are

l̄ =
m+εh∑

i=m+1

(i − m) Pi

=
h∑

i=1

{
Ri

m−Ri
[PBi − EiPm+εi

] , Ri �= m
Ei(Ei+1)

2 Pm+εi−1 , Ri = m

}

+
h∑

i=2

εi−1
Ri

m
PBi.

The second initial moment of demands number in a queue is

l2 =
m+εh∑

i=m+1

(i − m)2 Pi

=
h∑

i=1

⎡

⎢
⎢
⎣ε2i−1PBi +

⎧
⎪⎪⎨

⎪⎪⎩

Ri

m−Ri

(
m+Ri

m−Ri
+ 2εi−1

)
PBi−

− mEi

m−Ri

(
Ei + 2Ri

m−Ri
+ 2εi−1

)
Pm+εi

, Ri �= m

(Ei − 1) Ei

(
2Ei−1

6 + εi−1

)
Pm+εi

, Ri = m

⎫
⎪⎪⎬

⎪⎪⎭

⎤

⎥
⎥
⎦

+ ε2hPm+εh
.
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Further, in the considered queuing system,the queue is possible only when
all service facilities are busy. Thus, the total stream of served demands of the
whole system consists of service streams of each channel and has mμ intensity.
In this case, the probability that the system serves i demands during t time in
the event of queue, will be recorded in the form Bi (t) = (mμ t)i

i ! e−mμ t.
The function of service waiting time distribution for one demand we will find

according to a known dependence FW (t) = 1 − P (tW ≥ t) , where P (tW ≥ t)
- the probability that waiting time in a queue for one demand is more than an
advanced set time t. As it is easy to see, it is possible, firstly, in case when the
queue is absent, but a newly arrived demand finds all service facilities in the
system busy, and during t time none of facilities is released. Secondly, in case
when one demand is already in a queue and during t time the system serves no
more than one demand, or there are two demands in a queue, and during t time
no more than two demands are served, and so on. In this case, according to the
formula of full probability, we have

q [1 − FW (t)]

=
Λ1

Λ

[

B0 (t)
m+ε1−1∑

i=m

Pi + B1 (t)
m+ε1−1∑

i=m+1

Pi + · · ·

+Bε1−1 (t)Pm+ε1−1]

+
Λ2

Λ

[
ε1∑

i=0

Bi (t)
m+ε2−1∑

i=m+ε1

Pi + Bε1+1 (t)
m+ε2−1∑

i=m+ε1+1

Pi + · · ·

+ Bε2−1 (t) Pm+ε2−1]

+
Λ3

Λ

[
ε2∑

i=0

Bi (t)
m+ε3−1∑

i=m+ε2

Pi + Bε2+1 (t)
m+ε3−1∑

i=m+ε2+1

Pi + · · ·

+Bε3−1 (t) Pm+ε3−1] + · · ·

+
Λh

Λ

⎡

⎣
εh−1∑

i=0

Bi (t)
m+εh−1∑

i=m+εh−1

Pi + Bεh−1+1 (t)
m+εh−1∑

i=m+εh−1+1

Pi + · · ·

+Bεh−1 (t) Pm+εh−1] . (6)

After a number of intermediate calculations, it is possible to obtain the fol-
lowing expressions for finite-sums sequence in square brackets in the right-hand
side of this ratio. As a result, substituting obtained ratios into the right member
of a formula (6), we will finally find
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FW (t) = 1 − e−mμt Pm−1

q

+

{
R1

m − R1

[

eε1−1 (R1μt) −
(

R1

m

)E1

eε1−1 (mμt)

]

+
h∑

i=2

Ri

m − Ri

[
i−1∏

g=1

(
Rg

m

)Eg

eεi−1−1 (mμt)

+
i−1∏

g=1

(
Rg

Ri

)Eg [
eεi−1 (Riμt) − eεi−1−1 (Riμt)

]

−
i∏

g=1

(
Rg

m

)Eg

eεi−1 (mμt)

]}

;

Hence, the density of a demand waiting time distribution for service in a queue
is

fW (t) =
dFW (t)

dt
= e−mμt Pm−1

q

×
{

Λ1 eε1−1 (Λ1t) +
h∑

i=2

Λi

i−1∏

g=1

(
Rg

Ri

)Eg [
eεi−1 (Λit) − eεi−1−1 (Λit)

]
}

(7)

and then, mean waiting time of demand service in a queue is

t̄W =

∞∫

0

tfW (t) dt

=
1

Λ0q

h∑

i=1

{
Ri

m − Ri
[PBi − EiPm+εi

] +
Ri

m
εi−1PBi

}

=
l̄

A

in compliance with J. Littl’s formulae. In the same way the second initial moment
of a demand waiting time in a queue is

t2W =

∞∫

0

t2fW (t) dt

=
1

Λ0q

h∑

i=1

Ri

⎧
⎪⎨

⎪⎩

2(PBi−EiPm+εi)
μ(m−Ri)

2

[
1 + εi−1

m (m − Ri)
]

Pm

3m2μ

i−1∏

g =0

(
Rg

Ri

)Eg

+ εi−1(εi−1+1)PBi

m2μ − Ei(Ei+1)Pm+εi

mμ(m−Ri)
, Ri �= m

× [εi (εi + 1) (εi + 2) − εi−1 (εi−1 + 1) (εi−1 + 2)] , Ri = m

}

.

Let us note that the ratio (7) gives a possibility to calculate moments of any
order as a demand waiting time in a queue for service.
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4 Numerical Investigation of Queue Parameters Behavior
in QS

In actual conditions of objects operating according to the principle of queuing
systems, the problem of queues and delays in service is always topical. It natu-
rally causes desire to organize the process of their exploitation in such a way that
the operation of these objects and systems would proceed in more stable modes.
It should be borne in mind that a single parameter which could be changed
more or less quickly in actual practice for multi-channel devices in practice is
the number of homogeneous service facilities m working in parallel. Therefore,
we will set the task to study the work of QS in the following way.

Let us investigate the nature of behavior of the moments of queue length
and waiting time of the demand in queue with the change of the number of ser-
vice facilities m. For this purpose, let us formally replace factorial dependences
m in formulas for probabilistic characteristics [7] through which the moments
of the number of demands in the queue and waiting time are expressed with
corresponding gamma-functions G(m + 1); m is conditionally regarded as a con-
tinuous quantity. Dependencies of mathematical expectation and variance of
demands number waiting for service in the queue on the number of service facil-
ities show that there is some boundary value m corresponding to a cross point
of the moments of demands number in the queue which divides the axis m into
two parts. The first part is the area in which the mean squared deviation (MSD)
of the queue length is within the limits of mathematical expectation; the second
part is the area in which the dispersion of demands number in the queue exceeds
the mean value. The system functioning mode at which MSD of the queue length
does not exceed its mean value is pretty stable and predictable from the point
of view of operation.

In this case it is interesting to trace the dynamics of m change that is bound-
ary when the given intensity components of demands input stream change and
the queue length for corresponding components of input stream is limited.

A special program was developed to conduct a series of computational exper-
iments to calculate m boundary according to the mathematical model with
known as initial data of given intensity components of the demands input stream
and corresponding size-limited queues. Varying the given components inten-
sity of demands input stream ρi within 1 to 12, we found values m1 bound-
ary for the moments of queue length and m2 boundary for the moments of
demand servicing-waiting moments in a queue at various values of step size
between queue length limitations for various components of demands input
stream Ei = 1; 2; 5; 10.

As an example let us consider the queuing model with a two-component
demand input stream and two queue length limits for each component. For this
purpose let us set λ0 = 0; μ = 1; E0 = 0; h = 2 in the program. As
λ0 = 0, the zero (Erlang) component in this model is absent. Here ε1 = E1 is
queue length limit for demands of the first component of the input stream with
the given intensity ρ1, and ε2 = E1 + E2 is queue length limit for demands of
the second component of the input stream with the given intensity ρ2.
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The behavior of m1 and m2 boundary with the change of given intensity
ρ1 and ρ2 is linearly increasing. We will call obtained straight lines limits of
stability. Each point lying on the stability boundary corresponds to equal values
of mathematical expectation and MSD of the queue length (for m1 ), and waiting
time to service the demand in the queue (for m2 ) at a definite value of the given
intensity of demand input stream. The coefficients of variation of the queue
length and waiting time in the queue are equal to the unity. In fact, it is the
border above which MSD exceeds mathematical expectation. The area below the
straight line corresponds to the stable mode of system operation at which the
mean squared deviation is within mathematical expectation.

When ρ1 > 1 obtained straight lines divide the coordinate plane into 3 areas:
the upper one corresponds to an unstable mode of system operation both accord-
ing to the queue length and waiting time; the middle one corresponds to the
stable mode as for the queue and unstable as for waiting time; the lower – to the
stable mode on the queue and waiting time as well. It turns out that the set of
values of the number of service facilities corresponding to the stable mode of sys-
tem operation is limited from above by the stability boundary for waiting time.
Both straight lines form a multiplicative strip of instability in regard to waiting
time; its width enhances upon increasing of the given stream intensity ρ1.

When the step between queue length limits for demands of different com-
ponents is E1 = E2 = 2, stability boundaries on the queue length and waiting
time when the given intensity of the first component of the stream is changed ρ1,
form a multiplicative instability strip of the system according to waiting time.
In case the given intensity of the second component of the stream changes, ρ2
form the additive instability strip of the system as for waiting time; its width
does not practically change with the increase of ρ2.

When the step between queue length limits for demands of different compo-
nents is E1 = E2 = 5, the further narrowing of instability strips with regard to
waiting time both for multiplicative at increase of the given intensity of the first
component of stream ρ1 and additive is observed when the given intensity of the
second component ρ2 changes.

Finally, when the step between queue length limits for demands of different
components is E1 = E2 = 10, instability strips on waiting time practically
disappear turning into a single boundary of the stability area both in queue and
waiting time as well.

In case of a two-component service model with two queue length limits for
each component of the demands input stream with intervals between limits E1 ≥
10 and E2 ≥ 10, boundary values of the number of service facilities (inside of
which MSD queue lengths and waiting time meet corresponding mathematical
expectations) practically coincide. They are approximately equal to the sum of
given intensity of all components of demands input stream. Also boundaries of
stability on queue length and waiting time are straight lines and at E1 ≥ 10 and
E2 ≥ 10 their slope angle makes 45◦.
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For a two-component queuing model with queue limits there is an opportunity
to investigate behavior of m1 and m2 boundary at simultaneous change of the
given intensity of both components of demands input stream ρ1 and ρ2.

Having conducted a cycle of corresponding computational experiments at
the step between queue length limits for demands of different components E1 =
E2 = 5, we obtain hypersurfaces of stability on queue length and waiting time
of the demand in a queue, very close to planes.

Obtained hypersurfaces break a coordinate space into 3 parts: upper is the
space of system instability on queue and waiting time; low is the space of system
behavior stability both on the queue length and demands waiting time in the
queue; middle – the layer corresponding to an unstable operation mode of the
system only on waiting time.

5 Higher Orders Queues

An N -th order queue will be called the queue calculated in case when there are
N claims in the system as minimum, and some of them are in the memory. If
N = 0 we have a usual mathematical queue, when N = m where m - the
number of channels in the service facility, we have a physical queue which is
explicitly studied in work [8]. At N = m + 1 we have the so-called real queue
[5], [6]; at all values N > m + 1 we have consequently higher orders queues [9].

Apparently, T. Saaty was the first to state the issue of real queues in his clas-
sical monograph [10]; it specified the value for the M/M/m system representing
itself as an average number of demands which stay in the queue for some time
to be served.

The physical sense of the real queue defined in the above-stated sense is that
in this case a newly arrived into the system claim finds busy all service channels
(all devices) and, at least, one more claim in the queue waiting for the service.
Thus, the minimum mean length of a real queue (in case the intensity of an
input stream of claims tends to zero) is unity but not zero as a general and well-
studied mathematical queue has. As we see, the real queue is understood as the
situation when there is at least one claim in the queue for the service on a par.

However, this numerical characteristic is not the only one to characterize real
queues in queuing systems.

Along with real queues in the sense explained above, it is possible to consider
another numerical characteristic of QS which, for example, in the standard report
of the GPSS simulation system has the name “a queue without zero inputs”.
Here, zero input is understood as such arrival of the claim in the system at
which there is, at least, one free service channel in the multi-channel device,
and in this case the claim is served immediately. Let’s emphasize that unlike the
situation considered above, in this case we imply the situation when at the time
of a new claim arrival in the system all service channels of the service facility
are occupied, but the queue, as such, can be absent. In the latter case, the claim
expecting service has no other service waiting claims before it; it is just before
the service facility in which all channels are busy at that time. Thus defined the
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“queue without zero inputs” is calculated considering only those claims which
really expected service, and without taking into account claims which did not
have to wait as at the time of their arrival in the system one serving channel
was free at least. Queue mean length without zero inputs is, apparently, longer
than mean length known for all and more habitual mathematical queue but, in
its turn, it is less than mean length of the real queue considered above. It is
clear, that the minimum mean length of such queue is zero, as well as the usual
mathematical queue is, i.e. on average such a queue, as well as a mathematical
queue, can have any number of claims.

Thus, if the usual mathematical queue is calculated as the average for all
claims which visited the system, then the queue without zero inputs is calculated
as the average value minus those claims which were served immediately as they
got into the system when, at least, one of service channels was free. The so-called
real queue in this case is calculated as the average minus both those claims which
were served without a queue, and those ones which found all service channels
occupied but were the first in the service waiting list as there were no other
claims in the system at this moment. In work [8] it was proposed to call the
queues calculated without zero inputs as physical queues.

It is clear, that this result can be generalized if the concept of higher orders
queues of systems with queues is introduced in the following way.

Let the queuing system have m serving channels with identical service inten-
sity μ. In this case we will call the queue of a 0-th order the average queue
calculated on condition that when a new claim enters the system, there can be
any number of claims including the case when there are no claims at all, i.e.
the system can be the completely free from claims. In this case we will call the
queue of the 1-st order the average queue calculated on condition that when a
new claim enters the system, it already contains at least one claim, and so on. It
is clear, that upon this the physical queue means an average queue in all those
cases that when the claim enters the system, there are at least m claims in it;
thus according to this nomenclature, the physical queue is a queue of the m-th
order, Then the real queue is a queue of the m + 1-th order, etc.

Thus, the N -th order queue is the average queue calculated on condition that
when a new claim enters the system there are already Nclaims in it, and some
of them can be in the memory. At the same time the case N = 0 corresponds
to a usual mathematical queue; for N = m we have a physical queue; let us
remind that in the system of GPSS World simulation modeling this characteristic
has the name “a queue without zero inputs”. In case N = m + 1 we have a
real queue; for those cases when N > m + 1 we have higher orders queues.
In case all serving channels are busy, a newly arrived claim will have to expect
service, the minimum quantity of claims in the physical queue is equal to zero
in the memory; for the real queue it is equal to unity, and so on. It should be
noted that physical and real queues have the greatest deviations from the known
mathematical queue at small values of the intensity of claims stream entering
the system.
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As it is known, mean processing time of one claim in the system t̄S , mean
staying time of claims in the queue t̄W and the common mean staying time of
the claim in the system in general t̄T = t̄S + t̄W for Markov queuing systems
are bound to corresponding discrete characteristics of QS by the following three
formulas [5,6]:

tS = n̄/A; t̄W = l̄/A; t̄T = k̄/A; (8)

where A is throughout capacity of the system, i.e. an average number of claims
served by the system in unity of time. Discrete characteristics of the system
are understood respectively as an average number of busy channels n̄ , mean
length of the queue l̄, and an average number of claims in the system in general
k̄ = n̄ + l̄. Sometimes, these formulas are written in the form

t̄S = n̄/λ; t̄W = l̄/λ; t̄T = k̄/λ,

when the total intensity of claims stream λ coming into the system is in the
denominator.

In fact, however, the denominator of these formulas should not be made of
the total intensity of claims stream but of that part only which corresponds
to those claims that are really transferred through the system (more precisely,
through the service facility), i.e. absolute throughout capacity of the system A.

Formulas (8) are commonly called Little’s formulas. At first, the result which
engineers used for a long time existed as several empirical formulas, i.e. in the
form of some kind of “folkloric theorem”, as it is said. Apparently, J. D. C.
Little was the first person who gave it a strict formulation in 1961. The intuitive
proof of Little’s formulas comes to the fact that in a steady state mode the next
demand entering the system finds in it the same average number of demands
which remains in the system when this demand leaves it. This quantity is just
equal to the product of claims stream intensity transferred through the system
(or its any subsystem) multiplied by the mean time of their staying in this system
(subsystem):

n̄ = A t̄S ; l̄ = A t̄W ; k̄ = A t̄T . (9)

Direct mechanical analog of formulas (9) is a well-known relation for the way
passed at a steady movement s based on moving velocity υ and travel time t.

s = υ t.

The case is somewhat different with QS numerical characteristics concerning
a real queue and higher orders queues in these systems. Let us remind that the
N -th order queue we have called the average queue calculated on condition that
when a new claim enters the system there are already 2N claims in it, and some
of them can be in the memory.

At the same time N = 0 corresponds to a usual mathematical queue; for
N = m we have a physical queue which in the system of GPSS World simulation
modeling has the name “a queue without zero inputs”.

In case N = m + 1 we have a real queue; for those cases when N > m + 1
we respectively have higher orders queues.
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For a physical queue, as it is shown in work [8], the corresponding ratio has
the form quite similar to (8):

t̄Wphys = l̄phys/A (10)

It is possible to ascertain that the relation (10) is applicable for all types
of queues from a mathematical to a physical queue, including the latter one,
however for a real queue and higher orders queues this formula becomes unfair.

Somewhat different is the situation with numerical characteristics of QS con-
cerning real queues and higher orders queues in regard to a real queue in these
systems. In works [5,6] it was found out that the following relation is performed
for the systems of M/M/m and M/M/m/E classes (however, all numerical char-
acteristics of the first ones can be obtained by ultimate passing from numerical
characteristics of the second ones)

t̄Wreal = l̄real/mμ (11)

as the real queue moves with velocity mμ to serve demands by the multi-channel
device. It is possible to show that the same dependence will remain fair for all
types of higher orders queues for which N > m + 1:

t̄WN = l̄N/mμ (12)

Relations (8)–(12) connect parameters of usual mathematical, physical and
real queues in open queuing systems and parameters of higher orders queues in
these systems as well. It is clear that these relations will be absolutely similar for
close-loop queuing systems. At the same time the obtained system of formulas
(8)–(12) may be called as generalized Little’s formulas.

As we see, all higher orders queues in queuing systems of various types from
the point of view of claims traveling velocity in these queues can be divided into
two unequal classes. In this case, the first class will include all types of queues
from mathematical to physical inclusive, which move with a transferring velocity
of claims through system A. Thus m + 1 types of queues of various orders from
zero to m-th are in the first class. The second, a more extensive class, includes
a real queue and all higher orders queues in regard to a real queue for which,
according to the definition, we have N > m + 1. All these queues move with
the service velocity mμ. The number of queues of various orders in this class is
not limited.

Further, the work [8] provides formulas obtained for the mean length of a
physical queue for queuing systems of various types. In particular, the expression
for a mean length of a real queue of the system with an unlimited memory volume
(within M. Kendall’s symbolism – M/M/m model) is the following

l̄phys =
ρ

m − ρ
.
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But for the M/M/m model A = λ, and then according to formulas (10) and
(11) we have

t̄Wphys = l̄phys

λ = 1
μ(m−ρ) ;

t̄Wreal = l̄real

mμ = 1
μ(m−ρ) .

i.e. for the model with an unlimited queue the mean staying time of one claim in a
physical queue coincides with the mean staying time of the claim in a real queue:
t̄Wphys = t̄Wreal. The obtained result can be called the theorem on physical and
real queues in queuing systems with an unlimited memory volume.

6 Conclusion

Generalizing data of all computational experiments submitted in the work it is
possible to draw the following conclusion.

In queuing systems of multicomponent streams stable operation modes of the
system on the queue length and waiting time of demands are possible. Bound-
aries of these modes correspond to single coefficients of queue length variation
and demands servicing-waiting in system. Regardless the number of components
in demands input stream and values of the step between queue length limits
for various components of the stream, boundary values of the number of service
facilities depending on the given intensity of various stream components form
straight lines described by the equation m (ρi) = a + bρi where ρi- given inten-
sity of the i -th component of demands input stream. When the step between
queue length limits for various components of demands input stream is Ei ≥ 10,
coefficients a and b accept values a =

∑

j �=i

ρj , b = 1. Thus, at Ei ≥ 10 the bound-

ary value of the number of service facilities is numerically equal to the sum of
the given intensity of all input stream components. If above this limit, the oper-
ation mode of the system will be unstable both on the queue length and demand
waiting time.

The proposed results of the work can be used to project and operate quite a
wide class of objects and systems to assess their efficiency, and also to develop
projects of modernization or construction of various technical objects working
according to the principle of queuing systems.
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Abstract. In this paper, model of inventory system with positive ser-
vice time and perishable inventory is studied. It is assumed that some
demands do not acquire the item after service completion and order
replenishment lead time is a positive random variable. (S − 1, S) order
replenishment policy is applied. The exact and approximate methods
are developed for calculation of joint distributions of the inventory level
and number of customers in the system. The formulas for the system
performance measures calculation are given as well. The high accuracy
of formulas are confirmed by numerical experiments. The problem of
choosing the optimal server rate to minimize the total cost is solved.

Keywords: Perishable inventory systems · Positive service time ·
(S − 1, S) order replenishment policy · Calculation methods

1 Introduction

Service time of demands in classical models of Inventory Systems (IS) is usually
assumed to be equal to zero (or inconsiderable). However, in real systems this
assumption does not always hold. Therefore, IS models where demand service
time is a positive quantity were introduced. These models with positive demand
service time are called Queueing-Inventory Systems (QIS) and were first studied
in [1,2]. Detailed review of QIS models is given in [3].

In QIS model, usually, it is assumed that after service completion the inven-
tory level decreases. However, in works [4,5] are given the real systems where
this condition does not hold and the models of such QIS are studied.

In this paper, studied QIS models are different from the models in [4,5]
in following moments. Firstly, unlike in [4,5], the QIS models with perishable
inventory are studied (Perishable QIS, PQIS). Secondly, we assume that the
arrived demands enter the queue even when the inventory level is zero, while they
become impatient in the queue. Thirdly, the mean service time for demands that
acquire the item is different than for the demands do not acquiring the item.
Finally, it is assumed that the replenishment orders are placed according to
(S − 1, S) policy.
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 83–96, 2017.
DOI: 10.1007/978-3-319-68069-9 7
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PQIS models have been extensively studied and developed in a peer-reviewed
scientific literature. Numerous literature references on this subject are given in
the review works [6–9], as well as, in monography [10]. The results of analysis
of PQIS models with positive service time performed in [11–17] could be found
in [18]. It should be noted that, the order replenishment policies (ORP) used in
the most works belong to a (s, S) policy class.

At the same time, studying PQIS models with positive service time using
different ORP in order to find the most optimal policy is a popular research
subject. In this paper, (S − 1, S) policy is used. According to this policy, when
inventory level decreases (after demand service completion or inventory perish-
ing) an order of unit size is placed.

Some serious results of PQIS analysis with (S−1, S) policy could be found in
[19–21]. In these works, service time is assumed to be equal to zero, moreover in
[19] the inventory level is right continuous. Analysis of available literature shows
that the PQIS models with positive service time and (S − 1, S) policy are not
studied. Therefore, methods of exact and asymptotic analysis of PQIS model
with finite queue length are given in this paper.

The paper is organized as follows. In Sect. 2, the description of the investi-
gated PQIS model is presented and main performance measures are introduced.
Exact and approximate methods to calculate the steady-state probabilities as
well as performance measures are developed in Sect. 3. High accuracy of the
developed approximate formulas by using numerical experiments are demon-
strated in Sect. 4. The results of solution of the problem for choosing optimal
server rate to minimize the total cost are shown as well. Conclusion remarks are
given in Sect. 5.

2 Model Description and Problem Statement

The studied system has a finite storage warehouse of size S and continuous
inventory level monitoring. Each inventory item independently perishes after a
random time with exponential distribution function with parameter γ, γ > 0.
At the same time, the item reserved for the demand service is not perishable.
In other words, inventory level decreases not only after the demand service, but
also because of the item perishing.

Demands are arriving into the system according to Poisson arrival process
with the intensity λ for acquiring the inventory items. For the simplicity, we
assume that the demands acquiring the item requires unit resource, that is,
after service completion of such demands inventory level decreases for a single
unit.

If the inventory level is positive upon arrival moment the demand is taken
for the service with probability 1 if the server is idle by that time; otherwise,
demand joins the queue. Demands are assumed to join the queue even if the
inventory level is zero. If upon arrival moment of the demand the inventory
level is zero, then according to Bernoulli trial with the parameter φ1 it joins
the queue and waits for inventory replenishment for a certain time, while with
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the probability φ2 demand leaves the system being unserved, φ1 + φ2 = 1. In
that cases, demands in queue are impatient, that is, if inventory level is zero
every demand independently waits in the queue for an exponentially distributed
random time with mean τ−1.

Queues with finite length is studied in this paper. In the model with finite
queue, it is assumed that if at the moment of demand arrival there are N demands
in the system (including the one that is being served) then it is lost with prob-
ability 1.

After service completion according to Bernoulli trial with parameter σ1

demand refuses to acquire the item, while with probability σ2 acquires, where,
σ1 +σ1 = 1. If the demand refuses to acquire the item its service time has expo-
nential distribution with mean μ−1

1 ; otherwise its service time is exponentially
distributed with mean μ−1

2 , μ2 < μ1.
Inventory replenishment is performed according to (S − 1, S) policy with

delay, that is, the order lead time is a positive random quantity that has an
exponential distribution with mean ν−1. So, if the number of pending orders at
the moment is n, then the replenishment rate is nν.

Problem is to find the joint distributions of inventory level and number of
demands in the system. Solution of this problem will allow to calculate the
performance measures of PQIS model, as well as, to perform its cost analysis. The
main performance measures are the average values of the following quantities:
inventory level Sav, inventory perishing rate Γav, average reorder rate RR, loss
rate of the customers due to balking RLb, loss rate of the demands due to
reneging RLr, average queue length Lav.

3 Methods for Calculation of the System Performance
Measures

System is modeled by 2-D MC with the states (m,n), where m - is inventory
level, n - is number of demands in the system. State Space (SS) of the system is
defined as follows:

E = {(m,n) : m = 0, 1, . . . , S, n = 0, 1, . . . , N} (1)

Transition rate from the state (m1, n1) ∈ E to (m2, n2) ∈ E is denoted by
q((m1, n1), (m2, n2)). All of these rates form generator matrix (Q-Matrix) of the
given 2-D MC. Let’s consider the problem of their calculation.

Transition between the states of the system are related to the following
events: (i) demand arrival, (ii) service completion, (iii) product perishing, (iv)
leaving the queue due to impatience and (v) inventory replenishment.

Taking into account assumed replenishment policy, following cases are consid-
ered while determining the initial state (m1, n1) ∈ E of the system: (1) m1 > 0;
(2) m1 = 0.

When m1 > 0 transition from the state (m1, n1) because of the events (iv) is
impossible, as in that case, demands in the queue are patient. Other transitions
are defined as follows.
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If the number of demands in system is less than N at the moment of demand
arrival (event (i)) then the number of demands increases by one unit, that is,
transition to the state (m1, n1+1) ∈ E occurs; intensity of that transition is equal
to λ. If after service completion the demand refuses to acquire the item (event of
type (ii)), number of demands in the system is decreased by one, while inventory
level remains unchanged, i.e. transition to the state (m1, n1 − 1) ∈ E occurs and
intensity of such transition is μ1σ1. If after service completion demand acquires
the item (event of type (ii)), then both number of demands and inventory level
decreases by one, that is, transition to the state (m1 − 1, n1 − 1) ∈ E occurs;
intensity of such transition is μ2(1−σ1). After inventory item perishes (event of
type (iii)) transition to the state (m1 − 1, n1) ∈ E occurs, the intensity of such
transition is equal to m1γ for case n1 = 0 and to (m1 − 1)γ for case n1 > 0. At
the moment of order replenishment (event of type (v)) transition to the state
(m1 + 1, n1) ∈ E occurs; intensity of such transition is equal to (S − m1)ν.

Consequently, for the case m1 > 0, non-negative elements of Q-matrix are
defined as follows:

q((m1, n1), (m2, n2)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ, if m2 = m1, n2 = n1 + 1
μ1σ1, if m2 = m1, n2 = n1 − 1
μ2σ2, if m2 = m1 − 1, n2 = n1 − 1
m1γ, if m2 = m1 − 1, n2 = n1 = 0
(m1 − 1)γ, if m2 = m1 − 1, n1 > 0, n2 = n1

(S − m1)ν, if m2 = m1 + 1, n2 = n1

0, otherwise

(2)

Now, let at the initial state (m1, n1) ∈ E holds the condition m1 = 0. In
this case transition from the current state because of the events (ii) and (iii) is
impossible, as in these states demand service could not be performed because
of zero inventory level. In these states transitions for the events (i) and (v) are
defined analogously as in (2) and the arrived demand joins the queue with the
probability φ1. Transition intensities because of demand impatience (event of
type (iv)) are defined as follows: after the demand leaves the system because of
impatience demand count decreases by one unit, while, inventory level remains
unchanged, that is, transition to the state (0, n1−1) ∈ E occurs; intensity of such
transition is equal to n1τ . At the moment of the order replenishment transition
to the state (1, n1) occurs; intensity of such transition is equal to Sν. So, for the
case m1 = 0 non-negative elements of Q-matrix are defined as follows:

q((0, n1), (m2, n2)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λφ1, if m2 = 0, n2 = n1 + 1
n1τ, if m2 = 0, n2 = n1 − 1
Sν, if m2 = 1, n2 = n1

0, otherwise

(3)

It is clear from the formulas (2)−(3) that 2-D MC is irreducible and there
exists stationary mode. Consequently, the steady-state probabilities p(m,n),
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(m,n) ∈ E are the only solution of the system of balance equations (SBE),
that are constructed based on the formulas (2) and (3). This SBE represents the
set of linear equations of dimension (S +1)× (N +1). Due to its large dimension
and obviousness the explicit form of SBE is not given in this work.

Required performance measures of the given PQIS are calculated through the
steady state probabilities. So, the mean inventory level and the average number
of demands in the system are calculated as the mathematical expectation of the
corresponding random variables:

Sav =
S∑

m=1

m

N∑

n=0

p(m,n); (4)

Lav =
N∑

n=1

n
S∑

m=0

p(m,n); (5)

As the inventory item reserved for the servicing demand could not perish the
average perishing intensity is calculated as follows:

Γav = γ

(
S∑

m=1

(mp(m, 0) +
N∑

n=1

(m − 1)p(m,n))

)

(6)

Replenishment order is placed either every time after servicing the demands
that require the inventory item or after the item perishing. Consequently, the
average reorder rate is calculated as follows:

RR =
S∑

m=1

(mγp(m, 0) + ((m − 1)γ + μ2σ2)(1 − p(m, 0))) (7)

As it is noted above, the balking occurs if at the moment of demand arrival the
waiting hall (queue) is full. Therefore, the average loss rate of demands due to
balking RLb is given by:

RLb = λ

(
S∑

m=0

p(m,N) + φ2

N − 1∑

n=0

p(0, n)

)

(8)

The reneging occurs only in the case of zero inventory level. Therefore, the
average loss rate of the demands due to reneging RLr is given by:

RLr = τ

N∑

n=1

p(0, n) (9)

Analytic solution for the system could not be found due to the complexity of
Q-matrix. The known numerical methods of linear algebra are only applicable
for the Markov Chains of the moderate dimensions and become useless for the
chains of larger dimension.
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Therefore, approximate method [18] is used in this work that allows to per-
form asymptotic analysis of the performance measures of the given system for
the large sizes of the inventory level and waiting hall for demands.

This method could be effectively applied for the models that work under large
load; in other words, it is assumed that demand arrival intensity is far larger than
the product perishing and replenishment rate, that is, λ � max{γ, ν}. It should
be noted that, this assumption is hold in many real PQIS. Moreover, as it was
stated above, μ1 � μ2.

Taking into account the above conditions, let’s consider the following split of
the initial state space (1):

E =
S⋃

m=0

Em, Em1

⋂
Em2 = 0, m1 �= m2 (10)

where Em = {(m,n) : n = 0, 1, . . . , N}, m = 0, 1, . . . , S.
Additionally, we conclude that the transition intensities inside a row are far

larger than the transition intensities between the rows. Further, based on the
split (10) of the initial state space (1), the following merge function is defined:

U((m,n)) = 〈m〉

where 〈m〉 is merged state that consists of all the states Em, m = 0, 1, . . . , S.
Let’s denote Ω = {〈m〉 : m = 0, 1, . . . , S}.

Approximate values of steady state probabilities p̃(m,n), (m,n) ∈ E of the
current model are defined as follows (see [18]):

p̃(m,n) = ρm(n)π(〈m〉) (11)

where ρm(n) - is the probability of state (m,n) inside the merged model with
the state space Em and π(〈m〉) - is the probability of a merged state 〈m〉 ∈ Ω.

Steady-state probabilities of the split and merged models are calculated as
follows.

In the all states (m,n) within the split model with the state space Em the
first component is a constant, therefore, all the states of such class is determined
only by the second component. Consequently, in the analysis of the split models
with the state space Em the state (m,n) ∈ Em could only be specified with the
second component, so for the convenience, while studying the split models with
the state space Em its states (m,n) are simply denoted by n, n = 0, 1, . . . , N .

It is concluded from the formulas (2) that the state probabilities within all
the split models with the state space Em, m = 1, 2, . . . , S are the same as in
classical model M/M/1/N with load a = λ/μ1σ1, i.e.:

ρm(n) = an 1 − a

1 − aN+1
, m = 1, 2, . . . , S (12)
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Remark 1. As the quantities ρm(n) do not depend on the index m, m =
1, 2, . . . , S below these indexes are omitted.

It is concluded from the formula (3) that the state probabilities within
the merged model with the state space E0 are the same as in Erlang model
M/M/N/0 with load b = λφ1/τ , that is:

ρ0(n) =
θ(n)

N∑

n=0
θ(j)

, n = 0, 1, . . . , N (13)

Further, the following notation is accepted: θ(j) =
bj
j!

Let’s denote the transition intensity from the merged state 〈m1〉 to another
merged state 〈m2〉 with q(〈m1〉, 〈m2〉), 〈m1〉, 〈m2〉 ∈ Ω. According to [18] these
parameters are defined as follows:

q(〈m1〉, 〈m2〉) =
∑

(m1,n1)∈Em1 ,

(m2,n2)∈Em2

q((m1, n1), (m2, n2))p(m1, n1) (14)

Taking into account (2), (3) and (12), (13), (14) after some transformations we
found that the given intensities are calculated as follows:

q(〈m1〉, 〈m2〉) =

⎧
⎪⎨

⎪⎩

Λ(m1), if m2 = m1 − 1
(S − m1)ν, if m2 = m1 + 1
0, otherwise

(15)

where Λ(m1) = m1γρ0 + (1 − ρ(0))(μ2σ2 + (m1 − 1)γ), m1 = 1, 2, . . . , S
Then from (15) we get:

π(〈m〉) =
S!νm

(S − m)!
π(0)

m∏

i=1

Λ(i)
, m = 1, 2, . . . , S (16)

where π(0) =

⎛

⎜
⎜
⎝

S∑

m=0

S!νm

(S − m)!
1

m∏

i=1

Λ(i)

⎞

⎟
⎟
⎠

−1

Remark 2. We assume that
n∏

i=m

xi = 1, if m > n

Afterwards, taking into account (12), (13), (14), (15), (16) from (11) approximate
joint distributions p̃(m,n), (m,n) ∈ E of inventory level and number of demands
in the system are found. Using these probabilities after some transformations
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from (4), (5), (6), (7), (8), (9) following formulas are obtained for the calculation
of performance measures:

Sav ≈
S∑

m=1

mπ(〈m〉)

Γav ≈ γ

S∑

m=1

π(〈m〉)(mρ(0) + (m − 1)(1 − ρ(0)))

RR ≈
S∑

m=1

(mγρ(0)π(m) + (1 − ρ(0)π(〈m〉))((m − 1)γ + μ2σ2))

RLb ≈ λ(ρ(N)(1 − π(〈0〉)) + π(〈0〉)(ρ0(N) + φ2(1 − ρ0(N))))

RLr ≈ τπ(〈0〉)
N∑

n=1

nρ0(n)

Lav ≈ π(〈0〉)
N∑

n=1

nρ0(n) + (1 − π(0))
N∑

n=1

nρ(n)

4 Numerical Results

Due to the limitations to the volume of the work, only accuracy of the steady-
state probabilities of the initial 2-D MC and performance measures is considered.
It should be noted that, the evaluation of the accuracy of given formulas analyt-
ically is impossible. Therefore, comparative analysis of the obtained numerical
results is used. The accuracy of the approximate values are evaluated by using
following norms:

Maximum absolute value of differences:

‖N‖1 = max
n∈E

|p(n) − p̃(n)| (17)

Cosine similarity:

‖N‖2 =

∑

n∈E

p(n)p̃(n)
√ ∑

n∈E

(p(n))2
√ ∑

n∈E

(p̃(n))2
(18)

Jaccard coefficient [22]:

‖N‖3 =

∑

n∈E

min{p(n), p̃(n)}
∑

n∈E

max{p(n), p̃(n)} (19)

Results of the comparative analysis of the steady-state probabilities for the
exact and approximate methods are given in Table 1. The initial parameters of
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Table 1. Estimation of accuracy of the steady-state probabilities versus various norms

Values of parameters Norms

S N λ ‖N‖1 ‖N‖2 ‖N‖3
10 10 60 0.009167 0.999201 0.930769

30 60 0.009354 0.999193 0.931855

50 60 0.00966 0.99913 0.928858

70 60 0.010289 0.998972 0.914683

20 10 60 0.006392 0.999313 0.932304

30 60 0.006392 0.999313 0.932337

50 60 0.006393 0.999312 0.932285

70 60 0.006393 0.999312 0.932011

90 60 0.006393 0.999311 0.931672

110 60 0.006394 0.999311 0.931521

30 10 60 0.005361 0.999334 0.932366

30 60 0.005361 0.999334 0.932366

50 60 0.005361 0.999334 0.932366

70 60 0.005361 0.999334 0.932361

90 60 0.005361 0.999334 0.932355

110 60 0.005361 0.999334 0.932352

40 10 40 0.006973 0.998495 0.900238

60 0.00465 0.999344 0.932367

30 40 0.006973 0.998495 0.900238

60 0.00465 0.999344 0.932367

50 40 0.006973 0.998495 0.900237

60 0.00465 0.999344 0.932367

70 40 0.006973 0.998495 0.900237

60 0.00465 0.999344 0.932367

90 40 0.006973 0.998495 0.900237

60 0.00465 0.999344 0.932367

110 40 0.006973 0.998495 0.900237

60 0.00465 0.999344 0.932367

120 60 0.00465 0.999344 0.932367

50 10 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

30 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

50 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

70 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

90 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367

110 40 0.006206 0.998509 0.900238

60 0.00413 0.999351 0.932367
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the system are assumed as follows: μ1 = 15, μ2 = 3, γ = 2, ν = 1, τ = 0.5, σ1 =
0.3, φ1 = 0.6

The exact values of steady-state probabilities are calculated from correspond-
ing balance equations using MATLAB package. Solving time of balance equations
depends on its dimension and takes several hours for S × N > 5000 (e.g.: for
S = 50 and N = 100 with quad core CPU Core i7 2.40 Ghz and 8 GB RAM at
least 3–4 h are required). It should be noted that, in the same PC approximately
3–4 s are needed for the calculation of performance measures for S = 100 and
N = 500 while using the approximate method.

It is obvious from the Table 1 that the higher the arrival intensity is, the
better accuracy of the calculated steady state probabilities of the model with
respect to all norms is acquired, that is, with the increase of the arrival intensity
the norm (17) is approaching 0, while the norms (18) and (19) are approaching
1. It is clear from split scheme (10) that with the increase of arrival intensity, the
transition intensities between the state classes Em,m = 1, 2, . . . , S decrease; the
smaller intensities between the classes of states of split model we have, the more
accurate state probabilities of initial model we get. For the above initial data the
analysis of accuracy of the system performance measures was performed as well
(see Tables 2 and 3). It should be noted that, the performance measures (4), (6),
(7), (8), (9) are almost the same when using exact and approximate approaches
(see Table 2). Only the small errors (less than 5%) are observed while calculating
measure (5) and this is acceptable in engineering calculations (see Table 3).

Table 2. Estimation of accuracy of accuracy of the performance measures (4), (6) and
(7) for N ∈ [20, 120], λ ∈ [20, 60] ; EV - Exact Value, AV - Approximate Value

S Sav Γav RR

EV AV EV AV EV AV

10 3.300632 3.300632 4.639206 4.639206 111 111

20 6.633345 6.633345 11.26737 11.26737 422 422

30 9.966667 9.966667 17.933346 17.933346 933 933

40 13.3 13.3 24.6 24.6 1,644.00 1,644.00

50 16.633333 16.633333 31.266667 31.266667 2,555.00 2,555.00

Remark 3. Zero values in Table 3 are not exactly equal to zero and are obtained
after rounding the numbers to the 6th order precision.

Now let’s consider the problem of choosing the most optimal server. Let it
is possible to choose the server from the predefined collection, where with the
increase of the service rate the cost associated with the corresponding server
increases as well. It is required to choose such server that will minimize the
long-run expected total cost (TC).

TC = chSav + crRR + cbRLb + cgRLr + cpΓav + cwLav + csPb (20)
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Table 3. Estimation of accuracy of performance measures (5), (8) and (9)

Values of parameters RLb RLr Lav

S N λ EV AV EV AV EV AV

10 10 60 53.434375 55.491991 0.090831 0.093377 9.873783 9.917505

30 40 33.251864 35.313561 0.273342 0.271806 29.782387 29.850142

60 53.248114 55.307103 0.277091 0.278264 29.864775 29.907871

50 40 33.069064 35.168018 0.456141 0.417349 49.75709 49.761818

60 53.063085 55.128522 0.462121 0.456846 49.851439 49.885624

70 60 52.87945 54.974741 0.645755 0.610626 69.832213 69.813776

20 10 60 53.400653 55.499856 0.001592 0.001674 9.876329 9.918894

30 40 33.397364 35.496658 0.004881 0.004873 29.802009 29.872825

60 53.3973 55.496542 0.004944 0.004989 29.876169 29.918721

50 40 33.394035 35.494048 0.00821 0.007482 49.801639 49.871242

60 53.393956 55.49334 0.008288 0.00819 49.875961 49.918322

70 40 33.390713 35.493373 0.011532 0.008158 69.80117 69.865791

60 53.39062 55.490583 0.011625 0.010947 69.875698 69.917034

90 40 33.387395 35.493368 0.01485 0.008162 89.800598 89.858999

60 53.38729 55.489352 0.014954 0.012178 89.875373 89.912694

110 40 33.38408 35.493368 0.018164 0.008162 109.79992 109.8522

60 53.383966 55.489287 0.018278 0.012243 109.87498 109.90602

30 10 60 53.400012 55.499997 0.000028 0.00003 9.876403 9.918918

30 60 53.399953 55.499939 0.000087 0.000088 29.8764 29.918915

50 40 33.399895 35.499895 0.000145 0.000132 49.802382 49.873204

60 53.399893 55.499882 0.000146 0.000145 49.876396 49.918908

70 40 33.399835 35.499883 0.000204 0.000144 69.802374 69.873108

60 53.399834 55.499833 0.000206 0.000194 69.876392 69.918886

90 40 33.399776 35.499883 0.000264 0.000144 89.802366 89.872988

60 53.399775 55.499812 0.000265 0.000215 89.876387 89.918809

110 40 33.399717 35.499883 0.000323 0.000144 109.80236 109.87287

60 53.399715 55.49981 0.000324 0.000217 109.87638 109.91869

40 10 60 53.4 55.5 0 0.000001 9.876404 9.918919

30 60 53.399999 55.499999 0.000002 0.000002 29.876404 29.918919

50 60 53.399998 55.499998 0.000003 0.000003 49.876404 49.918919

70 60 53.399997 55.499997 0.000004 0.000003 69.876404 69.918918

90 60 53.399996 55.499997 0.000005 0.000004 89.876404 89.918917

110 60 53.399995 55.499997 0.000006 0.000004 109.8764 109.91892

120 40 33.399994 35.499998 0.000006 0.000003 119.80239 119.87323

60 53.399994 55.499997 0.000006 0.000004 119.8764 119.91891

50 10 60 53.4 55.5 0 0 9.876404 9.918919

30 60 53.4 55.5 0 0 29.876404 29.918919

50 60 53.4 55.5 0 0 49.876404 49.918919

70 60 53.4 55.5 0 0 69.876404 69.918919

90 60 53.4 55.5 0 0 89.876404 89.918919

110 60 53.4 55.5 0 0 109.8764 109.91892
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where Pb is probability that server is busy, i.e. Pb =
S∑

m=1

N∑

n=1
p(m,n). Here ch is

inventory carrying cost per unit item, cr is setup cost per order, cb is balking cost
per customer, cg is reneging cost per customer per unit time, cp is the perishing
cost per item per unit time, cw is waiting time cost of a customer per unit time.

We assume that there are four possible options to choose the server: (1)
μ1 = 5, μ2 = 1; (2) μ1 = 8, μ2 = 2; (3) μ1 = 10, μ2 = 4; (4) μ1 = 15, μ2 = 5.
The values of the coefficients cs when choosing the option k, k = 1, 2, 3, 4 are
designated as c

(k)
s and defined as: c

(1)
s = 1, c

(2)
s = 2, c

(3)
s = 3, c

(4)
s = 4. The values

of other parameters in the (20) are constants: ch = 1, cr = 0.1, cb = 3, cg =
2, cp = 2, cw = 1.

Table 4. Results of solution of the problem (20) for N = 150

S λ

5 10 15 30

10 4 4 4 4

50 4 2 2 2

80 1 1 1 1

Some results of the problem solution for the above data are given in Table 4.,
where the numbers 1, 2 and 4 indicate the index of the optimal server selection
option. It is obvious from the Table 4. that if the inventory level is increasing
the optimal option is to choose the server with the lesser service rate, and, vice
versa, for the smaller values of the inventory level the optimal option will be the
servers with the greater service rates.

5 Conclusion

PQIS model with perishable inventory and positive service time is studied in
this paper. It is assumed that some demands do not acquire the item after ser-
vice completion. When inventory level is zero, demands join or leave the system
according to Bernoulli trial. Demands are impatient in the queue when the inven-
tory level is zero. Order lead time, as well as, item perishing time are random
variables with the exponential distributions and finite mean. Inventory replen-
ishment policy belongs to (S − 1, S) class. Exact and approximate formulas are
given for calculation of steady-state probabilities of the given 2-D MC being the
mathematical model of the studied system. Exact method is based on the solving
of balance equations and is suitable for the moderate values of inventory level
and length of the waiting hall for queuing the demands. Approximate approach
is based on the state phase merging algorithms of 2-D Markov Chains and it is
applicable for the systems of any dimension. High accuracy of the given formu-
las are shown using numerical experiments. Finally, the optimization problem of
choosing optimal server for cost minimization is solved.
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Abstract. The aim of the present paper is to investigate a finite-source
M/GI/1 retrial queuing system with collision of the customers where
the server is subject to random breakdowns and repairs depending on
whether it is idle or busy. The method of elapsed service time and the
method of residual service time are considered using asymptotic app-
roach under the condition of unlimited growing number of sources. It
is proved, as it was expected, that basic characteristics of the system,
such as the stationary probability distribution of the server states and
the asymptotic average of the normalized number of customers in the
system are the same and do not depend on the applied method.
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1 Introduction

Retrial queues have been widely used to model many problems arising in tele-
phone switching systems, telecommunication networks, computer networks and
computer systems, call centers, wireless communication systems, etc.

In many practical situations it is important to take into account the fact
that the rate of generation of new primary calls decreases as the number of
customers in the system increases. This can be done with the help of finite-
source, or quasi-random input models. Moreover, usually in the study of various
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queuing systems, servers are assumed to be absolutely reliable. But in practice
it is necessary to take into account the possibility of failure and repair of the
server. Finite-source retrial queues with unreliable server have been investigated
in, for example [1,2,9,10]. Recent results on retrial queues with collisions can be
found in, for example [3,6,8].

The aim of the present paper is to investigate such systems which has
the above mention properties, that is finite-source, retrial, collision, and non-
reliability of the server. The introduced model is a generalization of the sys-
tems treated in [4,5,7]. Two methods are considered using asymptotic approach
under the condition of unlimited growing number of sources. It is proved, as it
was expected, that basic characteristics of the system, such as the stationary
probability distribution of the server states and the asymptotic average of the
normalized number of customers in the system are the same and do not depend
on the applied method.

The rest of the paper is organized as follows. In Sect. 2 the description of
the model is given, the corresponding two-dimensional non-Markov process is
defined. In Sects. 3 and 4 the residual service time method and the elapsed
service time method are considered by using asymptotic analysis, respectively.
Section 5 is devoted to the comparison of the offered methods. Finally, the paper
ends with a Conclusion.

2 Model Description and Notations

Let us consider a closed retrial queuing system of type M/GI/1//N with colli-
sion of the customers and unreliable server (Fig. 1). The number of sources is
N and each of them can generate a primary request during an exponentially
distributed time with rate λ/N . A source cannot generate a new call until end
of the successful service of this customer. If a primary customer finds the server
idle, he enters into service immediately, in which the required service time has

Fig. 1. Closed retrial queuing system M/GI/1//N with collision of the customers and
unreliable server
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a probability distribution function B(x). Let us denote its hazard rate func-
tion by μ(y) = B

′
(y)(1 − B(y))−1 and Laplace -Stieltjes transform by B∗(y),

respectively. If the server is busy, an arriving (primary or repeated) customer
involves into collision with customer under service and they both moves into the
orbit. The retrial time of requests are exponentially distributed with rate σ/N .
We assume that the server is unreliable, that is its lifetime is supposed to be
exponentially distributed with failure rate γ0 if the server is idle and with rate
γ1 if it is busy. When the server breaks down, it is immediately sent for repair
and the recovery time is assumed to be exponentially distributed with rate γ2.
We deal with the case when the server is down all sources continue generation
of customers and send it to the orbit, similarly customers may retry from the
orbit to the server but all arriving customers immediately go into the orbit.
Furthermore, in this unreliable model we suppose the interrupted request goes
to the orbit immediately and its next service is independent of the interrupted
one. All random variables involved in the model construction are assumed to be
independent of each other.

Let i(t) be the number of customers in the system at time t, that is, the total
number of customers in orbit and in service. Similarly, let k(t) be the server state
at time t, that is

k(t) =

⎧
⎨

⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is down (under repair).

Thus, we will investigate the process {k(t), i(t)}, which is not a Markov-
process. To be a Markov one we will use method of supplementary variable,
namely, we will consider two variants: the residual service time method and the
elapsed service time method, and then we will compare them.

3 Method of Residual Service Time

Let us denote by z(t) the random process, equal to the residual service time,
that is time interval from the moment t until the end of successful service of the
customer.

Thus, we will investigate the Markov process {k(t), i(t), z(t)}, which has a
variable number of components, depending on the server state, since the com-
ponent z(t) is determined only in those moments when k(t) = 1.

Let us define the stationary probabilities as follows:

P0(i) = P{k(t) = 0, i(t) = i},
P1(i, z) = P{k(t) = 1, i(t) = i, z(t) < z},

P2(i) = P{k(t) = 2, i(t) = i}.

To get P0(i), P1(i, z) and P2(i) the following system of Kolmogorov equations
can be derived
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∂P1(1, 0)
∂z

− [λ + γ0] P0(0) + γ2P2(0) = 0,

∂P1(1, z)
∂z

− ∂P1(1, 0)
∂z

−
[

λ
N − 1

N
+ γ1

]

P1(1, z)

+λB(z)P0(0) +
σ

N
B(z)P0(1) = 0,

− [λ + γ2] P2(0) + γ0P0(0) = 0,

∂P1(i + 1, 0)
∂z

−
[

λ
N − i

N
+ γ0 +

i

N
σ

]

P0(i) + γ2P2(i)

+λ
N − i + 1

N
P1(i − 1) +

i − 1
N

σP1(i) = 0,

∂P1(i, z)
∂z

− ∂P1(i, 0)
∂z

−
[

λ
N − i

N
+ γ1 +

i − 1
N

σ

]

P1(i, z)

+λ
N − i + 1

N
P0(i − 1)B(z) +

i

N
σP0(i)B(z) = 0,

−
[

λ
N − i

N
+ γ2

]

P2(i) + γ0P0(i) + γ1P1(i)

+λ
N − i + 1

N
P2(i − 1) = 0.

(1)

Let us introduce the partial characteristic functions

Hk(u) =
N∑

i=0

ejuiPk(i), k = 0, 2 H1(u, z) =
N∑

i=1

ejuiP1(i, z),

where j =
√−1 is imaginary unit, then system (1) can be rewritten as

e−ju ∂H1(u, 0)
∂z

+ j
(σ − λ)

N

dH0(u)
du

+ j
(λeju − σ)

N

dH1(u)
du

− [λ + γ0] H0(u) +
[
λeju − σ

N

]
H1(u) + γ2H2(u) = 0,

∂H1(u, z)
∂z

− ∂H1(u, 0)
∂z

+ j
(λeju − σ)

N
B(z)

dH0(u)
du

+ j
(σ − λ)

N

∂H1(u, z)
∂u

+ λejuB(z)H0(u) −
[
λ + γ1 − σ

N

]
H1(u, z) = 0,

j
λ(eju − 1)

N

dH2(u)
du

+ γ0H0(u) + γ1H1(u) +
[
λ(eju − 1) − γ2

]
H2(u) = 0.

(2)
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Summarizing the equations of the system (2) and executing limiting transi-
tion under condition z → ∞ we obtain equation in the form

−e−ju ∂H1(u, 0)
∂z

+ j
λ

N

[
H

′
0(u) + H

′
1(u) + H

′
2(u)

]

+λ [H0(u) + H1(u) + H2(u)] = 0 . (3)

The solution of systems (2) and (3) for finite values N causes certain difficul-
ties therefore we will find solution under condition of unlimited growing number
of sources, that is N → ∞.

3.1 Asymptotic Analysis

Theorem 1. Let i(t) be number of customers in a closed retrial queuing system
M/GI/1//N with the collisions of customers and unreliable server, then

lim
N→∞

E exp
{

jw
i(t)
N

}

= exp {jwκ} , (4)

where value of parameter κ is the positive solution of the equation

(1 − κ) λ − δ(κ) [R0(κ) − R1(κ)] + γ1R1(κ) = 0, (5)

here δ (κ) is
δ (κ) = (1 − κ) λ + σκ, (6)

and the stationary distributions of probabilities Rk(κ) of the service state k are
determined as follows

R0(κ) =
{

γ0 + γ2
γ2

+
γ1 + γ2

γ2
· δ (κ)
δ (κ) + γ1

[1 − B∗(δ(κ) + γ1)]
}−1

,

R1(κ) = R0(κ)
δ (κ)

δ (κ) + γ1
· [1 − B∗(δ(κ) + γ1)] ,

R2(κ) =
1
γ2

[γ0R0(κ) + γ1R1(κ)] .

(7)

Proof. Denoting
1
N

= ε and executing the following replacements in system (2)

u = εw, Hk(u) = Fk(w, ε) , k = 0, 2; H1(u, z) = F1(w, z, ε),
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we can write systems (2) and (3) in the form:

e−jεw ∂F1(w, 0, ε)
∂z

+ j (σ − λ)
∂F0(w, ε)

∂w
+ j

(
λejεw − σ

) ∂F1(w, ε)
∂w

− (λ + γ0) F0(w, ε) +
[
λejεw − εσ

]
F1(w, ε) + γ2F2(w, ε) = 0,

∂F1(w, z, ε)
∂z

− ∂F1(w, 0, ε)
∂z

+ j
(
λejεw − σ

)
B(z)

∂F0(w, ε)
∂w

+ j (σ − λ)
∂F1(w, z, ε)

∂w
+ λejεwB(z)F0(w, ε)

− [λ + γ1 − εσ]F1(w, z, ε) = 0,

jλ
(
ejεw − 1

) ∂F2(w, ε)
∂w

+ γ0F0(w, ε) + γ1F1(w, ε)

+
[
λ

(
ejεw − 1

) − γ2
]
F2(w, ε) = 0,

−e−jεw ∂F1(w, 0, ε)
∂z

+ jλ
∂

∂w
[F0(w, ε) + F1(w, ε) + F2(w, ε)]

+λ [F0(w, ε) + F1(w, ε) + F2(w, ε)] = 0 .

(8)

Carrying out limiting transition under conditions ε → 0, denoting
lim
ε→0

Fk(w, ε) = Fk(w), k = 0, 2; lim
ε→0

F1(w, z, ε) = F1(w, z) system (8) can be
rewritten as

∂F1(w, 0)
∂z

+ j (σ − λ)
dF0(w)

dw
+ j (λ − σ)

dF1(w)
dw

− (λ + γ0) F0(w)

+λF1(w) + γ2F2(w) = 0,

∂F1(w, z)
∂z

− ∂F1(w, 0)
∂z

+ j (λ − σ)B(z)
dF0(w)

dw
+ j (σ − λ)

∂F1(w, z)
∂w

+λB(z)F0(w) − [λ + γ1] F1(w, z) = 0,

γ0F0(w) + γ1F1(w) − γ2F2(w) = 0,

−∂F1(w, 0)
∂z

+ jλ
d

dw
[F0(w) + F1(w) + F2(w)]

+λ [F0(w) + F1(w) + F2(w)] = 0 .

(9)

Let us write the solution of system (9) in product-form

Fk(w) = RkΦ(w), k = 0, 2; F1(w, z) = R1(z)Φ(w), (10)
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where R0, R1(z), R2 are the limiting probability distributions of the server state
k under conditions N → ∞ and Φ(w) is limiting characteristic function of the
stationary distribution of random process i(t)

N . Substituting this solution into
(9), we obtain

R
′
1(0) + j (σ − λ) [R0 − R1]

∂Φ(w)/∂w

Φ(w)
− (λ + γ0)R0 + λR1 + γ2R2 = 0,

R
′
1(z)− R

′
1(0) + j (σ − λ) [R1(z)− R0B(z)]

∂Φ(w)/∂w

Φ(w)
+ λB(z)R0

− [λ + γ1]R1(z) = 0,

γ0R0 + γ1R1 − γ2R2 = 0,

jλ
∂Φ(w)/∂w

Φ(w)
+ λ − R

′
1(0) = 0.

(11)

The above relations allows to write down this function in the following form

Φ(w) = exp (jwκ),

which coincides with equality (4). Using notation (6) and taking into account

that j
∂Φ(w)/∂w

Φ(w)
= −κ, system (11) can be rewritten as

R
′
1(0) − δ(κ) [R0 − R1] − γ0R0 + γ2R2 = 0,

R
′
1(z) = R

′
1(0) + [δ(κ) + γ1] R1(z) − δ(κ)R0B(z)0,

γ0R0 + γ1R1 − γ2R2 = 0,

R
′
1(0) − λ(1 − κ) = 0.

(12)

Let us consider the second equation of the system (12) in more details. It can
be proved that the solution of this equation has the form

R1(z) = e[δ(κ)+γ1]z

z∫

0

e−[δ(κ)+γ1]x
{

R
′
1(0) − δ(κ)R0B(x)

}
dx. (13)

Executing the limiting transition at z → ∞ and taking into account that the
first factor of the right hand side of (13) in a limiting condition tends to infinity,
we can conclude that the second factor will be equal to zero, that is

∞∫

0

e−[δ(κ)+γ1]x
{

R
′
1(0) − δ(κ)R0B(x)

}
dx = 0.
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Performing simple transformations, we will obtain

R
′
1(0) = δ(κ)R0B

∗(δ(κ) + γ1). (14)

Now, let us add the first and third equations of system (12) and, taking into
account the received equality (14), the system (12) can be rewritten in the form

R
′
1(0) − δ(κ)R0 + [δ(κ) + γ1] R1 = 0,

R
′
1(0) = δ(κ)R0B

∗(δ(κ) + γ1),

γ0R0 + γ1R1 − γ2R2 = 0,

R
′
1(0) − λ(1 − κ) = 0.

(15)

From the first three equations of system (15) and the normalization condition it
is not difficult to obtain expressions for Rk, which coincides with (7) and, finally,
equality (5) obviously follows from the first and fourth equations of system (15).

Theorem is proved. ��

4 Method of Elapsed Service Time

Let us denote by y(t) the supplementary random process, equal to the elapsed
service time of the customer till the moment t.

It is obvious that {k(t), i(t), y(t)} is Markov process. Let us note, y(t) is
defined only in those moments when the server is busy, that is, when k(t) = 1.

Define the stationary probabilities as

p0(i) = P{k(t) = 0, i(t) = i},

p1(i, y) =
∂P{k(t) = 1, i(t) = i, y(t) < y}

∂y
,

p2(i) = P{k(t) = 2, i(t) = i}.
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To determine p0(i), p1(i, y) and p2(i) the following system of Kolmogorov equa-
tions can be written

−
[

λ
N − i

N
+

i

N
σ + γ0

]

p0(i) +

∞∫

0

p1(i + 1, y)μ(y)dy

+λ
N − i + 1

N
p1(i − 1) +

i − 1
N

σp1(i) + γ2p2(i) = 0,

∂p1(i, y)
∂y

= −
[

λ
N − i

N
+

i − 1
N

σ + μ(y) + γ1

]

p1(i, y),

−
[

λ
N − i

N
+ γ2

]

p2(i) + λ
N − i + 1

N
p2(i − 1) + γ0p0(i) + γ1p1(i) = 0,

(16)

with boundary condition

p1(i, 0) = λ
N − i + 1

N
p0(i − 1) +

i

N
σp0(i). (17)

Introducing the partial characteristic functions

Hk(u) =
N∑

i=0

ejuipk(i), k = 0, 2; H1(u, y) =
N∑

i=1

ejuip1(i, y),

system (16) and Eq. (17) we will rewrite in the form

−(λ + γ0)H0(u) +
[
λeju − σ

N

]
H1(u) + e−ju

∞∫

0

H1(u, y)μ(y)dy

+ γ2H2(u) + j
(σ − λ)

N

dH0(u)

du
+ j

(λeju − σ)

N

dH1(u)

du
= 0,

∂H1(u, y)

∂y
=
[ σ

N
− λ − μ(y)− γ1

]
H1(u, y)− j

(λ − σ)

N

∂H1(u, y)

∂u
,

γ0H0(u) + γ1H1(u) +
[
λ(eju − 1)− γ2

]
H2(u)

+ j
λ(eju − 1)

N

dH2(u)

du
= 0,

H1(u, 0) = λejuH0(u) + j
(λeju − σ)

N

dH0(u)

du
.

(18)
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4.1 Asymptotic Analysis

By using asymptotic methods for the first order solution to (18) we obtain

Theorem 2. Let i(t) be number of customers in a closed retrial queuing system
M/GI/1//N with the collisions of customers and unreliable server, then

lim
N→∞

E exp
{

jw
i(t)
N

}

= exp {jwκ} , (19)

where value of parameter κ is the positive solution of the equation

(1 − κ) λ − δ(κ) [R0(κ) − R1(κ)] + γ1R1(κ) = 0, (20)

here δ (κ) is
δ (κ) = (1 − κ) λ + σκ, (21)

and the stationary distributions of probabilities Rk(κ) of the service state k are
defined as follows

R0(κ) =
{

γ0 + γ2
γ2

+
γ1 + γ2

γ2
· δ (κ)
δ (κ) + γ1

[1 − B∗(δ(κ) + γ1)]
}−1

,

R1(κ) = R0(κ)
δ (κ)

δ (κ) + γ1
· [1 − B∗(δ(κ) + γ1)] ,

R2(κ) =
1
γ2

[γ0R0(κ) + γ1R1(κ)] .

(22)

Proof. Denoting
1
N

= ε , in system (18) let us introduce the following substitu-
tions

u = εw, Hk(u) = Fk(w, ε) , k = 0, 2; H1(u, y) = F1(w, y, ε),

then we will receive system of the equations

−(λ + γ0)F0(w, ε) +
[
λejεw − εσ

]
F1(w, ε) + e−jεw

∞∫

0

F1(w, y, ε)μ(y)dy

+ γ2F2(w, ε) + j(σ − λ)
∂F0(w, ε)

∂w
+ j(λejεw − σ)

∂F1(w, ε)

∂w
= 0,

∂F1(w, y, ε)

∂y
= [εσ − λ − μ(y)− γ1]F1(w, y, ε)− j(λ − σ)

∂F1(w, y, ε)

∂w
,

γ0F0(w, ε) + γ1F1(w, ε) +
[
λ(ejεw − 1)− γ2

]
F2(w, ε)

+ jλ(ejεw − 1)
∂F2(w, ε)

∂w
= 0,

F1(w, 0, ε) = λejεwF0(w, ε) + j(λejεw − σ)
∂F0(w, ε)

∂w
.

(23)
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Taking the limiting transition under conditions ε → 0 let us denote
lim
ε→0

Fk(w, ε) = Fk(w), k = 0, 2; lim
ε→0

F1(w, y, ε) = F1(w, y). Then system (23)
can be rewritten as

−(λ + γ0)F0(w) + λF1(w) + γ2F2(w) +

∞∫

0

F1(w, y)μ(y)dy

+ j(λ − σ)
[
dF1(w)

dw
− dF0(w)

dw

]

= 0 ,

∂F1(w, y)
∂y

= − [λ + μ(y) + γ1] F1(w, y) − j(λ − σ)
∂F1(w, y)

∂w
,

γ0F0(w) + γ1F1(w) − γ2F2(w) = 0,

F1(w, 0) = λF0(w) + j(λ − σ)
dF0(w)

dw
.

(24)

The solution of the system (24) can be written in product-form

Fk(w) = RkΨ(w), k = 0, 2; F1(w, y) = R1(y)Ψ(w). (25)

Substituting this solution into (24) we will receive

∞∫

0

R1(y)μ(y)dy − λ (R0 − R1) − γ0R0 + γ2R2

+ j(λ − σ)(R1 − R0)
∂Ψ(w)/∂w

Ψ(w)
= 0,

R
′
1(y) = − [λ + μ(y) + γ1] R1(y) − j(λ − σ)R1(y)

∂Ψ(w)/∂w

Ψ(w)
,

γ0R0 + γ1R1 − γ2R2 = 0,

R1(0) = λR0 + j(λ − σ)R0
∂Ψ(w)/∂w

Ψ(w)
.

(26)

from which it follows, that function Ψ(w) has the form

Ψ(w) = exp (jwκ), (27)
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coinciding with equality (19). Using the notation (21) the system (26) can be
rewritten as

∞∫

0

R1(y)μ(y)dy = δ(κ) (R0 − R1) + γ0R0 − γ2R2,

R
′
1(y) = − [δ(κ) + μ(y) + γ1] R1(y),

γ0R0 + γ1R1 − γ2R2 = 0,

R1(0) = δ(κ)R0.

(28)

Let us consider the second equation of system (28) in more details. It is not
difficult to obtain a solution of this equation, taking the fourth equality of sys-
tem (28) as the initial condition, and as a result we get

R1(y) = δ(κ)R0 [1 − B(y)] e−[δ(κ)+γ1]y. (29)

To find R1 integrate equality (29) with respect to y from 0 to ∞ and receive an
expression in the form

R1 = R0
δ (κ)

δ (κ) + γ1
· [1 − B∗(δ(κ) + γ1)] . (30)

Expression for R2 obviously follows from the third equation of system (28)

R2 =
1
γ2

[γ0R0 + γ1R1] , (31)

and, finally, from equalities (30) and (31), keeping in mind the normalization
condition for R0 we have

R0 =
{

γ0 + γ2
γ2

+
γ1 + γ2

γ2
· δ (κ)
δ (κ) + γ1

[1 − B∗(δ(κ) + γ1)]
}−1

.

Thus, we have determined R0, R1 and R2 that coincides with equalities (22).

Let us return to system (24). Integrating the second equation of the system
with respect to y from 0 to ∞, adding it with other equations of system (24),
substituting the decomposition (25) and taking into account the explicit form
(27) of the function Ψ(w), we obtain an equation in the form

∞∫

0

R1(y)μ(y)dy = λ(1 − κ). (32)

From (32) and the first and third equations of the system (28) it is obviously
follows Eq. (20) for κ.

Theorem is proved. ��
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5 Comparison of the Methods of Residual and Elapsed
Time

At a research of the closed retrial queuing system M/GI/1//N with collision of
customers and unreliable server by asymptotic analysis for a Markovization of
process {k(t), i(t)} two methods were considered: the method of elapsed service
time and the method of residual service time. From the Theorems 1 and 2 it fol-
lows, as it was expected, that the basic characteristics of the system, such as the
stationary probability distribution Rk of the server states k and the asymptotic
average κ of the normalized number of customers in the system are the same
and do not depend on the method of investigation. Of course, it should be so,
since only the proofs are different.

Let us note that the use of the elapsed service time method is necessary for
a further research of number of transitions of a customer into the orbit, and also
for a further research of the sojourn time of a customer in the orbit.

The residual service time method is used for finding the probability distri-
bution of the number of customers in the system and also it is necessary at a
further research of the mean sojourn time of a customer under service.

6 Conclusion

In this paper, a finite-source retrial queuing system M/GI/1 with collisions of
customers and unreliable server was considered. Two methods of an supplemen-
tary variable was presented: method of elapsed service time and method of resid-
ual service time. The research of system has been conducted by an asymptotic
analysis under condition of unlimited growing number of sources. As a result of
the investigation the first order approximations of the basic characteristics of
the system, such as a stationary probability distribution of the server states and
the asymptotic average of the normalized number of customers in the system
was obtained. It was shown, as it was expected, that specified characteristics are
the same and do not depend on a type of applied method of a supplementary
variable. In addition, advantages for using each of the considered methods were
given and the necessity of their application for further researches of the system
was indicated.
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Abstract. We consider a single-server system in which each customer is
described by its service time and a random volume. The total volume of
customers accepted by the system is upper bounded by a finite constant
(system capacity) M . We give renewal-based approximations for a num-
ber of important stationary parameters of the system, in particular, the
mean lost volume. For a large M , the loss is typically a rare event, and
Crude Monte-Carlo method is time-consuming to obtain accurate esti-
mate of the loss probability in an acceptable simulation time. We apply
splitting method to speed-up estimation of the parameters by simula-
tion. In particular, we focus on heavy load. We perform simulations for
different values of capacity, different volume size distributions, includ-
ing heavy- and light-tailed distributions, and also for different values of
traffic intensity.

Keywords: Queueing system · Random volume customer · Finite
capacity · Accelerated simulation · Splitting · Heavy-tailed volume

1 Introduction

Some important problems related to the high performance computer and commu-
nication systems can be described by the models in which customers have both
random service time and random volume [1,2]. At that, in the most important
cases, the buffer space (volume capacity) for the summary accumulated volume
is finite. In [3] an analogy between the lost customer volume and a covering
interval in the associated renewal process has been proposed. This approach
uses the so-called inspection paradox and, as simulation confirms, in some cases
leads to a useful approximation of the stationary parameters of lost volume.
When the volume capacity is large enough (or system is low loaded), a customer
loss becomes a rare event. In this case Crude Monte-Carlo method turns out
to be ineffective, requiring a huge simulation time for an accurate estimation.
Moreover, the relative error increases unlimitedly, as the loss becomes rarer. To
overcome this problem, in this work we apply the so-called splitting technique
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 111–121, 2017.
DOI: 10.1007/978-3-319-68069-9 9
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to increase the occurrence of these rare events in an acceptable simulation time.
The splitting method is based on the idea to generate a few stochastic copies of
the basic underlying (Markov) process upon hitting the predefined thresholds.
This multiplication increases the number of losses but must be compensated in
the final expression of the loss probability estimator. We simulate this model for
different values of the system capacity, different customer volume distributions
and different system regimes (including heavy and light traffic). The obtained
estimates (based on the accelerated simulation) are compared with the renewal-
based approximation proposed in [3].

To the best of our knowledge, the application of the speed-up simula-
tion technique to verify the accuracy of asymptotic renewal-based relations for
lost/accepted volumes is performed for the first time. This is the key contribution
of the paper. Moreover we present a numerical analysis of the covariance func-
tion between successive lost volumes, and it is also a contribution of this work.
Besides, we detect and discuss some interesting results related to the behavior of
the sample mean of the lost/accepted volumes depending on the capacity, traffic
intensity and the volume size distribution.

The paper is organized as follows. In Sect. 2, we describe the model, while the
splitting method is described in brief in Sect. 3. Section 4 contains description of
experiments, simulation results and illuminating discussions.

2 Model Description and Analogy with Renewal Theory

We consider a general single-server GI/G/1-type queueing system, where each
customer is described by both service time and a random volume. It is assumed
that the service times {Sn, n ≥ 1}, are independent identically distributed (i.i.d.)
with generic element S, and the volumes {vn, n ≥ 1} are i.i.d. as well, with
generic element v. The two-dimensional sequence {Sn, vn} is assumed to be
i.i.d., but, for a given n, a dependence between Sn and vn is allowed. The arrival
instants {tn} form the i.i.d. (renewal) sequence of the interarrival times τn =
tn+1 − tn, n ≥ 0 (t0 := 0) with rate λ := 1/Eτ ∈ (0, ∞) and generic element τ .
Define ρ = λES, the traffic intensity of the system. Denote V (t) the accumulated
volume, which is the sum of the volumes of all customers being in the system at
instant t. It is assumed that the buffer for the number of customers waiting in
the queue is infinite, while the summary accumulated volume in the system is
upper bounded by a finite constant (capacity) M . Thus, in this system, customer
n is lost if and only if V (t−n ) + vn > M .

Now we consider an important parameter, EVM , the mean stationary lost
volume. Denote R(t) the set of numbers of the rejected customers in interval
[0, t]. Then EVM is defined as the limit

EVM = lim
t→∞

∑
i∈R(t) vi

|R(t)| , (1)

when exists, where |R(t)| is the capacity of R(t), and we explicitly show in
the notation a dependence of this quantity on the capacity M . In turn, a loss
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can be treated as a crossing of the level M by a renewal process generated by
the i.i.d. volumes {vk} [3]. Define random sums Zk = v1 + · · · + vk, k ≥ 1, so
0 ≤ Z1 < Z2 < . . . . As a result, the lost volume can be interpreted as a renewal
interval covering the “time instant” M in this renewal process [4,5]. (A difference
with exact renewal process caused by a dynamics of customers is discussed in
[3].) This analogy of the accumulated volume with a time scale of the renewal
process is widely used below. Let F be the distribution function of customer
volume. Then we can deduce distribution of the lost volume Vt, provided the
“capacity equals t”, using an analogy with renewal interval covering “instant t”
[5]. Further, applying the total probability formula, we have

P(Vt ≤ x) =
∞∑

k=1

∫ t

t−x

P(t − x < v ≤ x)P(Zk ∈ du)

=
∫ t

0

I{x > t − u}[F (x) − F (t − u)]dH(u), (2)

where H(t) is the renewal function, defined as H(0) = 0,

H(t) := ENt, Nt :=
∞∑

n=1

I{Zn ≤ t}, t ≥ 0,

and I denotes indicator function. That is H(t) is the mean number of the renewal
in interval (0, t], where renewal intervals are represented by the customer vol-
umes. A key observation is that, under this interpretation, the mean of the lost
volume Vt from (2) coincides with EVt from (1), if we take M = t. An analogy
with renewal theory makes it promising to study the asymptotic of VM , as the
capacity M → ∞, to apply this result to a large but finite M . Indeed it follows
from the key renewal theorem [4] that if g is a real bounded function and volume
distribution F is non-lattice with Ev < ∞, then,

∫ t

0

g(t − u)dH(u) → 1
Ev

∫ ∞

0

g(u)du, t → ∞. (3)

Applying (3) to (2), we obtain

lim
t→∞P(Vt ≤ x) =

1
Ev

∫ x

0

[F (x) − F (u)]du =
1
Ev

∫ x

0

uF (du), x ≥ 0, (4)

where integration by parts is applied at the last step. This limiting distribution
is well-known and called integrated-tail distribution. These results indicate that
calculation of the lost volume distribution by formula (4) could lead to an accu-
rate approximation, provided the capacity M is large enough. By (4), we obtain
the following representation of the p-th moment of the stationary lost volume
VM , when fixed M is large and ρ < 1 [3]:

EV p
M =

Evp+1

Ev
+ o(1), p > 0, (5)
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where o(1) → 0 as M → ∞. In particular, it gives the following form of the two
first moments of the stationary lost volume:

EVM =
Ev2

Ev
+ o(1), EV 2

M =
Ev3

Ev
+ o(1). (6)

In this work, we verify by simulation the accuracy of the approximation based
on (5) and depending on the capacity M , distribution of volume v and traffic
intensity ρ.

Now we turn to studying another important QoS parameter describing the
model under consideration. Denote A(t) the number of arrivals in interval [0, t].
Then the quantity

Qloss := lim
t→∞

∑
i∈R(t) vi

∑A(t)
k=1 vk

,

when exists, is the limiting fraction of the lost volume in interval [0, t]. A closely
related quantity is the stationary loss probability, Ploss, which is defined as

Ploss = lim
t→∞

|R(t)|
A(t)

,

when the limit exists. Note that if the loss happens independently of the volume,
for instance, when M = ∞ but the number of waiting places is limited, then
the summands in the numerator become i.i.d. Then, by the strong law of large
numbers, we obtain the equality Qloss = Ploss, because

Qloss = lim
t→∞

∑
i∈R(t) vi

∑A(t)
i=1 vi

= lim
t→∞

∑
i∈R(t) vi

|R(t)|
A(t)

∑A(t)
i=1 vi

|R(t)|
A(t)

= Ploss. (7)

The same equality holds for an important case, when Sn = c vn and c > 0 is a
constant. The latter assumption is justified for a wide class of telecommunica-
tion models and expresses the proportionality between the service time and the
volume of a given customer. However (7) is not true if the capacity M < ∞.
More exactly, the following inequality

Qloss ≥ Ploss (8)

has been established in the paper [6]. An intuition behind inequality (8) is that
the bigger volume is lost with a bigger probability, implying EVM ≥ Ev. That
is, the rejected volumes are atypically large, and this in turn implies (8).

Also we note that inequality (8) can be strictly proved by another method, if
customer volume distribution F belongs to the class of New-Worse-Than-Used
distributions, see [3]. In this case the tail distribution F̄ := 1 − F satisfies the
inequality F̄ (y + x) ≥ F̄ (y)F̄ (x).

In [3], the following renewal-based approximation of Qloss has been proposed,
provided the capacity M is large enough,

Qloss ≈ Ev2

[Ev]2
Ploss, (9)
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which is based on asymptotic (6) and in turn implies (8). Note that result (9)
is based on the assumption that Q(t) consists of the i.i.d. summands, which are
stochastically equivalent to stationary covering interval in the renewal process
generated by {vn}, given by (4). The accuracy of approximation (9) has been
verified for large M in [3].

3 Splitting Method

An important purpose of this research is to study the estimates of the lost
volume, when the loss is a rare event. In this case the Crude Monte-Carlo sim-
ulation turns out to be inefficient, because it requires unacceptable large simu-
lation time to obtain the estimate with a given accuracy. In simulations below,
we apply the splitting technique to reduce simulation time when the capacity
M is large enough [7,8]. The splitting method is based on the idea to copy of
the basic process upon reaching a given state, to make a rare event more fre-
quent. In our setting, we assume V (0) = 0 and consider (equidistant) thresholds
0 < x1 < x2 < · · · < xK < M . When the process V (t) crosses the thresh-
old xi for the first time, we start Ri independent paths of process at the state
V (xi), i = 1, . . . , xK . It is important to stress, that in general, the basic process
must be Markovian, otherwise, the new paths are not stochastic copies. In our
simulation, when the volume is not exponential, we indeed ignore the remaining
service times at the arrival instants. In this case the main component V (t) is not
a Markov process, and the new trajectories (after the splitting) in general are
not stochastic copies. We note that it may affect the accuracy of the estimation.

Figure 1 shows the dynamics of the accumulated volume process, V (t), t ≥ 0,
when the splitting is used. The “circles” denote the instances at which the new
paths start, upon reaching given thresholds.

Fig. 1. An illustration of the splitting method
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To realize simulation procedure, an important question arises: how to choose
the thresholds xi and multipliers Ri, i = 1, . . . ,K in an “optimal” way. In general,
these problems remain open, however in the next section, we will apply the follow-
ing scheme, which has been successfully used for variance reduction in the estima-
tion of a rare event related to queue size in the standard M/M/1 queue [9,10]:

K = − logPloss/2; Ri = e2, i = 1, . . . , K; R0 = 1. (10)

Note that the loss probability Ploss is a priori unknown, and it is possible to
use the upper bound (8) to choose a suitable number of thresholds K, when
the estimate of the quantity Qloss is more available. Otherwise, we may take K
arbitrary.

4 Simulation Results

In this section, we present numerical results for different volume distributions
and different M . We estimate the mean lost volume, the mean accepted volume
and variance of the lost volume, when the system is highly or low loaded. Then we
compare simulation results with theoretical results (6). Moreover, the correlation
between two adjacent lost volumes is calculated as well. Simulations have been
carried by means of the system R [11] and high performance cluster of Karelian
Research Centre [12].

We consider M/M/1-type system with exponential interarrival times with
parameter λ ∈ [0.7, 2] with step 0.05, and exponential service times with para-
meter μ = 1. These parameters give traffic intensity in the range ρ ∈ [0.7, 2],
covering both low and heavy (high) load. Also we consider the following volume
size distributions:

1. Case 1: light-tailed Weibull, with parameter i = 2 (denoted “Weibull(2)”
below):

F (x) = 1 − e−xi

, x ≥ 0, i > 0;

2. Case 2: exponential, with parameter 0.5;
3. Case 3: Pareto, with parameter α = 4 (denoted “Pareto(4)” below):

F (x) = 1 −
(

1
x

)α

, x ≥ 1, α > 0 (F (x) = 0, x ≤ 1),

4. Case 4: heavy-tailed Weibull, with parameter i = 0.5.

We recall that for standardM/M/1 system (with no losses and ρ < 1) the mean
stationary queue size isEν = ρ/(1−ρ). Hence, for instance, if ρ = 0.9, thenEν = 9,
and the valuesM = 10Ev, 20Ev, 30Ev represent, respectively, small,mediumand
large capacity of the system.We use an analogy of our systemwith standard system
M/M/1 to apply the mentioned values of M in all experiments below.

To calculate K from (10), we preliminary estimate the loss probability Ploss

by Crude Monte-Carlo as a ratio the number of the lost customers and the sum-
mary number of arrivals. As we mentioned above, this estimate is typically hardly
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available and is not enough accurate, but can indicate (as well as the estimate of
Qloss) a suitable value K. We put V (0) = 0, and when V (t) reaches a threshold xi,
new Ri paths of the process V (t) start at the state V (xi). If a trajectory crosses,
say thresholds xi and xi+1 at once, we produce Ri Ri+1 paths, etc.

In general, the summary number of paths equals
∏N

i=1 Ri and is big, if the
target probability Ploss is small. As we mentioned above it leads to an unaccept-
able large simulation time. To reduce the required number of paths (and hence,
simulation time), we use the following modification of the basic approach. If a
trajectory, generated after crossing the threshold xi, falls below the threshold
xj(< xi) such that i− j > �N/2	, then we ignore this trajectory. (This approach
is a modification of the so-called RESTART method [13].)

Now we describe the obtained simulation results.

Case 1: v ∼ Weibull(2), M = 30Ev
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Figures 2, 3, 4 and 5 correspond to Case 1, light-tailed Weibull volume. (We
denote v ∼ F if random variable v has distribution F .) In particular, Fig. 2
shows estimates of the mean lost volume ÊVM and the mean accepted volume
ÊVa for M = 30Ev. (The results for M = 10Ev and M = 20Ev are similar.) The
theoretical mean Ev and the approximation of EVM based on (6) are presented
as well. We can summarize our observations as follows.

When ρ ∈ [0.7, 0.9], the accepted volume estimate ÊVa is very close to the
mean volume Ev, since losses are rather rare and by this reason almost do not
affect the final estimate. Note that the estimate ÊVM is bigger than EVM given by
approximation (6), because typically bigger volumes are lost in this case. When
ρ ∈ (0.9, 1), the estimation is agreed with EVM . When ρ ∈ [1, 2], a considerable
part of the customers are lost, and ÊVM approaches the theoretical mean volume
Ev. We suggest that it is because the size of the lost volume ceases to play a
role when ρ > 1 and the system is permanently being in the saturated regime.
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Also the accepted volume ÊVa decreases because, when the system is highly
loaded, the customers with small volumes are mainly accepted.

Figure 3 shows 90% confidence intervals for the mean lost volume.

Case 1: v ∼ Weibull(2)
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Figure 4 shows estimation of the lost volume variance D̂VM for different M .
Theoretical value Dv and approximation of DVM based on (6) are given as well.

We can make the following conclusions. If ρ ∈ [0.7, 0.9], the estimate D̂VM

is bigger than DVM because atypically large volumes are mainly lost. When
ρ ∈ (0.9, 1) the estimate D̂VM is agreed with theoretical value DVM . Finally, if
ρ ∈ [1, 2], then D̂VM is close to Dv because the losses become frequent and, by
this reason, are less dependent on the volume size.

Figure 5 demonstrates the correlation between the adjacent lost volumes for
different M . It is seen that when ρ increases, a dependence between the lost
volumes disappears (correlation approaches zero). We note that it is agreed with
the behavior of D̂VM for ρ > 1, mentioned above. We note that the results for
Case 2 (exponential volume sizes) are quite similar to the Case 1 and, by this
reason, we omit them.

Figures 6, 7, 8 and 9 correspond to Case 3, heavy-tailed Pareto volume. In
particular, Fig. 6 shows estimates of the mean lost volume ÊVM and the mean
accepted volume ÊVa for M = 30Ev. (The results for M = 10Ev and M = 20Ev
are similar, if ρ ∈ [0.9, 2], but the bursts are smaller for ρ ∈ [0.7, 0.9).) In general,
results are similar to Cases 1, 2, but the bursts are now much bigger. This can
be explained by the following property of the i.i.d. heavy-tailed {Xi} [14]:

P(X1 + X2 + · · · + Xn > x) ∼ P(max{X1,X2, . . . Xn} > x), x → ∞.

(We write a ∼ b if a/b → 1.) Hence, the sum is likely to get large because of one
of the summand gets large.
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Case 3: v ∼ Pareto(4), M = 30Ev
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Figure 7 gives 90% confidence intervals for the mean lost volume when ρ ≥
0.8. Moreover, we found that confidence interval for ρ = 0.7 is [4.08, 4.61], while
for ρ = 0.75 it is [2.05, 2.25].

Case 3: v ∼ Pareto(4)
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Figure 8 shows the estimate of the lost volume variance, D̂VM , for different M .
Also, we note that for M = 30Ev, D̂VM = 127.46 if ρ = 0.7, and D̂VM = 25.41
if ρ = 0.75. Note that larger bursts can be explained by heavy-tailed volume
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distribution. Figure 9 depicts the estimate of correlation between the adjacent
lost volumes for different M . It is seen that, as ρ increases, the dependence
between the lost volumes decreases, however, more slowly than for the light-
tailed Weibull volume.

We note that the results for Case 4 (heavy-tailed Weibull volume sizes) are
quite similar to Case 3, and by this reason we do not present it.

Based on simulations, we can conclude that approximation (6) is highly con-
sistent with the numerical results when ρ is near 1 but ρ < 1. However, in general
the approximation (6) should be used carefully, for instance, for heavy-tailed vol-
umes.

Finally, for the Poisson input with parameter λ = 0.9, exponential service
times with parameter μ = 1 and M = 20Ev, we illustrate inequality (8).

Estimation Qloss vs Ploss
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Fig. 10. v ∼ Weibull(2)
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Fig. 11. v ∼ Pareto(4)

Figures 10 and 11 present estimates of Qloss and Ploss for light-tailed Weibull
volume and Pareto volume, respectively (parameters are taken as in Cases 1, 3).
As we see, inequality (8) indeed holds and is agreed with (9).

5 Conclusions

We consider a single-server system in which each customer has both random
service time and random volume. It is assumed that the summary accumu-
lated volume is upper bounded by a finite constant (capacity) M . We consider
a renewal-based approximation of the lost volumes and compare it with the
numerical result for highly and low loaded system for different M and different
volume distributions. In particular, heavy-tailed Pareto volumes and light-tailed
Weibull volumes are considered. We also estimate correlation function between
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two adjacent lost volumes. For a low loaded system and large M , when a loss is
a rare event, we apply splitting technique to accelerate estimation by simulation.
The results detect the range of the parameters (in particular, the value M and
traffic intensity ρ) where renewal-based approximation can be effectively used in
QoS analysis of the system with random volume customers.
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Abstract. One of the modifications of the mathematical models used to
describe processes in multi-service communication networks and telecom-
munication systems is the queueing system with heterogeneous servers.
As a rule, for simulation of such processes the system with non-Poisson
input flows is used. We consider the queuing system with infinite number
of servers of n different types and exponential service time. Incoming flow
is a Semi Markovian Process (SM-flow). Investigation of n-dimensional
stochastic process characterizing the number of occupied servers of dif-
ferent types is performed using the initial moments method.

Keywords: Queueing system · Incoming sm-flow · Heterogeneous
servers · Method of initial moments

1 Introduction

Systems with heterogeneous servers [4,5,10,11,13,14,18] and non-Poisson
incoming flows [12,20,21] are suitable to simulate the functioning of real infor-
mation systems. Such systems include queueing systems with non-ordinary Pois-
son incoming flows and exponential service time [2,8,9]; systems with parallel
functioning blocks [3,6,7,15,19]. These papers deal with different configurations
of parallel-service systems: single-line queueing systems with finite and infinite
buffer, priority maintenance, impatient applications and a common ordinary
incoming flow; queueing systems with two or more service blocs with a finite
number of servers and a common final queue. Mathematical models of inhomoge-
neous infinite-linear systems with different types of servicing devices allow taking
into account the heterogeneity of incoming applications requiring different main-
tenance time, which more adequately describes real information systems [16,17].
In this paper we study a heterogeneous queueing system with SM-incoming flow
and exponential service time.
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2 Statement of the Problem

Consider the queuing system with infinite number of servers of n different
types and exponential service time. Incoming flow is a Semi Markovian Process
(SM-flow) which given by matrix A(x) consisting of elements Ak1k2(x)(k1 =
0, . . . , N, k2 = 0, . . . , N).

Ak1k2(x) = F (k2, x; k1) = P {ξ(k + 1) = k2, τ(k + 1) < x|ξ(k) = k1} , (1)

where ξ(k) — the Markov chain with discrete time and the transition probability
matrix P, τ(k) — non-Markov process for which

F (x) = P {τ(k) < x} =
N∑

i=0

Ai(x)r(i), (2)

r(i) — stationary probability distribution of the Markov chain ξ(k).
At the time of occurrence of the event in this stream only one customer flows

in the system. The type of incoming customer is defined as i-type with probability
pi (i = 1, . . . , n). It goes to the appropriate device type, where its’ service is per-
formed during a random time having an exponential distribution function with
parameter μi (i = 1, . . . , n) corresponding to the type of the customer.

Set the problem of exploring of n-dimensional stochastic process
{l1(t), . . . , ln(t)} describing the number of occupied units of i-type at
time t. Incoming flow is not Poisson, hence the n-dimensional process
{l1(t), . . . , ln(t)} is non-Markov. Consider a (n+2)-dimensional Markov process
{s(t), z(t), l1(t), . . . , ln(t)}, here z(t) — the time from t until the occurrence of
the following event of SM-flow, s(t) — the process is defined as follows

s(t) = ξ(k + 1) if tk < t < tk+1, tk =
k∑

i=1

τ(i).

For the joint probability distribution

P (s, z, l1, . . . , ln, t) = P{s(t) = s, z(t) < z, l1(t) = l1, . . . , ln(t) = ln}
we can write

P (s, z − Δt, l1, . . . , ln, t + Δt)

= [P (s, z, l1, . . . , ln, t) − P (s,Δt, l1, . . . , ln, t)]
n∏

i=1

(1 − liμi)

+
K∑

ν=1

P (ν,Δt, l1 − 1, . . . , ln, t)Aνs(z)p1 + . . . (3)

+
K∑

ν=1

P (ν,Δt, l1, . . . , ln−1, t)Aνs(z)pn+P (s, z, l1+1, . . . , ln, t)(l1+1)μ1Δt + . . .

+P (s, z, l1, . . . , ln + 1, t)(ln + 1)μnΔt + o(Δt), s = 1, . . . , K.
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System of Kolmogorov differential equations for the probability distribution
P{s, z, l1, . . . , ln, t} is the following:

∂P (s, z, l1, . . . , ln, t)
∂t

=
∂P (s, z, l1, . . . , ln, t)

∂z
− ∂P (s, 0, l1, . . . , ln, t)

∂z

−
n∑

i=1

liμiP (s, z, l1, . . . , ln, t) (4)

+ p1

K∑

ν=1

∂P (ν, 0, l1 − 1, . . . , ln, t)
∂z

Aνs + . . . + pn

K∑

ν=1

∂P (ν, 0, l1, . . . , ln − 1, t)
∂z

Aνs

+μ1(l1 + 1)P (s, z, l1 + 1, . . . , ln, t) + . . . + μn(ln + 1)P (s, z, l1, . . . , ln + 1, t),

s = 1, . . . ,K.

We will find the solution of the system (4) during stationary operation of the
system. Denote lim

t→∞ P (s, z, l1, . . . , ln, t) = Π(s, z, l1, . . . , ln), s = 1, . . . ,K.

Then the equation (4) takes the form

∂Π(s, z, l1, . . . , ln)
∂z

− ∂Π(s, 0, l1, . . . , ln)
∂z

−
n∑

i=1

liμiΠ(s, z, l1, . . . , ln)

+ p1

K∑

ν=1

∂Π(ν, 0, l1 − 1, . . . , ln)
∂z

Aνs + . . .

+ pn

K∑

ν=1

∂Π(ν, 0, l1, . . . , ln − 1)
∂z

Aνs

+μ1(l1 + 1)Π(s, z, l1 + 1, . . . , ln) + . . .

+μn(ln + 1)Π(s, z, l1, . . . , ln + 1) = 0
s = 1, . . . ,K.

(5)

Introduce partial characteristic functions [1]:

H(s, z, u1, . . . , un) =
∞∑

l1=0

. . .
∞∑

ln=0

eju1l1 × . . . × ejunlnΠ(s, z, l1, . . . , ln),

where s = 1, . . . ,K, j =
√−1 — imaginary unit.

In view of

∂H(s, z, u1, . . . , un)
∂ui

= j
∞∑

l1=1

· · ·
∞∑

ln=1

lie
ju1l1 × · · · × ejunlnΠ(s, z, l1, . . . , ln),

i = 1, . . . , n, s = 1, . . . , K,

and using (4) write the system of differential equations for partial characteristic
functions H(s, z, u1, . . . , un)
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∂H(s, z, u1, . . . , un)
∂z

− ∂H(s, 0, u1, . . . , un)
∂z

(6)

+ j
n∑

i=1

μi(1− ejui)
∂H(s, z, u1, . . . , un)

∂ui
+

n∑

i=1

pie
jui

K∑

ν=1

∂H(ν, 0, u1, . . . , un)

∂z
Aνs(z) = 0,

s = 1, . . . , K,

which we rewrite in the form of the vector-matrix equation

∂H(z, u1, . . . , un)
∂z

+ j

n∑

i=1

μi(1 − e−jui)
∂H(z, u1, . . . , un)

∂ui

+
∂H(0, u1, . . . , un)

∂z

(
n∑

i=1

pie
juiA(z) − I

)
= 0,

(7)

H(z, u1, . . . , un) = [H(1, z, u1, . . . , un),H(2, z, u1, . . . , un), . . . , H(K,u1, . . . ,
un)] — row vector consisting of characteristic functions of the random process
{s(t), z, (t)l1(t), . . . , ln(t)} for each state of the process s(t),

∂H(0, u1, . . . , un)
∂z

=
∂H(z, u1, . . . , un)

∂z

∣∣∣∣
z=0

. (8)

The solution H(z, u1, . . . , un) of system (7) satisfies condition

H(z, 0, . . . , 0) = r(z)

and determines the characteristic function of the number of occupied servers in
the stationary mode for the system SM|M(n)|∞ by the equality

Me
j

n∑

i=1
uili(t)

= H(∞, u1, . . . , un)e. (9)

r(z) — stationary probability distribution of a two-dimensional stochastic
process {s(t), z(t)}, which has the form

r(z) = κ1r

z∫

0

(P − A(x)) dx, (10)

where r — stationary probability distribution of the Markov chain ξ(k),

k = 1, . . . ,K, κ1 = 1
rAe , A =

∞∫
0

(P − A(x)) dx.

The equation (7) will be considered as the basis for further research.
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3 The Main Probabilistic Characteristics for System
SM|M(n)|∞

Theorem 1. For the initial moments of number of employed devices of each
type for the steady-state functioning of the heterogeneous system SM |M (n)|∞
the following statements are true:

Statement 1
The average value of number employed devices of the i-th type

fmi(i = 1, . . . , n) in the heterogeneous system SM |M (n)|∞ has the form:

fmi =
pi

μi
λ, (11)

where λ = r′(0)e, e = [1, . . . , 1]T — a unit column vector.
Statement 2
Initial moments of the second order of number of employed devices of the i-th

type smi (i = 1, . . . , n) in the heterogeneous system SM |M (n)|∞ has the form:

smi =
pi

μi

[
λ + pir′(0)A∗(μi)(I − A∗(μi))−1e

]
,

where A∗(α) =
∞∫
0

e−αzdA(z).

Statement 3
Correlation moment of number of employed devices of the i-th and g-th types

cmig (i = 1, . . . , n, g = 1, . . . , n, i �= g) in the heterogeneous system SM |M (n)|∞
has the form:

cmig =
pipg

μi + μg
r′(0)

[
A∗(μi) (I − A∗(μi))

−1 + A∗(μg) (I − A∗(μg))
−1

]
e.

(12)

Proof. Denote:

• fmi(z) = [fmi(1, z), fmi(2, z), . . . , fmi(K, z)] — row-vector of conditional
mathematical expectations of number employed devices of i-th type (i =
1, . . . , n);

• smi(z) = [smi(1, z), smi(2, z), . . . , smi(K, z)] — row-vector of conditional
moments of the second order of number employed devices of i-th type (i =
1, . . . , n);

• cmig(z) = [cmig(1, z), cmig(2, z), . . . , cmig(K, z)] — row-vector of correlation
moments of number employed devices of i-th and g-th types (i = 1, . . . , n, g =
1, . . . , n, i �= g).

We use the following properties of the characteristic function:

∂H(z, u1, . . . , un)
∂ui

∣∣∣∣
u1=0,...,un=0

= jfmi(z),
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∂2H(z, u1, . . . , un)
∂u2

i

∣∣∣∣
u1=0,...,un=0

= j2smi(z), (13)

∂2H(z, u1, . . . , un)
∂uiug

∣∣∣∣
u1=0,...,un=0

= j2cmig(z),

i = 1, . . . , n, g = 1, . . . , n, i �= g.

Initial moments of the first order.
The average number of occupied devices of each type in the system is deter-

mined as follows:

fmi = fmi(∞)e, i = 1, . . . , n, e = [1, . . . , 1]T . (14)

Differentiate equation (7) with respect to ui, i = 1, . . . , n.

∂2H(z, u1, . . . , un)
∂ui∂z

∣∣∣∣
u1=0,...,un=0

+ j2μie
−jui

∂H(z, u1, . . . , un)
∂ui

∣∣∣∣
u1=0,...,un=0

+ j

n∑

ν=1

μν(1 − e−juν )
∂2H(z, u1, . . . , un)

∂ui∂uν

∣∣∣∣
u1=0,...,un=0

(15)

+
∂2H(0, u1, . . . , un)

∂ui∂z

(
n∑

i=1

pie
juiA(z) − I

)∣∣∣∣
u1=0,...,un=0

+ j
∂H(0, u1, . . . , un)

∂z
pie

juiA(z)
∣∣∣∣
u1=0,...,un=0

= 0, i = 1, . . . , n,

taking into account (13) we obtain

fm′
i(z) − μifmi(z) + fm′

i(0) (A(z) − I) + pir′(0)A(z) = 0, i = 1, . . . , n. (16)

This equation will be solved by the conversation of Laplace-Stieltjes, denoting

Φi(α) =

∞∫

0

e−αzdfmi(z), i = 1, . . . , n, A∗(α) =

∞∫

0

e−αzdA(z). (17)

Completing the conversation of Laplace-Stieltjes in (16), we obtain the
equality

(μi − α)Φi(α) = fm′
i(0) (A∗(α) − I) + r′(0)piA∗(α), i = 1, . . . , n, (18)

putting in which α = μi, i = 1, . . . , n, we find the form of the vector fm′
i(0)

fm′
i(0) = pir′(0)A∗(μi) (I − A∗(μi))

−1
. (19)

Substituting the expression (19) in the (18) we obtain

Φi(α) =
1

μi − α

{
fm′

i(0) (A∗(α) − I) + pir′(0)A∗(α)
}

, i = 1, . . . , n. (20)
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Since fmi(∞) = Φi(0) and A∗(∞) = P then putting α = 0 in (20) we obtain

Φi(0) = fmi(∞) =
1
μi

{
fm′

i(0) (P − I) + pir′(0)P
}

, i = 1, . . . , n. (21)

Thus we have the following expression for the average value of number
employed devices of the i-th type fmi, (i = 1, . . . , n):

fmi = fmi(∞)e =
pi

μi
r′(0)e =

pi

μi
λ, i = 1, . . . , n, e = [1, . . . , 1]T .

Initial moments of the second order.
To find the second-order moment of the number of employed devices, we

differentiate with respect to ui, i = 1, . . . , n the equality (15).

∂3H(z, u1, . . . , un)
∂u2

i ∂z

∣∣∣∣
u1=0,...,un=0

+ jμie
−jui

∂H(z, u1, . . . , un)
∂ui

∣∣∣∣
u1=0,...,un=0

+ 2j2μie
−jui

∂2H(z, u1, . . . , un)
∂u2

i

∣∣∣∣
u1=0,...,un=0

+ j
n∑

ν=1

μν(1 − e−juν )
∂3H(z, u1, . . . , un)

∂u2
i ∂uν

∣∣∣∣
u1=0,...,un=0

(22)

+
∂3H(0, u1, . . . , un)

∂u2
i ∂z

(
n∑

i=1

pie
juiA(z) − I

)∣∣∣∣
u1=0,...,un=0

+ 2j
∂2H(0, u1, . . . , un)

∂ui∂z
pie

juiA(z)
∣∣∣∣
u1=0,...,un=0

+j2
∂H(0, u1, . . . , un)

∂z
pie

juiA(z)
∣∣∣∣
u1=0,...,un=0

= 0, i = 1, . . . , n,

taking into account (13), we obtain the differential equation to find smi(z),
i = 1, . . . , n

sm′
i(z) + μifmi(z) − 2μismi(z) + sm′

i(0) (A(z) − I)

+ pi

{
fm′

i(0) + r′(0)
}
A(z) = 0, i = 1, . . . , n.

(23)

We will solve equation (23) using the conversation of Laplace-Stiltjes. Denote

Ψi(α) =

∞∫

0

e−αzdsmi(z), i = 1, . . . , n, (24)

then the equation (23) takes the form

(2μi − α)Ψi(α) = μiΦi(α) + sm′
i(0)(A∗(α) − I)

+ pi

{
2fm′

i(0) + r′(0)
}
A∗(α), i = 1, . . . , n,

(25)
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A∗(α) is determined by the expression (17).
Let α = 2μi in (25), we obtain the system of differential equations for

sm′
i(0), i = 1, . . . , n

sm′
i(0) = [μiΦi(2μi)

+ pi

{
2fm′

i(0) + r′(0)
}
A∗(2μi)

]
(I − A∗(2μi))

−1
, i = 1, . . . , n.

(26)

It follows from (25) that

Ψi(α) =
1

2μi − α
[μiΦi(α) + sm′

i(0)(A∗(α) − I)

+ pi

{
2fm′

i(0) + r′(0)
}
A∗(α)

]
, i = 1, . . . , n,

(27)

and taking into account that

smi(∞) = Ψi(0) =
1

2μi
[μifmi(∞)

+ sm′
i(0) (P − I) + pi

{
2fm′

i(0) + r′(0)
}
P

]
, i = 1, . . . , n.

(28)

we can write

smi = smi(∞)e =
1

2μi
μifmi(∞)e +

pi

2μi

{
2fm′

i(0) + r′(0)
}
Pe

=
pi

μi

(
fm′

i(0)e + λ
)
, i = 1, . . . , n.

(29)

Thus, taking into account (19) we have expression for initial moment of the
second order

smi =
pi

μi

[
λ + pir′(0)A∗(μi)(I − A∗(μi))−1e

]
, i = 1, . . . , n.

Correlation moment.
Differentiate the equality (15) respect to ug, g = 1, . . . , n, g �= i.

∂3H(z, u1, . . . , un)
∂ui∂ug∂z

∣∣∣∣
u1=0,...,un=0

+ jμie
−jui

∂2H(z, u1, . . . , un)
∂ui∂ug

∣∣∣∣
u1=0,...,un=0

+ j2μge
−jug

∂2H(z, u1, . . . , un)
∂ui∂ug

∣∣∣∣
u1=0,...,un=0

+ j
n∑

ν=1

μν(1 − e−juν )
∂3H(z, u1, . . . , un)

∂ui∂uν∂ug

∣∣∣∣
u1=0,...,un=0

(30)

+
∂3H(0, u1, . . . , un)

∂ui∂ug∂z

(
n∑

i=1

pie
juiA(z) − I

)∣∣∣∣
u1=0,...,un=0

+
∂2H(0, u1, . . . , un)

∂ui∂z
jpge

jugA(z)
∣∣∣∣
u1=0,...,un=0
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+ j
∂2H(0, u1, . . . , un)

∂ug∂z
pie

juiA(z)
∣∣∣∣
u1=0,...,un=0

= 0,

i = 1, . . . , n, g = 1, . . . , n, g �= i,

taking into account (13):

cm′
ig(z) − (μi + μg)cmig(z) + cm′

ig(0) (A(z) − I)

+
{
pgfm′

i(0) + pifm′
g(0)

}
A(z) = 0, i = 1, . . . , n, g = 1, . . . , n, g �= i.

(31)

We will solve equation (31) using the conversation of Laplace-Stiltjes. Denote

Θig(α) =

∞∫

0

e−αzdcmig(z), i = 1, . . . , n, g = 1, . . . , n, g �= i, (32)

then the equation (31) takes the form

(μi + μg − α)Θig(α) = cm′
ig(0) (A∗(α) − I)

+
{
pgfm′

i(0) + pifm′
g(0)

}
A∗(α) = 0,

i = 1, . . . , n, g = 1, . . . , n, g �= i,

(33)

A∗(α) is determined by the expression (17).
Put α = μi + μg in (33), we obtain the system of differential equations for

cm′
ig(0), i = 1, . . . , n, g = 1, . . . , n, g �= i

cm′
ig(0) =

{
pgfm′

i(0) + pifm′
g(0)

}
A∗(μi + μg) (I − A∗(μi + μg))

−1 = 0,

i = 1, . . . , n, g = 1, . . . , n, g �= i. (34)
Since cmig(∞) = Θig(0), it follows from (33) that the expression for the

correlation moment cmig is as follows

cmig = cmig(∞)e =
1

μi + μg

[
cm′

ig(0) (P − I)

+
{
pgfm′

i(0) + pifm′
g(0)

}
P

]
e

=
pipg

μi + μg
r′(0)

[
A∗(μi) (I − A∗(μi))

−1 + A∗(μg) (I − A∗(μg))
−1

]
e,

i = 1, . . . , n, g = 1, . . . , n, g �= i.

(35)

��
We can write the expression for finding the variance of the number of occupied

servers of each types in the heterogeneous system SM|M(n)|∞
V ari = smi − [fmi]2, i = 1, . . . , n,

V ari =
pi

μi
λ +

p2i
μi

r′(0)A∗(μi) (I − A∗(μi))
−1 e, i = 1, . . . , n.

(36)

Now, using the obtained expressions for the main probabilistic characteristics,
we can write the equality for the correlation coefficient rig of the number of
different types devices employed in system SM|M(n)|∞

rig =
covig√

V ariV arg

=
cmig − fmifmg√

V ariV arg

, i = 1, . . . , n, g = 1, . . . , n, g �= i. (37)
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4 Conclusion

In this paper we construct and investigate a mathematical model as a queueing
system with the Semi Markovian incoming flow and heterogeneous service. The
main probabilistic characteristics are found for the system under investigation,
namely, the initial moments of the first and the second order of the number of
employed devices of different type. Furthermore, we found an expression for the
correlation coefficient between the number of different types devices employed.
The resulting correlation coefficient indicates that the processes of change in
the number of employed devices of different type in the system are dependent.
Therefore, we can conclude that this infinitely linear queuing system with n
types of servers can not be considered as a set of n separate systems with only
one type of servers.

In the future it is planned to apply the asymptotic methods of investigation
for finding moments of a higher order and for studying the functioning of the
system under different special conditions. This may include the development of
methods for investigating heterogeneous systems, for example, in the asymptotic
condition of: high intensity of the incoming flow or an equivalent increase in the
service time on devices of different type or extremely rare changes in special flow
states (MMPP, MAP, SM).

There is great interest in the studying of various modifications of hetero-
geneous queueing systems: heterogeneous queueing systems with returns, with
different volumes of applications of special incoming flows, and many others.

References
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Abstract. In this paper we introduce a bivariate Markov process Q(t) =
(Q1(t)), Q2(t)) ∈ {0, 1, ..., m + n} × Z+. The process Q(t), t ≥ 0, can be
seen as the joint process of the number of servers and waiting positions
occupied and the number of customers in the orbit of a [M |M |m|m + n] -
type retrial queueing system. For the truncated model of Q(t) station-
ary probabilities are written in explicit vector-matrix form. The result
obtained is used for stationary distribution calculation in the model of
Q(t) with the infinite orbit and for construction of explicit formulas for
stationary probabilities of a [M |M |1|1 + 1] -model.

Keywords: Retrial queueing system · Truncated model · Explicit for-
mulas · Stationary distribution

1 Introduction

One of the queueing theory important topics is the theory of retrial queues (or
queues with returning customers, repeated attempts, etc.). Retrial queues arise
naturally in our daily activities, in phone systems and computer networks, in the
field of data transmission systems. They are widely used in designing of computer
networks, in studying of stochastic information processing networks, modern
mobile communication systems, etc. (see, for example, [5,6]). This explains the
fact that over the past decades the theory of retrial queues has been developed
widely. Review of retrial queue literature could be found in [1,4,5].

In all the retrial queueing models considered so far, the underlying assump-
tion has been that the model have some servers and a customer who finds all the
servers busy upon arrival joins a group of unsatisfied customers called “orbit”
and repeats his request after some random time. Such customers become sources
of retrial calls and generate a secondary input flow of customers.

Unfortunately, explicit formulas of stationary probabilities for the most types
of retrial systems were obtained only in simplest cases ([2,3,7], etc.). Note
also, that some sort of a recurrent algorithm for [M |M |m|m + n] queues with
constant retrial rate is presented in [8]. In [9] for multi-server retrial queue
with the rate of a repeated flow independent of the number of retrial sources,
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 133–146, 2017.
DOI: 10.1007/978-3-319-68069-9 11
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an explicit vector-matrix representation of the stationary distribution was
obtained. This representation allows to write down stationary probabilities via
the model parameters in closed form and to derive explicit formulas for main
performance measures.

In many practical situations, queueing system have in addition some places for
waiting (queue). So, if a customer arrives and all the servers are busy, he/she can
occupy a waiting place. But if all the waiting places are occupied as well, he/she
leaves the service area, joins the orbit and retries to get service after some time.

For example, let us imagine a person arriving into a shopping center who
would like to take some money out from a cash machine. He/she can decide to
do it immediately if there are no people or few people near the cash machine, or
decide to do some shopping first and repeat their attempt to get money later.
This is the concept of multiserver retrial queue under our consideration. Such
systems are considered in works [8,10].

So, in this paper we consider a multiserver retrial queueing system with
the finite number of servers, a finite length queue and an infinite orbit. Such a
system can be denoted by a symbol [M |M |m|m + n] (see, for example, [8,10]),
where m is the number of servers, d is the number of waiting places in the
queue. We also use a symbol [M |M |m|m + n](N) for defining the correspondent
truncated model with the size N orbit. It is assumed that the primary input
flow of customers from outside has a rate λj dependent on the number of retrial
sources j, j = 0, 1, ..., and that service times are exponentially distributed with
a constant rate μ. The investigative techniques is similar to approach in [9] and
it uses an approximation of the initial model with infinite orbit by means of the
truncated one and the direct passage to the limit.

For this aim, a class of bivariate migration processes is introduced to describe
the service process of retrial systems with queue. Its first component is associ-
ated with the number of customers in the working (service) area, that means
the customers being under service and in the queue. The second component is
the number of customers in the orbit. Type of the system is chosen by means of
controlled migration parameters. This paper is organized as follows. In Sect. 2,
we give a brief description of the model as a bivariate continuous-time Markov
chain. Some basic assumptions and the model are described. Conditions of exis-
tence of steady-state regime for service process in the basic model are given. In
Sect. 3, we analyze the steady-state distribution of a truncated model. Station-
ary probabilities for the system with finite orbit is obtained as vector-matrix
formulas. In Sect. 4, we deal with the consequences of result obtained for the
case of one server and one place in the queue. Here we present some numerical
results as well. Finally, the conclusions and some suggestions for future research
are given in Sect. 5.

2 Description of Service Process

Let us define the main model under consideration as a bivariate continuous-time
Markov chain Q(t) = (Q1(t), Q2(t))

′
, with the set of states S = {0, 1, ...,m +

n}×{0, 1, ...}. This chain Q(t) is defined with its infinitesimal rates qαβ , α, β ∈ S,
α �= β, determined by the system of the following relations:
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– if α = (i, j) and i < m + n :

qαβ =

⎧
⎨

⎩

λj , if β = (i + 1, j),
min {i,m} · μ, if β = (i − 1, j),
jν, if β = (i + 1, j − 1);

– if α = (m + n, j) :

qαβ =
{

λj , if β = (m + n, j + 1),
mμ, if β = (m + n − 1, j).

By agreement, the rates of those transitions that go beyond the region S are
equal zero.

We will simulate the service process of customers in the system with a queue
and an infinite number of retrial sources by the migration process Q(t). Thus
we construct a typical model of [M |M |m|m + n] multiserver retrial system with
queue and an infinite orbit, where m is the number of servers, n is the queue
size. The rate λj of the input flow depends on the number of retrial sources j.
Every retrial source generates Poisson flow with the rate ν. Service times at the
each of m servers are independent exponentially distributed random values with
the rate μ. So, in terms of the system, Q1(t), t ≥ 0, is the number of customers in
working area, i.e. the number of occupied servers and occupied waiting places in
the queue at the instant t, when Q2(t), t ≥ 0, is the number of retrial sources at
the instant t. In the paper we propose an effective approach to finding stationary
distribution for the bivariate service process Q(t).

At first, let us find out the conditions of steady-state regime existence for
Q(t).

Lemma 1. If λ = limj→∞λj < ∞ and λ/mμ < 1, then the Markov chain
Q(t) is ergodic and its limit distribution coincides with the unique stationary
distribution.

Proof. As Lyapunov test functions, we consider functions of the following form:

φ(i, j) = ai + j, (i, j) ∈ S,

where the parameter a will be determined later.

For these test functions, the mean transfer

yij =
∑

(i′,j′) �=(i,j)

q(i,j)(i′,j′) (φ(i′, j′) − φ(i, j))

will be

yij =
{

λja − min {i,m} μ + jν(a − 1), 0 ≤ i ≤ m + n − 1,
λj − mμa, i = m + n.

When λ/mμ < 1, there exists such a value ε > 0 for any a ∈ (λ/mμ, 1) , that
yij < −ε for any (i, j) ∈ S except of a finite number of states (i, j) ∈ S. Thus,
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for the test functions φ(i, j), (i, j) ∈ S, the conditions of Tweedy’s theorem are
satisfied ([7], p. 97).

The Lemma is proved.
To construct computational algorithms and to obtain explicit formulas for

the system [M |M |m|m + n] , we consider the corresponding truncated model
[M |M |m|m + n](N)

, wherein the number of retrial sources N is finite. In the
last model provided that all places in the working area and in the orbit are
occupied, an arrived customer is lost and does not receive service in the system.
If we find the stationary distribution of such a system and proceed to the limit
under the conditions of Lemma 1 as N → ∞, then the stationary distribution
for the system [M |M |m|m + n] can be obtained as well (see [7], Sect. 2.4).

3 Stationary Probabilities for the System with Finite
Orbit

Denote a service process for the multiserver system with a queue and a finite

orbit [M |M |m|m + n](N) by Q(N)(t) =
(
Q

(N)
1 (t), Q(N)

2 (t)
)′

.

The process Q(N)(t) =
(
Q

(N)
1 (t), Q(N)

2 (t)
)′

takes values in a finite set of

states S(N) = {0, 1, ...,m + n} × {0, 1, ..., N} , and there exists a steady-state
regime for it. We denote its stationary distribution by π

(N)
ij , (i, j) ∈ S.

Since the rate of the input flow depends in arbitrary way on the number of
customers in the orbit, then using generating function method is impossible. In
our case we apply the theorem on the equality of probability flows in steady-state
regime ([11], Sect. 2).

To formulate the main result, let us introduce the following notations. Let
A(j), j = 0, 1, ..., N − 1 be a tridiagonal matrix of the form:

A(j) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a
(0)
0 a

(+)
0 0 0 ... 0 0 0

a
(−)
1 a

(0)
1 a

(+)
0 0 ... 0 0 0

0 a
(−)
2 a

(0)
2 a

(+)
2 ... 0 0 0

... ... ... ... ... ... ... ...
0 0 0 0 ... a

(−)
m+n−2 a

(0)
m+n−2 a

(+)
m+n−2

0 0 0 0 ... 0 a
(−)
m+n−1 a

(0)
m+n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

a
(0)
i =

{
λj + iμ + jν, i = 0, 1, ...,m,
λj + mμ + jν, i = m + 1,m + 2, ...,m + n − 1,

a
(+)
i = −λj , i = 0, 1, ...,m + n − 2,

a
(−)
i =

{−iμ, i = 0, 1, ...,m,
−mμ, i = m + 1,m + 2, ...,m + n − 1,
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B =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 ... 0
0 0 1 ... 0

...
0 0 0 ... 1
0 0 0 ... 0

⎞

⎟
⎟
⎟
⎟
⎠

, C =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 ... 0 1
0 0 ... 0 1

...
0 0 ... 0 1
0 0 ... 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

are matrices of size (m + n) × (m + n).
By D(N) we will denote the following tridiagonal matrix of size (m + n −

1) × (m + n − 1) :

D(N) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ 0 ... 0 0 0 ... 0 0

−(Nν+λN ) 2μ ... 0 0 0 ... 0 0

−Nν −(Nν+λN ) ... 0 0 0 ... 0 0

... ... ... ... ... ... ... ... ...

−Nν −Nν ... −(Nν+λN ) mμ 0 ... 0 0

−Nν −Nν ... −Nν −(Nν+λN ) mμ ... 0 0

... ... ... ... ... ... ... ... ...

−Nν −Nν ... −Nν −Nν −Nν ... −(Nν+λN ) mμ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We need also the following vectors:

π′(N)(j) =
(
π
(N)
0j , π

(N)
1j , ..., π

(N)
m+n − 1j

)
,

G′(N)(j) =
π′(N)(j)

π
(N)
0N

=
(
G

(N)
0j , G

(N)
1j , ..., G

(N)
m+n − 1j

)
.

Denote an (m+n−1) -dimensional vector composed of units by 1(m+n−1),
an (m + n − 1) -dimensional vector with i-th entry equal one and other entries
equal zero by ei(m+n−1). By 1, ei we will denote similar vectors with dimension
m + n.

Theorem 1. If λi > 0, j = 0, 1, ..., N, then stationary probabilities π
(N)
ij , (i, j) ∈

S(N) can be written as follows:
(
π
(N)
1N , π

(N)
2N , ..., π

(N)
m+n − 1N

)′

= π
(N)
0N D−1(N)

(
Nν1(m + n − 1) + λNe1(m + n − 1)

)
, (1)

π
(N)
m+nN =

π
(N)
0N

mμ
G′(N)(N)

(
Nν1 + λNem+n

)
,

π′
j
(N) =

π
(N)
0N N !νN − j

j!
G′(N)(N)T (N − 1) × ... × T (j), j = 0, 1, ..., N − 1, (2)
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π
(N)
m+n j =

π
(N)
0N N !νN − j

λjj!
G′(N)(N)T (N − 1) × ... × T (j + 1)1, (3)

j = 0, 1, ..., N − 1,

where

π
(N)
0N =

⎧
⎨

⎩
G′(N)(N)

⎛

⎝1 + N !
N−1∑

j =0

νN − j

j!
T (N − 1) × ... × T (j + 1)

×
[

T (j) +
1
λj

]

1 +
1

mμ
(Nν1 + λNem+n)

)}−1

, (4)

G(N)(N) =
(

1
D−1(N)

(
Nν1(m + n − 1) + λNe1(m + n − 1)

)

)

, (5)

T (j) =
[

B +
mμ

λj
C

]

A−1(j), j = 0, 1, ..., N − 1.

Proof. For convenience let us denote by π
(N)
ij = π̃ij , G

(N)
ij = G̃ij , (i, j) ∈ S(N).

For every k = 0, 1, ...,m + n − 1 we shall divide S(N) into two subsets Ek =
{(0, N), (1, N), ..., (k,N)} and Ek = S(N)\Ek. By virtue of the equality of the
probability flows through the closed contour in the steady-state regime ([11],
Sect. 2), we have:

⎧
⎪⎪⎨

⎪⎪⎩

∑k − 1
i=0 Nνπ̃iN + (Nν + λN )π̃kN = (k + 1)μπ̃k+1N ,

k = 0, 1, ...,m − 1,
∑k − 1

i=0 Nνπ̃iN + (Nν + λN )π̃kN = mμπ̃k +1N ,
k = m, ...,m + n − 1.

(6)

For G̃ij = π̃ij/π̃0N , (i, j) ∈ S(N), the first (m+n−1) equations from system
(6) have the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μG1N = Nν + λN ,
−(Nν + λN )G1N + 2μG2N = Nν,
−NνG1N − (Nν + λN )G2N + 3μG3N = Nν,
...
−NνG1N − ... − NνGm − 2N − (Nν + λN )Gm − 1N + mμGmN = Nν,
−NνG1N − ... − NνGm − 1N − (Nν + λN )GmN + mμGm+1N = Nν,
...
−NνG1N − ... − NνGm+n − 3N − (Nν + λN )Gm+n − 2N + mμGm+n − 1N = Nν.

(7)
With respect to G1N , G2N , ..., Gm+n − 1N , the solution of (7) is:

⎛

⎝
G̃1N

...

G̃m+n − 1N

⎞

⎠ = D−1(N)
(
Nν1(m + n − 1) + λNe1(m + n − 1)

)
,
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which yields (5). From (6) for k = m + n − 1 we obtain:

G̃m+n N =
1

mμ
G̃′(N)(Nν1 + λNem+n). (8)

Now we have to obtain G̃m+n j under assumption, that j = 0, 1, ..., N − 1.

Divide S(N) into two subsets S
(N)
j =

{
(α, β) ∈ S(N) : β ≤ j

}
and S

(N)

j =

S(N) \ S
(N)
j . Using again the equality of the probabilities flows through the

closed contour, we have:

λj π̃m+n j = (j + 1)νπ̃0 j +1 + ... + (j + 1)νπ̃m+n − 1 j +1,

or
λjG̃m+n j = (j + 1)νG̃0 j +1 + ... + (j + 1)νG̃m+n − 1 j+1,

whence it follows that

G̃m+n j =
(j + 1)ν

λj
G̃′(j + 1)1, j = 0, 1, ..., N − 1. (9)

Consider now (m+n)×N closed contours, which contain one point (i, j) from
the domain S̃(N) = {0, 1, ...,m + n − 1} × {0, 1, ..., N − 1} . The corresponding
equations for Gij , (i, j) ∈ S̃(N), have the form:

(λj + jν)G̃0j = μG̃1j , i = 0, (10)
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(λj + iμ + jν)G̃ij = (j + 1)νG̃i − 1 j+1 + λjG̃i − 1 j + (i + 1)μG̃i+1 j ,
i = 1, 2, ...,m − 1,

(λj + mμ + jν)G̃ij = (j + 1)νG̃i − 1 j +1 + λjG̃i − 1 j + mμG̃i+1 j ,
i = m,m + 1, ...,m + n − 2.

(11)

When i = m + n − 1, taking into account (9), we obtain:

(λj + mμ + jν)G̃m+n − 1 j

= (j + 1)νG̃m+n−2 j+1 + λjG̃m+n − 2 j +
(j + 1)νmμ

λj
G̃′(j + 1)1. (12)

System (10) − (12) can be represented in a vector-matrix form:

G̃′(j) = (j + 1)νG̃′(j + 1)

[
B +

mμ

λj
C

]
A−1(j)

= (j + 1)νG̃′(j + 1)T (j), j = 0, 1, ..., N − 1. (13)

The solution of recurrent relation (13) is the sequence of vectors

G′(j) =
N !νN − j

j!
G̃′(N)T (N − 1) × ... × T (j), j = 0, 1, ..., N − 1. (14)
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Substituting the right-hand side of (14) in (9), we get

G̃m+n j =
N !νN − j

j!λj
G̃′(N)T (N − 1) × ... × T (j + 1)1, j = 0, 1, ..., N − 1. (15)

The normalization condition for stationary probabilities π̃ij , (i, j) ∈ S, which
looks like

∑m+n
i=0

∑N
j =0 π̃ij = 1, can be rewritten as follows:

π̃0N

⎛

⎝
m+n − 1∑

i=0

GiN + Gm+n N +
N − 1∑

j =0

Gm+n j +
m+n − 1∑

i=0

N − 1∑

j =0

Gij

⎞

⎠ = 1.

That allows us to find π̃0N . Thus we obtain formula (4). Relations (1) − (3)
are a direct consequence of (8), (14), (15).

Theorem is proved.
Obviously, these formulas are an effective recurrent procedure for computing

the stationary distribution.

4 Case of One Server and One Waiting Place

Let us apply the obtained result for systems [M |M |1|1 + 1](N) and
[M |M |1|1 + 1] . In this case, we can carry out more detailed analysis and derive
explicit formulas.

Denote by

Ai(j) =

⎧
⎪⎨

⎪⎩

j − 1∏

k = i

(1 + ρk)μ + λk+1 + (k + 1)ν
ρk[(λk + kν)2 + kνμ]

, i < j,

1, i = j,

where ρk = λk/μ is system load with primary customers when the orbit Q2(t) = k.

Corollary 1. If λj > 0, j = 0, 1, ..., N, then for any N stationary probabilities
of the [M |M |1|1 + 1](N)-retrial system have the following form:

π
(N)
0j = π

(N)
0N

N !νN − jAj(N)
j!

, π
(N)
1j = π

(N)
0N

N !νN − j(λj + jν)Aj(N)
j!μ

, (16)

π
(N)
2j = π

(N)
0N

N !νN−j(μ + λj +1 + (j + 1)ν)Aj +1(N)
j!λjμ

, j = 0, 1, ..., N − 1, (17)

π
(N)
1N = π

(N)
0N

λN + Nν

μ
, π

(N)
2N = π

(N)
0N

(λN + Nν)2 + Nνμ

μ2
,
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π
(N)
0N =

{
1 +

1

μ
(λN + Nν) + N !

N−1∑
j =0

νN−j(μ + λj + jν)Aj(N)

j!μ

+N !

N−1∑
j =0

νN − j(μ + λj +1 + (j + 1)ν)Aj +1(N)

j!λjμ
+

1

μ2

(
(λN + Nν)2 + Nνμ

)
}−1

.

Proof. For the [M |M |1|1 + 1](N)- retrial system we have

B =
(

0 1
0 0

)

, C =
(

0 1
0 1

)

,

A(j) =
(

λj + jν −λj

−μ λj + μ + jν

)

.

Since
∣
∣
∣
∣
λj + jν −λj

−μ λj + μ + jν

∣
∣
∣
∣ = (λj + jν)(λj + μ + jν) − λjμ = (λj + jν)2 + μjν,

then

A−1(j) =
1

(λj + jν)2 + μjν

(
λj + μ + jν λj

μ λj + jν

)

,

and matrix T (j) has the form:

T (j) =
[

B +
μ

λj
C

]

A−1(j) =
[
B + ρ−1

j C
]
A−1(j)

=
1

ρj [(λj + jν)2 + μjν]

(
(1 + ρj)μ (1 + ρj)(λj + jν)

μ λj + jν

)

,

j = 0, 1, ..., N − 1.

Let

D(j) =
(

(1 + ρj)μ (1 + ρj)(λj + jν)
μ λj + jν

)

, j = 0, 1, ....

It is easy to see that

D(j + 1)D(j)

= ((1 + ρj)μ + λj +1 + (j + 1)ν)
(

(1 + ρj)μ (1 + ρj)(λj + jν)
μ λj + jν

)

.

Which implies

D(m)...D(j + 1)D(j)

=
m − 1∏

k = j

((1 + ρk)μ + λk +1 + (k + 1)ν)
(

(1 + ρm)μ (1 + ρm)(λj + jν)
μ λj + jν

)
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for m > j, and therefore

T (N − 1) ... T (j + 1)T (j) =

=
1

(1 + ρN−1)μ + λN + Nν

N−1∏
k= j

(1 + ρk)μ + λk+1 + (k + 1)ν

ρk[(λk + kν)2 + kμν]

×
(

(1 + ρN−1)μ (1 + ρN−1)(λj + jν)
μ λj + jν

)

=
Aj(N)

(1 + ρN−1)μ + λN + Nν

(
(1 + ρN−1)μ (1 + ρN−1)(λj + jν)

μ λj + jν

)
. (18)

From the first two equations of system (5) we have G(N)′
(N) =

(G(N)
0N , G

(N)
1N ) = (1, 1/μ · (λN + Nν)) . It is not difficult to verify that

G(N)′
(N)

(
(1 + ρN − 1)μ (1 + ρN − 1)(λj + jν)

μ λj + jν

)

= ((1 + ρN−1)μ + λN + Nν)(1,
1
μ

(λj + jν)).

And thus

G(N)′
(N)T (N − 1)...T (j + 1)T (j) = Aj(N)(1,

1
μ

(λj + jν)), (19)

G
(N)
2j =

N !νN − j

j!λj
G(N)′

(N)T (N − 1)...T (j + 1)1

N !νN − j

j!λj
Aj +1(N)(1,

1

μ
(λj+1 + (j + 1)ν))1. (20)

Now from (18) we obtain:

π
(N)
0N =

{
G(N)′

(N)

(
1 + N !

N−1∑
j =0

νN − j

j!
T (N − 1) × ...×

× T (j + 1)[T (j)1 +
1

λj
1] +

1

mμ
(Nν1 + λNem+n)

)}−1

=

{
1 +

1

μ
(λN + Nν) + N !

N−1∑
j =0

νN − j(1 + 1
µ
(λj + jν))Aj(N)

j!

+ N !

N−1∑
j =0

νN − j(1 + 1
µ
(λj +1 + (j + 1)ν))Aj +1(N)

j!λj
+

1

μ

(
1

μ
(λN + Nν)2 + Nν

)}−1

.

Relations (16), (17) can be deduced from (1)−(3) and (18)−(20).
The corollary is proved.
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We now consider the system [M |M |1|1 + 1] . Lemma 1 yields that this system
has a steady-state regime provided that limj→∞ [λj/μ] < 1. This condition is
assumed to be satisfied.

Denote
Rj = lim

N→∞
π
(N)
0N N !νNAj(N).

It is easy to show that

Rj =

{
j∑

i=0

(μ + λi + iν)Ai(j)

νiμi!
+

∞∑
i= j +1

μ + λi + iν

Aj(i)νiμi!

+

j − 1∑
i=0

(μ + λi+1 + (i + 1)ν)Ai+1(j)

νiλiμi!
+

∞∑
i=j

μ + λi+1 + (i + 1)ν

Aj(i + 1)νiλiμi!

}−1

. (21)

Indeed, using the representation for π
(N)
0N from Corollary 1, we obtain the

follows:

lim
N→∞

π
(N)
0N N !νNAj(N)

=

{
lim

N→∞

N − 1∑
i=0

(μ + λi + iν)Ai(N)

νiμi!Aj(N)

+ lim
N→∞

N − 1∑
i=0

(μ + λi+1 + (i + 1)ν)Ai+1(N)

νiλiμi!Aj(N)

}−1

. (22)

It is easy to see that when i, j < N, then

Ai(N)
Aj(N)

=

⎧
⎨

⎩

Ai(j), if i < j,
Ai(i) = 1, if i = j,
A−1

j (i), if i > j.

Accordingly, we can write:

lim
N→∞

N−1∑

i=0

(μ + λi + iν)Ai(N)
νiμi!Aj(N)

=
j∑

i=0

(μ + λi + iν)Ai(j)
νiμi!

+ lim
N→∞

N∑

i= j+1

μ + λi + iν

νiμi!Aj(i)

=
j∑

i=0

(μ + λi + iν)Ai(j)
νiμi!

+
∞∑

i= j +1

μ + λi + iν

νiμi!Aj(i)
.
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Similarly, it can be shown that

lim
N→∞

N−1∑

i=0

(μ + λi+1 + (i + 1)ν)Ai+1(N)
νiλiμi!Aj(N)

=
j−1∑

i=0

(μ + λi+1 + (i + 1)ν)Ai+1(j)
νiλiμi!

+
∞∑

i= j

μ + λi+1 + (i + 1)ν
νiλiμi!Aj(i + 1)

.

From these relations and (22) it follows that (21) takes place.

Corollary 2. If λj > 0, j = 0, 1, ..., and limj→∞ (λj/μ) < 1 for the
[M |M |1|1 + 1]- retrial system, then for the system there exist stationary proba-
bilities:

π0j =
Rj

νjj!
, π1j =

(λj + jν)Rj

νjμj!
,

π2j =
(μ + λj +1 + (j + 1)ν)Rj

νjλjμj!
· ρj [(λj + jν)2 + jνμ]
(1 + ρj)μ + λj +1 + (j + 1)ν

,

where

Rj =

⎧
⎨

⎩

j∑

i=0

(μ + λi + iν)Ai(j)
νiμi!

+
∞∑

i= j +1

μ + λi + iν

νiμi!Aj(i)

+
j − 1∑

i=0

(μ + λi+1 + (i + 1)ν)Ai+1(j)
νiλiμi!

+
∞∑

i= j

μ + λi+1 + (i + 1)ν
νiλiμi!Aj(i + 1)

⎫
⎬

⎭

−1

.

Let us consider an example of a system [M |M |1|1 + 1](20) . Let λj = 1.1,
j = 0, 1, ..., 20, μ = 1, ν = 0, 1.

The program, based on the formulas obtained, gives us the following values
of the stationary distribution shown in Table 1.

From here blocking probability is calculated:

π
(20)
2 =

20∑

j=0

π
(20)
2j = 0.34658565.
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Table 1. Stationary probabilities for the system [M |M |1|1 + 1](20) when λj = 1.1,
j = 0, 1, ..., 20, μ = 1, ν = 0, 1.

j π
(20)
0j π

(20)
1j π

(20)
2j

0 0.00734806 0.00808286 0.00355646

1 0.0177823 0.0213388 0.01105

2 0.0264239 0.034351 0.020315

3 0.0310369 0.0434516 0.0287473

4 0.031622 0.047433 0.0345834

5 0.0292629 0.0468206 0.0371954

6 0.0252561 0.0429354 0.0368362

7 0.0206734 0.0372121 0.0342339

8 0.0162316 0.0308401 0.0302457

9 0.0123223 0.0246446 0.0256405

10 0.00909825 0.0191063 0.0210012

11 0.00656287 0.0144383 0.0167072

12 0.00464089 0.010674 0.0129628

13 0.00322603 0.00774247 0.00984138

14 0.00220929 0.00552322 0.00733058

15 0.00149327 0.00388249 0.00536908

16 0.000997633 0.00269361 0.0038738

17 0.000659625 0.00184695 0.00275753

18 0.000432092 0.00125307 0.00193919

19 0.000280672 0.000842016 0.00134874

20 0.00018093 0.00056087 0.00105029

5 Conclusion

In this paper a multiserver retrial queueing system of the [M |M |m + n] -type
with a queue is considered. A class of bivariate migration processes is introduced
to describe the service process of the system.

For finding the stationary distribution of the service process in the system,
a two-stage approach is offered. At the first stage, explicit formulas for the sta-
tionary distribution in the vector-matrix form are derived for a truncated system
with a finite orbit. The next step is to approximate the stationary probabilities
for a system with an infinite orbit by the probabilities obtained in the first stage.

As an example, stationary probabilities as well as blocking probability are
calculated for a retrial system of [M |M |1|1 + 1](20) -type.

Note that the input flow rate for the models considered has variable nature.
This feature allows us to use the results obtained for formulation and solution
of various problems on the system optimal control.
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Abstract. The paper presents the study of a two-stage infinite-server
queueing system with feedback. The service time at each stage is given by
an arbitrary distribution function. The method of limiting decomposition
is used for the study. As a result of the research, stationary distributions
of the number of customers at each stage of the system are found. The
obtained analytical results are compared with the asymptotic ones which
were obtained in previous papers.

Keywords: Infinite-server queueing tandem · Method of limiting
decomposition · Feedback

1 Introduction

Multi-stage queueing systems are models in which customers’ service is per-
formed sequentially stage by stage. In these systems, a customer arrives at the
first stage. After the service at this stage is complete, the customer moves to the
second stage, and so on, until it completes the service at the last stage of the sys-
tem. Then it leaves the system. Two-stage tandems is a subclass of multi-stage
queueing systems and they are most often considered in scientific literature on
the queueing theory. E.g., such systems were considered in the articles [1–3].

Queueing systems with feedback are mathematical models for many real sys-
tems, in which a customer needs to return to the system again to get an addi-
tional service [4,5]. In the paper [6], infinite-server systems with feedback and
various types of arrival processes were studied.

Infinite-server queueing systems are used in cases when the probability of
losing a customer can be neglected. An important property of such systems is
that customers in the system do not depend on each other, which allows to
analytically solve problems for such systems. In [7,8] it is proved that the num-
ber of customers in the M/M/∞ system has the Poisson distribution. In 1958
B.A. Sevastyanov solved the Erlang problem for the systems with an arbitrary
distribution function of the service times in the system M/G/N [9]. He showed
that the distribution of the number of customers in the system converges to a
Poisson distribution if N → ∞. In 1969, L. Takács [10] showed that the number
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A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 147–157, 2017.
DOI: 10.1007/978-3-319-68069-9 12
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of customers in the M/G/∞ system has a Poisson distribution in the steady-
state regime and it depends on the average rate of arrivals and the average
time of service. In many cases, non-Poisson arrivals can be approximated by the
Poisson process, for example, if we have a large number of independent input
flows [11].

An asymptotic approximation of the investigated processes in queueing sys-
tems with an infinite number of servers is of interest for research also. In the
papers [12,13], it was proved that if the intensity of the arrivals in the system
GI/G/∞ tends to infinity, then the process describing the number of customers
in the system converges to the Gaussian process. In the article [14], this theo-
rem was supplemented, and it was proved that the Gaussian approximation is
the Ornstein-Uhlenbeck diffusion process if and only if the service time is expo-
nential. Similar studies for infinite-server queueing networks were carried out in
[15,16].

For models with an infinite number of servers with arbitrary service times,
as well as multi-stage queueing systems, a few number of analytical results were
obtained. One of the methods for studying such systems is the method of limiting
decomposition, which was proposed to study the M/G/∞ system in [17]. In our
paper, the method of limiting decomposition is used to analyze a tandem of
queues with an infinite number of servers and a feedback which is possible at
any stage of the tandem.

Briefly about the content of the paper. In the Sect. 2, the model under study
and the problem are formulated. The main result of the article is presented in
the Sect. 3. This is the probability distribution of the number of customers at the
stages of the system, which is obtained by the method of limiting decomposition.
In the Sect. 4, we present a numerical example and comparison of the analytical
results of this article with the asymptotic ones obtained earlier for more general
models.

2 Mathematical Model

We consider an infinite-server queuing tandem M/G/∞ → G/∞ with feedback
(Fig. 1). The arrival process is a stationary Poisson process with the rate equals
to λ. Service times at the first stage are independent and identically distributed
(i.i.d.) with an arbitrary distribution function B1(x). After a completion of the
service at the first stage, the customer may return back to the first stage for a
new service with the probability r11 or it may move to the second stage with the
probability r12 or it may leave the system with the probability (1 − r11 − r12).
Service times at the second stage are i.i.d. with an arbitrary distribution function
B2(x). When the service at the second stage is completed, the customer may
return to the first stage with the probability r21 or it may get a new service at
the second stage with the probability r22 or it may leave the system with the
probability (1 − r21 − r22).

Such models may describe the set of servers where one group of servers
can handle user’s requests and perform some actions similar to these handling,
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1–r21–r22
λ

r12 

r22

r21

r11

1–r11–r12

Stage 2 Stage 1 

B2(x) 

B2(x) 

B2(x) 

B1(x) 

B1(x) 

B1(x) 

Fig. 1. Queueing tandem M/G/∞ → G/∞ with feedback.

and another group of servers perform another type of work and users can not
directly send requests to these servers.

The problem is to determine the steady-state probability distribution of the
number of customers at the stages of the system.

3 Method of Limiting Decomposition

To study the queueing system with an infinite number of lines, an arbitrary
service time distribution function and Poisson arrivals, we use the method of
limiting decomposition [17]. It is known that the division of the Poisson point
process performed according to the binomial scheme gives independent Pois-
son processes as a result. Proceeding from this, we divide the arrival process in
the considered tandem into N independent processes according to a polynomial
scheme with identical probabilities. As the rate of the original arrivals was equal
to λ, then the intensity of each generated Poisson process will be equal to λ/N .
After that we construct a single-line tandem for each of these arrival processes
to serve their customers. The considered single-line two-stage queueing tandem
M/G/1 → G/1 (Fig. 2) is a system with loses, that is, customers are not servic-
ing if they arrive during a period when at least one stage is busy (they are lost).
In the article [18], it was proved that the total probability characteristics of the
independent one-line systems constructed in this way coincide with the corre-
sponding characteristics of the original infinite-server system if N tends to ∞.
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λ/N

r12 

r22

r21

r11

1–r11–r12 1–r21–r22

B2(x) 

Stage 2 

B1(x) 

Stage 1 

Fig. 2. Single-line queueing tandem M/G/1 → G/1 with loses.

Therefore, we first find the stationary probability distributions of the number of
customers at the stages of the constructed single-line tandems.

Let the state of the single-line tandem be a random process k(t) with the
following values:

k(t) =

⎧
⎨

⎩

0, if the system is free,
1, if the first stage is busy,
2, if the second stage is busy.

The process k(t) is not Markovian. Let z(t) be a length of the interval from the
time moment t to the end of the current service (either at the first or second
stage). If both servers are free at the time moment t, then the component z(t)
is not defined.

The random process {k(t), z(t)} is Markovian. We denote the probability
distribution of the process as P0(t) = P{k(t) = k}, P1(z, t) = P{k(t) = 1, z(t) <
z}, P2(z, t) = P{k(t) = 2, z(t) < z}.

Using the total probability formula, we can write the system of equations:

P0(t + Δt) =
(

1 − λ

N
Δt

)

P0(t) + (1 − r11 − r12)P1(Δt, t)

+ (1 − r21 − r22)P2(Δt, t) + o(Δt),

P1(z, t + Δt) = P1(z + Δt, t) − P1(Δt, t) +
λ

N
ΔtB1(z)P0(t)

+ r11B1(z)P1(Δt, t) + r21B1(z)P2(Δt, t) + o(Δt),

P2(z, t + Δt) = P2(z + Δt, t) − P2(Δt, t) + r12B2(z)P1(Δt, t)
+ r22B2(z)P2(Δt, t) + o(Δt).

Hence we obtain the following system of Kolmogorov differential equations:

∂P0(t)
∂t

= (1 − r11 − r12)
∂P1(0, t)

∂z
+ (1 − r11 − r12)

∂P1(0, t)
∂z

− λ

N
P0(t), (1)
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∂P1(z, t)
∂t

=
∂P1(z, t)

∂z
+ [r11B1(z) − 1]

∂P1(0, t)
∂z

+ r21B1(z)
∂P2(0, t)

∂z
+

λ

N
P0(t)B1(z),

(2)

∂P2(z, t)
∂t

=
∂P2(z, t)

∂z
+ [r22B2(z) − 1]

∂P2(0, t)
∂z

+ r12B2(z)
∂P1(0, t)

∂z
. (3)

We denote the probability distribution in the stationary regime as P0(t) =
Π0, P1(z, t) = Π1(z), P2(z, t) = Π2(z). Then the system (1)–(3) can be rewritten
in the form

λ

N
Π0 = (1 − r11 − r12)

∂Π1(0)
∂z

+ (1 − r11 − r12)
∂Π1(0)

∂z
, (4)

∂Π1(z)
∂z

= [1 − r11B1(z)]
∂Π1(0)

∂z
− r21B1(z)

∂Π2(0)
∂z

− λ

N
Π0B1(z), (5)

∂Π2(z)
∂z

= [1 − r22B2(z)]
∂Π2(0)

∂z
− r12B2(z)

∂Π1(0)
∂z

. (6)

Letting z → ∞ in system (4)–(6), we derive the following system of three
equations

λ

N
Π0 = (1 − r11 − r12)

∂Π1(0)
∂z

+ (1 − r11 − r12)
∂Π1(0)

∂z
, (7)

(1 − r11)
∂Π1(0)

∂z
− r21

∂Π2(0)
∂z

=
λ

N
Π0, (8)

− r12
∂Π1(0)

∂z
+ (1 − r22)

∂Π2(0)
∂z

= 0. (9)

In this system, it is easy to see that Eq. (7) can be represented as a linear com-
bination of Eqs. (8) and (9). Therefore, we will not use it for further derivations.

We can express the constants
∂Π1(0)

∂z
and

∂Π2(0)
∂z

from the system of equa-

tions (8)–(9):

∂Π1(0)
∂z

=
1 − r22

(1 − r11)(1 − r22) − r12r21
· λ

N
Π0, (10)

∂Π2(0)
∂z

=
r12

(1 − r11)(1 − r22) − r12r21
· λ

N
Π0. (11)

Substituting expressions (10), (11) into Eqs. (5) and (6), we derive equations
for Π1(z) and Π2(z) as follows:

∂Π1(z)
∂z

=
1 − r22

(1 − r11)(1 − r22) − r12r21
· λ

N
Π0[1 − B1(z)],

∂Π2(z)
∂z

=
r12

(1 − r11)(1 − r22) − r12r21
· λ

N
Π0[1 − B2(z)].
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Hence, we obtain

Π1(z) =
1 − r22

(1 − r11)(1 − r22) − r12r21
· λ

N
Π0

∫ z

0

[1 − B1(z)]dz, (12)

Π2(z) =
r12

(1 − r11)(1 − r22) − r12r21
· λ

N
Π0

∫ z

0

[1 − B2(z)]dz. (13)

If we make a limit transition z → ∞ in expressions (12), (13), then we obtain

Π1 =
1 − r22

(1 − r11)(1 − r22) − r12r21
· λ

N
Π0b1,

Π2 =
r12

(1 − r11)(1 − r22) − r12r21
· λ

N
Π0b2,

where bk =
∫ ∞

0

[1−Bk(z)] dz is the average service time at the k-th stage of the

system (k = 1, 2).
Using the normalization condition Π0 + Π1 + Π2 = 1, we can write the

following expression for Π0:

Π0 =
N [(1 − r11)(1 − r22) − r12r21]

N [(1 − r11)(1 − r22) − r12r21] + λ [(1 − r22)b1 + r12b2]
. (14)

Then the expressions for Π1 and Π2 take the form

Π1 =
λ(1 − r22)b1

N [(1 − r11)(1 − r22) − r12r21] + λ [(1 − r22)b1 + r12b2]
, (15)

Π2 =
λr12b2

N [(1 − r11)(1 − r22) − r12r21] + λ [(1 − r22)b1 + r12b2]
. (16)

Thus, the expressions (14)–(16) determine the probability characteristics of
the state of a single-line tandem. Now let us return to the original infinite-server
two-stage queueing system.

Let i1(t) be the number of customers at the first stage of the system and
i2(t) be the number of customers at the second stage. Denote the probabilities
P1(i, t) = P{i1(t) = i}, P2(i, t) = P{i2(t) = i}, and let P1(i) := P1(i, t), P2(i) :=
P2(i, t) be the probabilities in a stationary regime. Then, using the Bernoulli
formula, if we let N → ∞, we can derive the following:
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P1(i) = lim
N→∞

Ci1
N Πi1

1 (1 − Π1)
N−i1 =

lim
N→∞

[
N !

i1!(N − i1)!
·
(

λ(1 − r22)b1
N ((1 − r11)(1 − r22) − r12r21) + λ ((1 − r22)b1 + r12b2)

)i1

·
(

1 − λ(1 − r22)b1
N ((1 − r11)(1 − r22) − r12r21) + λ ((1 − r22)b1 + r12b2)

)N−i1
]

=

lim
N→∞

[
(λ(1 − r22)b1)

i1

i1!
· N · (N − 1) · · · · · (N − i1 + 1)

(N ((1 − r11)(1 − r22) − r12r21) + λ ((1 − r22)b1 + r12b2))
i1

·(
1 − λ(1 − r22)b1

N ((1 − r11)(1 − r22) − r12r21) + λ ((1 − r22)b1 + r12b2)

)N−i1
]

=

(
λ(1 − r22)b1

(1 − r11)(1 − r22) − r12r21

)i1

· e
− λ(1−r22)b1

(1−r11)(1−r22)−r12r21

i1!

Thus, we obtain

P1(i) =
γi
1

i!
· e−γ1 , (17)

where

γ1 =
λ(1 − r22)b1

(1 − r11)(1 − r22) − r12r21
. (18)

Similarly, one can derive

P2(i) =
γi
2

i!
· e−γ2 , (19)

where
γ2 =

λr12b2
(1 − r11)(1 − r22) − r12r21

. (20)

Thus, the marginal probability distributions of the number of customers at
the first and second stages of the system are Poisson distributions with the
parameters γ1 and γ2 respectively.

4 Numerical Example

Let us consider an example of applying the obtained results (17)–(20), and also
compare these results with the asymptotic ones obtained earlier in [15,19].

Consider a two-stage queueing tandem with feedback, the configuration of
which is described in the Sect. 2. Let the parameters of the tandem have the
following values: r11 = 0.2, r12 = 0.4, r21 = 0.6, r22 = 0.2. The service time
at the first stage has gamma distribution with a shape parameter equal to 0.25
and an inverse scale parameter equal to 0.5. At the second stage, the service
time has gamma distribution with a shape parameter equal to 0.25 and inverse
scale parameter equal to 0.25. The arrival process is a stationary Poisson process
with the intensity λ = K, where K > 0 is the high-intensity parameter of the
arrivals as described in [20]. We will change value of this parameter in a series
of experiments.
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For this system, according to the results (17)–(20), we obtain that the mar-
ginal probability distributions of the number of customers at each stage of the
system are Poisson distributions with parameter 1.

In the paper [15], it was obtained that under a condition of a high rate of
arrivals, these distributions can be approximated by Gaussian distributions with
means and variances equal to 1.

In the article [19], a more accurate expression for approximating the multi-
dimensional characteristic function of the number of customers at the nodes of
the queueing network was obtained for the similar asymptotic condition (it is
called as third-order asymptotic or third-order approximation). From that expres-
sion, we can write the following general form of third-order approximations for
the characteristic functions of the marginal stationary probability distributions
of the number of customers at the stages of the tandem under study:

h(u) = exp
{

juc1 +
(ju)2

2
c1 +

(ju)3

6
c3

}

, (21)

where c1 = K, c3 = K + 6Kθ. In our example, θ ≈ 0.17644 for the first stage,
and θ ≈ 0.03024 for the second stage of the system. To obtain the distribution
law from expression (21), we should make the inverse Fourier transformation of
its right-hand side and perform a normalization of obtained values.

The graphs at the Fig. 3 show a comparison of the probability distribution
laws for the number of customers at the second stage of the system for different
values of the arrivals intensity K. The graphs are constructed on the base of
the analytical results (19), the Gaussian approximation [15], and the third-order
approximation (21) [19].

Table 1 presents the values of the Kolmogorov distance

dk = max
x

∣
∣
∣
∣
∣

x∑

i=0

[P2(i) − Gk(i)]

∣
∣
∣
∣
∣
, k = 2, 3,

between the Poisson distribution function P2(i) with the parameter (20) and the
distribution functions for the Gaussian approximation G2(i) and the third-order
approximation G3(i).

Table 1. The Kolmogorov distance for the Gaussian approximation d2 and third-order
approximation d3.

K 1 2 3 4 5 6

d2 0.109 0.070 0.050 0.040 0.033 0.029

d3 0.026 0.020 0.018 0.016 0.012 0.009

If we choose dk ≤ 0.03 as a permissible error of the asymptotic result, then
we can conclude that the Gaussian approximation is applicable for values K ≥ 6,
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Fig. 3. Distribution laws of the number of customers at the second stage of the tandem
for different values of the arrivals intensity K, built on the basis of analytical results
(solid line), Gaussian approximation (dashed line) and third-order approximation (dot-
ted line).

and the third-order approximation is applicable for values K ≥ 1. This result
is approximately twice a quality (low boundary of applicability) of the results
obtained in papers [15,19]. This effect is probably due to the fact that we are
considering a system with a Poisson arrival process, but those papers consider
models with renewal arrival process.
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5 Conclusions

In this paper, we consider a two-stage tandem of queues with an infinite number
of servers and a possibility of repeated service at each stage. The service times
has an arbitrary distributions. The arrival process is a stationary Poisson point
process. The study is carried out by the method of limiting decomposition. It
is shown that the marginal steady-state probability distributions of the num-
ber of customers at each stage are Poisson distributions. Parameters of these
distributions are obtained in the paper.

Also in the paper, the obtained analytical result is compared with the asymp-
totic ones that was obtained earlier in the papers [15,19].

Future research can be devoted to the analysis of customers’ flows in the
considered model.
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1 Faculty of Mathematics and Natural Sciences, College of Sciences,
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Abstract. In the paper, we investigate a combination of two following
different queueing systems connected via common limited buffer space:
(1) the system of M/G/1-type, in which service time does not depend
on demand volume; (2) the processor-sharing system, in which demand
length arbitrarily depends on its volume. For such combination, we deter-
mine the steady-state loss probability and distribution of number of
demands present in each system of the combination.

Keywords: Queueing system · Demand volume · Total demands capac-
ity · Buffer space capacity · Processor-sharing system

1 Introduction

We consider queueing systems with demands of random space requirement. It
means that (1) each demand is characterized by some non-negative demand
space requirement ore demand volume ζ; (2) the total sum σ(t) of volumes of
all demands present in the system at an arbitrary time instant t is limited by
some constant value V , which is named the buffer space capacity of the system;
(3) we also assume that service time ξ of the demand and its volume can be
dependent.

Such systems have been used to model and solve the various practical prob-
lems occurring in the design of computer and communicating systems.

The joint distribution of the random variables ζ and ξ we characterize by
the joint distribution function F (x, t) = P{ζ < x, ξ < t}. The buffer space is
occupied by the demand at the epoch it arrives to the system and is released
entirely at the epoch it completes service. The random process σ(t) is called
the total demands capacity. The limitation of the buffer capacity V leads to
additional losses of demands. A demand having volume x, which arrives at the
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 158–167, 2017.
DOI: 10.1007/978-3-319-68069-9 13
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epoch τ when there are idle servers or waiting positions, is admitted to the
system if σ(τ − 0) + x ≤ V . Otherwise (if σ(τ − 0) + x > V ) the demand is lost.

Queueing systems of different types with limited buffer capacity were ana-
lyzed, for example, in [1–8]. For these systems, the stationary demands number
distribution and loss probability were determined. In particular, in [8] the com-
bination of two different systems of the same (M/G/1) type were investigated
under assumption that service time does not depends on the demand volume for
each of the systems.

In present paper, we investigate combinations of two following systems con-
nected via common limited (by V ) buffer: (1) M/G/1/∞-type system, (2)
M/G/1 − PS-type system. Such models obviously can be used in computer
and communicating networks designing. A statement allowing determination of
the steady-state demands number distribution and loss probability for each of
the systems connected via common buffer will be presented.

The paper is organized as follows. Section 2 contains a description of the
queueing model and necessary notations. In Sect. 3, we define a Markovian
process describing the evolution of the system and the functions characterizing
the system behavior. In Sect. 4, we build a system of partial differential equations
for the transient system characteristics and give their steady-state solution. In
this section, we also determine the steady-state queue-size distribution for the
system under consideration. Section 5 presents conclusions and final remarks.

2 The Model and Notation

By a demand length for the second (processor sharing) system in the considered
combination we mean the amount of work required to serve it, that is, the time
of demand sojourn in this system at hand, provided that there are no other
demands in the system during this time [9]. By the demand remaining length for
this system we mean the amount of work required to complete its service after
some time instant, that is, the remaining time of demand sojourn, provided that
there are no other demands in the system during this time.

We shall use the following notation (i = 1, 2): ai – the rate of demand arrival
process for ith system, ζi – the demand space requirement for ith system, ξ1 –
the first system demand service time; ξ2 – the second system demand length;
Li(x) – the distribution function of ζi random variable, B1(t) – the distribution
function of ξ1 random variable that is assumed to be independent of the demand
space requirement ζ1.

We assume that, for the second system, the demand length ξ2 can be depen-
dent on its space requirement, and we denote the joint distribution function
F (x, t) = P{ζ2 < x, ξ2 < t}. So, we have evidently that L2(x) = F (x,∞),
B2(t) = F (∞, t), where B2(t) is the distribution function of the demand length
for the second system. Let ηi(t) be the number of demands present in ith system
at time moment t; ζ

(i)
j (t) – the space requirement of jth demand present in ith

system at the moment t, j = 1, ηi(t); ξ
(1)
∗ (t) – the remaining service time of the
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demand being on service in the first system at the moment t; ξ
(2)
1∗ , . . . , ξ

(2)
η2(t)∗ –

the remaining lengths of demands in the second one at this moment.
We agree to assume that the demands present in the second system at an

arbitrary time instant are numerated randomly, that is, if at the time instant t
there are k demands in this system, then any of the possible k! numerations can
be used with the same probability 1/k!.

It is clear that σ(t) =
2∑

i=1

ηi(t)∑

j=1

ζ
(i)
j (t).

3 Random Process and Functions Describing the System
Behavior

The combination of queues under consideration can be described by the following
Markovian random process:

(
ηi(t), ζ

(i)
j (t), j = 1, ηi(t), i = 1, 2; ξ

(1)
∗ (t); ξ

(2)
l∗ (t), l = 1, η2(t)

)
(1)

It is clear that the components ζ
(i)
1 (t), ξ(1)∗ (t) are absent in (1), if η1(t) = 0;

ζ
(i)
2 (t), ξ(2)l∗ (t) are absent, if η2(t) = 0.

Let us introduce the vector Zk = (z1, . . . , zk). We also shall use the notations
(Zk, y) = (z1, . . . , zk, y), Zj

k = (z1, . . . , zj−1, zj+1, . . . zk).
The process (1) is characterized by the functions with the following proba-

bility sense:
P0(t) = P{ηi(t) = 0, i = 1, 2} = P{σ(t) = 0} (2)

G(k, 0, x, y, t) = P{η1(t) = k, η2(t) = 0;σ(t) < x; ξ(1)∗ (t) < y}, k = 1, 2, . . . (3)

G(0, k, x, Zk, t) = P{η1(t) = 0, η2(t) = k;σ(t) < x; ξ
(2)
j∗ (t) < zj , j = 1, k}, k = 1, 2, . . . (4)

G(k1, k2, x, y, Zk2 , t) = P{η1(t) = k1, η2(t) = k2;
σ(t) < x; ξ(1)∗ (t) < y, ξ

(2)
j∗ (t) < zj , j = 1, k2},

k1, k2 = 1, 2, . . . .

(5)

We also introduce the functions

W (k1, k2, y, Zk2 , t) = P{η1(t) = k1, η2(t) = k2; ξ
(1)
∗ (t) < y, ξ

(2)
j∗ (t) < zj , j = 1, k2}

= G(k1, k2, V, y, Zk2 , t), k1, k2 = 1, 2, . . . .
(6)

The functions W (k, 0, y, t) and W (0, k, Zk, t) can be introduced by similar way.
The demands number distribution is defined by the following functions:

P (k1, k2, t) = P{ηi(t) = ki, i = 1, 2} = W (k1, k2, ∞, ∞k2 , t), k1, k2 = 1, 2, . . . , (7)

where ∞k = (∞, . . . ,∞
︸ ︷︷ ︸

k

).

We can define the functions P (k, 0, t), P (0, k, t) analogously.
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We are interested in steady-state demands number distribution and loss
probability. Therefore, let us write out the stationary analogies of the functions
(2)–(5):

p0 = lim
t→∞ P0(t) (8)

g(k, 0, x, y) = lim
t→∞ G(k, 0, x, y, t), k = 1, 2, . . . (9)

g(0, k, x, Zk) = lim
t→∞ G(0, k, x, Zk, t), k = 1, 2, . . . (10)

g(k1, k2, x, y, Zk2) = lim
t→∞ G(k1, k2, x, y, Zk2 , t), k1, k2 = 1, 2, . . . (11)

Now we can define stationary analogies of (6) and (7) functions:

w(k1, k2, y, Zk2) = g(k1, k2, V, y, Zk2)), k1, k2 = 1, 2, . . . (12)

p(k1, k2) = w(k1, k2,∞,∞k2), k1, k2 = 1, 2, . . . (13)

The functions w(k, 0; y), w(0, k, Zk), p(k, 0), p(0, k) can be defined analogously.
The functions p(k1, k2) define the steady-state demands number distribution

in the combination of systems under consideration. We can determine loss proba-
bilities for each system of the combination using the functions (8)–(13). Let P

(1)
L

be a loss probability for the first system. Let us define the following functions:

r
(1)
k (y) = w(k, 0; y) +

∞∑

k2=1

w(k, k2; y,∞k2), k = 1, 2, . . .

Then, the loss probability can be determined from the following equilibrium
equation:

a1

(
1 − P

(1)
L

)
=

∞∑

k=1

∂r
(1)
k (y)
∂y

⏐
⏐
⏐

y=0
,

whereas we get

P
(1)
L = 1 − 1

a1

∞∑

k=1

∂r
(1)
k (y)
∂y

⏐
⏐
⏐

y=0
. (14)

For the second system, let us define the functions

r
(2)
k (Zk) = w(0, k;Zk) +

∞∑

k1=1

w(k1, k;∞, Zk), k = 1, 2, . . .

So, we obtain the following equilibrium equation:

a2

(
1 − P

(2)
L

)
=

∞∑

k=1

∂r
(2)
k ((∞k−1, y))

∂y

⏐
⏐
⏐

y=0
,

whereas

P
(2)
L = 1 − 1

a2

∞∑

k=1

∂r
(2)
k ((∞k−1, y))

∂y

⏐
⏐
⏐

y=0
. (15)
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4 The Main Statement

Further we shall use the following (convenient for our aims) notation for Stieltjes
convolution (see [8]):

1.
∫ x

0

f1(x − u)df2(u) = f1 ∗ f2(x) = f2 ∗ f1(x).

2.

∫ x

u=0
f1(y1, ..., yi−1, x − u, yi+1, ..., yk)duf2(z1, ..., zj−1, u, zj+1, ..., zl)

= f1(y1, ..., yi−1, ∗, yi+1, ..., yk) ∗ f2(z1, ..., zj−1, ∗, zj+1, ..., zl)(x)
= f2(z1, ..., zj−1, ∗, zj+1, ..., zl) ∗ f1(y1, ..., yi−1, ∗, yi+1, ..., yk)(x).

3.

∫ x

0
f1(y1, ..., yi−1, x − u, yi+1, ..., yk)df2(u)

= f1(y1, ..., yi−1, ∗, yi+1, ..., yk) ∗ f2(x) = f2 ∗ f1(y1, ..., yi−1, ∗, yi+1, ..., yk)(x).

Similar notations are used for a convolution of more than two functions.
By supplementary variables method [10], partial differential equations for

the functions (2)–(6) can be written out. From these equations we obtain the
following ones for steady-state functions (8)–(12):

0 = −(a1L1(V ) + a2L2(V ))p0 +
∂w(1, 0, y)

∂y

⏐
⏐
⏐

y=0
+

∂w(0, 1, z)
∂z

⏐
⏐
⏐

z=0
(16)

− ∂w(1, 0, y)
∂y

+
∂w(1, 0, y)

∂y

⏐
⏐
⏐

y=0
= a1p0L1(V )B1(y) − a1g(1, 0, ∗, y) ∗ L1(V )

− a2g(1, 0, ∗, y) ∗ L2(V ) +
∂w(2, 0, u)

∂u

⏐
⏐
⏐

u=0
B1(y) +

∂w(1, 1, y, u)
∂u

⏐
⏐
⏐

u=0
(17)

−∂w(0,1,z)
∂z + ∂w(0,1,z)

∂z

⏐
⏐
⏐

z=0
= a2p0F (V, z) − a1g(0, 1, ∗, z) ∗ L1(V )

−a2g(0, 1, ∗, z) ∗ L2(V ) + ∂w(1,1,u,z)
∂u

⏐
⏐
⏐

u=0
+ ∂w(0,2,(z,u))

∂u

⏐
⏐
⏐

u=0
;

(18)

−∂w(k,0,y)
∂y + ∂w(k,0,y)

∂y

⏐
⏐
⏐

y=0
= a1g(k − 1, 0, ∗, y) ∗ L1(V )

−a1g(k, 0, ∗, y) ∗ L1(V ) − a2g(k, 0, ∗, y) ∗ L2(V )
+∂w(k+1,0,u)

∂u

⏐
⏐
⏐

u=0
B1(y) + ∂w(k,1,y,u)

∂u

⏐
⏐
⏐

u=0
, k = 2, 3, . . .

(19)

− 1
k

∑k
j=1

[
∂w(0,k,Zk)

∂zj
− ∂w(0,k,Zk)

∂zj

⏐
⏐
⏐

zj=0

]

= a2
k

∑k
j=1 g(0, k − 1, ∗, Zj

k) ∗ F (∗, zj)(V )
−a1g(0, k, ∗, Zk) ∗ L1(V ) − a2g(0, k, ∗, Zk) ∗ L2(V )
+∂w(1,k,u,Zk)

∂u

⏐
⏐
⏐

u=0
+ ∂w(0,k+1,(Zk,u))

∂u

⏐
⏐
⏐

u=0
, k = 2, 3, . . .

(20)
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−∂w(1,1,y,z)
∂y + ∂w(1,1,y,z)

∂y

⏐
⏐
⏐

y=0
− ∂w(1,1,y,z)

∂z + ∂w(1,1,y,z)
∂z

⏐
⏐
⏐

z=0

= a1g(0, 1, ∗, z) ∗ L1(V )B1(y) + a2g(1, 0, ∗, y) ∗ F (∗, z)(V )
−a1g(1, 1, ∗, y, z) ∗ L1(V ) − a2g(1, 1, ∗, y, z) ∗ L2(V )
+∂w(2,1,u,z))

∂u

⏐
⏐
⏐

u=0
B1(y) + ∂w(1,2,y,(z,u))

∂u

⏐
⏐
⏐

u=0
;

(21)

− ∂w(k1,k2,y,Zk2
)

∂y +
∂w(k1,k2,y,Zk2

)

∂y

⏐
⏐
⏐

y=0
− 1

k2

∑k2
j=1

[
∂w(k1,k2,y,Zk2

)

∂zj
− ∂w(k1,k2,y,Zk)

∂zj

⏐
⏐
⏐

zj=0

]

= a1g(k1 − 1, k2, ∗, y, Zk2 ) ∗ L1(V ) +
a2
k2

∑k2
j=1 g(k1, k2 − 1, ∗, y, Zj

k2
) ∗ F (∗, zj)(V )

−a1g(k1, k2, ∗, y, Zk2 ) ∗ L1(V ) − a2g(k1, k2, ∗, y, Zk2 ) ∗ L2(V )

+
∂w(k1+1,k2,u,Zk2

)

∂u

⏐
⏐
⏐

u=0
B1(y) +

∂w(k1,k2+1,y,(Zk2
,u))

∂u

⏐
⏐
⏐

u=0
,

k1, k2 = 1, 2, . . .

(22)

The following evident boundary conditions take place in steady state:

a1L1(V )p0 =
∂w(1, 0, y)

∂y

⏐
⏐
⏐

y=0
; a2L2(V )p0 =

∂w(0, 1, z)
∂z

⏐
⏐
⏐

z=0
; (23)

a1g(k, 0, ∗, y) ∗ L1(V ) =
∂w(k + 1, 0, y)

∂y

⏐
⏐
⏐

y=0
B1(y), k = 1, 2, . . . ; (24)

a2g(k, 0, ∗, y) ∗ L2(V ) =
∂w(k, 1, y, z)

∂z

⏐
⏐
⏐

z=0
, k = 1, 2, . . . ; (25)

a2g(0, k, ∗, Zk) ∗ L2(V ) =
∂w(0, k + 1, (Zk, u))

∂u

⏐
⏐
⏐

u=0
, k = 1, 2, . . . ; (26)

a1g(0, k, ∗, Zk) ∗ L1(V ) =
∂w(1, k, y, Zk)

∂y

⏐
⏐
⏐

y=0
, k = 1, 2, . . . ; (27)

a1g(k1, k2, ∗, y, Zk2) ∗ L1(V ) = ∂w(k1+1,k2,u,Zk2 )

∂u

⏐
⏐
⏐

u=0
B1(y),

k1, k2 = 1, 2, . . . ;
(28)

a2g(k1, k2, ∗, y, Zk2) ∗ L2(V ) = ∂w(k1,k2+1,y,(Zk2 ,u))

∂u

⏐
⏐
⏐

u=0
,

k1, k2 = 1, 2, . . . .
(29)

Denote by ηi, σ the stationary number of demands in ith system (i = 1, 2) and
total demands capacity in the combination of systems, respectively. Introduce
also the notation p

(i)
0 = P{ηi = 0}.

Introduce the following notation for the first system of the combination:

g
(1)
k (x, y) = P{η1 = k, σ < x, ξ

(1)
∗ < y},

w
(1)
k (y) = g

(1)
k (V, y), (30)

v
(1)
k (x) = P{η1 = k, σ < x} = lim

y→∞ g
(1)
k (x, y) = g

(1)
k (x,∞), (31)
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p
(1)
k = P{η1 = k} = v

(1)
k (V ). (32)

Let us write out equations for an independent M/G/1/(∞, V ) system. For
example, they follow from the Eqs. (16)–(29), if a2 = 0. So, for a separate first
queue of the combination with limited (by V ) buffer space capacity we obtain
the following equations:

0 = −a1L1(V )p(1)0 +
∂w

(1)
1 (y)
∂y

⏐
⏐
⏐

y=0
; (33)

−∂w
(1)
1 (y)
∂y + ∂w

(1)
1 (y)
∂y

⏐
⏐
⏐

y=0
= a1p

(1)
0 L1(V )B1(y)

−a1g
(1)
1 (∗, y) ∗ L1(V ) + ∂w

(1)
2 (y)
∂y

⏐
⏐
⏐

y=0
B1(y);

(34)

−∂w
(1)
k (y)

∂y + ∂w
(1)
k (y)

∂y

⏐
⏐
⏐

y=0
= a1g

(1)
k−1(∗, y) ∗ L1(V )

−a1g
(1)
k (∗, y) ∗ L1(V ) +

∂w
(1)
k+1(y)

∂y

⏐
⏐
⏐

y=0
B1(y), k = 2, 3, . . . ;

(35)

a1g
(1)
k (∗, y) ∗ L1(V ) =

∂w
(1)
k+1(y)
∂y

⏐
⏐
⏐

y=0
B1(y), k = 1, 2, . . . . (36)

For the second system, we introduce the notation:

g
(2)
k (x,Zk) = P{η2 = k, σ < x; ξ(2)j∗ < zj , j = 1, k},

w
(2)
k (Zk) = g

(2)
k (V,Zk), (37)

v
(2)
k (x) = P{η2 = k, σ < x} = g

(2)
k (x,∞k), (38)

p
(2)
k = P{η2 = k} = v

(2)
k (V ). (39)

Then, for a separate second system of the combination, we can write out the
following equations (which follow from the Eqs. (16)–(29), when a1 = 0):

0 = −a2L2(V )p(2)0 +
∂w

(2)
1 (z)
∂z

⏐
⏐
⏐

z=0
; (40)

−∂w
(2)
1 (z)
∂z + ∂w

(2)
1 (z)
∂z

⏐
⏐
⏐

z=0
= a2p

(2)
0 F (V, z)

−a2g
(2)
1 (∗, z) ∗ L2(V ) + ∂w

(2)
2 ((z,u))

∂u

⏐
⏐
⏐

u=0
;

(41)

− 1
k

∑k
j=1

[
∂w

(2)
k (Zk)

∂zj
− ∂w

(2)
k (Zk)

∂zj

⏐
⏐
⏐

zj=0

]

= a2
k

∑k
j=1 g

(2)
k−1(∗, Zj

k) ∗ F (∗, zj)(V )

−a2g
(2)
k (∗, Zk) ∗ L2(V ) +

∂w
(2)
k+1((Zk,u))

∂u

⏐
⏐
⏐

u=0
, k = 2, 3, . . . ;

(42)
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a2g
(2)
k (∗, Zk) ∗ L2(V ) =

∂w
(2)
k+1((Zk, u))

∂u

⏐
⏐
⏐

u=0
, k = 1, 2, . . . . (43)

The following statement takes place.

Theorem. Let the number p
(1)
0 and the functions g

(1)
k (x, y) satisfy the Eqs. (33)–

(36) and the normalization condition

p
(1)
0 +

∞∑

k=1

g
(1)
k (V,∞) = 1;

and the number p
(2)
0 and the functions g

(2)
k (x,Zk) satisfy the Eqs. (40)–(43) and

the normalization condition

p
(2)
0 +

∞∑

k=1

g
(2)
k (V,∞k) = 1.

Then the functions

g(k, 0, x, y) =
p0

p
(1)
0

g
(1)
k (x, y), g(0, k, x, Zk) =

p0

p
(2)
0

g
(2)
k (x,Zk), k = 1, 2, . . . ,

g(k1, k2, x, y, Zk2) =
p0

p
(1)
0 p

(2)
0

g
(1)
k1

(∗, y) ∗ g
(2)
k2

(∗, Zk2)(x), k1, k2 = 1, 2, . . .

satisfy the Eqs. (16)–(29) (the number p0 can be determined from the normaliza-
tion condition).

The theorem can be proved by direct substitution of g(k1, k2, x, y, z) functions
into Eqs. (16)–(29).

Corollary. For the functions w(k1, k2, y, Zk2) we get:

w(k, 0, y) =
p0

p
(1)
0

w
(1)
k (y), w(0, k, Zk) =

p0

p
(2)
0

w
(2)
k (Zk), k = 1, 2, . . . ,

where the functions w
(1)
k (y), w(0, k, Zk) are determined by relations (30) and

(36), respectively,

w(k1, k2, y, Zk2) =
p0

p
(1)
0 p

(2)
0

g
(1)
k1

(∗, y) ∗ g
(2)
k2

(∗, Zk2)(V ), k1, k2 = 1, 2, . . . .

The determination of the steady-state demands number distribution in the system
under consideration has the following form:

p(k, 0) =
p0

p
(1)
0

p
(1)
k , p(0, k) =

p0

p
(2)
0

p
(2)
k , k = 1, 2, . . . , (44)

where p
(1)
k and p

(2)
k are determined by relations (32) and (39), respectively,

p(k1, k2) =
p0

p
(1)
0 p

(2)
0

v
(1)
k1

∗ v
(2)
k2

(V ), k1, k2 = 1, 2, . . . , (45)

where v
(1)
k1

(x) and v
(2)
k2

(x) are determined by relations (31) and (38), respectively.
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Let, for example, the first system of the combination is M/M/1/(∞, V ) (see
e.g. [2]) with exponentially distributed demand capacity: L1(x) = 1 − e−f1x,
f1 > 0. Let μ1 be the parameter of service time of the system, ρ1 = a1/μ1.
Then, we have:

p
(1)
0 =

⎧
⎨

⎩

1 − ρ1
1 − ρ1e−(1−ρ1)f1V

, if ρ1 �= 1,

(1 + f1V )−1, if ρ1 = 1;

v
(1)
k (x) = p

(1)
0 ρk

1

[

1 − e−f1x
k−1∑

i=0

(f1x)i

i!

]

, k = 1, 2, . . . ;

p
(1)
k = p

(1)
0 ρk

1

[

1 − e−f1V
k−1∑

i=0

(f1V )i

i!

]

, k = 1, 2, . . . .

Assume that, in the second system, demand capacity has an exponential
distribution with parameter f2, f2 > 0, demand length is proportional to its
capacity: ξ2 = cζ2, c > 0, ρ2 = a2c/f2. Then, we have (see [7]):

p
(2)
0 =

⎧
⎪⎨

⎪⎩

1 − ρ2

1 − √
ρ2e−f2V

[
sinh(

√
ρ2f2V ) +

√
ρ2 cosh(

√
ρ2f2V )

] , if ρ2 �= 1,

4
3 + 2f2V + e−2f2V

, if ρ2 = 1;

v
(2)
k (x) = p

(2)
0 ρk

2

[

1 − e−f2x
2k−1∑

i=0

(f2x)i

i!

]

, k = 1, 2, . . . ;

p
(2)
k = p

(2)
0 ρk

2

[

1 − e−f2V
2k−1∑

i=0

(f2V )i

i!

]

, k = 1, 2, . . . .

Now, we can calculate demands number distribution for the combination of
these systems using relations (44) and (45).

5 Conclusions

In the paper, we investigate combinations of two different queueing sys-
tems (M/G/1-type with independent service time and demand volume and a
processor-sharing with dependent ones) connected via common buffer of limited
space capacity. We determine the loss probability and demands number distrib-
ution for each system of the combination.

We show that the formulas for characteristics of demands number distribu-
tions of the combination have the form of Stieltjs convolution of the character-
istics of separate systems.

The formulas obtained in the paper are not generally convenient for precise
calculation, but the calculation is possible in some special cases. In other cases
we can use the numeric inversion of Laplace transform [11,12] to approximate
calculations of Stieltjes convolutions.
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In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 61–69.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21771-5 8

9. Yashkov, S.F., Yashkova, A.S.: Processor sharing: a survey of the mathematical
theory. Autom. Remote Control 68(9), 1662–1731 (2007)

10. Bocharov, P.P., D’Apice, C., Pechinkin A.V., Salerno, S.: Queueing Theory. VSP,
Utrecht-Boston (2004)

11. Gaver, D.P.: Observing stochastic processes, and approximate transform inversion.
Oper. Res. 14(3), 444–459 (1966)

12. Stehfest, H.: Algorithm 368: numeric inversion of laplace transform. Commun.
ACM 13(1), 47–49 (1970)

http://dx.doi.org/10.1007/978-3-642-21771-5_8


Minimization of Packet Loss Probability
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Abstract. Methods for radical reduction of packet loss probability in
telecommunication networks with fractal traffic are developed. We inves-
tigate ways of preventing the losses within the framework of queueing
theory; relevant simulation experiments are carried out. It is determined
that strategy for the channel number increase in the network nodes has
principally higher efficiency than that for the buffer increasing and/or
channel performance increasing. Approximation methods for loss prob-
ability in the nodes of multiserver queueing system without buffers are
investigated. The paper offers to approximate the loss probability in the
node with n channels by steady-state probability in the state n of relat-
ing infinite-server queueing systems. We develop an analytical-statistical
technique of optimal channel distribution over the nodes in networks
with fractal traffic which is based on such approximation. The example
of the method application is provided. The developed method could be
used by engineers designing the telecommunication networks.

Keywords: Telecommunication networks · Analytical-statistical tech-
niques · Fractal traffic · Queueing theory

1 Introduction

It is known that the traffic of modern telecommunication networks has a fractal
(self-similar) structure [1]. Random variables describing such traffic are given by
asymptotically power-law distributions (we will call them power-law distribu-
tions) [2]. The properties of power-law distributions generate specific difficulties
that arise while measuring traffic [3] and designing network devices.

In designing network, devices at a system level are presented in the form of
queueing systems [4,5]. We will call fractal systems the GI/GI/n/m class sys-
tems in which intervals of requests arrival and/or their service time belong to
power-law distributions and have finite mathematical expectation (m.e.) and infi-
nite dispersion. The load coefficient ρ of the examined systems does not exceed
one: ρ = λb/n ≤ 1 where b < ∞ is the average request service time, λ = 1/a
is the intensity of arriving request flow, a < ∞ is the average time between
the request arrivals, n is a number of channels in the system. We shall call the
GI/GI/n/m systems set only by exponential-tailed distributions (and also by

c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 168–183, 2017.
DOI: 10.1007/978-3-319-68069-9 14
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distributions with tails positive only in finite intervals) the classical systems.
Correspondingly, a queueing network will be called fractal if there is power-law
distribution with infinite dispersion among distributions describing the network.

For instance, the queueing systems Pa/M/n/m, M/Pa/n/m and
Pa/Pa/n/m are fractal when Pa distribution has finite m.e. and infinite disper-
sion. Here the Pa symbol corresponds to Pareto distribution with cumulative
distribution function (d.f.)

F (t) = 1−(K/t)α
, α > 0, K > 0, t ≥ K,

where α is a shape parameter, K is the smallest value of a random variable (r.v.)
and simultaneously, a scale parameter. We denote Pareto distribution with K,
α as Pa(K,α). The range of α values, typical for the fractal traffic, belongs
to the interval 1 < α ≤ 2. At such α Pa(K,α) distribution has m.e. equal
to αK/(α − 1), and infinite dispersion. In a general case, fractal systems are
calculated through simulation [6,7].

In simulation of fractal systems, there are significant difficulties caused by
hidden defect of power-law r.v. generators - the moments shifting [8]. For cor-
rect realization of power-law distributions, it is necessary either to use random
number generators (RNG) with infinite number of digit positions or to develop
special RNGs. In [9] the correct realization problem for power-law distributions
in simulation has been solved in general terms by constructing ARAND algo-
rithm (Accurate RAND), efficiently applying random numbers, resulting from
any standard well-tested RNG. The simulation, the results of which are to be
used below, has been implemented with the ARAND algorithm and “Mersene
twister” RNG. At the same time, we used widely known classical methods pro-
viding the necessary accuracy of simulation results, adapted to fractal systems
modeling [10]. Taking the aforesaid into consideration, the simulation conducted
in this research is to be called a high-precision one.

The present investigation aims to develop methods for radical reduction of
packet loss probability in telecommunication networks with fractal traffic.

2 Problem Statement

The following notations will be used for queueing networks description: A(t)
is d.f. for intervals of requests arrival, a and σ2 are m.e. and arrival intervals
dispersion, λ = 1/a is the intensity of arriving flow, B(t) is d.f. of service time
with m.e. b. Parameter α in the Pareto distribution is in the range defined by
1 < α ≤ 2.

Let us consider the M/Pa/1 fractal system as an illustrative example.
According to the Pollaczek-Khinchine formula [4], average queue length L in
this system is infinite at any ρ > 0:

L =
λ2b(2)

2(1 − ρ)
= ∞,
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since the second moment b(2) of the service time, distributed herein by the Pareto
distribution at 1 < α ≤ 2, is infinite. This example clarifies why in the case of
a finite buffer (i.e., in the M/Pa/1/m system) the reduction of the request loss
probability due to the sufficiently large m and/or the channel operation speed
increase (load coefficient decrease) is inefficient. In [11] this is justified by a more
complete and detailed analysis.

Therefore, the need of finding more efficient ways of combating requests losses
in fractal systems and networks arises.

The theoretical problem considered in this paper is to investigate the effi-
ciency of loss probability reduction in fractal networks by increasing the number
of channels in their nodes.

The development of an efficient technique for loss minimization using the
optimal channel distribution over the nodes of fractal networks is the applied
problem. The creation and use of sufficiently accurate expressions describing
dependence of loss probability on the channels number in fractal system are the
key elements of the developed technique.

3 Classical Infinite-Server Queueing Systems

In classical infinite-serverl system GI/GI/∞ both A(t), B(t) distributions have
finite dispersion. With the rise of a load R = λb, the probability distribution
pk of the occupied channel number k converges to the Gaussian distribution
N(k̄, σk) [12], i.e., pk → gk,

gk =
1√

2πσk
exp

[
− (k − k̄)2

2σ2
k

]
, (1)

where k̄ = λb, σ2
k = λb + κβ,

κ = λ3(σ2 − a2), β =
∞∫
0

[1 − B(τ)]2dτ .

In practice there is a problem of choosing the smallest channels number n
which, in the case of a request buffer absence, i.e., for m = 0, could provide a
low request loss probability not exceeding the given value Q. In other words, it
is necessary to find the smallest n, at which a multiserver system GI/GI/n/0
with the same A(t) and B(t) (i.e., a GI/GI/n/0 system that corresponds to
initial infinite-server GI/GI/∞ system) will have loss probability not exceeding
Q. This problem will be called the problem of finding n(Q), meaning that Q is
a sufficiently low probability, for instance, Q = 10−4 or Q = 10−15.

When distribution pk of the initial GI/GI/∞ system is known, the prob-
lem of finding n(Q) can be reformulated and solved as the one of finding the
smallest n which satisfies the P (k ≥ n) =

∑∞
k=n pk ≤ Q condition, i.e., the

1 − P (k < n) ≤ Q condition. Considering k, n, P (k < n) as continuous quanti-
ties we can find such n that 1 − P (k < n) = Q, i.e., we can obtain n for the
required low Q by solving the equation

1 − F (n) = Q, (2)
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by defining d.f. F (n) of r.v. k as P (k < n). A solution n should be rounded up to
an integer.

Problem (2) of finding n(Q) can be solved by using approximation (1) of
distribution pk [12] in case of large load R = λb and small loss probability.

Let us consider, for instance, the classical infinite-server Γ1/Γ2/∞ system
where the gamma distribution [13] Γ1 has parameters α1 = 1/3, β1 = 2/3,
and the gamma distribution Γ2 has parameters α2 = 1/3, β2 = 1/30. The m.e.
of requests arrival intervals here is equal to λ−1 = a = α1/β1 = 1/2 and the
dispersion is equal to σ2 = α1/β2

1 = 3/4. The average service time in this system
is b = α2/β2 = 10.

Further, using formula (1), we obtain the parameters k̄ and σk of the Gaussian
approximation gk for distribution pk:

k̄ = λb = 20, κ = λ3(σ2 − a2) = 4, β = 2.86826...,

σ2
k = λb + κβ = 31.47304..., σk = 5.61008....

For solving problem (2), we will use the derived Gaussian approximation
gk = N(k̄, σk) = N(20, 5.61008...) concurrently with the actual distribution pk

which is obtained by means of the high-precision simulation.
One might see that graphs of the actual distribution pk and its Gaussian

approximation gk = N(20, 5.61008...) are visually almost superimposed on one
another [14]. However, besides, the relative error in the form of pk/gk ratio is
several orders of magnitude for the small pk and increases with k growth.

Therefore, tails of the actual distribution pk and its Gaussian approximation
gk vary by orders of magnitude (Fig. 1).
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Fig. 1. Tail Q = 1−F (n) = P (k ≥ n) of the distribution F (n), calculated on the basis
of probabilities pk (marked line) and its Gaussian approximation gk

We will compare the results of the problem (2) solution based on the distri-
butions pk, gk and their associated regression equation (see Fig. 1).

Regression equation for the actual distribution pk can be written as
1 − F (n) ≈ 6.9259e−0.057n2

. According to this formula, Eq. (2) takes the
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Q ≈ 6.9259e−0.057n2
form, and its solution n(Q) is expressed by the following

simple approximate formula

n(Q) ≈
√

−175.4 ln(Q) + 339.5 . (3)

A similar solution based on the Gaussian approximation gk (see Fig. 1) is
given by

n(Q) ≈
√

−88.5 ln(Q) + 121.7 . (4)

Figure 2 compares solutions (3) and (4). The comparison shows that solu-
tion based on the Gaussian approximation leads to (in this case) a significant
understatement of the channel number compared to the needed one. The use of
this solution in practice would result in loss probability exceeding the admissible
limit value Q by orders of magnitude.
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Fig. 2. Comparison of the problem (2) solution based on the distribution pk (marked
line) and its Gaussian approximation gk

Generally, the performed examination of a specific classical multiserver sys-
tem allows one to draw the following conclusions.

Firstly (this is the main conclusion), it is possible to effectively ensure a
low loss probability by increasing the number of channels even without using a
request buffer.

Secondly, in the general way, one should prefer simulation to asymptotic
approximations to solve problem (2) which provides a low loss probability.

Thirdly, the reduction of a loss probability by several orders of magnitude
is achieved via the relatively small increase of channel number redundancy (see
Fig. 2 where the average number of the occupied channels equals λb = 20).

In addition to that, relatively high sensitivity of problem (2) solution towards
the errors of the used approximations, which has emerged in the investigation,
results in the need to analyse errors of such approximations. In the method
under consideration, the state probabilities of an infinite-server system are such
approximations for loss probabilities of relating multiserver system.
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4 Loss Probabilities Approximation by State Probabilities
of Infinite-Server Systems

Let us consider the infinite-server M/GI/∞ system. The Poisson distribution
describes its state probabilities

pk =
(λb)k

k!
e−(λb) =

Rk

k!
e−R. (5)

Request loss probabilities in the relating multiserver M/GI/n/0 system is
defined by the Erlang loss formula

ploss(n) =
(λb)n

n!

(
n∑

i=0

(λb)i

i!

)−1

=
Rn

n!

(
n∑

i=0

Ri

i!

)−1

. (6)

Formulae (5) and (6) hold for any d.f. B(t) with a finite m.e.
If the arriving request flow is not Poisson, one can use approximations to

estimate loss probabilities ploss(n). The papers [12,15] give the expressions for
approximation of ploss(n) in the GI/GI/n/0 systems with the finite first and
second moments of A(t) and B(t) distributions. In case of the fractal system
GI/GI/n/0, the state probabilities pk = pn or the tail P (k ≥ n)), which are
obtained by simulation, of the relating infinite-server system can be used to
approximate ploss(n) [16]. This approximation allows one to significantly (by
several orders of magnitude) accelerate the process of finding the optimal distri-
bution of the channel number over the fractal networks nodes, as will be indicated
below.

We now show that the approximation is consistent. The ratio of approxima-
tion pk = pn (5) to probability ploss(n) (6) when n → ∞ converges to one in
systems with the Poisson arrival flow

lim
n→∞

pn

ploss(n)
= lim

n→∞

Rn

n! e−R

Rn

n!

(∑n
i=0

Ri

i!

)−1 =
e−ReR

1
= 1. (7)

The ratio of tail P (k ≥ n) to ploss(n) when n → ∞ also converges to one:

lim
n→∞

P (k ≥ n)
ploss(n)

= lim
n→∞

(∑∞
i=n

Ri

i!

)
e−R

Rn

n!

(∑n
i=0

Ri

i!

)−1 =
(1 + 0)e−R

e−R
= 1 (8)

since summands of the sum
∑∞

i=n
Ri

i! = Rn

n! + Rn+1

(n+1)! + ... in (8) are decreasing too
fast at any finite R > 0 with n growth, the sum converges to its first summand.
For large finite n we have

∑∞
i=n

Ri

i! = Rn

n! (1 + ε), where ε → 0 for n → ∞.
By comparing relative errors δ1 = pn/ploss(n) and δ2 = P (k ≥ n)/ploss(n)

of approximations pn and P (k ≥ n), it can be seen that the state probabilities
pn converge to loss probabilities ploss(n) faster than tails P (k ≥ n). Figure 3
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Fig. 3. Relative errors δ1 and δ2 (dashed and solid lines, respectively) of approximations
pn and P (k ≥ n)
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Fig. 4. Loss probabilities ploss(n) (dashed line), state probabilities pn (solid line) and
tails P (k ≥ n) (marked line) for the Pa1/Pa2/n/0, Pa1/Pa2/∞ systems with their
parameters α1 = 1.6, K1 = 0.1 (for Pa1) and α2 = 1.5, K2 = 0.445 (for Pa2)

illustrates the relative errors for the M/Pa/n/0 and M/Pa/∞ systems with
parameters λ = 1.154, α = 1.3 and K = 1 calculated by (5) and (6).

In [16] a number of simulation experiments show that for general fractal
systems the approximations pn and P (k ≥ n) also may be used, and that pn

approximations are more accurate. Figure 4 shows the results of one such exper-
iment.

The approximations pn, as it may be noted, are simple. Estimation of the
GI/GI/∞ system using simulation gives us direct estimators of all steady pn (as
a ratio of associated cumulative occupancy times in the states n to all simulation
times of steady-state process). To obtain the tails, the relative sums are to be
calculated through pn.

Results of the performed comparison of two approximations are taken into
account in the developed below method for fractal networks optimization. Prob-
lem (2) of choosing the smallest channels number n(Q) providing the loss prob-
ability not exceeding Q for multiserver systems is stated above in a traditional
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form, while now it is formulated as the problem of solving the equation

p(n) = Q, (9)

where the probability pn = p(n) of state n in the corresponding infinite-
server system is considered as a continuous function of continuous n due to the
applied approximate expressions. The obtained solution of problem (9) should
be rounded up to the nearest integer value.

5 Fractal Infinite-Server Systems

When in the GI/GI/∞ system only d.f. B(t) is fractal, one may use the Gaussian
approximation gk of state probabilities pk, since parameter β can be finite in this
case. Suppose, for example, B(t) = 1−(

K
t

)α
, 1 < α ≤ 2. Then, according to (1),

β =

∞∫
0

[1 − B(τ)]2dτ =

∞∫
0

(
K

τ

)2α

dτ =
2αK

2α − 1
,

and certainly for any α > 0.5 (that holds automatically since α > 1 always).
Further, it is easy to define the other parameters of the Gaussian approximation
(1) for this system:

b =
Kα

α − 1
, k̄ = λb, κ = λ3(σ2 − a2), σ2

k = λb + κ
2αK

2α − 1
. (10)

Thus if A(t) has finite dispersion σ2, then in the GI/Pa/∞ fractal system
the distribution pk for the number k of the occupied channels will converge to the
Gaussian distribution N(k̄, σk) with parameters (10) with load R = λb growth.

As an example, let us consider the Γ/Pa/∞ system with the gamma distribu-
tion which has parameters α1 = 2, β1 = 2 (its m.e. a = 1 and dispersion σ2 = 0.5)
and with distribution Pa(2, 1.25) (its dispersion is infinite and m.e. b = 10). Here
the average number of the occupied channels is k̄ = λb = (1/a)b = 10 and accord-
ing to (10) parameter σ2

k of the Gaussian approximation equals 25/3 ≈ 8.3333.
Figure 5 compares the Gaussian approximation gk (dashed line) and the actual
distribution pk (solid line), calculated with simulation. In the simulation 100
million requests were generated. As it is seen, at λb = 10 the Gaussian approxi-
mation gk already agrees well with the actual distribution of r.v. k.

If we solve problem (2) of finding n(Q) for this Γ/Pa/∞ system using a
Gaussian approximation of distribution pk, it will result in unacceptable errors
as in the case of the considered above Γ1/Γ2/∞ classical system. As for a clas-
sical system, an actual distribution pn, obtained by simulation, allows solving
the problem of finding n(Q) for the fractal systems under study with great accu-
racy. Figure 6 displays dependences of probabilities pn and tail 1 − F (n) on n2,
obtained by simulation, that characterize the investigated Γ/Pa/∞ system.
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Fig. 5. Distributions pk and gk in the GI/Pa/∞ system at λb = 10
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Trend line equation obtained for pn in Fig. 6

pn = 6.682e−0.023n2
(11)

provides the following solution of problem (9) for the investigated Γ/Pa/∞
system:

n =
√

−43.48 ln p + 82.58 . (12)

NB. The efficiency of a strategy to increase the number of channels can be seen
from the following example in comparison with the strategies which increase
buffer capacity and performance for a single channel. Let the arriving requests
flow be served by a single channel with the performance equal to the total one of
30 channels (providing, according to (11), the loss probability ploss ≈ 1 · 10−8).
In addition to that, suppose this one-channel system has a buffer, sufficient to
store m = 10 000 requests. Hence, we are discussing the Γ/Pa/1/m system with



Minimization of Packet Loss Probability in Network with Fractal Traffic 177

the same arrival flow and Pareto Pa(2/30, 1.25) service time “compressed” by
a factor of 30. Simulation of this system shows that the request loss probability
is equal to ploss ≈ 0.007 despite the large buffer capacity m and the low load
coefficient ρ = 1/3. Therefore, in general the battle with losses by increasing
a buffer capacity m and/or a single channel efficiency has proven to be almost
inefficient for fractal traffic.
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Fig. 7. Dependence of pn on n in the investigated Pa/Pa/∞ system

Figure 7 shows the dependence of state probabilities pn = p(n) for the
Pa/Pa/∞ system, in which intervals of requests arrival are distributed by the
Pareto Pa(1/5, 1.25) law, and the service time is by the Pa(10/3, 1.5) law with
a lighter tail. In this system λ = 1, b = 10. More than 100 million requests ran
through the system in the simulation.

The trend line for the low state probabilities pn of this system is presented
in Fig. 8, which is given by the equation

pn = 24.294e−0.0133n2
.

Using it, we find a solution for problem (9) in the following form:
n =

√−75.19 ln Q + 239.87. According to this, to provide, for example, the loss
probability Q = 106, it is enough to set 35.8, i.e., 36 channels in the system.

High-precision simulation experiments with various fractal systems show that
dependence of pn and, consequently, ploss on n with growing n in every such
system at sufficient (around λb = 10) load is well described by the following
formula

pn ∼ c0e
−Cn2

, (13)

where c0, are some constants determined independently for each given system.
Law (18) allows one to recommend increasing the number of channels in a system
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Fig. 8. Trend for dependence of pn on n2 in the Pa/Pa/∞ system (see also Fig. 7)

as the efficient strategy for combating request losses. Besides, even for extremely
low values of ploss the redundancy of the channels number proves to be relatively
low in comparison with average number λb of occupied channels.

Nevertheless, it is possible to combine a strategy of increasing the chan-
nels number with that of increasing the buffer capacity in networks with fractal
traffic. After choosing channels number n, providing a sufficiently low loss prob-
ability ploss, a request buffer can be added to the system.

Empirically obtained result (13) has all necessary characteristics of a univer-
sal law which holds for both classical and fractal systems. This law correlated
well with theoretical result (1) as well, that was proven in [12] for classic systems.
Therefore, taking into consideration similarity relation between dependence (13)
and Gaussian distribution tails, (13) can be rewritten in a more theoretically cor-
rect form. With n growth

ploss ∼ pn ∼ c0e
−C(n−λb)2 , (14)

Consequently, one may suppose that approximations (13) and (14) will hold
for the queueing network nodes as well (both fractal and classical ones).

6 Fractal Networks with Multiserver Nodes

Simulation experiments with various networks having multiserver nodes with-
out buffers demonstrate that approximations (13) and (14) hold true for such
network nodes with great accuracy. For instance, Fig. 9 gives state probabili-
ties distributions for each of four nodes in a multiserver network, obtained by
modification (sophistication) of the four-nodal network described in [12].

After modification, the routing matrix of the network

M =

⎛
⎜⎜⎝

0.1 0.4 0.4 0
0 0.4 0.1 0.2

0.1 0 0.2 0.1
0.3 0.2 0.5 0

⎞
⎟⎟⎠
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Fig. 9. State probabilities distribution for the network nodes

stays unchanged. The arriving requests flow and the service time in the nodes
are changed and specified as follows.

From the outside, four flows enter the network. A regular flow with intensity
2 enters the first node from the outside. A Poisson flow enters the second node
with intensity 2. A flow with Pareto Pa(0.2, 1.25) distributed intervals of request
arrivals enters the third node. And the fourth node has a flow with arrival inter-
vals distributed by the Pa(1/15, 1.5) law. Requests service time in the first node
is deterministic and equal to 0.5. In the second one, the service time is exponen-
tially distributed with the average 1, in the third one - by the Pa(1/6, 1.5) law,
and in the fourth - by the Pa(0.4, 1.25) law.

Figure 10 depicts the dependences of probabilities ploss on x = (n − λb)2,
obtained by the simulation, as a relation (14), for all four nodes in the form
of corresponding trend lines and trend equations. Trend line equations in the
bottom of the figure are enumerated (according to the lines drawings) in the
order of numbers 1, 3, 2, 4 of the corresponding network nodes. Initial depen-
dences obtained in simulation experiment are shown in Fig. 10 as the lines almost
coinciding with the trend lines.

Similar results are obtained when using approximations (13).
The experiment results support the hypothesis for the correctness of approx-

imations (13) and (14) not only in isolated systems but in the networks nodes.
Approximations (13) and (14) can be used as a basis to develop various

methods of structural optimization for fractal systems and networks to guarantee
low loss probability. The most important feature of laws (13) and (14) is that the
increase of the channel number in the nodes at their relatively small redundancy
leads to drastic reduction of a loss probability. Under conditions of fractal traffic,
it distinguishes the strategy of the channel number increase from that of the
buffers capacity and/or channel performance increase.
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Fig. 10. Trend lines for dependences of pn on n2 for the network nodes

A rather simple and quick methods of optimal channels distribution over the
fractal network nodes is proposed as a practical application for the results of
(13) and (14).

7 Optimization of Channel Distribution over the Nodes

Suppose a fractal network routing matrix, d.f. Bi(t) of service time in nodes i
(i = 1, ...,M) and arriving requests flows are given. There are no buffers in
the network nodes. It is required to distribute N channels (N 	 M) over the
network nodes in order to minimize the sum of loss probabilities in the nodes.

In practice, whatever number of the channels we have, it is always finite.
Moreover, the efficiency of the channels usage depends on the way these channels
are distributed over nodes.

Considering approximations (13) and (14), formally, the problem of optimal
channel distribution can be rewritten as follows:

M∑
i=1

c0ie
−Cin

2
i → min, (15)

or in a form of

M∑
i=1

c0ie
−Ci(ni−λibi)

2 → min, (16)

in both cases, limitations are used

M∑
i=1

ni = N, ni > 0, i = 1, ...,M.
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In both cases coefficients c0i and Ci are calculated by simulation, just as it
was demonstrated above. Intensities λi of the entering flows are easily calculated
by the network routing matrix through the given intensities of the entering flows
(for example, by constructing and solving intensity balance equations).

In (15) or (16) the solution of optimal channels distribution problem can
be obtained with any known numerical methods. For instance, we can consider
variables ni as continuous quantities, look for their optimal values by any known
gradient method, then we can round these values accordingly.

Let us consider the problem of optimal distribution of 100 channels over the
nodes of the network described in Sect. 6.

Using its simulation data shown in Fig. 10, we write the optimization problem
in the form of (9):

0.0174e−0.0858(n1−3.039)2 + 0.0455e−0.0297(n2−10.08)2

+ 0.0261e−0.0427(n3−5.225)2 + 0.0674e−0.0202(n4−15.715)2 → min, (17)

4∑
i=1

ni = 100, ni > 0, i = 1, ..., 4. (18)

Solving problem (17) and (18) with the help of Excel add-in program Solver,
we get n1 = 13.51, n2 = 28.3, n3 = 20.12, n4 = 38.05 or, after rounding:

n1 = 13, n2 = 29, n3 = 20, n4 = 38. (19)

In this case, there are six possible rounding procedures that preserve Eq. (18).
The correct rounding is the one that provides the smallest value when substituted
in target function (17).

Channels distribution (19) is tested by simulation. At such distribution,
cumulative failure probability in the nodes is 1.34 · 10−6. All “neighboring”
distributions (in which one of the four solution (19) coordinates is decreased by
one, and the other is increased by one) are characterized by a worse cumulative
failure probability in the nodes than that of distribution (19).

It should be noted that the values of target function (17), using approxima-
tion, differ significantly from the corresponding values obtained in the simulation.
The results of problem (17) and (18) solution, however, are rather accurate.

The problem in the form of (15) gives the same solution (19).
If loss probability approximation in the form of tails P (pk ≥ pn) is used, the

result is a less accurate solution n1 = 13, n2 = 28, n3 = 20, n4 = 39, at which
the simulation provides cumulative loss probability 1.85 · 10−6.

Let us compare the optimal distribution (19) and a uniform channels distrib-
ution over the nodes and channels distribution providing similar coefficients ρi of
the nodes load. With the help of simulation, having set the optimal channels dis-
tribution as 25 channels per each node, we get cumulative loss probability in the
nodes 2.4 · 10−3. If the channels are distributed in such a way that nodes load



182 V.N. Zadorozhnyi and T.R. Zakharenkova

coefficients are equal (then n1 = 9, n2 = 30, n3 = 16, n4 = 45 and all ρi = 0.33),
the cumulative loss probability will be 2.6 · 10−4. In both cases the results are
worse than optimal ones by several orders of magnitude, and this indicates the
practical significance of the proposed optimization method.

When designing a telecommunication network after optimal channels distri-
bution over the nodes, the requests buffer can be added to every node. In this
way, the loss probability can be reduced almost to zero.

For example, after adding buffers with size mi = 100 to the nodes of the
newly optimized network, there were no queues longer than 7 at 10 mln requests
passing the network multiple times. It is obvious that requests loss is almost
eliminated in the resulting network.

8 Conclusion

The main research results are relations (13) and (14), that not only give the key
to solving the loss problem in the networks with fractal traffic but allow solving
the problems of their optimization and analysis. As a rule, approximations (13)
and (14) can be used when loading multiserver nodes λb = 10 and more.

In combating the request losses in fractal networks, the strategy of increasing
the channels number has the principal advantages over those of increasing the
buffer capacity and the channels performance.

The proposed herein approximate method for channels distribution optimiza-
tion over the nodes of a queueing fractal network is rather simple, effective and
can be directly used by designers of networks.

The architecture, proposed in the article for the networks with fractal traffic
and oriented at multiserver nodes, allows one to combat the messages loss effi-
ciently and it is characterized by low redundancy of cumulative performance of
hardware facilities. Moreover, such architecture exhibits high immunity of the
solutions towards the second moments of the arrival intervals and the service
time, for it guarantees low losses even at their infinite values.
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Abstract. The method of optimal partitioning of subscriber messages
into protocol data units by the transport layer according to the criterion
of delays in the multi-hop transmission path is proposed. The terms of
the appropriateness of the fragmentation of messages into packets during
its transmission over multi-hop virtual channel are obtained. Analytical
dependences for the optimal packet size from the structure of network
traffic and settings of the virtual connections are obtained.

Keywords: Transport connection · Delay · The multiplex packet ·
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1 Introduction

The most important indicator of efficiency of functioning of the network packet
switching is the transmission time of user data between the communicating sub-
scribers [1,2]. Functions for the delivery of message flow to the user and com-
pensation of overhead in the transmission of packets that may occur in the
communication network are performed by the transport layer protocol [2]. The
basis of a reliable transport protocol is the principle of decision feedback. The
delay in subscriber traffic in a virtual connection depends to a large extent on
the characteristics of the individual links of the connecting path, the length of
the data transmission path, the size of the user messages, the intensity of the
network streams and the protocol parameters, among which the most important
is the packet size, which actually determines the power of the pipeline effect
[3–6]. It should also be noted that the connecting path of the virtual channel in
the packet switching network is used in by many interacting subscribers. This
leads to the fact that the load on various parts of the data path along which the
virtual connection goes can be significantly different. Then the effective band-
width of individual links for the traffic of this virtual connection will be reduced
by the corresponding parts of “external” flows, as a result of which the time
of packet transfer over inter-node connections even of a uniform virtual chan-
nel can be substantially different [6–8]. Simulation of the transport connection
and analysis of its operational characteristics under various loading conditions
is performed in [3–8]. A wide range of studies [9–13] are aimed at optimizing
protocol parameters by various criteria and adapting protocol parameters to the
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 184–193, 2017.
DOI: 10.1007/978-3-319-68069-9 15



Optimization of Pipelining and Data Processing 185

changing network load, the level of losses, the activity of interacting subscribers.
A key indicator of the quality of service for network subscribers is the mes-
sage delivery time, which is determined by the pipelining effect. This indicator
is also very important for pipelined implementation of the instruction process-
ing [14,15]. The development of the results of [9–15] is to optimize the size of
the protocol data units when sending the subscription message via the transport
connection and the structure of the data transmission path. The most important
tool of the analysis of processes of data transmission and processing in a random
environment are Queuing systems [16,17]. A Queuing system in continuous time
allow to investigate the operating characteristics of inhomogeneous systems of
data transmission and processing, but ignores their essentially discrete nature. A
Queuing system with discrete time adequately describes such processes, but does
not allow analysis of heterogeneous systems of data transmission and process-
ing. In addition, models based on queueing systems do not take into account
the pipeline effect, which is manifested in the transmission and processing of
data streams. However, in the particular case of a deterministic environment,
data transmission and processing can be obtained the analytical results with the
conveying effect of the discreteness and heterogeneity of the processes of data
transmission and processing. In the proposed method of this work the partition-
ing the subscriber messages into packets of optimum size and the conditions the
feasibility of converting transmission path and pipelined processor to a uniform
appearance.

2 The Virtual Connection Model

Consider an nonuniform virtual connection consisting of D links of data trans-
mission. Define the time of the message transmission from the N packets, accord-
ing to the deterministic virtual connection in the data transfer phase. We believe
that the flow control procedure carried by the virtual connection provides end-to-
end confirmation of the delivery of individual messages, and each virtual connec-
tion node can simultaneously perform data reception and transmission, however,
packet transmission can be started only after its reception is completed. All mes-
sage packets have the same length, except the last one, which can contain the
remainder of dividing the message into fragments and can be smaller. We believe
that there is no competing traffic and there are no packet queues at the switching
nodes to the output communication channels. Then the delay of the subscriber’s
message in the data transmission path will be [10]:

T (D,N) = (N − 1)τm +
D∑

d=1

τd, τm = max
d=1,D

τd, (1)

where τd, d = 1,D — packet delay in d sector of the hops.
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3 The Optimal Partitioning of the Message
into the Packets

For further analysis, we express explicitly the time of packet transmission in
inter-node connection through the parameters of data transmission link. Suppose
that the transmission rate and time of node packet processing is independent of
the size of the package. In fact, the assumption of rate is true only for absolutely
reliable inter-node communication channels included in the virtual connection.
Then the packet delay at the d link of the transmission path taking into account
the previously introduced notation we can write as: τd = L

Cd
+ td. Here td,

d = 1,D the packet processing time in the receiver node of the d data link.
Substituting this relation in (1) and taking into account that L = B

N +H, where
B is the size of the transmitted message, we get:

T (D,N) = (N − 1)
[
B/N + H

Cm
+ tm

]
+

D∑

d=1

[
B/N + H

Cd
+ td

]
; (2)

B/N + H

Cm
+ tm = max

d=1,D

(
B/N + H

Cd
+ td

)
.

Obviously, when transmitting a message in the form of a sequence of packets,
it is possible to reduce the time of its delivery significantly over a virtual con-
nection in comparison to its transmission by one packet. This gain is due to the
pipelining effect [10], as a result of which the different parts of the message are
simultaneously in the transmission state at different parts of the path. On the
one hand, the number of packets in the sequence should be increased in order to
enhance the pipelining effect and thereby reduce the message delivery time. On
the other hand, sequence growth leads to an increase in the volume of the trans-
ferred service information and the processing time of packets by nodes. Hence it
follows that the dependence (2) is unimodal from the argument N . Using (2), we
determine the benefit in time from the transmission of a message over a virtual
connection of length D by a sequence of N > 1 packets in comparison with its
delivery as a whole:

Δ(D,N) = T (D, 1) − T (D,N) = (N − 1)

⎧
⎪⎪⎨

⎪⎪⎩

B

N

D∑

d=1,
d�=m

1
Cd

− H

Cm
− tm

⎫
⎪⎪⎬

⎪⎪⎭
. (3)

For uniform virtual connection, Cd = C, td = t, d = 1,D the benefit (3) is
converted to the form:

Δ(D,N) =
N − 1

C

{
B

N
(D − 1) − H − Ct

}
. (4)
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Fig. 1. The dependence of the benefit from argument N

The relations (3) and (4) define unimodal of the argument N ≥ 1 functions
(Fig. 1) with asymptotes

Δ(D,N) = −(N − 1)
(

H

Cm
+ tm

)
+ B

D∑

d=1,
d�=m

1
Cd

and

Δ(D,N) = −(N − 1)
(

1
C

+ t

)
+

B(D − 1)
C

accordingly. It can be seen from (3) and (4) that it is expedient to split/divide
the message into packets only for long D > 1 virtual connections and if condition

B

D∑

d=1,
d�=m

1
Cd

>
H

Cm
+ tm

is fulfilled, and benefit (3) is positive for partitions that satisfy the inequality

1 < N <

BCm

D∑
d=1,
d�=m

1
Cd

H + Cmtm
.
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For a uniform virtual connection, this inequality, which determines the set of

expedient partitions, takes the form of 1 < N <
B(D − 1)
H + Ct

. When

B

D∑

d=1,
d�=m

1
Cd

>
H

Cm
+ tm

splitting

N ≥

BCm

D∑
d=1,
d�=m

1
Cd

H + Cmtm
lead to the fact that the losses from transmission and processing of the sequence
of packets prevail over the benefit from the pipeline effect. When

B

D∑

d=1,
d�=m

1
Cd

<
H

Cm
+ tm

splitting N > 1 increase the negative effect of exceeding the overhead on user
information.

On virtual connections of a single length, there is no pipelining effect, and
N > 1 partitions lead to an increase in the multiplex packet delay due to an
increase in the amount of overhead transfer of the service information and the
node packet processing (Fig. 1).

From the size of the subscriber message B the benefit (3) and (4) has a linear
dependence (Fig. 2). When transferring over the uniform virtual connection, the
benefit (4) also grows linearly with the path length, and the values Δ(D,N) are
positive for D > 1 + N(H+Ct)

B .
From (3) we find that the partition

N0 =

√√√√√
B

H/Cm + tm

D∑

d=1,
d�=m

1
Cd

, N0 ≥ 1

maximizes the benefit (3). Substituting the relation for N in (3) we obtain:

Δ(D,N0) = B

D∑

d=1,
d�=m

1
Cd

+
H

Cm
+ Tm − 2

√√√√√B

D∑

d=1,
d�=m

d
1

Cd

(
H

Cm
+ tm

)
.

Hence it is easy to see that the optimal benefit is equal to twice the difference
between the arithmetic mean and geometric mean values

B

D∑

d=1,
d�=m

1
Cd

and
H

Cm
+ tm,
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Fig. 2. The dependence of the benefit from the message size

which correspond respectively to the transmission time of the information part
of the message as a single unit over a virtual connection without a narrow link
and the overhead of a narrow link in the form of the time for transmitting the
service part of the packet and the processing time of the packet. For a uniform
virtual connection, the optimal benefit is:

Δ(D,N0) =
{√

B(D − 1) − √
H + Ct

}2

Since N ≥ 1, we can conclude that the area of definition Δ(D,N0) for the
uniform virtual connection is the length of the paths that satisfy the inequality
D ≥ 1+H+Ct

B . Figure 3 shows the dependence Δ(D,N0) from B.
Knowing the optimal relation of splitting N , it is easy to determine the

packet size L0, that minimizes the delivery time of a message over the virtual
connection:

L0 = H +
B

N0
= H +

√√√√√√√

B (H/Cm + tm)
D∑

d=1,
d�=m

1/Cd

.

On the uniform connection the expression for the optimal packet size is simpli-

fied: L0 = H +
√

B(H+Ct)
D−1 .

4 Select the Size of the Package

In order to apply the obtained ratios of the optimal packet length in practice, it
is necessary to take into account the sheer size of the messages transmitted via
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Fig. 3. The dependence of the benefit from the message size

the virtual network connections. In addition, since the largest packet size for a
static selection should usually have a single value for the entire network, it should
be determined from the maximum benefit condition for virtual connections of
all possible lengths. Thus, the obtained dependencies must be generalized to the
case of an integral criterion.

Assume that the transmission network is set to all possible path lengths Dj ,
j = 1, J and the distribution of intensities (parts) of network traffic on the
transmission paths of the data αj , j = 1, J which satisfies the normalization
condition

∑J
j=1 αj = 1 where J is the number of different information flows.

Let also for each information flow a continuous distribution of message lengths
is given fj(B). Consider, as an objective function, the average benefit, which is
a natural generalization of criterion (3) to the entire data network:

Δ̄(N1, N2, . . . , NJ ) =
J∑

j=1

αj

∞∫

0

Δ(Dj , Nj)dfj(B)

=
J∑

j=1

αj(Nj − 1)

⎧
⎪⎪⎨

⎪⎪⎩

B̄j

Nj

Dj∑

d=1,
d�=mj

1
Cjd

−
(

H

Cmj

+ tmj

)
⎫
⎪⎪⎬

⎪⎪⎭
, (5)

where B̄j =
∫ ∞
0

Bdfj(B) the average length of messages in j information stream.
Since each virtual connection has its own partition coefficient, in this relation it is
more convenient to go directly to the required length of the frame L. Substituting
L0 = H + B̄j

Nj
from (5) we obtain:
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Δ̄(L) =
J∑

j=1

αjB̄j

Dj∑

d=1,
d�=mj

1
Cjd

− (L − H)
J∑

j=1

αj

Dj∑

d=1,
d�=mj

1
Cjd

− 1
L − H

J∑

j=1

αjB̄j

(
H

Cmj

+ tmj

)
+

J∑

j=1

αj

(
H

Cmj

+ tmj

)
.

Hence we determine the optimal value L0:

L0 = H +

√√√√√√√√√√

J∑
j=1

αjB̄j

(
H

Cmj

+ tmj

)

J∑
j=1

αj

Dj∑
d=1,
d�=mj

1
Cjd

. (6)

Here the parameters Cmj
and tmj

which determine the narrow link of the j
virtual connection, are found from condition

L

Cmj

+ tmj
= max

d=1,Dj

(
L

Cjd
+ tjd

)
. (7)

In the case of the uniform network the dependence for the optimal L0 is trans-
formed to the form:

L0 = H +

√
B̄(H + Ct)

D̄ − 1
,

where B̄ =
∑J

j=1 αjB̄j the average size of messages transmitted over the network
D̄ =

∑J
j=1 αjDj — average length of network transmission paths.

It is not difficult to see that condition (7) uniquely determines the narrow
links of virtual connections only when the packet processing time is zero at
the switching nodes, in general, the parametric dependence of condition (7) on
L does not allow unambiguous definition of bottlenecks before calculating the
optimal frame size. For the case when packet processing time in nodes can not
be neglected, it is possible to propose a procedure for consistent calculation of
the optimal frame size. According to this procedure, the optimal value of L
is calculated iteratively. As initial value L for definition of narrow links by a
condition (7) it is possible to accept L = H. Using the parameters found in this
way Cmj

, tmj
, j = 1, J , the frame size is calculated from (6), which is used to

determine the narrow links in the next step. The stop criteria for stopping the
iterative process is the match of the frame size or the set of indices of narrow
links mj , j = 1, J in two consecutive iterations.

5 The Conditions of Feasibility of Unification
of the Non-uniform Phases in the Pipeline

One of the most important conditions for achieving minimum latency on the
line as in (1) is to eliminate the most time-consuming stages of processing
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(transmission) data through their pipeline. Most often, this approach of bringing
the individual phases of the pipeline to a uniform duration of stages is used in
the processor of the data processing or telecommunication systems to eliminate
low-speed, geographically distributed network sections. In this case, the narrow
phases of the pipeline are broken (if possible) into sub-phases of the minimal
complexity of the input of the original or desired conveyor, which leads to an
increase in its length. Let us analyze the conditions under which such a parti-
tion of complex phases into sub-phases reduces the processing time of the data
stream. Consider fully ununiformed pipeline, which should lead to a uniform
with the duration of the phases equal to τ ≤ τd, d = 1,D. We assume that
each phase of an ununiformed pipeline has a duration τd = ld, d = 1,D, where
ld ≥ 1 — is an integer. Then every d phase of the source pipeline should be
pipelined in the form of stages of the same duration τ . The normalized delay in
the original ununiformed pipeline length is

tn(D,N) =
T (D,N)

τ
= (N − 1)lm +

D∑

d=1

Ld, lm = max
d=1,D

ld,

and in the uniformed — with the resulting number of stages, equal
∑D

d=1 ld, will
take the form

t0

(
D∑

d=1

ld, N

)
=

T
(∑D

d=1 ld, N
)

τ
= N − 1 +

D∑

d=1

ld.

We determine normalized to the complexity of the uniformed phase τ the benefit
from the unification of pipelining N applications in the form of a difference of the
processing times of the original ununiformed pipeline and extended uniformed
pipeline:

∇(D,N) = tn(D,N) − t0

(
D∑

d=1

ld, N

)
= (N − 1)(lm − 1).

Hence it follows that the positive values of the benefit are invariant to the com-
plexity ld of all stages of the pipeline, except the most labor-intensive and pos-
sible when N > 1 and lm > 1.

6 Conclusion

The paper proposes the method of optimal partitioning of subscriber messages
into protocol data units by the transport layer according to the criterion of
delays in the multi-hop transmission path. Analytical dependences for the opti-
mal packet size from the structure of network traffic and settings of the virtual
connections are obtained. The terms of the appropriateness of the fragmentation
of messages into packets during its transmission over multi-hop virtual channel
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are obtained. The direction of the further development of research on the unifica-
tion of the pipeline should be distinguished by the task of analyzing the delay in
conditions of rebooting of the pipeline with repeated transmissions of distorted
data in networks or incorrect branch prediction processed by the processor of
instruction stream.
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Abstract. This paper introduces a finite-source retrial queueing system
which models cognitive radio networks. We assume two non-independent
frequency bands servicing two classes of users: Primary Users (PUs) and
Secondary Users (SUs). A service unit with a priority queue and another
service unit with an orbit are assigned to the PUs and SUs, respectively.

In this work, we focus on the non-reliability of the servers and the
collisions at the secondary servers. The primary and secondary servers
are subject to random breakdowns and repairs. A collision is introduced
at the retrial part of the cognitive radio network. This conflict invokes
the interruption of a servicing packet when a new arriving call requests
the server unit.

The novelty of the investigation is the non-reliability of servers and
the inclusion of conflicts at the secondary server.

By the use of simulation, we analyze the effect of the non-reliability
of the servers on the mean response time of the secondary users.

Keywords: Finite source queuing systems · Simulation · Cognitive
Radio Networks · Performance and reliability measures · Collision · Non-
reliable servers

1 Introduction

Cognitive radio (CR) has emerged as a promising technology to realize dynamic
spectrum access and increase the efficiency of a largely under utilized spectrum.
As it was defined in [1,2], the cognitive radio network (CRN) is a network made
up of CRs by extending the radio link features to network layer function and
above. By means of CRs cooperation, the network is able to sense its environ-
ment, learn from the history, and accordingly decide the best spectrum settings.

In other words, cognitive radio allows efficient use of the available spectrum
by defining two types of users in wireless networks: licensed and unlicensed users.
An unlicensed user (also called secondary user (SU)) can use the spectrum if it
is not being used at that time by licensed users (also called primary user (PU)).
When the licensed user appears to use the spectrum, the unlicensed user must
find another spectrum to use. see for example [3–5].
c© Springer International Publishing AG 2017
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In this paper we introduce a finite-source queueing model with two (non
independent) frequency channels. The cognitive radio architecture consists of
two main networks: The Primary Channel Service (PCS) and Secondary Channel
Service (SCS). The PCS refers to the existing network, wherein the primary users
(PUs) have got a licensed frequency which does not suffer from overloading. The
SCS does not have a license to operate in a licensed frequency. Hence, SCS is
designed to work with PCS to provide the capability to utilize or share the
unused spectrum in an opportunistic way. The secondary users have got also a
frequency band but it suffers from overloading.

In our environment the band of the PUs is modelled by a queue where the
requests has preemptive priority over the SUs requests. The band of the SUs is
described by a retrial queue: if the band is free when the request arrives then
it is transmitted. Otherwise, the request goes to the orbit if both bands are
busy. The primary server unit and the secondary server unit are not reliable and
are assumed to be subject to breakdown and repair. Also, the retrial part of
the cognitive radio network suffered from collision at the secondary server unit,
which means that the arriving packets involve into collision with the servicing
packets [6,7].

Hence, it should be noted that the novelty of this model is the introduction
of the non-reliability of the servers with conflict (collision), and by using sim-
ulation, we analyze the effect of the request generation, retrial, service, failure
and repair rate of the primary and secondary users on the mean response time
of the secondary users.

2 System Model

Figure 1 illustrates a finite source queueing system which is used to model the
considered cognitive radio network. The queueing system contains two inter-
connected, not independent sub-systems. The first part is for the requests of
the PUs. The number of sources is denoted by N1. These sources generate high
priority requests with an exponentially distributed inter-request times with the
parameter λ1. The generated requests are sent to a single server unit (Primary
Channel Service - PCS). The service times are supposed to be also exponentially
distributed with the parameter μ1.

The second part is for the requests of the SUs. There are N2 sources, the inter-
request times and service times of the single server unit (Secondary Channel
Service - SCS) are assumed to be exponentially distributed random variables
with rate λ2 and μ2, respectively.

The servers can be in three states: idle, busy and failed. For the primary
server unit, if it is idle, the service of the generated high priority packet starts
immediately. If the server is busy with a high priority request, the packet joins
the preemptive priority queue. When the unit is engaged with a request from
SUs, the service is interrupted and the interrupted low priority task is sent back
to the SCS. Depending on the state of secondary channel the interrupted job is
directed to either the server or the orbit. The server unit can fail during an idle
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Fig. 1. A priority and a retrial queue with collision

or busy state according to an exponentially distributed time with parameter γ1.
If the server fails in busy state, the service is interrupted and the interrupted
request joins the preemptive priority queue. The repair time is exponentially
distributed random variable with a parameter σ1.

In case of requests from SUs. If the SCS is idle, the service starts. If it is
busy, the packet looks for the PCS. In case of an idle PCS, the service of the low
priority packet begins at the high priority channel (PCS). If the PCS is busy,
the packet involves into collision with the low priority servicing packet and both
goes to the orbit. the same failure state can occur at the secondary server unit
according to an exponentially distributed time with parameter γ2, the repair
time is exponentially distributed with the parameter σ2. The interrupted packet
also goes to the orbit. From the orbit it retries to be served after an exponen-
tially distributed time with parameter ν. All the random variables involved in
the model construction are supposed to be independent of each other.

To create a stochastic process describing the behaviour of the system, the
following notations are introduced

– k1(t) is the number of high priority sources at time t,
– k2(t) is the number of low priority sources at time t,
– q(t) denotes the number of high priority requests in the priority queue at

time t,
– o(t) is the number of requests in the orbit at time t,
– y(t) = 0 if there is no job in the PCS unit, y(t) = 1 if the PCS unit is busy

with a job coming from the high priority class, y(t) = 2 when the PCS unit
is servicing a job coming from the secondary class at time t

– c(t) = 0 when the SCS unit is idle and c(t) = 1, when the SCS is busy at
time t.
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It is easy to see that

k1(t) =
{

N1 − q(t), y(t) = 0, 2,
N1 − q(t) − 1, y(t) = 1.

k2(t) =
{

N2 − o(t) − c(t), y(t) = 0, 1,
N2 − o(t) − c(t) − 1, y(t) = 2.

Since all the random variables involved in the model construction are assumed
to be exponentially distributed we could create a continuous time Markov chain
with multidimensional state space. However, the main problem is the determina-
tion of its stationary distribution. Instead we prefer the stochastic simulation and
in a further paper we aim to use non-exponentially distributions and to investi-
gate the effect of distribution of specific random time on different performance
measures.

The input parameters are collected in Table 1.

Table 1. List of simulation parameters

Parameter Maximum Value at t

Active primary sources N1 k1(t)

Active secondary sources N2 k2(t)

Primary generation rate λ1

Secondary generation rate λ2

Requests in priority queue N1 − 1 q(t)

Requests in orbit N2 − 1 o(t)

Primary service rate μ1

Secondary service rate μ2

Retrial rate ν

Primary failure rate γ1

Secondary failure rate γ2

Primary repair rate σ1

Secondary repair rate σ2

3 Simulation Results

In order to estimate the mean response times of the requests, the batch mean
method is used which is the most popular confidence interval technique for the
output analysis of a steady-state simulation, see for example [8–10].

There are many possible combinations of the cases, we considered only the
following sample results showing the effect of the non-reliability of the servers
on the mean response time of the secondary users.
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Table 2. Numerical values of model parameters

No N1 N2 λ1 λ2 μ1 μ2 σ1 σ2 γ1 γ2 ν

Figures 2 and 3 6 6 0.6 x - axis 4 4 1 1 0.05 0.05 0.4

Figures 4 and 5 6 6 0.6 0.6 4 4 1 1 0.05 0.05 x - axis

Figures 6 and 7 6 6 0.6 0.6 x - axis 4 1 1 0.05 0.05 0.4

Figure 8 10 10 0.1 0.1 4 4 x - axis x - axis 0.05 0.05 0.4

Figure 9 10 10 0.1 0.1 4 4 0.05 0.05 x - axis x - axis 0.4

Figure 10 10 10 0.1 0.1 4 4 0 x - axis 0 0.05 0.4

For the easier understanding the numerical value of parameters are collected
in Table 2.

Figure 2 shows the effect of the request generation rate on the mean response
time of the secondary users in the two cases: Secondary server unit non-reliable
and both servers non-reliable, where the Fig. 3 shows the same effect in the two
cases of non-reliability with collision in the retrial part of the system. Figures
show the phenomenon of having a maximum value of the mean response time
which was noticed in [11]. The collision involves longer response time for the
users as it was expected.

Fig. 2. The effect of servers non-reliability on the mean response time of secondary
users vs λ2

Figures 4 and 5 shows the effect of the retrial rate on the mean response time
of the secondary users. In Fig. 4, the non-reliability of the primary server unit
does not have any effect on the mean response time of secondary users where the
retrial rate is increasing. However, the non-reliability of the primary server has
an effect on the mean response time which can be shown on the Fig. 5. It means
that in the cognitive radio networks, having a reliable primary server involves
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Fig. 3. The effect of servers non-reliability with collision on the mean response time of
secondary users vs λ2

Fig. 4. The effect of servers non-reliability on the mean response time of secondary
users vs the retrial rate ν

shortest mean response time of secondary users where there is a collision in the
retrial part of the system.

Figures 6 and 7 illustrate the effect of the primary service rate on the mean
response time of the secondary users. The non-reliability of the primary server
has an effect on the mean response time of the secondary users in the case of
the collision where the primary service rate is increasing. A longer response time
can be seen in the case of the collision in the retrial part, as it was expected.

Figure 8 shows the effect of the non-reliability of the servers on the mean
response time of the secondary users where the repair rate is increasing.
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Fig. 5. The effect of servers non-reliability with collision on the mean response time of
secondary users vs the retrial rate ν

Fig. 6. The effect of servers non-reliability with collision on the mean response time of
secondary users vs Primary service rate μ1

The first case is where the primary server is non-reliable, in this case the value
of the mean response time of the secondary users becomes a constant when the
primary repair rate (σ1) is higher. The second case is where the secondary server
is non-reliable, in this case, the value of the mean response time of the secondary
users is decreasing when the secondary repair rate (σ2) is increasing.

Figure 9 illustrates the effect of the non-reliability of the servers on the mean
response time of the secondary users where the failure rate is increasing. As it
was expected, increasing the failure rate involves longer response time in the
both cases (primary server non-reliable and secondary server non-reliable).
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Fig. 7. The effect of servers non-reliability on the mean response time of secondary
users vs Primary service rate μ1

Fig. 8. The effect of servers non-reliability on the mean response time of secondary
users vs the repair rate σ

The last Figure shows the effect of the collision on the mean response time
of the secondary users. The conflict on a non-reliable secondary server causes a
very long response time.
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Fig. 9. The effect of servers non-reliability on the mean response time of secondary
users vs the failure rate γ

Fig. 10. The effect of servers non-reliability and collision on the mean response time
of secondary users vs the repair rate σ

4 Conclusions

In this paper a finite-source retrial queueing model was proposed with two bands
servicing primary and secondary users in a cognitive radio network. Primary
users have preemptive priority over the secondary ones in servicing at primary
channel. At the secondary channel an orbit is installed for the secondary packets
finding the server busy upon arrival. The non-reliability and conflict (collision)
of the servers were introduced. By using simulation, several sample examples
illustrates the effect of the non-reliability of the servers and the collisions at the
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secondary service on the mean response time of the secondary users. This paper
is the starting point of a more complex investigation where generally distributed
random variables are introduced to see the effect of the distribution of the specific
random variable on the main performance measures of the system.

Acknowledgments. The work of Nemouchi H. was supported by the Stipendium
Hungaricum Scholarship.
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Abstract. The present paper is devoted to the research of the math-
ematical model of an insurance company in the form of the queue-
ing system with an infinite number of servers. The arrival process of
risks is regarded as a modulated Poisson arrival process. Applying the
asymptotic analysis method under the condition of a high-rate arrivals,
the characteristic function of the probability distribution for the two-
dimensional process of the number of risks and the number of claims for
insurance payments is obtained. It is shown that this probability dis-
tribution can be approximated by Gaussian distribution. These results
can be applied to the estimation of functioning of the various economic
systems.

Keywords: Mathematical model · Insurance company · Insurance pay-
ments · Queueing system · Characteristic function · Asymptotic analysis

1 Introduction

At present, the research and modeling of economic systems are paid a great
deal of attention. These problems is usually related to research in the field of
arrival processes. The results of these studies show that the classic models (for
example, the Poisson ones) are not exactly modeling real arrival processes. Thus,
the problem of the research models of economic systems with reference to this
aspect becomes quite relevant. For example, the intensity of incoming risks into
the insurance company is not a constant and it depends on the impact of external
random factors such as season, state policy, probability of natural disasters,
fashion, etc. On the whole, all papers focused on the research of mathematical
models of insurance company include characteristics of the performance of a
company with a stationary Poisson arrival process of risks. Thus, these models
are reviewed in [1]. In the paper [2] the distribution of claims for insurance
payments with a random value of contract duration is obtained. Applying an
asymptotic analysis method, in [3] we obtain the two-dimensional probability
distribution of the number of risks and the number of payments. The model
with a possibility of reinsurance is investigated in [4]. Papers [5,6] cover the
model with implicit advertisement and one-time insurance payment for limited
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 204–214, 2017.
DOI: 10.1007/978-3-319-68069-9 17
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and unlimited insurance coverage. In this paper, we consider the mathematical
model of an insurance company in a random environment, when the rate of the
arrival process, the rate of occurrences of the insured events and the contract
duration are not constants and depend on the impact of external factors and
change with time, which is undoubtedly present in real life.

2 Mathematical Model

Let us have a look at the model of an insurance company with infinite insurance
coverage [7] (Fig. 1) in the form of a queueing system with an infinite number
of servers. We can assume that risks (customers) coming into the company form
high-rate modulated Poisson arrival process that is regulated by the random
process k(t) [8]. This process is a Markov chain with a continuous time that
is defined by the matrix NQ of infinitesimal characteristics Nqkν , where k =
1, . . . , K, ν = 1, . . . , K and N has a large value (we suppose that N → ∞ ).

Let us define the matrix NΛ with elements Nλk on the main diagonal. Here
Nλk — the intensity of risks coming into the company, when Markov chain is in
k state, λk — fixed value. Thus, the Markov chain k(t) state defines the state of
a random environment.

Fig. 1. Model of the insurance company in the form of queueing system with an infinite
number of servers in a random environment.

After coming into the company the risk makes the insurance contract. The
contract duration is the duration of serving a customer at a server. Each risk that
is in the company during the contract duration generates claim for the insurance
payment with intensity γk independently from other risks. These intensities also
depend on the environment state and form a diagonal matrix Γ. Requirements
for insurance payments also form a random process. It is natural to assume that
the claim for payment is determined by the occurrence of the insured event.
The contract duration for each risk in the company is considered to be random
value, exponentially distributed with a parameter μk, that is also dependent on
the environment state. These values form the diagonal matrix M.

Let us denote: n(t) — number of claims for payments over the time interval
[ 0 , t ], i(t) — number of insurance risks that are in the company at the moment
t, Pk(i, n, t) = P{i(t) = i, n(t) = n, k(t) = k} — probability of a number of risks
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in the company at the moment t equals to i, a number of claims for payments at
the moment t equals to n and environment is in the k state at the moment t. The
problem is to obtain the expression for characteristic function of two-dimensional
random process (i(t), n(t)) .

3 Kolmogorov Equations

Let us set up a system of Kolmogorov differential equations [9] for probabil-
ity distribution Pk(i, n, t). Using the notation Pk(i, n, t) = P{i(t) = i, n(t) =
n, k(t) = k} and applying the formula of total probability, we can write the
following equations

Pk(i, n, t + Δt) = Pk(i, n, t)(1 − NλkΔt)(1 − iγkΔt)(1 − iμkΔt)

× (1 + NqkkΔt) + NλkΔtPk(i − 1, n, t) + iγkΔtPk(i, n − 1, t)

+ (i + 1)μkΔtPk(i + 1, n, t) +
∑

ν �=k

Pν(i, n, t)NqνkΔt + o(Δt) .

(1)

for k = 1, . . . , K. After performing some transformation, we derive the following
system of the Kolmogorov differential equations for the probability distribution
of the two-dimensional process (i(t), n(t))

∂Pk(i, n, t)
∂t

= −(Nλk + iμk + iγ)Pk(i, n, t) + NλPk(i − 1, n, t)

+ (i + 1)μkPk(i + 1, n, t) + iγkPk(i, n − 1, t) +
K∑

ν=1
Pν(i, n, t)Nqνk .

(2)

To solve the system (2) let us consider partial characteristic functions:

Hk(u1, u2, t) =
∞∑

i,n=0

eju1ieju2nPk(i, n, t),

for k = 1, . . . , K, j — imaginary unit. Then, using system (2) and takint into
account the properties of characteristic functions, we will obtain the first-order
partial differential equation for Hk(u1, u2, t) in the following form:

∂Hk(u1, u2, t)
∂t

= Nλk(eju1 − 1)Hk(u1, u2, t) +
K∑

ν=1

Hν(u1, u2, t)qνk

+ j
∂Hk(u1, u2, t)

∂u1
(μk − μke−ju1 + γk − γkeju2) .

(3)

Let us consider the vector characteristic function

H(u1, u2, t) = {H1(u1, u2, t), H2(u1, u2, t), . . . ,HK(u1, u2, t)} .
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Thus, using (3) we can write the matrix differential equation for the function
H(u1, u2, t)

∂H(u1, u2, t)
∂t

= H(u1, u2, t)[NΛ(eju1 − 1) + NQ]

+j
∂H(u1, u2, t)

∂u1
[(1 − e−ju1)M + (1 − eju2)Γ] ,

(4)

matrixes NΛ, M, Γ, NQ are defined above.
We will solve the Eq. (4) for vector characteristic function H(u1, u2, t) using

the asymptotic analysis method [10] under conditions of high-rate arrival process
and extremely often changes of a random environment states (N → ∞).

4 The First-Order Asymptotic Analysis

Let us make the following changes to the variables in the Eq. (4):

ε =
1
N

, u1 = εω1, u2 = εω2, H(u1, u2, t) = F(ω1, ω1, t, ε) . (5)

Using these new variables we will write the equation for function F(ω1, ω1, t, ε):

ε
∂F(ω1, ω2, t, ε)

∂t
= F(ω1, ω2, t, ε)[Λ(ejω1ε − 1) + Q]

+ j
∂F(ω1, ω2, t, ε)

∂ω1
[(1 − e−jω1ε)M + (1 − ejω2ε)Γ] .

(6)
Denote an asymptotic solution to this equation under the condition ε → 0 by
F(ω1, ω2, t):

lim
ε→0

F(ω1, ω2, t, ε) = F(ω1, ω2, t) .

Let us perform the asymptotic transition ε → 0 in the Eq. (6). We will obtain

F(ω1, ω2, t)Q = 0 . (7)

Thus, the function F(ω1, ω2, t) is a solution for the homogeneous system of the
linear algebraic Eq. (7). Solution for this system has the following form:

F(ω1, ω2, t) = RΦ(ω1, ω2, t) , (8)

where Φ(ω1, ω2, t) — some scalar function, R— a row vector of stationary prob-
ability distribution of Markov chain k(t), that is defined by the equations system
RQ = 0 and a normalization condition RE = 1, where 0— a row vector with
zeros and E— a column vector with enteries all equal to 1. To obtain function
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Φ(ω1, ω2, t), we will sum up equations of the system (6). Taking into account
condition F(ω1, ω2, t)Q = 0, we can write

ε
∂F(ω1, ω2, t, ε)

∂t
E = F(ω1, ω2, t, ε)(ejω1ε − 1)ΛE

+ j
∂F(ω1, ω2, t, ε)

∂ω1
[(1 − e−jω1ε)ME + (1 − ejω2ε)ΓE] .

(9)

Let us divide left and right sides of the Eq. (9) by ε and perform the asymptotic
transition ε → 0. We obtain the equation for F(ω1, ω2, t):

∂F(ω1, ω2, t)
∂t

E = F(ω1, ω2, t)jω1ΛE

−ω1
∂F(ω1, ω2, t)

∂ω1
ME + ω2

∂F(ω1, ω2, t)
∂ω1

ΓE .

(10)

Now we can write down the equation for the unknown scalar function
Φ(ω1, ω2, t) considering F(ω1, ω2, t) = RΦ(ω1, ω2, t) and RE = 1 in the following
form:

∂Φ(ω1, ω2, t)
∂t

= Φ(ω1, ω2, t)jω1RΛE

−ω1
∂Φ(ω1, ω2, t)

∂ω1
RME + ω2

∂Φ(ω1, ω2, t)
∂ω1

RΓE .

(11)

We have the first-order partial differential equation. Its solution is defined by
solving a system of ordinary differential equations for characteristic curves [11]:

∂t

1
=

∂Φ(ω1, ω2, t)
Φ(ω1, ω2, t)jω1κ

=
∂ω1

ω1κ1 − ω2κ2
, (12)

where κ = RΛE, κ1 = RME, κ2 = RΓE. Let us obtain first two integrals of
this system. We can write following equation:

∂t

1
=

∂Φ(ω1, ω2, t)
Φ(ω1, ω2, t)jω1κ

. (13)

The solution of Eq. (13) we will write down in the following form:

t =
1
κ1

ln (ω1κ1 − ω2κ2) − ln C , (14)

where C is constant. Let us denote C1 = Cκ1 , then C1 = (ω1κ1 − ω2κ2)e−tκ1 .
The other first integral we will obtain from the equation

∂Φ(ω1, ω2, t)
Φ(ω1, ω2, t)jω1κ

=
∂ω1

ω1κ1 − ω2κ2
. (15)
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The solution of the Eq. (15) has the following form:

Φ(ω1, ω2, t) = ej
κω1
κ1 (ω1κ1 − ω2κ2)

j
κω2κ2

κ2
1 C2 . (16)

Let us introduce an arbitrary differentiated function φ(C1) = C2. Then the
general solution of the equation (15) will have the following form

Φ(ω1, ω2, t) = ej
κω1
κ1 (ω1κ1 − ω2κ2)

j
κω2κ2

κ2
1 φ((ω1κ1 − ω2κ2)e−tκ1) . (17)

Let us define the partial solution with the help of initial conditions. We have
to define Φ(ω1, ω2, 0) first. Let us write down value of functions Hk(u1, u2, t) ,
k = 1 . . . K , at the moment t = 0:

Hk(u1, u2, 0) =
∞∑

i=0

∞∑

n=0

eju1ieju2nPk(i, n, 0) =
∞∑

i=0

eju1iP (i) ,

because at the initial moment of time (when the insurance company starts to
work) there were no claims for insurance payments, thus P (i, n, 0) = P (i) if
n = 0 and P (i, n, 0) = 0 if n > 0 . Let us denote the function Hk(u1, u2, 0) =
Gk(u1) and the vector function G(u1) = {G1(u1), G2(u1), . . . , GK(u1)}. Then
we will write down the equation for G(u1) in the following form:

G(u1)[NΛ(eju1 − 1) + NQ] + jG
′
(u1)M(1 − e−ju1) = 0 . (18)

We will solve Eq. (18) applying an asymptotic analysis method under similar
asymptotic conditions and substitutions:

ε =
1
N

, u1 = εω1, G(u1) = F(ω1, ε), ε → 0 .

For the function F(ω1, ε) we can write

F(ω1, ε)[Λ(eju1 − 1) + Q] + j
∂F(ω1, ε)

∂ω1
M(1 − e−ju1) = 0 . (19)

Let us denote
lim
ε→0

F(ω1, ε) = F(ω1)

and perform the asymptotic transition ε → 0 in the Eq. (19). We will obtain
F(ω1)Q = 0, therefore F(ω1) = RΨ(ω1), where scalar function Ψ(ω1) =
Φ(ω1, ω2, 0), R— a row vector of stationary probability distribution of the
Markov chain states. To obtain this function, we will sum up equations of the
system (19), then divide by ε and perform the asymptotic transition ε → 0. We
will obtain the equation for the unknown function Φ(ω1, ω2, 0) = Ψ(ω1) :

Ψ
′
(ω1)κ1 = jΨ(ω1)κ , (20)
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where κ = RΛE, κ1 = RME.As a result, we obtain the following solution of
this equation under initial condition Ψ(0) = 1 :

Ψ(ω1) = ej κ
κ1

ω1 . (21)

Then we can write down the expression for function φ(C1) :

φ(C1) = [e−tκ1(ω1κ1 − ω2κ2)]
−jω2

κκ2
κ2
1 . (22)

Taking into account (22), the function Φ(ω1, ω2, t) will have the following form:

Φ(ω1, ω2, t) = exp
{

jω1
κ

κ1
+ jω2

κκ2

κ1
t

}

. (23)

Substituting this expression into (8), we obtain the expression for the function
F(ω1, ω2, t) in the following form:

F(ω1, ω1, t) = R exp
{

jω1
κ

κ1
+ jω2

κκ2

κ1
t

}

. (24)

For the function H(u1, u2, t) we can write down

H(u1, u2, t) = F(ω1, ω2, t, ε) ≈ F(ω1, ω2, t) = R exp
{

jω1
κ

κ1
+ jω2

κκ2

κ1
t

}

.

Let us make in this formula substitutions that are inverse to changes (5). Using
expression (8), we obtain the following expression for the vector characteristic
function of the probability distribution of the two-dimensional process (i(t), n(t))

H(u1, u2, t)E ≈ exp
{

jω1
κ

κ1
+ jω2

κκ2

κ1
t

}

= exp
{

jNu1
κ

κ1
+ jNu2

κκ2

κ1
t

}

.
(25)

5 The Second-Order Asymptotic Analysis

Let us denote the vector function H2(u1, u2, t) satisfying the expression:

H(u1, u2, t) = H2(u1, u2, t) exp
{

jNu1
κ

κ1
+ jNu2

κκ2

κ1
t

}

. (26)

Substituting this expression in the Eq. (4), we obtain the equation for the func-
tion H2(u1, u2, t) :

∂H2(u1, u2, t)

∂t
= H2(u1, u2, t)[NΛ(eju1 − 1) + NQ]

−H2(u1, u2, t)

[
jNu2

κκ2

κ1
I + N

κ

κ1

(
(1 − e−ju1)M + (1 − eju2)Γ

)]

+ j
∂H2(u1, u2, t)

∂u1
[(1 − e−ju1)M + (1 − eju2)Γ] ,

(27)
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where I— a diagonal unit matrix. Let us make the changes variables:

ε =
1

N2
, u1 = εω1, u2 = εω2, H2(u1, u2, t) = F2(ω1, ω1, t, ε) . (28)

Using the new variables, we can rewrite the problem (27) in the form:

ε2
∂F2(ω1, ω2, t, ε)

∂t
= F2(ω1, ω2, t, ε)[Λ(ejω1 − 1) + Q]

−F2(ω1, ω2, t, ε),
[

jω2ε
κκ2

κ1
I +

κ

κ1

(

(1 − e−jω1ε)M + (1 − ejω2ε)Γ
)]

+ jε
∂F2(ω1, ω2, t, ε)

∂ω1
[(1 − e−jω1ε)M + (1 − ejω2ε)Γ] .

(29)

Let us denote
lim
ε→0

F2(ω1, ω2, t, ε) = F2(ω1, ω2, t) .

Furthermore, we will perform the asymptotic transition ε → 0 in (29), then we
will obtain the equation F2(ω1, ω2, t)Q = 0. Thus, the function F2(ω1, ω2, t) can
be written in the following form:

F2(ω1, ω2, t) = RΦ2(ω1, ω2, t) , (30)

where Φ2(ω1, ω2, t) — some scalar function that will be defined below.
We will find the solution F2(ω1, ω2, t, ε) of the Eq. (29) in the following expan-

sion form

F2(ω1, ω2, t, ε) = Φ2(ω1, ω2, t)
(
R + jω1εf1 + jω2εf2 + O

(
ε2

))
, (31)

where f1, f2 — some row vectors, O
(
ε2

)
— a row vector that consist of the infin-

itesimals of the order ε2.
Substituting (30) in the Eq. (29) and taking into account RQ = 0, we obtain

the matrix system of the equations for the row vectors f1, f2 :

f1Q =
κ

κ1
RM − RΛ , f2Q =

κ

κ1
Rκ2 − κ

κ1
RΓ . (32)

To obtain function Φ2(ω1, ω2, t) let us sum up all equations of the system (29).
We will obtain the following equation

ε2
∂F2(ω1, ω2, t, ε)

∂t
E = F2(ω1, ω2, t, ε)[Λ(ejω1ε − 1) + Q]E

−F2(ω1, ω2, t, ε)
[

jω2ε
κκ2

κ1
I +

κ

κ1

(

(1 − e−jω1ε)M + (1 − ejω2ε)Γ
)]

E

+ jε
∂F2(ω1, ω2, t, ε)

∂ω1
[(1 − e−jω1ε)M + (1 − ejω2ε)Γ]E .

(33)
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In the Eq. (33) let us substitute the expansion ejw1ε = 1 + jw1ε +
(jw1ε)2

2
+

O
(
ε3

)
and the expansion (31). We obtain the following equality

ε2
∂Φ2(ω1, ω2, t)

∂t
= Φ2(ω1, ω2, t)R

[

Λ
(

jω1ε − (ω1ε)2

2

)

+ Q − jω2ε
κκ2

κ1
I
]

E

−Φ2(ω1, ω2, t)R
κ

κ1

[(

jω1ε +
(ω1ε)2

2

)

ME +
(

−jω1ε +
(ω1ε)2

2

)

ΓE
]

−Φ2(ω1, ω2, t)ε(jω1f1 + jω2f2)

×
(

j
κ

κ1
κ2εω2E − QE − jω1εΛE + j

κ

κ1
εω1ME − j

κ

κ1
εω2ΓE

)

+ ε2
∂Φ2(ω1, ω2, t)

∂ω1
R (ω1ME − ω2ΓE) + O

(
ε3

)
.

In the last expression let us divide left and right sides by ε2, and after
using the asymptotic transition ε → 0, we obtain the equation for the func-
tion Φ2(ω1, ω2, t):

∂Φ2(ω1, ω2, t)
∂t

+
∂Φ2(ω1, ω2, t)

∂ω1
(ω1κ1 − ω2κ2) = Φ2(ω1, ω2, t)

×
[

ω2
1(f1A1 − κ) + ω1ω2(f2A1 + f1A2) + ω2

2

(

f2A2 − κκ2

2κ1

)]

,
(34)

under the initial condition Φ2(ω1, ω2, 0) = exp
{

A1f1 − κ

2κ1
ω2
1

}

and where vectors

A1, A2 are defined by expressions

A1 =
(

κ

κ1
M − Λ

)

E , A2 =
(

κκ2

κ1
I − κ

κ1
Γ

)

E . (35)

We will find a solution of the Eq. (34) in the following form:

Φ2(ω1, ω2, t) = exp
{

−1
2

(
K11ω

2
1 + 2K12(t)ω1ω2 + K22(t)ω2

2

)
}

. (36)

Substituting this expression in the Eq. (34), we obtain the following system for
K11, K12(t), K22(t):

K11κ1 = κ − f1A1 ,

K ′
12(t) + κ1K12(t) − κ2K11(t) = −f1A2 − f2A1 , (37)

1
2
K ′

22(t) − κ2K12(t) =
κκ2

2κ1
− f2A2 ,

where vectors f1, f2 are defined by the system (32), A1, A2 are defined by
expressions (35) and κ = RΛE, κ1 = RME, κ2 = RΓE. Solving the system
(37) under initial conditions K12(0) = 0, K22(0) = 0, we obtain the expressions
for K11, K12(t), K22(t):

K11 =
κ − f1A1

κ1
, (38)
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K12(t) =
(
1 − e−κ1t

)
[
κ − A1f1

κ2
1

κ2 − A1f2 + A2f1
κ1

]

, (39)

K22(t) = 2t

[
κ − A1f1

κ2
1

κ2
2 − A1f2 + A2f1

κ1
κ2 −

(

A2f2 − κκ2

2κ1

)]

+ 2
(
1 − e−κ1t

)
[
κ − A1f1

κ3
1

κ2
2 − A1f2 + A2f1

κ2
1

κ2

]

.
(40)

Substituting these expressions into (30), we obtain the final form of the func-
tion F2(ω1, ω2, t) as following expression

F2(ω1, ω2, t) = R exp
{

−1
2

(
K11ω

2
1 + 2K12(t)ω1ω2 + K22(t)ω2

2

)
}

. (41)

Let us make in this formula substitutions that are inverse to changes (28).
Using (26), we can write the expression for the vector characteristic function
H(u1, u2, t) in the following form:

H(u1, u2, t) = R exp
{

−1
2

(
K11(Nu1)2 + 2K12(t)N2u1u2

+K22(t)(Nu2)2
)

+ j
Nκ

κ1
u1 + j

Nκκ1

κ1
u2t

}

.

(42)

Thus, we have the following formula for second-order approximation h2(u1, u2, t)
for the characteristic function h(u1, u2, t) = H(u1, u2, t)E of the two-dimensional
process (i(t), n(t)) under the condition that N is large enough:

h(u1, u2, t) ≈ h2(u1, u2, t) = exp
{

−1
2

(
K11(Nu1)2 + 2K12(t)N2u1u2

+K22(t)(Nu2)2
)

+ j
Nκ

κ1
u1 + j

Nκκ1

κ1
u2t

}

,

(43)

where K11, K12(t), K22(t) are defined by the expressions (38), (39) and (40).

6 Conclusions

In this paper we have researched the mathematical model of the insurance com-
pany in the form of queueing system with infinite number of servers with high-
rate arrival process and in a random environment. We have shown that the prob-
ability distribution of the two-dimensional process of the insurance risks and the
insurance payments under the above conditions can be approximated by the
two-dimensional Gaussian distribution. These results can be used to analysis
the activity of insurance companies and other economic systems.
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Abstract. Tandem queueing systems often arise in wireless networks
modeling. Queueing models are very suitable for network performance
evaluation but the system complexity exponential growth (or state space
explosion) could make the analysis barely feasible. The paper presents
a comparative study of various methods of a state space reduction for
markovian arrival processes (MAP) and phase-type distributions (PH)
applied to tandem queueing systems. The applied methods include non-
linear optimization, EM-algorithm and linear minimization. While most
of the described algorithms are well-studied, a number of issues arises
when applying them to a tandem system of a real wireless network. Par-
ticularly, it is shown that while all the algorithms could be applied to
tandems with a small number of queues, bigger tandems require addi-
tional effort to get the appropriable results. Nevertheless, the results
presented show that the departure MAPs reduction may help to solve
the state space explosion problem.

Keywords: Queueing systems · Random process fitting · Markov chain
space reduction · MAP · PH · Wireless networks modeling

1 Introduction

Wireless backbone networks play essential role in modern communication sys-
tems. One of the crucial applications of wireless networks are backhauls along
the long objects like roads, railways or pipes. Such networks could be used for
data transmission from surveillance cameras or sensors to data centers, as well as
for providing Internet connection. IEEE 802.11 is a frequently used technology
for such networks implementation due to a reasonable data transfer rate and
a wide range of the available inexpensive equipment. While IEEE 802.11-based
networks have many advantages, the performance of multi-hop networks could
be insufficient, thus performance estimation and analysis are required.

A prospective approach for wireless networks performance analysis involves
queueing systems with correlated arrivals. Such models become especially attrac-
tive when Markov random processes are used for both arrivals and service time
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 215–230, 2017.
DOI: 10.1007/978-3-319-68069-9 18
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distribution modeling. One of the perspective models are tandem queueing net-
works MAP/PH/1/N → · · · → •/PH/1/N with cross-traffic [20]. In this queue-
ing system data transmission time is modelled with phase-type (PH) distribu-
tions and user traffic is modelled with Markovian arrival processes (MAP) [15].
Representing the user data with Markovian arrival processes allows to take into
account correlated nature of real network traffic [5,13] and PH-distributions
provide sufficient approximation for a complex random process describing data
transmission. The application of the tandem queueing systems described above
for networks with linear topology was studied in general in the previous work [20].

The tandem queueing system analysis is affected by the exponential state
space growth with the number of hops increasing. State space reduction tech-
niques could be applied to solve this problem but their usage may lead to the
precision loss and needs to be analysed carefully. Another issue to solve is to
find a PH-distribution approximating the specific medium access scheme pre-
cisely enough.

While a plenty of MAP fitting approaches exists, their application to the
wireless networks models analysis faces several difficulties. The data transmis-
sion over wireless channels involves a number of constant intervals for channel
listening or scheduling which makes service time distribution more deterministic
and causes additional correlation in departure processes. Another issue relates
to very small values of distributions moments and large values of MAP generator
entries (to be noted, the generator itself may contain hundreds or thousands of
states), leading to the relative errors growth when applying the fitting algorithms
to real data and it further requires an additional effort to improve accuracy. Last
but not least is the performance issue since some algorithms could take hours of
processor time to converge.

The paper presents a comparative study of various methods of state space
reduction for markovian arrival processes and phase-type distributions applied
to tandem queueing systems. We study the application of different methods and
compare their performance and accuracy. We also provide the results of applying
the state reduction techniques to a wireless tandem network containing up to
ten stations and show that the departure process state space reduction methods
could be applied for a real network analysis.

2 Tandem Queueing System

Let us consider MAP/PH/1/N → · · · → •/PH/1/N system as a wireless net-
work model. This system consists of a chain of servers with PH-distributed ser-
vice time and a buffer size N . Each server receives the output flow from a previous
station and a cross-traffic modelling the data flow from the external users as a
Markovian arrival process (MAP), see Fig. 1.

A Markovian arrival process is defined by an irreducible continuous-time
Markov chain νt, t ≥ 0 with a finite state space {0, . . . , W}. The process νt, t ≥ 0
is in state ν during exponentially distributed time with parameter λν , ν ∈ 0,W .
After the time expires the chain jumps from state ν to state ν̃ with probability
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Fig. 1. A tandem network model

p0(ν, ν̃) if the transmission is unobserved and p1(ν, ν̃) otherwise. An observed
transmission generates a message. It is also assumed that the process can not
stay in the same state ν̃ = ν without message generation. Matrices D0,D1 are
used to define the MAP:

(D0)ν,ν′ =

{
−λν , if ν = ν′

λνp0(ν, ν′), otherwise

(D1)ν,ν′ = λνp1(ν, ν′).

The matrix D = D0 + D1 defines an infinitesimal generator of the random
process νt, t ≥ 0. Its stationary probability vector θ is obtained from the system

θD = 0, θ1 = 1,

where 0 is a row vector of zeros and 1 is a column vector of ones. The steady-
state probability vector π of a discrete time Markov chain embedded at arrival
instants with a generator P = (−D0)−1D1 can be obtained as the solution of
the following linear system:

πP = π, π1 = 1.

The average arrival intensity of a MAP is λ = 1/π(−D0)−11. The k-th
moment and lag-k correlation can be expressed as

mk = k!π(−D0)−k1, k ≥ 1, (1)

lk =
λ2π(−D0)−1P k(−D0)−11 − 1

λ2π(−D0)−21 − 1
, k ≥ 1. (2)

A phase-type (PH) distribution is defined as a hitting time of the absorbing
state in a continuous-time Markov chain with a single absorbing state. Formally,
a random variable X is said to have PH-distribution X ∼ PH(S, τ ) if τ ∈
R

V is a probability distribution and S ∈ R
V ×V is a subinfinitesimal matrix

defining initial states probabilities and transition rates between non-absorbing
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states respectively. The background Markov chain has the following generator
matrix: (

S −S1
0 1

)

The k-th moment E[Xk], X ∼ PH(S, τ ) can be found via the expression

mk = k! τ (−S)−k1, k ≥ 1. (3)

Markovian arrival processes and MAP/PH/1/N queues satisfy the following
properties [20–22]:

1. The result of sifting a MAP with constant probability is also a MAP;
2. The composition of a finite number of MAPs is a MAP;
3. The departure process of MAP/PH/1/N system is also a MAP.

Note that MAP/PH/1/N queue can lose packets due to the queue overflow
and the flow of lost packets is also a MAP. Taking into account these properties
it can be shown that a departure process form the first server is a MAP and
consequently the arrival processes to all succeeding servers are also MAPs as
well as the departure processes. Thus an iterative procedure can be built to
compute parameters of a queueing network [20].

However a state space of departure process is expressed as a cartesian prod-
uct of the state spaces of MAP-input, PH-distribution and the queue length (the
number of messages being queued and served). This fact results into an expo-
nential state space growth also referred to as a state space explosion, making
a precise analysis barely feasible for an arbitrary number of servers. To solve
the state space explosion problem, the departure process of each queue can be
approximated with a lower order MAP. Alternative approach is to approximate
a process arriving at the queue, i.e. after the composition with cross-traffic.

Another problem considered is to find a PH-distribution adequately describ-
ing the medium access scheme operation. This problem is closely related to MAP
fitting and will also be discussed further.

3 Related Work

There is a plenty of works describing various MAP and PH fitting. These stud-
ies could be divided into three areas. The first direction is the reconstruction
of MAP and PH-distributions based on the known moments and lag-k corre-
lation coefficients [7]. The second direction is to improve distributions already
constructed and to choose the parameters closest (in the sense of some criterion)
to the parameters of the statistical series [16]. The third one is to find MAPs
and PH distributions maximizing the likelihood function based on the statistical
data. These approaches are often based on the expectation-maximization (EM)
algorithms [11,17,19]. We refer a reader to [2,16] for the state-of-art and open
problems in this area.



State Reduction in Analysis of a Tandem Queueing System 219

Bodrog et al. [3] describe a method to find second-order matrices for MAP
and phase distributions. To describe MAP with a large number of states and
a specified correlation coefficient, it was suggested in [7] to build a phase-type
distribution with a given number of states first, and then use it to construct
MAP matrices. The inter-arrival time distribution is fitted by a PH distrib-
ution where the PH generator determines matrix D0 of MAP and the initial
probability vector π determines the steady state probability vector of the MAP
embedded process. On the next stage the matrix D1 is constructed by approxi-
mating the lag-k correlation values. Note that the system for matrix D1 contains
2n + 1 equations for n2 unknowns leading to a linearly constrained non-linear
optimization problem. The matching of order 3 and higher phase distributions
was considered in [1,8,9].

Bobbio et al. [1] proposes a method to compose minimal order phase type
distribution with first three moments and present a simple transformation from
APH(n-1) (acyclic phase type distribution of order n − 1) to APH(n) with
an additional phase. The authors also evaluate the bounds for the first three
moments of APH(n).

Telek and Horvath [18] present the minimal representations of PH and MAP
(Markovian, Jordan, Laplace, moments and MRP representations) and trans-
formations between them. They construct an algorithm to optimize D0 and D1

matrices of MAP by means of a transformation matrix B such that matrices
B−1D0B and B−1D1B minimize a goal function (or improve its value). The
method allows improving any MAP fitted by other methods.

Casale et al. [4] propose a MAP fitting algorithm based on the first three
moments and high order autocorrelations. They define a process composition
method called a Kronecker Product Composition (KPC). Given J MAPs with
matrices D

(j)
0 and D

(j)
1 , j = 1, J , the composed MAP is defined as

D0 = (−1)J−1D
(1)
0 ⊗ · · · ⊗ D

(J)
0 , D1 = D

(1)
1 ⊗ · · · ⊗ D

(J)
1 (4)

and can be constructed of any order to fit data traces or reduce a state space of
an arbitrary MAP. The algorithm consists of three steps. The first step fits the
sample squared coefficient of variation and correlation coefficient to minimize the
distance between sample lag-k correlations and numerical ones. On the second
step, the first and third moments for each MAP D

(j)
0 and D

(j)
1 , j = 1, J , are

determined from an acceptable region and further optimized to minimize the
distance between the sample joint moments and their estimated values. Based
on the optimal values of the first three moments and the correlation coefficients,
we can construct J MAPs D

(j)
0 and D

(j)
1 , j = 1, J (e.g., of the second order) and

compose the final form of matrices (4).
In this paper we use three different approaches to reduce the tandem depar-

ture processes state spaces: MAP fitting as a solution of nonlinear optimization
problem, EM-based approach [1,8] and a method of building a phase-type dis-
tribution with a given number of states and construction of a D1 matrix for
fitting lag-k correlation coefficients [7]. We also use G-FIT approach based on
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EM procedure [19] to fit the PH distributions. These methods will be described
in more details in the following sections.

4 MAP and PH Fitting

The fitting methods allow to construct a markovian arrival process or a phase-
type distribution using a given trace (a set of samples) or a set of estimated
metrics including moments and lag-k autocorrelation coefficients. In the tandem
queueing system described above the fitting methods allow to approximate an
operation of a specific communication protocol as well as to reduce the size of
the departure processes (the latter case will be discussed in more details in the
following section). Here we describe several fitting methods as they are; we sup-
pose the data trace or estimated moments and lag-k autocorrelation coefficients
values to be given as an input. The described methods include the expectation
maximization (EM) algorithm [11,17,19], search for the MAP or PH as a solu-
tion of the nonlinear optimization problem constrained by the given moments
and lag-k values, and a sequential independent fitting of the PH distribution
using the trace or estimated moments values and MAP matrix D1 using lag-k
values constraints [7].

4.1 Fitting by Trace

The paper [19] describes a PH distribution fitting technique based on the EM
algorithm (the authors call this algorithm G-FIT). MAP fitting using the EM
algorithm is described in the papers [11,17]. While both algorithms will be used
in numerical experiments, we describe briefly only G-FIT algorithm here due to
the paper space limitations. The details of the algorithms could be found in the
papers cited above.

G-FIT algorithm attempts to find a PH distribution fitting the given trace
as a Hyper-Erlang distribution. Let X be a Hyper-Erlang random variable
with M mutually independent Erlang distributions weighted with probabili-
ties α = (α1, . . . , αM ), m-th chain containing rm phases jointly forms a vector
r = (r1, . . . , rM ) and its intensities describe a vector λ = (λ1, . . . , λM ). Then
the pdf of X is fX(x) =

∑M
m=1 αm

(λmx)rm−1

(rm−1)! λme−λmx.
The parameters (r,α,λ) are chosen while fitting. Consider EM algorithm

to maximize a log-likelihood expression. The authors first apply it for a general
set of independents distributions with density functions pm such that p(x|Θ) =∑M

m=1 αmpm(x|θm) where Θ = (α,θ) and θi is a parameter (or vector) of pm.
Then the authors suggest considering an unobserved random variable Y hav-

ing values in {1, . . . , M} and specifying which component is used to generate a
specific item xk of the trace in order to simplify the a log-likelihood calculation.
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Applying this idea the expected value of complete log-likelihood is

Q(Θ, Θ̂) =
M∑

m=1

K∑
k=1

log(αm)q(m|xk, Θ̂)

+
M∑

m=1

K∑
k=1

log(pm(xk|θm))q(m|xk, Θ̂)
(5)

where Θ̂ is an initially chosen parameter set, required to compute a conditional
pdf of Y :

q(yk|xk, Θ̂) =
α̂yk

pyk
(xk|θ̂yk

)
M∑

m=1
α̂mpm(xk|θ̂m)

. (6)

Computing expression (5) for some vector Θ̂ is a E-step of EM algorithm. For
performing M-step (maximization), parameters Θ = (α,θ) maximizing Q(Θ, Θ̂)
should be found. α can be found by applying Lagrange multipliers to (5); to find
θ a specific pdf required, so let θ = λ for Hyper-Erlang. Then

αm =
1
K

K∑
k=1

q(m|xk, Θ̂), λm =
rm · q(m|xk, Θ̂)

K∑
k=1

q(m|xk, Θ̂) · xk

. (7)

4.2 Fitting as Optimization

The MAP or PH distribution fitting may be described as a solution of the opti-
mization problem constrained by the values of the moments and lag-k autocor-
relation coefficient values. Let mKm

be the vector of the first Km moments of
MAP, lKl

be the vector of the first Kl lags given in (1) and (2) correspondingly;
μ and ν be the vectors of moments and lags of a random process to fit corre-
spondingly. Using this notation the problem of MAP fitting can be formulated
via solution of a nonlinear algebraic system{

mKm
(D0,D1) = μ,

lKl
(D0,D1) = ν.

(8)

System (8) should be solved for D0 and D1 such that D = D0 + D1 is
an infinitesimal generator and D0 is a subgenerator. By these restrictions, the
system may have no solution for some pairs (μ,ν) and the order N thus a MAP
with such lags and moments does not exist. It should be noticed that there are
no known closed form margins for the moments and lags values for MAPs and
PH distributions of an arbitrary order making the problem much harder.

We suggest that approximate solution of the system can be brought to an
optimization problem as follows. Define a loss function L (·) = (| · |)2 and a loss
functional

Q(D0,D1) = L (mKm
(D0,D1) − μ) + L (lKl

(D0,D1) − ν). (9)
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Then a proper MAP is found as a solution of (D0,D1) = arg min
D0,D1

Q(D0,D1).

The fitting procedure is iterative and start with the lower possible N . The tol-
erance ε should be chosen such that min Q(D0,D1) < ε holds. If for given N
there is no solution (D0,D1) the order N should be incremented and the new
fitting procedure starts until the criterion is satisfied or the maximum number of
iteration is exhausted. Otherwise, the pair (D0,D1) with the lower error minQ
is supposed to be a solution. Also another loss function L can be considered.

For PH distribution the optimization problem can be simplified as it has
zero lags and less difficulty in moments computation. The loss functional for PH
fitting is as follows:

Q(τ , S) = L (mKm
(τ , S) − μ).

The problem described is generally nonconvex which leads to local optima
solutions and require additional effort to randomize the initial vectors and look
for the best solution.

4.3 MAP Fitting by Given PH

The MAP moments depend on the matrix D0 and a steady state probability
distribution of the embedded discrete process which allows to fit them indepen-
dently of the lag-k autocorrelation values; the lag-k values could be used to find
the appropriate matrix D1 [10]. Suppose we have a PH(τ , S) distribution. It is
assumed that the MAP(D0,D1) has D0 = S and π = τ where π is a steady
state probability distribution of the embedded Markov chain with the transi-
tion matrix P = (−D0)−1D1. Combining the restrictions for D1 to be held and
considering the autocorrelation ccorr the authors [10] obtained a linear system:

D11 = −D01, π(−D0)−1D1 = π, δD1f = υ

where the values δ, f and υ can be derived from the lag-1 expression (2). Con-
sidering a vector x = [d1,d2, . . . ,dM ]T where di is the i-th column vector of D1,
the authors has transformed these three matrix equations into one that have the
following form: ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

I I . . . I
γ

γ
. . .

γ
f1δ f2δ . . . fMδ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

· x =

⎡
⎢⎢⎢⎢⎣
g

π

υ

⎤
⎥⎥⎥⎥⎦ . (10)

This linear equations should be solved for non-zero elements of x. To find
the higher-order lags the authors suggest to use an optimization procedure.
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5 State Reduction

While the process fitting is the only approach for obtaining PH distributions of
the service time when only the trace is known, the departure MAP processes
state space could be reduce by other methods. Generally any reduction method
supposes the given matrices D0 and D1 of a MAP to decrease the order. For
PH-distribution the problem is set in the same way taking into account a vector
π and a matrix S instead of D0 and D1.

To apply the fitting methods described in the previous section to MAP state
space reduction, the moments and lags of the source MAP should be calculated. If
the fitting method requires a trace (e.g. EM algorithm), the source MAP should
be randomized to get a trace. It should be noticed that for the MAPs with a
huge number of states the consistent trace may contain over a million samples.
To simplify the problem and avoid the randomization, two additional techniques
of state space reduction are described below including the nonlinear optimization
problem solving constrained by the distance between the cumulative distribution
functions and cutting the tail states of the QBD (quasi-death-and-birth) process.

5.1 Reduction as Optimization

The state reduction can be performed by solving an optimization problem. For
that aim let us consider the difference of the stationary cumulative distribution
function of the given MAP and some lower order MAP

ΔF (t) = F (t) − F ′(t) = π′eD′
0t1′ − πeD0t1.

Taking into account that eD0t ≈ I+
∑K

k=1
1
k!D

k
0 tk for some K and π1 = π′1′ = 1

this difference takes a form:

ΔF (t) =
K∑

k=1

tk

k!
(
π′(D′

0)
k1′ − πDk

01
)

=
K∑

k=1

w(k, t)
(
π′(D′

0)
k1′ − πDk

01
)
, (11)

where w(k, a) = ak/k! is a weight for the k-th power of D0. Multiple ways to
define the weights exist; here we define the weights as Tk+1

(k+1)! applying a = T

that arises out of integrating (11) in a range [0, T ]

ΔF =

T∫
0

ΔF (t)dt =
K∑

k=1

⎡
⎣ T∫

0

tk

k!
dt

⎤
⎦ (

π′(D′
0)

k1′ − πDk
01

)

Taking D′
0 = S,D′

1 = τ in case of PH and D0,D1 in case of MAP reduction,
the loss functional can be expressed as

Q(D′
0,D

′
1) = L (ΔF (D′

0,D
′
1)). (12)
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5.2 State Truncation

This method is applied to servers without the memory, i.e. MAP/PH/1 systems
when the utilization coefficient is sufficiently small. A system with a limited
memory could be approximated if it has a very large capacity. The authors of [6]
consider the departure MAP as a pair of block matrices and suggest to trunk the
tail blocks stating with some level N +1 by merging the stationary probabilities
into N -th state: π+

N =
∑∞

i=N+1 πi and considering matrices:

Â0 = A0 + A1,

Â2 = diag(πN )diag−1(πN + π+
N )A2,

Ǎ2 = diag(π+
N )diag−1(πN + π+

N )A2

to describe the reduced matrices of the departure MAP

D0 =

⎡
⎢⎢⎢⎢⎢⎣

B1 B0

A1 A0

. . . . . .
A1 A0

Â0

⎤
⎥⎥⎥⎥⎥⎦ , D1 =

⎡
⎢⎢⎢⎢⎢⎣

O
B2

A2

. . .
Â2 Ǎ2

⎤
⎥⎥⎥⎥⎥⎦ . (13)

The matrices Ai, Bi for i = 0, 1, 2 describing the blocks of the initial departure
MAP and their definition are provided in [6]. This method allows to restrict the
state space growth by decreasing the effective queue length. Unfortunately, the
state space continues exponential increasing along with the number of queues in
the tandem since the size of the service time PH-distribution is greater than 1
which makes the method not applicable to analyse a tandem queuing systems
with an arbitrary number of queues.

6 Experimental Results

In the numerical experiments we used three different methods of MAP fitting:

1. Searching for a MAP (defined by the matrices D0 and D1) as a solution of
an optimization problem constrained by the values of the first moments and
lags (this method is referred to as OPT below).

2. MAP fitting using the EM algorithm [11];
3. Successive independent fitting of D0 matrix as a PH distribution using the

moments or a trace provided and looking for D1 as a solution of the opti-
mization problem constrained by the lag-k correlation coefficients (INDI in
the following text). The algorithm was described in [7].

Queueing system analysis framework [14] was developed in the Python 3
language using NumPy/SciPy packages. We used EM algorithms implementa-
tions from a BuTools [12] package. Simulation models were developed using
OMNeT++ network simulator. All the experiments ran on a generic laptop
with i7 processor and 16 GB of RAM.
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While the OPT method shown good results, it often fell into a local optima
and required initial solutions randomization to converge good. The key problem
is a lack of easy checkable conditions on the solution existence and moments and
lags values, so it was often hard or impossible to find a solution of a given order
under the given constraints while the attempt to find it takes significant time. It
should be noted that algorithm converged rapidly for small MAPs and PHs with
up to 8 states but required lots of time when called for bigger orders (5 min and
more). It was also noticed that order increasing didn’t provide better results in
many cases so we decided to use the algorithm with small orders. The solution
error was also reduced by normalizing the moments and the D0 and D1 matrices
consequently.

The EM algorithm provided good results but required too much time to
converge. Typically, it takes up to 20 min to fit a given trace with 40000 samples
using a MAP with 12 states. While it is possible to speed up the algorithm
as described in [19], it didn’t completely solve the problem and the algorithm
still required lots of processor resources. Since the algorithm had to be applied
several times, we decided to limit the search with MAPs containing up to four
states. The similar problem arose during G-FIT execution while it still allowed
to fit PH distributions with up to 10 states in a reasonable time. Due to the
order limitation, the EM algorithm for MAP fitting provided the worst results
considering moments and lags matching.

The third (INDI) approach was implemented as described in the paper [7].
We tried both nonlinear optimization and G-FIT [19] algorithm for fitting the
PH distribution for D0 matrix construction, and G-FIT provided much better
overall results. To keep the problem of D1 construction linear, we limited the
constraints with lag-1 correlation. In this case the problem could be solved as a
linear minimization problem ‖Ax − b‖2 → min. The key problem was that the
existence of D1 matrix was dependent on the particular D0 and it sometimes
required several D0 fitting iterations to find an appropriate matrix to make the
D1 construction with a reasonable error possible.

First of all, the fitting algorithms were applied to fit the PH-distribution
approximating data transmission intervals. To simplify the analysis, a tandem
consisting of two stations was considered. The wireless channel bitrate was 5
mbps (e.g. a slow sensor network link) and an arrival traffic bitrate was 2.8 mbps.
The arrival traffic was described with a MAP approximating a real network trace
LBL-TCP-3 described in [10]:

D0 =

⎡
⎢⎢⎣

−508.11 0 0 0
0 −526.82 0 0
0 0 −112.88 0
0 0 0 −292.87

⎤
⎥⎥⎦

D1 =

⎡
⎢⎢⎣

281.9 226.06 0 0.15872
526.66 0.024505 0.13422

0 0 82.094 30.79
0.056728 0 38.799 254.01

⎤
⎥⎥⎦
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Fig. 2. Service time fitting. Lines labeled as ‘opt-n’ show solutions of a nonlinear opti-
mization problem and ‘gfit-n’ show G-FIT [19] where ‘n’ is the order of PH

Table 1. Moments and lags of the approximated departure processes from the first
station.

Algorithm Order M1 M2 M3 Std. Lag-1 Lag-2

Original MAP 192 0.00453 0.000048 1.032e-06 7.329e-10 0.176 0.126

Nonlinear opt. 6 0.00453 0.000048 1.032e-06 7.328e-10 0.176 0.126

EM 3 0.004371 0.00005 1.248e-06 9.566e-10 0.109 0.048

G-FIT and linear opt. 8 0.00428 0.000038 6.079e-07 3.982e-10 0.176 0.075

The packets sizes were assumed to have a normal distribution truncated to
positive values with an average value 12 kbit and standard deviation 3 kbit.
We applied G-FIT algorithm [19] and nonlinear optimization approach with a
number of moments equations equal to 3 for PH orders 4, 6 and 8. The results are
shown on Fig. 2 (while more lags could allow to fit the service time distribution
better, it was crucial to use a small distribution due to the state space growth
appearing on the next stations). It should be also noticed that applying G-FIT
for a greater number of states takes a rather long time due to combinatorial
complexity of inspecting various structures of the Hyper-Erlang distributions.

The PH distribution obtained with G-FIT containing 8 states was used for
the later computations. This distribution matched the mean value and had a
32% error in standard deviation. It was used to build the departure process
of the first station having capacity 5, which was approximated with the EM-
algorithm [11], nonlinear optimization with moments and lags constraints and
the approach of independent construction of a D0 matrix as a PH-distribution
and D1 matrix with linear constraints [7]. In the latter approach only the lag-1
correlation coefficient was constrained. The results are shown in Table 1. The last
row describes a separate D0 fitting with G-FIT and D1 as a solution of linear
minimization problem [7]. It should be noticed that EM-algorithm was used for
a small MAP order equal to 3, its stop condition was reduced to 10−3 and the
maximum number of iterations was 100. This could be the reason of the worst
results shown.

The system size distribution of the second station was also investigated. Since
the arrival traffic required more than a half of the modeled channel bandwidth,
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Fig. 3. Number of packets probability distributions of the second station with and
without the cross-traffic and various fitting algorithms.eps

Fig. 4. End-to-end delays and busy ratios computed for a wireless network tandem
model.

adding the cross-traffic caused a system overflow. All the described algorithms
allowed to get sufficient approximation of the system states distributions as
shown on Fig. 3.

Finally, the OPT approach was applied to fit the departure MAP processes in
the model of a real wireless network containing 10 nodes and operating under the
IEEE 802.11 standard. To simplify the simulation a simple DCF channel access
scheme was considered and the wireless channels provided 54 mbps bitrate. Each
arrival process was described with the same MAP as above. The cross-traffic
arrived at each wireless station.

The measured transmission time was fitted by the first three moments with
0.05 relative error with a PH-distribution PH(S, τ):

S =

⎡
⎢⎢⎣

−6267.56 1412.75 0.001814 943.60
1008.28 −3337.85 0.000100 258.21
0.002726 0.0000027 −107.766 2.744
1565.226 1563.65 3.9327 −6778.49

⎤
⎥⎥⎦

τ =
[
0.038351 0.961517 0 0.000132

]
The measured end-to-end delay and busy ratios are shown on Fig. 4. The busy

ratios were approximated well but end-to-end delays approximated values were
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not precise. This problem could be solved with other approximation methods or
fitting PH distributions and MAP arrivals with higher order processes.

7 Conclusion and Future Work

It was shown that departure MAP state space reduction provided sufficient pre-
cision while allowing to analyze the tandem queueing systems of an arbitrary
length. However the fitting algorithms performance along with time limitations
may lead to accuracy degradation. The nonconvex nature of the problems arising
leads to local optima convergence and impossibility to find the optimal solution
in many cases. To face these issues, a randomization of initial parameters should
be applied to find multiple optima and more efficient algorithms along with the
existing algorithms optimization should be explored. These investigations are
the focus of our future work.

The combined PH fitting using G-FIT algorithm with D1 construction using
autocorrelation coefficient constraint provided a good accuracy with sufficient
performance and looks promising. The best results were retrieved with the solu-
tion of the nonlinear optimization problem constrained by the moments and
lag-k autocorrelation coefficient constraints while the EM algorithm application
to MAP fitting was limited by the performance issues. While several approaches
were studied in this paper, there is still a plenty of methods to be examined,
including the KPC approach. These methods would be applied and optimized
in the future works.

Finally, it should be noticed that the lag-k autocorrelation coefficients of the
departure processes grow along with the number of stations in the tandem net-
work. While the typical moments values allowed to fit the service time distribution
with a good precision, it was often a problem to find a valid MAP process with
the precise autocorrelation coefficients values. The solution may be found using
the processes with the greater number of states, but this requires more intelligent
methods of predicting the structure of the approximating MAPs due to perfor-
mance limitations. These methods will also be studied in the future works.
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Abstract. The volume of mobile traffic is growing every year. More
and more frequency resources are needed to provide users services with
a required level of quality of service (QoS). One of the possible solu-
tions to a problem of radio spectrum shortage is the sharing of spectrum
between the owners and LSA licensees. Licensed shared access (LSA)
framework gives the owner priority in spectrum access, to the detriment
of the secondary user, LSA licensee. If the mobile operator users of both
need continuous service without interruptions on the rented part of the
spectrum, the rules of shared access should guarantee the possibility of
simultaneous access. In this paper we simulate a queuing system and con-
sider a scheme model of LSA framework with the limit power policy. We
propose formulas for calculation of main characteristics of the model – a
blocking probability and a mean bit rate. These characteristics are very
important in teletraffic theory. For example, blocking probabilities help
to determine the number of required channels.

Keywords: Queuing system · Licensed shared access · Limit power pol-
icy · Blocking probability · Mean bit rate

1 Introduction

Teletraffic theory is a mathematical theory, or one of branches of queueing the-
ory. It is used for studying and designing telecommunication systems (telephony,
computer networks, etc.). More generally, one can set the goal of teletraffic the-
ory: construction of mathematical models that map real processes in information
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distribution systems and development of methods for assessing the quality of
their functioning [11–13]. The number of user devices connected to a high-speed
network as well as the volume of traffic transmitted between them is constantly
increasing [1]. Consequently, an increasing amount of resources is needed to pro-
vide quality services. The problem of resource shortage could be solved by using
the licensed shared access (LSA) framework [2–4]. LSA framework could improve
the efficiency of resource usage and ensure the access to a spectrum which oth-
erwise would be underused [5]. By using this framework, the spectrum is shared
between the owner (so-called incumbent) and a limited number of LSA licensees
(mobile operators). The LSA licensee has access to single-tenant band (the part
of the spectrum, belonging only to the mobile operator) and rents the multi-
tenant band (the part of the spectrum, belonging to the incumbent and the
mobile operator), whereas the incumbent has access only to multi-tenant band.
For interference coordination between the incumbent and the LSA licensee three
policies [6] are proposed: limit power policy, shutdown policy, and ignore policy.
According to the limit power policy [7], there is no interruption of service due
to the incumbent accessing spectrum. It implies managing the user equipment
power in uplink and eNodeB (eNB) power in downlink. According to shutdown
policy [8,9], at any time, LSA spectrum could be used by incumbent or LSA
licensees but not together at once. According to ignore policy LSA licensees use
the shared spectrum without interference coordination.

In this paper we propose a scheme model of 3GPP wireless network within
LSA framework [10]. For efficient interference coordination we consider the limit
power policy, which allows us to continue the service of multi-tenant band users,
even if the incumbent needs this part of the spectrum. In this case, the service
of mobile operator users will not be interrupted, but the service bit rate will
be reduced (degraded). At this time, the multi-tenant band goes into the so-
called unavailable mode and user’s requests arrived on the multi-tenant band
continue their service at the degraded bit rate – minimum bit rate. After the
incumbent releases the multi-tenant band, the band goes from the unavailable to
the operational mode and the service bit rate for the connected mobile network
users increases to the maximum value - maximum bit rate. The service on the
single-tenant band is always carried out at the maximum bit rate.

This model is an improved version of the model described in [7]. One of the
main disadvantages of the previous model was that after the disconnection the
band was not recovered which means that even after the band was vacated by
the owner, the service continued with degraded quality until all users of multi-
tenant band were served. In our model this drawback is eliminated, the band
goes into operational mode as soon as the owner frees it, while the quality of
user service is increased to the original level.

This paper is organized as follows. In Sect. 2, we propose a mathematical
model of the LSA framework with the limit power policy. In Sect. 3, we analyze
main characteristics of the model: the blocking probability and the mean bit
rate. Finally, we conclude the paper in Sect. 4.
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2 Mathematical Model

2.1 General Assumptions and Parameters

We propose a scheme model of a single mobile network cell with LSA framework
and limit power policy. We suppose that the mobile operator has access to the
single-tenant band with the total capacity of C1 bandwidth units (b.u.) and rents
the multi-tenant band with the total capacity of C2 b.u. Let the arrival rate λ
be Poisson distributed and let the service time be exponentially distributed with
mean μ−1. Then, we denote the corresponding offered load as ρ = λ/μ.

Each request processed on the single-tenant band is served at the maximum
bit rate dmax. Request on the multi-tenant band could be served at the maximum
bit rate dmax or at the minimum bit rate dmin depending on the state of the
multi-tenant band – operational or unavailable. Figure 1 shows the scheme of
the model.

We assume that the multi-tenant band goes into unavailable mode with rate
α and recovers into operational mode with rate β. Recovery and failure intervals
follow the exponential distribution. All necessary notations are given in Table 1.

Fig. 1. The scheme of the model.

2.2 Limit Power Policy

Let us consider in more detail the limit power policy. First of all, we determine
the rules for accepting requests for service.

When a new request arrives, four scenarios are possible:
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Table 1. System parameters

Notation Parameter description

C1 Total capacity of the single-tenant band

C2 Total capacity of the multi-tenant band

λ Arrival rate

μ−1 Mean service time

dmax Maximum bit rate

dmin Minimum bit rate

α Rate of a transition the multi-tenant band into unavailable mode

β Rate of a transition the multi-tenant band into operational mode

n1 The number of single-tenant band users

n2 The number of multi-tenant band users

s The state of the multi-tenant band, s equals to 1 if the band is
operational and s equals to 0 if the band is unavailable

• The request will be accepted for service on the single-tenant band, if the
single-tenant band has not less than dmax free b.u.

• The request will be accepted for service on the multi-tenant band, if the single-
tenant band has less than dmax b.u. free, the multi-tenant band is operational
and has not less than dmax b.u. free.

• The request will be blocked, if the single-tenant band has less than dmax b.u.
free and the multi-tenant band is unavailable or has less than dmax b.u. free.

Let us note if the owner does not use the frequency spectrum of the multi-
tenant band, the data transfer can be carried out at the highest possible rate,
which equals to dmax, in other case the service bit rate for the mobile operator
users is degraded from the maximum dmax to the minimum dmin value. When
the multi-tenant band recovers, the bit rates are switched back and all users that
have been degraded continue to receive service at bit rate dmax.

2.3 System of Equilibrium Equations

The behavior of the system is defined by the Markov process X(t) = {(N1(t),
N2(t), S(t)), t ≥ 0}, where N1(t) is the number of single-tenant band users, N2(t)
is the number of multi-tenant band users, S (t) is the state of the multi-tenant
band at the moment t ≥ 0. Let us denote N1 =

⌊
C1

dmax

⌋
the maximum number

of single-tenant band users, N2 =
⌊

C2
dmax

⌋
the maximum number of multi-tenant

band users. Then the system state space is the following:

X = {n1 = 0, . . . , N1, n2 = 0, . . . , N2, s = 1
∨ n1 = 0, . . . , N1, n2 = 0, . . . , N2, s = 0} . (1)
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State space (1) could be divided into two subspaces: {n1 = 0, . . . , N1, n2 =
0, . . . , N2, s = 1} if the multi-tenant band is operational and requests could be
served at the maximum bit rate dmax, and {n1 = 0, . . . , N1, n2 = 0, . . . , N2,
s = 0} if the multi-tenant band is unavailable and requests continue their service
at the minimum bit rate dmin. Figure 2 shows the structure of the state space,
considering the two subspaces.

The corresponding Markov process X (t), which representing the system’s
states, is described by the following system of equilibrium equations

p (n1, n2, s) [λ · I (n1 < N1) + λ · I (n1 = N1, n2 < N2, s = 1)
+ (n1 + n2) μ + α · I (s = 1) + β · I (s = 0)]
= p (n1 + 1, n2, s) [(n1 + 1) μ · I (n1 < N1)]
+ p (n1, n2 + 1, s) [(n2 + 1) μ · I (n2 < N2)]
+ p (n1 − 1, n2, s) [λ · I (n1 > 0)]
+ p (n1, n2 − 1, 1) [λ · I (n1 = N1, n2 > 0, s = 1)]
+ p (n1, n2, 1) [α · I (s = 0)] + p (n1, n2, 0) [β · I (s = 1)] , (n1, n2, s) ∈ X,

(2)

where (p (n1, n2, s))(n1, n2, s)∈X = p is the stationary probability distribution.

Fig. 2. The state space.
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Fig. 3. Central state.

2.4 Infinitesimal Generator

The system probability distribution is calculated as the numerical solution of the
system of equilibrium equations p·A = 0, p·1T = 1, where A is the infinitesimal
generator of Markov process X (t). Let us denote n = 0, N1 + N2 – the number
of users.

The infinitesimal generator A has a block tridiagonal form

A =

⎡
⎢⎢⎢⎢⎢⎣

N0 Λ0 · · · 0 0
M1 N1 · · · 0 0
...

...
. . .

...
...

0 0 · · · NN1 +N2−1 ΛN1 +N2−1

0 0 · · · MN1 +N2 NN1 +N2

⎤
⎥⎥⎥⎥⎥⎦

.

Blocks Λn, n = 0, N1 N2 − 1 have the sizes

dimΛn =

⎧
⎪⎪⎨
⎪⎪⎩

(2n + 2) × (2n + 4) , n = 0, N2 − 1,
(2N2 + 2) × (2N2 + 2) , n = N2, N1 − 1, if N1 > N2,
(2 (N1 + N2 − n) + 2)
× (2 (N1 + N2 − n)) , n = N1, N1 + N2 − 1.

and the following form:
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(1) n = 0, N2 − 1

Λn =

⎡
⎢⎢⎢⎢⎢⎣

λ 0 · · · 0 0 0 0
0 λ · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · λ 0 0 0
0 0 · · · 0 λ 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

(2) n = N2, N1 − 1, if N1 > N2

Λn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 0 0
0 λ · · · 0 0 0 0
λ 0 · · · 0 0 0 0
0 λ · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · λ 0 0 0
0 0 · · · 0 λ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3) n = N1, N1 + N2 − 1

Λn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 λ · · · 0 0
λ 0 · · · 0 0
0 λ · · · 0 0
...

...
. . .

...
...

0 0 · · · λ 0
0 0 · · · 0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Blocks Mn, n = 1, N1 + N2 have the sizes

dimMn =

⎧
⎪⎪⎨
⎪⎪⎩

(2n + 2) × 2n, n = 1, N2,
(2N2 + 2) × (2N2 + 2) , n = N2 + 1, N1, if N1 > N2,
(2 (N1 + N2 − n) + 2)
× (2 (N1 + N2 − n) + 4) , n = N1 + 1, N1 + N2.

and the following form:
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(1) n = 1, N2

Mn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nμ 0 0 0 · · · 0 0
0 nμ 0 0 · · · 0 0
μ 0 (n − 1) μ 0 · · · 0 0
0 μ 0 (n − 1) μ · · · 0 0
0 0 2μ 0 · · · 0 0
0 0 0 2μ · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · μ 0
0 0 0 0 · · · 0 μ
0 0 0 0 · · · nμ 0
0 0 0 0 · · · 0 nμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2) n = N2 + 1, N1, if N1 > N2

Mn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ 0 N1μ 0 · · · 0 0
0 μ 0 N1μ · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · μ 0
0 0 0 0 · · · 0 μ
0 0 0 0 · · · nμ 0
0 0 0 0 · · · 0 nμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3) n = N1 + 1, N1 + N2

Mn =

⎡
⎢⎢⎢⎢⎢⎣

(n − N1) μ 0 N1μ 0 · · · 0 0 0 0
0 (n − N1) μ 0 N1μ · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · N2μ 0 (n − N2) μ 0
0 0 0 0 · · · 0 N2μ 0 (n − N2) μ

⎤
⎥⎥⎥⎥⎥⎦

.

Blocks Nn, n = 0, N1 + N2 have the sizes

dimNn =

⎧
⎪⎪⎨
⎪⎪⎩

(2n + 2) × (2n + 2) , n = 0, N2 − 1,
(2N2 + 2) × (2N2 + 2) , n = N2, N1 + N2 − 2,
(2 (N1 + N2 − n) + 2)
× (2 (N1 + N2 − n) + 2) , n = N1 + N2 − 1, N1 + N2.

and the following form:

(1) n = 0, N1 − 1

Nn =

⎡
⎢⎢⎢⎢⎢⎣

− (λ + nμ + β) β · · · 0 0
α − (λ + nμ + α) · · · 0 0
...

...
. . .

...
...

0 0 · · · − (λ + nμ + β) β
0 0 · · · α − (λ + nμ + α)

⎤
⎥⎥⎥⎥⎥⎦

,
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(2) n = N1, N1 + N2 − 1

Nn =

⎡
⎢⎢⎢⎢⎢⎣

− (nμ + β) β · · · 0 0
α − (λ + nμ + α) · · · 0 0
...

...
. . .

...
...

0 0 · · · − (λ + nμ + β) β
0 0 · · · α − (λ + nμ + α)

⎤
⎥⎥⎥⎥⎥⎦

,

(3) n = N1 + N2

Nn =
[− (nμ + β) β

α − (nμ + α)

]
.

3 Numerical Analysis

3.1 Performance Measures

Having found the probability distribution p (n1, n2, s) , (n1, n2, s) ∈ X, one may
compute performance measures of the considered scheme:

• Blocking probability

B =
N2∑
i=0

p (N1, i, 0) + p (N1, N2, 1) ; (3)

• Mean bit rate

d =

∑
(n1, n2, s)∈X/(0, 0, 0),(0, 0, 1)

n1dmax +n2dmax·I(s=1)+n2dmin·I(s=0)
n1 +n2

· p (n1, n2, s)∑
(n1, n2, s)∈X/(0, 0, 0), (0, 0, 1) p (n1, n2, s)

;

(4)

• Mean bit rate on the multi-tenant band

d (C2) =

∑
(n1, n2, s)∈X:n2 �=0 (dmax · p (n1, n2, 1) , + dmin · p (n1, n2, 0))∑

(n1, n2, s)∈X:n2 �=0 p (n1, n2, s)
.

(5)

3.2 Numerical Example

Let us assume that users view short video in high quality at a bit rate dmax= 1
Mbps. If a part of the frequency band has to be returned, the bit rate decreases to
dmin= 0.5 Mbps. So the users continue watching video but in a lower quality. The
multi-tenant band goes into unavailable mode every hour (3600 s) or every four
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Table 2. System parameters

Parameter description Notation Value

Total capacity of the single-tenant band C1 10Mbps

Total capacity of the multi-tenant band C2 10Mbps

Mean service time of one user μ−1 30 s

Mean time when multi-tenant band is available α−1 3540 s, 14340 s

Mean time when multi-tenant band is unavailable β−1 60 s

Maximum bit rate dmax 1Mbps

Minimum bit rate dmin 0.5 Mbps

Offered load ρ 0 ÷ 30

Fig. 4. Blocking probability B for different α−1.

hours (14400 s) and the recovery takes around one minute. Table 2 summarizes
the initial data of the example.

The figures below show the behavior of each characteristic – blocking prob-
ability B (Fig. 4), mean bit rates d and d (C2) (Fig. 5) – for different values of
α−1 (the mean time when the multi-tenant band is available). All figures show
that the less multi-tenant band goes into unavailable mode, the better the per-
formance metrics, namely, the blocking probability is lower, whereas the mean
bit rate is higher.
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Fig. 5. Mean bit rates d and d (C2) for different α−1.

4 Conclusion

We have presented the scheme model for analyzing the simultaneous access to
spectrum in 3GPP cellular network within LSA framework for intolerant to delay
traffic under the limit power policy. This policy is based on the implementation
of a mechanism the service bit rate degradation for the mobile operator users
on multi-tenant band, if it is necessary to release the resources of this band for
the owner. We have obtained the infinitesimal generator as a block tridiagonal
matrix, what is required for the numerical solution of the equilibrium equations
system and the calculation of the performance metrics for the considered queuing
system that characterize the impact of LSA on the QoS – the blocking probability
and the mean bit rate.
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Abstract. The paper deals with two-way communication M/M/1/1
retrial queue where the server during its idle time makes outgoing calls
of two types - to the customers in orbit and to the customers outside
it. Durations of these calls follow two distinct exponential distributions.
After completion of the outgoing call to a customer from orbit, this cus-
tomer with probability p rejoins the orbit, and with its complementary
probability leaves the service area. Using generating functions approach
we derive explicit and recursive formulas for the stationary system state
distribution and its factorial moments.

Keywords: Two-way communication · Retrials · Server-orbit interac-
tion · Feedback

1 Introduction

The basic characteristic of retrial queues is the behaviour of customers whose ser-
vice cannot start immediately upon their arrival. These customers join a virtual
waiting room, called orbit and after some time try to get service again. Retrial
queues have been widely used to model diverse problems arising in telephone
switching systems, telecommunication and computer networks, call centers, celu-
lar and local area networks, etc. [1,2,5,7,14,17,18]. A systematic account of the
fundamental methods and the latest results, as well as an classified bibliography
on this topic can be found, for example in [2,11–13], and references therein.

In many real situations, especially in models with human servers, the servers
in their idle time can perform some additional activity. In recent literature this
additional activity is usually referred to as an outgoing call, and the models
with both incoming and outgoing calls - as two-way communication queues.
Queueing systems with two-way communication have been investigated in not
a small number of papers. Ones of the first results on this topic are presented
by Falin [9], who analyzes a single server model in which the outgoing and the
incoming calls follow the same arbitrary service distribution. Later, Artalejo and

c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 243–255, 2017.
DOI: 10.1007/978-3-319-68069-9 20
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Phung-Duc [3] extend this investigation, considering single and multiple servers
retrial models with two-way communication where the service times of incoming
and outgoing calls follow the exponential distribution with distinct parameters.
The corresponding M/G/1/1 queue where the service times of incoming and
outgoing calls follow two distinct arbitrary distributions is studied by Artalejo
and Phung-Duc in [4], while the same model under the assumption of multiple
types of outgoing calls is considered by Sakurai and Phung-Duc, [15]. The priority
retrial queues with available buffers for the outgoing calls, studied in [6,10]
could also be considered as two-way communication models. Deslauriers et al.
[7] consider five Markovian models for blending call centers where operators
not only serve incoming calls but also make calls to outside. In this article,
however the retrial behavior of customers is not taken into account. Dragieva and
Phung-Duc [8] consider two-way communication M/M/1/1 retrial queue where
the server makes outgoing calls not only to customers outside the orbit (outgoing
calls of type 2) but also to the customers in orbit (outgoing calls of type 1).
Investigation of this model is motivated by many real situations like call centers
or mobile phone where the operator can be notified about the customers in orbit,
for example by registering all failed calls. The operator during his/her idle time
may call to these customers to inform or to offer some different proposals. One
of the main goals of the operator could be to reduce the number of customers in
orbit (orbit size). In such situation it is natural to measure the operator’s success
or failure with a certain probability and its complementary. This motivated us
to extend the model considered in [8] by introducing a feedback probability for
the outgoing calls of type 1. Namely, in this paper we assume that after the
service completion of an outgoing call of type 1, i.e. with a customer from the
orbit, this customer returns to the orbit with probability p and with probability
(1 − p) leaves it, p ∈ [0, 1]. The present paper also extends [8] by assuming that
both types of outgoing calls (i.e. to the orbit and to outside) follow two distinct
exponential distributions.

Further on, the structure of the paper is as follows. A detailed description of
the model is given in Sect. 2. Section 3 presents explicit and recursive formulas
for the stationary joint distribution of the server state and orbit size. In Sect. 4
we derive explicit and recursive formulas for the partial factorial moments of
this distribution and formulas for the basic macro characteristics of the system
performance. Concluding remarks and some topics for future investigations are
presented in Sect. 5.

2 Model Description

We consider single server retrial queue with two-way communication. This, as
described in previous Section, means a queue with two flows of calls - incoming
and outgoing calls. Incoming calls arrive at the system according to a Poisson
process with rate λ. An incoming call is accepted for service if upon arrival it
finds the server idle. Otherwise, if the server is busy, the call enters the orbit of
retrial customers (calls), stays in it for an exponentially distributed time with
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mean 1/μ, and retries to get service. An arriving retrial call is accepted if the
server is idle, otherwise it enters the orbit again.

On the other hand the server makes an outgoing call after some exponentially
distributed idle time. There are two types of outgoing calls whose durations
follow two distinct exponential distributions. The outgoing calls of the first type
are directed towards the customers in the orbit, while the outgoing calls of the
second type - to the customers outside it. The outgoing calls of first type are also
referred to as outgoing retrial calls, while the outgoing calls of second type - as
outgoing primary calls. If the server is idle it makes an outgoing retrial or primary
call in an exponentially distributed time with mean 1/α and 1/β, respectively.

The service times of the incoming and outgoing retrial and primary calls are
exponentially distributed with rates ν1, ν2 and ν3, respectively. We accept that
when the service is over the incoming calls as well as the outgoing primary calls
leave the service area while, as stated in the Introduction, the outgoing retrial
calls rejoin the orbit with probability p and with the complementary probability
1 − p leave the service area.

We assume that the arrival of incoming calls, retrial interval of incoming calls,
service times of incoming and outgoing calls, and the time to make outgoing calls
are mutually independent.

Let R(t) denote the number of incoming calls in the orbit, and S(t) - the
state of the server in time t,

S(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if the server is idle,
1, if an incoming call is in service,
2, if an outgoing call of type 1 is in service,
3, if an outgoing call of type 2 is in service.

It is easy to see that the process {(S(t), R(t)); t � 0} forms a Markov chain
on the state space {0, 1, 2, 3} × Z+ where Z+ = {0, 1, 2, ...}.

In what follows we consider the system under the stability condition which
will be derived later. Let

πi,j = lim
t→∞ P (S(t) = i, R(t) = j) i = 0, 1, 2, 3, jεZ+,

denote the stationary joint distribution of the server state and the orbit size.
The system of balance equations for {πi,j ; i = 0, 1, 2, 3, jεZ+} is given by

[λ + β + j(α + μ)] π0,j = ν1π1,j + ν2 [pπ2,j−1 + (1 − p)π2,j ] + ν3π3,j , (1)

(λ + ν1) π1,j = λπ0,j + (j + 1)μπ0,j+1 + λπ1,j−1, (2)

(λ + ν2) π2,j = (j + 1)απ0,j+1 + λπ2,j−1, (3)

(λ + ν3) π3,j = βπ0,j + λπ3,j−1, (4)

for j ∈ Z+, where πi,−1 = 0 (i = 1, 2, 3).
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3 Stationary Distribution of the System State

In this Section, using the generating functions approach we derive explicit and
recursive formulas for the joint stationary distribution of the server state and
the orbit size.

3.1 Partial Generating Functions

Let Πi(z) denote the partial generating functions

Πi(z) =
∞∑

j=0

zjπi,j , i = 0, 1, 2, 3, |z| � 1.

Multiplying (1)–(4) by zj and summing up over j yields

(λ + β) Π0(z) + z(α + μ)Π ′
0(z) = ν1Π1(z) + ν2q(z)Π2(z) + ν3Π3(z), (5)

(λ + ν1) Π1(z) = λΠ0(z) + μΠ ′
0(z) + λzΠ1(z), (6)

(λ + ν2) Π2(z) = αΠ ′
0(z) + λzΠ2(z), (7)

(λ + ν3) Π3(z) = βΠ0(z) + λzΠ3(z), (8)

where
q(z) = 1 − (1 − z)p = p + pz,

p = 1 − p.

Solving the system (5)–(8) we derive formulas for the generating functions Πi(z).
They are presented in the next theorem.

Theorem 1. The partial generating functions Πi(z) (i = 0, 1, 2, 3) are given by
the following explicit expressions

Π0(z) = π0,0

(
1

1 − τ1z

) D1
α+μ

(
1

1 − τ2z

) D2
α+μ

(
1

1 − τ3z

) D3
α+μ

, (9)

Π1(z) =
(

λ + μ
g(z) (λ + ν2 − λz)

fp(z) (z3 − z)

)
Π0(z)

λ + ν1 − λz
, (10)

Π2(z) =
αg(z)

fp(z) (z3 − z)
Π0(z), (11)

Π3(z) =
βΠ0(z)

λ (z3 − z)
, (12)

where

Di = (−1)i−1 [λ (λ + ν3 − λzi) + β (λ + ν1 − λzi)] (λ + ν2 − λzi)
λ2 (z2 − z1) (z3 − zi)

, i = 1, 2,

(13)
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D3 =
β (ν1 − ν3) (ν2 − ν3)
λ2 (z1 − z3) (z2 − z3)

, (14)

g(z) = λ (λ − λz + ν3) + β (λ − λz + ν1) , (15)

fp(z) = az2 + (b + pλαν2) z + c − pαν2 (λ + ν1) , (16)

with
a = λ2 (α + μ) , (17)

b = −λ (α + μ) (λ + ν2 + ν1) , (18)

c = ν1ν2 (α + μ) + λ (μν1 + αν2) . (19)

Further,

τi =
1
zi

, i = 1, 2, 3,

z3 =
λ + ν3

λ
, (20)

z1, z2 are the roots of the equation fp(z) = 0 which are different real numbers
for all values of the system parameters. Finally,

π0,0 = Π0(1) (1 − τ1)
D1

α+μ (1 − τ2)
D2

α+μ (1 − τ3)
D3

α+μ , (21)

Π0(1) =
1 − ρ

1 − ρ + λ
ν1

+ β
ν3

, (22)

with

ρ =
λ

αp + μ

(
μ

ν1
+

α

ν2

)

. (23)

Proof. We multiply Eq. (7) by q(z) and then sum Eqs. (6)–(8):

λ [Π1(z) + q(z)Π2(z) + Π3(z)] = (αp + μ) Π ′
0(z). (24)

Next, from (6)–(8) we express Πi(z) (i = 1, 2, 3) in terms of Π0(z) and Π ′
0(z)

Π1(z) =
λΠ0(z) + μΠ ′

0(z)
λ + ν1 − λz

, (25)

Π2(z) =
αΠ ′

0(z)
λ + ν2 − λz

, (26)

Π3(z) =
βΠ0(z)

λ + ν3 − λz
.

The last equation coincides with (12). Thus, we get the following differential
equation for Π0(z)

Π ′
0(z) =

λg(z) (λ + ν2 − λz)
fp(z) (λ − λz + ν3)

Π0(z), (27)
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where g(z) and fp(z) are given by formulas (15)–(19). Substituting Π ′
0(z) from

(27) into (25)–(26) we prove formulas (10)–(11).
Further, in order to find the roots of equation fp(z) = 0 we consider its

discriminant,

Δp = (b + pλαν2)
2 − 4a [c − pαν2 (λ + ν1)]

= p2λ2α2ν2
2 + p [2bλαν2 + 4aαν2 (λ + ν1)] + Δ,

where
Δ = b2 − 4ac.

Applying formulas (17)–(19) it is not difficult to verify that

Δ = λ2 (α + μ)
[
α (ν2 − ν1 − λ)2 + μ (ν1 − ν2 − λ)2

]

and
Δp = p2λ2α2ν2

2 + 2pλ2 (α + μ) αν2 (λ + ν1 − ν2) + Δ.

The last expression as a function of the parameter p has discriminant

˜Δ = (α + μ)2 α2ν2
2 (λ + ν1 − ν2)

2 − α2ν2
2 (α + μ)

[

α (ν2 − ν1 − λ)2 + μ (ν1 − ν2 − λ)2
]

= 4λα2ν2
2 (α + μ)μ (ν1 − ν2) .

This means that when ν1 < ν2, Δp is positive for all values of p. When
ν1 � ν2, then we can see that the function Δp is increasing for non negative
values of p and since Δp|p=0 = Δ > 0 this implies that Δp is positive for
positive values of p, in particular for p ∈ [0, 1] .

Thus, the function fp(z) has two different real roots z1 and z2 for all possible
values of the system parameters. Then the differential Eq. (27) can be expressed
in the form

Π ′
0(z)

Π0(z)
=

1
(α + μ)

(
D1

z1 − z
+

D2

z2 − z
+

D3

z3 − z

)

,

where Di (i = 1, 2, 3) and z3 are given by (13), (14) and (20). The solution of
this equation is the function Π0(z) given by formulas (9) and (21). Finally, to
prove Eqs. (22) and (23), we express Πi(1) (i = 1, 2, 3) according to (10 )–(12)
and, as it is easy to verify that

fp(1) = a + b + c − pαν2ν1 = ν2ν1 (α + μ) (1 − ρ) ,

with

ρ = λ

(
μ

ν1 (α + μ)
+

α

ν2 (α + μ)

)

+
αp

α + μ
,

and that
g(1) = λν3 + βν1,

we obtain

Π1(1) = λ
(1 − ρ) (α + μ) ν1ν3 + μ(λν3 + βν1)

(α + μ) (1 − ρ)ν2
1ν3

Π0(1), (28)
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Π2(1) =
αλ(λν3 + βν1)

(1 − ρ) (α + μ) ν1ν2ν3
Π0(1), (29)

Π3(1) =
β

ν3
Π0(1). (30)

Substituting with these expressions in the normalizing condition

Π0(1) + Π1(1) + Π2(1) + Π3(1) = 1,

after some transformations we get

Π0(1) =
1 − ρ

1 − ρ +
(

λ
ν1

+ β
ν3

)
αp+μ
α+μ

.

The last expression, together with the equation

1 − ρ
αp+μ
α+μ

= 1 − ρ,

where ρ is given by (23), proves formula (22). This finishes the proof of the
theorem.

Corollary 1. The necessary and sufficient condition for the stability of the sys-
tem is

ρ < 1.

Proof. Formula (21) shows that π0,0 exists if and only if both roots of the equa-
tion fp(z) = 0 are greater than 1. This in turn holds if and only if

∣
∣
∣
∣
− b+pλαν2

2a = λ+ν1+ν2
2λ − pαν2

λ(α+μ) > 1,

fp(1) = ν2ν1 (α + μ) (1 − ρ) > 0.

The second inequality holds if and only if ρ < 1 which, in turns holds if and only
if ρ < 1. Now, it is not difficult to verify that when ρ < 1 the first inequality
also holds and that π0,0 > 0.

3.2 Stationary Joint Distribution of the Server State and the Orbit
Size

In this Section we derive explicit and recursive formulas for computing the sta-
tionary joint distribution πi,j (i = 0, 1, 2, 3, jεZ+) of the server state and the
orbit size. Inverting formula (9), then applying (25), (26) and (12), it is not
difficult to prove the next proposition.

Proposition 1. The stationary distribution πi,j can be calculated by the follow-
ing explicit expressions:

π0,j = π0,0

(
j∑

k=0

j−k∑

l=0

(
D1

α + μ

)

k

τk
1

k!

(
D2

α + μ

)

l

τ l
2

l!

(
D3

α + μ

)

j−k−l

τ j−k−l
3

(j − k − l)!

)

,
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π1,j =
1

λ + ν1

j∑

k=0

[λπ0,k + (k + 1) μπ0,k+1]
(

λ

λ + ν1

)j−k

,

π2,j =
1

λ + ν2

j∑

k=0

(k + 1) απ0,k+1

(
λ

λ + ν2

)j−k

,

π3,j =
1

λ + ν3

j∑

k=0

βπ0,k

(
λ

λ + ν3

)j−k

,

where π0,0 as well as the values of Di, τi are given in Theorem 1, and (x)j

denotes the Pochhammer symbol,

(x)j =
{

1, if j = 0,
x(x + 1)...(x + j − 1), if j ∈ N = {1, 2, ...} .

In the next proposition we derive recursive formulas for calculation of πi,j .
They are more convenient than the explicit ones, presented in the previous propo-
sition.

Proposition 2. The stationary probabilities πi,j can be computed from the fol-
lowing recursive formulas:

π0,j =
λ (π1,j−1 + pπ2,j−1 + pπ2,j−2 + π3,j−1)

j (αp + μ)
, j = 1, 2, ..., (31)

(
ν1 + αλpν2

ν2(αp+μ)+λμ

)
π1,j

= λ
(
1 + βμ(λ+ ν2)

[ν2(αp+μ)+λμ](λ+ ν3)

)
π0,j + λπ1,j−1

+ λμ(ν2p+λ)
ν2(αp+μ)+λμπ2,j−1 + λ2μ(λ+ ν2)

[ν2(αp+μ)+λμ](λ+ ν3)
π3,j−1,

(32)

(
ν2 + μλν1

ν1(αp+μ)+αλp

)
π2,j

= αλ
ν1(αp+μ)+αλp

(
λ + β λ+ ν1

λ+ ν3

)
π0,j + αλ2

ν1(αp+μ)+αλpπ1,j−1

+ λ[ν1(α+μ)+αλ]
ν1(αp+μ)+αλp π2,j−1 + αλ2(ν1 +λ)

[ν1(αp+μ)+αλp](λ+ ν3)
π3,j−1.

(33)

π3,j =
β

λ + ν3
π0,j +

λ

λ + ν3
π3,j−1, j = 0, 1, ...,

the last one coinciding with balance Eq. (4). Here π2,−1 = 0, and π0,0 is given in
Theorem 1.

Proof. The level crossing formula (31) follows from Eq. (24). Combining this
formula with balance Eqs. (2)–(3), we get

ν1(αp+μ)+αλp
αp+μ π1,j = λπ0,j + λμ(π2,jp+π3,j)

αp+μ

+λπ1,j−1 + λμpπ2,j−1
αp+μ ,
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ν2(αp+μ)+λμ
αp+μ π2,j = αλ

αp+μ (π1,j + π3,j) + λ(α+μ)
αp+μ π2,j−1.

Here we substitute π3,j according to balance Eq. (4),

ν1(αp+μ)+αλp
αp+μ π1,j =

(
λ + βλμ

(λ+ ν3)(αp+μ)

)
π0,j + λμpπ2,j

αp+μ

+λπ1,j−1 + λμpπ2,j−1
αp+μ + λ2μπ3,j−1

(αp+μ)(λ+ ν3)
,

ν2(αp+μ)+λμ
αp+μ π2,j = αλβπ0,j

(λ+ ν3)(αp+μ) + αλπ1,j

αp+μ

+ λ(α+μ)π2,j−1
αp+μ + αλ2π3,j−1

(λ+ ν3)(αp+μ) .

Now we substitute π2,j from the second into the first and π1,j from the first -
into the second of the last two equations and after some transformations we get

[
(αp + μ) ν1 + αλp − αλ2μp

ν2(αp+μ)+λμ

]
π1,j

= λ
(
αp + μ + βμ

λ+ ν3
+ αβλμp

(λ+ ν3)[ν2(αp+μ)+λμ]

)
π0,j + λ (αp + μ) π1,j−1

+λμ
(
p + λp(α+μ)

ν2(αp+μ)+λμ

)
π2,j−1 + λ2μ

(λ+ ν3)

(
1 + αλp

ν2(αp+μ)+λμ

)
π3,j−1,

[
ν2 (pα + μ) + μλ − αλ2μp

ν1(αp+μ)+αλp

]
π2,j

= αλ
λ+ ν3

(
β + λ[(λ+ ν3)(αp+μ)+ βμ]

ν1(αp+μ)+αλp

)
π0,j + αλ2(αp+μ)

ν1(αp+μ)+αλpπ1,j−1

λ
(
α + μ + αλμp

ν1(αp+μ)+αλp

)
π2,j−1 + αλ2

λ+ ν3

(
1 + λμ

ν1(αp+μ)+αλp

)
π3,j−1.

It is easy to verify that each of the last two equations can be divided by (αp + μ) ,
which leads to formulas (32) and (33). The proposition is proved.

4 Basic Performance Macro Characteristics

The basic macro characteristics of the steady state system performance are the
server utilization,

Pu = 1 − lim
t→∞ P (S(t) = 0) ,

and the moments of the orbit size, in particular the mean orbit size,
limt→∞ E [R(t)] . The probabilities

lim
t→∞ P (S(t) = i) = Πi(1), i = 0, 1, 2, 3

can be calculated by formulas (22), (28)–(30). In this section we deal with the
partial factorial moments {M i

k; i = 0, 1, 2, 3, k ∈ Z+}, defined as

M i
k =

∞∑

j=k

(j − k + 1)kπi,j .
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Obviously,

M i
0 =

∞∑

j=0

πi,j = Πi(1) = lim
t→∞ P (S(t) = i) , i = 0, 1, 2, 3,

presents the stationary server state distribution which we already know. Since

Πi(1 + z) =
∞∑

k=0

M i
k

k!
zk, i = 0, 1, 2, 3,

we can obtain M i
k from the coefficients of zk in the series Πi(1 + z).Using this

property and Eqs. (9), (25), (26) and (12) we express Πi(1 + z) as a convolution
of 2 or 3 series. Converting these convolutions we prove the following proposition.

Proposition 3. The partial factorial moments are given by the following
explicit formulas

M0
k = M0

0 k!
k∑

j=0

j−k∑

l=0

(
D1

α+μ

)

j

(
D2

α+μ

)

l

(
D3

α+μ

)

k−j−l

j!l! (k − j − l)! (z1 − 1)j (z2 − 1)l (z3 − 1)k−j−l
,

M1
k =

k!
ν1

k∑

j=0

λM0
j + μM0

j+1

j!

(
λ

ν1

)k−j

,

M2
k =

αk!
ν2

k∑

j=0

M0
j+1

j!

(
λ

ν2

)k−j

,

M3
k =

βk!
ν3

k∑

j=0

M0
j

j!

(
λ

ν3

)k−j

.

Now, similarly to the investigation of the stationary distribution we turn our
attention to a recursive scheme for computing the factorial moments.

Proposition 4. We have the following recursive formulas for the partial facto-
rial moments:

M0
k+1 =

λ

αp + μ

(
M1

k + M2
k + M3

k + kpM2
k−1

)
, (34)

(1 − ρ) M1
k = λ ν2ν3(αp+μ)+μβν2−αλν3

ν1ν2ν3(αp+μ) M0
k

+ kλν2(αp+μ)−αλ
ν1ν2(αp+μ) M1

k−1 + λμk(λ+ pν2)
ν1ν2(αp+μ)M

2
k−1 + λ2μk

ν1ν3(αp+μ)M
3
k−1,

(35)

(1 − ρ) M2
k = αλ(λν3 + βν1)

ν1ν2ν3(αp+μ)M
0
k

+ αkλ2

ν1ν2(αp+μ)M
1
k−1 + λk[ν1(α+μ)−λμ]

ν1ν2(αp+μ) M2
k−1 + λ2αk

ν2ν3(αp+μ)M
3
k−1,

(36)
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ν3M
3
k − kλM3

k−1 =
βM0

k + kλM1
k−1

ν3
. (37)

Here M i
−1 = 0 (i = 0, 1, 2, 3), ρ is determened by formula (23).

Proof. We differentiate formulas (24)–(26) and (12) k times at z = 1 and obtain

(αp + μ)M0
k+1 = λ

(
M1

k + M2
k + M3

k + kpM2
k−1

)
,

ν1M
1
k − kλM1

k−1 = λM0
k + μM0

k+1,

ν2M
2
k − kλM2

k−1 = αM0
k+1,

ν3M
3
k − kλM3

k−1 = βM0
k .

The first of these equations gives formula (34), and the last - formula (37). We
substitute according to the first equation into the next two,

[ν1 (αp + μ) − λμ]M1
k = λ (αp + μ) M0

k + λμ
(
M2

k + M3
k

)

+ kλ (αp + μ) M1
k−1 + λμkpM2

k−1,

[ν2 (αp + μ) − αλ] M2
k = αλ

(
M1

k + M3
k

)
+ [λk (αp + μ) + λαkp] M2

k−1,

and, replacing M3
k according to (37), obtain

[ν1 (αp + μ) − λμ] M1
k = λ

(
αp + μ + μβ

ν3

)
M0

k + λμM2
k

+ kλ (αp + μ) M1
k−1 + λμkpM2

k−1 + λ2μk
ν3

M3
k−1,

[ν2 (αp + μ) − αλ] M2
k = αλ

(

M1
k +

β

ν3
M0

k

)

+ λk (α + μ) M2
k−1 +

λ2αk

ν3
M3

k−1.

Now we substitute M2
k from the second into the first, and M1

k from the first
- into the second of these equations:

[
ν1 (αp + μ) − λμ − αλ2μ

ν2(αp+μ)− αλ

]
M1

k

= λ
(
αp + μ + μβ

ν3
+ αβλμ

ν3[ν2(αp+μ)− αλ]

)
M0

k + kλ (αp + μ) M1
k−1

+λμk
(
p + λ(α+μ)

ν2(αp+μ)− αλ

)
M2

k−1 + λμk
ν3

(
1 + αλ

ν2(αp+μ)− αλ

)
M3

k−1,

[
ν2 (αp + μ) − αλ − αλ2μ

ν1(αp+μ)−λμ

]
M2

k

= αλ
ν3

(
β + λ[ν3(αp+μ)+μβ]

ν1(αp+μ)− λμ

)
M0

k + αkλ2(αp+μ)
ν1(αp+μ)− λμM1

k−1

+λk
[
(α + μ) + αλμp

ν1(αp+μ)− λμ

]
M2

k−1 + λ2αk
ν3

(
1 + λμ

ν1(αp+μ)− λμ

)
M3

k−1.

Here, like in the proof of Proposition 2 we can divide both equations by (αp + μ) ,
which leads to the following formulas

(
ν1 − λμν2

ν2(αp+μ)−αλ

)
M1

k = λ
(
1 + μβν2

ν3[ν2(αp+μ)−αλ]

)
M0

k

+ kλM1
k−1 + λμk(λ+ pν2)

ν2(αp+μ)−αλM2
k−1 + λ2μkν2

ν3[ν2(αp+μ)−αλ]M
3
k−1,
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(
ν2 − αλν1

ν1(αp+μ)−λμ

)
M2

k = αλ(λν3 + βν1)
ν3[ν1(αp+μ)−λμ]M

0
k

+ αkλ2

ν1(αp+μ)−λμM1
k−1 + λk[ν1(α+μ)−λμ]

ν1(αp+μ)−λμ M2
k−1 + λ2αkν1

ν3[ν1(αp+μ)−λμ]M
3
k−1.

It is easy to verify that these equations can be presented in the form, given by
(35) and (36), which finishes the proof of the proposition.

For k = 1 formulas (34)–(37) give a simple procedure to calculate the mean
orbit size.

Remark 1. For p = 0 and ν2 = ν3 all results presented in this paper coinside
with the results obtained by Dragieva and Phung-Duc [8] for the corresponding
model without feedback, and with the same exponential distribution for outgoing
calls of both types.

5 Conclusion and Future Work

In this paper we analyze M/M/1/1 retrial queue with two-way communication
in which the server makes outgoing calls of two types - to the customers in orbit
which are referred to as outgoing retrial calls, and to the customers outside the
orbit. Durations of the outgoing calls of both types follow two distinct exponen-
tial distributions. In addition, after the service completion any outgoing retrial
customer returns to the orbit with certain probability p. We derive explicit and
recursive formulas for the stationary joint distribution of the server state and
the orbit size and its factorial moments. This investigation could be extended
by considering the corresponding model with feedback not only for the outgoing
retrial calls. We are also planing to investigate the corresponding model in which
the durations (service times) of the outgoing calls of both types follow two dis-
tinct arbitrary distributions. The corresponding model with finite population (a
finite number of customers) could also be investigated.
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Abstract. The paper provides the description of 13 structured and
simulation modeling systems: AnyLogic, Arena, Bizagi Modeler, Busi-
ness Studio, Enterprise Dynamics, ExtendSim, Flexsim, GPSS W, Plant
Simulation, Process Simulator, Rand Model Designer, Simio Simul8. The
routes of dynamic objects movement in modeling systems in structured
models built in these SSMS are visually represented. SSMS are compared
according to structural models of M/M/5 queuing systems obtained in
these SSMS and the difference of simulation modeling from analytical
modeling results. The reliability was assessed by the values of mathemat-
ical expectation and standard deviations of quantity and time indexes.
The paper aims to select SSMS for modeling probabilistic objects in con-
formity with the area the object refers to, consideration of simulation
modeling results credibility, and users personal preferences as well.

Keywords: Simulated model · Analytical model · Queueing system ·
M/M/5

1 Introduction

Significant developments in simulation modeling (SM) have taken place recently;
they are primarily related to the transference of SM specialized languages appli-
cation to structural and simulation modeling systems (SSMS). SSMS allow users
to abandon model programming and start model drawing. The programming
process is the responsibility of software designers creating imitation subprograms
of elements functioning in modeling objects; they are presented by specialized
libraries.
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The monograph [1] gives a detailed review of SM systems as of late 1995;
more than 20 years after its publication have passed and a great deal of new
advanced SSMS have appeared. The article [2] provides more than 10 promising
SSMS with their application ratio. This article compares 13 SSMS, accommo-
dates their brief descriptions, supplies structural models of M/M/5 queueing
system, identifies SM reliability results obtained in these systems and compares
them with analytical modeling (AM) results of M/M/5 queueing system. Such
approach further develops the study done by the authors of this article [3,4] and
from their point of view, it will foster a qualified selection of modeling means
within the subject area the modeling object related to, reliability of results and
users personal preferences. 13 systems have been chosen from the set of SSMS
given in [2]; there is no programming process for large scale users in them, their
free versions are available on the Internet: AnyLogic, Arena, Bizagi Modeler,
Business Studio, Enterprise Dynamics, ExtendSim, Flexsim, GPSS W, Plant
Simulation, Process Simulator, Rand Model Designer, Simio Simul8.

1.1 The Brief Description of SSMS

AnyLogic. AnyLogic SSMS [5] was designed by the Russian company XJ Tech-
nologies. The first version of AnyLogic system 4.0 was created in 2003. AnyLogic
7.0 was made in 2014. AnyLogic SSMS includes graphical modeling language and
allows the user to maximize created models with the help of Java. The relation of
the concepts accepted in AnyLogic SSMS to the concepts accepted in the queue-
ing system theory is the following: claims - entities, queues - queues, service
machines - tasks. There are many references including [5].

Arena. Arena SSMS [6] was fashioned by Systems Modeling Corporation. Its
first version appeared in 1993. In 2014 Arena SSMS 3.0 was developed. The
foundation of Arena includes modeling metacompiler Siman and animation sys-
tem Cinema Animation. The relation of the concepts accepted in the system to
the concepts accepted in the queueing system theory is the following: claims -
entities, queues-queues [7], service machines - tasks [8]. The key advantage of
Arena SSMS is the possibility to transfer automatically from IDEF3 diagram,
widely spread in BPwin [9], to a structured model in Arena SSMS.

Bizagi Modeler. Bizagi Modeler SSMS [10] was designed by a group of compa-
nies Object Management Group established in 1989. Bizagi Modeler SSMS was
developed in 2007. In 2016 the 11th version of Bizagi BPM Suite was worked out.
Business-process modeling notation is used to indicate modeled system elements
(BPMN 2.0). The relation of the concepts accepted in Bizagi Modeler to the
concepts accepted in the queueing system theory is the following: claims - mes-
sages, queues-queues, service machines - actions. Gateways are used to indicate
the route selection of entities movements.
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Business Studio. Business Studio SSMS [11] was elaborated by a group of
companies Modern management technologies in 2004; in 2013 the version 4.0
was worked out. Business- process modeling notation is used to indicate modeled
system elements (BPMN 2.0). The relation of the concepts accepted in Business
Studio SSMS to the concepts accepted in the queueing system theory is the
following: claims - messages, queues-queues, service machines - actions. Gateways
are used to indicate the route selection of entities movements.

Enterprise Dynamics. Enterprise Dynamics SSMS was generated by InCon-
trol Simulation, founded in 1998. Enterprise Dynamics system was developed in
2004 [12]. The concepts accepted in Enterprise Dynamics SSMS are the following:
claims–products, queue–queues, service machines–servers.

ExtendSim. The first version of ExtendSim SSMS [13] was designed by Imag-
ine That Inc. in the beginning of 1987. It was one of the first programming
products on the SM market which could create a simulated model by SSMS
structural scheme. Currently ExtendSim SSMs is being upgraded. The last ver-
sion was launched on the market in 2015. The relation of the concepts accepted
in ExtendSim SSMS to the concepts accepted in the queueing system theory is
the following: claims - elements, queues-queues, service machines activities [14].

Flexim. Flexim SSMS [15] was produced by Flxim Software Products Inc
(ESP), set up in 1993. The year of Flexim development is 2003. The relation of
the concepts accepted in Flexim SSMS to the concepts accepted in the queueing
system theory is the following: claims - claims, queues-queues, service machines
processors, memory [15].

GPSS W with Exceeded Editor. In 2014 Elina-Computer created an
exceeded editor of simulated models for GPSS W SSMS [16]. Exceeded editor for
mass user allows to abandon programming and to start drawing models. Soft-
ware designers can create software for modeling new elements and add them into
structured and simulated models. In addition, exceeded editor allows designers
to plan simulated tests and process modeling findings. The relation of the con-
cepts accepted in GPSS SSMS to the concepts accepted in the queueing system
theory is the following: claims - transactions, queues - queues, service machines
processors, memory [16].

Plant Simulation. Plant Simulation SSMS [17] has been supplied by Siemens
PLM Software since 2007. In 2016 the 13th version of Plant simulation SSMS
appeared. The relation of the concepts accepted in Plant Simulation SSMS to the
concepts accepted in the queueing system theory is the following: claims - details,
queues storage facilities, service machines occasional operations, in-parallel oper-
ations [17]. There is an opportunity to model manufacturing processes with liquid
products.
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Process Simulator. Process Simulator SSMS was elaborated by ProModel
Corporation and appeared in the market in 2001 [18]. The last version of Process
Simulator SSMS is version 9.3.0.2701 developed in 2016. The relation of the
concepts accepted in Process Simulator SSMS to the concepts accepted in the
queueing system theory is the following: claims - claims, queues - queues, service
machines actions.

Rand Model Designer. A well-known Model Vision Studium SSMS changed
its name, and since 2011 it has been called Rand Model Designer [19]. It was
developed by MVSTUDIUM Group founded in 1997. The last version of Rand
Model Designer (RMD) SSMS was designed in 2016 based on Modelica modeling
language [19]. The relation of the concepts accepted in Rand Model Designer
SSMS to the concepts accepted in the queueing system theory is the following:
claims - transactions, queues - queues, service machines services.

Simio. Simio SSMS was generated in 2007 [20] by Simio LLC, established in
2005. The concepts accepted in Simio SSMS are the following: claims - agents
(initiators), queues - queues, service machines - servers.

Simul8. The full version of Simul8 SSMS [21] was created by the corporation
of the same name in the beginning of 2003. Currently Simul8 SSMS is being
developed. The last version of this product appeared in 2017. Routs of claims
movement and processes of their service are specified in details in Simul8 SSMS
[21]. The concepts accepted in Simul8 SSMS are the following: claims - entities,
queues - queues, servicing machines - work centers. Simul8 SSMS test version
can be downloaded from the Internet free of charge; the trial period is up to
14 days.

2 Analytical Modeling of M/M/5 Queueing System

Analytical modeling of M/M/5 has been done by queueing system formula given
in the book [22] for M/M/m and has been calculated according to indicators of
queueing system functioning. For calculations the quantity of servicing machines
m = 5, average time between claims inflows tinfl = 10 time units, average time
of claim servicing tserv = 30 time unit were accepted.

1. Given density of claims inflows into the system:

ρ =
tserv
tinfl

=
30
10

= 3

2. The probability of application absence in the system:

P0 =
1

1 + ρ + ρ2

2!
+ ρ3

3!
+ ρ4

4!
+ ρ5

4!(m − ρ)

=
1

1 + 3 + 9
2

+ 27
6

+ 81
24

+ 243
24(5− 3)

= 0.0466



260 I. Yakimov et al.

3. Waiting probability:

Pwait =
ρm · P0

(m − 1)!(m − ρ)
=

35 · 0.0466
4! · 2

= 0.236

4. Average quantity of claims in servicing machine:

m = ρ = 3

5. Average quantity of claims in the queue:

l =
ρ · Pwait

m − ρ
=

3 · 0.236
5 − 3

= 0.354

6. Average quantity of claims in the system:

k =
ρ(m − ρ + Pwait)

m − ρ
=

3 · (5 − 3 + 0.236)
5 − 3

= 3.354

7. Average waiting time of claims in the queue:

twait =
tserv · Pwait

m − ρ
=

30 · 0.236
5 − 3

= 3.542

8. Average time of claims inflows into the system:

tinflow =
tserv(m − ρ + Pwait)

m − ρ
=

30 · (5 − 3 + 0.236)
5 − 3

= 33.542

9. The dispersion of claims quantity in the servicing machine:

σ2
m = ρ(1 − Pwait) = 3 · (1 − 0.236) = 2.292

10. The dispersion of claims quantity in the queue:

σ2
l =

(m + ρ) · l

(m − p)2
− l

2
=

(5 + 3) · 0.354
(5 − 3)2

− 0.3542 = 0.583

11. Covariation:
Kml = ρ · Pwait = 3 · 0.236 = 0.708

12. The dispersion of claims quantity in the system:

σ2
k = σ2

m + σ2
l + 2Kml = 2.292 + 0.583 + 1.416 = 4.291

13. The dispersion of claims servicing time in the servicing machine:

σ2
serv = t

2
serv = 302 = 900

14. The dispersion of claims waiting time in the queue:

σ2
serv =

t
2
serv · (2 − Pwait)

(m − ρ)2
=

302 · 0.236 · (2 − 0.236)
(5 − 3)2

= 93.668
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15. The dispersion of claims being time in the system:

σ2
time =

t
2
serv · ((m − ρ)2 + Pwait · (2 − Pwait))

(m − ρ)2

=
302 · ((5 − 3)2 + 0.236 · (2 − 0.236))

(5 − 3)2
= 993.668

Table 1 provides the findings of M/M/5 queueing system analytical modeling

3 Structured Models of M/M/5 Queueing System

Structured models of M/M/5 queueing system were developed in AnyLogic,
Arena, Bizagi Modeler, Business Studio, Enterprise Dynamics, ExtendSim,
Flexsim, GPSS W, Plant Simulation, Process Simulator, Rand Model Designer,
Simio and Simul8. Structured models of M/M/5 queueing system in AnyLogic,
Flexsim and Plant Simulation are presented in Figs. 1, 2 and 3 as examples.

Fig. 1. Structured model of M/M/5 queuing system in Plant Simulation SSMS

Other structured models of M/M/5 queueing system are similar.
Based on the images of structured models of queueing system the following:

1. All 13 SSMS, the structured models of M/M/5 queueing system (QS) of
which are given in drawings, illustrate the routes of claims movements with
the help of arrows.

2. AnyLogic and Arena SSMS allow to specify the selection criteria of servicing
machine from prescribed collection by the Select block.
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Fig. 2. Structured model of M/M/5 queueing system in AnyLogic SSMS

Fig. 3. Structured model of M/M/5 queueing system in Flexsim SSMS

3. The change criteria of claims movement routes can be indicated fully in Bizagi
Modeler and Business Studio SSMS which employ the notation of BPMN
business process modeling.

4. The modeled processes are shown conclusions can be made fully in AnyLogic
system.

The basic graphical elements of SSMS allow us to draw the following conclusions:

1. Bizagi Modeler and Business Studio SSMS should be used for modeling prob-
abilistic objects, element functioning in which can be described in a relatively
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simple way. Structured models in these systems show the claims movement
process in a modeled object in a clear view. Mastering Bizagi Modeler and
Business Studio SSMS is not difficult.

2. It is preferable to apply AnyLogic SSMS for modeling probabilistic objects
in which complex functioning processes of their elements must be shown.
Structured models in this system show both claims movement in the modeled
object and procedures of their processing. AnyLogic SSMS is much more
difficult for mastering than Bizagi Modeler and Business Studio SSMS.

3. The list of graphical elements in Bizagi Modeler and Business Studio SSMS
contains 21 elements. The list of graphical elements in AnyLogic includes 23
elements. 5–6 elements from the given SSMS are enough to start with.

3.1 Comparison of Simulation and Analytical Modeling Findings

The findings reliability assessment of simulation modeling (SM) of M/M/5
queueing system can be calculated by comparing their results with analytical
modeling (AM) results according to the average value differences using formula:

�ij =
(y∗

ij − yi)
yi

· 100, (1)

where y2
ij is the estimation of i parameter calculated by simulation modeling

findings in the j of SSMS; y∗
ij is the value of i parameter calculated by AM

findings.
It is accepted for SM: the quantity of servicing machines m = 5, the average

time between claims entering is tinfl = 10 of time units, the average time of
claims service is tserv = 30 of time units. The quantity of serviced claims is
25000.

Table 1 shows AM and SM in AnyLogic, Arena, Bizagi Modeler and Business
Studio systems and evaluation of their differences in percentage terms by Eq. (1).
SM in AnyLogic - SMAn, SM in Arena - SMA, SM in Business Studio - SMBS,
SM in Bizagi Modeler SMBM.

Table 2 illustrates the findings of AM and SM in Enterprise Dynamics,
ExtendSim, Flexsim GPSS W systems and their difference evaluation in per-
centage terms Eq. (1).

SM in Enterprise Dynamics has the abbreviation SMED, SM in ExtendSim -
SMES, SM in Flexsim - SMF, SM in GPSS W - SMGPSS.

Table 3 identifies findings of AM and SM in Plant Simulation, Process Simula-
tor, Rand Model Designer, Simio Simul8 systems and their difference evaluation
in percentage terms Eq. (1).

In Table 3 7SM in Plant Simulation has the abbreviation SMPS, SM in
Process Simulator - SMPrS, SM in Rand Model - SMRM, SM in Simio - SMS,
SM in Simul8 SMSim8.

According to the findings shown in Tables 1, 2 and 3, the following conclusions
can be made:
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Table 1. The evaluation findings of main functioning indexes of M/M/5 queueing
system in SSMS: AnyLogic, Arena, Bizagi odeler Business Studio by 6 parameters.

Name AM SMAn Δ SMA Δ SMBM Δ SMBS Δ

l 0.354 0.34 3.954 0.355 0.282 0.352 0.565 0.369 4.237

m 3.00 3.09 3.00 3.152 5.067 3.075 2.5 3.125 4.167

k 3.354 3.43 2.265 3.507 4.562 3.427 2.177 3.494 4.174

twait 3.542 3.5 1.185 3.681 1.92 3.52 0.621 3.664 3.4

tserv 30.00 30.9 3.00 30.85 2.827 30.79 2.633 31.02 3.4

tinflow 33.542 34.4 2.557 34.531 2.325 34.31 2.289 34.684 3.405

Average
difference in %
by 6 tests

2.66 2.83 1.798 3.805

Table 2. The evaluation findings of the main functioning indexes of M/M/5 queue-
ing system in SSMS: Enterprise Dynamics, ExtendSim, Flexsim and GPSS W by 6
parameters

Name AM SMED Δ SMES Δ SMF Δ SMGPSS Δ

l 0.354 0.342 3.389 0.346 2.26 0.366 3.389 0.346 2.312

m 3.00 2.961 1.3 2.97 1.00 3.11 3.666 3.015 0.5

k 3.354 3.303 1.521 3.316 1.133 3.476 3.637 3.362 0.239

twait 3.542 3.474 2.033 3.441 2.851 3.679 3.733 3.463 2.23

tserv 30.00 30.095 0.317 29.58 1.401 31.12 3.867 30.17 0.567

tinflow 33.542 33.327 0.641 33.021 1.554 34.799 3.747 33.633 0.271

Average
difference
in % by 6
tests

1.534 1.7 3.673 1.02

Table 3. The evaluation findings of the main functioning indexes of M/M/5 queueing
system in SSMS: Plant Simulation, Process Simulator, Rand Model Designer, Simio
and Simul8 by 6 parameters

Name AM SMPS Δ SMPrS Δ SMRM Δ SMS Δ SMSim Δ

l 0.35 0.37 4.52 0.34 2.82 0.37 3.95 0.34 4.15 0.36 1.7

m 3.00 3.05 1.53 2.98 0.73 2.95 1.77 2.98 0.64 3.0 0.03

k 3.35 3.43 2.36 3.32 0.95 3.45 2.98 3.32 1.01 3.36 0.21

twait 3.6 3.6 1.64 3.5 1.15 3.47 2.1 3.39 0.7 3.6 1.66

tserv 30.00 30.76 2.54 29.96 0.13 30.22 0.72 29.79 4.29 29.94 0.18

tinflow 33.54 34.0 1.37 33.46 0.24 34.13 1.75 33.18 1.08 33.55 0.01

Average

difference in

% by 6 tests

2.33 1.0 2.2 1.98 0.63
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1. The compared findings are thought to be satisfactory if the SM and AM
difference doesn’t exceed 5%. According to this principle, one dissatisfactory
evaluation has been obtained in Arena system. It can be thought that all
findings are acceptable.

2. The average difference in percentage according to 6 tests for all 13 SSMS does
not exceed 5%, so the findings are satisfactory.

3. SSMS according to SM test validity by the mean difference between AM and
SM in percentage due to 6 tests can be selected by the graded list in which the
average difference in percentage for SSMS is given: Simul8 (0.633), Process
Simulator (1.004), GPSS W (1.020), Enterprise Dynamics (1.534), ExtendSim
(1.700), Bizagi Modeler (1.798), Simio (1.978), Rand Model Designer (2.211),
Plant Simulation (2.326), AnyLogic (2.660), Arena (2.830), Flexsim (3.673),
Business Studio (3.805).

4 Conclusion

The paper provides the comparison of 13 SSMS which allow conventional users,
not software designers, to create structured and simulated models without pro-
gramming structured schemes of modeling objects. Software designers merely
have to code element functioning of modeled objects and new ways of modeling
finding processing. To compare SSMS structured, simulated and analytical mod-
els of queueing system (particularly M/M/5 queueing system) have been used.
In accordance with obtained findings, the conclusion can be made. By virtue
of these figures SSMS can be selected in accordance with the area the modeled
object is related to and users preference.

1. All 13 SSMS, the structured models of M/M/5 queueing system (QS) of
which are given in Figs. 1, 2 and 3, illustrate the routes of claims movements
with the help of arrows. Based on these figures, SSMS can be selected in
accordance with the area the modeled object is related to and users preference.

2. The criteria of claims movement route changes can be indicated fully in Bizagi
Modeler and Business Studio SSMS, which employ notation of BPMN busi-
ness process modeling. The list of graphical elements in BPMN can be used
for creation structured models that are essential at the initial stage of learning
these SSMS.

3. Modeled processes are indicated in detail in AnyLogic SSMS. The main graph-
ical elements of Anylogic SSMS allow users to employ them as a hint in.

4. The average difference between SM and AM does not exceed 5%, so the
findings are satisfactory.

5. By finding validation on average difference between AM and SM in percent-
age SSMS can be selected in compliance with the grading list, in which the
average difference for SSMS is given in percentage: Simul8 (0.633), Process
Simulator (1.004), GPSS W (1.020), Enterprise Dynamics (1.534), ExtendSim
(1.700), Bizagi Modeler (1.798), Simio (1.978), Rand Model Designer (2.211),
Plant Simulation (2.326), AnyLogic (2.660), Arena (2.830), Flexsim (3.673),
Business Studio (3.805).
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Abstract. The necessity is shown to design queueing systems with non-
Markovian service time distribution and the big number of channels. A
general characteristic is given on phase approximations. Techniques of
iteration and matrix-geometric progression are discussed. A new (sweep-
ing) method is suggested. Results of numerical calculations and the evalu-
ation of theirs complexity are presented. Recommendations are proposed
how methods discussed in this paper can be applied.
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1 The Statement of the Problem

Because the production of the big integral circuits technology has achieved the
fundamental physical limitations, a required computing performance can be
attained only using multiprocessor and multicomputer systems. The basis of
the methods of their design, data processing and transmission and performance
evaluation is the queuing theory (QT), in which the apparent lack of attention
is given to multi-channel systems. Note that these problems are also relevant
for many other applications: industrial, transportation, healthcare, emergency
services etc.

In this paper an overview of modern methods to calculate the multichannel
systems is given, and a new (sweep) method is proposed. The analysis of the
range of theirs applicability and computational efficiency is done. All discussions
are applied to the most typical case of the Poissonian incoming flow (especially
having in mind the calculation of service networks where the flows are exposed
to multiple summation and random screening operations).

2 Phase Approximations for Multichannel Systems

The efficient numerical methods to calculate the multichannel queuing systems
M/M/n, GI/M/n, and M/D/n were known more than a half a century. Their
further generalization (and thus more realistic analysis of the real systems)
c© Springer International Publishing AG 2017
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became possible only after the presentation of non-Markovian distributions in
the form of successive (Ek), parallel (Hk) or combined (Ck, Ph) phase systems
with exponentially distributed delay in the each phase. In [6] the possibility of a
such approximation by the combination of Erlangian and Coxian distributions is
considered, and there are 5 references in support of the adequacy of the equaliz-
ing three distribution moments only. In [3,7] Coxian approximation which uses
three moments also was offered. Equalizing them, taking in account the low
precision of the high order statistical moments of the parent distributions and
the increasing complexity of approximations calculation, seems quite sufficient.
However, in the above-mentioned works all parameters of approximations were
assumed to be real, that restricts the range of realizable coefficients of variance:
v > 1/

√
2. Acceptability of averaging service transition intensities proposed in

[3] is questionable; calculations of its authors has not been confirmed by numeric
results, and the experience of the author of this article refutes it.

In our opinion, a more valuable tool is the model M/H2/n which remove
the mentioned restrictions. The operating of such system can be interpreted
as a process of serving the flow of heterogeneous demands, there the demand
type choice determines parameter of exponentially distributed service time. The
microstate key indicates the number of each type of demands serving in the
channels — see Figs. 1 and 2 for M/H2/3 model.

Fig. 1. Transitions on arrival

The demand arriving in the empty channel belongs with probability yi to
the i-th type. On the Fig. 2 at j > n the parameter of i-th type servicing flow is
miμi, where mi is the contents of the i-th “key” position. Completion of service
leads to one of the overlying tier microstates with probabilities {yi} depending
on the type of demand selected from the queue.

Similar diagrams can be drawn for Erlangian service Ek — see [8], as well
as for the Coxian distribution. With regard to the choice of the approxima-
tion type one of the most frequently cited modern QT classics M. Neuts gives
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Fig. 2. Transitions on service

the “folklore” recommendation: when the variation coefficient v > 1, apply H2-
approximation, otherwise — the Erlangian. Because the order of Erlangian dis-
tribution is k = 1/v2, this leads to extremely rapid growth in the number of tiers
microstates by the number of channels (see corresponding table in [9]). More-
over, this distribution allows us to equalize only the first and approximately —
the second moment, which induce an appreciable loss of precision. On the other
hand, H2-distribution, equalizing three moments, generates transition diagram
having width (n + 1) microstates only. But for 1/

√
2 < v < 1 it has para-

doxical parameters (one of probabilities is more than unit, other is negative),
and for v < 1/

√
2 the parameters become complex. The numerous calculations

made by the author show that the “pathologies” mentioned above influence only
the intermediate computation results, while the final ones have the traditional
probabilistic sense and agree well for models M/Ek/n and theirs approximating
M/H2/n. For these reasons, and taking into account the above arguments in
favor of the Poissonian incoming flow model, we shall consider further M/H2/n
model.

Below we present the common statement of the problem for all discussed
methods. We denote by Sj the set of all possible system microstates then exactly
j demands are in the system, and by σj — the number of elements in Sj . Fur-
ther, in accordance with the transition diagram we construct the matrices of
infinitesimal transitions intensities:

Aj [σj × σj+1] — in Sj+1 (demand arrival),
Bj [σj × σj−1] — in Sj−1 (completion of service),
Dj [σj × σj ] — leaving the states of the tier j

(in square brackets the size of matrices is exposed).
We introduce the row vectors γj = {γj,1, γj,2, . . . , γj,σj

} of the system (j, i)
state probabilities, j = 0, 1, . . . Now we can write the vector-matrix equations
for the balance of inter-state transitions
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γ0D0 = γ1B1,
γjDj = γj−1Aj−1 + γj+1Bj+1, j = 1, 2, . . .

(1)

System (1), supplemented by the normalizing condition, must be written
component-wise. Even for models with bounded queue it is characterized by
extremely high dimension, and the standard methods for solving systems of
linear algebraic equations are ineffective for it.

3 Iterative Method

Takahashi and Takami [11] proposed an algorithm of iterative calculation for such
systems, the central idea of which is the calculation of conditional (normalized
to unit) probabilities of microstates {γ̄

(m)
j,i } for a fixed number of demands in

the system (tier of the chart) and parallel computing of relations xj = pj+1/pj ,
j = 0, 1, . . . , for total probabilities. The calculation is performed for a limited
number of tiers j = 0, N . In iteration number m the vector γ̄

(m)
j of conditional

probabilities for each tier, when sweeping downward, is expressed through γ̄
(m)
j−1

and γ̄
(m−1)
j+1 . When computing the last tier, the approximate equation closing the

system is used:
γ̄
(m−1)
N+1 ≈ γ̄

(m)
N−1. (2)

In [11], however, several key details of algorithm were not mentioned. The
full scheme modified by author was described in [8,10]. In [9] its variants are
discussed (choice of initial values for vectors {γ̄j}, the change of sweep direc-
tion). The conclusion was made from the numerical experiment results about
the preference of binomial initial approximations to vectors of the microstates
conditional probabilities and counting tiers of the chart from top to bottom.

4 Matrix-Geometric Progression

For computation of an open queueing systems the method of the matrix-
geometric progression (MGP) proposed by Evans [5] and developed by M. Neuts
and his followers looks very promising (see [2,4,13]). The idea of this method is
to represent the vectors of microstates probabilities for a full-bused system by
relationship as

γj = γnRj−n, j = n, n + 1, . . . , (3)

where R is the matrix progression denominator. We write down one of the equa-
tions of the system (1) for j > n, omitting the indices for the transition matrices
being stabilized to this tier:

γjD = γj−1A + γj+1B. (4)

Substituting expressions of the microstates probabilities vectors according to (3),
we can rewrite (4) in the form

γj−1RD = γj−1A + γj−1R
2B,
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which implies that the progression denominator must satisfy the matrix
quadratic equation

R2B − RD + A = 0. (5)

Finding this denominator and having the microstates probabilities vector γn for
the n-tier, we can calculate according to (3) the microstates probabilities for all
j > n.

Implementations of MGP differ by methods of calculating the matrix denom-
inator. We have investigate some variants of simple iteration and Newton’s
method and modes of calculating the probability vectors for the initial tiers
j = 0, n − 1. Detailed comparison of MGP variants see again in [9]. It is noted
in particular that all these methods show the divergence of iterations in the
denominator calculation for a number of channels about 30. Beside of that, the
accumulation of errors during solving the system of linear algebraic equations
for the unknown probabilities varying by many orders of magnitude leads to the
appearance of negative initial probabilities.

To further comparing we have selected the MGP version using the simple
iteration formula

R = A(D − RB)−1. (6)

5 Sweep Method

As it will be shown below by comparing the numerical results, the convergence of
both described above methods is deteriorating rapidly by the number of channels.
Accordingly, the real dimension of successfully solved tasks and the possibilities
of apply these methods to practical queueing systems are constrained. These
restrictions can be relaxed considerably by using the sweep method described
below.

Sweep method has been used successfully during long time for solving the
systems of linear algebraic equations with scalar coefficients. For QBD-processes
(with transitions between microstates of only neighboring tiers) the global matrix
contains the matrices of transition intensities — also on three diagonals, that
gives reason to use appropriate analogies. Another principal singularity of our
problem is the condition of (11) specifical for the queueing theory.

Consider the matrices for probability vectors {γj} inverse recalculating
according to

γj = γj+1Fj , j = 0, N − 1. (7)

It follows from the first equation of (1)

F0 = B1D
−1
0 = B1/λ. (8)

For the subsequent tiers of the same system we have

γjDj = γj−1Aj−1 + γj +1Bj +1.

Using (7), it can be rewritten as

γj(Dj − Fj−1Aj−1) = γj +1Bj +1,
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whence the recurrence rule to calculate matrices {Rj} follows:

Fj = Bj+1(Dj − Fj−1Aj−1)−1, j = 1, n. (9)

Taking into account the rules of transition matrices formation for subsequent
tiers, we have

Fj = Bn+1(Dn − λFj−1)−1, j = n + 1, N − 1. (10)

Here N is limit index of calculated tiers, N > n.
We will denote the limits at j → ∞ of the matrices, conditional vectors

of microstates probabilities (normalized to unity within the tiers) and relations
of the cumulative probabilities for adjacent tiers by the previous symbols, but
without indices. If there is a γ∞ = γ, then also limits of probabilities relations
x and z = 1/x exist, and it follows from (1)

γ = (x−1λγ + xγB)D−1 = γ(x−1λI + xB)D−1 = γQ.

We denote (Q − I)1 the matrix obtained from Q − I by replacing its first line
to the unit one, and put δ1 = {1, 0, 0, . . . 0}T . Then det(Q − I) �= 0, and the
desired vector can be obtained as the solution of the system of linear algebraic
equations

γ(Q − I)1 = δ1. (11)

Performing the inverse sweeping for j = N −1, N −2, . . . , 0 according to (7),
it is possible to obtain scaled microstates probabilities vectors and for each j —
the sums of components, i.e. scaled cumulative probabilities of tiers. Now the
final renormalization of cumulated probabilities to unity is done.

The commonly used formula for limit ratio of adjacent probabilities for
A/B/n models is

x∞ = ρ2/(v2
A+v2

B). (12)

In [12], it was shown that

∞∫

0

e−nωt dA(t) ·
∞∫

0

eωτ dB(τ) = 1. (13)

Founded from this condition ω = ω∗ gives the limit relation of adjacent proba-
bilities

x∞ =

∞∫

0

e−nω∗t dA(t), (14)

which is reduced for the exponential A(t) to

x∞ =
λ

λ + nω∗ . (15)
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Replacing service time distribution B(τ) by gamma-density with parameters
{β, μ}, which equalizes two moments, we can reduce Eq. (13) to iterative formula

w = μ

[
1 −

(
λ

nw + λ

)1/β
]

, (16)

which provides a convergent iterative process for the initial

w0 =
λ

n

[
ρ−2/(1+v2

B) − 1
]
. (17)

It is easy to obtain particular versions of these formula, including for constant
service time, which are required for universal subroutine calculating x∞.

Let us compare (Table 1) the limiting probability ratio for 10-channel sys-
tems, obtained through approximation (A) according to [1] and by Takahashi
(T) using (15) and (16).

Table 1. Estimates of limiting probabilities ratios

ρ β = 0.25 β = 1.0 β = 3.0 β = 109

T A T A T A T A

0.7 0.8623 0.8670 0.7000 0.7000 0.5945 0.5857 0.5089 0.4900

0.9 0.9582 0.9587 0.8999 0.9000 0.8549 0.8538 0.8128 0.8100

The value β = 109 of the gamma-distribution parameter practically corre-
sponds to the degenerate distribution and was used to unify calculation scheme.
It is possible to make the following conclusions from this table:

1. The results presented in the table correspond to qualitative expectations:
with the increasing of β (decaying variance of corresponding distribution),
the rate of probabilities decay increases.

2. The ratios of probabilities, which we are interesting in, do not depend on the
number n of channels (the calculation was performed up to n = 20).

3. When α = β = 1, i.e. for a Markovian system, they are equal to loading
factor ρ. This confirms the correctness of computing.

4. The discrepancies in the results decrease on the system loading factor. Appar-
ently, for systems with ρ ≥ 0.7 much more simple calculation according to
(12) can be used.

Table 2 presents the probabilities derived by the method Takahashi—Takami
(T) and by approximation (12) — (A). The incoming flow is assumed to be
Poissonian, number of channels n = 10. From this table, it follows that the rec-
ommendations of [1] on the calculation of stationary distribution of the number
of demands in the system should regarded as a very rough, especially in the
neighborhood of j = n.
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Table 2. Relations {xj} for H2-service

j ρ = 0.7 ρ = 0.9 j ρ = 0.7 ρ = 0.9

T A T A T A T A

0 6.999 7.000 8.988 9.000 10 0.678 0.847 0.810 0.884

1 3.499 3.500 4.489 4.500 11 0.726 0.867 0.851 0.959

2 2.332 2.333 2.986 3.000 12 0.764 0.867 0.883 0.959

3 1.747 1.750 2.231 2.250 13 0.793 0.867 0.905 0.959

4 1.395 1.400 1.774 1.800 14 0.813 0.867 0.921 0.959

5 1.157 1.166 1.462 1.500 15 0.827 0.867 0.932 0.959

6 0.983 1.000 1.231 1.286 16 0.837 0.867 0.939 0.959

7 0.846 0.875 1.048 1.125 17 0.844 0.867 0.945 0.959

8 0.729 0.778 0.895 1.000 18 0.849 0.867 0.949 0.959

9 0.622 0.700 0.758 0.900 19 0.852 0.867 0.951 0.959

Table 3. Probabilities of states of the system M/H2/5

j β = 3.0 β = 0.25

Iter MGP SWP Iter MGP SWP

0 1.2440e−2 1.2440e−2 1.2440e−2 1.3799e−2 1.3790e−2 1.3786e−2

1 5.0313e−2 5.0312e−2 5.0312e−2 5.4703e−2 5.4670e−2 5.4643e−2

2 1.0235e−1 1.0235e−1 1.0235e−1 1.0695e−1 1.0693e−1 1.0689e−1

3 1.4049e−1 1.4049e−1 1.4049e−1 1.3527e−1 1.3533e−1 1.3529e−1

4 1.4851e−1 1.4851e−1 1.4851e−1 1.2082e−1 1.2094e−1 1.2091e−1

5 1.3374e−1 1.3375e−1 1.3375e−1 7.7329e−2 7.7447e−2 7.7424e−2

6 1.0767e−1 1.0767e−1 1.0767e−1 5.6147e−2 5.6264e−2 5.6247e−2

7 8.2209e−2 8.2201e−2 8.2201e−2 4.4571e−2 4.4689e−2 4.4676e−2

8 6.1082e−2 6.1064e−2 6.1064e−2 3.7444e−2 3.7564e−2 3.7553e−2

9 4.4732e−2 4.4705e−2 4.4705e−2 3.2543e−2 3.2665e−2 3.2655e−2

10 3.2507e−2 3.2471e−2 3.2471e−2 2.8850e−2 2.8973e−2 2.8964e−2

11 2.3525e−2 2.3485e−2 2.3485e−2 2.5874e−2 2.5997e−2 2.5989e−2

12 1.6989e−2 1.6946e−2 1.6946e−2 2.3363e−2 2.3484e−2 2.3477e−2

13 1.2255e−2 1.2213e−2 1.2213e−2 2.1179e−2 2.1299e−2 2.1293e−2

14 8.8348e−3 8.7962e−3 8.7962e−3 1.9246e−2 1.9363e−2 1.9357e−2

15 6.3675e−3 6.3330e−3 6.3330e−3 1.7515e−2 1.7628e−2 1.7623e−2

16 4.5886e−3 4.5587e−3 4.5587e−3 1.5953e−2 1.6062e−2 1.6057e−2

17 3.3065e−3 3.2812e−3 3.2812e−3 1.4539e−2 1.4643e−2 1.4638e−2

18 2.3825e−3 2.3616e−3 2.3616e−3 1.3255e−2 1.3353e−2 1.3349e−2

19 1.7167e−3 1.6997e−3 1.6997e−3 1.2087e−2 1.2179e−2 1.2175e−2
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Table 4. Labor consuming for the model M/H2/n

n β = 3.0 β = 0.25

Iter MGP SWP Iter MGP SWP

5 48/0 11/0 0/0 120/0 42/0 0/0

10 94/0.016 20/0 0/0 202/0.031 55/0/016 0/0

20 170/0.078 34*/0.047 0/0.031 320/0.172 70/0.062 0/0.031

30 232/0.0312 -/- 0/0.094 500/0.672 80/0.219 0/0.078

50 -/- -/- 0/0.469 778/4.859 -/- 0/0.485

70 -/- -/- 0/1.578* 782/14.532 -/- 0/1.562

100 -/- -/- 0/5.515* 762/78.500 -/- 0/5.500

6 Numerical Experiment

We present the results of calculation for M/H2/5 system — Table 3. Tolerance
ε = 10−8 for iterative method “Iter” determines the maximum module of {xj}
refinement, and for the method of matrix-geometric progression “MGP” — the
norm of the progression denominator. The column “SWP” corresponds to sweep
method. The agreement of the results should be considered as satisfactory, con-
firming the correctness of calculated dependencies and also their program imple-
mentation.

Now let us compare (Table 4) the complexity of tested methods by the num-
ber of iterations and the counting time (processor Intel Celeron, tact frequency
1.5 GHz). The number of tiers was assigned n + 20. In this table the zero time
indicates labor consuming below the threshold of system clock (0.01 s). Dashes
indicate cases of iterations divergence, and the asterisks — appearance of nega-
tive starting probabilities due to the accumulation of errors.

Method MGP in the real case (β ≥ 1) still can be applied for n = 30, and
in the complex one fails already for n = 20. The iterative method has much
greater application scope (in the real case for at least 100 channels). A sweep
method have labor consuming much smaller in comparison with its competitors
discussed.

7 Conclusion

A new sweep method to calculate the multi-phase queueing systems was devel-
oped and its comparison was made with two previously known ones: iterative
and matrix-geometric progression.

From the analysis of the computational schemes and comparison of calcula-
tion results (including those not presented in this article because of its limited
volume) the following conclusions imply:

1. The sweep method is applicable only for QBD-processes (with transitions only
between adjacent tiers of the diagram) and an unbounded queue length, but
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in these conditions substantially exceeds its alternatives, particularly for large
n. For H2 service time distribution with real parameters, it is applicable for
at least 100 channels, and in the complex case at the service time coefficient
of variance 1/

√
3 = 0.577 — up to 50 channels.

2. The iterative method can be easily modified with respect to systems with the
intensity of incoming flow depending on the number of demands in the system
and to the systems with limited queue. It can be generalized to the system
with batch arrivals. Due to work with the relative probabilities vectors and
the presence of aggregation on each layer its accuracy almost does not depend
on the number of accounted tiers. Since, with N increasing the convergence
of calculations worsens, it makes sense to limit the number of chart tiers
and get the state probabilities with senior sequence indices by multiplying
the precedent ones on the limit value of x. For the real parameters of H2-
approximation, the method converges at 100 channels.

3. The method of matrix-geometric progression (MGP) is fundamentally
applicable only for QBD-processes. It is useful when operating with infinite
sums of the probabilities. Its convergence does not depend on the number of
tiers and is restricted by the number of channels n < 30.

4. Some of these conclusions may be revised by increasing computing bit grid
(they were carried out under twice bit grid). This increasing leads to signifi-
cant growth of time consuming.

5. With the Poissonian input flow, we can compute for all considered methods
the factorial moments {q[k]} of queueing length distribution and waiting time
moments

wk = q[k]/λk, k = 1, 2, . . .

By implementing its convolution with service time moments we receive
moments of sojourn time and the possibility to compute by them the most
important characteristic of the system operating performance — complemen-
tary distribution function.

6. All of these methods in principle can be generalized for recurrent input flow.
The distribution of intervals between demands is again advisable be approx-
imated by H2-distribution.
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Abstract. A thorough analysis of business processes allows a communi-
cation and digital service provider to reduce costs and to carry out digital
transformation efficiently, which are important factors of the telecom-
munication business success. Massive numbers of randomly arriving cus-
tomer requests, real-time service and standardized and highly automated
procedures make telecommunication company business processes a good
subject for analysis using queueing theory. Such an analysis is facilitated
by the extensive body of standards, developed by the global telecom-
munication industry association TM Forum and addressing various ser-
vice business management issues. We propose an approach to estimat-
ing certain important TM Forum business metrics and other business
process measures using a BCMP network that combines stochastic mod-
els of several standard TM Forum end-to-end eTOM business flows. The
steady-state probability distribution of the model is derived along with
the expressions for a number of performance measures.

Keywords: TM Forum · Frameworx · eTOM · Business process frame-
work · Metrics framework · Business process modelling · Workflow ·
Queueing network · BCMP network · Mean response time · Capacity
planning

1 Introduction

Today’s communication and digital service market is highly competitive. A thor-
ough analysis of business processes allows the service provider to reduce costs
and to carry out digital transformation efficiently, which are important factors
of the telecommunication business success. Massive numbers of randomly arriv-
ing customer requests, real-time service and standardized and highly automated
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procedures make telecommunication company business processes a good subject
for analysis using queueing theory. Moreover, such an analysis is facilitated by
the extensive body of standards and recommendations, developed by the global
telecommunication industry association TM Forum1 and addressing various com-
munication and digital service business management issues. TM Forum Business
Process Framework, also largely known as eTOM, is one of the core models of the
TM Forum Frameworx standards and best practices suite [1]. eTOM identifies
and puts into a hierarchical framework virtually all activities a telecommunica-
tion company business process may include, which provides a comprehensive set
of standard building blocks for business process flows. Furthermore, eTOM stan-
dards package includes document [2] offering a set of generic end-to-end business
flows applicable to the majority of the companies in the industry. Although this
work has not been finished yet, the most important business processes of a ser-
vice provider – customer and network centric – have been described. Another
TM Forum standard of interest to us, [3], contains the definitions of numer-
ous business metrics permitting quantitative estimation of various aspects of
telecommunication service provision.

Queueing theory methods and specifically queueing networks have been used
for capacity planning and delay estimation in relation to various aspects of busi-
ness operation, such as manufacturing [4], supply chain management [5], health-
care services [6], call centre operation [7], service automation and e-commerce [8].
The application of BCMP networks [9] to workflow analysis was addressed, for
instance, in [10,11]. A stand-alone eTOM end-to-end business flow was modelled
as an open BCMP network in [12]. Here, we go further and propose an approach
to modelling several end-to-end business flows jointly. Such an approach allows
to estimate not only the performance measures related to activity execution
time, but also reflects resource sharing among business processes and delays due
to such sharing. To illustrate this approach, we model several customer centric
eTOM business flows as a single open BCMP network and show how the model
can be used to evaluate a number of important TM Forum business metrics.

The remainder of the paper is structured as follows. In Sect. 2, a BCMP model
of a single standard eTOM end-to-end business flow Complaint-to-Solution is
presented for illustrative purposes. This section is largely based upon [12]. In
Sect. 3, we introduce the mathematical notation of the joint model and present
the model of five eTOM end-to-end business flows and its parameters. In Sect. 4,
steady-state probabilities for the joint model are derived. In Sect. 5, we discuss
system performance measures and link them to standard TM Forum business
metrics. In Sect. 6, a simple numerical example is provided. Finally, Sect. 7 con-
cludes the paper.

2 BCMP Model of a Stand-Alone Business Flow

Consider eTOM end-to-end business flow Complaint-to-Solution [2]. The process
deals with customer complaints related to non-technical issues (such as
1 https://www.tmforum.org/.

https://www.tmforum.org/
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processing delays, quality of customer service, billing errors, etc.) and consists in
identifying the source of the issue, initiating resolution (which may involve bill
adjustment) and monitoring the progress. The reference diagram of the flow is
depicted in Fig. 1 using standard eTOM process elements and BPMN (Business
Process Model and Notation). In order to model this process with a BCMP net-
work, we first assign the process activities to service stations, or queues, which
will serve as network nodes. Service stations may correspond to the functional
units of the company involved in the business flow (in this case, multiple-server
FCFS (First Come First Served) queues are used) or to certain random delays
(IS (Infinite Server) queues). For the process under analysis, the following service
stations have been chosen:

1 – Customer service specialists (multiple-server FCFS);
2 – Automated customer interface (IS);
3 – Delay due to CRM information system access (IS);
5 – Billing specialists (multiple-server FCFS);
8 – Call-centre operators (multiple-server FCFS).

(Some numbers are omitted due to their use in the joint model introduced in
the next section.) However, it should be noted that the choice of service stations
or, for that matter, of functional units executing process activities is not specified
in TM Forum standards and depends largely on the structure of the company
under consideration and on the goals of the modelling effort. Figure 1 shows the
partition of process activities among the service stations listed above. In BCMP
networks, a job is served at a service station in a certain class and can change
class with a given probability when going from one station to another. We shall
use this property to route jobs through the network in a specific way, for instance

Fig. 1. Complaint-to-Solution business flow BPMN
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we would like a job to loop back to station 3 with a given probability, but not
more than once. Moreover, job classes may also be given business interpretation.
We assume that jobs are served in class 3 at all service stations with the exception
of service station 3, where they can be served in classes 3, 7 or 8. In terms of
business semantics, class 3 corresponds to customer complaints (as it will be
used in the joint model), class 7 corresponds to the requests that have been
served twice at station 3, and, finally, class 8 corresponds to the complaints that
have been already handled by the billing team. The resulting network model is
shown in Fig. 2. Here, for each transition we indicate its source and destination
service station and class in the form (service station, class); in case of branching,
the corresponding probabilities are also indicated. More formally, the network
routing is given in the form of routing matrix, as it is shown in Table 1.

Table 1. Routing matrix for Complaint-to-Solution BCMP network

(Service station, class) (1, 3) (2, 3) (3, 3) (3, 7) (3, 8) (5, 3) (8, 3) Sink

Source α3 1 − α3 0 0 0 0 0

(1, 3) 0 0 1 0 0 0 0 0

(2, 3) 0 0 1 0 0 0 0 0

(3, 3) 0 0 0 γ2 0 1 − γ2 0 0

(3, 7) 0 0 0 0 0 1 0 0

(3, 8) 0 0 0 0 0 0 1 0

(5, 3) 0 0 0 0 1 0 0 0

(8, 3) 0 0 0 0 0 0 0 1

3 Joint Model Description and Notation

Let us introduce the formal notation for a joint BCMP model of a set of K busi-
ness processes sharing certain resources/service stations. Let M = {1, . . . , M}
be the set of network’s service stations, and let R = {1, . . . , R} be the set of
job classes. Service stations correspond either to the resources shared by the
business processes under consideration (for example, customer service special-
ists (station 1), billing specialists (station 5), etc.), or to the delays common
to some of these processes (such as a delay related to CRM information sys-
tem access). All stations have infinite waiting room, however they may be of
different types: we shall use |M|ci-FCFS queues for shared resources (we denote
the set of such stations MFCFS), and |M|IS queues for delays (denoted MIS),
MFCFS + MIS = M. Note that other types of service stations for which the
BCMP theorem [9] holds can be used, for example a Processor Sharing (PS) sta-
tion could correspond to a time-consuming data processing activity. Let ci ≥ 1
be the number of servers at FCFS stations, i ∈ MFCFS . Job classes mainly
correspond to different customers requests (e.g., information request, complaint,
etc.) and serve for routing.
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Fig. 2. BCMP model of the Complaint-to-Solution business flow

Now, let θ(i,r)(j,s), i, j ∈ M, r, s ∈ R, denote the transition probability,
i.e., the probability that a job that completes service in class r at station i will
next require service in class s at station j. The routing matrix Θ =

[
θ(i,r)(j,s)

]

defines a Markov chain (MC) with the state space L = {(i, r) , i ∈ M, r ∈
R}. Transition probabilities are chosen so that the MC is decomposable into
K ergodic subchains, each corresponding to one business flow. In other words,
for the sake of simplicity of the modelling procedure, we assign job classes and
transitions between them so that each business flow is modelled with its own
ergodic subchain, although this requirement can be relaxed.

Let Lk denote the set of states in subchain k = 1, . . . ,K, L =
∑K

k=1 Lk.
Each subchain has its Poisson arrival stream of rate λ(k), k = 1, . . . ,K. An
arrival in stream k will enter service station i in class r with probability qi,r,∑

(i,r)∈Lk
qi,r = 1, k = 1, . . . , K. Finally, a job of class r that completes service at

station i will depart the system with probability 1−∑
(j,s)∈L θ(i,r)(j,s) =: θ(i,r)(0).

Depending on the context, (0) denotes the network’s source or sink node.
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Fig. 3. Joint model transitions
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Now, we apply the notation introduced above to describe a joint BCMP
model of K = 5 end-to-end eTOM business flows: Request-to-Answer,
Complaint-to-Solution, Problem-to-Solution, Termination-to-Confirmation and
Request-to-Change. Please refer to [2] for the business flows description. The
network contains L = 8 service stations, MFCFS = {1, 5, 6, 8} and MIS =
{2, 3, 4, 7}, and has R = 10 job classes. The subchains consist of the following
MC states:

L1 = {(1, 1) , (1, 2) , (2, 1) , (2, 2) , (3, 1) , (3, 2) , (4, 2) , (8, 2)},
L2 = {(1, 3) , (2, 3) , (3, 3) , (3, 7) , (3, 8) , (5, 3), (8, 3)},
L3 = {(1, 6) , (3, 6) , (3, 9) , (3, 10) , (6, 6) , (7, 6), (8, 6)},
L4 = {(1, 4) , (2, 4) , (3, 4) , (4, 4) , (5, 4) , (7, 4)},
L5 = {(1, 5) , (2, 5) , (3, 5) , (4, 5) , (5, 5) , (6, 5) , (7, 5) , (8, 5)}.

The general routing diagram for the joint model is depicted in Fig. 3. Tables 2
and 3 summarise the routing parameters of the network and provide details on
their correspondence to the business processes under consideration.

Table 2. Job arrivals to the joint model

Subchain Rate Description Destination MC state,
probability

1 λ(1) Information and sales requests; the
input stream is split into
information requests coming to
“human” CRM (probability α1,1),
sales requests coming to “human”
CRM (probability α1,2),
information requests coming to
automated CRM (probability α2,1),
and sales requests coming to
automated CRM

(1, 1), q1,1 = α1,1

(1, 2), q1,2 = α1,2

(2, 1), q2,1 = α2,1

(2, 2), q2,2 = 1−α1,1−α1,2−α2,1

2 λ(2) Customer complaints about
non-technical issues, e.g. billing
errors; the input stream is split
between “human” CRM
(probability α3) and automated
CRM

(1, 3), q1,3 = α3

(2, 3), q2,3 = 1 − α3

3 λ(3) Customer problems (technical
issues)

(1, 6), q1,6 = 1

4 λ(4) Termination requests; the input
stream is split between “human”
CRM (probability α4) and
automated CRM

(1, 4), q1,4 = α4

(2, 4), q2,4 = 1 − α4

5 λ(5) Change requests; the input stream
is split between “human” CRM
(probability α5) and automated
CRM

(1, 5), q1,5 = α5

(2, 5), q2,5 = 1 − α5
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Table 3. MC states description and routing

MC state Subchain Description Destination MC state,

probability (θ(i,r)(j,s) = 1 if

not indicated otherwise)

Service station 1: Customer service specialists (front desk, “human” CRM), M|M|c1-FCFS queue

(1, 1) 1 Information request; with

probability β1, the request

turns into a sales request,

otherwise continues as

information request

(3, 1), θ(1,1)(3,1) = 1 − β1

(3, 2), θ(1,1)(3,2) = β1

(1, 2) 1 Sales request (3, 2)

(1, 3) 2 Customer complaint

(non-technical issues, e.g.

billing errors)

(3, 3)

(1, 4) 4 Termination request (3, 4)

(1, 5) 5 Change request (3, 5)

(1, 6) 3 Customer problem

(technical issues)

(3, 6)

Service station 2: Automated customer interface (front desk, automated CRM), M|M|IS queue

(2, 1) 1 Information request; with

probability β2, the request

turns into a sales request,

otherwise continues as

information request

(3, 1), θ(2,1)(3,1) = 1 − β2

(3, 2), θ(2,1)(3,2) = β2

(2, 2) 1 Sales request (3, 2)

(2, 3) 2 Customer complaint

(non-technical issues, e.g.

billing errors)

(3, 3)

(2, 4) 4 Termination request (3, 4)

(2, 5) 5 Change request (3, 5)

Service station 3: delay related to CRM information system access, -M|M|IS queue

(3, 1) 1 Information request; is

handled and leaves the

system

(0)

(3, 2) 1 Sales request; with

probability γ1, the sales

request is carried on

towards sales proposal

development, otherwise

(unable to fulfil) it leaves

the system

(4, 2), θ(3,2)(4,2) = γ1

(0), θ(3,2)(0) = 1 − γ1

(3, 3) 2 Customer complaint (first

run); with probability γ2,

the complaint needs

additional time at service

station 3 (e.g., additional

information from customer

needed), otherwise it is

carried on

(3, 7), θ(3,3)(3,7) = γ2

(5, 3), θ(3,3)(5,3) = 1−γ2

(3, 4) 4 Termination request; with

probability γ4, the request

is carried on, otherwise,

the customer is retained

with win-back measures

(4, 4), θ(3,4)(4,4) = γ4

(0), θ(3,4)(0) = 1 − γ4

(Continued)
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Table 3. (Continued)

MC state Subchain Description Destination MC state,

probability (θ(i,r)(j,s) = 1 if

not indicated otherwise)

(3, 5) 5 Change request (4, 5)

(3, 6) 3 Customer problem (first

run); with probability γ3,

the request needs

additional time at service

station 3 (e.g., additional

information from customer

needed), otherwise it is

carried on

(3, 9), θ(3,6)(3,9) = γ3

(6, 6), θ(3,6)(6,6) = 1−γ3

(3, 7) 2 Customer complaint

(second run – delay due to

complexity)

(5, 3)

(3, 8) 2 Customer complaint

(handling after resolution)

(8, 3)

(3, 9) 3 Customer problem (second

run – delay due to

complexity)

(6, 6)

(3, 10) 3 Customer problem

(handling after resolution)

(8, 6)

Service station 4: delay due to customer subscription and service inventory access, -M|M|IS queue

(4, 2) 1 Sales request; with

probability δ1, the request

is handed over to customer

satisfaction evaluation,

otherwise it leaves the

system

(8, 2), θ(4,2)(8,2) = δ1
(0), θ(4,2)(0) = 1 − δ1

(4, 4) 4 Termination request; with

probability δ4, the request

requires supplier/partner

involvement, otherwise it is

carried on to the billing

team

(5, 4), θ(4,4)(5,4) = 1 − δ4
(7, 4), θ(4,4)(7,4) = δ4

(4, 5) 5 Change request; with

probability δ5, the request

requires handling by the

technical team, otherwise

(handled by CRM) it is

carried on directly to the

billing team

(5, 5), θ(4,5)(5,5) = 1 − δ5
(6, 5), θ(4,5)(6,5) = δ5

Service station 5: billing specialists, - |M|c5-FCFS queue

(5, 3) 2 Customer complaint

(billing issues resolution)

(3, 8)

(5, 4) 4 Termination request (0)

(5, 5) 5 Change request (8, 5)

Service station 6: technical specialists, - |M|c6-FCFS queue

(6, 5) 5 Change request; with

probability ε5, the request

requires supplier/partner

involvement, otherwise it is

carried on to the billing

team

(5, 5), θ(6,5)(5,5) = 1−ε5

(7, 5), θ(6,5)(7,5) = ε5

(Continued)
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Table 3. (Continued)

MC state Subchain Description Destination MC state,

probability (θ(i,r)(j,s) = 1 if

not indicated otherwise)

(6, 6) 3 Customer problem

(technical issue resolution);

with probability ε3, the

problem is resolved by the

technical team of the telco,

otherwise supplier/partner

is involved

(3, 10), θ(6,6)(3,10) = ε3

(7, 6), θ(6,6)(7,6) = 1−ε3

Service station 7: delay due to supplier/partner involvement, -|M|IS queue

(7, 4) 4 Termination request (5, 4)

(7, 5) 5 Change request (5, 5)

(7, 6) 3 Customer problem

(technical issue resolution

with supplier/partner)

(3, 10)

Service station 8: call-centre operators, - |M|c8-FCFS queue

(8, 2) 1 Sales request (customer

satisfaction validation)

(0)

(8, 3) 2 Customer complaint

(customer satisfaction

validation)

(0)

(8, 5) 5 Change request (customer

satisfaction validation)

(0)

(8, 6) 3 Customer problem

(customer satisfaction

validation)

(0)

4 Steady-State Probabilities

The routing matrix of the network can be written in the block-diagonal form:

Θ =

⎡

⎢
⎣

Θ(1) 0
. . .

0 Θ(K)

⎤

⎥
⎦ ,

where Θ(k) is the routing matrix for subchain k = 1, . . .,K. Let also denote
q(k) = (qi,r)(i,r)∈Lk

. Now, for each subchain, we can find the visit ratio ei,r of
class r jobs to service station i by solving the set of equations

ei,r =
∑

(j,s)∈Lk

ej,sθ(j,s)(i,r) + qi,r, (i, r) ∈ Lk, k = 1, ...,K. (1)

Let nir be the number of jobs in class r at service station i. Let ni = (nir)r∈R
denote the state of station i, N = {n = (n1, . . . ,nM )}. Also, let n(k) =∑

(i,r)∈Lk
nir be the total number of jobs in subchain k, and let ni =

∑
r∈R nir

be the total number of jobs at station i. We assume that the service time at
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any station i ∈ M is exponentially distributed with parameter μi (independent
on job classes). Then, in accordance with BCMP theorem [9], the steady-state
probability of any state n ∈ N equals

P (n) = G−1d(n)
M∏

i=1

gi(ni), (2)

where G is the normalising constant determined from the condition
∑

n∈N P (n) = 1; d (n) =
K∏

k=1

(
λ(k)

)n(k)

, and

gi(ni) =

⎧
⎪⎪⎨

⎪⎪⎩

ni!
R∏

r=1

1
nir!

(eir)
nir

ni∏

j=1

1
μimin(ci,j)

, i ∈ MFCFS

R∏

r=1

1
nir!

(
eir

μi

)nir

, i ∈ MIS .

Furthermore, let ρi = λi

μi
, i ∈ M, where

λi =
K∑

k=1

λ(k)
∑

r:(i,r)∈Lk

ei,r, i ∈ M (3)

are the input stream rates at the service stations. Then, for the aggregate states
ñ = (ni) i∈M, we have

P (ñ) =
M∏

i=1

hi(ni), (4)

where

hi (ni) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ci−1∑

m=0

ρi
m

m! + ρi
ci

ci!
1

1− ρi
ci

)−1
ρi

ni

ni∏

m=1
min(m,ci)

, i ∈ MFCFS ,

e−ρi ρi
ni

ni!
, i ∈ MIS ,

Note that for service stations i ∈ MFCFS to be stable we require ρi < ci.

5 Performance Measures

Formulae (2) and (4) can be used to obtain various measures of system perfor-
mance. In particular, we are interested in the mean response time of the service
stations, which allows to evaluate certain standard TM Forum business metrics,
related to the processes under consideration (see Table 4).

The mean response time T i of station i ∈ M can be obtained using Little’s
law T i = ni

λi
, where ni is the mean number of jobs at station i. Thus, we have

T i =

⎧
⎨

⎩

ciμi

(ciμi−λi)
2

ρ
ci
i

ci!

(
ci−1∑

m=0

ρm
i

m! + ρ
ci
i

ci!
1

1− ρi
ci

)
+ 1

μi
, i ∈ MFCFS ,

1
μi

, i ∈ MIS

(5)
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Table 4. Standard TM Forum business metrics that can be estimated with the five-
process joint model

Metric ID Metric name

28 (CM-CE-2a) Average Hold Time

29 (CM-CE-2b) Average Handle Time

36a (CM-OE-1f) $ Cost of Customer Management per Customer Request

56 (A-CE-2a) # Minutes per Customer Incident Resolution, by Severity Type

57 (A-CE-2b) # Minutes per Customer Incident Resolution, by Customer Type

68a (A-OE-1f) $ Cost of Assurance per Service Problem Resolved

69 (A-OE-2a) # Minutes per Service Problem Resolution

70 (A-OE-2b) # Hours per Service Problem Resolution, by Process Type

74 (A-OE-6a) # Problem Reports per NOC FTE

96a (B-OE-3a) % Cost of Billing Errors, of Revenue Billed

97 (B-OE-3b) # Days per Billing Error
aThe metric can be estimated via the number of servers and their utilisation.

Now, we can derive expressions for standard business metrics. For example, TM
Forum business metric 28 is the average hold time when a customer contacts the
company by telephone, which corresponds to the waiting time at service station
1 of the five-process joint model. Hence, the following formula can be used to
estimate this measure:

I28 = T1 − 1
μ1

. (6)

Business metric 29 is the average time needed to handle any request, so it can
be estimated as the mean response time of the network:

I29 =

∑

i∈M

ni

K∑

k=1

λ(k)

. (7)

Business metric 69 is related to Problem-to-Solution business flow (subchain
3) and corresponds to the mean time between the creation of a trouble ticket
and its closure upon the confirmation by the customer that the problem has
been resolved. We assume that the trouble ticket is created at the moment of
transition of a subchain 3 job from station 1 to station 3, and is closed when the
job leaves station 8, although this may depend on the policy of the company.
Thus, we can estimate the value of the metric as the sum of the stations’ mean
response times multiplied by the corresponding visit ratios:

I69 =
∑

i∈M\{1}
Ti

∑

r:(i,r)∈L3

ei,r. (8)

Certain parameters of the model also can be based upon standard business
metrics. Examples of these can be found in Table 5.
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Table 5. Standard TM Forum business metrics related to five-process model parame-
ters

Metric ID Metric name Related parameters

27 (CM-CE-1) % Customer Contacts Received, by Channel Type α1,1, α1,2, α2,1, α3, α4, α5

31 (CM-CE-3a) # Customer Requests (x1000) per Customer λ(k), k = 1, . . . , K

32 (CM-CE-3b) % Customer Requests Received, by Request Type λ(k), k = 1, . . . , K

61 (A-CE-4c) % Problem Reports from Customers λ(3)

84 (B-CE-4e) # Customer Contacts About Billing per Bill λ(2)

95 (B-OE-2f) # Hours per Bill Processing Fault Resolution μ5

6 Numerical Example

For the five-process model described in Tables 2 and 3, matrices Θ(k) and vectors
q(k) are explicitly listed in the Appendix. By using them in Eq. (1), we obtain
the following explicit expressions for the visit ratios:

Subchain 1: e1,1 = α1,1, e1,2 = α1,2, e2,1 = α2,1, e2,2 = 1 − α1,1 −
α1,2 − α2,1, e3,1 = (1 − β1)α1,1 + (1 − β2)α2,1, e3,2 = β1α1,1 + β2α2,1, e4,2 =
γ1(β1α1,1 + β2α2,1), e8,2 = δ1(β1α1,1 + β2α2,1).

Subchain 2: e1,3 = α3, e2,3 = 1 − α3, e3,7 = γ2, e3,3 = e3,8 = e5,3 = e8,3 = 1.
Subchain 3: e1,6 = e3,6 = e3,10 = e6,6 = e8,6 = 1, e3,9 = γ3, e7,6 = 1 − ε3.
Subchain 4: e1,4 = α4, e2,4 = 1 − α4, e3,4 = 1, e4,4 = e5,4 = γ4, e7,4 = γ4δ4.

Fig. 4. Metrics 29 and 69 as functions of λ(3) for c6 = 2 and c6 = 3
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Fig. 5. Service station utilisations as functions of λ(3), c6 = 3

Fig. 6. Metric 28 as a function of λ(3), c1 = 2,3

Subchain 5: e1,5 = α5, e2,5 = 1 − α5, e3,5 = e4,5 = e5,5 = e8,5 = 1, e6,5 = δ5,
e7,5 = ε5δ5.

In particular, these result in I69 = T 3 (2 + γ3) + T 6 + T 7 (1 − ε3) + T 8.
For simplicity, we consider the system with the following parameter values:
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– transition probabilities α1,1 = α1,2 = α2,1 = 0.25, α3 = α4 = α5 = 0.5,
β1 = β2 = 0.5, γ1 = γ2 = γ3 = γ4 = 0.5, δ1 = δ4 = δ5 = 0.5, ε3 = ε5 = 0.5;

– service parameters μ=(μi)i∈M = (5, 20, 10, 20, 5, 1, 1, 5), c1 = 3, c5 = 2,
c8 = 2;

– input stream rates λ(1) = 5, λ(2) = 1, λ(4) = 0.5, λ(5) = 1.

Figure 4 shows metrics 29 and 69 as functions of λ(3), which is plotted on
the X-axis. The metrics are computed for c6 = 2 and c6 = 3 and the curves
have vertical asymptotes at λ(3) = 1.5 and λ(3) = 2.5 respectively. This is due
to a bottleneck at service station 6, since the station utilisation λ6

c6μ6
= λ(3)+0.5

c6
equals 1 at these points. Service station utilisations for stations 1, 5, 6, and 8
are plotted in Fig. 5 (here c6 = 3). Finally, Fig. 6 shows metric 28 (Average Hold
Time) for c1 = 2 and c1 = 3.

7 Conclusions and Future Work

Combining several business processes in a single queueing network allows to take
into consideration resource sharing, occurring at functional units of the company
(such as the technical team, the billing team, call-centre operators, etc.). We
have proposed an approach to estimating certain important TM Forum business
metrics using a BCMP network that combines the models of several standard
end-to-end eTOM business flows. The method can be applied to analyze the set
of business processes of a particular service provider, in which case we summarise
it as follows:

1. Standard eTOM process elements are used to make business flow diagrams of
the processes under analysis. These can be largely based upon the reference
eTOM business flows.

2. Common service stations corresponding to shared resources or delays are
identified. Here, on the contrary, the structure and specific procedures of the
company should be consulted.

3. Each business flow is modelled with a separate BCMP network by assigning
its activities to the corresponding service stations.

4. The models are put together into a single BCMP networks as ergodic sub-
chains.

5. Expressions for the business metrics of interest are derived. Here, TM Forum
Metrics Framework can be used.

6. The values of the system parameters are determined based upon the corre-
sponding business statistics and indicators and the metrics of interest are
computed.

Future work will focus on modelling the whole set of eTOM end-to-end busi-
ness flows, both customer and network centric, as well as on developing a model
of a complex telecommunication service provider CRM taking into account auto-
mated and non-automated functions.
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Appendix: Routing Matrices

See Tables 6, 7, 8, 9 and 10.

Table 6. Subchain 1: Request-to-Answer

q(1) α1,1 α1,2 α2,1 1−α1,1 − α1,2 − α2,1 0 0 0 0

Θ(1) (1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (4, 2) (8, 2) (0)

(1, 1) 0 0 0 0 1−β1 β1 0 0 0

(1, 2) 0 0 0 0 0 1 0 0 0

(2, 1) 0 0 0 0 1−β2 β2 0 0 0

(2, 2) 0 0 0 0 0 1 0 0 0

(3, 1) 0 0 0 0 0 0 0 0 1

(3, 2) 0 0 0 0 0 0 γ1 0 1−γ1

(4, 2) 0 0 0 0 0 0 0 δ1 1−δ1

(8, 2) 0 0 0 0 0 0 0 0 1

Table 7. Subchain 2: Complaint-to-Solution

q(2) α3 1−α3 0 0 0 0 0

Θ(2) (1, 3) (2, 3) (3, 3) (3, 7) (3, 8) (5, 3) (8, 3) (0)

(1, 3) 0 0 1 0 0 0 0 0

(2, 3) 0 0 1 0 0 0 0 0

(3, 3) 0 0 0 γ2 0 1−γ2 0 0

(3, 7) 0 0 0 0 0 1 0 0

(3, 8) 0 0 0 0 0 0 1 0

(5, 3) 0 0 0 0 1 0 0 0

(8, 3) 0 0 0 0 0 0 0 1
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Table 8. Subchain 3: Problem-to-Solution

q(3) 1 0 0 0 0 0 0

Θ(3) (1, 6) (3, 6) (3, 9) (3, 10) (6, 6) (7, 6) (8, 6) (0)

(1, 6) 0 1 0 0 0 0 0 0

(3, 6) 0 0 γ3 0 1−γ3 0 0 0

(3, 9) 0 0 0 0 1 0 0 0

(3, 10) 0 0 0 0 0 0 1 0

(6, 6) 0 0 0 ε3 0 1−ε3 0 0

(7, 6) 0 0 0 1 0 0 0 0

(8, 6) 0 0 0 0 0 0 0 1

Table 9. Subchain 4: Termination-to-Confirmation

q(4) α4 1−α4 0 0 0 0

Θ(4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4) (7, 4) (0)

(1, 4) 0 0 1 0 0 0 0

(2, 4) 0 0 1 0 0 0 0

(3, 4) 0 0 0 γ4 0 0 1−γ4

(4, 4) 0 0 0 0 1−δ4 δ4 0

(5, 4) 0 0 0 0 0 0 1

(7, 4) 0 0 0 0 1 0 0

Table 10. Subchain 5: Request-to-Change

q(5) α5 1−α5 0 0 0 0 0 0

Θ(5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5) (7, 5) (8, 5) (0)

(1, 5) 0 0 1 0 0 0 0 0 0

(2, 5) 0 0 1 0 0 0 0 0 0

(3, 5) 0 0 0 1 0 0 0 0 0

(4, 5) 0 0 0 0 1−δ5 δ5 0 0 0

(5, 5) 0 0 0 0 0 0 0 1 0

(6, 5) 0 0 0 0 1−ε5 0 ε5 0 0

(7, 5) 0 0 0 0 1 0 0 0 0

(8, 5) 0 0 0 0 0 0 0 0 1
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The Multi-product Newsboy Problem
with Price-Depended Demand and Fast
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Abstract. The present paper supposes that the newsboy sells multi-
ple products, and in addition to determining optimal order quantities
needs to determine the prices of each product. The demand for each
product is a compound Poisson process that depends on the demands
of other products. We suppose that the price-dependent intensity of the
demand is large enough to use the normal approximation to the joint
demand distribution. The goal of the retailer’s decision is to maximize
his profit. Equations for optimal retail price under optimal order quantity
are obtained and approximate solutions are proposed. Also approximate
distribution of the selling time of a large order is found.

Keywords: Newsboy problem · Multiple products · Fast moving items ·
Selling time distribution

1 Introduction

Models and methods of queueing theory; see Sharma [1] and Nazarov [2] are
widely used in supply chain management to construct the models and analyze
the decision making. The connection between queueing and inventory control
theories models and methods can be clearly seen, for example, from the works
by Schwarz and Daduna [3]. A review of queueing-inventory models can be
found, for example, in Krishnamoorthy et al. [4], for more recent references see
Manikandan and Nair [5].

The newsboy problem is a classic problem in the inventory management. It
has been studied since the nineteenth century, see Edgeworth [6]. Nowadays it is
widely used to analyze systems with perishable products in different fields; see
reviews by Khouja [7], Qin et al. [8].

Originally, the problem was formulated for a single product with fixed selling
price, but nowadays analogous models have been considered in multi-product
setting; see Turken et al. [9]. Also the price is often treated as a decision variable
influencing the demand. Whitin [10] was the first to analyze price-dependent
demand and determine the order size and selling price simultaneously. The topic
has been the theme of many papers; see reviews by Petruzzi and Dada [11], Yano
and Gilbert [12], and Chen and Simchi-Levi [13].
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 297–311, 2017.
DOI: 10.1007/978-3-319-68069-9 24
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The aim of the paper is to maximize the retailer’s expected profit in multi-
product setting and to find the asymptotic distribution of the selling time, i.e.
the amount of time it takes to sell the order. This distribution can be used for
calculation of different characteristics of the selling process and estimation of the
demand parameters in case of the censored samples; see, for example, Nahmias
[14], and Kitaeva et al. [15].

2 Problem Statement

Let us consider a supply chain consisting of a supplier, a retailer, and cus-
tomers. At the beginning of the selling period, the retailer purchases an order
q = [q1, q2...qm]T , qi is the i -th product order quantity, at a fixed price per units
of each products. Denote d = [d1, d2...dm]T the vector of corresponding procure-
ment costs. The duration of the selling period is bounded by T . At the end of
the period, we need to utilize the leftovers or lower the start prices to the next
period. Let us denote b = [b1, b2...bm]T the corresponding costs incurred.

Let the demand be a Poisson process with known price-and time-dependent
intensity λ(t, c), where c = [c1, c2...cm]T , ci > di is a retail price per unit of
the i -th product, and the values of purchases Z = [Z1j , Z2j ...Zmj ]T are i.i.d.
continuous random vectors independent of the arrivals process with the mean
equals to a = [a1, a2...am]T and covariance matrix R = [Rpq].

The model under consideration can be interpreted as a periodic queuing
system with two streams of arrivals: a periodic one with a period T with positive
orders of value q entering the service (sale) and a stream of customers with
intensity λ(t, c) with negative orders (purchases) Z. Since at the end of each
period the leftovers are recycled, we need to consider only one period.

3 Demand Distribution for Fast Moving Items

Let us denote p(·) PDF of Z, X(t) a random customer demand at [0, t], p(·) the
probability density function of X(T ) = X, and N a number of customers during
T . PMF of random value N

PN (n) =
(Λ(T, c))n

n!
exp(−Λ(T, c)), (1)

where Λ(T, c) =
T∫

0

λ(t, c)dt. In this section we will consider time- and price-

dependent demand rate.
Let us consider the case of fast moving items, that is we assume that

Λ(T, c) → ∞ as T → ∞. Denote P (·|n) conditional PDF of

X = Z1 + Z2 + ... + Zn, (2)

given N = n, then

P (x) =
∞∑

n=0

P (x|n)
(Λ(T, c))n

n!
exp(−Λ(T, c)). (3)
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Let φX(u) = E{ejuT X}, φZ(u) = E{ejuT Z}, be the characteristic functions
of demand X and purchase Z. Then

φX(u) =
∞∑

n=0

φZ(u)n (Λ(T, c))n

n!
exp(−Λ(T, c)) = exp (−Λ(T, c) + Λ(T, c)φZ(u)) .

Consider

Yi =
Xi − Λ(T, c)ai√

Λ(T, c)
, i = 1,m. (4)

The characteristic function of Y = [Y1, Y2...Ym]T

φY (u) = exp

(

−j
√

Λ(T, c)uT a − Λ(T, c) + Λ(T, c)φZ

(
u

√
Λ(T, c)

))

Let φZ(u) be a twice differential function. Then using Taylor expansion we
obtain as Λ(T, c) → ∞

φZ

(
u

√
Λ(T, c)

)

= 1 +
1

√
Λ(T, c)

uT a − 1
2Λ(T, c)

uT Ru + o

(
1

Λ(T, c)

)

.

and

φY (u) = exp
(

−1
2
uT Ru + o

(
1

Λ(T, c)

))

. (5)

Function φY (u) corresponds to a normal vector with zero mean and covari-
ance matrix R. It follows that X = Λ(T, c)a +

√
Λ(T, c)Y has an approxi-

mate normal distribution with mean Λ(T, c)a and covariance matrix Λ(T, c)R as
Λ(T, c) >> 1.

Consider, for example, the case of a single product, i.e. m = 1, when the
purchases obey the Gamma distribution with parameters α and n − 1, where
n > 1 is an integer; PDF of Z

p(z) =
zn−1

αn(n − 1)!
e
−

z

α .

Then from (3) we get

P (x) = δ(x)e−Λ(T,c) +
∞∑

k=1

xkn−1

αkn(kn − 1)!
(Λ(T, c))k

k!
exp

(
−

x

α
−Λ(T,c)

)
, (6)

where δ(·) is the Dirac delta function. Figure 1 illustrates the normal approx-
imation for Gamma batch size distribution for n = 2, α = 0.5, Λ(·) = 10 and
Λ(·) = 50. Here the solid lines correspond to the exact distribution, and the
dashed lines correspond to the approximate normal distribution.

In Table 1 the Kolmogorov-Smirnov distances

Δ = max
x

∣
∣
∣P (x) − N

(
αnΛ(T ),

√
α2n(n + 1)Λ(T )

)∣
∣
∣
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Fig. 1. The exact and approximate normal distributions of X, Λ(T, c) = 10 and
Λ(T, c) = 50

Table 1. The Kolmogorov-Smirnov distance between exact distribution P (·) and its
normal approximation

Λ(T, c) 5 10 50 100 200 1000

Δ, n = 2 0.031 0.014 2.604 · 10−3 1.277 · 10−3 6.303 · 10−4 0

Δ, n = 3 0.019 · 10−3 8.756 · 10−3 1.615 · 10−3 7.941 · 10−4 0 0

between the two distributions for α = 0.5, n = 2 and n = 3, and different values
of Λ(T, c) are given.

For exponential batch size distribution the results of comparing the exact
and approximate normal distributions of the demand are presented in Kitaeva
et al. [16].

Let us consider the probability P (q, T ) that order q = (q1, q2...qm)T have
been sold to the end of the selling period

P (q, T ) =

∞∫

q1

. . .

∞∫

qm

P (x1, x2 . . . xm)dx1dx2 . . . dxm

=
(det R)− 1

2

(2πΛ(T, c))
m
2

∞∫

q1−Λ(T,c)a1

. . .

∞∫

qm−Λ(T,c)am

e

(
− xT W x

2Λ(T,c)

)
dx1dx2 . . . dxm

(7)

where W = R−1.
Consider P (q, T ) assuming that Si = (Λ(T, c)ai − qi)/

√
Λ(T, c) → ∞ as

T → ∞, i.e. Λ(T, c) increases faster than qi.
Let Ai be the event that the demand for the i -th product is greater than qi,

i.e. there are lost sales. Then by the inclusion-exclusion formula
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P (q, T ) = P (A1A2 . . . Am)

= 1 −
m∑

i=1

P (Ai) +
∑

i<j

P (AiAj) + . . . + (−1)m
P (A1A2 . . . Am).

(8)

Using normal approximation

P (Ai) =
1

√
2πΛ(T, c)Rii

qi∫

−∞
exp

(

− (x − Λ(T, c)ai)
2

2Λ(T, c)Rii

)

dx

=
exp

(−S2
i /2

)

√
2πSi

0∫

−∞
exp

(

− x2

2S2
i

+ xdx

)

we get

lim
T→∞

√
2πSi exp

(
S2

i

2

)

P (Ai) = 1,

i.e. as T >> 1

P (Ai) ∼ 1√
2πSi

exp
(

−S2
i

2

)

. (9)

Taking all the terms in the expansion of (8), consider finally the last term

P (A1A2 . . . Am) =
det R− 1

2

(2πΛ(T, c))
m
2

q1∫

−∞
· · ·

qm∫

−∞
exp

(

− (x − Λ(T, c)a)T
W (x − Λ(T, c)a)

2Λ(T, c)

)

dx1 . . . dxm

=
det R− 1

2 exp
(− 1

2ST WS
)

(2π)
m
2

m∏

i=1

ti

0∫

−∞
· · ·

0∫

−∞
exp

⎛

⎝−1
2

m∑

i,j

Wij
yiyj

titj
+

m∑

i=1

yi

⎞

⎠ dy1 . . . dym,

where S = (S1, S2, ..., Sm)T , t = (t1, t2, ..., tm) = WS. It follows

lim
Λ(T,c)→∞

P (A1A2 . . . Am)(2π)
m
2 det R

1
2 exp

(
1
2
ST WS

) m∏

i=1

ti = 1,

or as T >> 1

P (A1A2 . . . Am) ∼ exp
(− 1

2ST WS
)

(2π)
m
2 det R

1
2

m∏

i=1

m∑

j=1

WijSj

. (10)
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It is easy to see that the main part of (8) is 1 −
m∑

i=1

P (Ai) as T >> 1, i.e.

P (q, T ) ≈ 1 −
m∑

i=1

√
Λ(T, c)Rii√

2π(Λ(T, c)ai − qi)
exp

(

− (Λ(T, c)ai − qi)
2

2Λ(T, c)Rii

)

. (11)

If qi increases faster than Λ(T, c) as T → ∞, we receive analogously as
T >> 1

P (q, T ) ≈
exp

(

− 1
2

m∑

i,j=1

Wij
(qi − Λ(T, c)ai)(qj − Λ(T, c)aj)

Λ(T, c)

)

(2π)
m
2 det R

1
2

m∏

i=1

m∑

j=1

Wij
qj − Λ(T, c)aj√

Λ(T, c)

. (12)

Thus, as expected P (q, T ) << 1 in this case for large T values, and P (q, T ) ≈
1 if Λ(T, c) increases faster than qi.

4 Distribution of the Duration of the Large Order Selling

Here we will consider the intensity λ(t, c) ≡ λ(c). The intensity dependence on
the prices does not matter in the context of this section, so instead of λ(c) we
will use the notation λ. Denote pS(·) PDF of S, a cost of one purchase. The
mean of S E{S} and the variance V ar{S} are

E{S} = m1 =
m∑

i=1

ciai, V ar{S} = σ2 =
m∑

i=1

Rijcicj . (13)

Let T (s) be the amount of time it takes to sell goods for an amount equal to
the money s, and

g(w, s) = E{e−wT (s)} (14)

be a moment generating function of T (s).
Consider small time interval Δt. Denote ΔS the cost of the purchase during

the interval. Then
T (s) = Δt + T (s − ΔS),

and it follows

g(w, s) = e−wΔtEΔS{g(w, s − ΔS)} = e(−wΔt)

×
⎡

⎣(1 − λΔt)g(w, s) + λΔt

s∫

0

g(w, s − x)pS(x)dx + λΔt

∞∫

s

pS(x)dx

⎤

⎦+ o(Δt).

(15)
As Δt → 0, we get

(λ + w)g(w, s) = λ

s∫

0

g(w, s − x)pS(x)dx + λ

∞∫

s

pS(x)dx. (16)
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The initial moments Tk(s) of T (s) are defined by following relation

Tk(s) = (−1)kg(k)w (0, s). (17)

Taking derivative with respect to w and putting w = 0, and taking into account
that g(0, s) = 1, we obtain an equation for T1(·), the mean of T (·),

λT1(s) = 1 + λ

s∫

0

T1(s − x)pS(x)dx. (18)

The k -th, k �= 1, initial moment of T (·), is defined by equation

λTk(s) = kTk−1(s) + λ

s∫

0

Tk(s − x)pS(x)dx. (19)

Consider the Laplace transforms of functions pS(·) and Tk(·)

X(u) =

∞∫

0

pS(s) exp(−us)ds, Fk(u) =

∞∫

0

Tk(s) exp(−us)ds. (20)

From (18) we get

F1(u) =
1

λu(1 − X(u))
,

and from (19)
λFk(u) = kFk−1(u) + λFk(u)X(u).

It follows
Fk(s) =

k!

λku(1 − X(u))k
, k = 1, 2, ...,

and

Tk(s) =
k!

2πj

c+j∞∫

c−j∞

exp(us)

λku(1 − X(u))k
du. (21)

Let us consider the case s >> 1. If Reu < 0 then |X(u) < 1| and X(0) = 1.
Therefore the zeros of the function 1 − X(u) lie on the imaginary axis and in
the left half-plane. By the residue theorem

1
k!

Tk(s) = Res
exp(us)

λku(1 − X(u))k

∣
∣
∣
∣
∣
u=0

+
∑

i

Res
exp(us)

λku(1 − X(u))k

∣
∣
∣
∣
∣
u=ui �=0

.

All the residues, except for the residue at u = 0, contain exponential factor euis,
where Reui > 0, so the first term gives the main contribution to Tk(s) as s >> 1.

Denote

Y (u) =
1 − X(u)

u
,
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then

Tk(s) =
1
λk

lim
u→0

dk

duk

[
exp(us)

Y (u)k

]

(22)

as s >> 1, and for k = 1

T1(s) =
s

λY (0)
− Ẏ (0)

λY (0)2
.

Denote

mk =

∞∫

0

skpS(s)ds, k = 1, 2, ...,

then
T1(s) =

s

λm1
+

m2

2λm2
1

. (23)

For instance, consider the Gamma distribution of S with parameters α and
n − 1, where n > 1 is an integer.

Denote the Laplace transform of function T1(s)

Φ(ω) =

∞∫

0

T1(s)e−ωsds.

It follows from (18) that

Φ(ω) =
(1 + αω)n

λω((1 + αω)n − 1)
,

and

T1(s) =
1

2πj
e− s

α

σ+j∞∫

σ−j∞

un

λ(u − 1)(un − 1)
e

s
α udu.

Let uk = n
√

1 = cos 2(k−1)π
n + j sin 2(k−1)π

n , k = 2, n, uk �= 1. Then

T1(s) =
1
λ

(

1 +
s

αn
− 1

n

n∑

k=2

1 + uke
s(uk−1)

α

1 − uk

)

. (24)

Figure 2 illustrates the accuracy of the approximation (23) for the Gamma
distribution of S for n = 5, α = 0.5 and α = 2. Here the solid lines correspond
to the exact formula (24), and the dashed lines correspond to the approximate
formula (23), parameter λ = 1.

Analogously we receive the variance of T (s)

V ar{T (s)} = D(s) =
1
λ2

[
sm2

m1
3

− m3

3m1
2

+
5m2

2

4m1
4

]

. (25)
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Fig. 2. The exact and approximate T1(s), α = 0.5 and α = 2, λ = 1.

Let us denote

Φ(w, u) =

∞∫

0

g(w, s) exp(−us)ds.

From (16), we get

Φ(w, u) = λ
1 − X(u)

u[w + λ − λX(u)]
,

and

g(w, s) =
λ

2πj

c+j∞∫

c−j∞

1 − X(u)
u[w + λ − λX(u)]

exp(us)du. (26)

By the convolution theorem

g(w, s) =

s∫

0

φ(w, s − x)

∞∫

x

pS(y)dydx, (27)

where

φ(w, s) =
λ

2πj

c+j∞∫

c−j∞

exp(us)
w + λ − λX(u)

du. (28)

Consider the case when s >> 1 and w << 1. Zeros of function w+λ−λX(u),
Rew > 0 that are defined by equation

λ(X(u) − 1) = w (29)

lie on the imaginary axis and in the left half-plane because for Rew > 0 function
exp(us)

w + λ − λX(u)
has to be analytical. As s >> 1, the residue at zero gives the

main contribution to the integral (28).
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Note that if w = 0 then u = 0, and X(0) − 1 = 0, Ẋ(0) �= 0. It follows that
the solution of (29) for w �= 0 can be sought as the Burmann-Lagrange expansion

u0 =
∞∑

n=1

dnwn, (30)

where

dn =
1
n!

lim
z→0

dn−1

dzn−1

[
zn

(λ(X(z) − 1))n

]

. (31)

According to the expansion we get as w << 1

u0 = − 1
λm1

w +
m2

2λ2m3
1

w2 + o(w2). (32)

By the residue theorem for s >> 1 and w << 1

φ(w, s) ∼ − 1
Ẋ(u0)

exp(u0s),

and

g(w, s) ∼ − 1
Ẋ(u0)

s∫

0

exp (u0(s − x))

∞∫

x

pS(y)dydx. (33)

Consider random variable

V =
T (s) − q2

qδ
,

where
q =

s

λm1
, δ =

√
m2

λm2
1

. (34)

It follows from (23) and (25) that E{V } = 0 and V ar{V } = 1 as s >> 1. The
characteristic function of V

gV (w, s) = exp
(wq

δ

)
g

(
w

qδ
, s

)

.

Taking into account (33) and (34) we get

gV (w, s) ∼ e
w2
2

Ẋ
(
u0

(
w
δq

))

s∫

0

exp
(

−u0

(
w

δq

)

x

) ∞∫

x

pS(y)dydx.

Tending s to infinity we get

lim
s→∞ gV (w, s) = exp

(
w2

2

)

,

i.e. V is the standard normal random variable.



The Multi-product Newsboy Problem with... Fast Moving Items 307

Thus, as s >> 1 the selling time T (s) has the normal distribution with
parameters

T1(s) =
s

λm1
,D(s) =

sm2

λ2m3
1

(35)

The cost of an order sold during the session with fixed probability

α = P{T (s) ≤ T} =
1√
2πD

T∫

−∞
exp

(

− (u − T1)
2

2D

)

du

is defined by following equation

s =
λm1

4

[√
m2

λm2
1

ψ(α)2 + 4T +
√

m2

λm2
1

ψ(α)
]2

,

where ψ(·) is the standard normal quantile function.

5 Price Optimization for Fast Moving Items

Let us denoted W the expected profit at the end of the session

W = −S +
m∑

j=1

⎡

⎢
⎣cjqj

∞∫

qj

pj(x)dx +

qj∫

0

(cjx − bj(qj − x))pj(x)dx

⎤

⎥
⎦, (36)

where pj(x) is the probability density function of a random customer demand
for j -th product, and S is the cost of the order

S =
m∑

j=1

djqj . (37)

The retailer is interested in determining an optimal value of q = (q1, q2, ...qm)
and then corresponding value of c = [c1, c2, ...cm]T by maximizing the expected
profit. Differentiating (36) with respect to qj we receive the following system of
equations

qj∫

0

pj(x)dx = 1 − bj + dj

bj + cj
. (38)

Taking into account that dj ≤ cj , we see that the task has unique solution
determined by the equation

qj = ψj

(

1 − bj + dj

bj + cj

)

, (39)

where ψj(·) is the inverse of the cumulative distribution function of demand for
the product j.
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The corresponding expected profit

W =
m∑

i=1

(ci + bi)

qi∫

0

xpi(x)dx. (40)

The dependence of the optimal batch volume for m = 1 and the density
of demand distribution, determined by the relation (5) is shown in Fig. 3. The
parameters of the density of the distribution of demand α = 0.5, n = 2. Sales
price c = 8, he cost of recycling the unit of production s = 7. As can be seen from
the graphs given, the optimum value of q is determined mainly by the intensity
of demand Λ(T, c).

Fig. 3. Dependence of the optimal volume of the consignment of goods q on the value
of Λ(T, c)

The majority of researches in the framework of multi-product newsvendor
problem focus on determining the optimal stocking policy under some con-
straints.

Suppose that a budget limitation exists, that is, the overall order cost is fixed
and is equal to S0. Then we need to solve the task of profit maximization under
the condition

S =
m∑

j=1

djqj = S0. (41)

Solving the problem we get
qj∫

0

pj(x)dx = 1 − bj + μdj

bj + cj
, (42)

where μ is the Lagrange multiplier defined by (41). Thus,

qj = ψj

(

1 − bj + μdj

bj + cj

)

, (43)
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and

f(μ) =
m∑

j=1

djψj

(

1 − bj + μdj

bj + cj

)

= S0. (44)

Function ψj(·) monotonically increases on [0, 1] and 0 ≤ ψj(·) < ∞, so the
solution of (44) with respect to μ > 1 exists.

The corresponding expected profit

W = (μ − 1)S0 +
m∑

j=1

(cj + bj)

qj∫

0

xpj(x)dx > 0. (45)

As Λ(T, c) >> 1 we can consider PDF of pj(·) as approximately normal with
the mean Λ(T, c)ai and variance Λ(T, c)Rii, and we can rewrite (39) and (43) in
the following way correspondently

qj = Λ(T, c)aj +
√

Λ(T, c)Riiψ

(

1 − bj + dj

bj + cj

)

, (46)

qj = Λ(T, c)aj +
√

Λ(T, c)Riiψ

(

1 − bj + μdj

bj + cj

)

, (47)

where ψ(·) is the standard normal quantile function.
The relative error of approximation for Δ = |q − qas| /q for m = 1 as a

function of the quantity Λ(T, c), where q is calculated from formula (38), and q -
by formula (46) for b = 0.1, d = 2, c = 4 is given in Table 2.

Table 2. The error of approximation

Λ(T, c) 5 10 20 50 100 200

Δ 0.074 0.035 0.017 6.7 · 10−3 3.36 · 10−4 3.36 · 10−4

As follows from the data presented, the approximation error practically
decreases linearly with increasing Λ(T, c).

Let the retail prices be proportional to the wholesale prices with the same
coefficient, i.e., ci = γdj , where γ ≥ 1, and Λ(T, c) = λ0Tf(γ), where f(γ) is a
monotonically decreasing function, such that f(0) = 1 and γf(γ) → 0 as γ → ∞.

We will consider the case Λ(T, c) >> 1, or λ0T >> 1, and we are interested
in obtaining the optimal value of γ when the order quantities are defined by
(46).

We can rewrite (40) as

W (γ) = λ0T

[
m∑

i=1

aidif(γ)(γ − 1)

−
√

f(γ)√
2πλ0T

m∑

i=1

√
Rii(γdi + bi) exp

(

−1
2
ψ2

(

1 − bi + di

bi + γ0di

)2
)]

.

(48)
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As the second term in (48) is of order 1√
λ0

for λ0 >> 1 the solution of the
problem can be sought in the form

γ = γ0 + γ1
1√
λ0T

where γ0 is determined from the condition f(γ)(γ − 1) = max, and γ1 when γ0
is found from condition dW (γ1)

dγ1
= 0.

6 Conclusion

Thus, we have considered a single period multi items inventory system when the
demand is a compound Poisson process with price-and time-dependent intensity
and a continuous joint batch sizes distribution with known means and covariance
matrix independent from the arrival process.

We assume that the mean of the cumulative demand is large enough, that
is the items are fast moving, to use the normal approximation to the demand
distribution. Under this assumption we have obtained the main parts of the
probabilities that an order have been sold to the end of the period assuming
that the orders quantities increase faster than the corresponding means of the
cumulative demand and vice versa.

As to the prices optimization we consider the case when the retail prices are
proportional to the wholesale prices with the same coefficient and the intensity
depends on the coefficient only and does not depend on time. Equation for the
optimal coefficient maximizing the expected profit under optimal order quantities
is obtained and approximate solution is proposed. The results are analogous to
the single item case.

For time-independent intensity approximate distribution of the duration of
the large order selling time is found without using the diffusion approximation
of the demand process. As to compare to Kitaeva et al. [17], where the term
“large order” is treated as large in size here it is treated as expensive.
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Abstract. We consider nonstationary Markovian queueing models with
batch arrivals and group services. We study the mathematical expecta-
tion of the respective queue-length process and obtain the bounds on the
rate of convergence and error of truncation of the process.
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1 Introduction

The problem of finding of the limiting characteristics for inhomogeneous Markov
chains is both very important and very difficult. For the computation of the main
limiting characteristics of the chain such their “quasi-stationary distribution” of
state probabilities and the limiting mean, we need to solve some additional prob-
lems. Firstly, one should obtain explicit bounds on the rate of convergence, this
is the subject of the series of papers, see for instance [2,4,13,17]. On the other
hand, if the state space of the process is countable or finite but large, then we
need to approximate the original chain by similar chains on the smaller state
spaces. As a rule the authors deal with so-called north-west truncations, see
[3,9,11,12,16,18]. More general approach for a class of homogeneous Markov-
ian queues has been studied in [10]. There is a number of situations when we
need consider another truncations with states {N1, . . . , N2}, say. For instance,
such situation is natural for the queue-length process in Mt/Mt/S queue in the
case of sufficiently large traffic intensity. As we know the first investigations of
such truncations (for birth-death processes) have been published in [7,8]. In this
paper we consider the corresponding problem for another class of inhomogeneous
Markov chains. Namely, we deal with a class of chains which transition rates do
not depend on the current state of the system and depend on the ‘length of
jump’ and on the time moment only, see detailed discussion and bounds (the

c© Springer International Publishing AG 2017
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rate of convergence, perturbation bounds, north-west truncation bounds) in our
previous papers [5,6,15].

Consider a nonstationary continuous-time Markovian queueing model on the
state space E = {0, 1, . . . } with possible batch arrivals and group services.

Let X = X(t), t ≥ 0 be a queue-length process for the queue.
Let pij(s, t) = Pr {X(t) = j |X(s) = i}, i, j ≥ 0, 0 ≤ s ≤ t be transition

probabilities for X = X(t), and pi(t) = Pr {X(t) = i} be its state probabilities.
Throughout the paper we assume that

Pr(X (t + h) = j/X (t) = i)

=

{
qij (t) h + αij (t, h) if j �= i

1 − ∑
k �=i

qik (t) h + αi (t, h) if j = i,

where all αi(t, h) are o(h) uniformly in i, i.e. supi |αi(t, h)| = o(h).
We also assume qi,i+ k (t) = λk(t), qi,i − k (t) = μk(t) for any k > 0.
In other words, we suppose that the arrival rates λk(t) and the service

rates μk(t) do not depend on the length of queue. In addition, we assume that
λk +1(t) ≤ λk(t) and μk +1(t) ≤ μk(t) for any k and almost all t ≥ 0. Applying
our standard approach (see details in [2,13,14]) we suppose in addition, that all
intensity functions are locally integrable on [0,∞). Moreover we assume

Lλ(t) ≤ Lλ < ∞, Lμ(t) ≤ Lμ < ∞,

for almost all t ≥ 0, where

Lλ(t) =
∞∑

i=1

λi(t), Lμ(t) =
∞∑

i=1

μi(t).

Then the probabilistic dynamics of the process is represented by the forward
Kolmogorov system:

dp
dt

= A(t)p(t), (1)

where

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a00(t) μ1(t) μ2(t) μ3(t) · · · μr(t) · · ·
λ1(t) a11(t) μ1(t) μ2(t) · · · μr−1(t) · · ·
λ2(t) λ1(t) a22(t) μ1(t) · · · μr−2(t) · · ·
· · ·

λr(t) λr−1(t) λr−2(t) · · · · · · arr(t) · · ·
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and aii(t) = −∑i
k =1 μk(t) − ∑∞

k =1 λk(t).
Throughout the paper by ‖ · ‖ we denote the l1-norm, i.e. ‖x‖ =

∑ |xi|, and
‖B‖ = supj

∑
i |bij | for B = (bij)∞

i,j =0.
Let Ω be a set all stochastic vectors, i.e. l1 vectors with nonnegative coor-

dinates and unit norm. Hence we have ‖A(t)‖ = 2
∑∞

k =1(λk(t) + μk(t)) ≤
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2 (Lλ + Lμ) for almost all t ≥ 0. Hence the operator function A(t) from l1 into
itself is bounded for almost all t ≥ 0 and locally integrable on [0;∞). There-
fore we can consider (1) as a differential equation in the space l1 with bounded
operator.

It is well known (see [1]) that the Cauchy problem for differential equation
(1) has a unique solutions for an arbitrary initial condition, and p(s) ∈ Ω implies
p(t) ∈ Ω for t ≥ s ≥ 0.

Denote by E(t, k) = E {X(t) |X(0) = k } the mean (the mathematical expec-
tation) of the process at the moment t under the initial condition X(0) = k, and
by Ep(t) the mathematical expectation (the mean) at the moment t under the
initial probability distribution p(0) = p.

Recall that a Markov chain X(t) is called weakly ergodic, if ‖p∗(t)−p∗∗(t)‖ →
0 as t → ∞ for any initial conditions p∗(0),p∗∗(0), where p∗(t) and p∗∗(t) are
the corresponding solutions of (1).

A Markov chain X(t) has the limiting mean ϕ(t) if limt→∞ (ϕ(t) − E(t, k)) =
0 for any k.

Our approach in general is based on the notion of logarithmic norm of a linear
operator and a special similarity transformation of the matrix of intensities of
the Markov chain considered.

Recall that the logarithmic norm of operator function B(t) is defined as

γ(B(t)) = lim
h→+0

h−1 (‖I + hB(t)‖ − 1) .

The important inequality

‖U(t, s)‖ ≤ exp
∫ t

s

γ(B(u)) du

holds, where U(t, s) = U(t)U−1(s) is the Cauchy operator of the corresponding
differential equation

dz
dt

= B(t)z(t).

2 Auxiliary Transformations

By introducing pi(t) = 1−∑
j �= i pj(t) from (1) we obtain the following equation

dz
dt

= B(t)z(t) + f(t), (2)

where f(t) = (μi, μi − 1, . . . , μ1, λ1, λ2, . . . )
T ,

zT (t) =
( 0 1 i − 1 i + 1
p0, p1, . . . , pi−1, pi+1, . . .

)
.
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Let D1 be a matrix

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 i − 2 i − 1 i + 1 i + 2 i + 3
0 −1 · · · 0 0 0 0 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
i − 2 −1 · · · −1 0 0 0 0 · · ·
i − 1 −1 · · · −1 −1 0 0 0 · · ·
i + 1 0 · · · 0 0 1 1 1 · · ·
i + 2 0 · · · 0 0 0 1 1 · · ·
i + 3 0 · · · 0 0 0 0 1 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Put D2 = diag (d0, . . . , di − 1, di+1, di+2, . . . ), where {dk} be a sequence of
positive numbers.

Denote by D = D2D1.
Let l1D be the space of sequences

l1D = {z : ‖z‖1D ≡ ‖Dz‖ < ∞}.

For an operator function from l1 to itself we have the simple formula of the
logarithmic norm

γ(B(t)) = sup
j

⎛
⎝bjj(t) +

∑
i �= j

|bij(t)|
⎞
⎠ .

Hence we obtain the following bound for the logarithmic norm of operator
function B(t):

γ(B(t))1D = γ(DB(t)D−1) = sup
j �= i

{−αj(t)} = −α(t),

where −αj(t) is the sum of all elements of j-th column of the matrix

DBD−1 =

⎛
⎜⎜⎜⎜⎝

a11 − μ1 (μ1 − μ2)
d0
d1

(μ2 − μ3)
d0
d2

· · · (μi − 2 − μi − 1)
d0

di − 2

d0
di+1

μi +1 · · ·
λ1

d1
d0

a22 − μ2 (μ1 − μ3)
d1
d2

· · · (μi − 3 − μi − 1)
d1

di−2

d1
di +1

μi · · ·
λ2

d2
d0

λ1
d2
d1

a33 − μ3 · · · (μi − 4 − μi − 1)
d2

di − 2

d2
di +1

μi − 1 · · ·
· · ·

⎞
⎟⎟⎟⎟⎠

.

Therefore

‖U(t, s)‖1D ≤ e− ∫ t
s

α(u) du.

We will suppose that there exist positive M and a such that

e− ∫ t
s

α(u) du ≤ Me−a(t−s), (3)

for any 0 ≤ s ≤ t.
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Put

gj =

{∑i − 1
j dj , j < i,∑j
i+1 dj , j > i.

Consider the family of ‘truncated’ processes Xδ(t) on the state spaces Eδ =
{N1, N1 + 1, ..., N2}, where N2 − N1 = δ and the respective birth rates are
λn(t), 0 < n ≤ δ and death rates are μn(t), 0 < n ≤ δ. We denote by Ã(t) the
corresponding transposed intensity matrix. Then the probabilistic dynamics of
the truncated process is represented by the corresponding forward Kolmogorov
system

dp̃
dt

= Ã(t)p(t),

where

Ã(t) =

⎛
⎜⎜⎜⎜⎝

ãN1,N1(t) μ1(t) μ2(t) μ3(t) · · · μδ(t)
λ1(t) ã11(t) μ1(t) μ2(t) · · · μδ − 1(t)
λ2(t) λ1(t) ã22(t) μ1(t) · · · μδ − 2(t)
· · ·

λδ(t) λδ − 1(t) λδ − 2(t) · · · · · · ãN2,N2(t)

⎞
⎟⎟⎟⎟⎠ ,

where ãj,j(t) = −∑δ−j
i=1 λi(t) − ∑j

i=1 μi(t),

p̃(t) = (p̃N1 , p̃N1 +1, . . . , p̃N2)
T .

By introducing p̃i(t) = 1 − ∑i−1
j =N1

p̃j(t) − ∑N2
j = i+1 p̃j(t) we obtain the fol-

lowing equation

dz̃
dt

= B̃(t)z̃(t) + f̃(t), (4)

where f̃(t) = (μi − N1 , μi − N1 − 1, . . . , μ1, λ1, λ2, . . . , λN2 − i)
T ,

z̃T (t) =
( N1 N1 + 1 i − 1 i + 1 N2

p̃N1 , p̃N1+1, . . . , p̃i−1, p̃i+1, . . . , p̃N2

)
,

B̃ =

⎛

⎜
⎝

N1 i − 1 i + 1 N2

N1 ãN1,N1 − μi−N1 · · · μi−N1−1 − μi−N1 μi−N1+1 − μi−N1 · · · μδ − μi−N1
· · ·

N2 λδ − λδ−i · · · λδ−i+1 − λδ−i λδ−i−1 − λδ−i · · · ãN2,N2 − λδ−i

⎞

⎟
⎠.
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Let D̃1 be a matrix

D̃1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1 i − 2 i − 1 i + 1 i + 2 i + 3 N2

N1 −1 · · · 0 0 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

i − 2 −1 · · · −1 0 0 0 0 · · · 0
i − 1 −1 · · · −1 −1 0 0 0 · · · 0
i + 1 0 · · · 0 0 1 1 1 · · · 1
i + 2 0 · · · 0 0 0 1 1 · · · 1
i + 3 0 · · · 0 0 0 0 1 · · · 1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
N2 0 · · · 0 0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Denote by D̃2 = diag
(
d̃N1 , . . . , d̃i−1, d̃i+1, . . . , d̃N2

)
, where d̃k be positive

numbers.
Put D̃ = D̃2D̃1.
Let l1D̃ be the space of sequences: l1D̃ = {z̃ : ‖z̃‖1D̃ ≡ ‖D̃z̃‖}.
Hence we have the following bound for the logarithmic norm of operator

function B̃(t):

γ(B̃(t))1D̃ = γ(D̃B̃(t)D̃−1) = sup
j �=i

{−α̃j(t)} = −α̃(t), (5)

where

D̃B̃D̃
−1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ãN1,N1 − μ1 (μ1 − μ2)
dN1

dN1 + 1
(μ2 − μ3)

dN1
dN1 + 2

· · · (μδ − 1 − μδ)
dN1
dN2

(λ1 − λδ)
dN1 + 1

dN1
ãN1 + 1,N1 + 1 − μ2 (μ1 − μ3)

dN1 + 1
dN1 + 2

· · · (μδ − 2 − μδ)
dN1 + 1

dN2

(λ2 − λδ)
dN1 + 2

dN1
(λ1 − λδ − 1)

dN1 + 2
dN1 + 1

ãN1 + 2,N1 + 2 − μ3 · · · (μδ − 3 − μδ)
dN1 + 2

dN2
· · ·

(λδ − 1 − λδ)
dN2
dN1

(λδ − 2 − λδ − 1)
dN2

dN1 + 1
(λδ − 3 − λδ − 2)

dN2
dN1 + 2

· · · ãN2,N2 − λ1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3 Main Bounds

Let V (t, s) is the Cauchy matrix of differential equation (4). Using the Eq. (5)
we obtain the equation

‖V (t, s)‖1D̃ ≤ e− ∫ t
s

α̃(u) du ≤ M̃e−ã(t − s),

under the additional supposition of an existence positive M̃ and ã such that

e− ∫ t
s

α̃(u) du ≤ M̃e−ã(t − s), (6)

for any 0 ≤ s ≤ t.
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Moreover, there exists a constant K̃ such that ‖f̃(t)‖1D̃ ≤ K̃ for any t ≥ 0.
Hence the following bound holds:

‖z̃(t)‖1D̃ ≤ ‖V (t)‖1D̃‖z̃(0)‖1D̃

+
∫ t

0

‖V (t, τ)‖1D̃‖f̃(τ)‖1D̃dτ ≤ K̃M̃

ã
+ M̃e−ãt‖z̃(0)‖1D̃,

for any t ≥ 0.
Let now X(0) = i. Then z̃(0) = (0, 0, ..., 0)T , ‖z̃(0)‖1D̃ = 0 and

‖z̃(t)‖1D̃ ≤ K̃M̃

ã
.

Therefore p̃j(t) ≥ 0 for any j, t. Then

‖D̃z̃‖ ≥ (d̃i+1 + · · · + d̃n)
N2∑
j=n

p̃i = g̃n

N2∑
j =n

p̃i(t),

‖D̃z̃‖ ≥ (d̃n + · · · + d̃i − 1)
n∑

j=N1

p̃i = g̃n

n∑
j =N1

p̃i(t),

hence
N2∑

j =n

p̃i(t) ≤ K̃M̃

ãg̃n
,

and
n∑

j =N1

p̃(t) ≤ K̃M̃

ãg̃n
,

for any t ≥ 0.
Put

υ̃j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 j < N1,

min
(
1, M̃K̃

α̃g̃j

)
N1 ≤ j < i,

min
(
1, M̃K̃

α̃g̃j

)
i > j ≥ N2

0 j > N2.

Let Â = (âm,n)∞
m,n=0, where

âm,n =
{

ãm,n if N1 ≤ m,n ≤ N2

0 otherwise

Consider a system

dp̂
dt

= Â(t)p̂(t), p̂(t) = (p̂1, p̂2, . . . )T .
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Let X(0) = i, then we get p̂j = p̃j for N1 ≤ j ≤ N2 and p̂j = 0 otherwise.
Therefore, we have

p̂(t) = (0, . . . , 0, p̃N1 , p̃N1+1, . . . , p̃N2 , 0, 0, . . . )T .

By introducing p̂i(t) = 1 − ∑i − 1
j =N1

p̃j(t) − ∑N2
j=i+1 p̃j(t) we obtain the fol-

lowing equation
dẑ
dt

= B̂(t)ẑ(t) + f̂(t), (7)

where f̃(t) = f̂(t),

Rewrite Eq. (7) in the form

dẑ
dt

= B(t)ẑ(t) + f̂(t) +
(
B̂(t) − B(t)

)
ẑ(t).

Therefore one has from (2) and (7)

d(ẑ − z)
dt

= B(t) (ẑ(t) − z(t)) +
(
B̂(t) − B(t)

)
ẑ(t)

and

‖ẑ(t) − z(t)‖1D ≤ ‖U(t, 0)‖1D‖ẑ(0) − z(0)‖1D

+
∫ t

0

‖U(t, s)
(
B̂(s) − B(s)

)
ẑ(s)‖1D ds.

Since X(0) = i, then ẑ(0) = z(0) = 0, ‖ẑ(0) − z(0)‖1D = 0 and

‖ẑ(t) − z(t)‖1D ≤
∫ t

0

‖U(t, s)‖1D

∥∥∥(
B̂(s) − B(s)

)
ẑ(s)

∥∥∥
1D

ds.

Consider the expression (B(s) − B̂(s))ẑ(s), we have:

(B(s) − B̂(s))ẑ(s) =
(μN1 p̃N1 + μN1 +1p̃N1 +1 + · · · + μN2 p̃N2 ,

μN1 − 1p̃N1 + μN1 p̃N1 +1 + · · · + μN2 − 1p̃N2 ,

· · · ,

μ1p̃N1 + μ2p̃N1 +1 + · · · + μN2−N1 +1p̃N2 ,

−
⎛
⎝ N1∑

j =1

μj +
∞∑

j =N2−N1 +1

λj

⎞
⎠ p̃N1 ,

· · · ,
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−
⎛
⎝ N2∑

j =N2−N1 +1

μj +
∞∑

j =1

λj

⎞
⎠ p̃N2 ,

λN2 − N1 +1p̃N1 + λN2 − N1 p̃N1 +1 + · · · + λ1p̃N2 ,

· · · )T .

The following bounds hold in 1D norm:

‖(B̂(s) − B(s)ẑ(s)‖1D

≤
N2 − N1∑

k =0,k �= i − N1

⎛
⎝gN1 + k

⎛
⎝ N1 + k∑

j =1+ k

μj +
∞∑

j =N2 − N1 +1− k

λj

⎞
⎠

+
N1 − 1∑
j =0

gjμN1 − j + k +
∞∑

j =N2 +1

gjλj − N1 − k

⎞
⎠ p̃N1 + k

≤ 2
N2 − N1∑

k =0,k �=i − N1

⎛
⎝N1 − 1∑

j =0

gjμN1 − j + k +
∞∑

j =N2 +1

gjλj − N1 − k

⎞
⎠ p̃N1 + k.

Let now there exist n1 and n2, such that N1 < n1 < i < n2 < N2, and

N1 − 1∑
j =0

gjμN1 − j +n1(t) ≤ ε,

∞∑
j =N2 +1

gjλj − N1 − n2(t) ≤ ε, (8)

for any t ≥ 0.
Then we have

‖(B̂ − B)ẑ‖1D ≤ 2(n2 − n1)ε
+ 2 ((n1 − N1)υ̃N1 +n1 − 1 + (N2 − n2)υ̃N1 +n2 +1)⎛
⎝N1 − 1∑

j =0

gjμN1 − j +
∞∑

j =N2 +1

gjλj − N2

⎞
⎠ .

Let ⎛
⎝N1 − 1∑

j =0

gjμN1 − j(t) +
∞∑

j =N2 +1

gjλj − N2(t)

⎞
⎠ ≤ L,

for any t ≥ 0.
Hence

‖ẑ(t) − z(t)‖1D

≤ 2M

α
((n2 − n1)ε + L ((n1 − N1)υ̃N1 +n1 − 1 + (N2 − n2)υ̃N1 +n2 +1)) .
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From inequality

‖p∗ − p∗∗‖ = |p∗
0 − p∗∗

0 | + · · · + |p∗
i − 1 − p∗∗

i − 1|

+

∣∣∣∣∣∣
⎛
⎝1 −

∑
j �= i

p∗
j

⎞
⎠ −

⎛
⎝1 −

∑
j �= i

p∗∗
j

⎞
⎠

∣∣∣∣∣∣
+ |p∗

i+1 − p∗∗
i+1| + · · · ≤ 2

min(di − 1, di+1)
‖z∗ − z∗∗‖1D,

we obtain

‖p̂ − p‖ ≤ 4M

α min(di − 1, di+1)
((n2 − n1)ε

+L ((n1 − N1)υ̃N1+n1−1 + (N2 − n2)υ̃N1+n2+1)) .

On the other hand, from inequality

‖p∗ − p∗∗‖1E = |p∗
1 − p∗∗

1 | + · · · + (i − 1)|p∗
i−1 − p∗∗

i−1|

+ i

∣∣∣∣∣∣
⎛
⎝1 −

∑
j �= i

p∗
j

⎞
⎠−

⎛
⎝1 −

∑
j �= i

p∗∗
j

⎞
⎠

∣∣∣∣∣∣ + (i + 1)|p∗
i+1 − p∗∗

i+1| + . . .

≤ max
j �= i

(
j + 1

gj

)
‖z∗ − z∗∗‖1D,

we obtain

‖p̂ − p‖1E ≤ 2M

α
max
j �= i

(
j + 1

gj

)
((n2 − n1)ε

+L ((n1 − N1)υ̃N1 +n1 − 1 + (N2 − n2)υ̃N1 +n2 +1)) .

As a result, we obtain the following statement.

Theorem 1. Let there exist two sequences {dk} and {d̃k} of positive numbers
which are decreasing if k < i and increasing if k > i such that inequalities (3),
(6) and (8) hold. Then X(t) is exponentially weakly ergodic, has the limiting
mean, say, E(t, 0), and the following bounds of truncation error hold:

‖p(t) − p̂(t)‖ ≤ 4M

α min(di−1, di+1)
((n2 − n1)ε

+L ((n1 − N1)υ̃N1+n1−1 + (N2 − n2)υ̃N1+n2+1))

and

|E(t, 0) − Ê(t, 0)| ≤ 2M

α
max
j �=i

(
j + 1
gj

)
((n2 − n1)ε

+L ((n1 − N1)υ̃N1+n1−1 + (N2 − n2)υ̃N1+n2+1)) ,

for any t ≥ 0.
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4 Conclusion

In this paper we have obtained truncation bounds of two-sided approximations
for a class of Markovian queueing models with batch arrivals and group services.
The development of methodology for other classes of inhomogeneous Markovian
queues seems to be a promising direction of further research.
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Abstract. Fractional Fokker-Plank kinetic equation is used for simula-
tion of stochastic motion of transmitter and receiver devices in wireless
networks with D2D-communications. The evolution equations for disper-
sion of signal-to-interference ratio value and for normalized SIR average
value as an indicator of stability of D2D connection are derived with the
use of this kinetic equation. Some numerical results are presented.

Keywords: D2D communication · Wireless network · Fractal stochastic
motion · Kinetic evolution equation · Signal-to-interference ratio · SIR ·
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1 Introduction

The telephone industry was one of important application of queuing theory from
its emergence at the beginning of the 20th century [1] through its development
connected, among other things, with the solution of problems in communication
networks [2–4] to its new application in modern telecommunications networks,
5 Generation networks (5G) [5]. Traditionally in telecommunications networks
the main task is to distribute the network resource (in 2G or 3G networks –
fixed communication channels, in modern 4G or 5G networks – bandwidth,
data rates, radio frequencies for wireless communication networks) between users
(subscribers, devices and applications transmitting data). In terms of queuing
theory, the network resource is modeled as devices, and users who request the
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resource as input flow of the queuing system. In most cases in so-called mul-
tiservice networks [6–9]) it is necessary to take into account the heterogeneous
incoming request flows with different resource requirements of fixed volume for
different types of requests. For modern networks, flows with resource require-
ments of random volume [10–12] should be considered, with either discrete or
continuous and even changing in time resource requirements [11–14]. A separate
task here is to model the input flow, which for the 5G networks is associated with
a random event flow implemented as a non-equidistant time series. A random
value here is the volume of resource requirement to service the request. In mod-
ern wireless networks [5,15,16], the amount of network resource (bandwidth of
radio frequencies in GSM and UMTS networks, the number of physical resource
blocks in LTE, LTE-A, WIMAX networks) allocated for data transmission by a
wireless device depends significantly on the total interference, which is created
by other devices transmitting data at the same radio frequency. In this case, the
power of the interfering signal from each such device is a function of the dis-
tance between the interfering transmitter and the signal receiver, which change
the location due to the mobility of users in the wireless networks. Thus, in order
to estimate the resource requirement for data transmission between the trans-
mitter and receiver, it is necessary to take into account the mobile user traffic
patterns and be able to model the trajectories of their movement. Because of lack
of experimental data, concerning to random moving in a public place, one should
considered different models of variation of the distance between devices: from
regular straight line motion to chaotic motion over fractal structure. Accord-
ing to [17,18] the commonly used mobility models in Mobile Ad hoc Network
are two variants of the Random Waypoint model, namely the Random Walk
model and the Random Direction model, Brownian Motion, more complicated
Jump Brownian Motion [19] and Lévy Flight [20]. In this paper following by
our previous works [21,22], we consider a fractal random walk of the transmitter
and receiver in the model of D2D wireless communication. Fractal motion is
characterized by spatial correlation between sequence of coordinates of moving
points. Hence if we need to describe the effect of long term spatial correlation
between the moving points, the non-local integrodifferential equation of evolu-
tion of point coordinates distribution function can be used as a mathematical
model. So the equations with fractional derivatives are the natural instruments
to analyze this effect, because they can be presented as integral conversions with
non-local singular kernels.

2 A Fractal Random Walk Model

We shall use the following notations. Let α is an order of fractional derivative.
We shall consider a case, when 0 < α < 1. The value of fractal derivative is
a parameter of the concrete task. This value could be estimated by method,
described in [23].

The fractional order derivative has a different interpretations (see e.g. [24]).
It can be considered in the senses of Riemann-Liouville, Riesz-Feller, Caputo-
Gerasimov, Grunwald-Letnikov and others. For its existence, the function f is
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required to belonged to Lp, p > 1 class of the variable x. For example, a symmet-
rical Riesz-Feller derivative on section [a; b] (in the case of normalized random
variable this section is [0; 1]) is represented by the formula

∂2αf(x)
∂x2α

=
1

2 cos πα

((
D2α

a+f
)
(x) +

(
D2α

b−f
)
(x)

)
, (1)

where

(
D2α

a+f
)
(x) =

1
Γ (m − 2α)

dm

dxm

∫ x

a

f(y) (x − y)m−2α−1
dy ,

(
D2α

b−f
)
(x) =

(−1)m

Γ (m − 2α)
dm

dxm

∫ b

x

f(y) (y − z)m−2α−1
dy,

m = [Re(2α)] + 1.

(2)

If 0 < α < 1, then m in (2) can be equal to 1 or 2. Let us consider a case
m = 1. Then definitions (2) are rewritten as

(
D2α

a+f
)
(x) =

1
Γ (1 − 2α)

d

dx

∫ x

a

f(y)
(x − y)2α dy ,

(
D2α

b−f
)
(x) =

−1
Γ (1 − 2α)

d

dx

∫ b

x

f(y)
(y − x)2α dy

(3)

and for the case of normalized values x ∈ [0; 1] we have

∂2αf(x)
∂x2α

=
1

2Γ (1 − 2α) cos πα

d

dx

(∫ x

0

f(ξ)
(x − ξ)2α dξ −

∫ 1

x

f(ξ)
(ξ − x)2α dξ

)

. (4)

If m = 2, instead of (4) we have

∂2αf(x)
∂x2α

=
1

2Γ (2 − 2α) cos πα

d2

dx2

(∫ x

0

f(ξ)
(x − ξ)2α−1 dξ+

∫ 1

x

f(ξ)
(ξ − x)2α−1 dξ

)

.

(5)
The expressions (4) and (5) will be used below.
We suppose, that evolution equation for distribution function density (DFD)

of coordinates differences obeys to fractional Fokker–Planck equation with spa-

tial derivative of the 2α order. Let X(t) = X(0)+
t∑

k=1

xk, Y (t) = Y (0)+
t∑

k=1

yk is

a trajectory coordinates for a certain devise in a discrete moment of time t, and
{xk, yk} is a pare of independent coordinate differences for the time step k. We
suppose, that values {xk, yk} vary independently, but all of belong to a certain
fractal set.

Plan of our investigation is following. First of all we construct ensemble of
trajectories on various fractal sets. For each ensemble realization we calculate the
value of non-linear functional signal-to-interference ratio (SIR) for an arbitrary
pare of transmitter and receiver. We obtain also theoretical formulas for evolution
of average over ensemble SIR value and evolution of SIR dispersion due to kinetic
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equation. These equations give us the instrument to analyze the evolution of
indicator of connection stability, equals to the ratio of average SIR to its standard
deviation. If this ratio less then unit, the connection is unstable even if the
average value of SIR is more, then lower limit, needed for communication. We
present some numerical illustration of this situation.

3 Kinetic Approach to Random Functional Analysis

The method of generation of a trajectory of a random process as a random walk
on a fractal set was proposed in [23]. In this work the Fokker-Planck equation
with fractional derivatives as model of an evolution of the distribution function
which floats on such sets was used. Now we describe this method in brief.

At first, we suppose, that the motion of each spatial coordinate does not
depend on each other. Although this assumption is somewhat artificial, it can
be met with small movements. Then the evolution equation in one-dimensional
coordinate space can be considered as a basic model. This equation has the form:

∂f(x, t)
∂t

+
∂ (u(x, t)f(x, t))

∂x
= B(t)

∂2αf(x, t)
∂x2α

, (6)

where f(x, t) is a continuously differentiable function of coordinates and time,
u(x, t) is so-called drift velocity, which was defined in [25] as the average speed
of mutual two-dimensional distribution

u(x, t)f(x, t) =
∫

F (x, v, t)vdv.

In the last formula the integration is performed over the entire domain of
walk with taking into account the boundary conditions. Nonnegative diffusion
coefficient B(t) is determined by the formula (see [23,25])

B(t) =
1
2

dλ2

dt
− covx,u(t),

λ2(t) =
∫

(x − x̄(t))2f(x, t)dx,

x̄(t) =
∫

xf(x, t)dx.

(7)

The values of drift and diffusion are treated to be known from the experi-
mental data. The typical values were presented in [22,26].

Now we must note, that kinetic equation (6) in a finite region is not valid. The
thing is that non-negative DFD f(x, t) for all time moments t must be normalized
to unit, but the Eq. (6) does not conserve this property. Let us consider this
situation in detail. If we suppose, that f(0, t) = f(1, t) = 0 (zero boundary
conditions), then after integrating by x we obtain from (6), that

1∫

0

∂2αf(x, t)
∂x2α

dx = 0.
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If α is digit, this equality is valid because of boundary conditions. In general
case with the use of definition (4) or (5) we find, that this equality is equivalent
to

1∫

0

(f(x, t) + f(1 − x, t))
dx

x2α
= 0.

But the last equality can not be satisfied, excluding the case f(x, t) ≡ 0. Only
if the integration region is (−∞, +∞), the problem is absent. Thus the boundary
problem can not be solved correctly in the frame of this approach. Nevertheless
if we are interested in fractal motion during relatively short time interval, the
boundary effects are negligible and we can consider the infinite spatial interval.

So if we now want to analyze any functional

V (t) =

∞∫

−∞
v(x)f (x, t) dx, (8)

where v(x) is a function, which average value we are interested in, its derivative
over the time is obtained from the Eq. (6) with the use of (4) or (5). For brevity
we consider the first case. Then we have

dV (t)
dt

=

∞∫

−∞
v(x)

∂f (x, t)
∂t

dx

=

∞∫

−∞
v(x)

(
−∂ (u(x, t)f(x, t))

∂x
+ B(t)

∂2αf(x, t)
∂x2α

)
dx

=

∞∫

−∞
v′(x)

(
u(x, t)f(x, t) − B(t)

Z(α)
G(x, t)

)
dx,

Z(α) = 2Γ (1 − 2α) cos πα,

G(x, t) =

x>0∫

−∞

f(ξ)
(x − ξ)2α dξ −

+∞∫

x

f(ξ)
(ξ − x)2α dξ.

(9)

Thus the evolution of a functional (8) can be represented through the average
flow of corresponding values. This method is applied further for average SIR
evolution analysis.

4 The Average SIR and Dispersion

Now we consider the functional, which depends on the distance between mov-
ing points, where their provisions together forms an ensemble of trajectories
of a random process. Admit that the coordinates (Xi(t), Yi(t)) determines the
position of the i-th point of trajectory on a discrete step in two-dimensional con-
sidered region. In the accidentally moving bodies system the number of points
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(i.e. paths) is equal to N . The distance between points on two trajectories in
2D-space defined by formula:

r2ij(t) = (Xi(t) − Xj(t))
2 + (Yi(t) − Yj(t))

2
. (10)

Let us denote two-points communication function, which depends on the
distance between that points as ϕij ≡ ϕ (rij). In case of tasks of communication
between the transceivers the power function is usually chosen. Assume that

ϕij ≡ ϕ (rij) = 1/r2ij . (11)

Select a specific pair of points, for example, 1 and 2. The SIR functional
between a given pair of points at each time moment is determined by:

S (r1, r2) =
ϕ12

N∑

j=3

ϕ1j

. (12)

The sum in the denominator of formula (12) is the average value of the
function coupling with the first point multiplied by N which is defined as

U (r, t) =
∫

ϕ (|r − r′|) f (r′, t) dr′, (13)

where f (r′, t) is the density distribution of distances between points in the
present field. Let us introduce the distance r = r12 and then consider all other
points in the second particle’s reference system. The quality of communication
between the two points is determined by the average value of the functional
S(r, t) due to the arbitrary pair of points. With the accuracy of o(1/N) for-
mula (12) can be represented as

S(r, t) =
ϕ(r)

NU(r, t)
. (14)

The average value of (14) over ensemble is defined as

q(t) =
∫

S(r, t)f(r, t)dr. (15)

The SIR dispersion for ensemble of trajectories is defined by formula

σ2(t) =
∫

(S(r, t) − q(t))2 f(r, t)dr. (16)

We present below the results of modeling the mean SIR q(t), the standard
deviation of SIR σ(t), and the value

μ(t) =
q(t)
σ(t)

. (17)

The question of variability of the average value of SIR with non-stationary
trajectory of subscribers emerges. To resolve the matter, the corresponding evo-
lution equation should be obtained. It is the main goal of this paper.
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5 The SIR Dispersion Evolution Equation

Now we derive the evolution equation of the average value of the functional (14)
in the frame of the model equation (6). Let us consider in detail one-dimensional
case. Because of non-linearity of functional (15) with respect to DFD f(x, t) we
construct sufficiently complex expression. From (14)–(15) we have

N
dq

dt
=

∞∫

−∞

(
ϕ(x)

U(x, t)
∂f(x, t)

∂t
− ϕ(x)

U2(x, t)
∂U(x, t)

∂t
f(x, t)

)
dx. (18)

Substituting the expression of derivative ∂f(x,t)
∂t from (6), we obtain in a same

way as (9)

∞∫

−∞

ϕ(x)
U(x, t)

∂f (x, t)
∂t

dx =

∞∫

−∞

(
u(x, t)f(x, t) − B(t)

Z(α)
G(x, t)

)
· ∂

∂x

(
ϕ(x)

U(x, t)

)
dx.

(19)
Analogously

∂U (x, t)
∂t

=

∞∫

−∞
ϕ (|x − y|) ∂f (y, t)

∂t
dy

=

∞∫

−∞

∂ϕ (|x − y|)
∂y

(
u(y, t)f(y, t) − B(t)

Z(α)
G(y, t)

)
dy

= − ∂

∂x

∞∫

−∞
ϕ (|x − y|)

(
u(y, t)f(y, t) − B(t)

Z(α)
G(y, t)

)
dy.

(20)

Finally we transform the expression (18) to the following form:

N
dq

dt
=

∞∫

−∞

(
u(x, t)f(x, t) − B(t)

Z(α)
G(x, t)

)
∂

∂x

(
ϕ(x)

U(x, t)

)
dx +

∞∫

−∞

ϕ(x)f(x, t)
U2(x, t)

· ∂

∂x

⎛

⎝
∞∫

−∞
ϕ (|x − y|)

(
u(y, t)f(y, t) − B(t)

Z(α)
G(y, t)

)
dy

⎞

⎠ dx.

(21)
This equation nonlinearly depends on the distribution function of the points,

i.e. on the trajectories of points density of the ensemble. Consequently, in order
to assess the contributions of each of the members in relation to a particular
practical situation, the numerical distribution statistics simulation, where sta-
tistics are directly related to the S(r, t) and q(t) distribution, is an urgent task.
Equation (21) is a general model of the evolution of average SIR values in approx-
imation of Fokker–Planck equation. We see, that drift u(x, t) and diffusion B(t)
act on average SIR separately.
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From (16) it follows, that

dσ2(t)
dt

= −2q(t)
dq(t)
dt

+ 2
∫

S(x, t)
∂S(x, t)

∂t
f(x, t)dx +

∫
S2(x, t)

∂f(x, t)
∂t

dx.

(22)
The first term in (22) is taken to be known from (21).
From (14) and (20) it follows, that

∂S(x, t)
∂t

= − ϕ(x)
NU2(x, t)

∂U(x, t)
∂t

=
ϕ(x)

NU2(x, t)
· ∂

∂x

∞∫

−∞
ϕ (|x − y|)

(
u(y, t)f(y, t) − B(t)

Z(α)
G(y, t)

)
dy,

so that the second term in (22) takes the form

2
∫

S(x, t)
∂S(x, t)

∂t
f(x, t)dx =

2
N2

∫
ϕ2(x)

U3(x, t)

·
⎛

⎝ ∂

∂x

∞∫

−∞
ϕ (|x − y|)

(
u(y, t)f(y, t) − B(t)

Z(α)
G(y, t)

)
dy

⎞

⎠ f(x, t)dx.
(23)

The third term in (22) is transformed with the use of (9):
∫

S2(x, t)
∂f(x, t)

∂t
dx

= 2

∞∫

−∞
S(x, t)

∂S(x, t)
∂x

(
u(x, t)f(x, t) − B(t)

Z(α)
G(x, t)

)
dx

=
2

N2

∞∫

−∞

(
ϕ(x)

U2(x, t)
dϕ(x)

dx
− ϕ2(x)

U3(x, t)
∂U(x, t)

∂x

)

·
(

u(x, t)f(x, t) − B(t)
Z(α)

G(x, t)
)

dx.

(24)

This formulas (21), (23), (24) determine the evolution of SIR dispersion in
one-dimensional case. For random fractal walk in square one should replace
∂
∂x → gradx, u(x, t) → u(x, y, t).

6 Some Numerical Examples

We shall consider two situations: (1) a relatively small average SIR value and
μ(t) > 1 showing a sufficiently good quality of communication, in contrast to
situation (2), when a large average SIR value with a small μ(t) correspond to a
significantly lower connection reliability. So the value of μ(t) could be treated as
an indicator of connection reliability for D2D wireless network communication.
The time periods, when μ(t) > 1, are the periods with stable connection, and it
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is interesting to obtain the distribution function of μ and also the distribution
function of periods with stable or unstable D2D connection. For this purpose
we need to analyze the evolution equation for q(t) and σ(t). But theoretical
formulas are complicated. So we may use direct modeling of SIR and statistics,
connecting with them.

The typical example of trajectories of points are shown in Fig. 1. The trajec-
tory, according to the method, developed in [23,26], was obtained for the fractal
walk on a two-dimensional ternary Cantor set (Fig. 1).

Fig. 1. Example of 10 trajectories of points on the ternary Cantor set in R2

The corresponding SIR trajectory for an arbitrary pair of subscribers with
their total number N = 10 is shown in Fig. 2. The values of SIR are presented
on the vertical axis of this figure, horizontal axis corresponds to a time moment
with a unit discrete step. The critical value of connection is equal to s∗ = 0.01. In
this example the average SIR over the generated sample is equal to 0.05, but the
value of μ = q/σ = 0.7. It appears, that in this case the SIR trajectory is below
the critical level during 30% of time. For this case 2α = 1.262 (Cantor set).

Another example is presented at Fig. 3 for Menger set, 2α = 1.893. Here the
average value of SIR is less then in previous case, but indicator μ is relatively
large: q = 0.03, μ = 3. The drift and diffusion parameters in (6) are the same
in both cases. We see, that in the last case the connection for this sample of
trajectory is without any break down.



Construction of the Stability Indicator of Wireless D2D Connection 333

Fig. 2. Example of SIR trajectory on ternary Cantor set in R2 in various time discrete
points; the case of unstable connection

Fig. 3. Example of SIR trajectory on ternary Menger set in R2 in various time discrete
points; the case of stable connection

7 Conclusion

Thus, in this paper the equations of evolution of new indicators of reliability
of D2D connections in the conditions of fractal random walk of subscribers are
obtained. Since the investigated SIR functional is non-linear, the equations of
evolution of the moments of its distributions turn out to be very cumbersome
and have meaning only as constructions that make it possible to influence in
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a meaningful way certain effects associated with the transfer in the framework
of the Fokker-Planck fractional model equation. A more convenient method of
analysis is the generation of an ensemble of trajectories that allows numerical
simulation of the evolution of the distribution function SIR and the moments of
this distribution.
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Abstract. In this paper a decomposition of a solution of balance equa-
tions for intensities of flows departing from nodes of the Jackson network
is constructed. Procedures of the decomposition are based on a definition
of classes of cyclically equivalent nodes and on a construction of acyclic
directed graph consistent with the Jackson network and these classes.
Then classes of cyclically equivalent nodes are arranged in the acyclic
graph accordingly with maximal ways lengths from the source node to
all others nodes classes. An algorithm of maximal ways lengths calcu-
lation is represented as an analogy of the Floyd-Steinberg algorithm of
minimal ways lengths calculation.

Sets of independent stationary Poisson flows departing from nodes of
Jackson network are enumerated. These sets are defined by non-return
sets in the acyclic directed graph which is composed of cyclic equiv-
alence classes of the Jackson network nodes. Special algorithm of an
enumeration of non-return nodes sets is constructed. This algorithm is
constructed accordingly with partial order of the equivalence classes in
the acyclic directed graph of the equivalence classes of nodes.

Keywords: The Jackson network · A system of balance equations · A
class of cyclic equivalent nodes · A directed graph · A non-return set of
nodes

1 Introduction

Balance equations play a significant role in mathematical economics, in queuing
theory, in calculation of complex chemical processes etc. The balance equations
appear in a linear economic model (Leontief model) and can be used for analysis
and planning activities of enterprises, industries and the economy as a whole. For
an inter branch a balance of production and distribution of products is character-
istic detailed analysis of the production relationships between industries in supply
of raw materials, fuel, auxiliary materials, electricity, services of cargo transport
and logistics. Inter-industry linkages are usually in the form of a chess table of
c© Springer International Publishing AG 2017
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costs and distribution of output by sectors of the national economy, and costs are
shown in columns, and the distribution of products in the rows of the table.

In economics mathematical methods are the most important and sometimes
the only possible tool for the study of complex economic objects and the con-
struction of hypotheses. Mathematical methods and models used in practice,
economic decisions are mainly used: to aggregate the available information and
presenting it in convenient form for analysis; to identify key trends, their charac-
teristics and forecasting; to conduct model experiments; to optimize the process
of selecting the best solutions; for choosing the best option solutions. According
to the complexity of mathematical models of economic objects and phenomena
can be conditionally divided into several main types.

1. Functional models, which express, as a rule, direct dependencies between the
known (exogenous) and the unknown (endogenous) variables. Necessary to
build the model parameters are determined on the basis of normative data
or statistical methods. Models of this type, based on economic models, sta-
tistical data are used for in-depth analysis of the processes of socio-economic
development. With their help it is the forecasting of the main indicators of
production, consumption, demographic projections and forecasts of develop-
ment of science, technology and the environment.

2. The model, expressed through systems of equations for the endogenous vari-
ables, express usually balance relations between various economic indicators
and are used for finding balanced planning decisions (e.g., model of inter
branch balance). Their application is quite extensive, for example in plan-
ning.

3. Models of the optimization type. The major part of such models is also a
system of equations or inequalities endogenous variables. It is necessary to
find a solution to this system, which would give the optimum (i.e. maximum
or minimum depending on setting specific tasks), the value of some economic
indicator. The basic models of this type are of a linear programming problem.

4. Simulation models occupy a special place in the list of model types and are
typically used in the composition of the man-machine games or simulation
systems. This is one of the most powerful tools of mathematical modelling
used in the analysis of the functioning and synthesis of structures of difficult
systems, the management of which is associated with decision-making under
uncertainty. They give rational and complete description of the real relations
between economic operators. The simulation method is applied primarily to
dynamic processes, the study of which in other ways is extremely difficult.
The application area of simulation methods is very wide: from studies of
the processes of management of ecological communities, ecological systems,
to solve the problems of complex automatic control devices, design technol-
ogy design, problem solving, resource management, research, queuing systems
and networks, historical processes, etc. Especially the role of simulation in the
experimental validation of proposals related to structural changes, moderniza-
tion of economic mechanisms and other improvements that are not amenable
to formal quantitative description. Simulation models are primarily very
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accurate reflection of the economic process or phenomenon, therefore the
resulting mathematical problems are quite complex, they contain non-linear
and stochastic (probabilistic) dependencies and variables. The main way of
solving such problems lies in using in a special way ordered alternative cal-
culations on the PC.

5. Systems and complexes of interrelated models relating to the above types.
The development of systems models to accurately reflect the various aspects
of planning and operation of economic objects. The problem of finding agreed
solutions in the models is a serious mathematical challenge.

The balance are closely connected with the transportation problem of linear
programming. Transportation problem is a mathematical problem of finding the
optimal distribution of supply homogeneous goods (cargo, medium) between
points of departure and destination under the given numerically expressed
cost (costs, expenses) for transportation. The general solution of the initially
described methods of linear algebra like linear programming problem of a spe-
cial kind. The transportation problem can be represented in writing in the form
of a rectangular table.

This problem was formalized by the French mathematician Gaspar-Monge
in 1781. According to Alexander Schrijver, the first who studied the transporta-
tion problem mathematically, was A. N. Tolstoy of the USSR. In 1930 he pub-
lished his work on finding the minimal total mileage in a train carriage, where
it was used redistributive cycles. According to Gass, the task of this type in
western literature was first staged Hitchcock in 1941 and discussed in detail by
Koopmans, who worked as a member of the joint Committee of transport during
the Second world war, when a shortage of cargo vessels was a critical bottleneck.

As a problem of linear programming (specification of the simplex method), it
first was considered by John Danzig. Other the process of calculation (“method
of simultaneous solution of direct and dual problems”) was proposed by Ford and
Fulkerson in 1956. The way of solving the transportation problem (method of
potentials) in the USSR was published by Kantorovich and Gavurin in 1949 and
earlier in their book “Linear programming, its applications and generalizations”.
George Danzig refers to the publications of Kantorovich in 1939 and 1942 and
the subsequent article of 1949 containing, as he believed, in a complete theory of
the problem of transportation, together with incomplete computing algorithm,
written in practical language. Unfortunately, in his view, these works were little
known in the USSR and beyond. In contrast, Kantorovich himself in his memoirs,
1987 argued that the university immediately published his article and it was sent
to fifty people’s commissariats. According to Danzig, the computer program of
the simplex method for solving transportation problem was first developed in
1950 for the machine, SEAC, and the program for the General simplex method in
1951 under the leadership of A. Order from the U.S. air force and A. J. Hoffman
of the Bureau of standards.

The basis of the balance equations solution is the algorithm of material and
heat balance of the network for example a column. Thus vapor-liquid equi-
librium, the kinetics of mass transfer and hydrodynamics of streams create a
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separate complicated task. The use of different methods of the description of
phase equilibrium, kinetics and hydrodynamics leads to a change in certain fac-
tors or dependencies in balance sheet ratios. But does not change the general
algorithm for the solution of the balance equations. The convergence conditions
are subject to change, if not to be violated. Diverse solution methods for equa-
tions of balance attest to the difficulties of developing a universal algorithms that
guarantee the convergence of the different methods of descriptions of individual
phenomena. It is possible to spread this approach to analysis and calculation of
flow intensities in protein networks which consist of a large number of proteins.

In this paper a decomposition procedure of balance equations solution is
considered. Such consideration is closely connected with balance equations in
the queuing theory [1,2]. The graph theory balance equations representation is
based on the articles [3–6] in which Poisson flows in open (Jackson) networks
and their canonical decomposition are analysed. Sets of independent stationary
Poisson flows departing Jackson network nodes are connected with non-return
sets and are based on the Burke theorem [7,8]. Analysis of some queuing networks
with feedbacks are considered in [9–14].

2 Formulation of Problem

In this paper opened Jackson queuing network S with Poisson input flow which
has intensity λ0 and consists of nodes k = 0, 1, . . . ,m, is considered. Customers
motions in this network are defined by route matrix Θ = ||θi,j | |mi,j=0, where
θi,j is a probability of customer transition after service in node i to node j,
θ0,0 = 0, node 0 is a source of customers arriving the network and a run-off
for customers departing the network. In the node i there are li ≤ ∞ servers,
their service times are independent and have exponential distribution with the
parameter μi, i = 1, . . . , m. In each node i a queue is unrestricted and customers
are served accordingly with discipline FIFO.

Assume that the route matrix Θ = ||θi,j | |mi,j=0 is indecomposable, that is for

∀ i, j ∈ {0, . . . , m} ∃ i1, . . . , ir ∈ {0, . . . , m} : θi,i1 > 0, θi1,i2 > 0, . . . , θir,j > 0.

Then for fixed λ0 > 0 the system of linear algebraic equation for intensities of
flows departing the network nodes

λk = λ0θ0,k +
m∑

t=1

λtθt,k, k = 1, . . . , m (1)

has single solution (λ1, . . . , λm) with λ1 > 0, . . . , λm > 0, [2, p. 13].
The system (1) is called the system of balance equations and plays large role

in a formulation and a proof of the Jackson product theorem [1], widely used
in the queuing theory. If λi < liμi, i = 1, . . . , m, then discrete Markov process
(n1(t), . . . , nm(t)), t ≥ 0, describing numbers of customers in the network nodes
has limit distribution (independent on initial conditions) represented in the form
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m∏

i=1

pi(ni), where pi(ni) is limit distribution of customers number in isolated

li -server queuing system with Poisson input flow with an intensity defined by
λ0, . . . , λm.

In [3] the Jackson network is confronted with directed graph G which has
edges set corresponding positive elements of the route matrix. A concept of
non-return set of graph nodes G is defined. In this paper graph G is factorized
by a relation of cyclic equivalence and sets of independent stationary Poisson
flows departing network nodes are enumerated. A decomposition of a solution
of balance equations (1) into sub systems of balance equations corresponding
classes of the cyclic equivalence is made and an existence and an uniqueness of
their solutions is proved.

A problem of a factorization of the graph G by a relation of its nodes cyclic
equivalence is considered. An accelerated algorithm of this problem solution
based on sequential introduction of new nodes into directed graph and a recal-
culation of its equivalence classes and partial order between them is represented.

3 Decomposition of System of Balance Equations

3.1 Construction of Directed Graph Corresponding Jackson
Network and Classification of Its Nodes

Construct directed graph G by the route matrix as follows. Define the nodes set
U of the graph G by the equality U = {0∗, 1, . . . , m, 0∗∗} and introduce zero-one
matrix A = ||ai,j ||i,j∈U by the equalities

a0∗,0∗ = a0∗∗,0∗∗ = 1, a0∗,0∗∗ = a0∗∗,0∗ = 0, ai,0∗ = a0∗∗,i = 0, i = 1, . . . , m,

ai,j = 1 ⇔ θi,j > 0, a0∗,i = 1 ⇔ θ0,i > 0, ai,0∗∗ = 1 ⇔ θi,0 > 0, i, j = 1, . . . , m.

Then the set V of the graph G edges satisfies the equalities V = {(i, j), i, j ∈
U : ai,j = 1}.

On the set U define the partial order i � j if in the graph G there is a way
from the node i to the node j. If the route matrix Θ is indecomposable then we
have the following statement.

Remark 1. It is obvious that the condition of the matrix Θ in decomposability
is equivalent the following relation for the graph G nodes:

0∗ � i � 0∗∗, i = 1, . . . , m. (2)

On the nodes set U define the relation of the cyclical equivalence i ∼ j ⇔
i � j, j � i. Further put i the class of nodes cyclically equivalent in the graph G
to the node i. Denote U the set of equivalence classes where 0∗ = {0∗}, 0∗∗ =
{0∗∗}. On the set U it is possible in natural way to spread partial order �:

0∗ � i � 0∗∗, i ∈ U. (3)
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Connect classes i, j ∈ U by an edge if there are nodes p ∈ i, q ∈ j, so that
the edge (i, j) ∈ G. It is simple to check that obtained factor-graph G is acyclic.

Remark 2. The condition (3) means an absence of sub networks of the network
S which customers do not arrive and an absence of sub networks from which
customers depart (and so it is possible their permanent accumulation).

3.2 Calculation of Maximal Ways Lengths in Acyclic Directed
Graph

Consider now a decomposition of the balance equations system (1) based on equiv-
alence classes in the set U. This decomposition procedure is based on a concept of
maximal ways lengths in between the class 0∗ and other classes in the graph G.
In [15] an algorithm of a calculation of maximal way length from single maximal
(by partial order relation �) node 0 to any other nodes of acyclic directed graph
is constructed. This algorithm is an analogy of the Floyd-Worshall algorithm of a
calculation of shortest ways lengths between graph nodes [16–18].

Consider acyclic directed graph T with nodes set UT and edges set VT =
{0, . . . , mT }. Assume that in the graph T for any node i ∈ UT there is a way
from the node 0 to the node i. For any node i ∈ UT define maximal way length
li from the node 0 to the node i, l0 = 0.

To construct a calculation of li, 1, . . . , mT , introduce the matrix D1 =
||d1i,j ||mT

i,j=0 with d1i,i = 0, i = 0, . . . , n, d1i,j = ∞ if (i, j) /∈ VT , d1i,j = 1 if
(i, j) ∈ VT . So if a pair of nodes is not connected by an edge then d1i,j = ∞.

Construct an analogy of the Floyd-Steinberg algorithm to calculate a matrix
of maximal ways lengths between nodes of acyclic directed graph T. Denote
Dk = ||dki,j ||mT

i,j=0, k = 0, . . . , n in which dki,j is maximal length of ways between
the nodes i, j passing through intermediary nodes 0, 1, . . . , k if such ways exist.
But if such ways do not exist then dki,j = ∞. It is simple to prove the following
statement.

Theorem 1. Matrices Dk = ||dki,j ||mT
i,j=0, k = 2, . . . , mT satisfy recurrent rela-

tions

dki,j = max(dk−1
i,j , dk−1

i,k + dk−1
k,j ) if max(dk−1

i,j , dk−1
i,k + dk−1

k,j ) < ∞, (4)

else dki,j = min(dk−1
i,j , dk−1

i,k + dk−1
k,j ). (5)

The matrix Dm = ||dmi,j ||mT
i,j=0 define maximal lengths of ways between the

graph T nodes if such ways exist. In a case of an absence of such ways cor-
risponding matrix elements equal the infinity.

3.3 Conditional Solution of Balance Equations Sub Systems

Using this algorithm it is possible to calculate maximal way length L(i) from
the node 0∗ to arbitrary node i in the graph G. Denote R = max(L(i) : i ∈ U),
then from [15, Theorem 1] we have that for any s, 1 ≤ s ≤ R, there is the
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equivalence class i ∈ U satisfying the equality L(i) = s. And if (i, j) is an edge
in the graph G then L(i) < L(j), L(0∗) = 0.

For any class i ∈ U extract from the system (1) the sub system

λk =
∑

j: L(j)<L(i)

∑

t∈j

λtθt,k +
∑

t∈i

λtθt,k, k ∈ i. (6)

Introduce an auxiliary node 0i and denote

λ0i =
∑

j: L(j)<L(i)

∑

t∈j

λt

∑

k∈i

θt,k, (7)

θ0i,k =

∑
j: L(j)<L(i)

∑
t∈j λtθt,k

λ0i
, θ0i,0i = 0,

θk,0i =
∑

j: L(j)>L(i)

∑

t∈j

θk,t = 1 −
∑

t∈i

θk,t, k ∈ i. (8)

Then the system (6) may be rewritten as follows

λk = λ0iθ0i,k +
∑

t∈i

λtθt,k, k ∈ i. (9)

Theorem 2. For fixed λ0i > 0 the system (6) has single solution (λk, k ∈ i)
with all positive components.

Proof. The system (9) is defined by the matrix ||θk,t||k,t∈i∪0i which is stochastic
in an accordance with Formulas (7) and (8) (all its elements are non negative
and sums of each line elements equal one). Consequently from Formula (3) this
matrix is indecomposable. Consequently from [2, p. 13] we obtain Theorem 2
statement.

3.4 Decomposition of System (1) Solution

To calculate the vector (λk : k ∈ i) from Formula (7) it is necessary to assume
that all λt : t ∈ j, L(j) < L(i) are known. As single equivalence class in U
satisfying the equality L(i) = 0, is the class 0∗ then the value λ0∗ = λ0 is
known. Consequently from Theorem 2 it is possible to solve systems (9) for all
i : L(i) = 1.

Knowing λt : t ∈ j, L(j) < 2, it is possible to calculate now all λk : k ∈
i, L(i) = 2. Analogously knowing all λt : t ∈ j, L(j) < p < R, we may calculate
all λk : k ∈ i, L(i) = p. So it is possible to divide sequentially by p the system
(1) into sub systems (9) and solve them recurrently.
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4 Independent Stationary Poisson Flows in Jackson
Network

4.1 Representation of Independent Stationary Poisson Flows
by Non-return Sets of Nodes

Assume that in the Jackson network S the ergodicity condition λi < liμi, k =
1, . . . , m, is true and initial distribution of customers numbers in network nodes
coincides with stationary one [1]. Call a set of nodes W ⊆ U, 0∗ ∈ W, non-
return if from any node which does not belong W there is not any edge to node
belonging W. Then all flows departing nodes of non-return set W and arriving
nodes which do not belong the set W are independent and Poisson [3]. So an
enumeration of all non-return sets W is of large interest.

4.2 Description of Non-return Sets by Classes of Cyclically
Equivalent Nodes

Lemma 1. Any non-return set W including node k ∈ i includes all nodes of
equivalence class i also.

Proof. Indeed assume that nodes k, t ∈ i belong non-return set W then in the
graph G there is a way from node t to node k, completely passing through the
class i. This way contains an edge (t′, k′) so that t′ /∈ W, k′ ∈ W. But then the
set W is not non-return. A contradiction proves Lemma 1 statement.

Lemma 2. For any i ∈ U an aggregation Ui of all equivalence classes j : 0∗ �
j � i is non-return set. Any non-return set W which contains equivalence class
i contains the set Ui also.

Proof. Assume that Ui is not non-return set and so there is a class k ∩ Ui = ∅
and an edge from k to Ui. Then k ⊆ Ui and this contradiction proves that the
set Ui is non-return.

Assume now that non-return set W contains a class i and there is a class
k ⊆ Ui which does not belong the set W. Then from any node of the class k
(which does not belong the set W ) there is a way γ to arbitrary node of the
class i (belonging the set W ). Consequently the way γ has an edge (t′, r′) : t′ /∈
W, r′ ∈ W. This contradiction proves that Ui ⊆ W.

Denote W the set of equivalence classes belonging non-return set W and put
I the set of minimal by partial order � classes in W.

Theorem 3. Any non-return set W may be represented as follows

W =
⋃

i∈W

Ui =
⋃

i∈I

Ui. (10)
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Proof. From the definition of non-return set (in our case finite set) we have that
an aggregation of finite number of non-return sets is non-return also. So any
non-return set W may be represented as follows W =

⋃

i∈W

Ui, that gives the first

equality in Formula (10). The second equality is obtained from the definition of
non-return set Ui.

5 Accelerated Sequential Algorithm of Calculation
of Equivalence Classes and Their Partial Order

The author with his colleagues constructed algorithm of calculation of the set U
and the partial order � on this set [19,20]. This algorithm is based on sequential
including into graph G new node and edges connected with it and recalculation
of the set U of classes and zero-one matrix representing partial order between
them. In numerical experiment with matrix which have dimensionality about few
thousands it is shown that this algorithm is significantly faster (in few orders)
than traditional algorithm based on max-min product of the graph G adjacency
matrix.

Assume that ||di,j ||Ui,j=1 is adjacency matrix of the graph G. Construct a
sequential algorithm of the graph G factorization by the equivalence relation ∼
and zero-one matrix of partial order between equivalence classes.

On the step 0 there is the single node 0∗ creating the single cluster 0∗ and the
clusters set K = {0∗}. Introduce the matrix a = ||a(p,q)||p,q∈K, characterizing
the relation of partial order �: a(i, j) = 1 ⇔ i � j. On the step 0 this matrix is
defined by the equality a(0∗,0∗) = 1.

5.1 Recalculation of Equivalence Classes

Assume that on the step t − 1 we have the set of equivalence classes K and the
matrix a of their partial order. Each class k ∈ K is indexed by maximal number
of its node k ∈ U. Then on the step t for new node t define the sets

P = {k ∈ {1, ..., t − 1} : dt,k = 1}, Q = {k ∈ {1, ..., t − 1} : dk,t = 1}.

For each node i on the step t−1 we have its equivalence class i. Denote by P, Q
the sets of equivalence classes in the sets P, Q relatively and define
KP =

⋃
p∈P{k ∈ K : a(p,k) = 1}, KQ =

⋃
q∈Q{k ∈ K : a(k,q) = 1},

A = KP ∩ KQ, A1 = KP \ A, A2 = KQ \ A, A3 = K \ (A1 ∪ A2 ∪ A), t =
t ∪ {k ∈ k : k ∈ A}

Then new node t and nodes of the set {k ∈ k : k ∈ A} create new equivalence
class t, and the set of classes K is transformed as follows K := (K \ A) ∪ t}.

5.2 Recalculation of Partial Order Matrix

Recalculation of the matrix a on renewed set of equivalence classes K may be
made by the rule:

a(t, i) := 1, i ∈ A1 ∪ t, a(i, j) := 1, i ∈ A2, j ∈ A1 ∪ t,
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a(i, j) := 0, i ∈ A1, j ∈ A2 ∪ t ∪ A3,

a(i, j) := 0, j ∈ A2, i ∈ A3 ∪ t, a(t, i) = a(i, t) := 0, i ∈ A3.

All other components of renewed matrix a coincide with previous ones defined
on the step t−1. The matrix a consequently has the following cell structure (see
Table 1). In the table value 1 in some cells means that all components of these
cells (rectangular submatrices) equal 1, value 0 in some cells means that all
components of these cells equal 0, in all other cells meanings of cells components
on the step t − 1 repeat on the step t. Table 1 show why sequential algorithm
gives so strong acceleration of calculations.

Table 1. Transformation on step t of matrix a defining partial order �.

matrix a classes of A1 class t classes of A2 classes of A3

classes of A1 meanings on step t − 1 0

class t 0

classes of A2 1 meanings on step t − 1

classes of A3 meanings on step t − 1 0 meanings on step t − 1

6 Conclusion

In this paper some algorithms of the graph theory allow to construct as decom-
position of balance equations solution so to describe a class of non-return sets
in the graph characterizing transitions in open queueing network. These algo-
rithms are: the accelerated sequential algorithm of calculation of equivalence
classes and their partial order, the factorization on open network graph by cyclic
equivalence, the conditional solution of balance equations sub systems, the cal-
culation of maximal ways lengths in acyclic directed graph, the decomposition of
balance equations solution, the description of non-return sets by classes of cycli-
cally equivalent nodes. These algorithms may be used in separate graph theory
problems but they may give necessary results for queuing networks only in their
complex.

Now it is possible to put a problem to analyse as queueing networks with
different types of customers so protein networks with different types of matters
moving along them.

Acknowledgments. This paper is supported by Russian Fund for Basic Researches,
project 17-07-00177.
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Retrial Queue M/G/1 with Impatient Calls
Under Heavy Load Condition
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Abstract. In the paper, the retrial queueing system of M/GI/1 type
with impatient calls is considered. The delay of calls in the orbit has
exponential distribution and the impatience time of calls in the system is
dynamical exponential. Asymptotic analysis method is proposed for the
system studying under a heavy load condition. The theorem about the
gamma form of the asymptotic probability distribution of the number
of calls in the orbit is formulated and proved. During the study, the
expression for the system throughput is obtained. Numerical examples
compare asymptotic, exact and simulation based distributions.

Keywords: Retrial queueing system · Impatient calls · Asymptotic
analysis · Heavy load

1 Introduction

Retrial queueing systems (or queueing systems with repeated calls) are mathe-
matical model of real systems, where unserved calls perform repeated attempts
to get a service after a random time. There are such examples in telecommuni-
cation networks, mobile systems, call centres, etc. [1–3].

The first papers about retrial queues were devoted to practical problems and
influence of repeated attempts to telephone traffics [4–7].

The main results and comprehensive description of retrial queues are con-
tained in the books [8,9].

Nowdays, there are many papers devoted to investigations of retrial queue-
ing systems with different structure and to solutions of different practical and
theoretical problems. But the majority of studies are performed numerically, via
computer simulation [9–11] or using matrix methods [12–14] and etc. Analyti-
cal results were obtained for only simplest models, e.g. a system with Poisson
arrivals or the exponential distribution of service law [8].

Asymptotic and approximate methods were applied in the papers [8,15–18]
and etc. Characteristics of performance of retrial queueing systems with Poisson
input process under heavy, light loads and long delay were also studied [8,18–21].
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Retrial models with impatience was considered by Cohen [5], Falin [8], Yang
[22], Krishnamoorthy [23], etc. [24–28]. In these papers, the impatience is under-
stood as follows: an arriving call joints the orbit with some probability p and
leaves the system with the probability 1−p. We research a different model which
was not been considered early.

In this paper, we use the asymptotic analysis method, that gives analyti-
cal result for different types of queueing systems and networks, in particular
with non Poisson arrivals [29–31]. We expand the results obtained previously
for retrial queues without loss (patience time equals infinity), where the gamma
form of the probability distribution of number of calls in the orbit under heavy
load limit condition was proved [32,33].

2 Mathematical Model

Let us consider a retrial queueing system of M/GI/1 type with impatient calls.
The structure of the model is presented in Fig. 1.

The input process is Poisson with rate λ. There is one server with the service
time distribution function B(x). If a call arrives when the server is free, the call
occupies it for the service. Otherwise, the call goes to the orbit, where it stays
during a random time distributed exponentially with rate σ. After the delay, the
call makes an attempt to reach the server again. If it is free, the call occupies it,
otherwise the call instantly returns back to the orbit. From the orbit calls can
leave the system after a random time distributed exponentially with dynamical
rate α/i, where i is a number of calls in the orbit at this moment.

Fig. 1. Retrial queue M/GI/1 with impatient calls

Denote the random process that describes the number of calls in the orbit
as i(t), the random process of remaining service time as z(t), and the random
process that defines server states as

k(t) =
{

0, if the server is free,
1, if the server is busy.
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The problem is to find the probability distribution of the number of calls in
the orbit. The process i(t) is not Markovian, therefore we consider the multidi-
mensional process {k(t), i(t), z(t)}. Let us denote the probability distribution of
the process as P0(i, t) = P{k(t) = 0, i(t) = i} and P1(i, z, t) = P{k(t) = 1, i(t) =
i, z(t) < z}. We write the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0(0, t + Δt) = P0(0, t)(1 − λΔt) + P0(1, t)αΔt + P1(0,Δt, t) + o(Δt),
P1(0, z + Δt, t + Δt) = P1(0, z, t)(1 − λΔt) − P1(0,Δt, t)

+P0(1, t)σΔtB(z) + P0(0, t)λΔtB(z) + P1(1, z, t)αΔt + o(Δt),
P0(i, t + Δt) = P0(i, t)(1 − λΔt)(1 − iσΔt)(1 − αΔt)

+P0(i + 1, t)αΔt + P1(i,Δt, t) + o(Δt),
P1(i, z + Δt, t + Δt) = P1(i, z, t)(1 − λΔt)(1 − αΔt) − P1(i,Δt, t)

+P1(i − 1, z, t)λΔt + P0(i, t)λΔtB(z)
+P0(i + 1, t)(i + 1)σΔtB(z) + P1(i + 1, z, t)αΔt + o(Δt),

(1)
where i = 1, 2, . . .

Let Δt → 0 in Eq. (1), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P0(0, t)
∂t

=
∂P1(0, 0, t)

∂z
− λP0(0, t) + αP0(1, t),

∂P1(0, z, t)
∂t

=
∂P1(0, z, t)

∂z
− ∂P1(0, 0, t)

∂z
− λP1(0, z, t)

+σP0(1, t)B(z) + λP0(0, t)B(z) + αP1(1, z, t),

∂P0(i, t)
∂t

=
∂P1(i, 0, t)

∂z
− (λ + iσ + α)P0(i, t) + αP0(i + 1, t),

∂P1(i, z, t)
∂t

=
∂P1(i, z, t)

∂z
− ∂P1(i, 0, t)

∂z
− (λ + α)P1(i, z, t)

+λP1(i − 1, z, t) + λP0(i, t)B(z)
+ (i + 1)σP0(i + 1, t)B(z) + αP1(i + 1, z, t).

Considering the system in a steady-state regime, we derive the following
system of Kolmogorov equations for stationary probabilities P0(i) and P1(i, z):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P1(0, 0)
∂z

− λP0(0) + αP0(1) = 0,

∂P1(0, z)
∂z

− ∂P1(0, 0)
∂z

− λP1(0, z) + σP0(1)B(z)

+λP0(0)B(z) + αP1(1, z) = 0,

∂P1(i, 0)
∂z

− (λ + iσ + α)P0(i) + αP0(i + 1) = 0,

∂P1(i, z)
∂z

− ∂P1(i, 0)
∂z

− (λ + α)P1(i, z) + λP1(i − 1, z)

+λP0(i)B(z) + (i + 1)σP0(i + 1)B(z) + αP1(i + 1, z) = 0,

(2)

i = 1, 2, . . .
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3 Asymptotic Analysis Under Heavy Load Condition

We introduce partial characteristic functions:

H0(u) =
∑

i

ejuiP0(i), H1(u, z) =
∑

i

ejuiP1(i, z), (3)

where j is an imaginary unit.
Substituting functions (3) into Eq. (2), the following equation system is

obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b
∂H1(u, 0)

∂z
− (ρ + αb)H0(u) + jσb

∂H0(u)
∂u

+αbe−juH0(u) = αbP0(0)(e−ju − 1),

b
∂H1(u, z)

∂z
− b

∂H1(u, 0)
∂z

− e−jujσb
∂H0(u)

∂u
B(z) + ρH0(u)B(z)

+ ρ(eju − 1)H1(u, z) + αb(e−ju − 1)H1(u, z) = αbP1(0, z)(e−ju − 1),
(4)

where ρ = λb is the system load parameter, b is a mean of the service time.
System (4) is solved by the asymptotic analysis method under limit condition

of a heavy load ρ → S, where S is the system throughput (the supremum of the
load value when the stationary regime exists for the retrial queue).

Theorem 1. Let i(t) be a number of calls in the orbit in the retrial queue
M/GI/1 with impatient calls in the stationary regime, then

lim
ρ→S

Mejw(S−ρ)i(t) =
(

1 − jw

β(S − ρ)

)−γ

where β =
2b2

b2 + 2b2(S − 1)
, γ = 1 +

β

σb
, b is the mean of the service time, b2 is

the second moment of the service time and S = 1 + αb is the system throughput.

To prove the theorem, we introduce the following notation:

ρ = S − ε, u = εw,
H0(u) = εF0(w, ε), H1(u, z) = F1(w, ε, z),

P0 = επ0, P1 = επ1(z),

where ε → 0. Substituting these notation into system (4), we obtain
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
∂F1(w, 0, ε)

∂z
+ jσb

∂F0(w, ε)
∂w

− (S − ε + αb)εF0(w, ε)

+αbe−jεwεF0(w, ε) = αbεπ0(e−jεw − 1),

b
∂F1(w, z, ε)

∂z
− b

∂F1(w, 0, ε)
∂z

− e−jεwjσb
∂F0(w, ε)

∂w
B(z)

+ (S − ε)εF0(w, ε)B(z) + (S − ε)(ejew − 1)F1(w, z, ε)
+αb(e−jεw − 1)F1(w, z, ε) = αbεπ1(z)(e−jεw − 1)

(5)
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Denoting limits Fk(w, z) = lim
ε→0

Fk(w, z, ε), F1(w) = lim
z→∞ F1(w, z) and using

expansions
Fk(w, z, ε) = Fk(w, z) + ε · fk(w, z) + O(ε2), (6)

the following system of the asymptotic equations can be derived from system
(5):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
∂F1(w, 0)

∂z
= jσbF ′

0(w),

b
∂F1(w, z)

∂z
− b

∂F1(w, 0)
∂z

(1 − B(z)) = 0,

b
∂f1(w, 0)

∂z
− SF0(w) + jσbf ′

0(w) = 0,

b
∂f1(w, z)

∂z
− b

∂f1(w, 0)
∂z

+ jwjσbF ′
0(w)B(z)−

jσbf ′
0(w)B(z) + SF0(w)B(z) + (S − αb)jwF1(w, z) = 0.

(7)

Then summing up Eq. (5), we obtain the following equation for z → ∞:

−jσb
∂F0(w, ε)

∂w
+ αbεF0(w, ε) − (S − ε)ejεwF1(w, ε) + αbF1(w, ε) = αbε(π1 + π0).

Substitute expansions (6) and write equalities for the members with equal
powers of ε: ⎧⎨

⎩
−jσbF ′

0(w) − SF1(w) + αbF1(w) = 0,
−jσbf ′

0(w) + αbF0(w) + (1 − Sjw)F1(w)
−Sf1(w) + αbf1(w) = αb(π1 + π0).

(8)

The asymptotic characteristic function of the probability distribution of the
number of calls in the orbit h(u) under the heavy load condition can be presented
as

h(u) = Mejw(S−ρ)i(t) = F1(w) + O(ε) ≈ F1(w). (9)

So, it is necessary to obtain the function F1(w) from Eqs. (7)–(8). The derivation
is performed in four stages.

Stage 1. Let the function F1(w, z) have the form:

F1(w, z) = A(z) · Φ(w). (10)

Thus F1(w) = Φ(w).
From the second equation of system (7), it is easy to show that

A(z) = A′(0)
∫ z

0

(1 − B(x))dx,

where A′(0) = 1/b.
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Stage 2. From the first equation of System (7), we have the following expres-
sion

jσF ′
0(w) = −1

b
Φ(w). (11)

Substituting formulas (10)–(11) into the first equation of system (8), the
value of the system throughput is obtained:

S = 1 + ab.

So, the stationary regime for this retrial queue exists when ρ < αb or λ < 1/b.
Stage 3. From the third equation of system (7), we have

jαbf ′
0(w) = −b

∂f1(w, 0)
∂z

+ SF0(w).

Perform some transformations in the forth equation of system (7).

f1(w, z) =
∂f1(w, 0)

∂z

∫ z

0

(1 − B(x))dx − jw

b
Φ(w)

∫ z

0

(A(x) − B(x))dx.

Let us find the solution f1(w, z) in the form:

f1(w, z) =
jw

b
Φ(w)ν(z).

Then we obtain

f1(w) = jwΦ(w)ν′(0) − jw

b
Φ(w)

∫ ∞

0

(A(x) − B(x))dx,

where
∫ ∞

0

(A(x) − B(x))dx = b − 1
2b

b2.

On the one hand, we have

f1(w) = jwΦ(w)ν′(0) − jw

b
Φ(w)(b − 1

2b
b2).

On the other hand, the following expression holds

f1(w) = f1(w,∞) =
jw

b
Φ(w)ν(∞).

Comparing these expressions, it can obtained that

bν′(0) − ν(∞) = b − 1
2b

b2. (12)

Stage 4. Substitute formulas (11)–(12) into the last equation of system (8):

(αb − S)F0(w) + (1 − Sjw)Φ(w) +
jw

b
Φ(w)(b − 1

2b
b2) = αb(π1 + π0).
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Then we differentiate this equation. After some transformations, it is easy to
obtain the following equation

Φ′(w)(β − jw) − Φ(w)
γ

β
= 0, (13)

where

β =
2b2

b2 + 2b2(S − 1)
, γ = 1 +

β

σb
.

The solution of Eq. (13) has the form

Φ(w) = C

(
1 − jw

β

)−γ

.

Turning back to expressions (10) and (9), we finally obtain the following
function:

h(u) = C

(
1 − ju

β(S − ρ)

)−γ

, (14)

where C = 1 due to the normalization requirement, q.e.d.

4 Numerical Analysis

Let us present some numerical examples to demonstrate the applicability area
of the asymptotic results. There are no explicit formulas for the retrial queue
M/GI/1 with impatient calls. Therefore, we analyze the accuracy of the obtained
gamma-approximation (14) by comparing it with exact distribution for particu-
lar case of exponential service (system M/M/1) and simulation results for system
with non-exponential service.

For the system M/M/1 we can obtain an exact probability distribution of
number of calls in the orbit by numerical solving of Eq. (2).

Let the system parameters be

μ = 1/b = 1, σ = 1, λ = μρ.

Introduce a notation δ = ρ/S, hence 0 < δ < 1. So, we compare asymptotic
and exact distributions for different values of parameters δ and α, using the
Kolmogorov distance between respective cumulative distribution functions:

Δ = max
0≤i<∞

∣∣∣∣∣
i∑

ν=0

Dν −
i∑

ν=0

Pν

∣∣∣∣∣ ,

where Dν and Pν are an exact and an asymptotic probability distributions
respectively.

In Fig. 2, there are examples of comparison of the asymptotic and the exact
distribution densities. Values of the Kolmogorov distance for these examples are
presented in the Table 1.
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Fig. 2. Comparisons of the asymptotic (dashed line) and the exact (solid line) proba-
bility densities for α = 0.1

Table 1. Kolmogorov distances between asymptotic and exact distributions

α = 0 α = 0.01 α = 0.05 α = 0.10

δ = 0.90 0.124 0.122 0.116 0.112

δ = 0.95 0.062 0.060 0.054 0.052

δ = 0.97 0.037 0.035 0.030 0.030
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Fig. 3. Comparisons of the asymptotic (dashed line) and the empiric (solid line) prob-
ability densities

Consider an example of the system M/GI/1 with gamma-distribution of
service law with form and inverse scale parameters both equal to 0.75, σ = 1,
α = 0.1, λ = ρ. The results are presented in Fig. 3. The Kolmogorov distances
are equal to 0.723 and 0.497 for cases of δ = 0.95 and δ = 0.97 respectively.
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If we suppose the Kolmogorov distance equal to 0.05 and less as acceptable
accuracy of a result, then we can draw a conclusion that the approximation (14)
can be applied for cases δ ≥ 0.097.

5 Conclusions

In this regard, the mathematical model of the retrial queue M/GI/1 with impa-
tient calls (impatience time is distributed exponentially with dynamical rate α/i)
is considered in the paper. For its studying, we propose the asymptotic method
under a heavy load condition. It is proved that the asymptotic probability dis-
tribution of the number of calls in the orbit has the gamma form with obtained
parameters. Also, expression for the system throughput is derived. Numerical
analysis allows to draw a conclusion about an applicability area of the asymp-
totic result.

The future studies can be devoted to analysis of retrial queues with impatient
calls, general law of service distribution and non-Poisson arrival processes.
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Abstract. We analyze a multi-server queueing system with limited
resources and signals. A customer requires a random value (RV) of the
shared resources. Each customer generates a flow of signals triggering the
resource reallocation process that make a customer release the occupied
amount of resources and request a new RV of resources instead.

Considering users are constantly moving within the signal coverage
area we describe a model of a wireless network where resources have
to be reallocated due to changes in the requirements. We assume that
user session cannot be interrupted because of lack of the resources in the
instant of the resource reallocation.

Keywords: Limited resources · Random requirements · Flow of sig-
nals · Queuing system · Loss system · User motion

1 Introduction

We continue to analyze a class of queueing systems with limited resources and
random requirements [1]. In general case the number of servers is finite N < ∞
and customers share limited amount of resources R = {R1, ..., RM}, Rm < ∞.
Each arriving customer requires a vector r = {r1, ..., rM}, where rm is a RV of the
m-type resource. RVs of the resource requirements are given by the cumulative
distribution function (CDF) F (x) that can be either discrete or continuous. The
advantage of the system with random requirements is the versatility of the CDF
F (x) and the insensitivity of the probability characteristics to the service time
distribution [2]. As an example, the CDF of resource requirements can be based
on the distance distribution from a customer to the base station within the
network coverage area and implement a signal propagation model to evaluate
the pathloss [3]. The CDF F (x) can follow from a scheduler policy as well [4].

The state space of the system with random requirements is described by
the number of arrived customers and amount of the occupied resources by each
customer in order to know the amount of resources that a customer has to release
at the end of the service time. In [5] it has been proposed to simplify the state
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 358–369, 2017.
DOI: 10.1007/978-3-319-68069-9 29
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space and track the total amount of occupied resources instead of storing all
vectors rk, k ≤ N . The amount of released resources has been defined by a CDF
Fk(x|y) given that k customers already occupy y resources.

The system with L classes of the requirements has been investigated in [6].
Considering the Poisson arriving process and exponential distribution of the
service times it has been proved via analytical and simulation evaluation that
probability characteristics of the simplified and initial systems are equal [7]. In
order to apply analytical results to the performance evaluation of the modern
heterogeneous wireless network we investigated the system with a discrete CDF
F (x) in [8].

In [9] we proved the system with L classes of the requirements can be simplify
to the system with aggregated flow of customers with the mean-weighted require-
ment. However, the further numerical analysis was still a challenge because of
the potential memory overflow during the normalization constant calculation
using the k -fold convolutions of the probabilities pr that a customer occupies
r resources, r ≤ R. To avoid that we have derived a recurrent algorithms for
the normalization constant evaluation and proposed recurrent formulas of the
probability characteristics [10].

We apply a queueuing system with limited resources and signals to the wire-
less network performance evaluation considering that users are constantly mov-
ing within the signal coverage area. While a user is approaching the edge of the
cell or getting closer to the base station the amount of the required frequency
resources may change.

Consider a wireless network model approximated by a circle with a base
station located in the center of the circle. Users‘ equipment randomly distributed
within the circle. A scheduler allocate the frequency resources among the users
according to their current channel quality and service requirements. The channel
quality depends on the base station transmitting power, proximity of other users
affecting the signal-to-interference and noise ratio (SINR), etc., Fig. 1.

Fig. 1. A model of a wireless network

Thus, we consider each user requires a RV of the frequency resources. Users
may constantly move during the ongoing session and request an additional
amount of resources or release a part of them instead.
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The number of the frequency resource blocks (RBs) that a scheduler is to
allocate to the users in the next time-slot depends of the number of RBs that has
already been allocated. However, we assume that all RVs of the resource require-
ments are mutually independent and follow the cumulative distribution function
F (x) and leave the case with dependent RVs for the future consideration.

As a first step, we back to the multi-server system with a single flow of
customers and one-dimensional vector r = (r) of the resource requirements as it
has been investigated in [11]. We extend the system by adding the flow of signals
independent of the customer arriving process. When a signal arrives, one of the
customer has to release occupied resources and request a new RV of resources. If
there are not enough free resources to meet the requirement, the customer will
be lost. However, a service provider would rather prefer to keep ongoing user
sessions expecting the degradation in a service quality until it can be switched
to another base station [12].

2 A System with Resources and Signals

Consider a system with N < ∞ servers, shared amount of the resources R <
∞ and Poisson arriving flows of customers and signals. A customer requires
a RV r ≥ 0 of the shared resources with a CDF F (x). The service times are
exponentially distributed independent RVs with the parameter μ.

The system behavior can be described by a Stochastic process (SP) X(t) =(
ξ(t),

(
η0(t), ..., ηξ(t)(t)

))
where ξ(t) is a number of customers, ηi(t) is an amount

of occupied resources by i -th customer.
Let‘s consider k is a number of customers in the system at a moment ti >

0 and r1, ..., rk for the amount of the occupied resources. During the interval
(ti, ti+1):

1. a new customer may arrive with the rate λ and require j resources, if k < N
and j ≤ R − r•, where r• = r1 + ... + rk, the customer will be accepted and
occupy j resources with the probability pj = P (rk+1 = j), otherwise it will
be lost.

2. an i -th customer may leave the system and release ri resources.
3. a signal may arrive with rate γ, then an i -th customer has to release ri

resources and try to occupy the new amount of resources r∗
i with the prob-

ability pr∗
i
, if there is not enough resources to meet the requirement, the

customer will be lost, Fig. 2.

The state probabilities of the SP X(t)

q0 = lim
t→∞ P{ξ(t) = 0, η0(t) = 0},

qk(r1, ..., rk) = lim
t→∞ P{ξ(t) = k, η0(t) = 0, η1(t) = r1, ..., ηξ(t)(t) = rk},
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µ 
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j=r1+…+rk
j*=r1+ri-1+ri+1+…+rk+r*i

... j

µ 

R

r1

rk
...

µ 

µ 

N

...

j*
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r*i

Fig. 2. Resource reallocation at a moment of a signal arriving

are the unambiguous solution of the system

λq0

R∑

j=0

pj = μ
R∑

j=0

q1(j) + γ
R∑

j=0

q1(j)

⎛

⎝1 −
R∑

j=0

pj

⎞

⎠ ,

⎛

⎝λ

R−r•∑

j=0

pj + kμ + kγ

⎞

⎠ qk(r1, ..., rk) =

= λprk
qk−1(r1, ..., rk−1)+

+μ

R−r•∑

j=0

[qk+1(j, r2, ..., rk+1) + ... + qk+1(r1, ..., rk, j)] +

+ γ

⎡

⎣
R−r•∑

j=0

pr1qk(j, r2, ..., rk) + ... +
R−r•∑

j=0

prk
qk(r1, ..., rk−1, j)

⎤

⎦ +

+ γ

⎛

⎝1 −
R−r•∑

j=0

pj

⎞

⎠
R−r•∑

j=0

[qk+1(j, r1, ..., rk+1) + ... + qk+1(r1, ..., rk, j)] ,

k (μ + γ) qN (r1, ..., rN ) = λprN
qN−1(r1, ..., rN−1)+

+ γ

⎡

⎣
R−r•∑

j=0

pr1qN (j, r2, ..., rN ) + ... +
R−r•∑

j=0

prN
qN (r1, ..., rN−1, j)

⎤

⎦ .
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We simplify the SP X(t) and denote the δ(t) = η0(t)+ ...+ ηξ(t)(t) as a total
amount of the occupied resources. Thus, the simplified SP X(t) = (ξ(t), δ(t)) is

built over the state space X =
N⋃

k=0

Xk, where Xk =
{

(k, r) : 0 ≤ r ≤ R, p
(k)
r > 0

}
.

Here p
(k)
r denoted k-fold convolution of probabilities {pr}r≥0. Let‘s arrange the

states in Xk by increasing the amount of the occupied resource and denote I(k, r)
the sequence number of the state (k, r) in Xk. The state probabilities of the
simplified SP X(t) are defined as follows:

q0 = lim
t→∞ P{ξ(t) = 0, δ(t) = 0}, (1)

qk(r) = lim
t→∞ P{ξ(t) = k, δ(t) = r}, (k, r) ∈ Xk. (2)

As we don‘t know the amount of the resources that a customer has to release
at the departure, denote the RV of the released resource by i -th customer as νi,
having the CDF Fk(x|j) = P {νi ≤ x|ξ(t) = k ; δ(t) = j}. The probability that a

customer releases i resources is
pip

(k−1)
j−i

p
(k)
j

.

The system of the equilibrium equations is given by

λq0

R∑

j=0

pj = μ
∑

j:(1,j)∈X1

q1(j) + γ
∑

j:(1,j)∈X1

q1(j)

⎛

⎝1 −
R∑

j=0

pj

⎞

⎠ , (3)

⎛

⎝λ
R−r∑

j=0

pj + kμ + kγ

⎞

⎠ qk(r) = λ
∑

j≥0:j:(k−1,r−j)∈Xk−1

qk−1(r − j)pj +

+ (k + 1)μ
∑

j≥0:j:(k+1,r+j)∈Xk+1

qk+1(r + j)
pjp

(k)
r

p
(k+1)
j+r

+

+ (k + 1)γ

⎛

⎝1 −
R−r∑

j=0

pj

⎞

⎠
∑

j≥0:j:(k+1,r+j)∈Xk+1

qk+1(r + j)
pjp

(k)
r

p
(k+1)
j+r

+

+ kγ
∑

j≥0:j:(k,j)∈Xk

qk(j)
min(j,r)∑

i=0

pj−ip
(k−1)
i

p
(k)
j

pr−i, (4)

1 ≤ k ≤ N − 1, (k, r) ∈ Xk;

N (μ + γ) qN (r) = λ
∑

j≥0:(N−1,j)∈XN−1

qN−1(r − j)pj +
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+ Nγ

R∑

j:(N,j)∈XN

qN (j)
min(j,r)∑

i=0

pj−ip
(N−1)
i

p
(N)
j

pr−i, (5)

(N, r) ∈ XN .

The stationary probabilities (1)–(2) can be calculated by a numerical method
as a solution of the matrix equations qT A = 0T , qT 1 = 1. The infinitesimal
matrix A = [a((i, j), (k, r))] of the SP X(t) has a block tridiagonal structure
with main diagonal blocks Ψ0,Ψ1, ...,ΨN , upper diagonal blocks Λ1, ...,ΛN and
lower diagonal blocks M0, ...,MN−1:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ψ0 Λ1 0 ... 0 0
M0 Ψ1 Λ2 0 ... 0
0 M1 Ψ2 Λ3 0 ...
... 0 ... ... ... 0
0 ... 0 MN−2 ΨN−1 ΛN

0 0 ... 0 MN−1 ΨN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

First blocks are Ψ0 = −λ
R∑

j=0

pj , Λ1 = (λp0, . . . , λpR) and

M0 =

(

μ + γ

(

1 −
R∑

j=0

pj

)

, . . . , μ + γ

(

1 −
R∑

j=0

pj

))T

.

The remaining blocks have the following form:

ψn(I(n, i), I(n, j)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[
λ

R−i∑

k=0

pk + nμ + nγ

(
1 − pi−kp

(n−1)
k

p
(n)
i

pj−k

)]
,

i = j;

nγ
i∑

k=0

pi−kp
(n−1)
k

p
(n)
i

pj−k, i < j;

nγ
j∑

k=0

pi−kp
(n−1)
k

p
(n)
i

pj−k, i > j;

(6)

(n, i) ∈ Xn, (n, j) ∈ Xn, n = 1, N − 1;

λn(I(n, i), I(n, j)) =
{

λpj−i, i ≤ j ≤ R;
0, j < i; (7)

(n − 1, i) ∈ Xn−1, (n, j) ∈ Xn, n = 1, N − 1;

μn(I(n, i), I(n, j)) =

⎧
⎪⎪⎨

⎪⎪⎩

(n + 1)
[
μ

pi−jp
(n)
j

p
(n+1)
i

+ γ

(
1 −

R−j∑

k=0

pk

)
pi−jp

(n)
j

p
(n+1)
i

]
,

j ≤ i;
0, j > i;

(8)
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(n + 1, i) ∈ Xn+1, (n, j) ∈ Xn, n = 1, N − 1;

ψN (I(N, i), I(N, j)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
[
Nμ + Nγ

(
1 − pi−kp

(N−1)
k

p
(N)
i

pi−k

)]
, i = j;

Nγ
i∑

k=0

pi−kp
(N−1)
k

p
(N)
i

pj−k, i < j;

Nγ
j∑

k=0

pi−kp
(N−1)
k

p
(N)
i

pj−k, i > j;

(9)

(N, i) ∈ XN , (N, j) ∈ XN .

3 Application to Performance Analysis of Wireless
Networks

We propose to analyze the model of a wireless heterogeneous network in terms of
a multi-server queueing system with random resource requirements and signals.
As a user session requirements may change while the user is moving within a
cell. If a user is approaching the BS it requires less resources as well as a user
will request additional amount of the resources distancing from the BS.

The system behavior follows the same SP X(t) = (ξ(t), δ(t)) with the state

space X =
N⋃

k=0

Xk. A customer arrives to the system with the rate λ and occupies

an amount of required resources if there are enough free servers and available
resources. At the end of the service time a customer leaves the system and
releases a RV of resources following from the CDF Fk(x|j).

The resource reallocation process is described by a Poison incoming flow of
signals with rate γ. Unlike the general system investigated in the previous section
we assume that a customer cannot be blocked due to the lack of the resources
upon arrival of a signal.

Let‘s consider the transition from the state (k, j) to the state (k, r) at a
moment of a signal arrived. In case j > r a customer first release i resources with

the probability
pip

(k−1)
j−i

p
(k)
j

, j −r ≤ i ≤ j, then it have to occupy r−(j − i) resources

with the normalized probability pr−j+i

R−j+i∑

s=0
ps

since a customer cannot occupy more

than amount of the available resources. If j < r, a customer release i resources

with the probability
pip

(k−1)
j−i

p
(k)
j

, 0 ≤ i ≤ j and then occupies r − (j − i) resources

with the probability pr−j+i

R−j+i∑

s=0
ps

for the 0 ≤ i ≤ j.
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The system of the steady-state equations differs from the equations of the
general system with resources and signals:

λq0

R∑

j=0

pj = μ
∑

j:(1,j)∈X
q1(j), (10)

⎛

⎝λ
R−r∑

j=0

pj + kμ + kγ

⎞

⎠ qk(r) = λ
∑

j≥0:(k−1,r−j)∈Xk−1

qk−1(r − j)pj +

+ (k + 1)μ
∑

j≥0:(k+1,r+j)∈Xk+1

qk+1(r + j)
pjp

(k)
r

p
(k+1)
j+r

+

+ kγ
∑

j≥0:(k,j)∈Xk

qk(j)
j∑

i=max(0,j−r)

pip
(k−1)
j−i

p
(k)
j

pr−j+i

R−j+i∑

s=0
ps

, (11)

1 ≤ k ≤ N − 1, (k, r) ∈ Xk;

(Nμ + kγ) qN (r) = λ
∑

j≥0:(N−1,r−j)∈XN−1

qN−1(r − j)pj +

+ Nγ
∑

j≥0:(N,j)∈XN

qN (j)
j∑

i=max(0,j−r)

pip
(N−1)
j−i

p
(N)
j

pr−j+i

R−j+i∑

s=0
ps

. (12)

(N, r) ∈ XN .

Denote all non-zero blocks of the infinitesimal matrix A. Blocks Ψ0 = −λ
R∑

j=0

pj , Λ1 = (λp0, . . . , λpR) and M0 = (μ, . . . , μ)T are represented by vectors

while elements of the sub-matrices {Ψn}1≤n≤N , {Λn}2≤n≤N , {Mn}1≤n≤N−1

are given by:

ψn(I(n, i), I(n, j)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[
λ

R−i∑

k=0

pk + nμ + nγ

]
, i = j;

nγ
j∑

s=0

psp
(k−1)
j−s

p
(k)
j

pi−j+s

R−j+s∑

k=0
pk

, i > j;

nγ
j∑

s=j−i

psp
(k−1)
j−s

p
(k)
j

pi−j+s

R−j+s∑

k=0
pk

, i < j;
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(n, i) ∈ Xn, (n, j) ∈ Xn, n = 1, N − 1;

λn(I(n, i), I(n, j)) =
{

λpj−i, i ≤ j ≤ R;
0, j < i;

(n − 1, i) ∈ Xn−1, (n, j) ∈ Xn, n = 1, N − 1;

μn(I(n, i), I(n, j)) =

⎧
⎨

⎩
(n + 1) μ

pi−jp
(n)
j

p
(n+1)
i

, j ≤ i ≤ R;

0, j > i;

(n + 1, i) ∈ Xn+1, (n, j) ∈ Xn, n = 1, N − 1;

ψN (I(n, i), I(n, j)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− [Nμ + Nγ] , i = j;

Nγ
j∑

s=0

psp
(N−1)
j−s

p
(N)
j

pi−j+s

R−j+s∑

k=0
pk

, i > j;

Nγ
j∑

s=j−i

psp
(N−1)
j−s

p
(N)
j

pi−j+s

R−j+s∑

k=0
pk

, i < j;

(N, i) ∈ XN , (N, j) ∈ XN .

4 Numerical Analysis

As an example of the numerical analysis, we evaluate the blocking probability B

B = 1 −
N−1∑

k=0

∑

r:(k,r)∈Xk

qk(r)
R−r∑

j=0

pj ,

and average amount of the occupied resources b

b =
N∑

k=0

∑

r:(k,r)∈Xk

rqk(r).

The state probabilities (1)–(2) with a given matrix A are unambiguously
determine the solution of the matrix equations qT A = 0T and qT · 1 = 1.
Denote vector q0 = {q0,0} and qi = {qi,0, ..., qi,R}, then the systems (3)–(5) and
(10)–(12) are as follows:



Analysis of Queueing System with Resources and Signals 367

γ, 1/mc

0,11

0,25

0,18

16 3023
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Fig. 3. Blocking probability

q0Ψ0 − qT
1 M0 = 0,

qT
i Ψi − qT

i+1Mi − qT
i−1Λi = 0T , i = 1, . . . , N − 1

qT
NΨN − qT

N−1ΛN = 0T .

The matrix system (6)–(9) is solved in numbers using the LU decomposition
algorithm [13].

The RVs of the resource requirements are considered to have a discrete distri-
bution such as geometrical distribution with the parameter p = 1

m+1 or Poisson
distribution with the parameter m. Assuming that RVs are independent, we
can easily get the direct formula of the k -fold convolution p

(k)
j according to the

properties of the distributions:

1. if x ∼ G(p) then p
(k)
j =

(
k + j − 1

k

)
pj(1 − p)k;

2. if x ∼ P (m) then p
(k)
j = e−jm

j! (jm)j .

Based on our previous experiment [11] we consider that base station can serve
up to N = 100 active user session at the same time and all users share the R =
100% of radio resources. User‘s request to establish a session arrives with rate
λ = 16 and average duration of a user session is μ−1 = 1 mc. Figures 3 and 4 show
the relation between blocking probability, average amount of occupied resources
and a signal rate γ.

All parameters of the resource requirements distributions have to meet the
average amount of the occupied resources m = 5, 4.

We evaluate the probability characteristics of the system assuming a user loss
due to resource limitation (case 1) and lossless resource reallocation (case 2).
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Fig. 4. Average amount of occupied resources

5 Conclusion

We have described and analyzed the general multi-server queueing system with
random resource requirements and signals. A signal triggers the system transition
between the states that can adequately describe the resource reallocation process
for the ongoing user session in LTE network.

A simple numerical analysis has been proposed. For the future research we
are going to investigate the dependence between RVs of resource requirements
and consider a system with the vector of the occupied resources.
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Abstract. The subject of this paper is investigation of the inventory
management systems mathematical model with following assumptions:

– Compound Poisson demand process with hyperexponential, Phase-
type and arbitrary batch sizes distributions,

– On/Off control of piecewise-constant rate of input product flow.
Stationary distribution explicit expressions of inventory level accumu-
lated in the system are obtained in this paper with hyperexponential and
Phase-type distributions of demands purchases values. Fourier transform
of the stationary probability density function is also determinated here
in case of arbitrary distribution of demands purchases values. The results
obtained in this paper are shown with illustrative numerical examples.

Keywords: Mathematical model · Inventory management · On/Off
control · Hyperexponential distribution · PH-distribution · Arbitrary
distribution

1 Introduction

There are different models of inventory management. The classical single-period
problem of inventory management known as Newsvendor (Newsboy) Problem is
one of the most widespread models, see Arrow et al. [1]; Silver et al. [11]; Khouja
[7]; Qin et al. [12]; Gallego and Moon [4]; a handbook editing by Tsan-Ming Choi
[3]; Kitaeva et al. [5,6].

Multi-period model is a generalization of single-period model. Multi-period
inventory management models are considered in Zhang et al. [13], Mousavi
et al. [8]. In [2] the multi-product multi-period inventory lot sizing with sup-
plier selection problem are investigated.

Inventory management multi-period models with On/Off control are dis-
cussed in Nazarov and Broner [9,10]. In [9] multi-period problem is consid-
ered under following conditions: intensity of output product flow is piecewise-
constant, demand purchases values have Erlang distribution. Inventory level
probability density function approximation is provided in [10] for similarly math-
ematical model with arbitrary distribution of purchase values of demand.
c© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 370–381, 2017.
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In this paper we consider single-product multi-period models of inventory
management system with On/Off control and piecewise-constant rate of input
product flow.

2 Mathematical Model

In this article we consider a mathematical model of inventory management
(Fig. 1).

λ
(

(

Fig. 1. Inventory management model

Let s(t) is inventory level accumulated in the system at time t. Input product
flow have piecewise-constant rate ν(s)

ν(s) =
{

ν1, s < S,
ν2, s ≥ S,

where s is a value of the process s(t), and S is some fixed threshold value.
We propose that demand occurs according to a Poisson process with con-

stant intensity λ. The purchases values are independent, identically distributed
random variables, having the distribution function B(x).

Furthermore, assume that s(t) can take negative values stand for the situ-
ation in which the customer expects when the necessary values of inventory is
accumulated.

The condition of steady-state regime existence for the system can be deter-
mined from

ν1 > λb > ν2, (1)

where b is the first moment of function B(x).

2.1 Problem Statement

Denotes

P (s) =
∂P {s(t) < s}

∂s
.

By construction the process s(t) is Markovian with continuous time t and a
continuous set of values −∞ < s < ∞.

Therefore we can write

P (s + ν(s)Δt) = P (s)(1 − λΔt) + λΔt

∞∫
0

P (s + x)dB(x).
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Using series expansion, we write the Kolmogorov equation for the stationary
probability density function P (s)

ν(s)P ′(s) + λP (s) = λ

∞∫
0

P (s + x)dB(x), s �= S,−∞ < s < ∞. (2)

The solution P (s) of Eq. (2) satisfied following boundary conditions

P (−∞) = P (∞) = 0. (3)

The plan of this paper is to identify some property of the solution P (s) and
to determine the function P (s).

2.2 Probabilities R1 and R2

First let us introduce some notations
S∫

−∞
P (s)ds = R1,

∞∫
S

P (s)ds = R2.

Below we formulate a proposition about probabilities R1 and R2.

Proposition 1. The probabilities R1 and R2 are determined by following
expression

R1 =
ν1 − λb

ν1 − ν2
, R2 =

λb − ν2
ν1 − ν2

. (4)

Proof. We multiply Eq. (2) by s, and integrate the obtained equality

∞∫
−∞

sν(s)P ′(s)ds + λ

∞∫
−∞

sP (s)ds = λ

∞∫
−∞

s

∞∫
0

P (s + x)dB(x)ds. (5)

Let us consider the right side of expression (5)

λ

∞∫
−∞

s

∞∫
0

P (s + x)dB(x)ds = λ

∞∫
0

∞∫
−∞

sP (s + x)dsdB(x)

= [s + x = y] = λ

∞∫
0

∞∫
−∞

(y − x)P (y)dydB(x)

= λ

∞∫
−∞

∞∫
0

(y − x)dB(x)P (y)dy

= λ

∞∫
−∞

(y − b)P (y)dy = λ

∞∫
−∞

yP (y)dy − λb

∞∫
−∞

P (y)dy.
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Substituting this expression into (5), we obtain the equality

∞∫
−∞

ν(s)sP ′(s)ds + λ

∞∫
−∞

sP (s)ds = λ

∞∫
−∞

yP (y)dy − λb

∞∫
−∞

P (y)dy.

Using condition
∞∫

−∞
P (y)dy = 1,

we obtain ∞∫
−∞

ν(s)sP ′(s)ds = −λb.

We write the integral in the left side of last equation as two integral

S∫
−∞

ν1sP
′(s)ds +

∞∫
S

ν2sP
′(s)ds = −λb.

Using integration by parts we get

ν1SP1(S) − ν2SP2(S) − ν1

S∫
−∞

P (s)ds − ν2

∞∫
S

sP2(s)ds = −λb.

It is easily proved that

ν1SP1(S) − ν2SP2(S) = 0,

hence

ν1

S∫
−∞

P (s)ds + ν2

∞∫
S

sP2(s)ds = λb.

Thus we get
ν1R1 + ν2R2 = λb.

Tacking into account expression

R1 + R2 = 1,

we find the probabilities

R1 =
ν1 − λb

ν1 − ν2
, R2 =

λb − ν2
ν1 − ν2

.

The Proposition 1 is proved.
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2.3 The Solution P (s) of (2) for s > S

For s > S Eq. (2) has the form

ν2P
′(s) + λP (s) = λ

∞∫
0

P (s + x)dB(x), s > S. (6)

We will find the solution of this equation in the form of exponential function

P (s) = Ce−γ(s−S), s > S. (7)

Substituting (7) into (6), we obtain

λ − ν2γ = λ

∞∫
0

e−γxdB(x), (8)

which is a nonlinear equation for γ.
By virtue of condition (1), Eq. (8) has a unique positive solution. Obviously

other solutions of Eq. (8) are extraneous. Substituting (7) into the expression for
the probability R2

R2 =

∞∫
S

P (s)ds,

we obtain

R2 =

∞∫
S

Ce−γ(s−S)ds =

∞∫
S

e−γxdx =
C

γ
,

then we can write expression that defines the value of the parameter C of the
function P (s)

C = γR2 = γ
λb − ν2
ν1 − ν2

, (9)

Thus, we can write the solution P (s) of Eq. (2) in the following form

P (s) =
{

P1(s), s < S,
Ce−γ(s−S), s > S,

(10)

where the function P1(x) for x < 0 will be defined below.

3 The Solution P1(s) of (2) for s < S

The main objective of this section is to try to find the solution P (s) of Eq. (2).
Equation (2) for s < S has the form

ν1P
′
1(s) + λP1(s) = λ

S−s∫
0

P1(s + x)dB(x) + λ

∞∫
S−s

P1(s + x)dB(x). (11)
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3.1 Case Hyperexponential Distribution B(x)

Lets the values of purchases be independent and identically distributed random
variables having m-th order hyperexponential distribution

B(x) =
m∑

k=1

qk

(
1 − e−μkx

)
, (12)

with positive parameters μk > 0 and qk > 0
m∑

k=1

qk = 1. (13)

Taking into account (7) and (12), rewrite (11)

ν1P1
′(s) + λP1(s)

=
m∑

k=1

qkμk

{
λ

S−s∫
0

P1(s + x)e−μkxdx + Ceμks λ

μk + γ
e−μkS

}
.

(14)

It is necessary to find the solution P1(s) of (14) which will be defined in the
Theorem 1.

Before formulating theorem about the function P1(s) we consider the equa-
tion

ν1z + λ = λ
m∑

k=1

qk
μk

μk − z
. (15)

Equation (15) can be transformed to the algebraic equation of degree m + 1,
consequently Eq. (15) has m+1 roots. Obviously z = 0 is a root of this equation.

For the other roots z = zk, k = 1,m of the Eq. (15) we formulate following
lemma.

Lemma 1. If the condition (1) is satisfied

ν1 > λb

all the roots z = zk, k = 1,m of Eq. (15) are real and positive.

The proof is omitted.
We now prove theorem about form of the function P (s).

Theorem 1. If B(x) is hyperexponential distribution (12), then the solution
P1(s) of Eq. (11) has form

P1(s) = C

m∑
n=1

xnezn(s−S), s < S, (16)

where zn are positive roots of Eq. (15), xn are components of the vector X. This
vector is a solution to a system of linear algebraic equations

AX = h, (17)
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where Akn are elements of the matrix A, hk are elements of the vector h. The
elements Akn and hk have following form

Akn =
1

μk − zn
, hk =

1
μk + γ

, k = 1,m, n = 1,m, (18)

normalizing constant C is determined by (9).

The proof is left to the reader.
Hence the problem of investigating the mathematical model of the inventory

management system with On/Off control and hyperexponential distribution of
demands purchases values is completely solved.

3.2 Case PH-distribution B(x)

Consider PH-distribution of demand purchases values

B(x) = 1 − βeGxE, (19)

where βk > 0 and
βE = 1, (20)

G is subgenerator matrix Markov chain that determines the Phase-type distri-
bution.

Theorem 2. If B(x) is Ph-distribution (19) and equation

ν1z + λ = λβ(G + zI)−1GE (21)

has n simple roots with positive real parts, then solution P1(s) of Eq. (11) has
form

P1(s) = C
m∑

n=1

xnezn(s−S), s < S, (22)

where z = zn, n = 1,m are roots of Eq. (21), xn, n = 1,m are solutions to a
system of equations(

m∑
n=1

xn(G + znI)
−1 − (G − γI)−1

)
GE = 0, (23)

normalizing constant C is determined by the expression (9).

Proof. Solution P1(s) of the Eq. (11) will be find in the form (24).
Substituting (21) and (24) into (11) we obtain the equation

m∑
n=1

xnezn(s−S)
{

ν1zn + λ − λβ(G + zI)−1GE
}

= βeG(S−s)

(
λ

m∑
n=1

xn(G + znI)
−1 + λ(G − γI)−1

)
GE.
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By equating to zero the coefficients in the linear combination of exponents
ezn(s−S) in this expression, we get

ν1zn + λ − λβ(G + zI)−1GE, n = 1,m.

Obviously that this expression and (23) have the same form. Consequently zn

are the roots of the Eq. (23).
Continuing in the same way, we obtain(

λ

m∑
n=1

xn(G + znI)
−1 + λ(G − γI)−1

)
GE = 0.

Theorem is proved.

4 The Solution P1(s) of Eq. (11) for s < S
with Arbitrary Functions B(x)

To solve Eq. (11) under the condition of arbitrary distribution, we use the Fourier
transform method.

We multiply Eq. (2) by eju(s−S), j =
√−1 and integrate the obtained equal-

ity, then we get
∞∫

−∞
ν(s)eju(s−S)P ′(s)ds + λ

∞∫
−∞

eju(s−S)P (s)ds =

λ
∞∫

−∞
eju(s−S)

∞∫
0

P (s + x)dB(x)ds.
(24)

Transform the right-hand side of this expression

λ

∞∫
−∞

eju(s−S)

∞∫
0

P (s + x)dB(x)ds

= λ

∞∫
0

∞∫
−∞

eju(s−S)P (s + x)dsdB(x) = [s + x = y]

= λ

∞∫
0

∞∫
−∞

eju(y−x−S)P (y)dydB(x) = λ

∞∫
0

eju(x−S)dB(x)

∞∫
−∞

ejuyP (y)dy.

Let us consider following form of function P (s)

P1(s) =
{

P (S), s < S,
0, s > S,

P2(s) =
{

0, s < S,
P (S), s > S,

and denotes Fourier transform for functions P1(s) and P2(s)

P ∗
1 (u) =

∞∫
S

ejuyP1(y)dy, P ∗
2 (u) =

∞∫
S

ejuyP2(y)dy,
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we find integral in right side of Eq. (24)

λ

∞∫
−∞

eju(s−S)

∞∫
0

P (s + x)dB(x)ds

= λe−juS

∞∫
0

ejuxdB(x) (P ∗
1 (u) + P ∗

2 (u)).

Similarly we can write expression for integral in left side of Eq. (24)

∞∫
−∞

eju(s−S)λ(s)P (s)ds = λe−juS (P ∗
1 (u) + P ∗

2 (u)) .

Using the method of integration by parts we can write

∞∫
−∞

ν(s)eju(s−S)P ′(s)ds

= ν1P1(u)−ν2P2(u) − jue−juS (ν1P ∗
1 (u) + ν2P

∗
2 (u)) ,

It possible to prove that ν1P1(u) − ν2P2(u) = 0, then we have equation for
Fourier transform of function P1(s)

P ∗
1 (u) = −

{
λ − juν2 − λ

∞∫
0

ejuxdB(x)
}

{
λ − juν1 − λ

∞∫
0

ejuxdB(x)
}P ∗

2 (u).

Taking into account (7, 8, 9) we conclude that Fourier transform P ∗
2 (u) is

determined by

P ∗
2 (u) =

∞∫
S

ejuyP2(y)dy = CeγS

∞∫
S

e(ju−γ)ydy = − C

ju − γ
ejuS ,

it follows that

P ∗
1 (u) =

{
λ − juν2 − λ

∞∫
0

ejuxdB(x)
}

{
λ − juν1 − λ

∞∫
0

ejuxdB(x)
} C

ju − γ
ejuS .

Therefore, we define the Fourier transform of the function P1(s). Using the
inverse Fourier transform, we obtain the expression that is determing the func-
tion P1(s). Hence, the function P1(s) is known for arbitrary distribution B(x).
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Nevertheless, the inverse Fourier transform can not be computed numerically for
all kinds of functions B(x), so the exact solutions obtained for hyperexponential
and PH-distributions are essential.

Using ν1SP1(S) − ν2SP2(S) = 0, we have following expression

P1(S) =
ν2
ν1

P2(S),

thus the probability density function P (s) of process s(t) is continuous for all
values of s �= S, but at the point s = S function P (s) is discontinuous P1(S) �=
P2(S).

5 Numerical Experiments

In this section, numerical results are obtained for case of Gamma distribution
B(x).

We assume that demands purchases values have Gamma distribution. For
this case, it is necessary to apply the results obtained in Sect. 4.

Let the gamma distribution have parameters of the form α and the scale β.
Further assume that α = β = 3, then the average value will be equal to one.

Solution P (s), s > S of Eq. (2) is defined by explicit expression (7) with
following values of parameters

γ = 0.361, C = 0.181.

Solution P (s), s < S of Eq. (2) is defined by inverse Fourier transform

P1(s) =
1
2π

∞∫
−∞

e−jusP ∗
1 (u)du.

The stationary distribution of the inventory level accumulated in the system
is shown in Fig. 2.

Fig. 2. Probability density function P (s) for Gamma distribution B(x)
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6 Conclusion

In this paper we presented the mathematical model of multi-period inventory
management system with On/Off control under following conditions:

– input product flow rate is piecewise-constant,
– intensity of the output product flow is constant.

Our main result is the following. the explicit expressions for the stationary
distributions of inventory level is obtained in the cases of the hyperexponential
and the phase-type distributions of demands purchases values. The stationary
distributions of inventory level is determined in terms of the inverse Fourier
transform for arbitrary distribution B(x). Thus the problem of investigating the
mathematical model of the inventory management system with On/Off control
is completely solved.

Acknowledgments. The publication was financially supported by the Ministry
of Education and Science of the Russian Federation (the Agreement number
02.a03.21.0008).
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Abstract. Effective analytic-imitational methods for complex optimiza-
tion of routing matrices and node efficiencies in non-Markov queueing
networks are proposed, and the optimization is to be carried out by the
minimum of the mean time required for a claim to pass through the net-
work. The characteristic feature of the method is a prompt and precise
calculation of the target function, based on the varied transition proba-
bilities. Consideration is given to the possibility to represent the roads in
traffic networks as multiserver systems, in which the servicing intensities
depend on the load coefficients. The method for complex optimization
of networks with such multiserver nodes is developed. The application
results are given.

Keywords: Non-Markov queueing networks · Variable service inten-
sity · Gradient optimization methods · Monte Carlo simulation · Traffic
networks

1 Introduction

In the general case, simulation is used to optimize non-Markov queueing net-
works. Given that, if the number of varied parameters is more than ten, opti-
mization is almost impossible without gradient methods. Moreover, the gradi-
ent calculation in simulation is hindered by the stochastic errors in the target
function estimates, evaluated by Monte Carlo method [1]. The problem of the
gradient calculation at the queueing networks simulation, however, can be solved
by applying a semi-analytical approach [2–5].

When optimizing the queueing networks, the varied parameters can be rep-
resented by the nodes performances [6], the amount of channels in the nodes
[7], the spooling capacities [8], the transition probabilities, or a combination of
these several parameter types [1,9]. In real networks total resource used to vary
the given parameters tends to be limited, therefore, the optimization problems
are usually put as search for optimal resource distribution of the given kind [10]
or as an optimal combination of diverse resource distributions. Target functions
tend to include such quality indicators as

c© Springer International Publishing AG 2017
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– mean time of a claim passing through the network (mean response time),
– probability of exceeding acceptable response time,
– probability of losing a claim in network nodes,
– spooling capacities,
– total number of the channels in the nodes, etc.

Developing new efficient methods for non-Markov queueing networks opti-
mization is rather relevant in the field of computer [10–12] and traffic [13–15]
networks design.

Significant obstacles occur at queueing networks optimization when varied
parameters include transition probabilities [1], i.e. at the routing matrix opti-
mization. The present work proposes effective methods for complex optimization
of routing matrices and node efficiencies in non-Markov queueing networks.

2 Combined Optimization Problem for Transition
Probabilities and Node Efficiencies

Using the problem with varied parameters including routing matrix as an exam-
ple, let us consider open non-Markov queueing networks optimization through
simultaneous redistribution of the network nodes’ efficiency and its transition
probabilities [1].

The network receives a recurrent flow of claims with intensity Λ. The lengths
of the intervals between claims entering the network are described by distribution
function (d.f.) A(t). From the input flow, a claim with probability p0j proceeds
to the i-th node, i = 1, n. Independent claim servicing time in any of Ki channels
in i-th node has d.f. Bi(t). After servicing in i-th node, the claim selects one of
the nodes j = 1, n at random, according to the specified transition probabilities
pij , to continue its route or (with probability p0j) leaves the network (Fig. 1).
Probabilities pij(i, j = 0, n) are set by a routing matrix P = ‖pij‖.

Mean time E of passing through an open network (mean response time) can
be expressed by formula:

E =
n∑

i=1

αi

(
wi +

1
μi

)
, (1)

where αi is the mean number (frequency) of the visits at i-th node a claim does
when passing through the network, wi is the mean waiting time at the queue
at i-th node, μi = b−1

i is the servicing intensity in the channel at i-th node
(consequently, bi is the mean servicing time at i-th node).

Frequencies αi are uniquely determined by probabilities pij :

αi =
n∑

j=1

αjpji, i = 0, n, α0 ≡ 1. (2)

Then, through αi the intensities λi = Λαi of the flows entering the nodes
and their load coefficients pi = λi/(μiKi), i = 1, n are determined subsequently.
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Fig. 1. Example of an open queueing network

In the general case, the values of wi for (1) are estimated by simulation and are
effectively used for optimization of the efficiency distribution among the nodes
by directing hyperboles method [6].

A more general problem of combined optimal distribution of efficiency and
transition probabilities is formulated in [1] as follows. Resource M of the network
efficiency as a function −→μ = (μ1, . . . , μn) of the vector for the servicing intensities
in nodes i = 1, n is set as M(−→μ ) =

∑n
i=1 ciμ

βi

i , where ci > 0 are cost coefficients,
and βi > 0 are nonlinearity coefficients. The varied transition probabilities given
in a fixed order are the coordinates for vector −→pv with the dimension m.

We need to find vectors −→μ = −→μ opt and −→pv = −→pvopt that realize the minimum
of the mean response time:

E(−→μ ,−→pv) =
n∑

i=1

αi(−→pv)
(

wi(−→μ ,−→pv) +
1
μi

)
−→ min−→μ ,−→pv

(3)

and lie in the following admissible solutions region

M(−→μ ) =
n∑

i=1

ciμ
βi

i = M∗ = const; 0 ≤ ρi ≤ 1;
n∑

j=0

pij = 1, (i = 0, n);

pmin
vi ≤ pvi ≤ pmax

vi , (i = 1,m). (4)

The method for solving problem (3) and (4), developed and tested in [1],
comprises a cycle of the iterations, drawing the varied parameters to solution
(−→μ opt,

−→pvopt). Each iteration consists of two steps. At the first step at fixed−→pv , the distribution −→μ = (μ1, . . . , μn) of resource M∗ by the network nodes is
optimized due to directing hyperboles method [6]. At the second step at found−→μ , vector −→pv for transition probabilities is optimized. Then, the iterations of
vectors −→μ and −→pv step-by-step optimization are repeated till the specified break-
point condition appears. At vector optimization step −→pv partial derivatives (p.d.)
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∂E/∂pjk of time E are calculated by all vector components −→pv , these derivatives
∂E/∂pjk calculation amounts to calculating derivatives ∂α(−→pv)/∂pjk. In fact,
differentiating equation (1) by any transition probability pjk, we get equation

∂E

∂pjk
=

n∑

i=1

∂(αi/μi)
∂pjk

+
n∑

i=1

∂(αiwi)
∂pjk

=
n∑

i=1

1
μi

∂αi

∂pjk
+

n∑

i=1

∂αi

∂pjk
wi +

n∑

i=1

αi
∂wi

∂pjk
, (5)

from which in [16] approximation is derived

∂E

∂pjk
=

n∑

i=1

(
1
μi

− μi
∂wi

∂μi

)
∂αi

∂pjk
, (6)

in which the values of all variables and derivatives, excluding ∂αi/∂pjk, are
known after vector −→μ optimization step (by directing hyperboles method). For
accurate calculation of p.d. ∂E/∂pjk, an advanced reduction method for semi-
Markov process graph is used in [1]. All p.d. ∂αi/∂pjk are calculated due to this
method during successive graph reductions, accompanied by recursive recom-
putation of p.d. from superpositions of numerous variables functions. Let us
demonstrate that calculating p.d.∂αi/∂pjk can be facilitated significantly, if it
is reduced to solving auxiliary systems of linear algebraic equations (SLAE).

3 Calculation of Frequency p.d. αi by Transition
Probabilities

Since the problem of calculating p.d. ∂αi/∂pjk is the one of calculating p.d. for
solutions αi of SLAE (2) by this SLAE coefficients pij , it is enough to demon-
strate how to calculate p.d. for solutions −→x of random SLAE A−→x =

−→
b by its

coefficients A,
−→
b .

NB 1. In this part, denomination bi possesses a local meaning of free equation
terms, not coinciding with the meaning they have in the rest of the article.

Let there be given SLAE with a single solution:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

aan1x1 + an2x2 + . . . + annxn = bn

(7)

and it is necessary to calculate p.d. ∂xi/∂ajk for all solutions xi of this system
by its chosen coefficient ajk. To calculate the desired p.d. accurately, this SLAE
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equation should be differentiated by the selected coefficient ajk. As a result
we get:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a11
∂x1
∂ajk

+ · · · + a1k
∂xk

∂ajk
+ · · · + a1n

∂xn

∂ajk
= 0

. . .

aj1
∂x1
∂ajk

+ · · · + ajk
∂xk

∂ajk
+ · · · + ajn

∂xn

∂ajk
= −xk

. . .

an1
∂x1
∂ajk

+ · · · + ank
∂xk

∂ajk
+ · · · + ann

∂xn

∂ajk
= 0.

(8)

All n p.d. ∂xi/∂ajk are now unknown in SLAE (8) and, therefore, can be
determined as its solutions. Matrix A of SLAE coefficients (8) coincides with
matrix A of the initial SLAE (7). The column of the right parts contains zeros
everywhere except row j, where value (−xk) is put. Therefore, we get a simple
method to calculate p.d. for all SLAE solutions xi by its selected coefficient
ajk: (s1) solve initial SLAE (7); (s2) solve auxiliary SLAE (8), derived from
the original SLAE (7) by substituting all elements of the column

−→
b with zeros,

except element bj , that is substituted by the value of (−xk), known after the
step (s1).

Here, j is the number of the row with a free term not equal to zero; it is
defined by the first index of the selected coefficient ajk. Number k of element xk,
determining a non-zero free term, is set by the second index of coefficient ajk.

Solution (ẋ1, . . . , ẋn) of the auxiliary SLAE from step (s2), is the desired
vector

(
∂x1
∂ajk

, . . . , ∂xn

∂ajk

)
.

NB 2. When calculating p.d. for the solutions of the initial SLAE (7) by the
selected coefficient bj , the auxiliary SLAE differs from SLAE (8) only by the fact
that bj = 1.

As the numerical experiments have shown, the method of auxiliary SLAE
allows one to calculate relevant SLAE with high accuracy and speed. For exam-
ple, in EXCEL p.d. is calculated by this method with 15 sharp significant decimal
digits. The solution is calculated almost momentarily, compared to the simula-
tion steps. Therefore, to solve SLAE consisting of 100 equations in Excel (by
matrix A inversion method) takes just a share of a second, together with the
results presentation.

4 Example of Optimal Vector −→pv Refinement

The problem of optimal distribution of efficiency and transition probabilities for
the network in Fig. 1 is solved in [1]. The probabilities are optimized by the
graph reduction method. The exact statement of the optimization problem is
given in [1]. As a result of the optimization, the mean response time lowered in
[1] from E = 25.5 to E = 3.1.

When preparing the current article, the experiment was made, in which the
reduction method was substituted by that of auxiliary SLAE. The resulting
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solution was more accurate: time E decreased to 2.697. Only transition proba-
bilities distribution was refined. Instead of optimal values p0,1 = 0.2286, p0,2 =
0.3159, p2,4 = 0.7075, p4,6 = 0.2, p4,7 = 0.3, p5,8 = 0.5, given in [1], optimal
values p0,1 = 0.1, p0,2 = 0.2, p2,4 = 0.6, p4,6 = 0.2, p4,7 = 0.3, p5,8 = 0.5 were
obtained. Other transition probabilities (Fig. 1) were uniquely determined by
the mentioned ones.

5 SE-Networks Optimization Problem and Its Applied
Significance

Let us examine a segment of urban road network in Fig. 2. In this network roads
9-5, 9-6 and 9-7 are unidirectional, while the rest are bidirectional. The roads in
all directions have two lanes.

Fig. 2. Example of the simulated sector of the road network

Using this road network as an example, let us demonstrate the possibility
of complex optimization (by efficiency and transition probabilities) of transport
networks by queueing theory methods. For this purpose, the network roads will
be represented by multiserver queueing systems. Let number K of channels in
every multiserver system be equal to the corresponding road capacity, i.e. the
maximal amount of the medium-sized cars that can drive on the road at the
same time, i.e. they can be “serviced” by it parallely in time. Routing matrix
P of the resulting network with multiserver nodes-roads is given in Table 1. In
practice, transition probabilities of such routing matrices can be calculated by
examining the road networks under investigation.

It is known that the speed of the cars decreases at growing traffic density.
This dependence is taken into consideration thanks to the roads fundamental
diagrams (FDs). There are several generally accepted representations of FDs.
Let us define FD as a function δ (ρ) of the road utilization coefficient ρ:

δ(ρ) =
v(ρ)
v0

, (9)
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Table 1. Transition probabilities of the road network sector

Road i Road j

0 7-1 2-8 9-7 7-8 3-8 1-7 7-9 8-7 8-2 8-3 9-5 9-6 9-4

0 0.3 0.3 0.4

7-1 1

2-8 0.5 0.2 0.3

9-7 0.3 0.2 0.5

7-8 0.5 0.2 0.3

3-8 0.5 0.2 0.3

1-7 0.3 0.2 0.5

7-9 0.2 0.3 0.2 0.3

8-7 0.3 0.2 0.5

8-2 1

8-3 1

9-5 1

9-6 1

9-4 1

where ρ = λb/K, λ is the intensity of the cars entering the road, b = b(ρ) = l/v(ρ)
is the mean time it takes the car to drive through the road, l is the road length
(0 ≤ ρ ≤ 1); v(ρ) is the mean speed at the road at utilization coefficient ρ;
v0 = v(0) is the basic mean speed of the cars driving on an empty road.

NB 3. The capacities of the nodes-roads in the network are large enough,
therefore, in case of a significant road utilization (which is of the largest inter-
est), the random number of cars in the corresponding multiserver node has a
distribution close to that of Gauss [12]. It permits an approximate calculation
of stationary modes and their characteristics optimization based on the mean
number of cars on the roads and their mean speed. Consideration of such approx-
imation justifies the use of ratio b(ρ) = l/v(ρ) (examining dense traffic flows, one
can see that the speed of the cars is almost the same in a dense flow). In the
general case, ratio b(ρ) = l/v(ρ) is inadequate, since means b and v are treated
as ensemble means for the cars having different values of speed. In the general
case, however, this problem can be eliminated by determining FDs momentarily
by the ratio of basic mean time b0 = b(0) of the road passage at ρ = 0 and mean
time b = b(ρ), depending on the load.

As a rule, FDs δ (ρ) (9) are monotone non-increasing functions, therefor 0 ≤
δ (ρ) ≤ 1. According to (9) at known FD, actual mean speed v(ρ) on the road is
determined by formula v(ρ) = v0δ (ρ). As for real roads, their FDs are calculated
just like routing matrices, i.e. by full-scale measurements on the roads.

For the present work objectives, it is possible to use simplified FD, the same
one for all multiserver network nodes. As an example, function
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δ(ρ) =
1

1 + ρ2
,

shown by the upper line in Fig. 3, will be selected as FD.

Fig. 3. Examples of roads’ FDs

Main parameters of the roads are given in Table 2. The last row has the
values of basic mean speed v0i, their low levels are explained by bad quality of
the roads. Financial resource Φ = $63820 is provided for repairing the roads. The
network optimization problem involves finding such distribution of the provided
resource among the roads that will allow mean time E of the car passing through
the network to be minimal. Moreover, it is necessary to take into consideration
that after the road repair the private transport drivers may change the previous
routes of the road passage to the new, more beneficial ones. Transport services
may affect the routes as well, including those of public transport. Such route
optimization overlaps the distribution optimization for the financial resource Φ∗

after its realization. Therefore, it is logical to optimize the resource distribution
Φ∗ at the same time with the routing matrix P. The next optimization problem
arises, that is roughly similar to problem (3) and (4). It is necessary to find the
vector −→γ = −→γ opt of speed increased thanks to the repair and routing matrix
P = Popt, that provide the minimal mean response time at given Λ

E(−→γ ,P) =
n∑

i=1

αi(P)
li

(v0i + γi)δ(ρi)
−→ min−→γ ,P

(10)
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and lying in the following admissible solutions region

Φ(−→γ ) =
n∑

i=1

φi(γi) =
n∑

i=1

ciliγ
βi

i = Φ∗; 0 ≤ ρi ≤ 1;

n∑

j=0

pij = 1, (i = 0, n); pmin
ij ≤ pij ≤ pmax

ij , (i, j = 1, n). (11)

In (10) ρi = λibi/Ki = αiΛbi/Ki = αi(P)Λli/(v0i + γi)/Ki. In (11) all
nonlinearity coefficients βi are assumed approximately equal to one. Cost coeffi-
cients ci are given in Table 2 in the measurement units [dollar/(km/h)]/km =
dollar × h/km2.

Table 2. Initial road parameters

Parameter Road i

7-1 2-8 9-7 7-8 3-8 1-7 7-9 8–7 8-2 8-3 9-5 9-6 9-4

Length, m 234 242 257 234 305 176 242 257 305 484 207 72 176

Capacity 47 48 51 47 61 35 48 51 61 97 41 14 35

ci 399.42 414.04 440.6 1398 523.3 305.7 1412 1437 524.3 1824 1352 1123 130

αi 0.75 0.74 0.25 0.5 0.96 42005 45658 42736 0.44 0.66 0.375 0.25 0.375

v0i, km/h 10 10 10 10 10 10 10 10 10 10 10 10 10

In (11) in limitations pmin
ij ≤ pij ≤ pmax

ij for changes in the routing matrix
we set that all pmin

ij are equal to p0ij − 0.1 and all pmax
ij are equal to p0ij + 0.1 ,

where p0ij are initial values of transition probabilities given in Table 1. However,
the probabilities set by zeros and ones do not vary. In applied problems, it is
more logical to set the limitations for changes in the transition probabilities as
the limitations for frequencies αi [9]. As numerical experiments demonstrate,
this way of setting the limitations has no effect on the efficiency of the proposed
approach.

The described herein networks with multiserver nodes, simulating the trans-
port network roads, will be further called the networks with suppressed efficiency
(SE-networks).

6 SE-Networks Optimization in a Low Load Mode

In practice, resource Φ∗ distribution by multiserver nodes in SE-networks (by the
network roads) can be optimized for a low load mode at ρ → 0 , i.e. for the mode
when transport drives on empty roads, without taking into consideration the
possibility of the routing matrix modification, if the reasons for it are considered
insignificant. In this case the optimization problem is notably simplified and
solved by analytical methods. The main question considering the legitimacy of
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such approach is how target function E of the optimized network will change
when the road load will be considerable as, for example, during rush hours before
the weekend.

This simplified optimization problem will be solved and the quality of the
simplified solution will be evaluated on the example of SE-network constructed
in the previous section of the article. As a result of the simplification, problem
(10) and (11) is set as follows. It is necessary to find vector −→γ = −→γ opt for speed
increased due to the road repair that provides the minimal mean response time

E(−→γ ) =
n∑

i=1

αi
li

(v0i + γi
−→ min−→γ

(12)

and lies in the following admissible solutions region

Φ(−→γ ) =
n∑

i=1

φi(γi) =
n∑

i=1

ciliγ
βi

i = Φ∗. (13)

Problem (12) and (13) is easily solved by Lagrange multiplier method and
at all βi = 1 the optimal solution is determined by expressions

γi =
√

αi

λci
− v0i, i = 1, . . . , n; λ =

( ∑n
i=1 li

√
ciαi∑n

i=1 liciv0i + Φ∗

)
. (14)

Here, λ is Lagrange multiplier; denomination λ has such a meaning only in
formulae (14).

Using the network parameters given in Table 2, from formula (14) we get
optimal added values of speed (in km/h) 42.59, 41.31, 18.91, 12.95, 41.98, 64.45,
26.11, 23.57, 25.16, 13.09, 10.21, 8.11, and 10.62 in roads 7-1, 2-8, . . . , 9-4. With
due consideration of the base speed, as a result of the road repair, the mean
values of the speed on the roads are 52.59, 51.31, 28.91, 22.95, 51.98, 74.45,
36.11, 33.57, 35.16, 23.09, 20.21, 18.11, and 20.62 (km/h).

Now it is time to consider how this solution differs from a simpler one,
according to which resource Φ∗ is distributed among the roads uniformly, i.e.
proportionally to the road lengths. Given that, each road is provided with
φi(γi) = ciliγi = li∑

li
Φ∗ = li

3.191Φ∗ dollars and therefore we get added speed
γi = Φ∗/(3.191ci). Together with the base speed, the mean values of speed equal
to 60.07, 58.30, 55.39, 24.30, 48.22, 75.43, 24.16, 23.91, 48.15, 20.96, 24.79, 27.82,
and 25.39 (km/h) are achieved due to the repair of roads 7-1, 2-8, . . . , 9-4.

To compare the quality of the two examined solutions in a wide range of
loads, the corresponding simulation experiments with the traffic network are
carried out. The traffic network model in terms of GPSS “simulation models
publication language” [17] is shown in Fig. 4.

The fragments in Fig. 4 are sufficient to reconstruct a whole simulation model
with the help of Tables 1 and 2. The model reproduces the following characteristic
features of traffic flow motions, overlooked by SE-network:

– the speed of the car (transact) entering the road is determined by the actual
(i.e. random) road’s density of load at the given time moment;
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Fig. 4. Fragments of the traffic network simulation model
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– blocks may arise at attempt of moving to the next road (if the car cannot
move to the chosen road due to its congestion, it does not leave the current
road).

The model provides a fair amount of more precise correspondences with real
traffic flows, including the possibility to consider the durations of traffic lights
phases. The present article does not aim to enumerate and justify these corre-
spondences.

Bold-faced type is used to highlight mean speed v0i + γi, calculated with
formula (14) at resource Φ∗ distribution optimization in a low load mode. At the
load growth, the characteristics of the traffic network resulting from such opti-
mizations are determined by simulation runs with increased values for parameter
Lambda.

In Fig. 5 the comparison is given for E(Λ)-characteristics of SE-network,
optimized in a low load mode (fine line E

′
1), and the corresponding traffic network

(bold curve E1). At changeable Λ characteristic E
′
1 is calculated by formula (10)

at added speed (14) and matrix P specified in Table 1. Characteristic E1 results
from the simulation runs of the model in Fig. 4. Curves E2 and E

′
2 are similarly

obtained characteristics of the traffic network and SE-network in which resource
Φ∗ is distributed among the roads in proportion with their length, i.e. equally
per each kilometer of the road. Intensity Λ is given as the number of the cars
per second, time E is in seconds. The comparison of the obtained characteristics
shows that networks optimized due to zero load possess much better throughputs
than those with unequally distributed resource. In a stationary node, the mean
travel time in optimized networks is less, and they go into a nonstationary mode
at larger intensity Λ of the incoming flow. Consequently, if during rush hours the
traffic jams occur, they will happen later, will be shorter, and will end faster.

300
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Fig. 5. Changes in the quality of the optimized networks with the load growth
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Characteristics E3, E3C and E
′
3C , shown in Fig. 5, are reached thanks to the

complex optimization taking the load into consideration and using the possibility
of changing transition probabilities.

7 SE-Networks Optimization in a High Load Mode

At zero intensity λi of the cars entering road i, positive load coefficient ρi > 0
results. This leads to a lower value of FD δi(ρi) = δ(ρi) (Fig. 3) and decreased
actual mean speed vi(ρi) = v0iδ(ρi) on the road. Taking FD into consideration,
let us form an equation for load coefficient ρi of a random road:

ρi =
λibi

Ki
=

λi

Ki

li
v0iδ(ρi)

=
ρ0i

δ(ρi)
= ρ0i(1 + ρ2i ), (15)

where li is the road length, ρ0i = λili/(v0iKi) is a virtual load coefficient, that
could result, if the car speed stayed the same with the load growth. Equation (15)
is approximately carried out in a stationary mode.

The solution of quadratic equation (15) has a form of:

ρi =
1

2ρ0i
−

√
1

(2ρ0i)2
− 1 =

v0iKi

2λili
−

√(
v0iKi

2λili

)2

− 1, (16)

where λi = αiΛ. This solution is correct (it corresponds to a stationary mode)
at ρ0i ≤ 1/2 (in this case ρi ≤ 1).

Using solution (16), target function (10) is expressed through SE-network
parameters, and the complex optimization problem is formulated as follows.

It is necessary to find speed vector −→γ = −→γ opt and routing matrix P = Popt,
providing minimal mean response time E(−→γ P) at given Λ > 0:

E(−→γ ,P) =
∑n

i=1
αi(P)li
v0i+γi

(1 + ρ2i )

=
∑n

i=1
αi(P)li
v0i+γi

⎛

⎝1 +

(
v0iKi

2αi(P)li
−

√(
v0iKi

2αi(P)li

)2

− 1

)2
⎞

⎠ → min−→γ ,P

(17)

and lying in the following admissible solutions region
∑n

i=1 ciliγ
βi

i = Φ∗; 0 ≤ ρi ≤ 1;
∑n

j=0 pij = 1, (i = 0, n);

pmin
ij ≤ pij ≤ pmax

ij , (i, j = 1, n).
(18)

This complex optimization problem can easily be solved by a repeated step-
by-step optimization of the current solution only by added speed γi and only by
matrix P; such iterations converge to the solution rather quickly, that is optimal
both by the added speed and by routing matrix P at the same time.

At small sizes of the networks, when the number of the roads is within hun-
dred, the networks can be optimized with standard optimization programs using
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numerical differentiation to calculate the gradients. Thus the time consumptions
for PC of medium power equal from a share of a second to several seconds. When
queueing SE-networks include hundreds of nodes, the target function gradients
should be accurately calculated by the transition probabilities. Such calculation
is quickly performed by the method of auxiliary SLAE proposed above.

Solving problem (17) and (18) at some Λ > 0, we find such resource Φ∗

distribution among repaired roads, that provides better results at the entering
traffic flow intensity equal to Λ.

In Fig. 5 traffic network characteristic E3 is calculated by simulation modeling
at parameters γi, obtained when solving solution (17) and (18) at Λ = 0.75 cars
per second and a fixed matrix P, specified in Table 1.

Characteristic E3C is calculated by traffic network simulation modeling at
parameters γi and P, obtained when solving problem (17) and (18) at Λ = 0.75
cars per second, at varied values of speed γi and at varied probabilities pij in the
range of ±0.1 (i.e. at the parameters obtained by a complex network optimization).

Curve E
′
3C is characterized by the corresponding SE-network and is calcu-

lated without simulation modeling, directly through the expression of the target
function (17).

Here is solution −→γ = −→γ opt, P = Popt, of problem (17) and (18), obtained
for Λ = 0.75 and providing characteristic E

′
3C for SE-network and characteristic

E3C for the corresponding traffic network (Fig. 5): −→γ opt= 46.63, 44.15, 13.60,
7.54, 33.43, 80.24, 39.16, 26.09, 21.28, 7.37, 9.63, 16.63, 19.25; Popt is given in
Table 3.

Table 3. Transition probabilities of matrix Popt

Road i Road j

0 7-1 2-8 9-7 7-8 3-8 1-7 7-9 8-7 8-2 8-3 9-5 9-6 9-4

0 0.3 0.2 0.5

7-1 1

2-8 0.6 0.2 0.2

9-7 0.3 0.1 0.6

7-8 0.6 0.2 0.2

3-8 0.6 0.2 0.2

1-7 0.3 0.1 0.6

7-9 0.1 0.2 0.3 0.4

8-7 0.3 0.1 0.6

8-2 1

8-3 1

9-5 1

9-6 1

9-4 1



396 V.N. Zadorozhnyi and M.A. Kornach

Comparing characteristics E3C and E
′
3C with the others, given in Fig. 5, it

is easy to notice that complex optimization, oriented on a high load and taking
into consideration the possibility of partial routes changing (adaptation), allows
one to decrease the mean time of passing through the network significantly and
to increase its throughput.

Economic impact, achieved by the traffic network optimization with quick
numerical optimization of the corresponding SE-networks, is quite apparent.

Equally effective solutions are obtained in case of more “stiff” FDs as well,
including the case when FD is described by the function, shown with a lower
line in Fig. 3.

8 Conclusion

Effective analytic-imitational and semi-numerical methods for complex optimiza-
tion of routing matrices and node efficiencies in non-Markov queueing networks
are developed. Mean network passage time is used as target function. The char-
acteristic feature of the proposed methods is a prompt and precise calculation
of the target function partial derivatives, based on the varied transition proba-
bilities.

Traffic network optimization method is developed for stationary modes in
a wide range of traffic load changes. The method is based on traffic networks
approximation by SE-networks with multiserver nodes; their efficiency drops
with the load growth and subsequent optimization of these SE-networks.

Effective methods for complex optimization of queueing SE-networks are pro-
posed. At small sizes of SE-networks, the optimization can be carried out with
the existing standard optimization programs using numerical differentiation for
gradient calculation. When queueing SE-networks include hundreds of nodes,
the target function gradients should be accurately calculated by the transition
probabilities. Such calculation is quickly performed by the method of auxiliary
SLAE proposed above.
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