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Preface

The series of scientific conferences Information Technologies and Mathematical
Modelling ITMM) was started in 2002. In 2012, the series acquired an international
status, and selected revised papers have been published in Communication in Computer
and Information Science since 2014. The conference series is named after Alexander
Terpugov, one of the first organizers of the conference, an outstanding scientist of
Tomsk State University, a leader of the famous Siberian school on applied probability,
queueing theory, and applications.

Traditionally, the conferences have about 10 sections in various fields of mathe-
matical modelling and information technologies. Throughout the years, the sections on
probabilistic methods and models, queueing theory, and communication networks have
been the most popular ones at the conference. These sections gather many scientists
from different countries. During the last years, we accepted participants from Austria,
Azerbaijan, Belarus, Bulgaria, China, Hungary, India, Italy, Kazakhstan, Korea, The
Netherlands, Poland, United States. Many of these foreign participants come to this
Siberia conference every year because we have a warm acceptance and serious sci-
entific discussions here. This year the conference was held in Kazan, the capital of
Tatarstan Republic, whose universities, research institutes and engineering firms are
well-known in the world.

This volume presents selected papers from 16th ITMM conference. The papers are
devoted to new results in the queueing theory and its applications. It is targeting to be
used by specialists in probabilistic theory, random processes, mathematical modelling
as well as engineers engaged into logical and technical design and operational man-
agement of data processing systems, communication and computer networks.

September 2017 Alexander Dudin
Anatoly Nazarov
Alexander Kirpichnikov
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On a BMAP/G/1 Retrial System with Two
Types of Search of Customers from the Orbit

Alexander Dudin'®), T.G. Deepak?, Varghese C. Joshua®,
Achyutha Krishnamoorthy?, and Vladimir Vishnevsky*

! Department of Applied Mathematics and Computer Science,
Belarusian State University, 220030 Minsk, Belarus
dudin@bsu.by
2 Department of Mathematics, Indian Institute of Space Science and Technology,
Thiruvananthapuram, India
deepak@iist.ac.in
3 Department of Mathematics, CMS College, Kottayam, India
{vcjoshua,krishnamoorthy}@cmscollege.ac.in
4 Institute of Control Sciences, Russian Academy of Sciences,
Moscow, Russia
vishn@inbox.ru

Abstract. A single server retrial queueing model, in which customers
arrive according to a batch Markovian arrival process (BMAP), is consid-
ered. An arriving batch, finding server busy, enters an orbit. Otherwise
one customer from the arriving batch enters for service immediately while
the rest join the orbit. The customers from the orbit try to reach the
server subsequently and the inter-retrial times are exponentially distrib-
uted. Additionally, at each service completion epoch, two different search
mechanisms are switched-on. Thus, when the server is idle, a competition
takes place between primary customers, the customers coming by retrial
and the two types of searches. It is assumed that if the type II search
reaches the service facility ahead of the rest, all customers in the orbit
are taken for service simultaneously, while in the other two cases, only
a single customer is qualified to enter the service. We assume that the
service times of the four types of customers namely, primary, repeated
and those by the two types of searches are arbitrarily distributed with
different distributions. Steady state analysis of the model is performed.

Keywords: Batch Markovian arrival process - Orbit - Retrials + Cus-
tomers search -+ Group service

1 Intoduction

Retrial queues represent an important, challenging and complicated for math-
ematical analysis class of queueing systems. A retrial queueing system is char-
acterised by the fact that a customer arriving when all servers accessible for
him/her are busy, leaves the service area and joins a group of unsatisfied
© Springer International Publishing AG 2017
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2 A. Dudin et al.

customers called orbit, but after a random amount of time he/she returns
and repeats his/her demand for service. Retrial queueing systems arise fre-
quently in the stochastic modelling of telecommunications, computer systems,
contact centers, etc. Review of retrial queueing literature could be found in
[1,2,24,25,27,32]. In the retrial set up, each service is preceded and followed by
the server(s) idle time because of the ignorance of the status of the server(s) and
orbital customers by each other.

We are interested in designing retrial queueing models that reduce the
server(s) idle time. One way to achieve this is by the introduction of search
of orbital customers immediately after a service completion. Search for orbital
customers was introduced in [3] and the paper [20] generalizes the result in [3] by
introducing a search time, two types of services to customers (primary/orbital)
and by assuming the arrival process to be the batch Markovian process. The
queueing model with customers search in the buffer (not in the orbit) was con-
sidered in [31] where after each service completion the server starts searching
of a customer in the buffer and the rate of the exponentially distributed search
time is proportional to the number of customers presenting in the system.

This paper generalizes the model discussed in [20] by introducing two types of
search and different types of services to primary/orbital customers (retrial/type
I/type II searches) retaining the assumption that the arrival process is batch
Markovian process (BMAP). A particular case of the proposed model with
batch Poisson arrival process has been considered in [11]. A retrial model with
two types of search, in which the number of customers taken for service depends
on the orbit size, and with the batch Poisson arrival process is considered in
[12]. However, namely BM AP suits well for modelling the correlated bursty
traffic in the modern communication networks. Approximation of such flows in
terms of the stationary Poisson process can cause huge errors in the evaluation
of performance characteristics of the networks. Therefore, analysis of queueing
models with the BMAP is of a great importance. Chakravarthy S.R. in [7]
provides a review of queueing models with the batch Markovian arrivals. Retrial
models with BM AP have been investigated, e.g., in the papers [4,8,9,16-18,26].

The present model is motivated, e.g. by the following practical situation: In
Airport/Bus stations/Railway stations passengers individually get into transport
vehicles to destinations. Also it is common that travel agencies arrange for bulk
transport for all the customers. Broadcasting of information simultaneously to
many customers is possible in various wireless communication networks. More
motivations of group service can be found e.g. in [5,6,8,23].

2 The Mathematical Model

We consider a single server queueing system in which the arrivals occur according
toa BMAP. The BM AP, a special class of tractable Markov renewal process,
is a rich class of point processes that includes many well known processes such as
Poisson, PH-renewal processes and Markov-modulated Poisson process. One of
the most significant features of the BM AP is the underlying Markovian structure
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and it fits ideally in the context of matrix-analytic solutions to stochastic models.
As is well known, Poisson processes are the simplest and most tractable ones used
extensively in stochastic modelling. The idea of the BM AP is to significantly
generalize the Poisson processes and still keep the tractability for modelling
purposes.

The BMAP is described as follows. Let the underlying Markov chain
{v,t > 0} be irreducible and let Q* = (g;;) be the generator of this Markov
chain with state space {1,2,--- ,m}. At the end of a sojourn time in state i,
that is exponentially distributed with parameter A\; > —g¢;;, one of the follow-
ing two events could occur: with probability P;;(1),1 < 4,j < m, the transition
corresponds to an arrival of group size [ > 1, and the underlying Markov chain
{v,t > 0} is in state j; with probability P;;(0), the transition corresponds to no
arrival and the state of the process {vy,t > 0} is j, j # i. Note that the Markov
chain {v,t > 0} can go from state 7 to state ¢ only through an arrival. For [ > 0,
define matrices D; = (d;;(1)) such that d;;(0) = =X, 1 < i < m; d;;(0) =
AiP;;(0), for j # i, 1 < i,j < m, and d;;(1) = A\;P;;(1). Assuming Dy to be
a non-singular matrix, the interarrival times will be finite with probability one
and the arrival process does not terminate. Hence, we see that Dy is a stable

o0
matrix. The generator Q* is then given by Q* = Z D;. Let D(z) be the matrix
1=0

oo
generating function of D;. That is, D(z) = Z 2Dy
1=0

Thus, the BM AP is described by the matrices {D;} with Dy governing the
transitions corresponding to no arrival and D; governing those corresponding
to arrivals of group size [, > 1. The point process described by the BM AP
is a special class of semi-Markov processes with transition probability matrix
given by

x
/eDotdtDl = [I—e""] (=Do) "Dy, 1 > 1.
0

For use in the sequel, let e, 0 and I denote, respectively, the (column) vector
of dimension m consisting of 1’s, the (row) vector of dimension m consisting of
0’s, and the identity matrix of order m.

Let 0 be the stationary probability vector of the associated Markov process
with generator @Q*. That is, 0 is the unique (positive) probability vector satisfying
0Q* =0, e = 1. The constant

A= Gikae,

k=1

referred to as the fundamental rate gives the expected number of arrivals per unit
of time in the stationary version of the BM AP. For further details on BM AP,
its properties, particular cases and usefulness in stochastic modelling, we refer
to [7,29].
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The service mechanism of the present system is described in the following
manner. The primary unit who meets the server idle is served with service times
having the distribution function By(t), while the rest join the orbit. Each unit in
the arriving batch finding the server busy, enters the orbit and retry to access the
server with the time between two successive retrials, exponentially distributed
having intensity «;,7 > 0, when the number of customers in the orbit is i.
Additionally, at a service completion epoch, two different search mechanism
are switched on. Thus, if the server is idle, a competition takes place among
primary customer, retrial customers and those resulting in the two types of
searches to access the server. If a retrial customer reaches the idle server first, the
customer entering the service is served with service times having the distribution
function Bs(t) while if the type I search turned out to be successful, the selected
customer is served according to the distribution function By (t). If type II search
succeeded, all units present in the orbit are taken for service simultaneously and
the service time of the whole group follows distribution function By(t). Denote by

Bi(s) = [ e *'dB;(t), Re s > 0, the Laplace-Stieltjes transform (LST) and b
0
(assumed to be finite), the r*" moment associated with the distribution function
B;(t),i=0,1,2,3: b = J t"dB;(t). The duration of the type I (type II) search
0

is characterized by the distribution function H; (¢)(Hz(t)) with LST hq(s)(ha(s))
and finite expectations hy and hg. Distribution functions H;(t), | = 1,2, may
be arbitrary, however, we assume that duration of the searches cannot be both
constant. Otherwise, the search with larger value of h;, [ = 1, 2, will never succeed
to be finished earlier that the another search and the search with larger duration
has to be excluded from consideration.

The presence of the additional search mechanism allows to minimize the idle
time of the server. If holding cost (charge paid due to the customers stay in the
system) and costs associated with the different types of the search and service of
customers are introduced, optimal tuning of the parameters of search mechanism
will be possible based on the analysis results of which are presented below.

3 The Stationary Distribution of the Embedded Markov
Chain

Denote by t,, the n* service completion epoch; i,, the number of customers in
the orbit and v, the state of the BM AP process v; at the moment t¢,, + 0. Then

Cn = {(imyn)? nz 1}

is a two-dimensional Markov chain with state space {(l,v) ; I > 0,v =
1,2,---m}. In the sequel, we need the following auxiliary matrices. Define

P; = /e<D0—aiI>t(1 — Hy(t))(1 = Ho(t))dt, i >0, Bg = (—Dp) "t
0
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F = / ePomo DN (L — Hy(t))dH, (t), F*) = / ePomes D1 — H, (1)) dH 1),
0 0

F® = a;®;, for i > 0 and Fél) = Fé2) = FéB) = (=Do)™".

3

Here Fi(r), r = 1,2, 3, give the matrices of probabilities that the idle period
of the server expires through type I search or type II search or retrial.

Let Q,(f) be the matrix of probabilities that exactly k arrivals occur during
a service time of the " type, r = 0,1,2,3. It is well-known, see, e.g., [29] that
these matrices can be obtained as coefficient matrices in the following matrix
generating function:

oo

2,(2) = Br(-D(2)) = Y k= /eD(Z)tdBr(t),r =0,1,2,3.
k=0 0

Let P(i,l), for @ > 0,1 > 0, denote the matrix of the one-step transition
probabilities of the Markov chain ¢,,,n > 1, with the (,2/)*" entry defined as

. /- . ’
Plint1 =Lvpyr =Vin =t v =vhv,v' =1,2,--- ,m.

The following lemma, whose proof follows immediately from the described
customers access mechanism and the formula of total probability, gives expres-
sion for the matrices P(i,1).

Lemma 1. The matrices P(i,1) are calculated as follows:

+1
P0,1) =®0 Y Dp2%,, 120,
k=1

l—i+1
Py = > D20 +FPeD  +FPe® + FPo® iz,
k=1

P,y =F20® i>1,0<l<i—1.

From now on, we make the assumption that the retrial rate «; does not depend
on i. That is a; = « for ¢ > 0. In this case, the matrices @;, FZ-(T)7 r=1,2,3, do
not depend on i and are denoted as @, F("), r = 1,2, 3, correspondingly.

It can be shown that, due to the possibility of simultaneous service of all
customers presenting in the system, the system is stable under any set of the
system parameters, therefore the stationary probabilities of the chain always
exist.

Let us denote these probabilities by
w(i,v) = lim Pli, =i, v, =v}, v=1,...,m,
n—oo
and let us introduce the following row vectors:

= (m(i, 1), ,m(i,m)), i > 0.
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Using the obtained transition probabilities, we get the system of linear alge-
braic equations (equilibrium equations) for the steady state probabilities as given
below:

I+1 oo
™ = woPo Z Dkﬁl@k“ + Z wiF(z)Ql@)
k=1 i=1
I4+1 I—i+1

+ 3w |0 > De2? + FORY FOP L i>0. (1)
i=1 k=1

To solve this infinite system of equations, we introduce the vector probability
o0
generating function m(z) = Zmzl, |z] < 1.
1=0

Multiplying each of the e_quations in (1) by the corresponding power of z,
summing up and rearranging the terms, we get

2m(2) = woPo(D(2) — Do)2(2) + 2(m(1) — wo) F P 25(2) + (m(2) — w0)Y (2)
where
Y (2) = &(D(2) — Do)f2(2) + FMV 21 (2) + FO 025(2).

Thus, the vector generating function 7r(z) satisfies the following vector functional
equation

m(z)(z] — Y (2))

= 7(0)(Po(D(2) — Do)2(2) — 2FP 25(2) = Y (2)) + 2w (1) FP 25(2).  (2)

This equation includes the unknown vector generating function m(z) at three
points: z, 0 and 1. Next we make an attempt to eliminate the unknown vector

(1) from (2) in the trivial way, i.e., by substituting z = 1 in (2). Then we obtain
the following relation between the vectors 7 (1) and 7 (0) = 7 :

m(1)(I =Y (1) = F®25(1)) = mo(o [D(1) = Do] - 3)

However, we cannot eliminate the vector (1) directly from Eq. (3) because it
is possible to show that the matrix

A=Y(1)+FP2(1)

is irreducible stochastic and, consequently, the matrix I — A in the right hand
side of (3) is singular.

To overcome this difficulty, we apply the well-known trick by M. Neuts. Let p
be the left probability eigenvector of the matrix A, i.e., it satisfies the equations

pA=p, pe=1

Adding the vector 7(1)ep to both sides of (3), observing that the matrix
I — A + ep is nonsingular and that

p(I—A+ep)~' =p,
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we obtain from (3) that
(1) = p+ mwo(Po [D(1) — Do) £20(1) — A)C,

where
C=(I—-A+ep) "

Then, the vector functional Eq. (2) transforms into equation
7(2) (2] — Y (2)) = 7o |®o(D(2) — Do) 2(2) — 2FP 25(2) — Y (2))

(4)

which includes the unknown vector generating function 7r(z) only at two points:
z and 0.

The methodologies for solving equations of type (4) in the case when the
matrix Y (1) is stochastic are well-known. One of them is based on the use of M.
Neuts’ approach (see [30]) that exploits the matrix G which is the solution of the
nonlinear matrix equation G = Y (G). Another one uses reasonings of analyticity
of the vector generating function 7r(z) in the unit disk of the complex plane, see,
e.g. [15].

However, in (4) the matrix Y (1) is the sub-stochastic, but not stochastic.
Solution of Eq. (4) in this case can be derived using the results obtained during
the analysis of BMAP/SM /1 queue with so called disasters, see [13,21] where
the analyticity approach is properly adjusted or the papers [14,22] where the M.
Neuts’ approach is generalized to the corresponding class of multi-dimensional
Markov chains. Disasters have the same effect (removal of all customers from
the system) as simultaneous service of all customers from the orbit after type II
search succeeds to win in competition with type I search and primary or orbital
customers.

4 Stationary Distributions of the Number of Customers
in the Orbit and in the System at Arbitrary Time

Denote by p(i,r),i > 0,r =0,...,4, the steady state probability vector that at
an arbitrary time there are ¢ customers in the system, and the current service is
in the r* mode. Note that r = 4 corresponds to the case when the server is idle.
The following theorem gives expression for the steady state probability vectors.

Theorem 1. The stationary probability vector p(i,r) are calculated as follows:
p(ov 4) = T_lwo(_DO)_lv

p(i,4) = T im®, i>1,
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p(i,3) =71 mF® QY

i—0

p(i,2) =71 Z  F@ 0
=1
A
p(i,1) =771 ZmF(l)

p(i,0) =7~ 7"02 — Do)~ D2, +ZmZ¢DkQ(O L >0,
k=1 =1

where the matrices !Z(,f) are the coefficients appearing in the matrix expansion

0o o0
=3 00k = /eD(Z)t(l ~B.()dt, 1 =0,....3,
k=0 0

and the average inter-departure time, 7, is given by formula

9] 3
r=mo((—Do)t + bV De+ > m; | Y FOb e + (1 — Dob(”)e
i=1 j=1
Proof follows from the theory of Markov renewal processes (see [10,31]).
In a similar manner, if we define q(i,7), ¢ >0, r =0,...,4, as the steady

state probability vectors at an arbitrary time that there are i customers in the
orbit and the current service is in the r* mode, we get the following result:

Theorem 2. Vectors q(i,7),i > 0,7 =0,...,4, are computed as follows:
q(0,4) = 77 'mo(=Do) ",

q(i,4) = 77 tm®, i >0,

1+1

Q(i, 3) = T_l Z FIF(?))‘Q?I(E)Z-&-U
=1

q(i,2) =1y mFA 0P,
=1
i+1

q(i,1) =71 1Z7rlF( ).Q( )l+1’
I=1

i+1 ioit+1-1
qu,o):Tl( ZD,CQZH Y aD 20, k) i>0.

=1 k=1
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Some Performance Measures

Let us introduce the following vector partial generating functions

oo (oo}
P(z,r) = 2'p(i,r), Qz,7) = Y 2'q(i,r), [2[ <1, r=0,....4.
=0 =0

Having computed the stationary distributions for both the system size and orbit
size, we can calculate some important performance characteristics of the model
as follows:

Probability of the system being empty at an arbitrary moment is defined by
p(0,4)e;

Probability that the server is free at an arbitrary moment is defined by
P(1,4)e;

Probability that the server is working in the zero mode (primary customer
service) at an arbitrary moment is defined by P(1,0)e;

Probability that the server is working in mode 1 (orbital customer service
after the type I search) at an arbitrary moment is defined by P(1,1)e;
Probability that the server is working in mode 2 (orbital customer(s) service
after the II search) at an arbitrary moment is defined by P(1,2)e;
Probability that the server is working in mode 3 (retrial customer service) at
an arbitrary moment is defined by P(1, 3)e;

Probability that the orbit is empty at an arbitrary moment is defined by

4
> alo, j)e;
=0

Probability of having ¢ customers in the orbit at an arbitrary moment is

4
defined by Z ali, j)e;
§=0
4
Average number of customers in the system is defined by Z P'(1,5)e;
J ’
Average number of customers in the orbit is defined by Z Q'(1,5)e.
j=0

Remark

Corresponding probabilities for an arbitrary batch arrival epochs are computed
by the analogous formulas only the vector e has to be replaced with the vector
—Dype. Probability of starting the service of an arbitrary customer immediately
upon arrival (probability that the customer receives service in the system without
visiting the orbit) is defined by

AT'P(1,4)(=Dy)e.
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Some examples of computation of the key performance measures of the sys-
tem for the considered model in case of the group Poisson arrival process are
presented in [11]. Computations for the general case of the BM AP are much
more involved. But they can be successfully done based on the corresponding
modules of software described in [19].

6 Conclusions

We considered retrial queueing model where the usual mechanism of customers
access to the service via the competition of the primary and orbital customers is
supplemented by the mechanisms of customers search in the orbit by the server.
One option of the search leads to the individual service of a customer found in the
orbit. Another one results in simultaneous service of all customers presenting in
the orbit. Stationary distributions of the system states at the embedded service
completion moments and arbitrary moments are computed along with some
important performance measures of the system.

The results can be used for optimization of operation of the system if some
cost criteria accounting the quality and cost of different kinds of customers ser-
vice and access will be introduced. More types of customers search can be con-
sidered. The case when search times have a phase type distribution, in which
the presented analytical results may be more easy implemented in the form of
software, deserves more close consideration.

Extension of the analysis to the case when the total retrial intensity depends
on the current number of customers in orbit is possible based on the results
from [28] with modification that accounts possibility of emptying the system at
the random moment, irrespectively to the current number of customers in the
system.
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Abstract. Heterogeneous servers which can differ in service speed and
reliability are getting more popular in modeling of modern communica-
tion systems. For a two-server queueing system with unreliable servers
the allocation of customers between the servers is performed via a thresh-
old control policy which prescribes to use the fastest server whenever it is
free and the slower one only if the number of waiting customers exceeds
some threshold level depending on the state of faster server. The main
task of the paper consists in reliability analysis of the proposed system
including evaluation of the stationary availability and reliability function.
The effects of different parameters on introduced reliability characteris-
tics are analyzed numerically.

Keywords: Reliability analysis + Quasi-birth-and-death process - Het-
erogeneous servers - Threshold policy - Matrix-geometric solution
method

1 Introduction

To make modern communication systems superior in performance and reliabil-
ity to the previous generation systems they can be supplied with heterogeneous
communication links. Such links can differ in availability, link data throughputs,
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power consumption and reliability characteristics. To model the dynamic behav-
iour of the data transmission links subject to breakdowns a queueing system with
non-reliable servers can be used. The analysis of multi-server queueing systems
generally assume the servers to be homogeneous. Mitrany and Avi-Izhak [11] and
Neuts and Lucantoni [13] have studied the M /M /s queueing system with server
breakdowns and repairs. In paper of Levi and Yechiali [9] the queue M /M /s
with servers’ vacations was analyzed. A recent paper of Efrosinin et al. [3] deals
with an stationary analysis performed on the busy period for the multi-server
Markovian queueing system with simultaneous failures of servers. The queues
with heterogeneous non-reliable servers occur quite rarely as a research subject.
A queueing system with two heterogeneous servers and multiple vacations was
studied by Kumar and Madheswari [6], who obtained the stationary queue length
distribution by using matrix geometric method and provided analysis of busy
period and waiting time. In Kumar et al. [7] the same authors have introduced
the M /M /2 queueing system with heterogeneous servers subject to catastrophes
and provided a transient solution for the system under study. A heterogeneous
two-server queueing system with balking and server breakdowns has been studied
by Yue et al. [16]. In their study, some stationary mean performance measures
are obtained using the matrix-geometric solution method.

In heterogeneous queueing system with one common queue, especially in
case of the service without preemption, when the customer can not change the
server during a service time, the customer allocation mechanism between the
servers must be specified. The majority of heterogeneous systems investigated use
heuristic service policies (e.g. the Fastest Free Server (FFS) or Random Service
Selection (RSS) policies). In fact these policies are not optimal, if e.g. the mean
response time must be minimized. As it is already known, see. e.g. the results of
Efrosinin [1], Koole [5], Legros and Jouini [8], Lin and Kumar [10], Rykov and
Efrosinin [15], for the heterogeneous queueing systems the optimal allocation
policy belongs to a class of threshold policies, where the less effective server
must be used only if the number of customers in the queue has reached some pre-
specified threshold level. The same result was confirmed for the queueing system
with faster non-reliable server and absolutely reliable slower server in Efrosinin
2], Ozkan and Kharoufeh [14] and for two non-reliable heterogeneous servers
in system with a constant retrial discipline in Efrosinin and Sztrik [4]. In the
latter paper it was shown that for the fixed threshold policy the corresponding
Markov process is of the QBD (Quasi-birth-and-death) type with a tri-diagonal
block infinitesimal matrix with a large number of bounding states.

While the first steps in performance analysis of controllable heterogeneous
queueing systems have already been performed for completely reliable servers, a
missing link to an applicability of heterogeneous models is a reliability analysis
of such queues with servers subject to failures. In this paper we use a forward-
elimination-backward-substitution method expressed in matrix form in terms
of the Laplace-Stiltjes transforms (LST) combined with probability generating
function (PGF) approach to evaluate reliability measures such as reliability func-
tion, which represents the complementary cumulative distribution function of the
life time, and mean time to the first failure for each server separately and for the
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group of servers under the fixed threshold allocation control policy. The reliabil-
ity functions are obtained in terms of the Laplace transform (LT) and numerical
inversion algorithm is used to get the time dependent functions. Additionally
a new discrete reliability metric in form of the distribution of the number of
failures during a certain life time is introduced. We expect that the proposed
results can be generalized to the case of an arbitrary controllable non-reliable
queueing model with a QBD structure.

The rest of the paper is organized as follows. In Sect. 2, we describe the mathe-
matical model and give a presentation of the stationary distribution of the system
state using a matrix-geometric solution method. In Sect. 3, we develop compu-
tational analysis for the stationary reliability characteristics, for the reliability
function and mean time to failure. The number of failures during a certain life
time is investigated in Sect. 4. In Sect. 5, numerical illustrations are provided to
highlight the effect of some parameters on the derived reliability characteristics.

Hereafter, the notations e(n), e;(n), and I,, are used respectively for the
column-vector consisting of 1’s, the column vector with 1in the j-th (beginning
from 0-th) position and 0 elsewhere, and an identity matrix of the dimension n.
When there is no need to emphasize the dimension of these vectors the suffix
will be suppressed and dimension is determined by the context. The expressions
diag(ay,...,a,), diag®(a1,...,a,), and diag™(a1,...,a,) denote respectively
the diagonal matrix, the upper diagonal matrix, and the lower diagonal matrix
with entries aq,...,a, that could be scalars or matrices.

2 Mathematical Model and Stationary Distribution

In the present paper we deal with a two-server heterogeneous non-reliable queue-
ing model of the type M /M /2. The customers arrive according to a Poisson
process with arrival rate A. The service times are exponentially distributed with
rates puy and ps, where gy > us. We assume that the server fails respectively
at an exponential rate a; and ag. The servers can fail only if they are busy.
The failed server is repaired immediately and the time required to repair it is
exponentially distributed respectively with rate 8; and (2. The customer being
served at the failure moment is left at this server during the repair time and can
be served when the server becomes operational again. The allocation mechanism
between two servers is based on a threshold policy: depending on the state of
faster server the slower one is used whenever the number of customers in the
queue exceeds a certain threshold level.

Let Q(t) and D(t) = {D1(t), D2(t)} denote, respectively, the number of cus-
tomers in the queue and the vector state of servers at time ¢, where

0, the server j is idle,
D;(t) =41, the server j is busy and operational,
2, the server j is failed.

The threshold policy f = (¢1,¢2) is defined by two threshold levels 1 < ¢go <
q1 < 00. According to this policy server 1 must be activated whenever it is free
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and there are customers in the queue, whereas server 2 is used only if server 1 is
in state 1 or 2 and the number of customers in the queue has reached the value
q1 or ¢qo. The process

{X () }iz0 = {Q(), D(t) }i0 (1)
is a continuous-time Markov chain with a state space given by
E ={z = (q,d1,d2);q € No, (di,d2) € Ep}, (2)
where Ep is a set of states of servers which is defined as

dj 6{0a172}7j€{172}’q:0

.dl 6{172}7d2€{071’2}» 1<qg<qg—1,

" dy 6{172}7d2 e{07172}7(d17d2)7é(270)7fh <q¢g<q—1,
dj € {1,2},j€ {132}a qzq,

Ep = { (d1,d>)

Next we partition E in blocks as follows,

(07 0) = {(07 0,dz2);d2 € {07 1=2}}7

{(2:1,0),(4,2,0),(¢,1,1),(g,2,1), (¢, 1,2),(¢,2,2)}, 0<qg<gq2—1,
((L 1) = {(q7lao)’(‘LL1)7(q1271)7(q71u2)1(Q7272)}7 @2<q<q—1,
{(Q:171)7(%2:1)7(q’172)7(q72’2)}7 q>q-

Due to above notation, the infinitesimal generator olude the rates of transi-
tion fromf the Markov chain {X(¢)};>0 has the block-tridiagonal structure,

A =[Noyleyer = diag(Q1,0,Q1,1,---,Q1,1,Q1,2, Q1,35+, Q1,3,Q1,4,Q1 5, - - )
q2—1 q1—q2—1
+ diag™ (Qo1,Qoz2: - Qo,2,Q0,3, Qoas - - - Qoya, Qo5 Qo - - -)
g2—1 q1—q2—1

+ diag” (Q2,1,Q2,2, .-, Q22,Q23,Q2.4,...,Q24,Q25,Q26,-..).
— — —— —

g2—1 q1—gq2—1

The square matrices @1,,,0 < n < 5, include the rates of the output from
the current block of states,

- 0 0
Qo= 2 —(A+ a2+ p2) lo% ,
0 B2 —(A+02)
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A+ p1+a1) %1 0 0 0 0
B1 —(A+B1) 0 0 0 0
Q14 = o 0 A+ p+a) o o 0
’ 0 H2 B1 —(A+ az + B1 + p2) 0 (<D
0 0 B2 0 —(A+ a1+ B2 + p1) oy
0 0 0 B2 B1 —(A+8)
Q1,2 = Q1,1 + Xey(6) ®e/3(6),
—(Atp1t+a1) 0 0 0 0
M2 —-A+pt+a) ay az 0
Q1,3 = 0 B1 —(A+ oz + B1 + u2) 0 o
0 B2 0 —(A+ a1 + B2 + p1) oy
0 0 B2 B1 -2+ B)
Q1,4 = Q1,3 + Xeg(5) ® e} (5),
A+ p+ o aq ag 0
Q15 = B1 —(A 4 az + B1 + p2) 0 o
; B2 0 —AFar+B2atpm) a1
0 B2 B1 -2+ B)

The rectangular matrices Qpn,1 < n < 6, include the rates of transitions
from subsequent block to the current one,

10000

0000
100000 8?888 1000
Q()l:/\ 001000 s Q03=>\ s Q05:)\ 0100 s
’ ' 00100 '
000010 0010
00010 0001
00001

Qo2 =Ms, Qos=A5, Qoe=M4y, t =p1+ p2, a=0ay+ay, 8=01+ P

The rectangular matrices Q2 ,,1 < n < 6, include the rates of transition
from the previous block to the current one,

w1 0

w00 0000
000 000000 #0000
0 41 0 001000 004 000
Q2,1 = Hi , Qo= H , Q23=]1000pu 001,
0 0 0 0000O00O0
000 0 0
00 m 0000u0 000 ot
0 0 0 000000
#1000 0p0 00 ©0 00
0 pa 000 00us 00 Ops 00
Q24=10 0p 00], Q25= p2 y Qap = K2
0 0 o 00 0 410 00 10
1
00000 000 0O 00 00O
Denote by ® = (70,0, 70,1, 71,1, ®2,1, . . . ) the stationary probability vector
of A which satisfies
A =0, Te=1. (3)

The computation of the stationary distribution is reduced to solving a block-
tridiagonal system. The process {X(¢)};>0 is in the format of a quasi-birth-
and-death (QBD) process which allows to apply the matrix-analytic approach.
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By [12, Theorem 3.1.1] it is well known that the stationary probability vector 7
of the QBD process exists if and only if

pPQoce(4) < pQ2ce(4),

where p = (p1, P2, p3,p4) is the invariant probability of the matrix Qo+ Q1,5+
Q2,6 This vector can be obtained by solving the system p(Qo6 + Q1,5 + Q2,6) =
0 and pe(4) = 1. After some routine manipulation we can obtain the condition

A
p=5a g <L (4)
J=1 a;+B;

Theorem 1. The vectors of stationary probabilities wq;, g > 0, can be com-
puted as follows,

q1
0= Tq 1 H M(I1—j7 (5)
=0
qg1—g—1
Tg1 = Tqy,1 H Mql—ja 0<q¢<aq—1,
j=0

wg1 =T 1 R, 2> qu,
where the matrices M;,0 <1 < q1, are recursively defined

= —Q21Q10, M1 = —Q22(MoQo1 + Q11) ", (6)
——Q22( My 1Qo2+ Q1) 2<q¢<q—1,

—Q23(Mg,—1Qo2 + Q12) ™", Myyi1 = —Q2.4(Mg,Qoz + Qu3) ",
=—Q24( My1Qos+Q13) ' 2 +2<qg<q —1,
o =—Q25(Mg—1Qo4 + Q1.4) "

The vector g, 1 15 a unique solution of the system of equations

a1—1 q1—g—1

T 3 [I Moost (0= B ett) =1 (7)

g=—1 j=0

g1 (Mg Qos + Q15 + RQ26) = 0.

The matriz R is a minimal solution of the matrix quadratic equation,
R?’Q26+ RQ15+ Qos = 0. (8)

Proof. The last row of (5) and equation R2Q2 6 + RQ15 + Qo6 = 0 follow from
the properties of the QBD process [12]. If the stability condition holds, then (3)
yields the system,
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T0,0Q1,0 + 70,1Q2,1 =0,

Ty-1,1Q0,1 + 71011 + Tg11,1Q22=0,2<¢qg< g — 1,

Tg—1,1Q0,2 + Mgy 1Q1,2 + gy 11023 = 0,

Tg,1Q0,3 + Tgo1,1Q1,3 + Tgo42,102,4 = 0,

11004 + g 1013 +7g111Q24 =0, +2<q¢<q — 1,

Ty -11Q04 + g, Q14 + 7y, 11025 = 0,

T 1R Qo5+ 1R 1 Q15+ 7y 1R Q06 =0,9>q + 1.

The routine of substitution applied to the previous system leads to recursive
relations,

0,0 = 0,1 Mo, 9)
g1 = Tgr1,1Mgr1, 1 < g < g1 — 1,
where M, is defined by (6). Hence it implies the first two rows of (5). Finally
the vector 7, 1 is obviously a unique solution of the system of equations (7)

which consists of the normalizing condition and the balance equation for the
probability vector 7, 1 of the boundary states.

3 Reliability Characteristics of the System and Servers

In this section we consider some reliability quantities of the system and servers.
Denote by

Av(t) = PIX (1) = (q,dv,da)idy £ 2V do £ 2,
As(t) =P[X(t) = (q,d1,d2);d1 # 2 Nda # 2],
Az(t) = P[X(t) = (¢, d1,d2); da 75 2],
As(t) =PIX(t) = (¢,d1,dz); da # 2],

the pointwise availability of the system and servers. The stationary availability
in case n,1 <n <4, is defined as A,, = lim;_,, 4,,(¢).

Corollary 1. The stationary availability can be computed by

q2—1 q1—1
-1
An = T00,0Xn,1 + E Tq,1Xn,2 + E Tq,1Xn,3 + 7Tq1,1(-[ - R) Xn,4, 1<n< 47
q=0 q4=q2
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where Ay = A3+ Ay — Ay and

4 3 2
x1,1 = €(3), X1,2 = Zek(ﬁ), X13 = Zek(5)7 X14 = Zek(‘l),
k=0 k=0 k=0

1

1 1
X1 = Zek(S); X2 = Z e2,(6), x2,3 = Zek(5), X2,4 = €o(4),
k=0 k=0 k=0
1

2 1
x3,1 = €(3), X32 = Zer(6)7 X33 =€+ Zezk+1(5), X34 = Zezk(4),
k=0 k=0 k=0

1 3 2 1
X41 = Zek(?)), X4,2 = Z ex(6), Xa3 = Zek(5), X4,4 = Zek(4)~
k=0 k=0 k=0 k=0

Corollary 2. The stationary failure frequency of the server I € {1,2} can be
computed by

q2—1 q1—1
Bi=amooyin+ 3 ®gaYiz+ Y ®ea¥is+mg (I - R)yia, 1<1<2,
q=0 =42

where

2 1 1
Yi1=0,y12= ex(6), y13=eo(5)+ > emnt1(5), yra =Y ex(4),
k=0 k=0 k=0

3 2 1
yo1 =e1(3), y22 = Y ex(6), o3 = Y ex(5), yaua = Y _ ex(4).
k=2 k=1 k=0

Denote by T' the random time to the first failure of one of server. The corre-
sponding reliability function, which is the same as the complementary cumulative
distribution function of the life time T, is then defined as

R(t) =P[T > t].

In this section we intend to obtain this function in terms of the Laplace
transform R(s) = Jo° R(s)e™*'dt, Re[s] > 0. In order to realize it we let the cor-
responding failure states be absorbing states. In this case we obtain new process
which can be modelled by the auxiliary continuous-time absorbing Markov chains
{X(t)}tzo with state space F = E \ {z = (q,d1,d2);q € No, dy =2V dy =2}.
We describe two main approaches to get the function R(s): By means of the
transient solution of the absorbing Markov chain and using the remaining life
time.

Theorem 2. The Laplace transform of R(t) is given by

R(s) = Pro(s,1) + Pr1(s,1) + Py o(s, 1), (10)
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where

& L+ 8) = g, s) + paPr (s, 1

Pio(s,1) = 17(0,0,0)(8) 3(11 a1171,0)( )+ p2Pra( )’ a

P = 17 (0,0,1)(8) + A(F(g,-1,1,0)(8) = T(q—1,1,1)(8)) + BT (g,,1,1)(8)
1,1(87 1) = |

S+ a+ po
~ )\~ -~ . ~
P1’2(S7 1) _ 77(111 1,1,1) (5) ,L,L’]T(ql’l’l)(s)’

s+«

the functions 7, (s) are of the form,

L (e )

(q1,1,1) () o Ae(3)M, (s)er ()] (12)
(T(q1-1,1,0)(8), (g — 1,1,1)(8)):7?(111,171)( §)Mq, (s) + Lg, (5), (13)
(7(0,0,0)(8)5 T(0,0,1)(8)) = T(g1,1,1)( H g —i( (14)
—"_Zf’th*i(s) H Mm*j(s),

i=0 j=itl

the matrices M;(s) and L;(s) are evaluated recursively,

Mo(s) = pu1No(s), Lo(s) = eq(2)No(s), No(s) = —(Q1,0 — s12) ", (15)
Mq(s):lﬂ]\? (s), L L (S):Aiq 1(s) ~q(s)7 Nq(s):*(QAl,l *312+Aqu1(5))71q:1’QI -1
Mql (S) = 7/‘91( )qu (5) q1 (S) 7Af’q1*1Nq1 (S), qu (5) = (QI,Z —slz + )\1\;[,1171(5))_1

the matrices Ql,o, Ql,l and Ql,g are of the form

Q o —A 0 Q _ —()\+Oé1+/~tl) 0
PO\ e (N an o)) N T 2 A +a+u))’

Q=TT )
’ H2 —A+a+p))’

the function z(s) is defined as

s+a+)\+u\/ sta+A+puN2
2(s) = 2\ ( 2 ) x (16)

Proof. The absorbing states of the process {Xa(t)} are z = (q,2,ds),dy €
{0,1,2} and =z = (q,d1,2),d; € {0,1,2}. Using the same notations as in pre-
vious section we can get the following set of Kolmogorov differential equations,
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7"{0,0,0) (t) = =A7(0,0,0)(t) + 17 (0,1,0) () + p27(0,0,1) (%), (17)

Tg1,0)(8) = —(a1 + X+ p1)m(g,1,0) + AT (g—1,1,0)(t) + p17(g11,1,0)(t) + p27(g,1,1)(2),
0<g<q1—2

7r@1171,1,0)(15) = —(a1 + A+ p1)7T(q —1,1,0) + AT(q1—2,1,0) () + 12T (g —1,1,1)>

T(0,0,1)(t) = —(@2 + X + p2)m(0,0,1) () + 117 (0,1,1) (),

To,1,1)(t) = —(@2 + A+ p2)m(0,0,1) (t) + A7(0,0,1)(t) + 117(0,1,1) (),

Tt = —(@+ X+ p)mg11)(t) + Amg_11.1)(t) + pmgr11,) (), 1<a< a1 -2,

Tlgy—1,1,1) () = —(@+ X+ )7 (g —1,1,1) () + Mgy —1,1,0) () + AT (qy —2,1,1)(t) + 17 (gy,1,1)(t)

with initial conditions 7(,0)(0) = 1 and 7rm (0) =0,z G FE,. By taking Laplace

transforms of these equations, where 7, (s fo 7. (t)e tdt, Re[s] > 0, and
using then their partial generating functlons

a1—1

P (s, 2) = T0,00)(s) + Z T(q,1,0)(8

q1—1

Pya(s,2) =T, 1(s) + Z g1 (8)2

o0

Pio(s,2) = Z ﬁ(q’l,l)(s)z”l

9=q1

for |z| < 1, after some manipulation the system (17) is transformed into the set
of equations for the introduced double transforms,

Z+ 7(0,0,0)(8)(1(z — 1) + anz) — X227 11 0y(s) + pazPra(s, 2)

P o(s,z) = ,

1.0(s,2) “Az2 4 (st a1+ A+ p1)z—p1

Pra(s, =) = 7(0,0,0)(8) (2(a1 4 p1) — 1) + A(F(qy —1.1,0)(8) — 20T gy _1.1,1)(8)) + it gy 1, 1)(8)
LIS A2+ (stat+A+pu)z—m

_ 21 Nz, _ s) — pm s

Pl’g(s,z) _ ( (q1 1,1,1)( ) 14 (ql,l‘l)( ))

P (stat+Art+p)z—p

Denote by F(s,z) = —Xz% + (s + a4+ A + )z — p the auxiliary function for
the denominator of P o(s, z). It is easy to see that
F(s,0)=—pu<0, F(s,1)=s+a>0.

Thus the square equation F'(s,z) = 0 has for any s > 0 two roots and the
minimal of them takes the value in the interval [0, 1]. This root we denote by

s+a+A+p stHa+A+puN\2
T N(Z=ED)

2\ 2\ N

Since the function Pj 5(s, z) is analytical, the numerator of this function must
be zero at point z = z(s) as well, i.e.

/\Z( ) (q1—1,1, 1)( ) uﬁ-(m:l,l)(s) =0. (18)
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To have a second equation for the boundary transforms 7~T(q171,1,1)(8) and
(q,1,1)(8) denote by

70,0(8) = (F(0,0,0)(5), F(0,0,1)(8)), Tq,1(8) = (F(q,1,0)(5), F(q,1,1)(8)); L Sg<qu — 1.
For the system of the Laplace transforms 7,(s) obtained from (17) we can
get the following relations in matrix form,
Fo,0(s) = —m#0,1(s)(Qro — sI2) " — €p(2)(Qr,0 — s12) ™" = Fo,1(s)Mo(s) + Lo(s).

The substitution of the last expression into the matrix relation for 7 1(s)
yields

771'071(8) = 7}141771'171(8)(6:2171 — sl + AM()(S))71 — Azo(s)(QLl —sls + )\Mo(s))71
= 7?171(8)]\2[1 (S) + il(s).

Sequential application of such forward-elimination-backward-substitution
method leads to the following recursive relations

q_1,1(8) = Tq1(s)My(s) + Ly(s), L < g < qu — 2,
T —1,1(8) = T(qr,1,1)(5) My, (8) + Ly, (5),

where M, (s) and L,(s) can be calculated by (15). By combining the relation

Tar-1,1,1)(8) = (g, 1,1 () My, (8) + Lg, (s))e1(2)

and (18), we may express 74, 1,1)(s) in form (12). The transforms for the rest of
boundary states can be hence evaluated as a functions of 74, —1,1,1)(s). Finally
the double transforms are calculated at point z = 1 and substituted into (10).

4 Numerical Results

In this section we present some numerical examples to study the effect of system
parameters on proposed reliability measures. First we fix the systemparameters
at values

A= 17, M1 = 24, M2 = 04, ] = 0]., Qg = 02,
ﬁl = 03a 62 = O3a P = 0837 M = 97 a2 = 6.

In all cases presented below the parametric values are chosen in such a way
that the ergodicity condition holds.

In Figs. 1 and 2 the stationary availabilities A;,1 < ¢ < 4, are plotted against
the arrival rate A\ versus failure rates a1, ag and repair rates 31, G2, respectively.
As we expect, A; decreases with increasing A. The upper curves correspond to the
lower value of oy and as and to the higher value of fyand B. The availabilities
Ay, Ay and Aj take different values by changing of failure and repair rates of
servers. We notice that descriptor Az changes by varying «; and ; but it is
insensitive to the change of ay and (5. It happens since the parameters o and
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Fig. 2. The availability A4;, 1 <i <4, for 81 =0.2,0.4 (a) and S = 0.2,0.4 (b) vs. A

(a) (b)
0.20 0.20
—— B —e— B,
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/ ol

& 0.10 ’,/ /J & 0.10

0.05 1 / A 0.05 ,—o— a—

R 04 06 08 10 12 14 R 04 06 0.8 10 12 14

1 p

Fig. 3. The failure frequency B;, i = 1,2, for 1 = 0.1,0.2,0.3 (a) and a2 = 0.1,0.2,0.3
(b) vs. A

(1 influences the busy state of server 2 due to the threshold policy, which in turn
makes a contribution to the availability As.
In Figs. 3 and 4 we plot the failure frequency B; for

a; ={0.1,0.2,0.3} and B, = {0.2,0.3,0.4}, 1 = 1,2,
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(a) (b)
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Fig. 4. The failure frequency B;,i = 1,2, for 51 =0.2,0.3,0.4 (a) and 32 = 0.2,0.3,0.4
(b) vs. A
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Fig. 5. The function R(t) vs. A

respectively. These characteristics monotonously increase by increasing of .
Moreover we notice that By > Bsy, since the probability to be in state z with
dy(z) = 1 is higher than the probability for do(z) = 1, since server 2 is used
according to the threshold control policy. We observe that the function B is
insensitive to changes of as, #; and (2, and the function Bs is almost insensitive
to change of (5.

In Fig.5 we analyze the effect of the arrival rate A to the reliability function
R(t). To evaluate this function we have used a numerical inversion algorithm for
the corresponding Laplace transforms é(s)7 which must be calculated in sym-
bolic form. For the calculations we have used the program Mathematica of the
Wolfram Research. This program has some limitation on the volume of sym-
bolic representations. Due to this reason and in order to reduce the algorithm’s
evaluation time, we had to restrict the number of items of the sums in (10) by
assuming that ¢ = 2 and g2 = 1. We notice that the illustrated function for the
higher values of A\ exhibit heavier tails.
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Fig. 6. The function R(t) vs. a1 (a) and a2 (b)
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Fig. 7. The function R(t) vs. p2 for pu1 = 2.4 (a) and p1 = 4.8 (b)

In Figs. 6 and 7 we illustrate respectively the influence of a1, as, p1 and us
on the reliability function R(t). Obviously, for

o] = 001, Qg = 00]., M1 = 48, Mo = 1.2

we observe that the corresponding distribution function exhibits a heavier tail.
Finally, we calculate the moment of the life time E[T] by varying A,

A={0.5,08,1.2,1.7}, E[T] = {42.81,23.51,13.81,9.03}.

As is to be expected, the mean life time is decreasing function of .

5 Conclusion

The paper provides reliability analysis of a two-server heterogeneous unreliable
queueing system with a threshold control policy for the allocation of customers
between the servers. The proposed results complement the classical performance
analysis of the unreliable queueing models which can be described by the quasi-
birth-and-death processes. The matrix-geometric solution method has been used
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to obtain the stationary state probabilities and some stationary reliability mea-
sures like availability and failure frequency. The combination of the forward-
elimination-backward-substitution method for the boundary states with gener-
ating function approach for the states above the highest threshold level has led to
a closed form solution in terms of Laplace transform for the reliability function
and as a consequence for the mean time to the first failure. We finally performed
numerical experiments to explore the effect of various system parameters on
reliability of servers.
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Abstract. In this paper, we consider an MMPP/M/1/1 retrial queue
where incoming fresh calls arrive at the server according to a Markov
modulated Poisson process. Upon arrival, an incoming call either occu-
pies the server if it is idle or joins an orbit if the server is busy. From
the orbit, an incoming call retries to occupy the server and behaves the
same as a fresh incoming call. The server makes an outgoing call in its
idle time. Our contribution is to derive the asymptotics of the number of
calls in retrial queue under the conditions of high rate of making outgoing
calls and low rate of service time of outgoing calls.

Keywords: Retrial queueing system - Incoming and outgoing calls -
Asymptotic analysis method - Markov modulated Poisson process -
Gaussian approximation + Gamma approximation

1 Introduction

In service systems idle time of an operator should be minimized to increase the
productivity. An operator not only receives calls from outside but also makes
outgoing calls in the idle time. The example of that could be the cellphone that
is used for incoming and outgoing calls. In call centers operators could receive
arriving calls but as soon as they have free time and are in standby mode they
could make outgoing calls to sell packages and services of the center [1].

Retrial Queues with two-way communication have been extensively studied
recently [2-7]. In these literatures the arrival process is Poisson process. However,
it is well known that real traffic has a more complex structure. Markov modulated
Poisson process (MMPP) can represent correlated traffic and thus it is more
suitable for modelling real traffic.
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In this paper, we consider asymptotic analysis for the distribution of the
number of customers in the system under two conditions: (i) high outgoing call
rate and (ii) low service rate for outgoing calls. In case (i), the server makes an
outgoing call as soon as it becomes idle while in case (ii), the duration of an
outgoing call is extremely long.

In both cases, the number of incoming calls in the system explodes. How-
ever, using suitable scalings, we prove that the scaled version of the number
of incoming calls in the system follow some simple distributions, i.e. Gaussian
distribution [8] and Gamma distribution, respectively [9].

The remainder of the paper is presented as follows. In Sect.2, we describe
the model in detail and preliminaries for later asymptotic analysis. In Sects. 3
and 4, we present our main contribution for the model with Markov modulated
Poisson process. In Sect.5 we show the ranges of parameters under which our
approximations are usable. Section 6 is devoted to concluding remark.

2 Model Description and Problem Definition

We consider a single server queueing model with two types of calls: incoming calls
and outgoing calls. Incoming calls arrive at the system according to a Markov
modulated Poisson process. The incoming call that finds the server idle receives
a service for an exponentially distributed time with rate p;. Upon entering the
system the call that finds the server being busy immediately joins the orbit,
where it stays during a random time exponentially distributed with rate o. If
the server is idle (empty) it starts making outgoing calls to the outside with
rate a. If the outgoing call finds the server free the call goes into service for
an exponentially distributed time with rate po. If upon entering the system the
outgoing call finds the server being busy the call is lost and is not considered in
the future. Let ¢(t) denote the number of calls in the system at the time ¢, k(%)
denote the state of the server: 0 if the server is free, 1 if the server is busy serving
an incoming call, 2 if the server is busy serving an outgoing call and n(t) denote
the state of the background process of the MMPP at time ¢. The infinitesimal
generator of n(t) is defined by matrix Q. When n(t) = n, the arrival rate is
given by A, (n = 1,2,...,N). To determine the condition for the existence of a
stationary regime, we define the matrix A in the form A = %, where Aq is a
diagonal matrix with nonnegative elements, and the condition for the existence
of a stationary regime is the fulfillment of the inequalities 0 < p < 1.

Under the current setting the three-dimensional process {k(t),n(t),i(t)} is
a Markov chain. Under the stability condition, the stationary probability dis-
tribution P{k(t) = k,n(t) = n,i(t) = i} = Px(n,i) is the unique solution of
Kolmogorov system of equations:

—(An +i0 4+ Q) Po(n,3) + p1 Pr(nyi + 1) 4+ p2Pa(n,i 4+ 1) + S0 Po(v,4)qun = 0,

—(An + p1)Pi(n,i) + A [Pi(n,i — 1) + Po(n,i — 1)] + io Po(n, i)
+ 2117:1 Py ('in)qvn =0,

N
— (A + p2)Po(n,i) + Po(n,i — 1)a+ Pa(n,i — 1)\, + ZPQ(U, i)qon = 0. (1)

v=1
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We introduce partial characteristic functions [10], denoting j = +/—1:
Hy(n,u) =Y e Py(n,i), Hi(n,u)=»_ e Py(n,i), k=12
i=0 =1
For k = 1,2, there will be at least one call in the system. Rewriting system (1)

in the following form:

—(An +a)Ho(n,u) +.7'0%:’“) + pre I Hy(n,u) + pge™7*Ha(n, u)
=+ szl HO(U7 u)Q?m = 07

=+ i) Ha (0, 0) + g™ [H(n,10) + Ho(n,w)] — o 2252
+ Zv:l Hl (UV u)qvn = 07

N
— (An 4 o) Ho(n, u) + ae?™ Ho(n, u) + Ape? ™ Ho(n, u) + Z Hy(v,4)qyn = 0. (2)

v=1

We define I - unit matrix, A = diag[A\,],

H(u) = {Hg(1,u), Hp(2,u), ..., Hy(N,u),

/ o aHk(lau) aHk(zau) aHk(Nau)
Hk(“)_{ ou ' ou 7 ou |

Let’s write system (2) in a matrix form (3):
Ho(u)(Q — A —al) + joHy(u) + pre ™ 7"Hi (u) + pze7*Ha(u) = 0,
H;(u) (Q + (ej“ - 1) A — mI) + Ho(u)e*A — joHg(u) = 0,
H(u) (Q+ (¢ — 1) A — poI) + ae?Hy(u) = 0. (3)
Let’s sum the equations of the system (3)

Ho(u) [Q+ (e7* —1) (A + aI)] +H;(u) [Q+ (gju —1) (A = pe=71)]
VL@ (7 1) (A e )] 20,

Multiplying the last equation by a unit vector e and using Qe = 0, we obtain
Ho(u) (A + aI) e+ Hi(u) (A — pre 7T) e + Ha(u) (A — poe 7“T) e = 0.
Multiplying the last equation by a e/%:

Ho(u) (/A + aej“I) e+ H;(u) (/A — 1) e ()
+Hs(u) (eJ“A — ,ugI) e=0.

We will consider the system (3) and the Eq. (4), i.e. a system of three matrix
equations and one scalar equation:

Ho(u)(Q — A — o) + joHy(u) + pre 7"y (u) + pze 7" Hy (u) = 0,
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H(u) (Q+ (¢/* —1) A — X)) + Ho(u)e’ A — joHj(u) = 0,
Hj(u) (Q + (ej“ — 1) A — ,uQI) + aej"Ho(u) =0,

Hy(u) (/A + ael*T) e + Hy (u) (A — 1) e
+Hy(u) (e7"A — poT) e = 0. (5)

The characteristic function H(u) of the number of incoming calls in the
retrial queue is expressed through partial characteristic functions Hy(u) by the
following equation

H(u) = Ee?®) = (Hy(u) + Hy(u) + Hy(u))e.

We will find the characteristics of our retrial queue with two-way communication
with Markov modulated Poisson input. The main content of this paper is the
solution of system (5) by using an asymptotic analysis method in two limit
conditions: of the high rate of making outgoing calls and the low rate of service
time of outgoing calls.

3 Asymptotic Analysis of MMPP/M/1/1 Retrial Queue
with Two-Way Communication Under the High Rate
of Making Outgoing Calls (o« — o0)

We will investigate system (5) by asymptotic analysis method under the high
rate of making outgoing calls.

3.1 First Order Asymptotic

Theorem 1. Suppose i(t) is the number of calls in the system of the stationary
MMPP/M/1/1 retrial queue with outgoing calls, then the (6) holds

lim Ee/V o = el (6)
ax— 00

where k1 is the positive root of the equation
-1 —1 !t
r{mo (- @7+ (I- @'}

(7)
< AT+ ko uI- Q7 (A =D + (2T~ Q' (A= 2D } e =0,

The row wvector v is the stationary probability distribution of the underlying
process n(t) which is given as the unique solution of the system rQ =0, re = 1.

Proof. We denote o = 1/¢ in the system (5), and introduce the following nota-
tions

U = ew, HO(U) = 6FO(U}vEL Hk(u) = Fk(waa)a k=1,2,
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in order to get the following system

OF ) .
Fo(uw,€)(eQ A 1) 4 jo o0y =B, (1,2) 4 o F(w,€) = 0,
) OF
Fi(w,e) (Q+ (e — 1) A — 1) + ce’*“Fo(w, ) A —ja% =0,
Fa(w,e) (Q+ (€7 — 1) A — poI) + e Fo(w, ) = 0,
Fo(w,e) (e’ A + 7**T) e + Fy(w,e) (/A — 1) e (8)
+Fa(w,e) (€A — ppI) e = 0.

Considering the limit as € — 0 in the system (8), then we will get
—Fo(w) + joFo(w) + mF1(w) + p2Fa(w) =0,

Fi(w) (Q — pulI) — joFy(w) =0,
Fo(w) (Q — p2) + Fo(w) = 0,
Fo(w)e + Fl(w) (A — ,ull) e+ FQ(IU) (A — ‘LLQI) e=0. (9)

Our idea is to find the solution of (9) in the form of
Fi(w) = &(w)ry. (10)

Here r, k = 1,2 are vectors with components 7x.,, where rg,, is the probability
that the server is in state k, and the MMPP is in state n; ro is a vector with
components rg,, and has no sense of probability, since the probability that the
server will be in the zero state (will be free) as @ — oo is zero.

/

)I‘o + p1r1 + pery =0,

P'(w)
P(w)

—Iy + jU

£ Q- mD) - jo g

r2 (Q — poI) + 10 =0,
roe +rp (A—ulI)e—l—rg(A—ugI)e:O. (11)

I‘OZO,

As the relation ] @( ) does not depend on w, the function is obtained in the
following form

&(w) = exp{jws1 },

which coincides with (6). The value of the parameter x; will be defined below.
We rewrite the system (11) in the form

—Tg — K10To + p1T1 + pary = 0,

r1 (Q — pI) + kiorg =0,



Retrial Queue MM PP/M/1/1 with Two-Way Communication 33

r2 (Q — p2I) + 19 =0,
roe+ry (A —pl)e+ry (A — p2l)e =0. (12)
Let’s review the normalization condition for stationary server state probability

distribution
ry +ro =r.

The row vector r is the stationary probability distribution of the underlying
process n(t). Vector r is defined as the unique solution of the system rQ = 0,
re = 1. We have
ry = K10Trg (,UqI — Q)il s
ry =1 (ol - Q) 7",
ry +rp =r. (13)

We substitute the values of the vectors rg, k = 1,2 into the last equation of the
system (13). We obtain an equation that determines the vector ry:

ro=r{rmo(ul-Q) " +(ul-Q '} (14)

Now we substitute the first two equalities of the system (13) into the scalar
equation of system (12). We obtain the equation that determines the value of
ro:

ro {T+ w10 (mI= Q)™ (A = D) + (2l - Q)™ (A = jal) e = 0.

Substituting this equality into Eq.(14), we obtain an equation for k;, which
coincides with (7):

r{mo (I - Q) 4 (ual - Q1)

1 1 (15)
X {1 + 1o (I — Q) (A — i) + (I — Q)™ (A — MI)} e=0.

The first order asymptotic i.e. Theorem 1, only defines the mean asymptotic
value k1 of a number of calls in an system in prelimit situation of & — 0. For
more detailed research of the number i(t) of calls in an system let’s consider the
second order asymptotic.

3.2 Second Order Asymptotic
Theorem 2. In the context of Theorem 1 the following equation is true
1 -
. i) =k w?,,
O‘h_{tgoEexp {jw\/a =e z "2 (16)
where parameter Ko s given by

foy — l ) roe—|—r1Ae—|—r2Ae+ [yo +Y1 (A — ,ull) —|—y2 (A — MQI)]G
o [—go + 81 (I —A)+go (I —A)le )
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Here the vector of ry and the vectors of probabilities 11, 1o are defined above.
The vectors gy, 915 G2, Yo, Y1, Yo are defined by the two systems:

9 [—I— ok I+ p (e — Q)1 + pyoky (I— Q)
= 1o — oy (mI— Q) ",
91 = (gook1 +10) (mI— Q)

9 =90 (n2I— Q7"
(90 + 91+ 9:)e=0. (18)

Yo {(—I— ok D) + ok (I — Q)" + pa (ol — Q)_l]
= pum [If A (I~ Q)_l} + 12 [7‘2 — (ro + maA) (ol — Q)_l}
Y, = (yoor1 + i A) (ua I — Q)_l
Yo = (Yo + 10+ 12A) (2T — Q)7
(yo+ 91+ y2)e = 0. (19)
Proof. We introduce the following notations in the system (5)
Hy(u) = exp (jouk:) H,(f)(u)7 (20)
and we get

HEQ) (u)(Q —A—al-— O’Ozﬁl) —+ ‘LLlefj“H?) (U) + ,Uz267juHé2)(u)

e
+jo it — o,
(2) ’ @) ,)) (o - dHG (w)
H” (u) (Q+ (/" = 1) A — I) + Hy” (u) (/" A + ok, 1) —Jo— = 0,
HY (u) (Q + (¢ — 1) A — pol) + ae?*HY (u) = 0,
ng) (u) (7" A + ael*T) e + H (u) (e7*A — 1) e (21)
+HY (u) (A — uQI) = 0.
Denoting o = 1/&2, and introducing the following notations
u=cw, Hi(u) =*F3(w,e), Hi(u)=Fi(w,e), k=1,2, (22)

we obtain

FP (w,e)(e2Q — £2A — 1 — 0wy I) + ,ule*j“”FgQ) (w, &) + poe3=WF D (w, )
OF? (

+ joe ) =0,
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ng)(w, e) (Q+ (e = 1) A — 1) + F(()Q) (w, ) (267 A + ok 1)
aFéz)(w,a)

—joe—g,— =0,
(2) jew _ jewp(2) _
Fy”(w,e) (Q+ (e 1) A — pol) 4+ *VFy” (w,e) =0,

F(()Q) (w,e)e* (e2A +T) e+ F:(LZ)(w, e) (e7*"A — 1) e

: 23
+Fé2)(w,s) (€7 A — pg I) e = 0. (23)

Our idea is to seek a solution of the system (5) in the form
F\? (w,¢) = &a(w) {ry + jewfi} + o (c?) . (24)

Substituting (24) to (23), we obtain

ro(—I—oriI) + par1 + pors + jew [fo (—I — ok1I) + p1 (f1 — r1) + p2 (f2 — r2)]
—&—jas%ro =o(e),
r (Q — UII) =+ YoOR1 +j5’w [fl (Q — /.L1I) + foO‘l{l =+ I‘1A]
. ddo (w)/dw _ 2
_]O'Ewr =0 (E ) y
r2 (Q — p2I) + 1o + jew [f2 (Q — p2l) + 1o + fo + r2A]l =0 (52) )
roe+ri (A —pml)e+ra (A —p2d)e

+ jew [fo + f1 (A — paI) + f2 (A — p2I) +ro+r1A+r2A]e:o(52).

Previously, the system of equations (12) was obtained. Taking this into account,
we have

jE [f() (—I - O'Iﬁ:lI) —l—,u1 (f1 - I'1) + M2 (f2 - 1‘2)] +j0€% rg =0 (52) R

ddy(w)/dw
Q;T(rw)ro—O(E ),

jew [f2 (Q — poI) + 1o + fy + r2A] = 0 (£7),

Je[fi (Q — 1) + foory +r1A] — joe

jew [fo 4+ fi (A — 1) + £ (A — poI) + ro + 11A + 12A]e = 0 (7).
Dividing these equations by € and taking the limit as ¢ — 0 yields

dPs(w)/dw
fO (—I — O‘K,lI) —|— ,U/1 (fl — I‘l) —|— ,u2 (f2 — 1'2) + U'Ljéh()”[{})ro = O,
do d
f; (Q — ,ull) + fook1 + 11 A — O'MI‘Q =0,
wPy(w)

£2(Q — pol) +ro +fo +1r2A =0,
[f0+f1 (A*,U,l]:)+f2 (A*/LQI)+I‘O+I‘1A+I‘2A]€:0.
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@5 (w)
wPo (w)
function @9(w) is given in the following form

These equations imply that doesn’t depend on w and thus the scalar

2

—

jw)
2

Dy (w) = exp Ko,

@5 (w)
wPs (w)

which coincides with (16). We have = —ko and then we obtain the system

fo (=1 — ok1X) + a1 + pofs = okarg + pary + pors,

fi (Q — ,ull) + fook1 = —1r1A — oKarg,
f2 (Q — ,UQI) + fo = —Ig — I‘le7
[f() + fl (A — ,ulI) + f2 (A - MQI)} e = — (I‘o + I‘1A + TQA) e. (25)

System (25) is an inhomogeneous system of linear equations, with respect to
the vectors fy, f1, fo. The determinant of the matrix of the system is zero (the
sums of rows are all zero). The rank of the extended matrix and the rank of
the matrix of coefficients coincide . Consider systems (12) and (25). System (12)
is homogeneous, system (25) is inhomogeneous. Consequently, we can write the
solution of the inhomogeneous system (25) in the form fy, = Cry + k208, + ¥4,
where C' is a constant, vectors r, are defined above, vectors g, and y, are
particular solutions of the system (25) and then

Clro (=1 = oral) + pary + pors] + k20 [y (—1 — okil) + pngy + 128,)]

+ p1y, + p2ys +¥o (=I — ok1l) = okaro + par: + pors,
Cri(Q—mlI) +rooki] + k20 (g (Q — punI) + ggok1] +y; (Q — muI) + yook1
= —I‘lA — OK2rq,

Clr2 (Q — p2I) + ro] + k20 (g5 (Q — p2I) + go] +y2 (Q — p2l) +yy = —ro — r2A,
Clro+ri (A—pil)+re(A—pd)]e
+ 120 (g + 81 (A — paT) + g5 (A — p2l)] e
+ Yo +y1 (A= paI) +y, (A= peI)]e = — (ro + riA + r2A)e.

Previously, the system of Eq. (12) was obtained. Taking this into account, the
coefficients of C' are zeros and we can rewrite the last system in the form

120 (8o (I — oril) + pagy + p2gy] + payy + p2ys + yo (=1 — ki)
= ORolg + (1T + pare,
k20 (81 (Q — pl) + gook1] +y1 (Q — pal) + ygoky
= —T1A — 0koro, K20 [8 (Q — p2I) + 8] +¥2 (Q — p2I) +yo = —ro — r2A,

K20 (8o + 81 (A — nI) + g5 (A — p2I)] e

26
+ oty (A—mD) +ys(A—pD)le=—(rp+r1A+mA)e. 2O

We consider the first three equations of the system (26). We equate the
corresponding coefficients for ko to obtain

go (I — or1I) + p1g; + pagy = ro,

g1 (Q — mI) +gook1 = —ro,
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g (Q — p2I) +gy =0, (27)
and
1y + peys +¥o (=1 — or1l) = piry + pors,

Y1 (Q - /1/1]:) + YoOk1 = —r1A7
Vo (Q — p2l) +y, = —rg — r2A. (28)

From systems (27) and (28) we obtain systems:

g [T —omI+po (2l — Q)" + ok (I — Q)] =ro —rops (I-Q)~",

g, = (gook1 +10) (I —Q) ",

g =g (1l - Q). (29)

Yo |(—1—oril) + proky (I — Q)" + pa (sl — Q)_l}
= pry | T— A (I — Q)fl} + p2 [1‘2 — (ro + r2A) (2l — Q)il} ;

y1 = (yoor1 +r1A) (I — Q"
Y2 = (Yo +10+124) (21 = Q)" (30)
The determinants of the coefficient matrices systems (29) and (30) are zero.
Then we define an additional condition for this systems of equations

(g0 +8 +82)e=0,

(Yo +y1 +ys)e=0.

Thus, the solutions of inhomogeneous systems for gg, g;, 85, Yo, Y1, Yo are
uniquely determined. We obtain systems that coincide with the systems (18)
and (19). Substituting values g, g1, 82, Yo, Y1, Y2 into the scalar equation of
the system (26), we obtain

iy = 1 . roe + riAe +raAe+ [y, + vy (A — D) +y, (A — pol)] e
g [—go+ 8 (I —A)+ g5 (2l —A)le

This equality coincides with (17).

Second order asymptotic i.e. Theorem 2, shows that the asymptotic proba-
bility distribution of the number i(¢) of calls in a system is Gaussian with mean
asymptotic k1o and dispersion Koa.
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4 Asymptotic Analysis of MMPP/M/1/1 Retrial Queue
with Two-Way Communication Under the Low Rate
of Service Time of Outgoing Calls (uz — 0)

We will research system (5) by asymptotic analysis method under the low rate
of service time of outgoing calls.

Theorem 3. Suppose i(t) is a number of calls in an system of stationary
MMPP/M/1/1 retrial queue with two-way communication, then the following
equation s true

H(u) = ;}zigo Eedwh2i(t) _ (1 _ jp:;u) ~(zm+1) 7 (31)
where ppy = rAe and p is the trafic intensity.
Proof. We denote o = ¢, let’s substitute the following in the system (5)
u=cew, Hp(u) =cFo(w,e), Hi(u) =Fp(w,e), k=1,2.
We will get the system

eFo(w,e)(Q — A — aI) +]UaFU(w <) 4 e TV (w,€)
+ee IV, (w, 5) =0,

. . F
Fi(w,e) (Q+ (7°" —1) A — nI) + Fo(w, e)ee’* VA — jo% =0,
w

Fo(w,e) (Q+ (e7° — 1) A — €I) + ace’*“Fo(w,e) = 0,
Fo(w,e)e (€7 A + ael*"I) e + F1(w,e) (/A — p1I) e
+Fa(w,e) (€A —eI) e = 0.
Considering the limit as ¢ — 0 in the system (32) then we will get
joFo(w) + pFi(w) =0,

Fi(w) (Q — mI) — joFg(w) =0,
Fo(w)Q =0,

From the first and second equations we obtain F;(w)Q =0, Fa(w)Q = 0. We
seek the solution of the system (33) in the form Fi(w) = &p(w)r, &k =1,2.
Then, given the fact that rAe = pu; and

joFy(w) 4+ p1®1 (w)r = 0,

@1 (w)r (Q — p1I) — joFy(w) = 0,
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Do (w)rQ =0,
S1(w)r (A — piI) e + Py(w)rAe = 0,
we have
joFo(w) + Py (w)r =0,
P1(w) (p— 1) 1 + Pa(w)ppr = 0.

;Ne cilenote &1 (w)+ P2 (w) = &(w), then &1 (w) = pP(w), Pa(w) = (1 — p) P(w).
urthermore,
Fi(w) = p®(w)r, Fy(w) = (1—p)P(w)r. (34)

Multiplying the third equation of system (32) by the unit vector e, considering
the limit as € — 0, we have

(1—p)P(w)r (jwA —I)e+ aFo(w)e = 0.

We denote
Fo(w)e = p(w). (35)
Then

(= o) (1 = jupa) 7 = P10 (36)

We consider the first equation of system (33), multiplying it by a unit vector e
and taking into account (34), (35) and (36), we obtain

g ap1p
Jjoo (w) + - p(w) =0.
(w) (1 =p) (1 — jwppr) ()

The solution of the differential equation has the form

p(w) = C (1 - jwppy) 707 .
Then .
B(w) = (1 — jwppy)” (1)

Making reverse substitutions, we obtain the characteristic function (31).

Theorem 3 shows that the asymptotic probability distribution of i(¢) of calls
in the system under the low rate of service time of outgoing calls is Gamma.

5 Approximation Accuracy P® (i)

The accuracy of the approximation P(?) (7) is defined by using Kolmogorov range

Ap = Jmax > (P(v) - P (v)) ’ , which represents the difference between dis-
> v=0

tributions P(i) and P (i), where P(i) is obtained by using numerical algorithm

for the MMPP/M/1/1 retrial queue and the approximation P() (i) is given by

Gaussian and Gamma approximations.
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Table 1. Kolmogorov range p1 = 1, u2 = 2,0 =1

a=350|a=>500|a=600a=23800|«a=1000
p=10.2/0.054 0.045 0.041 0.036 0.032
p =04 0.041 0.034 0.029 - -

Table 2. Kolmogorov range, 1 = l,a=1,0 =1

pi2 = 0.07 | piz = 0.05 | p2 = 0.04 | iz = 0.035
p=0.5]0.05 0.036 0.029 0.026
p=0.60.058 0.042 0.034 0.030

Tables 1 contains the values of Ay for various values of rate p and « for
MMPP/M/1/1 retrial queue with two-way communication. We fix u1 = 1, po =
2 and o = 1 in Table1. Table2 contains the values of Ay for various values of
rate p and ps for MMPP/M/1/1 retrial queue with two-way communication.
We fix pg = 1, « = 1 and ¢ = 1 in Table2. We observe in Table1 that the
approximation accuracy increases with the increase in o and in Table 2 that the
approximation accuracy increases with the decrease in ps.

6 Conclusions

In this paper, we have considered retrial queue with two-way communication
with MMPP input. We have found the first and the second order asymptotics
of the number of calls in the system under the condition of the high rate of
making outgoing calls. Based on the obtained asymptotics we have built the
Gaussian approximation of the probability distribution of the number of calls in
the system. Our numerical results have revealed that the accuracy of Gaussian
approximation increases while increasing a. We have found the Gamma approx-
imation of the number of calls in the system under the condition of the low
service rate of outgoing calls. Our numerical results have revealed that the accu-
racy of Gamma approximation increases while decreasing us. In future we plan
to consider this retrial queueing system in other asymptotic conditions.
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Two-Server Queueing System with Unreliable
Servers and Markovian Arrival Process
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Abstract. In this paper, we investigate a queueing system consisting
of an infinite buffer and two unreliable heterogeneous servers which fail
alternately. If both servers are able to provide the service, they serve a
customer in parallel, independently of each other. The service of a cus-
tomer is completed when his/her service by any of two servers ends. The
service times at the servers have PH-type (Phase-type) distributions.
The input flow and the flow of breakdowns are described by the M AP
(Markovian Arrival Process). An arriving breakdown is directed to the
first server with some probability and to the second server with com-
plementary probability. After a breakdown occurrence a server fails and
the repair period starts immediately. A customer, whose service is inter-
rupted by the breakdown, goes to another server if it is idle, or enters
the queue otherwise We derive a condition for the stable operation of
the system, calculate its stationary distribution and base performance
measures. [llustrative numerical examples are presented.

Keywords: Unreliable queueing system - Markovian Arrival Process -
Phase-type service time distribution - Stationary distribution - Perfor-
mance measures

1 Introduction

At the present time, the requirements for the speed and reliability of information
transmission in wireless communication systems have increased significantly. In
recent years, the FSO - Free Space Optics technologies have become widespread
due to their undoubted advantages. The main advantages of atmospheric opti-
cal (laser) communication link are high capacity and quality of communication.
However, optical communication systems have also disadvantages, the main of
which is the dependence of the communication channel on the weather condi-
tions. The unfavorable weather conditions which reduce visibility significantly
reduce the effectiveness of atmospheric optical communication link.

As it is mentioned in [1], one of the main directions of creating the ultra-
high speed and reliable wireless means of communication is the development
of hybrid communication systems based on laser and radio-wave technologies.
Hybrid radio-optical equipment is based on the use of the FSO channel and a

© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 42-55, 2017.
DOI: 10.1007/978-3-319-68069-9_4
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backup radio channel. Because the increased interest in hybrid communication
systems, a considerable amount of studies of this class of systems have appeared
in the last decade. It should be noted that most of the studies are devoted to sim-
ulation modeling, see, e.g. [2-4]. Among the works devoted to the mathematical
modeling of hybrid communication systems, we note [5-8]. The papers [5,6] deals
with hybrid communication channel with so called “hot” redundancy, where the
backup IEEE 802.11n radio channel continuously transmits data along with the
FSO channel, but, unlike the latter, at low speed. In the papers [7,8], the hybrid
communication system with “cold” redundancy is considered, where the radio-
wave link is assumed to be absolutely reliable and backs up the atmospheric
optical communication link only in cases when the latter interrupts its function-
ing because of the unfavorable weather conditions. It is assumed in [5,7] that
an input flow is a stationary Poisson one and the service and repair times have
exponential distributions. More realistic assumptions have been made in [6,8]
where the BM AP (Batch Markovian Arrival Process) and the PH service and
repair times distributions are under consideration.

The paper [1] is devoted to the study of a hybrid communication system
which consists of FSO channel and a millimeter-wave radio channel which is
used as a backup one. The peculiarity of such reservation is that the unfavorable
weather conditions for one of the channel do not affect the other one. The FSO
channel is unable to transfer data in fog or mist and mm-wave radio channel is
unable to transfer data in case of precipitation (rain, snow, etc.). Thus, the hybrid
communication system is able to transfer data under almost any weather condi-
tions. To model this hybrid channel, the authors consider two-channel queueing
system with unreliable heterogeneous servers which fail alternately. An arriving
breakdown is directed to the first server with some probability and to the second
server with complementary probability. After a breakdown occurrence a server
fails and the repair period (period of unfavorable weather conditions for this
server) starts immediately. It is assumed that fault-free periods for both chan-
nels alternate with periods of repair period for one of the channels. At every
moment, a customer is served by one of the fault-free channels. If this chan-
nel breaks down, the customer occupies the other server, if it is idle, or enters
the queue otherwise. Customers and breakdowns arrive to the system according
to the stationary Poisson flow, the service and repair times are exponentially
distributed.

In the present paper, we consider more complicated queueing system which
differs from the system considered in [1] in the following: (i) a customer is
processed by two servers simultaneously if both servers are fault-free accord-
ing to “hot” reservation technology. Otherwise, it is processed by a fault-free
channel; (i7) the input flow and the flow of breakdowns are described by M APs,
the service and repair times have PH distributions. We describe operation of
the system by a multi-dimensional continuous time Markov chain, derive the
ergodicity condition for this Markov chain and give the brief description of the
algorithm for computation of its stationary distribution. We derive formulas for
computation of some performance measures of the system and present illustra-
tive numerical examples.
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2 Model Description

We consider a queueing system consisting of two unreliable servers (server 1 and
server 2) and an infinite buffer. Customers arrive to the system according to
the M AP. The M AP is defined by the underlying process vy, t > 0, which is an
irreducible continuous-time Markov chain with the finite state space {0, ..., W},
and the (W +1) x (W 4+ 1) matrices Dy, k = 0,1. The matrix D; (non-diagonal
entries of the matrix Dy) define the rates of the process vy, t > 0, transitions
which are accompanied by generating a customer. The matrix D = Dy + D;
is an infinitesimal generator of the process vy, t > 0. The fundamental rate of
the M AP is defined as A = 8D;e where the vector 8 is the unique solution
of the system 6D = 0, fe = 1. Here and in the sequel e(0) is a column (row)
vector of appropriate size consisting of 1’s (0’s). The coefficient of variation of
inter-arrival intervals is given by ¢, = 2A0(—Dy) ‘e — 1 while the coefficient
of correlation of intervals between successive arrivals is calculated as cgor =
(AO(—=Do)~Y(D — Do(—Dy)"te — 1)/c?,,.. For more information about M AP
see, e.g. [9].

If an arriving customer or the first customer from the queue sees two servers
idle and ready for service, he/she starts the service at both servers. If the servers
are busy at an arrival epoch or one of the servers is busy while the other server
is under repair, the customer is placed at the end of the queue in the buffer
and is picked-up for a service later on, according the FIFO discipline. If one of
the servers is under repair and the other server is idle, the idle server begins
the service of the customer. If the service of a customer at one of the servers is
not finished until the end of repair period on the other server, the latter server
immediately connects to the service of the customer. The service of the customer
is considered be completed when his/her service by any of two servers is finished.

Breakdowns arrive to the servers according to a M AP which is defined by the
(V+1) x (V+1) matrices Hyp and H;. An arriving breakdown is directed to the
server 1 with probability p and to the server 2 with complementary probability
1 — p. The breakdowns fundamental rate is calculated as h = ¥H e where the
row vector ¢ is the unique solution of the system ¥(Hy + Hy) = 0, de = 1.

The service time of a customer by the kth server, &k = 1,2, has PH type
distribution with an irreducible representation (B(k), S(k)). The service process
on the kth server is directed by the Markov chain mgk), t > 0, with state space
{1,...,M®) M®* 1+ 1} where M®*) 41 is an absorbing state. The intensities of
transitions into the absorbing state are defined by the vector S(()k) = —SWe. The
service rates are calculated as p, = —[3% (S®))~1e]~1. For more information
about the PH type distribution, see, e.g., [10].

The repair period at the kth server, k = 1,2, has PH type distribution with
an irreducible representation (T(k), T(k)). The repair process at the kth server
is directed by the Markov chain r,gk),t > 0, with state space {1,..., Ry, R +
1} where Ry + 1 is an absorbing state. The intensities of transitions into the
absorbing state are defined by the vector T(()k) = —TWe, The repair rate is
o = —(7F(TH)~1e)~ 1,
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3 Process of the System States

Let at the moment ¢

e i; be the number of customers in the system, ¢; > 0,

e n; = 0, if both server are fault-free, n, = k, if the server k is under repair,
k=12,

° mgk) be the state of the directing process of the service at the kth busy server,
m® =1, M® | k=1,2;

. rgk) be the state of the directing process of the repair time at the kth server,
r® =T R,k =1,2;

e u; and 1 be the states of the underlying process of the M AP of customers
and the M AP of breakdowns respectively, v, = 0, W, n, =0, V.

The process of the system states is described by the regular irreducible con-
tinuous time Markov chain, &,t > 0, with state space

Q:{(Oan,yvn)vn:071a2a V:07W777:07V}U

{0, 0,v,n,mM, m®), i > 0,0 =0,W,n=0,V, m™ =T, My, k =1,2} |

{(Za 1,V,77,m(2),7’(1)),i > OaV = OaWJ] = 07 va(Q) = 17M27T(1) = 17R1}U

{G,2,v,m,m® ¢ i >0,0=0,W,n=0,V,m® =1, M, =1 R,}.

In the following, we assume that the states of the chain &,t > 0, are ordered
as follows. Within the indicated above subsets of the set {2 the states of the
chain are enumerated in the lexicographic order. Denote the obtained ranked
sets as £2(0,0), £2(0,1), 2(i,n,r),i > 1,n =0, 1,2, and arrange these sets in the
lexicographic order. Let @y, 4, j > 0, be the matrices formed by rates of the chain
transition from the state corresponding to the value i of the component 4,, to the
state corresponding to the value j of this component. Denote as @ = (Qij)i,j>0
the generator of the chain.

Lemma 1. Infinitesimal generator Q of the Markov chain &,t > 0, has the
following block structure

Qo,0 Qoq O O ---
Q1o @1 Q2 O ---
Q=] O Qo Q1 Q-
O 0 QoQr -



46 V. Klimenok

where non-zero blocks have the following form:

Dy® Hy Iy @ pH1 @ 71 Iy @ pH1 @ T2

Qoo=|LoT!V) Dyo HOTW o) ,
LT 0 Dy& HeaT®
D1 & IV ® ﬁl & ﬂg O O
Qo1 = 0 D@1y ® By ® IR, 0 ,
O o Dy ®1Iy @B ® Ig,
I,® 8y @) 0
Ql,O = O Ia & S(()z) ® IRl O )
0 o I,® 8" @ Ig,
I, ® 80(8, ® By) o) o}
Qo = 0] 1,® 88, ® Ir, o) 7
0) o) 1,® S8, ® I,

I, ® B ® Ingy, © TSV Do®H® Sy TV o

Do ® Ho® S1®S2 Iy @pH1 ®eny ® Iny @ 71 Iyy @ pH1 @ Iy ® eny, ® T2
Q1=
I ® Iy ® B2 @ TS o Do ®H® S &T®

D1 & Iy pp,y ity 0 o
QQ == O Dl ®I‘7M2R1 O
0 ) D1 ® Ipag

where H = Hy + Hy, So = —(S1 ® S2)e, ®, ® are the symbols of Kronecker’s
product and sum of matrices, W =W +1, V=V +1 a=WV,p=1—0p.

The proof of the lemma is implemented by means of calculation of proba-
bilities of transitions of the components of the Markov chain & during a time
interval having infinitesimal length.

Corollary 1. The Markov chain &,t > 0, belongs to the class of quasi-birth-
and-death (QBD) processes, see [10].

The proof of the corollary follows from the definition of QBD given in [10]
and the structure of the generator Q.
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4 Stationary Distribution

Theorem 1. The necessary and sufficient condition for existence of the station-
ary distribution of the Markov chain &, t > 0, is the fulfillment of the inequality

A< (505() + 31S52) + 32Sél), (1)

where 8o = do(ey @ Innyas,), 01 = d1(ey @ In, @eg, ), o = da(ey @ Iny, Der,),
and the vector & = (8¢, 01, 02) is the unique solution of the system

60 =0, de =1 (2)

where

Iy ® By @ Ingy, @ T Iy ® 8By @ I, o)

Iy ® S0(B1 ® By) + Ho ® Ity vy PH1 @ enry ® Ingy ® T1 5H1 ® Ingy ® enry ® T2
&=
Iy ® Ingy © By @ TS o Iy © S$VB, ® Ir,

+ diag{Iy ® 51 ® S2, Iy ® S2 @ TY, Iy ® 51 @ TP},

Proof. It follows from [10], that a necessary and sufficient condition for the
existence of the stationary distribution of the chain &, ¢ > 0, is the fulfillment
of the following inequality:

XQQE < XQOG (3)

where the vector x is the unique solution of the system of linear algebraic
equations

x(Qo + Q1+ Q2) =0, (4)

xe = 1. (5)
Let x be a stochastic vector separated into parts as
x = (X0, X1, X2) (6)

where the vectors xq, X1, X2 have sizes aM; Ms, aMs R, aMy Ry respectively.
Then the system (4) can be written as

x0[Ia ® So(B1 @ By) + Do @ Hy © S1 @© So + Dy ® Iy ar, ) (7)
1[I, ® B1 @ Tngy, @ TS + xa[l, @ Ing, © B2 © T = 0,

xo[lyy @ pH1 @ eny, ® Ing, ® 1] (8)
+x1[l, ® S(()Z)ﬂg ®Ip, +Do® HDS: oTW + D, ®IX7A12R1] =0,

X[l ©® (1 — p)Hy @ Ing, ® enr, ® T2 9)
+%2(1, ® 8By ® Ip, + Do ® H® $1 & T® + Dy ® Iy, ,] = 0.
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Represent the vectors xg, X1, X2 in the form
X0=0®60,X1:0®61,X2:0®(52. (10)

Substituting the vector x of form (10) into Egs.(7)—(9) and taking into
account that 8(Dy + D;) = 0, and x is a stochastic vector, the system (7)—(9)
reduces to the first equation in (2).

Further, substituting the vector x of form (10) into (3) and using the relation
A = 0D;e, we reduce (3) to the following inequality:

A< dpley ® 5'0) +d1(ey ® 582) ®er,)+ 02(ey ® Sél) ® €eR,)-

Using notation for 3n,n = 0,1, 2, introduced in the statement of the theorem,
we obtain ergodicity condition (1). O

Remark 1. We can give the intuitive explanation of stability condition (3).
The vectors Sn, n =0, 1,2, have the following sense: the vector 8o describes the
probabilities that both servers are fault-free and serve a customer, the vector
Sn describes the probabilities that only the server n,n = 1,2, serves a customer
under overload condition. Than the right hand side of inequality (3) is the rate
of customers leaving the system after service under overload condition while
the left hand side of this inequality is the rate A of customers arriving into the
system. It is obvious that in steady state the latter rate must be less that the
former one.

Remark 2. The stability condition (1) can be formulated in terms of the system
load p as follows:

A
pP= "= = 5 <
00So + 513(()2) + 525(()1)
Corollary 2. In the case of stationary Poisson flow of breakdowns and expo-

nential distribution of service and repair times, the stable condition (1)—(2) is
reduced to the following inequality:

1.

X1k
1801 + phees + (1 — p)heey

(1-p)h

A<

h
(1 + p2 + %1/@4— ). (11)

In what follows, we assume inequality (3) be fulfilled. Introduce the steady
state probabilities of the chain under consideration

P (vim) = lim Plig =0,y =n, v =0,W,n=0,V},n=0,1,2,

pz(»o) = lim P{i; =i,n = 0,0y = v, = n,mgl) =m), m§2) =m®),

t—oo

pgl) = tlim Plig=i,n =1L,vp =v,m = n,m,gz) =m®, r,gl) =r(),
— 00
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pz(z) = tlim Pliy=d,ne =20, = v, = n,m,gl) =m, r,§2) = @),

i>0,0=0,W,n=0,V,m® =1 M., r® =1 Ry, k=1,2.}.

Let us enumerate the steady state probabilities in accordance with the intro-
duced above order of the states of the Markov chain &; and form the row vectors
p; of steady state probabilities corresponding the value ¢ of the first component
of the chain, ¢ > 0.

To calculate the vectors p;, ¢ > 0, we use the algorithm for calculating the
stationary distribution of QBD process, see [10].

Algorithm

1. Calculate the matrix R as the minimal nonnegative solution of the non-linear
matrix equation

R*Qo+ RQ1+ Q2= 0.
2. Calculate the vector p; as the unique solution of the system

P1[Q1 + Q1,0(—Qo,0) " Qo1 + RQo) =0,

P1 [e + Ql,o(—Q070)7le =+ R(I — R)fle] =1.

3. Calculate the vectors pg, p;, i > 2, as follows:

Po=P1Q10(—Qoo) ™, Pi=p1R,i>2

5 Stationary performance measures

Having the stationary distribution p;, ¢ > 0, been calculated we can find a
number of stationary performance measures of the system. Some of them are
listed below.

e Throughput of the system
0=06080+8:8 + 8,8V

In case of exponential distributions of service and repair times the throughput
of the system is calculated as

= 1% (r iz + Py 1
o= 121 + phees + (1 — p)heey 1 He aelﬂ2

(1-ph
e

1)

o0
e Mean number of customers in the system L = ) ip;e.
i=1
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o)
Variance of the number of customers in the system V = Y i?p;e — L2
i=1
Probability that the system is idle and both servers are fault-free

P(O) - ( ea ) ’
0 Po Oa(R1+R2)

Probability that the system is idle and the server 1 (server 2) is under repair

0, 0
PV =po | eans |, P =po < a(HRl)) )
€uR,
Probabilities that there are 7,7 > 0, customers in the system and both server
are fault-free (serve a customer) at an arbitrary time and at an arrival epoch

Pz‘(o) =Pi ( Calh Mz ) 7Pz52;ji)val =X2"'p; ( fw ©evana, ) De.
O4(My Ry +0M1 Ry) O (Mo Ry+ M, Ra) x W

Probabilities that there are 4,7 > 0, customers in the system, the server 1 is
under repair and the server 2 serves a customer at an arbitrary time and at
an arrival epoch

o Ounr, Mo w4 ) Oanty My x W
Pi =P €aMs R,y 7Par;‘ival =A P IW ® eVM2R1 Dle-
O, Ry Ounty Ry x W

Probability that there are i,¢ > 0, customers in the system, the server 2 is
under repair and the server 1 serves a customer at an arbitrary time and at
an arrival epoch

Oanry v, . O _
P(2) =p,; O(IM R P(2’Z.) — )\_1pi a(MlMQJerRl)XW D]_e
7 eaM2R1 ’*arrival IW R eVMl Ry
1R2

Probability that the servers are in the state n at an arbitrary time and at an
arrival epoch

P, = i pP™ P, = i Pi) pn=0,1,2.
=0 i=0

Probability that an arriving breakdown sees both servers fault-free and will

be directed to the kth server

ey @Iy @ e,

P = h 8y p + Sa k(1 — p)]ps (O .
a(M2R1+]\/11R2)><W

>H187 k= ].,2,

where 0; ; is Kronecker’s symbol.
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6 Numerical Examples

In this section, we demonstrate feasibility of the developed algorithms and inves-
tigate numerically the behavior of the mean number of customers in the system
depending on the parameters of the system. To this end, we present the results
of two numerical experiments .

Experiment 1. In this experiment, we investigate the behavior of the mean
number of customers in the system, L, as a function of input rate A under the
different rates of breakdowns, h.

Define the parameters of the system.

The M AP of customers is defined by the following matrices:

Do — —1.349076  1.09082 x 1076 D — 1.340137 0.008939
07 \1.09082 x 1076 —0.043891 » 1 10.0244854 0.0194046 )

This M AP has the coefficient of variation ¢, = 3.1 and the coefficient of
correlation c.,, = 0.4.
The M AP of breakdowns is defined by the following matrices:

g (8110725 0 5 _ ( 80568 0.053925
0= 0 —0.26325 )7 71T 10.146625 0.116625 )

For this M AP cyqr = 3.5, Ceor = 0.2.
The service time distribution at the server 1 is assumed to be Erlangian of
order 2 with parameter 20. This distribution is defined by the vector 8 = (1,0)

. —20 20
and the matrix S = ( 0 —20

) . The service rate u = 10 and the coefficient of
variation ¢, = 0.7.

The service time distribution at the server 2 is assumed to be Erlangian of
order 2 with parameter 150. This distribution is defined by the vector 8 = (1,0)

. (=15 15
and the matrix S = ( 0 —15

> . The service rate p = 7.5 and the coeflicient
of variation ¢y = 0.7.

The repair time of the server 1 and the server 2 has hyper-exponential dis-
tribution of order 2. It is defined by the vector (0.05, 0.95) and the matrix
T = _0'0003 _09245 . The coefficient of repair time variation c,q. = 5.

Let us vary the M AP fundamental rate A by multiplying the matrices Dy, D
by a certain positive number. In this way, any desired value of A can be obtained
while the coefficient of correlation is not changed. Similarly, we obtain three dif-
ferent values of h(h = 0.0001, ~ = 0.001, ~ = 0.001) by multiplying the matrices
Hy, H, by a positive numbers.

Figure 1 shows the dependence of the mean number of customers in the sys-
tem, L, on the fundamental rate A under the different values of breakdown rate
h. It is seen from Fig.1, that the mean L expectable increases with A and h

increasing and the rate of increasing grows with increasing A. It is worth to note
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20+

-

—eo— h=0.01

2

4

6

8

10

h=0.001
h=0.0001

Fig. 1. Mean number of customers in the system, L, as a function of input rate A\ for
different values of breakdowns rate h

that the curves in Fig. 1 are terminated when A\ approaches to the point where
the load coefficient p becomes sufficiently large (greater than 0.78). To make
clear this fact, we present in Table 1 the values of A, L and the load coefficient p
corresponding to the curves in Fig. 1.

Experiment 2. In this experiment, we are interested in how the correlation
in the input flow impacts on the mean number of customers in the system. To
this end, we consider three M APs: MAP;, M AP, and M AP5 having different
coefficients of correlation.

Table 1. Experiment 1: the values of A, h, L, p

A[10 20 (30 (40 [50 (60 (70 (80 9.0 100 110

h = 0.0001

p 0.071/0.1430.214 | 0.287 |0.355 0.426 | 0.498 0.569 | 0.639 0.711  0.780
L]0.0770.167]0.277 1 0.422 |0.575]0.809 | 1.138 | 1.651 | 2.711| 5.515| 13.661
h = 0.001

p 0.072]0.144 | 0.215 | 0. 298 | 0.358 | 0.430 | 0.502 | 0.574 | 0.646| 0.718  0.782
L]0.0780.169]0.280 | 0.484 |0.618]0.958 | 1.741 | 3.883 | 8.519 | 18.347  41.433
h = 0.01

p | 0.075]0.151]0.2260.301 |0.377 0.452]0.528 | 0.603 | 0.679 0.754| 0.830
L]0.0840.187]0.318  0.501 |0.817|1.730 | 4.955 | 15.889 | 40.159 | 90.742 | 210.924
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M AP; is defined as the stationary Poisson process. It has the coefficient of
variation of inter-arrival times c¢,,, = 1 and the coefficient of correlation c.,, = 0.
We define this process by the scalars Dg = —1 and Dy = 1.

M AP, has the coefficient of variation ¢4, = 3.5 and the coefficient of corre-
lation ccor = 0.2 and is defined by the matrices

Do (13526 0 5 (13436 0.009
0= 0 —0.04391 ) 7 {0.02446 0.01945 ) -

M AP;5 is the same as M AP in Experiment 1. It has the coefficient of variation
Coar = 3.5 and the coefficient of correlation ¢, = 0.4. The M AP of breakdowns
and the PH distributions of service and repair times are assumed to be the same
as in Experiment 1.

Figure 2 shows the dependence of the mean L on the fundamental rate A under
the different coefficients of correlation in the M AP of customer.

150

—o— cor=0.4
cor=0.1
100 cor=0

50

: " — ‘ ‘ A
2 4 6 8 10

Fig. 2. Mean number of customers in the system, L, as a function of A for M APs with
different coefficients of correlation

Besides, in Table2 we present the values of A\, L and the load coefficient p
corresponding to the curves in Fig. 2.

It is seen from Fig. 2, that the mean number of customers in the system, L,
expectable increases when the input rate A increases and, under the same value
of A\, the mean L increases with the coefficient of correlation increasing although
the load coefficient p does not depend on the correlation in the input flow (the
latter follows from Remarks1 and 2).
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Table 2. Experiment 2: the values of A, ccor, L, p

A10 (20 (30 [40 (50 (60 (7.0 [80 (9.0 100 |11.0
p 0.075 0.151 0.226 0.301]0.376 0.451 0.526 0.602  0.678| 0.753  0.828
BMAP; : ¢eor =0

L 0.0820.177  0.288 0.423 | 0.597 0.846 1.393 | 9.254 20.481 66.723|169.774
BMAP: : ceor = 0.2

L]0.085]0.182/0.301 | 0.456 | 0.679 | 1.122 |3.265 | 12.691 | 33.583 | 77.115 | 179.661
BMAP;3 : ceor = 0.4

L]0.094 | 0.187 0.318 | 0.501| 0.818 | 1.730 | 4.955 15.889 | 40.159 | 90.742 | 210.924

7 Conclusion

In this paper, we investigate unreliable queueing system with Markovian flows of
customers and breakdowns and two heterogeneous servers. This queueing system
can be used as a mathematical model of hybrid communication system consisting
of a laser channel and a millimeter-wave radio channel. We described behavior
of the system by the QBD process, derived stability condition, computed sta-
tionary distribution and presented the expressions for performance measures of
the system. We present some numerical results which illustrate feasibility of the
proposed algorithms, effect of correlation in arrival process and behavior of the
queue depending on the rate of input flow and the rate of breakdown. The results
can be exploited for capacity planning and performance evaluations of real world
hybrid communication systems.
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Abstract. In this paper we consider a generalization of M/GI/N /oo
queues, in which customer capacity is an additional parameter of the
system and it is independent of the service time. In more detail we focus
on the distributions of the total capacity of customers in the different ele-
ments of the queue (waiting line, service and entire system) and provide
approximate expressions for the corresponding characteristic functions.
To verify the goodness of the proposed approximation, several sets of
simulations have been carried out, considering discrete and continuous
distributions of the customer capacity and using the Kolmogorov dis-
tance as a measure of similarity.

Keywords: N-server queuing system - Customer with random capac-
ity - Approximation of the probability distribution

1 Introduction

Queuing theory is one of the most relevant branches of probability theory and
applied mathematics [3,6,12,13]. Indeed, queuing systems represent a powerful
mathematical tool for performance analysis of a wide variety of real-life systems,
including, for instance, telecommunication networks, financial markets, supply
chain management and airplane traffic control.

In many application customers are simply characterized in terms of arrival
and service processes [1,8,9]. For instance, in computer networks it is typically
assumed that the customer volume (i.e., the packet length) is proportional to the
service time (namely, the time needed to transmit the packet itself). In this work,
we consider a more general model and assume that customer volume and service
time are described by independent random variables with arbitrary distributions.
As highlighted in the next section, customer capacity plays a relevant role in
modeling new network architectures.

In more detail, we consider a queuing system with Poisson arrivals, N servers
and unlimited capacity (such assumption is widely used in modeling for sake
of analytical tractability). Extending the approach developed by some of the
authors in [4] (in which an approximate expression for the distribution of the
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number of customers was derived), we will be able to find an explicit approxima-
tion for the distribution of the customers’ total capacity in the queuing system
as well as in its elements (waiting line and service).

The rest of the paper is organized as follows. In Sect. 2, we review the most
relevant works on queuing systems with random capacity of customers and high-
light the novelty of our contribution. Section3 properly defines the analyzed
queuing model and recalls an approximation for the probability distribution of
the number of customers in the system, while Sect. 4 presents the original con-
tribution of the paper, i.e. provides a general expression for the characteristic
function of the total customers’ capacity. Then, in Sect.5 the goodness of the
approximation (in terms of Kolmogorov distance) is verified through discrete-
event simulations for different values of the system parameters. Finally, Sect. 6
concludes the paper with some final remarks.

2 Related Work

In recent years queuing systems with random customer capacity have attracted
the interest of researchers for their applicability in different fields, mainly in
the framework of computer networks. In this section some of the most relevant
contributions are discussed.

In the paper [2] an efficient analytical model that evaluates the behavior of the
downlink LTE (Long-Term Evolution) channel with CLA (Cross-Layer Adapta-
tion) is presented. Since video traffic is resource—intensive, it is a challenging
issue to stream video over low bandwidth networks, whereas video communi-
cation over LTE becomes an open research topic nowadays due to LTEs high
throughput capabilities.

The paper [11] deals with a model of a multi-server queuing system with
losses caused by lack of resources necessary to service claims. A claim accepted
for servicing occupies a random amount of resources of several types with given
distribution functions. Random vectors that define the requirements of claims
for resources are independent of the processes of customer arrivals and servicing,
mutually independent, and identically distributed. Under the assumptions of a
Poisson arrival process and exponential service times, the authors analytically
find the joint distribution of the number of customers in the system and the
vector of amounts of resources occupied by them. Moreover, sample computa-
tions are presented to illustrate an application of the model to analyzing the
characteristics of a videoconferencing service in an LTE wireless network.

In [10] the authors consider queuing systems, in which customers occupy
some resources that are released after customer departure. Arriving customers
are lost if there are not enough free resources required for their servicing. In
such systems for each customer it is necessary to record the vector of occupied
resources until its departure.

Multi-server queuing systems with AQM-type (Active Queue Management)
mechanisms are considered in [16,17]. In more detail, in the first work M/M/n-
type (n > 1) queuing systems with a bounded total volume and finite queue
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size are considered. It is assumed that the volumes of the arriving packets are
generally distributed random variables. Moreover, an AQM-type (Active Queue
Management) mechanism is used to control the actual buffer state: each of the
arriving packets is dropped with a probability depending on its volume and the
occupied volume of the system at the pre-arrival epoch. The stationary queue-
size distribution and the loss probability are derived, and numerical examples
illustrating theoretical results are also provided. Then, in [17] the analysis is
extended to the case of arbitrary distribution of the service time.

The main aim of the paper [14] is to develop a simulation model for queuing
systems with non-priority cyclic service RR (round robin) discipline and to com-
pare, in terms of queuing performance, such service discipline with traditional
FCFS (first come-first served).

Finally, the paper [15] investigates single server queuing systems with batch
Poisson arrivals and without demands losses under assumption that each demand
has some random capacity (generally, each demand is characterized by an I-
dimensional indication vector). Service time of the demand arbitrary depends
on its capacity (indications). The Laplace-Stieltjes transform of total capacities
(random vector of sum of indications) of demands that were served during a
busy period of the system is determined.

The main novelty of our approach is that it deals with systems without losses
and, in this way, permits to dimension the system resources (in terms of buffer
space) in order to have loss probabilities below any given threshold (as well-
known in the literature, the complementary probability provides an upper bound
for the loss probability in the corresponding finite-buffer system). Moreover, our
approach is quite general and may be applied to any distribution (discrete or
continuous) of the customer capacity, provided that its characteristic function is
well-defined. Finally, we also provide the distribution of the overall capacity for
the customers in the different components of the queue (waiting line and buffer);
such information may be useful to dimension the different elements of the real
system under analysis.

3 Approximation of Probability Distribution
of the Customers’ Number in the System

We consider the M/GI/N /oo queue. The arrival process is distributed by Poisson
law with rate A. The system has IV servers and service times on each server are
ii.d. with distribution function A(z). The arriving customer occupies any free
server or goes to the queue in case of all servers are busy. Let each customer
have some random capacity v > 0 with distribution function G(y). Customers’
capacities and service times are mutually independent and do not dependent on

the epochs of customers’ arrivals.
i(t)
Denote by i(t) and V(t) = > v; the number of customers in the system at
i=1
time ¢ and their total capacity, respectively.
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Let P(i) = P{i(t) =i} be the stationary probability distribution of the
number of customers in the system. We denote by m; an approximation of P(7),
which is defined as a composite distribution [4]:

T = CoPy(i— N 41),i > N.

Note that the equality of the two expression for ¢ = N provides an additional
condition to determine the constants Cy and Cs.

The probabilities P; (i), where 0 < ¢ < N, are the probabilities of the number
of occupied servers in an N-server M/GI/N /0 queue with customer losses when
all servers are busy. Hence, they can be determined by the Erlang B formula:

. Aa)’ N (aa)F o
Pl(l):(u) <Z(kl)>

k=0

where a is the mean service time.

The probabilities P5(i) refers to states in which all servers are busy. In this
case, the block of occupied servers is considered as a single one, characterized
by an equivalent service time distribution B(x) and an equivalent mean ser-
vice time b. Therefore, the probabilities P5(4), where ¢ > 1, are defined as the
probabilities of having ¢ customers in a single-server queuing system with wait-
ing (i.e., the classical M/GI/1 queue). Hence, they can be determined by the
Pollaczek-Khinchin formula [4] and we can write

Pyfi) = (1= Xb) > anbi_g,
k=0

where the coefficients of the expansion are given by

1 1 n—1
Qo = -, Op = — |Qp_1 — akﬁ —k| >
Boo " Bo [ " 2_ b ]

k=0
bo = Bo, bn = Bn — Bn-1,

B = /ew%dmz),

0
and the distribution function B(z) has the form

x N-1

B(z) =1-(1- A(x)) 171/(17A(z))dz

a
0

The constants C; and Cy in (1) can be found from the normalization condi-
tion and the conditions of “stitching” [4]. So the expression (1) becomes:

Py(1) o
B0+ BV (L (B(0) + By L0 s i< N, o)

T, = Pl(N) ’ ’
BT A (1 - (B0) + By 0N iz N
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4 Characteristic Function for the Total Capacity

Starting from the definition of conditional expectation, we can write the char-
acteristic function of the total capacity in the form

h(u) = M{ejuv(t)} =MIMSe k=1 |it) =1

00 juivk ') . i
=Y Mie =0 ApGin =i =3 (M{IW) Pi) =i},
i=0 ¢

where we took into account that for ¢ = 0 the queue is empty and the sum at
the exponent is 0.
Then, using approximation (2), the characteristic function can be rewritten

by = - (w {e})

7=

as

and, taking the inverse Fourier transform, we obtain an approximation of the
density function of the customers’ total capacity in the M/GI/N /oo queue:

o

fr(z) = / €9 () 3)

— 00

Similarly, we can obtain the characteristic functions of the total capacity of
the customers in the service and in the waiting line. These results have practical
relevance since the customers in each element of the queue typically require
specific resources (for instance, in routers there is a physical separation between
input buffers and output ports).

In more detail, for the customers in the service we obtain:

N Y Py(1)Py (i)
hserv(u) = ZO <M{e] }) Py(1) + Pl(N)2(1 - (le(O) + P3(N)))’

7=

and for the customers in the waiting queue:

& N Pi(N)P(i + 1)
huwait(u) = ;) (M {6] }) Py(1) + Pl(zl\f) (1 - (P2(0) + P2(N)))’
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5 Simulation and Numerical Examples

Several simulation experiments, performed in the same way as [5], have been
carried out to estimate the distribution function of the customers number and the
total customers capacity and verify the goodness of the proposed approximation.
To this aim, it was also necessary to calculate numerically the approximations
(2) and (3) since a close-form solution is, in general, not available.

As a measure of the similarity between simulation and approximation results,
we consider the Kolmogorov distance

A= sgp |F(x) — D(x)].

Here F'(z) represents the approximation based on (2) or (3), respectively for i(t)
and V(t), and D(z) is the cumulative distribution function built on the basis
of the simulation results (in order to reduce the variance of the estimates 10'°
arrivals have been generated). As typically done in the literature [7], we suppose
that an approximation is applicable if its Kolmogorov distance is less than 0.03.

In the following we present the result for three different scenarios, in order to
highlight the applicability of our approximation in different settings. Note that
the parameters for the arrival and service processes were selected in such a way
that the condition for the stationary regime existence is always met (N > Aa).

Ezxample 1. Let us consider the following parameters for the queue:

— arrival rate A = 25
— number of servers N = 10
— exponential distribution (with parameter 1) of the service time, i.e.

1—e ™ x>0,
Alz) :{ 0, <0

— uniform distribution (in the interval [a, b]) of customers’ capacity, i.e.

0, y <a,
y—a
Gy) = <y<b
(y) b_a’a_y_7
1, y>0b.

Furthermore, we used the following numerical values: 4 = 5, a = 0 and b = 1.
It is easy to verify that the distributions are very similar both for the customer
numbers and the total capacity, as highlighted by Figs. 1 and 2; indeed, we obtain
that A; = 0.007 and Ay = 0.012, respectively for i(¢) and V(¢).

Example 2. In the second set of simulation we changed the distribution of the
service time. In more detail, the parameters of the queuing system are as follows:

— arrival rate A = 25
— number of servers N = 10



62 E. Lisovskaya et al.

e Approximation  s====Simulation

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 1. Example 1 — Distributions of the customers number

e Approximation Simulation

0000 ===
0 0,30,60,91,21,51,82,12,42,7 3 3,33,63,94,24,54,85,15,457 6 636,669

X

Fig. 2. Example 1 — Distributions of the total capacity

— gamma distribution (with parameters o and ) of the service time, i.e.

1o, 02)
Aw) = T "2

0, z <0,
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s A D proximation Simulation

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3. Example 2 — Distributions of the customers number

— uniform distribution (in the interval [a,b]) of customers’ capacity, i.e.

0, y <a,
y—a
= <y<b
G(y) ) g OSUSDh
1, y>b.

In this case (with a = 0.5, 8 = 2.5 and, as before, a = 0, b = 1), the approx-
imation is even closer since A; = 0.009 and Ay = 0.007 (see Figs.3 and 4).

Example 3. In the third set of simulations we verified the goodness of the approx-
imation in case of discrete distribution of the customer capacity. In more detail,
we considered the following set of parameters:

arrival rate A = 45
— number of servers N =6,7,8
gamma distribution (with parameters a and () of the service time, i.e.

(. Bz)
Aw) = { @) =Y

0, z <0,

— geometric distribution (in the form representing the number of failures before
the first success, with parameter p) of customers’ capacity:

Gly) = P{v =y} = p(1-p)*.
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e Approximation Simulation
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Fig. 4. Example 2 — Distributions of the total capacity

Simulation

e Approximation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
X

Fig. 5. Example 3 (IV = 6) — Distributions of the customers number

In all the scenarios we assumed o = 3.5, 8 = 29.7, p = 0.4 and checked how
the value of N influences the goodness of the approximation. Figures5 and 6
points out that the approximation is rather poor for N = 6 (indeed, in this
case the values of the Kolmogorov distance are A; = 0.064 and Ay = 0.048),
while it improves when the number of servers is increased, as highlighted by
the corresponding values of the Kolmogorov distance (namely A; = 0.029 and
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e Approximation e Simulation
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Fig. 6. Example 3 (IV = 6) — Distributions of the total capacity
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Fig. 7. Example 3 (N = 8) — Distributions of the customers number

Ay =0.016 for N =7, A; = 0.017 and Ay = 0.005 for N = 8) that are clearly
below the admissibility threshold. Finally, a visual evidence of the goodness of
the proposed approximation is provided by Figs. 7 and 8, referring to N = 8 (for
sake of brevity, the graphs for N = 7 are omitted).

We can conclude that the accuracy of the total capacity approximation is
suitable over a wide range of system parameters and improves with the increase
of the number of servers in the system.
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e ADProXimation e Simulation
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Fig. 8. Example 3 (IV = 8) — Distributions of the total capacity

6 Conclusions

In this paper we analyzed a generalization of M/GI/N /oo queues with customers
of random capacity. Such models present not only theoretical interest, but also
practical relevance in modeling new network architectures (eg., CLA in LTE)
and AQM mechanisms in queues.

In more detail we considered the distribution of the total capacity of cus-
tomers in the system and, starting from our previous results in [4] and the
definition of conditional expectation, derived an approximate expression for its
characteristic function. Then, we extended the proposed methodology to the
total capacity of the customers in the waiting line and in the service, providing
the general expressions of the corresponding characteristic functions.

Finally, the goodness of the proposed approximation was verified (in terms of
Kolmogorov distance) through several sets of simulations, considering continuous
as well as discrete distributions of the customer capacity.
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Abstract. The article proposes the technique to investigate the behav-
ior of the moments of numerical characteristics of mixed-type queuing
system with a random number of sources upon the change of demands
input stream intensity and size-limited queues based on the calculation
of boundary values of the number of servicing devices at which the mean
squared deviation (MSD) of the investigated quantity does not exceed its
mathematical expectation. For the first time the linear nature of behavior
of boundary values of the number of service facilities with the change of
the given intensity of demands input stream is determined numerically.
The article also considers various types of queues arising in queuing sys-
tems. The concept of an N-th order queue is introduced, and generalized
Little’s formulas for N-th order queues in queuing systems of various
types are presented.

Keywords: Queue - Physical queue - Real queue - Quality of service
(QoS) * Queuing system - M/M/m/K - Service facility

1 Introduction

Issues of studying combined models of queuing originate from Cohen’s works
(Cohen J.W.) [1], where the combination of Erlang models and classical queuing
system was considered for the first time. A number of formulae for probabilities
of queuing system (QS) steady states, call loss probability, and first moments of
demands number in a queue and waiting time in a queue are given in the paper.

Another specific case of a combined model is a mixed system with losses and
expectation having some servers and finite memory, presented in the work of H.
Takagi [2]. In this case there are two sources of demands in the system, thus
demands from the first source will be lost if all servers are busy at the time of
their arrival in the system. Demands from the second source are accepted in a
queue only if the number of demands in it does not exceed some defined value
K. Streams of demands arriving in the system also have a Poisson character.
Formulae for probabilistic characteristics of the system and for the moments of
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n order of waiting time and common delay time in the system are given in the
paper. In the specific case K — oo, this model is reduced to J. Cohen’s model.

A more general model of a queuing system which is a combination of a
multi-channel Erlang model, M/M/m/E model, and also multi-channel classical
model (M/M/m models) is considered in the work of authors [3]. A complete
formula derivation for probabilistic characteristics, and also for the first and
second moments of numerical and temporary characteristics of this type of a
queuing system is presented in work [4]; a general algorithm of queuing models
mathematical formalization taken from monographs [5,6] is used.

A mathematical model of an open multi-channel system of queuing having m
service facilities of identical efficiency with exponentially distributed service time
is presented in this paper. A demand input stream in this case is a superposition
of components’random number h, each of which represents a Poisson stream
of demands served in the order of arrival. For each type of demands entering
the system from the j-th source there is a specific size-limited queue €; where
Ep<eEr <Eg << é€p.

A zero (Erlang) component contains demands which are served only if there
is at least one free service facility, and they never stand in a queue. In the case,
if at the time when the next similar demand arrives in the system there is no
free service facility this demand is refused and leaves the system unserved. The
model of a queuing system, containing one such component in an input stream,
is the Erlang model; therefore we will call this component an Erlang component.

The first component includes demands which are served if there is a free
service facility, or they stand in a queue if the number of demands in the queue
is fewer than a particular number £;. In case when there is already available €,
or more demands in a queue, a newly arrived demand from the first source is
refused and leaves the system unserved.

The second component contains demands which are served if there is a free
service facility, or they stand in a queue if the number of demands in a queue is
fewer than a particular number €5 > £1. In the case when €5 or more demands
are already available in the queue, an arrived demand from this source is refused
and leaves the system unserved, and so on.

In general, the h-th component includes demands which are served if there is
a free service facility, or they stand in a queue if the number of demands in the
queue are fewer than a particular number €, > ¢,_1 > -+ > €1. In case when
there are already ¢; demands in the queue, a newly arrived demand from the
h-th source is refused and leaves the system unserved.

Let us accept the following designations:

co=FEy=0;e1 =FE15e0=FE1+ Ey; -+ g5 = ZJ: E;, = zj: E;; a size-limited

i=0 i=1
queue (memory volume) for demands of the j-th component;

h h h
Ao = Z )\j; /11 = Z )\j; /12 = Z )\j; Ah = )\h; where )\j demand
3=0 =1 j=2
stream intensity of the j-th component;
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Ry = Zopg, Ry = Z pj; Ro = ZQpJ, o Ry = pp; R = % where p; is
the given ]demand streajm intensity of the j-th component.

Demand streams arriving from each source are Poisson and have intensity
Aj; in this case total streams with intensities A; also have, as we know, a Poisson
character. Let us designate the mean intensity of demand service by one service
facility as p. In this case the intensity of an output stream of served demands
before the m-th states is multiple © and depends on the number of busy channels.
After the m-th state the intensity of served demand stream is equal to mu. The
served demand stream is also Poisson.

With accepted designations and assumptions taken into account, we will
obtain a continuous-time Markov chain.

2 Probabilistic Characteristics of a Queuing System
in a Steady-State Mode

We make up a set of Kolmogorov-Chapman equations for probabilities of QS
states in a steady-state mode of its functioning. Adding the normalization con-

m-ep
dition 3 P; =1, to this set of equations, we obtain a system that has a unique
i=0
solution
h g—1 E;
Ry R\
Py=|em RO O'ZH(’I’YZ>
=1;=0
5 -1
R R, \ "9
x { m-H, (1_ (%) > BoZm b\ (1)
g Rg=m
Tpy, 0<i<m

i—m—g; J Ey om
P = (ﬁ) 11 (ﬁ) RD P, m+e; <i<mtej, (2)
—0

m i
where the designation e,, (Ry) = Y % is accepted - a non-complete exponential
i=0
function. The solution (1) and (2) defines expressions for probabilities of all
possible QS states of this type in a steady-state mode of its functioning.
For further calculations it is convenient to introduce the following basic prob-
abilistic characteristics of QS of this type through which all other quantities are

expressed:
- basic probability 1
m4e— (Rl )El m
Ppy = Z P *71 WO'P();
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- basic probability 2

m-+teg— 1P (R ) Rl E; RmP
Z N — Bo m ml O
i=m-eq m
- basic probability h
m—tep—1 En h—1
1— ( h ) R 9 Rm
Pgp, = Z P = 71 Ry H (m) oy Py;
i=m-ep_ m g=1
- congestion probability of the system
h E
R 9 Rm
Poer = [1 (m) LiwEh 3)
g=1 ’

As a result, a general formula for basic probability is written in the form
i—1 E,
R\ Ry ( (B ) -
= 1 (1) [ - (0%). o
70 m m! E7,7 R,=m
By means of the expression (4) it is possible to present traditional probabilistic
characteristics of a queuing system in the most compact form:

- probability of a newly arrived demand service expectation in the queue

m+51 1 m+52 1 m+53 1
Z P, + Z P, + Z P +-
i=m i=m-eq i=m-eg
Ah m-ep —

+ Z PZ—ROZRPB“

0 i=m-+tep_1

- probability of a newly arrived demand service refusal (probability of demand
loss)

m—4e1—1 m-4eo—1 m-&-sd 1

/10 — /11 A2
=m i=m-teq i1=m-eg
Ag— A, TSR 1 &
+ = Y. PitPumie, =75 ) (Ro—Ri)Ppit+Pnyc,
0 i=mtens 01
h
= Ppi— Pw + Puye, =1 — Prs — Pu.
i=1

The probability of an immediate service of a newly arrived demand has, appar-

ently, a form
m—1

Pis=Y Pi=en_1(Ro) P (5)

i=0
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3 Numerical Characteristics of a Queuing System

By means of probabilistic characteristics of the system found above, it is possible
to express all main features characterizing a steady-state mode of a queuing
system functioning. So, through put capacity of a queuing system is a number of
demands passing through the system per unit of time A = Agqg = Ag (1 — Pr) =
Ao (Prs + Py ) . This number includes all demands from a general input stream
except refused demands and those that did not get into the system. Relative
through put capacity of the system, thus, is a share of demands passing through
a queuing system from a general input stream of demands ¢ = 1 — Pr. The
average number of demands under service at the same time (or, that is the
same, an average number of busy channels) with formulae (2)—(5) taken into
account has a form

m—1 m-ep
n= Z iP;+m Z P; = RoPyem—2(Ro) +m (Pw + Pr)
i=1 i=m

h
= R()P()em_g(Ro) +m <Z Pp; + Pm—i—ah) .

i=1
The second initial moment of demands number under service is

m+ep

5 i’P; +m? P
Z >

i=m

h
= RoPoem—a(Ro) + RaPyenm—3(Ro) +m? (Z Pp; + P7n+sh> .

i=1

An average demands number in a queue (average queue length) are
m h
= > (i-mP
1=m-+1

h
Ppi — EiPpic], Ri#m R;
:Z{E(EH-I)P Ro—m -‘FZ&FIEPBL
i i—2

i=1 m4+e;—1>

The second initial moment of demands number in a queue is

m-ep

B= % (i-m’P

i=m-+1

R, R
p—c (:Z+R —1-251 1) Ppi—

o~
(V)

2
gi-1Ppi +

-

o
Il
N

m—R, Prte;, Ri #m
(E; 71)E (2E oy +51 1)Pmﬂ,.,, Ri=m

+ EhPm-i-&h .
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Further, in the considered queuing system,the queue is possible only when
all service facilities are busy. Thus, the total stream of served demands of the
whole system consists of service streams of each channel and has mu intensity.
In this case, the probability that the system serves ¢ demands during ¢ time in
the event of queue, will be recorded in the form B; (t) = W@‘m”t.

The function of service waiting time distribution for one demand we will find
according to a known dependence Fy (t) = 1 — P (tw >t), where P (tw > t)
- the probability that waiting time in a queue for one demand is more than an
advanced set time t. As it is easy to see, it is possible, firstly, in case when the
queue is absent, but a newly arrived demand finds all service facilities in the
system busy, and during ¢ time none of facilities is released. Secondly, in case
when one demand is already in a queue and during ¢ time the system serves no
more than one demand, or there are two demands in a queue, and during ¢ time
no more than two demands are served, and so on. In this case, according to the
formula of full probability, we have

q[1—Fw (1)]
Al m+e1—1 m—4e;—1
= By (t) Z P+ By (1) Z P+
i=m i=m-+1
+B€1*1 (t) Pm+51*1]
A2 [ &1 m—4eo—1 m-teg—1
+ 1 B; (1) Z P+ B 41 (1) Z P+
Li=0 i=m-eq i=m-4e1+1
+ B€271 (t) Pm+6271]
/13 [ eo m-+tez—1 m-+tez—1
+ Bi(t) Y. Pi4+Beyi(t) Y, Pt
Li=0 i=m-eo i=m-+eo+1
+B€3—1 (t) Pm+63—1] +oee
A Eh—1 m—+4ep—1 m—4ep—1
h
DB D PiABe_ () Y, Pt
i=0 i=m—+ep_1 i=m+ep_1+1

+ Be), 1 (t) Pm+5h—1] : (6)

After a number of intermediate calculations, it is possible to obtain the fol-
lowing expressions for finite-sums sequence in square brackets in the right-hand
side of this ratio. As a result, substituting obtained ratios into the right member
of a formula (6), we will finally find
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P, _
Fy(t)=1—¢ mut2m=l
q

eer 1 (Rupit) — (Z)E (mut)]

i—1 E
R 9

H (Q) €e;i1-1 (mﬂt)
m

g=1

R
m—R1
h
R;
+;m—Ri

+ ﬁ (R?>Eg lec,—1 (Ript) — ec, -1 (Riput)]

] G2) s}

Hence, the density of a demand waiting time distribution for service in a queue
is

i (1) = T — g Tt
hooilop \E

x {/11 cer1 (M) + YA [] (Rg> [eci—1 (Ait) — ec,, -1 (Ait)] } (7)
i=2  g=1 v

and then, mean waiting time of demand service in a queue is

tw :/tfw (t)dt
0

h
1 R; R, B
= TO(] Z {m _ Ri [PB'L - EiPm—Q—si] + mgl—lsz} —

i=1

| =

in compliance with J. Litt]’s formulae. In the same way the second initial moment
of a demand waiting time in a queue is

E:/ﬁfw(t)dt
0

2(Ppi—Ei P, -
1 Zh: ( =R 2 [1+ =55 (m = Ri)]

= — R; i=1 By
Aoq = 35[% I1 (Rf)

Eqi— (817 Jrl)P i E'i(Ei+1)P7n €4
+ L m21 B~ mu(m—Ri;r ) Rl 7& m .
xlei(ei+1)(ei4+2)—egim1(eim1+1)(gi-14+2)], Ri=m

Let us note that the ratio (7) gives a possibility to calculate moments of any
order as a demand waiting time in a queue for service.
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4 Numerical Investigation of Queue Parameters Behavior

in QS

In actual conditions of objects operating according to the principle of queuing
systems, the problem of queues and delays in service is always topical. It natu-
rally causes desire to organize the process of their exploitation in such a way that
the operation of these objects and systems would proceed in more stable modes.
It should be borne in mind that a single parameter which could be changed
more or less quickly in actual practice for multi-channel devices in practice is
the number of homogeneous service facilities m working in parallel. Therefore,
we will set the task to study the work of QS in the following way.

Let us investigate the nature of behavior of the moments of queue length
and waiting time of the demand in queue with the change of the number of ser-
vice facilities m. For this purpose, let us formally replace factorial dependences
m in formulas for probabilistic characteristics [7] through which the moments
of the number of demands in the queue and waiting time are expressed with
corresponding gamma-functions G(m + 1); m is conditionally regarded as a con-
tinuous quantity. Dependencies of mathematical expectation and variance of
demands number waiting for service in the queue on the number of service facil-
ities show that there is some boundary value m corresponding to a cross point
of the moments of demands number in the queue which divides the axis m into
two parts. The first part is the area in which the mean squared deviation (MSD)
of the queue length is within the limits of mathematical expectation; the second
part is the area in which the dispersion of demands number in the queue exceeds
the mean value. The system functioning mode at which MSD of the queue length
does not exceed its mean value is pretty stable and predictable from the point
of view of operation.

In this case it is interesting to trace the dynamics of m change that is bound-
ary when the given intensity components of demands input stream change and
the queue length for corresponding components of input stream is limited.

A special program was developed to conduct a series of computational exper-
iments to calculate m boundary according to the mathematical model with
known as initial data of given intensity components of the demands input stream
and corresponding size-limited queues. Varying the given components inten-
sity of demands input stream p; within 1 to 12, we found values mI bound-
ary for the moments of queue length and m2 boundary for the moments of
demand servicing-waiting moments in a queue at various values of step size
between queue length limitations for various components of demands input
stream F; = 1; 2; 5; 10.

As an example let us consider the queuing model with a two-component
demand input stream and two queue length limits for each component. For this
purpose let us set \g = 0; pu = 1; Ey = 0; h = 2 in the program. As
Ao = 0, the zero (Erlang) component in this model is absent. Here €1 = Ej is
queue length limit for demands of the first component of the input stream with
the given intensity pi, and €2 = F; + E5 is queue length limit for demands of
the second component of the input stream with the given intensity pa.
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The behavior of mI and m2 boundary with the change of given intensity
p1 and po is linearly increasing. We will call obtained straight lines limits of
stability. Each point lying on the stability boundary corresponds to equal values
of mathematical expectation and MSD of the queue length (for m1), and waiting
time to service the demand in the queue (for m2) at a definite value of the given
intensity of demand input stream. The coeflicients of variation of the queue
length and waiting time in the queue are equal to the unity. In fact, it is the
border above which MSD exceeds mathematical expectation. The area below the
straight line corresponds to the stable mode of system operation at which the
mean squared deviation is within mathematical expectation.

When p; > 1 obtained straight lines divide the coordinate plane into 3 areas:
the upper one corresponds to an unstable mode of system operation both accord-
ing to the queue length and waiting time; the middle one corresponds to the
stable mode as for the queue and unstable as for waiting time; the lower — to the
stable mode on the queue and waiting time as well. It turns out that the set of
values of the number of service facilities corresponding to the stable mode of sys-
tem operation is limited from above by the stability boundary for waiting time.
Both straight lines form a multiplicative strip of instability in regard to waiting
time; its width enhances upon increasing of the given stream intensity p;.

When the step between queue length limits for demands of different com-
ponents is F1 = Fy = 2, stability boundaries on the queue length and waiting
time when the given intensity of the first component of the stream is changed p1,
form a multiplicative instability strip of the system according to waiting time.
In case the given intensity of the second component of the stream changes, po
form the additive instability strip of the system as for waiting time; its width
does not practically change with the increase of ps.

When the step between queue length limits for demands of different compo-
nents is By = Ey = 5, the further narrowing of instability strips with regard to
waiting time both for multiplicative at increase of the given intensity of the first
component of stream p; and additive is observed when the given intensity of the
second component p, changes.

Finally, when the step between queue length limits for demands of different
components is Fq = FEs = 10, instability strips on waiting time practically
disappear turning into a single boundary of the stability area both in queue and
waiting time as well.

In case of a two-component service model with two queue length limits for
each component of the demands input stream with intervals between limits £ >
10 and E2 > 10, boundary values of the number of service facilities (inside of
which MSD queue lengths and waiting time meet corresponding mathematical
expectations) practically coincide. They are approximately equal to the sum of
given intensity of all components of demands input stream. Also boundaries of
stability on queue length and waiting time are straight lines and at E; > 10 and
F5 > 10 their slope angle makes 45°.
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For a two-component queuing model with queue limits there is an opportunity
to investigate behavior of mI and m2 boundary at simultaneous change of the
given intensity of both components of demands input stream p; and ps.

Having conducted a cycle of corresponding computational experiments at
the step between queue length limits for demands of different components F; =
FE5 = 5, we obtain hypersurfaces of stability on queue length and waiting time
of the demand in a queue, very close to planes.

Obtained hypersurfaces break a coordinate space into 3 parts: upper is the
space of system instability on queue and waiting time; low is the space of system
behavior stability both on the queue length and demands waiting time in the
queue; middle — the layer corresponding to an unstable operation mode of the
system only on waiting time.

5 Higher Orders Queues

An N-th order queue will be called the queue calculated in case when there are
N claims in the system as minimum, and some of them are in the memory. If
N = 0 we have a usual mathematical queue, when N = m where m - the
number of channels in the service facility, we have a physical queue which is
explicitly studied in work [8]. At N = m + 1 we have the so-called real queue
[5], [6]; at all values N > m + 1 we have consequently higher orders queues [9].

Apparently, T. Saaty was the first to state the issue of real queues in his clas-
sical monograph [10]; it specified the value for the M/M/m system representing
itself as an average number of demands which stay in the queue for some time
to be served.

The physical sense of the real queue defined in the above-stated sense is that
in this case a newly arrived into the system claim finds busy all service channels
(all devices) and, at least, one more claim in the queue waiting for the service.
Thus, the minimum mean length of a real queue (in case the intensity of an
input stream of claims tends to zero) is unity but not zero as a general and well-
studied mathematical queue has. As we see, the real queue is understood as the
situation when there is at least one claim in the queue for the service on a par.

However, this numerical characteristic is not the only one to characterize real
queues in queuing systems.

Along with real queues in the sense explained above, it is possible to consider
another numerical characteristic of QS which, for example, in the standard report
of the GPSS simulation system has the name “a queue without zero inputs”.
Here, zero input is understood as such arrival of the claim in the system at
which there is, at least, one free service channel in the multi-channel device,
and in this case the claim is served immediately. Let’s emphasize that unlike the
situation considered above, in this case we imply the situation when at the time
of a new claim arrival in the system all service channels of the service facility
are occupied, but the queue, as such, can be absent. In the latter case, the claim
expecting service has no other service waiting claims before it; it is just before
the service facility in which all channels are busy at that time. Thus defined the
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“queue without zero inputs” is calculated considering only those claims which
really expected service, and without taking into account claims which did not
have to wait as at the time of their arrival in the system one serving channel
was free at least. Queue mean length without zero inputs is, apparently, longer
than mean length known for all and more habitual mathematical queue but, in
its turn, it is less than mean length of the real queue considered above. It is
clear, that the minimum mean length of such queue is zero, as well as the usual
mathematical queue is, i.e. on average such a queue, as well as a mathematical
queue, can have any number of claims.

Thus, if the usual mathematical queue is calculated as the average for all
claims which visited the system, then the queue without zero inputs is calculated
as the average value minus those claims which were served immediately as they
got into the system when, at least, one of service channels was free. The so-called
real queue in this case is calculated as the average minus both those claims which
were served without a queue, and those ones which found all service channels
occupied but were the first in the service waiting list as there were no other
claims in the system at this moment. In work [8] it was proposed to call the
queues calculated without zero inputs as physical queues.

It is clear, that this result can be generalized if the concept of higher orders
queues of systems with queues is introduced in the following way.

Let the queuing system have m serving channels with identical service inten-
sity p. In this case we will call the queue of a 0-th order the average queue
calculated on condition that when a new claim enters the system, there can be
any number of claims including the case when there are no claims at all, i.e.
the system can be the completely free from claims. In this case we will call the
queue of the 1-st order the average queue calculated on condition that when a
new claim enters the system, it already contains at least one claim, and so on. It
is clear, that upon this the physical queue means an average queue in all those
cases that when the claim enters the system, there are at least m claims in it;
thus according to this nomenclature, the physical queue is a queue of the m-th
order, Then the real queue is a queue of the m + 1-th order, etc.

Thus, the N-th order queue is the average queue calculated on condition that
when a new claim enters the system there are already Nclaims in it, and some
of them can be in the memory. At the same time the case N = 0 corresponds
to a usual mathematical queue; for N = m we have a physical queue; let us
remind that in the system of GPSS World simulation modeling this characteristic
has the name “a queue without zero inputs”. In case N = m + 1 we have a
real queue; for those cases when N > m + 1 we have higher orders queues.
In case all serving channels are busy, a newly arrived claim will have to expect
service, the minimum quantity of claims in the physical queue is equal to zero
in the memory; for the real queue it is equal to unity, and so on. It should be
noted that physical and real queues have the greatest deviations from the known
mathematical queue at small values of the intensity of claims stream entering
the system.
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As it is known, mean processing time of one claim in the system tg, mean
staying time of claims in the queue fy and the common mean staying time of
the claim in the system in general t7 = tg + ty for Markov queuing systems
are bound to corresponding discrete characteristics of QS by the following three
formulas [5,6]:

ts = n/A; tw =1/A; tr = k/A; (8)

where A is throughout capacity of the system, i.e. an average number of claims
served by the system in unity of time. Discrete characteristics of the system
are understood respectively as an average number of busy channels 7z , mean
length of the queue /, and an average number of claims in the system in general
k = @ + . Sometimes, these formulas are written in the form

ts = 777///\7 tw = Z/)\, tr = E‘/)\,
when the total intensity of claims stream A coming into the system is in the
denominator.

In fact, however, the denominator of these formulas should not be made of
the total intensity of claims stream but of that part only which corresponds
to those claims that are really transferred through the system (more precisely,
through the service facility), i.e. absolute throughout capacity of the system A.

Formulas (8) are commonly called Little’s formulas. At first, the result which
engineers used for a long time existed as several empirical formulas, i.e. in the
form of some kind of “folkloric theorem”, as it is said. Apparently, J. D. C.
Little was the first person who gave it a strict formulation in 1961. The intuitive
proof of Little’s formulas comes to the fact that in a steady state mode the next
demand entering the system finds in it the same average number of demands
which remains in the system when this demand leaves it. This quantity is just
equal to the product of claims stream intensity transferred through the system
(or its any subsystem) multiplied by the mean time of their staying in this system
(subsystem):

Direct mechanical analog of formulas (9) is a well-known relation for the way
passed at a steady movement s based on moving velocity v and travel time t.

s = vt

The case is somewhat different with QS numerical characteristics concerning
a real queue and higher orders queues in these systems. Let us remind that the
N-th order queue we have called the average queue calculated on condition that
when a new claim enters the system there are already 2N claims in it, and some
of them can be in the memory.

At the same time N = 0 corresponds to a usual mathematical queue; for
N = m we have a physical queue which in the system of GPSS World simulation
modeling has the name “a queue without zero inputs”.

In case N = m + 1 we have a real queue; for those cases when N > m + 1
we respectively have higher orders queues.
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For a physical queue, as it is shown in work [8], the corresponding ratio has
the form quite similar to (8):

t_thys = thys/A (10)

It is possible to ascertain that the relation (10) is applicable for all types
of queues from a mathematical to a physical queue, including the latter one,
however for a real queue and higher orders queues this formula becomes unfair.

Somewhat different is the situation with numerical characteristics of QS con-
cerning real queues and higher orders queues in regard to a real queue in these
systems. In works [5,6] it was found out that the following relation is performed
for the systems of M/M/m and M/M/m/E classes (however, all numerical char-
acteristics of the first ones can be obtained by ultimate passing from numerical
characteristics of the second ones)

{Wreal = [real/mﬂ (11)

as the real queue moves with velocity mu to serve demands by the multi-channel
device. It is possible to show that the same dependence will remain fair for all
types of higher orders queues for which N > m + 1:

EWNIZ_N/T)’L,U, (12)

Relations (8)—(12) connect parameters of usual mathematical, physical and
real queues in open queuing systems and parameters of higher orders queues in
these systems as well. It is clear that these relations will be absolutely similar for
close-loop queuing systems. At the same time the obtained system of formulas
(8)—(12) may be called as generalized Little’s formulas.

As we see, all higher orders queues in queuing systems of various types from
the point of view of claims traveling velocity in these queues can be divided into
two unequal classes. In this case, the first class will include all types of queues
from mathematical to physical inclusive, which move with a transferring velocity
of claims through system A. Thus m + 1 types of queues of various orders from
zero to m-th are in the first class. The second, a more extensive class, includes
a real queue and all higher orders queues in regard to a real queue for which,
according to the definition, we have N > m + 1. All these queues move with
the service velocity mu. The number of queues of various orders in this class is
not limited.

Further, the work [8] provides formulas obtained for the mean length of a
physical queue for queuing systems of various types. In particular, the expression
for a mean length of a real queue of the system with an unlimited memory volume
(within M. Kendall’s symbolism — M/M/m model) is the following

Iphys = —2—.
m—p
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But for the M/M/m model A = A, and then according to formulas (10) and
(11) we have

Iphys __ 1

twphys = 55 = ampy
f. j— Zw‘eal — 1
twreal = S305 = Gm=py-

i.e. for the model with an unlimited queue the mean staying time of one claim in a
physical queue coincides with the mean staying time of the claim in a real queue:
twphys = twreai- The obtained result can be called the theorem on physical and
real queues in queuing systems with an unlimited memory volume.

6 Conclusion

Generalizing data of all computational experiments submitted in the work it is
possible to draw the following conclusion.

In queuing systems of multicomponent streams stable operation modes of the
system on the queue length and waiting time of demands are possible. Bound-
aries of these modes correspond to single coefficients of queue length variation
and demands servicing-waiting in system. Regardless the number of components
in demands input stream and values of the step between queue length limits
for various components of the stream, boundary values of the number of service
facilities depending on the given intensity of various stream components form
straight lines described by the equation m (p;) = a + bp; where p;- given inten-
sity of the i-th component of demands input stream. When the step between
queue length limits for various components of demands input stream is F; > 10,
coefficients a and b accept values a = Y p;, b = 1. Thus, at E; > 10 the bound-

1
ary value of the number of service fagfities is numerically equal to the sum of
the given intensity of all input stream components. If above this limit, the oper-
ation mode of the system will be unstable both on the queue length and demand
waiting time.

The proposed results of the work can be used to project and operate quite a
wide class of objects and systems to assess their efficiency, and also to develop
projects of modernization or construction of various technical objects working
according to the principle of queuing systems.
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Abstract. In this paper, model of inventory system with positive ser-
vice time and perishable inventory is studied. It is assumed that some
demands do not acquire the item after service completion and order
replenishment lead time is a positive random variable. (S — 1,S) order
replenishment policy is applied. The exact and approximate methods
are developed for calculation of joint distributions of the inventory level
and number of customers in the system. The formulas for the system
performance measures calculation are given as well. The high accuracy
of formulas are confirmed by numerical experiments. The problem of
choosing the optimal server rate to minimize the total cost is solved.

Keywords: Perishable inventory systems - Positive service time -
(S —1,5) order replenishment policy + Calculation methods

1 Introduction

Service time of demands in classical models of Inventory Systems (IS) is usually
assumed to be equal to zero (or inconsiderable). However, in real systems this
assumption does not always hold. Therefore, IS models where demand service
time is a positive quantity were introduced. These models with positive demand
service time are called Queueing-Inventory Systems (QIS) and were first studied
n [1,2]. Detailed review of QIS models is given in [3].

In QIS model, usually, it is assumed that after service completion the inven-
tory level decreases. However, in works [4,5] are given the real systems where
this condition does not hold and the models of such QIS are studied.

In this paper, studied QIS models are different from the models in [4,5]
in following moments. Firstly, unlike in [4,5], the QIS models with perishable
inventory are studied (Perishable QIS, PQIS). Secondly, we assume that the
arrived demands enter the queue even when the inventory level is zero, while they
become impatient in the queue. Thirdly, the mean service time for demands that
acquire the item is different than for the demands do not acquiring the item.
Finally, it is assumed that the replenishment orders are placed according to
(S —1,5) policy.
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A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 83-96, 2017.
DOI: 10.1007/978-3-319-68069-9_7



84 A. Melikov and M. Shahmaliyev

PQIS models have been extensively studied and developed in a peer-reviewed
scientific literature. Numerous literature references on this subject are given in
the review works [6-9], as well as, in monography [10]. The results of analysis
of PQIS models with positive service time performed in [11-17] could be found
in [18]. It should be noted that, the order replenishment policies (ORP) used in
the most works belong to a (s, S) policy class.

At the same time, studying PQIS models with positive service time using
different ORP in order to find the most optimal policy is a popular research
subject. In this paper, (S — 1,.5) policy is used. According to this policy, when
inventory level decreases (after demand service completion or inventory perish-
ing) an order of unit size is placed.

Some serious results of PQIS analysis with (S —1,.5) policy could be found in
[19-21]. In these works, service time is assumed to be equal to zero, moreover in
[19] the inventory level is right continuous. Analysis of available literature shows
that the PQIS models with positive service time and (S — 1,.5) policy are not
studied. Therefore, methods of exact and asymptotic analysis of PQIS model
with finite queue length are given in this paper.

The paper is organized as follows. In Sect. 2, the description of the investi-
gated PQIS model is presented and main performance measures are introduced.
Exact and approximate methods to calculate the steady-state probabilities as
well as performance measures are developed in Sect.3. High accuracy of the
developed approximate formulas by using numerical experiments are demon-
strated in Sect.4. The results of solution of the problem for choosing optimal
server rate to minimize the total cost are shown as well. Conclusion remarks are
given in Sect. 5.

2 Model Description and Problem Statement

The studied system has a finite storage warehouse of size S and continuous
inventory level monitoring. Each inventory item independently perishes after a
random time with exponential distribution function with parameter v, v > 0.
At the same time, the item reserved for the demand service is not perishable.
In other words, inventory level decreases not only after the demand service, but
also because of the item perishing.

Demands are arriving into the system according to Poisson arrival process
with the intensity A for acquiring the inventory items. For the simplicity, we
assume that the demands acquiring the item requires unit resource, that is,
after service completion of such demands inventory level decreases for a single
unit.

If the inventory level is positive upon arrival moment the demand is taken
for the service with probability 1 if the server is idle by that time; otherwise,
demand joins the queue. Demands are assumed to join the queue even if the
inventory level is zero. If upon arrival moment of the demand the inventory
level is zero, then according to Bernoulli trial with the parameter ¢, it joins
the queue and waits for inventory replenishment for a certain time, while with
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the probability ¢o demand leaves the system being unserved, ¢; + ¢ = 1. In
that cases, demands in queue are impatient, that is, if inventory level is zero
every demand independently waits in the queue for an exponentially distributed
random time with mean 771,

Queues with finite length is studied in this paper. In the model with finite
queue, it is assumed that if at the moment of demand arrival there are N demands
in the system (including the one that is being served) then it is lost with prob-
ability 1.

After service completion according to Bernoulli trial with parameter oy
demand refuses to acquire the item, while with probability oo acquires, where,
o1+ o1 = 1. If the demand refuses to acquire the item its service time has expo-
nential distribution with mean ,LL1_I; otherwise its service time is exponentially
distributed with mean ugl, o < 1.

Inventory replenishment is performed according to (S — 1,5) policy with
delay, that is, the order lead time is a positive random quantity that has an
exponential distribution with mean v~!. So, if the number of pending orders at
the moment is n, then the replenishment rate is nv.

Problem is to find the joint distributions of inventory level and number of
demands in the system. Solution of this problem will allow to calculate the
performance measures of PQIS model, as well as, to perform its cost analysis. The
main performance measures are the average values of the following quantities:
inventory level S,,, inventory perishing rate I, average reorder rate RR, loss
rate of the customers due to balking RLj, loss rate of the demands due to
reneging RL,, average queue length L.

3 Methods for Calculation of the System Performance
Measures

System is modeled by 2-D MC with the states (m,n), where m - is inventory
level, n - is number of demands in the system. State Space (SS) of the system is
defined as follows:

E={(m,n):m=0,1,...,5n=0,1,...,N} (1)

Transition rate from the state (mi,n1) € E to (mg,ne) € E is denoted by
q((m1,mn1), (m2,mn2)). All of these rates form generator matrix (Q-Matrix) of the
given 2-D MC. Let’s consider the problem of their calculation.

Transition between the states of the system are related to the following
events: (i) demand arrival, (ii) service completion, (iii) product perishing, (iv)
leaving the queue due to impatience and (v) inventory replenishment.

Taking into account assumed replenishment policy, following cases are consid-
ered while determining the initial state (mq,n1) € E of the system: (1) my > 0;

When m; > 0 transition from the state (mq,n1) because of the events (iv) is
impossible, as in that case, demands in the queue are patient. Other transitions
are defined as follows.
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If the number of demands in system is less than N at the moment of demand
arrival (event (i)) then the number of demands increases by one unit, that is,
transition to the state (m1,n1+1) € E occurs; intensity of that transition is equal
to A. If after service completion the demand refuses to acquire the item (event of
type (ii)), number of demands in the system is decreased by one, while inventory
level remains unchanged, i.e. transition to the state (my,n1 — 1) € E occurs and
intensity of such transition is pjo;. If after service completion demand acquires
the item (event of type (ii)), then both number of demands and inventory level
decreases by one, that is, transition to the state (m; — 1,n7; — 1) € E occurs;
intensity of such transition is uo(1— o). After inventory item perishes (event of
type (iii)) transition to the state (m; — 1,n1) € E occurs, the intensity of such
transition is equal to mqv for case ny = 0 and to (m; — 1) for case ny > 0. At
the moment of order replenishment (event of type (v)) transition to the state
(m1 + 1,n1) € E occurs; intensity of such transition is equal to (S —my)v.

Consequently, for the case m; > 0, non-negative elements of Q-matrix are
defined as follows:

A, if mo=mq,ngo=mn1+1

Hio1, if mo=mq,ng=mn1—1

202, ifmeo=m;—1,nyo=n1—1
q((m1,mn1), (M2, n2)) = ¢ my17, ifmo=m;—1,npo=n1=0 (2)

(mqy— 1)y, ifmg=mq—1,n1 >0, ny=mn
(S—mi)y, ifme=mi+1,na=m

0, otherwise

Now, let at the initial state (mj,n1) € F holds the condition m; = 0. In
this case transition from the current state because of the events (ii) and (iii) is
impossible, as in these states demand service could not be performed because
of zero inventory level. In these states transitions for the events (i) and (v) are
defined analogously as in (2) and the arrived demand joins the queue with the
probability ¢;. Transition intensities because of demand impatience (event of
type (iv)) are defined as follows: after the demand leaves the system because of
impatience demand count decreases by one unit, while, inventory level remains
unchanged, that is, transition to the state (0,n1—1) € E occurs; intensity of such
transition is equal to ni7. At the moment of the order replenishment transition
to the state (1,n1) occurs; intensity of such transition is equal to Sv. So, for the
case m1 = 0 non-negative elements of Q-matrix are defined as follows:

)\¢1, imeZO, n2=n1—|—1
niT, ifm2:0,n2:n1—1

q((oanl), (m2vn2)) = (3)

Sl/, if mo = 1, Ng = N1
0, otherwise

It is clear from the formulas (2)—(3) that 2-D MC is irreducible and there
exists stationary mode. Consequently, the steady-state probabilities p(m,n),
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(m,n) € E are the only solution of the system of balance equations (SBE),
that are constructed based on the formulas (2) and (3). This SBE represents the
set of linear equations of dimension (S+1) x (N +1). Due to its large dimension
and obviousness the explicit form of SBE is not given in this work.

Required performance measures of the given PQIS are calculated through the
steady state probabilities. So, the mean inventory level and the average number
of demands in the system are calculated as the mathematical expectation of the
corresponding random variables:

S N
= > mY_ p(m,n); (4)

S
Z (5)

As the inventory item reserved for the servicing demand could not perish the
average perishing intensity is calculated as follows:

S N
Taw =7 ( Y (mp(m,0)+ Y (m — l)p(myn))> (6)

m=1

I
i Mz

Replenishment order is placed either every time after servicing the demands
that require the inventory item or after the item perishing. Consequently, the
average reorder rate is calculated as follows:

S
RR =Y (myp(m,0) + ((m — 1)y + p202)(1 = p(m,0))) (7)

m=1

As it is noted above, the balking occurs if at the moment of demand arrival the
waiting hall (queue) is full. Therefore, the average loss rate of demands due to
balking RLj is given by:

S N -1

m=0 n=0

The reneging occurs only in the case of zero inventory level. Therefore, the
average loss rate of the demands due to reneging RL, is given by:

N

RL. =171 Z p(0,n) 9)

n=1

Analytic solution for the system could not be found due to the complexity of
Q-matrix. The known numerical methods of linear algebra are only applicable
for the Markov Chains of the moderate dimensions and become useless for the
chains of larger dimension.
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Therefore, approximate method [18] is used in this work that allows to per-
form asymptotic analysis of the performance measures of the given system for
the large sizes of the inventory level and waiting hall for demands.

This method could be effectively applied for the models that work under large
load; in other words, it is assumed that demand arrival intensity is far larger than
the product perishing and replenishment rate, that is, A > maz{~, v}. It should
be noted that, this assumption is hold in many real PQIS. Moreover, as it was
stated above, p1 > po.

Taking into account the above conditions, let’s consider the following split of
the initial state space (1):

S
E= |J Em, En, [ )Em, =0, my # my (10)

m=0

where E,, = {(m,n) :n=0,1,...,N}, m=0,1,...,5.

Additionally, we conclude that the transition intensities inside a row are far
larger than the transition intensities between the rows. Further, based on the
split (10) of the initial state space (1), the following merge function is defined:

U((m,n)) = (m)

where (m) is merged state that consists of all the states E,,, m = 0,1,...,5.
Let’s denote Q = {(m) : m =0,1,...,S}.

Approximate values of steady state probabilities p(m,n), (m,n) € E of the
current model are defined as follows (see [18]):

p(m,n) = pm(n)m({m)) (11)

where p,,(n) - is the probability of state (m,n) inside the merged model with
the state space E,, and w({m)) - is the probability of a merged state (m) € (2.

Steady-state probabilities of the split and merged models are calculated as
follows.

In the all states (m,n) within the split model with the state space E,, the
first component is a constant, therefore, all the states of such class is determined
only by the second component. Consequently, in the analysis of the split models
with the state space E,, the state (m,n) € E,, could only be specified with the
second component, so for the convenience, while studying the split models with
the state space E,, its states (m,n) are simply denoted by n, n =0,1,..., N.

It is concluded from the formulas (2) that the state probabilities within all
the split models with the state space E,,, m = 1,2,...,S5 are the same as in
classical model M/M/1/N with load a = A/ uq01, i.e.:

1—-a

pm(n):anm,mzl,Q,...,S (12)
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Remark 1. As the quantities p,,(n) do not depend on the index m, m =
1,2,...,5 below these indexes are omitted.

It is concluded from the formula (3) that the state probabilities within
the merged model with the state space Ey are the same as in Erlang model
M/M/N/0 with load b = A¢y /7, that is:

0
po(n):lv(in),nzo,l,...,]\f (13)
> 0()
n=0
. . . b;
Further, the following notation is accepted: 6(j) = F

Let’s denote the transition intensity from the merged state (m;) to another
merged state (mg) with g((mq), (ma)), (m1), (m2) € £2. According to [18] these
parameters are defined as follows:

g((m),(ma)) = > q((ma,n1), (ma,n2))p(ma,m) (14)

(m1,m1)EEm,,
(m2,n2)E€Em,

Taking into account (2), (3) and (12), (13), (14) after some transformations we
found that the given intensities are calculated as follows:

Aml), ifm2:m1—1
q({ma), (m2)) = 4 (S —ma)v, if ma =mq +1 (15)
0, otherwise

where A(m1) = mivpo + (1 — p(0))(p2o2 + (mq — 1)v), my =1,2,...,8
Then from (15) we get:

,m=1,2,...,8 (16)

Shy™ 1
where 7(0) = Z S —m)

m=0

Remark 2. We assume that H r,=1,if m>n

Afterwards, taking into account (12), (13), (14), (15), (16) from (11) approximate
joint distributions p(m,n), (m,n) € E of inventory level and number of demands
in the system are found. Using these probabilities after some transformations
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from (4), (5), (6), (7), (8), (9) following formulas are obtained for the calculation
of performance measures:

N
RL, ~ rr((0)) 3 npo(n)
v N
Law = 7((0)) 3 npo(n) + (1= 7(0)) 3 np(n)

4 Numerical Results

Due to the limitations to the volume of the work, only accuracy of the steady-
state probabilities of the initial 2-D MC and performance measures is considered.
It should be noted that, the evaluation of the accuracy of given formulas analyt-
ically is impossible. Therefore, comparative analysis of the obtained numerical
results is used. The accuracy of the approximate values are evaluated by using
following norms:

Maximum absolute value of differences:

IVl = ma p(n) — ) (17)
Cosine similarity:
>, p(n)p(n)
IVl = il - (18)
2 (p(n)? [ 2 (B(n))?
ner nek

Jaccard coefficient [22]:

5~ minfpn). o)}
S ST RO 19

nek

Results of the comparative analysis of the steady-state probabilities for the
exact and approximate methods are given in Table 1. The initial parameters of
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Table 1. Estimation of accuracy of the steady-state probabilities versus various norms

Values of parameters | Norms
S N A INIly N1l NIl
10|10 |60 0.009167 | 0.999201 | 0.930769
30 |60 0.009354 | 0.999193 | 0.931855
50 |60 0.00966 | 0.99913 |0.928858
70 |60 0.010289 | 0.998972 | 0.914683
2010 |60 0.006392 | 0.999313 | 0.932304
30 |60 0.006392 | 0.999313 | 0.932337
50 |60 0.006393 | 0.999312 | 0.932285
70 |60 0.006393 | 0.999312 | 0.932011
90 |60 0.006393 | 0.999311 | 0.931672
110 | 60 0.006394 | 0.999311 | 0.931521
3010 |60 0.005361 | 0.999334 | 0.932366
30 |60 0.005361 | 0.999334 | 0.932366
50 |60 0.005361 | 0.999334 | 0.932366
70 |60 0.005361 | 0.999334 | 0.932361
90 |60 0.005361 | 0.999334 | 0.932355
110 | 60 0.005361 | 0.999334 | 0.932352
40|10 |40 0.006973 | 0.998495 | 0.900238
60 0.00465 | 0.999344 | 0.932367
30 |40 0.006973 | 0.998495 | 0.900238
60 0.00465 | 0.999344 | 0.932367
50 |40 0.006973 | 0.998495 | 0.900237
60 0.00465 | 0.999344 | 0.932367
70 |40 0.006973 | 0.998495 | 0.900237
60 0.00465 | 0.999344 | 0.932367
90 |40 0.006973 | 0.998495 | 0.900237
60 0.00465 | 0.999344 | 0.932367
110 | 40 0.006973 | 0.998495 | 0.900237
60 0.00465 | 0.999344 | 0.932367
120 | 60 0.00465 | 0.999344 | 0.932367
50 (10 |40 0.006206 | 0.998509 | 0.900238
60 0.00413 | 0.999351 | 0.932367
30 |40 0.006206 | 0.998509 | 0.900238
60 0.00413 | 0.999351 | 0.932367
50 |40 0.006206 | 0.998509 | 0.900238
60 0.00413 | 0.999351 | 0.932367
70 |40 0.006206 | 0.998509 | 0.900238
60 0.00413 | 0.999351 | 0.932367
90 |40 0.006206 | 0.998509 | 0.900238
60 0.00413 | 0.999351 | 0.932367
110 | 40 0.006206 | 0.998509 | 0.900238
60 0.00413 | 0.999351 | 0.932367
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the system are assumed as follows: pu; = 15,40 = 3,7y =2, v = 1,7 =0.5,0; =
0.3,¢1 = 0.6

The exact values of steady-state probabilities are calculated from correspond-
ing balance equations using MATLAB package. Solving time of balance equations
depends on its dimension and takes several hours for S x N > 5000 (e.g.: for
S =50 and N = 100 with quad core CPU Core i7 2.40 Ghz and 8 GB RAM at
least 3-4 h are required). It should be noted that, in the same PC approximately
3-4s are needed for the calculation of performance measures for S = 100 and
N = 500 while using the approximate method.

It is obvious from the Table1l that the higher the arrival intensity is, the
better accuracy of the calculated steady state probabilities of the model with
respect to all norms is acquired, that is, with the increase of the arrival intensity
the norm (17) is approaching 0, while the norms (18) and (19) are approaching
1. It is clear from split scheme (10) that with the increase of arrival intensity, the
transition intensities between the state classes E,,,m =1,2,...,5 decrease; the
smaller intensities between the classes of states of split model we have, the more
accurate state probabilities of initial model we get. For the above initial data the
analysis of accuracy of the system performance measures was performed as well
(see Tables 2 and 3). It should be noted that, the performance measures (4), (6),
(7), (8), (9) are almost the same when using exact and approximate approaches
(see Table 2). Only the small errors (less than 5%) are observed while calculating
measure (5) and this is acceptable in engineering calculations (see Table 3).

Table 2. Estimation of accuracy of accuracy of the performance measures (4), (6) and
(7) for N € [20,120], A € [20,60] ; EV - Exact Value, AV - Approximate Value

S |Sav Tav RR
EV AV EV AV EV AV
10| 3.300632 | 3.300632 |4.639206 |4.639206 |111 111
20| 6.633345 |6.633345 |11.26737 | 11.26737 | 422 422
30| 9.966667 | 9.966667 | 17.933346 | 17.933346 | 933 933
40 13.3 13.3 24.6 24.6 1,644.00 | 1,644.00
50 | 16.633333 | 16.633333 | 31.266667 | 31.266667 | 2,555.00 | 2,555.00

Remark 3. Zero values in Table 3 are not exactly equal to zero and are obtained
after rounding the numbers to the 6th order precision.

Now let’s consider the problem of choosing the most optimal server. Let it
is possible to choose the server from the predefined collection, where with the
increase of the service rate the cost associated with the corresponding server
increases as well. It is required to choose such server that will minimize the
long-run expected total cost (TC).

TC = cpSav + ¢ RR+ cyRLy + cgRLy + ¢pLl gy + cuwLay + s Dy (20)
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Table 3. Estimation of accuracy of performance measures (5), (8) and (9)

Values of parameters | RLy RL, Lay
S IN |X EV AV EV AV EV AV
10| 10 |60 53.434375 | 55.491991 | 0.090831 | 0.093377 9.873783 9.917505
30 |40 33.251864 | 35.313561 | 0.273342 | 0.271806 | 29.782387 | 29.850142
60 53.248114 | 55.307103 | 0.277091 | 0.278264 | 29.864775 | 29.907871
50 |40 33.069064 | 35.168018 | 0.456141 | 0.417349 | 49.75709 49.761818
60 53.063085 | 55.128522 | 0.462121 | 0.456846 | 49.851439 | 49.885624
70 | 60 52.87945 | 54.974741 | 0.645755 | 0.610626 | 69.832213 | 69.813776
20| 10 |60 53.400653 | 55.499856 | 0.001592 | 0.001674 9.876329 9.918894
30 |40 33.397364 | 35.496658 | 0.004881 | 0.004873 | 29.802009 | 29.872825
60 53.3973 55.496542 | 0.004944 | 0.004989 | 29.876169 | 29.918721
50 |40 33.394035 | 35.494048 | 0.00821 | 0.007482 | 49.801639 | 49.871242
60 53.393956 | 55.49334 | 0.008288 | 0.00819 49.875961 | 49.918322
70 |40 33.390713 | 35.493373 | 0.011532 | 0.008158 | 69.80117 69.865791
60 53.39062 | 55.490583 | 0.011625 | 0.010947 | 69.875698 | 69.917034
90 |40 33.387395 | 35.493368 | 0.01485 | 0.008162 | 89.800598 | 89.858999
60 53.38729 | 55.489352 | 0.014954 | 0.012178 | 89.875373 | 89.912694
110 | 40 33.38408 | 35.493368 | 0.018164 | 0.008162 | 109.79992 | 109.8522
60 53.383966 | 55.489287 | 0.018278 | 0.012243 | 109.87498 | 109.90602
30| 10 |60 53.400012 | 55.499997 | 0.000028 | 0.00003 9.876403 9.918918
30 | 60 53.399953 | 55.499939 | 0.000087 | 0.000088 | 29.8764 29.918915
50 |40 33.399895 | 35.499895 | 0.000145 | 0.000132 | 49.802382 | 49.873204
60 53.399893 | 55.499882 | 0.000146 | 0.000145 | 49.876396 | 49.918908
70 |40 33.399835 | 35.499883 | 0.000204 | 0.000144 | 69.802374 | 69.873108
60 53.399834 | 55.499833 | 0.000206 | 0.000194 | 69.876392 | 69.918886
90 |40 33.399776 | 35.499883 | 0.000264 | 0.000144 | 89.802366 | 89.872988
60 53.399775 | 55.499812 | 0.000265 | 0.000215 | 89.876387 | 89.918809
110 |40 33.399717 | 35.499883 | 0.000323 | 0.000144 | 109.80236 | 109.87287
60 53.399715 | 55.49981 | 0.000324 | 0.000217 | 109.87638 | 109.91869
40| 10 |60 53.4 55.5 0 0.000001 9.876404 9.918919
30 | 60 53.399999 | 55.499999 | 0.000002 | 0.000002 | 29.876404 | 29.918919
50 | 60 53.399998 | 55.499998 | 0.000003 | 0.000003 | 49.876404 | 49.918919
70 | 60 53.399997 | 55.499997 | 0.000004 | 0.000003 | 69.876404 | 69.918918
90 | 60 53.399996 | 55.499997 | 0.000005 | 0.000004 | 89.876404 | 89.918917
110 | 60 53.399995 | 55.499997 | 0.000006 | 0.000004 | 109.8764 109.91892
120 |40 33.399994 | 35.499998 | 0.000006 | 0.000003 | 119.80239 | 119.87323
60 53.399994 | 55.499997 | 0.000006 | 0.000004 | 119.8764 119.91891
50| 10 |60 53.4 55.5 0 0 9.876404 9.918919
30 |60 53.4 55.5 0 0 29.876404 | 29.918919
50 | 60 53.4 55.5 0 0 49.876404 | 49.918919
70 | 60 53.4 55.5 0 0 69.876404 | 69.918919
90 |60 53.4 55.5 0 0 89.876404 | 89.918919
110 | 60 53.4 55.5 0 0 109.8764 109.91892
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s N
where P, is probability that server is busy, i.e. P, = >, . p(m,n). Here ¢, is
m=1n=1
inventory carrying cost per unit item, ¢, is setup cost per order, ¢ is balking cost

per customer, ¢, is reneging cost per customer per unit time, c, is the perishing
cost per item per unit time, ¢, is waiting time cost of a customer per unit time.

We assume that there are four possible options to choose the server: (1)
1 =5,p2 =1 (2) p1 =8, p2 =25 (3) pin = 10,2 = 4; (4) 1 = 15, p0 = 5.
The values of the coefficients ¢; when choosing the option k, k = 1,2,3,4 are
designated as cgk) and defined as: cgl) =1, cff) =2, cg?’) =3, cg4) = 4. The values
of other parameters in the (20) are constants: ¢, = 1,¢, = 0.1,¢, = 3,¢4 =
2,¢p=2,¢c = 1.

Table 4. Results of solution of the problem (20) for N = 150

S

5 10 15 30
10
50| 4 2 2 2
80| 1

Some results of the problem solution for the above data are given in Table4.,
where the numbers 1, 2 and 4 indicate the index of the optimal server selection
option. It is obvious from the Table4. that if the inventory level is increasing
the optimal option is to choose the server with the lesser service rate, and, vice
versa, for the smaller values of the inventory level the optimal option will be the
servers with the greater service rates.

5 Conclusion

PQIS model with perishable inventory and positive service time is studied in
this paper. It is assumed that some demands do not acquire the item after ser-
vice completion. When inventory level is zero, demands join or leave the system
according to Bernoulli trial. Demands are impatient in the queue when the inven-
tory level is zero. Order lead time, as well as, item perishing time are random
variables with the exponential distributions and finite mean. Inventory replen-
ishment policy belongs to (S — 1,5) class. Exact and approximate formulas are
given for calculation of steady-state probabilities of the given 2-D MC being the
mathematical model of the studied system. Exact method is based on the solving
of balance equations and is suitable for the moderate values of inventory level
and length of the waiting hall for queuing the demands. Approximate approach
is based on the state phase merging algorithms of 2-D Markov Chains and it is
applicable for the systems of any dimension. High accuracy of the given formu-
las are shown using numerical experiments. Finally, the optimization problem of
choosing optimal server for cost minimization is solved.
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Abstract. The aim of the present paper is to investigate a finite-source
M/GI/1 retrial queuing system with collision of the customers where
the server is subject to random breakdowns and repairs depending on
whether it is idle or busy. The method of elapsed service time and the
method of residual service time are considered using asymptotic app-
roach under the condition of unlimited growing number of sources. It
is proved, as it was expected, that basic characteristics of the system,
such as the stationary probability distribution of the server states and
the asymptotic average of the normalized number of customers in the
system are the same and do not depend on the applied method.
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1 Introduction

Retrial queues have been widely used to model many problems arising in tele-
phone switching systems, telecommunication networks, computer networks and
computer systems, call centers, wireless communication systems, etc.

In many practical situations it is important to take into account the fact
that the rate of generation of new primary calls decreases as the number of
customers in the system increases. This can be done with the help of finite-
source, or quasi-random input models. Moreover, usually in the study of various
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queuing systems, servers are assumed to be absolutely reliable. But in practice
it is necessary to take into account the possibility of failure and repair of the
server. Finite-source retrial queues with unreliable server have been investigated
in, for example [1,2,9,10]. Recent results on retrial queues with collisions can be
found in, for example [3,6,8].

The aim of the present paper is to investigate such systems which has
the above mention properties, that is finite-source, retrial, collision, and non-
reliability of the server. The introduced model is a generalization of the sys-
tems treated in [4,5,7]. Two methods are considered using asymptotic approach
under the condition of unlimited growing number of sources. It is proved, as it
was expected, that basic characteristics of the system, such as the stationary
probability distribution of the server states and the asymptotic average of the
normalized number of customers in the system are the same and do not depend
on the applied method.

The rest of the paper is organized as follows. In Sect.2 the description of
the model is given, the corresponding two-dimensional non-Markov process is
defined. In Sects.3 and 4 the residual service time method and the elapsed
service time method are considered by using asymptotic analysis, respectively.
Section 5 is devoted to the comparison of the offered methods. Finally, the paper
ends with a Conclusion.

2 Model Description and Notations

Let us consider a closed retrial queuing system of type M/GI/1//N with colli-
sion of the customers and unreliable server (Fig.1). The number of sources is
N and each of them can generate a primary request during an exponentially
distributed time with rate A/N. A source cannot generate a new call until end
of the successful service of this customer. If a primary customer finds the server
idle, he enters into service immediately, in which the required service time has

c/N

AMN/ Y2

Fig. 1. Closed retrial queuing system M/GI/1//N with collision of the customers and
unreliable server
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a probability distribution function B(z). Let us denote its hazard rate func-
tion by u(y) = B (y)(1 — B(y))~! and Laplace -Stieltjes transform by B*(y),
respectively. If the server is busy, an arriving (primary or repeated) customer
involves into collision with customer under service and they both moves into the
orbit. The retrial time of requests are exponentially distributed with rate o/N.
We assume that the server is unreliable, that is its lifetime is supposed to be
exponentially distributed with failure rate g if the server is idle and with rate
v if it is busy. When the server breaks down, it is immediately sent for repair
and the recovery time is assumed to be exponentially distributed with rate v,.
We deal with the case when the server is down all sources continue generation
of customers and send it to the orbit, similarly customers may retry from the
orbit to the server but all arriving customers immediately go into the orbit.
Furthermore, in this unreliable model we suppose the interrupted request goes
to the orbit immediately and its next service is independent of the interrupted
one. All random variables involved in the model construction are assumed to be
independent of each other.

Let i(t) be the number of customers in the system at time ¢, that is, the total
number of customers in orbit and in service. Similarly, let k(¢) be the server state
at time ¢, that is

0, if the server is idle,
k(t) = < 1, if the server is busy,
2, if the server is down (under repair).

Thus, we will investigate the process {k(t),i(t)}, which is not a Markov-
process. To be a Markov one we will use method of supplementary variable,
namely, we will consider two variants: the residual service time method and the
elapsed service time method, and then we will compare them.

3 Method of Residual Service Time

Let us denote by z(¢) the random process, equal to the residual service time,
that is time interval from the moment ¢ until the end of successful service of the
customer.

Thus, we will investigate the Markov process {k(¢),i(t), z(¢)}, which has a
variable number of components, depending on the server state, since the com-
ponent z(t) is determined only in those moments when k(t) = 1.

Let us define the stationary probabilities as follows:

Py(i) = P{k(t) = 0,i(t) = i},
Pi(i,2) = P{k() = 1,i(t) = i, 2(1) < 2},
Po(i) = P{k(t) = 2,i(t) = i}.

To get Po(i), Pyi(i,2) and Ps(i) the following system of Kolmogorov equations
can be derived
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0P (1,0

% = [A 4] Po(0) + 72 P(0) = 0,

8P1(1,Z
0z

) OPi(L,0) [)\N— 1

FAB(2)Py(0) + %B(z)Po(l) ~0,

— A+ 2] P2(0) +70F0(0) =0,

Oh(+1,0) [AN_Z +7 + ZU] Py (i) + 72 Pa(i)

0z N N
AR 1)+ o) =0
apta(?Z) - aPB(E,O) B {ANNz' - lea} P )
+)\¥Po(i ~1)B(2) + %UPO(Z')B(,Z) —0,

- [A N]\;i + ’72} Py (i) +voPo(i) + 1 Pi(i)

N-i+1
+/\THP2(F1):0.

Let us introduce the partial characteristic functions
N N
Hi(u) = Z ?“Py(i), k=0,2  Hi(u,2) = Z e Py (1, 2),
i=0 i=1

where j = v/—1 is imaginary unit, then system (1) can be rewritten as

_wOH1(u,0) (0 —X)dHo(u) . (Ne/* — o) dH;(u)
ju
¢ 0z +J N du +J N du

— A+ 0] Ho(u) + {)\e-j“ - %} Hi(u) + v Ha(u) =0,

OH;(u,z)  0Hi(u,0) (e — o) dHy(u)
0z 0z T N B(z) du
(o —X) 0H1(u, 2) u o B
I 9 + A" B(z)Hp(u) — [)\ +v— N] Hy(u,z) =0,

el — 1) dHo(u)
N du

J

+ ’YoHo(u) + ’71H1(u) + [)\(ej“ — 1) — 72} Hg(’u,) =0.

(1)

(2)



Comparative Analysis of Methods of Residual and Elapsed Service Time 101

Summarizing the equations of the system (2) and executing limiting transi-
tion under condition z — oo we obtain equation in the form

iy OH 1 (u,0) A
ju I Y) A
0z Jr‘7N

[ H () + Hy () + Hy(uw)|
N [Ho(w) + Hy(w) + Hy(w)] =0 . ®)

The solution of systems (2) and (3) for finite values N causes certain difficul-
ties therefore we will find solution under condition of unlimited growing number
of sources, that is N — oo.

3.1 Asymptotic Analysis

Theorem 1. Let i(t) be number of customers in a closed retrial queuing system
M/GI/1//N with the collisions of customers and unreliable server, then

A}iinoo Eexp {]wl(]\?} = exp {jwk}, (4)

where value of parameter k is the positive solution of the equation
(1 =r)A=6(k) [Ro(r) = R1(k)] + 71 R (k) =0, (5)

here § (k) is
0(k)=(1—kK) A+ oK, (6)

and the stationary distributions of probabilities R (k) of the service state k are
determined as follows

Rai) = { 022 4 202 20— (g )

V2 Y2 d(Kk)+m
memwggﬁgJuwwwwvm, (7)

! [YoRo(k) +71R1(k)].

T

RQ (,‘i)

1
Proof. Denoting v ¢ and executing the following replacements in system (2)

u = cw, Hy(u) = Fr(w,e) ,k=0,2; Hi(u,z) = Fy(w, z,¢€),
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we can write systems (2) and (3) in the form:

o—iew 01w, 0,6) OFy(w,e)

OF; (w,e¢)
0z tile=X) ow

ow
— (A + ) Fo(w,e) + [A7* — eo]| Fi(w,€) + Y2 Fa(w,e) = 0,

+ 4 ()\ej“” — cr)

OF (w, z,€) B OF1 (w,0,¢)

) , OFy(w,e)
JEW __
0z 0z tJ ()\e U) B(2) ow
+i(o—N) W AT B(2) Fy(w, €)

— Ay —eo] Fi(w,z,e) =0, (8)

) cw OFs(w, e
(e - 1) PROE R ) )

+ [)\ (ejaw — 1) — ’}/2} Fy(w,e) =0,

—jew OF1(w, 0, )
0z

A [Folw,) + Filw,) + Fau,)]

+ A [Fo(w,e) + Fi(w,e) + Fo(w,e)] =0 .

Carrying out limiting transition under conditions ¢ — 0, denoting
1iII(1)Fk(w,E) = Fr(w), k = 0,2; lir%Fl(w,z,s) = Fi(w,z) system (8) can be
g— E—
rewritten as

8F1(w,0) —|—j(a— dF()(’LU) dFl(w)

oz )\)W—i-j()\—a) du — (A +70) Fo(w)

+ AF(w) + o Fa(w) =0,

OF1(w,z)  O0Fi(w,0)
0z 0z

+ji(A—0)B(2) d?;w) +j(o—N) Lla(;’j’ 2)

+AB(2) Fo(w) — A+ 7] Fi(w,2) =0, ()
YoFo(w) + 1 Fi(w) — 2 Fa(w) =0,
SO0 | L By w) + i) + o)

+ A [Fo(w) + Fi(w) + Fa(w)] =0.

Let us write the solution of system (9) in product-form

Fy(w) = Ri®(w), k=0,2; Fi(w, z) = R1(2)P(w), (10)
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where Ry, Ri(z), Ry are the limiting probability distributions of the server state
k under conditions N — oo and ¢(w) is limiting characteristic function of the
stationary distribution of random process %
(9), we obtain

. Substituting this solution into

D(w)/Ow

/ . o]
Ri(0) +3 (0 — A) [Ro — R1] Bw) (A+70) Ro + AR1 + v2R2 =0,

0P (w) /0w
D(w)

DAl Biz) =0, (D

Ri(z) — R1(0) + j (0 — A\) [Ri(2) — RoB(2)] + A\B(2)Ro

YoRo +71R1 — 2Rz =0,

0P (w) /0w
P(w)

The above relations allows to write down this function in the following form

JA +A— R, (0)=0.

P(w) = exp (Jwr),
which coincides with equality (4). Using notation (6) and taking into account
0P (w) /0w
B(w)

that j = —k, system (11) can be rewritten as

/

R1(0) = 0(k) [Ro — R1] —voRo + 722 = 0,

/

R (2) = R, (0) + [6(k) + 1] Ri(2) — 6(k) RoB(2)0,

YoRo +71R1 —12R2 =0,

/

R, (0) —A(1—k)=0.

Let us consider the second equation of the system (12) in more details. It can
be proved that the solution of this equation has the form

Ru(z) = ot tml / e R (0) — () RoB() b, (13)
0

Executing the limiting transition at z — oo and taking into account that the
first factor of the right hand side of (13) in a limiting condition tends to infinity,
we can conclude that the second factor will be equal to zero, that is

o0

/ e { B (0) — 6(s) RoB(a) } e = 0.
0
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Performing simple transformations, we will obtain
R (0) = 6(k)RoB*(6(k) + ). (14)
Now, let us add the first and third equations of system (12) and, taking into
account the received equality (14), the system (12) can be rewritten in the form
R} (0) = 3(5)Ro + [6(s) + 7] R =0,
Ry (0) = 6(k) RoB"(5() + ),

15
Yoo + 1R — v2Ra =0, (15)

/

R (0) —A(1—-k)=0.

From the first three equations of system (15) and the normalization condition it
is not difficult to obtain expressions for Ry, which coincides with (7) and, finally,
equality (5) obviously follows from the first and fourth equations of system (15).

Theorem is proved. a

4 Method of Elapsed Service Time

Let us denote by y(t) the supplementary random process, equal to the elapsed
service time of the customer till the moment ¢.
It is obvious that {k(t),i(t),y(t)} is Markov process. Let us note, y(t) is
defined only in those moments when the server is busy, that is, when k(t) = 1.
Define the stationary probabilities as

po(i) = P{k(t) = 0,i(t) = i},

_ 0Pk = Li() = iny(t) < 5}
Oy ’

p2(i) = P{k(t) = 2,i(t) = i}.

p1(4,9)
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To determine pg(4), p1(4,y) and pa(i) the following system of Kolmogorov equa-
tions can be written

N—i i T
B [A i +]ng+%} p0<z>+/p1<z+1,y>u<y>dy
0

N —i+1 . 1—1 . .
Jr)\TPl(Z -1+ Tgpl(l) + Yep2(i) = 0,
(16)

Op1(i,y) _ |:>\N—’L' i—1

oy 7t 0+u(y)+%]p1(%y),

N—-i+1

N p2(i — 1) +vopo(i) +11p1(i) = 0,

N
N

A—— + ’72} p2(i) + A

with boundary condition

N—-i+1

i = 1)+ om) a7

pl(Z,O) =)\

Introducing the partial characteristic functions

N N
Hy(u) =Y e/pe(i), k=02, Hi(uy) =Y e"pi(i,y),
=0 =1

system (16) and Eq. (17) we will rewrite in the form

0
g

~O+ 50 Ho(w) + A = T i)+ e [ (. p)tu)dy

(0 —X) dHo(u) | (A" —0)dHy(u)
N d VN du

+y2Ha(u) + 37

M) [ =X = ly) = ] Ha(uy) — O D O,

Y0 Ho(u) + 71 Hi(w) + [Me™ = 1) = 72] Ha(w)

A" —1) dHa(u)
TN dw =Y

. (A — o) dH
Hiy(u,0) = X’ Ho(u)+]( 6N o) dozfm'
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4.1 Asymptotic Analysis
By using asymptotic methods for the first order solution to (18) we obtain

Theorem 2. Let i(t) be number of customers in a closed retrial queuing system
M/GI/1//N with the collisions of customers and unreliable server, then

Nli_r)nooEexp {jwl(j\tf)} = exp {jwk}, (19)
where value of parameter k is the positive solution of the equation
(I =r)A=3d(r) [Ro(k) — Ri(K)] + 11 R1(k) = 0, (20)
here 6 (k) is
0(k)=(1—=kK) A+ 0K, (21)

and the stationary distributions of probabilities Ry (k) of the service state k are

defined as follows

ot o mtr (k) B8k o
RO(K)_{ 72 - ¥ ()(s(ﬁ)+,yl[1 B(é()‘i'%)]} ;

6 (k) +m

Ry(k) = Ro(r) (L= B"(5(r) + )], (22)

! [YoRo(k) + 71 R (k)]

T

Ra(k)

1
Proof. Denoting N in system (18) let us introduce the following substitu-

tions
U = ew, Hk(U)ZFk(w,€),k':0,2; Hl(uay):Fl(wvya5)a

then we will receive system of the equations

~( a0 Fo(w.e) + M~ co] Fu(wie) + 7 [ By utudy
0

L WOF(wye) L Gew  OFi(w,e)
+ v P (w,e) + j(o )\)7811; 10 U)iaw =0,
aF s Y . 8F s Y
% =[eo = A= u(y) =] Fi(w,y,e) = j(A — 0)$,
(23)
YoFo(w,e) + 1 F1(w, ) + [)\(ejw -1)- 72] Fy(w,e)
. ew OF;(w,¢)
J — —_— =
+jA(e 1) 0 0,

OFy(w,¢)

Fi(w,0,e) = \e’*“ Fo(w, e) + j(A’*" — o) 0
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Taking the limiting transition under conditions ¢ — 0 let us denote
1iIr(1)Fk(w,5) = Fy(w), k =0,2; lin%)Fl(w,y,s) = Fi(w,y). Then system (23)
gE— e—

can be rewritten as

oo

—(A+70) Fo(w) + APy (w) + y2 Fa(w) + /F1(w, y)u(y)dy
0

+j(A—0) [d%w) - di(z)z(qu =0
W =~ [N+ uly) + ) Fi(w,y) = j(A - ”)W’ !

YoFo(w) + 71 Fi(w) — yoF(w) = 0,

dFo(w).

Fi(w,0) = AFp(w) + j(A — o) T

The solution of the system (24) can be written in product-form
Fr(w) = Rp¥(w), k=0,2; Fi(w,y) = Ri(y)¥(w). (25)

Substituting this solution into (24) we will receive
[ Ruwntsrdy =2 (R0~ Ba) =200 + 2
0

0¥ (w) /Ow
7 (w)

Ry(y) = — M+ () + 7] Ra(w) — 5O~ o>R1<y>W, (26)

+j(>‘70)(R1*R0) =0,

YoRo + 71 Ry — 2Rz =0,

oV (w) /0w

R1(0) = ARy + j(A — o) Ry )

from which it follows, that function ¥(w) has the form

¥(w) = exp (jwk), (27)
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coinciding with equality (19). Using the notation (21) the system (26) can be
rewritten as

/ Ry (y)u(y)dy = 6(x) (Ro — Ra) +70Ro — 12 Re,
0

Ri(y) = = [8(m) + p(y) + 7] Ba(v), (28)
YoRo + 1R —72Re =0,

R1 (O) = 5(H)R0

Let us consider the second equation of system (28) in more details. It is not
difficult to obtain a solution of this equation, taking the fourth equality of sys-
tem (28) as the initial condition, and as a result we get

Ru(y) = 6(k)Ro [L — B(y)] e~ C1+mly, (29)

To find R; integrate equality (29) with respect to y from 0 to co and receive an
expression in the form

0 (k)

i :Roé(n)+’h .

[1=B*(6(k) +m)]- (30)
Expression for Ry obviously follows from the third equation of system (28)
1
Ry = . [YoRo + 71 R4], (31)

and, finally, from equalities (30) and (31), keeping in mind the normalization
condition for Ry we have

_fwtr mtr (k) — B*(5(k o
RO_{ T 5(H)+71[1 B((S(H%)]} '

Thus, we have determined Ry, Ry and R» that coincides with equalities (22).

Let us return to system (24). Integrating the second equation of the system
with respect to y from 0 to oo, adding it with other equations of system (24),
substituting the decomposition (25) and taking into account the explicit form
(27) of the function ¥(w), we obtain an equation in the form

/ Ri(y)u(y)dy = A(1 - ). (32)
0

From (32) and the first and third equations of the system (28) it is obviously
follows Eq. (20) for k.
Theorem is proved. a
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5 Comparison of the Methods of Residual and Elapsed
Time

At a research of the closed retrial queuing system M/GI/1//N with collision of
customers and unreliable server by asymptotic analysis for a Markovization of
process {k(t),i(t)} two methods were considered: the method of elapsed service
time and the method of residual service time. From the Theorems 1 and 2 it fol-
lows, as it was expected, that the basic characteristics of the system, such as the
stationary probability distribution Ry of the server states k and the asymptotic
average k of the normalized number of customers in the system are the same
and do not depend on the method of investigation. Of course, it should be so,
since only the proofs are different.

Let us note that the use of the elapsed service time method is necessary for
a further research of number of transitions of a customer into the orbit, and also
for a further research of the sojourn time of a customer in the orbit.

The residual service time method is used for finding the probability distri-
bution of the number of customers in the system and also it is necessary at a
further research of the mean sojourn time of a customer under service.

6 Conclusion

In this paper, a finite-source retrial queuing system M/GI/1 with collisions of
customers and unreliable server was considered. Two methods of an supplemen-
tary variable was presented: method of elapsed service time and method of resid-
ual service time. The research of system has been conducted by an asymptotic
analysis under condition of unlimited growing number of sources. As a result of
the investigation the first order approximations of the basic characteristics of
the system, such as a stationary probability distribution of the server states and
the asymptotic average of the normalized number of customers in the system
was obtained. It was shown, as it was expected, that specified characteristics are
the same and do not depend on a type of applied method of a supplementary
variable. In addition, advantages for using each of the considered methods were
given and the necessity of their application for further researches of the system
was indicated.
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Education and Science of the Russian Federation (Agreement number 02.203.21.0008)
and by Peoples Friendship University of Russia (RUDN University).
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Abstract. We consider a single-server system in which each customer is
described by its service time and a random volume. The total volume of
customers accepted by the system is upper bounded by a finite constant
(system capacity) M. We give renewal-based approximations for a num-
ber of important stationary parameters of the system, in particular, the
mean lost volume. For a large M, the loss is typically a rare event, and
Crude Monte-Carlo method is time-consuming to obtain accurate esti-
mate of the loss probability in an acceptable simulation time. We apply
splitting method to speed-up estimation of the parameters by simula-
tion. In particular, we focus on heavy load. We perform simulations for
different values of capacity, different volume size distributions, includ-
ing heavy- and light-tailed distributions, and also for different values of
traffic intensity.

Keywords: Queueing system * Random volume customer - Finite
capacity - Accelerated simulation - Splitting - Heavy-tailed volume

1 Introduction

Some important problems related to the high performance computer and commu-
nication systems can be described by the models in which customers have both
random service time and random volume [1,2]. At that, in the most important
cases, the buffer space (volume capacity) for the summary accumulated volume
is finite. In [3] an analogy between the lost customer volume and a covering
interval in the associated renewal process has been proposed. This approach
uses the so-called inspection parador and, as simulation confirms, in some cases
leads to a useful approximation of the stationary parameters of lost volume.
When the volume capacity is large enough (or system is low loaded), a customer
loss becomes a rare event. In this case Crude Monte-Carlo method turns out
to be ineffective, requiring a huge simulation time for an accurate estimation.
Moreover, the relative error increases unlimitedly, as the loss becomes rarer. To
overcome this problem, in this work we apply the so-called splitting technique

© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 111-121, 2017.
DOI: 10.1007/978-3-319-68069-9_9
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to increase the occurrence of these rare events in an acceptable simulation time.
The splitting method is based on the idea to generate a few stochastic copies of
the basic underlying (Markov) process upon hitting the predefined thresholds.
This multiplication increases the number of losses but must be compensated in
the final expression of the loss probability estimator. We simulate this model for
different values of the system capacity, different customer volume distributions
and different system regimes (including heavy and light traffic). The obtained
estimates (based on the accelerated simulation) are compared with the renewal-
based approximation proposed in [3].

To the best of our knowledge, the application of the speed-up simula-
tion technique to verify the accuracy of asymptotic renewal-based relations for
lost /accepted volumes is performed for the first time. This is the key contribution
of the paper. Moreover we present a numerical analysis of the covariance func-
tion between successive lost volumes, and it is also a contribution of this work.
Besides, we detect and discuss some interesting results related to the behavior of
the sample mean of the lost/accepted volumes depending on the capacity, traffic
intensity and the volume size distribution.

The paper is organized as follows. In Sect. 2, we describe the model, while the
splitting method is described in brief in Sect. 3. Section 4 contains description of
experiments, simulation results and illuminating discussions.

2 Model Description and Analogy with Renewal Theory

We consider a general single-server GI/G/1-type queueing system, where each
customer is described by both service time and a random volume. It is assumed
that the service times {S,,, n > 1}, are independent identically distributed (i.i.d.)
with generic element S, and the volumes {v,, n > 1} are ii.d. as well, with
generic element v. The two-dimensional sequence {S,, v,} is assumed to be
i.i.d., but, for a given n, a dependence between S,, and v,, is allowed. The arrival
instants {t,} form the i.i.d. (renewal) sequence of the interarrival times 7, =
tni1 — tn, 1 > 0 (tp := 0) with rate A := 1/E7 € (0, co) and generic element .
Define p = AES, the traffic intensity of the system. Denote V (¢) the accumulated
volume, which is the sum of the volumes of all customers being in the system at
instant ¢. It is assumed that the buffer for the number of customers waiting in
the queue is infinite, while the summary accumulated volume in the system is
upper bounded by a finite constant (capacity) M. Thus, in this system, customer
n is lost if and only if V'(¢,) 4+ v, > M.

Now we consider an important parameter, EVy;, the mean stationary lost
volume. Denote R(t) the set of numbers of the rejected customers in interval
[0, ¢]. Then EV)y is defined as the limit

) v;
EVy = lim M

A% RO W

when exists, where |R(t)| is the capacity of R(t), and we explicitly show in
the notation a dependence of this quantity on the capacity M. In turn, a loss
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can be treated as a crossing of the level M by a renewal process generated by
the i.i.d. volumes {v;} [3]. Define random sums Z, = v1 + -+ + v, k > 1, so
0<Zy < Zy<....As aresult, the lost volume can be interpreted as a renewal
interval covering the “time instant” M in this renewal process [4,5]. (A difference
with exact renewal process caused by a dynamics of customers is discussed in
[3].) This analogy of the accumulated volume with a time scale of the renewal
process is widely used below. Let F' be the distribution function of customer
volume. Then we can deduce distribution of the lost volume V;, provided the
“capacity equals t”, using an analogy with renewal interval covering “instant t”
[5]. Further, applying the total probability formula, we have

0ot
P(Vtﬁx):Z/ Pt —z <v<x)P(Z € du)
k=1"71"¢

:Auu>t—mmmg—F@—memx 2)

where H(t) is the renewal function, defined as H(0) = 0,

H(t):=EN,, N;:= ZI[{Z” <t}, t>0,

n=1

and I denotes indicator function. That is H(t) is the mean number of the renewal
in interval (0, t], where renewal intervals are represented by the customer vol-
umes. A key observation is that, under this interpretation, the mean of the lost
volume V; from (2) coincides with EV; from (1), if we take M = ¢. An analogy
with renewal theory makes it promising to study the asymptotic of V};, as the
capacity M — oo, to apply this result to a large but finite M. Indeed it follows
from the key renewal theorem [4] that if g is a real bounded function and volume
distribution F'is non-lattice with Ev < oo, then,

t 1 [e'e]
Aﬂhwﬂwﬁgégwmtﬁm 3)

Applying (3) to (2), we obtain

x

lim P(V; <x) = ! /j[F(x) — F(u)]du = Eiv ; uF(du), >0, (4)

t—o0 EU
where integration by parts is applied at the last step. This limiting distribution
is well-known and called integrated-tail distribution. These results indicate that
calculation of the lost volume distribution by formula (4) could lead to an accu-
rate approximation, provided the capacity M is large enough. By (4), we obtain
the following representation of the p-th moment of the stationary lost volume
Vs, when fixed M is large and p < 1 [3]:

Eypt1
EV]€I = Ev + 0(1)7 p> 03 (5)
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where o(1) — 0 as M — oo. In particular, it gives the following form of the two
first moments of the stationary lost volume:
Ev? Ev3
EVi = £~ +o(1), EVE = £ o) (6)
In this work, we verify by simulation the accuracy of the approximation based
on (5) and depending on the capacity M, distribution of volume v and traffic
intensity p.

Now we turn to studying another important QoS parameter describing the
model under consideration. Denote A(t) the number of arrivals in interval [0, ¢].
Then the quantity
EiER(t) Ui

AR)
T Dk £1 Uk
when exists, is the limiting fraction of the lost volume in interval [0,¢]. A closely
related quantity is the stationary loss probability, P;,ss, which is defined as

_|R(t)]
Pioss = 1
loss tirgo A(t) )

Qloss ::

when the limit exists. Note that if the loss happens independently of the volume,
for instance, when M = oo but the number of waiting places is limited, then
the summands in the numerator become i.i.d. Then, by the strong law of large
numbers, we obtain the equality Qjoss = Pjoss, because

Quoss = Iim Lierw Vi _ . Lierw Vi A(t) |R(t)]

- :Ploss- 7)
A, T B TR A0, A (

The same equality holds for an important case, when S,, = cv, and ¢ > 0 is a
constant. The latter assumption is justified for a wide class of telecommunica-
tion models and expresses the proportionality between the service time and the
volume of a given customer. However (7) is not true if the capacity M < oc.
More exactly, the following inequality

Qloss Z Ploss (8)

has been established in the paper [6]. An intuition behind inequality (8) is that
the bigger volume is lost with a bigger probability, implying EVy; > Ev. That
is, the rejected volumes are atypically large, and this in turn implies (8).

Also we note that inequality (8) can be strictly proved by another method, if
customer volume distribution F' belongs to the class of New-Worse-Than-Used
distributions, see [3]. In this case the tail distribution F' := 1 — F satisfies the
inequality F(y + z) > F(y)F ().

In [3], the following renewal-based approximation of Q;.ss has been proposed,
provided the capacity M is large enough,

Ev?
Qloss ~ W Pl0357 (9)
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which is based on asymptotic (6) and in turn implies (8). Note that result (9)
is based on the assumption that Q(¢) consists of the i.i.d. summands, which are
stochastically equivalent to stationary covering interval in the renewal process
generated by {v,}, given by (4). The accuracy of approximation (9) has been
verified for large M in [3].

3 Splitting Method

An important purpose of this research is to study the estimates of the lost
volume, when the loss is a rare event. In this case the Crude Monte-Carlo sim-
ulation turns out to be inefficient, because it requires unacceptable large simu-
lation time to obtain the estimate with a given accuracy. In simulations below,
we apply the splitting technique to reduce simulation time when the capacity
M is large enough [7,8]. The splitting method is based on the idea to copy of
the basic process upon reaching a given state, to make a rare event more fre-
quent. In our setting, we assume V' (0) = 0 and consider (equidistant) thresholds
0 <21 <23 < - < xg < M. When the process V(t) crosses the thresh-
old z; for the first time, we start R; independent paths of process at the state
V(x;), 1 =1,...,xk. It is important to stress, that in general, the basic process
must be Markovian, otherwise, the new paths are not stochastic copies. In our
simulation, when the volume is not exponential, we indeed ignore the remaining
service times at the arrival instants. In this case the main component V' (t) is not
a Markov process, and the new trajectories (after the splitting) in general are
not stochastic copies. We note that it may affect the accuracy of the estimation.

Figure 1 shows the dynamics of the accumulated volume process, V (t), t > 0,
when the splitting is used. The “circles” denote the instances at which the new
paths start, upon reaching given thresholds.

Fig. 1. An illustration of the splitting method
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To realize simulation procedure, an important question arises: how to choose
the thresholds x; and multipliers R;, « = 1, ..., K in an “optimal” way. In general,
these problems remain open, however in the next section, we will apply the follow-
ing scheme, which has been successfully used for variance reduction in the estima-
tion of a rare event related to queue size in the standard M/M/1 queue [9,10]:

K = —logPjss/2; Ri=¢€%i=1,...,K; Ry=1. (10)

Note that the loss probability P;,ss is a priori unknown, and it is possible to
use the upper bound (8) to choose a suitable number of thresholds K, when
the estimate of the quantity @Q.ss is more available. Otherwise, we may take K
arbitrary.

4 Simulation Results

In this section, we present numerical results for different volume distributions
and different M. We estimate the mean lost volume, the mean accepted volume
and variance of the lost volume, when the system is highly or low loaded. Then we
compare simulation results with theoretical results (6). Moreover, the correlation
between two adjacent lost volumes is calculated as well. Simulations have been
carried by means of the system R [11] and high performance cluster of Karelian
Research Centre [12].

We consider M/M/1-type system with exponential interarrival times with
parameter A € [0.7,2] with step 0.05, and exponential service times with para-
meter ;4 = 1. These parameters give traffic intensity in the range p € [0.7,2],
covering both low and heavy (high) load. Also we consider the following volume
size distributions:

1. Case 1: light-tailed Weibull, with parameter i = 2 (denoted “Weibull(2)”
below): _
F(x) =1—¢%, 2>0,i>0;

2. Case 2: exponential, with parameter 0.5;
3. Case 3: Pareto, with parameter a = 4 (denoted “Pareto(4)” below):

F(x)l(i)a,le,a>0 (F(z) =0,z < 1),

4. Case 4: heavy-tailed Weibull, with parameter ¢ = 0.5.

We recall that for standard M/M/1 system (with no losses and p < 1) the mean
stationary queue size is Ev = p/(1—p). Hence, for instance, if p = 0.9, then Ev = 9,
and the values M = 10 Ev, 20 Ev, 30 Ev represent, respectively, small, medium and
large capacity of the system. We use an analogy of our system with standard system
M/M/1 to apply the mentioned values of M in all experiments below.

To calculate K from (10), we preliminary estimate the loss probability Pj,ss
by Crude Monte-Carlo as a ratio the number of the lost customers and the sum-
mary number of arrivals. As we mentioned above, this estimate is typically hardly
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available and is not enough accurate, but can indicate (as well as the estimate of
Q10ss) asuitable value K. We put V(0) = 0, and when V (¢) reaches a threshold z;,
new R; paths of the process V (¢) start at the state V' (z;). If a trajectory crosses,
say thresholds z; and x;4; at once, we produce R; R; 1 paths, etc.

In general, the summary number of paths equals Hf\il R; and is big, if the
target probability P, is small. As we mentioned above it leads to an unaccept-
able large simulation time. To reduce the required number of paths (and hence,
simulation time), we use the following modification of the basic approach. If a
trajectory, generated after crossing the threshold z;, falls below the threshold
xj(< x;) such that 1 —j > | N/2], then we ignore this trajectory. (This approach
is a modification of the so-called RESTART method [13].)

Now we describe the obtained simulation results.

Case 1: v ~ Weibull(2), M = 30Ev

Mean lost volume
—— Mean accepted volume 1.25
1.25 1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, EVu 12017
2 EIE
®1.00 4 S 115
I 5
g g EII
) 5
= 35 110 EXXy
0.75 - > IIIII
EX Xy X3
1.05 a2 EX XXX
0.50
rrrrrrrrrrrrrrrrrrrrrrrrorrT 1.00
0.7 0.9 1.1 1.3 15 1.7 1.9
0.7 0.85 1 115 13 145 16 175 1.9
Traffic intensity Traffic intensity
Fig. 2. The sample means of the lost Fig. 3. Confidence interval for the
and accepted volumes mean lost volume

Figures 2, 3, 4 and 5 correspond to Case 1, light-tailed Weibull volume. (We
denote v ~ F' if random variable v has distribution F.) In particular, Fig.2
shows estimates of the mean lost volume EVj; and the mean accepted volume
EV, for M = 30 Ev. (The results for M = 10 Ev and M = 20 Ev are similar.) The
theoretical mean Ev and the approximation of EV)s based on (6) are presented
as well. We can summarize our observations as follows.

When p € [0.7, 0.9], the accepted volume estimate EV, is very close to the
mean volume Ev, since losses are rather rare and by this reason almost do not
affect the final estimate. Note that the estimate EVjy is bigger than EVj; given by
approximation (6), because typically bigger volumes are lost in this case. When
p € (0.9, 1), the estimation is agreed with EVj;. When p € [1, 2], a considerable
part of the customers are lost, and EVar approaches the theoretical mean volume
Ev. We suggest that it is because the size of the lost volume ceases to play a
role when p > 1 and the system is permanently being in the saturated regime.
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Also the accepted volume EV, decreases because, when the system is highly
loaded, the customers with small volumes are mainly accepted.
Figure 3 shows 90% confidence intervals for the mean lost volume.

Case 1: v ~ Weibull(2)

0.26 M =10 Ev 050 7 M=10Ev
— M=20Ev 0.45 - — M=20Ev
—— M=30Ev —— M=30Ev
0.25 c 0.40 L
c S
S = 0.35 -
T 0.24 £
£ 7 0.30
 0.23 - c 0257
2 S
e 020
2022+ 2 015
(] o
= O 0.10 A
0.21 -
0.05 -
0'207‘““‘““““““““““‘ rrrrrrrrrrrrrrr1r1r1rrr1r1r1r1rrrIT
07 09 11 13 15 17 19 07 09 11 13 15 17 19
Traffic intensity Traffic intensity
Fig. 4. Variance estimate of the lost Fig. 5. Correlation between adjacent
volume lost volumes

Figure 4 shows estimation of the lost volume variance DV, for different M.
Theoretical value Dv and approximation of DV, based on (6) are given as well.

We can make the following conclusions. If p € [0.7, 0.9], the estimate DV
is bigger than DVj; because atypically large volumes are mainly lost. When
p € (0.9, 1) the estimate DV is agreed with theoretical value DV),. Finally, if
p € [1, 2], then DV is close to Dv because the losses become frequent and, by
this reason, are less dependent on the volume size.

Figure 5 demonstrates the correlation between the adjacent lost volumes for
different M. It is seen that when p increases, a dependence between the lost
volumes disappears (correlation approaches zero). We note that it is agreed with
the behavior of DVj for p > 1, mentioned above. We note that the results for
Case 2 (exponential volume sizes) are quite similar to the Case 1 and, by this
reason, we omit them.

Figures6, 7, 8 and 9 correspond to Case 3, heavy-tailed Pareto volume. In
particular, Fig. 6 shows estimates of the mean lost volume EVas and the mean
accepted volume EV, for M = 30 Ev. (The results for M = 10Ev and M = 20 Ev
are similar, if p € [0.9, 2], but the bursts are smaller for p € [0.7,0.9).) In general,
results are similar to Cases 1, 2, but the bursts are now much bigger. This can
be explained by the following property of the i.i.d. heavy-tailed {X;} [14]:

P(X1+ X4+ X, >2a) ~Pmax{X;y, Xs,... X} >2), x— 0.

(We write a ~ b if a/b — 1.) Hence, the sum is likely to get large because of one
of the summand gets large.
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Case 3: v ~ Pareto(4), M = 30Ev

Mean lost volume
—— Mean accepted volume
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3.0 1

2.5
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1.5 e

1.0 1

L e e e e
0.7 0.9 11 1.3 1.5 1.7 1.9

Traffic intensity

Fig. 6. The sample means of the lost
and accepted volumes
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Fig. 7. Confidence interval for the
mean lost volume

Figure 7 gives 90% confidence intervals for the mean lost volume when p >
0.8. Moreover, we found that confidence interval for p = 0.7 is [4.08, 4.61], while

for p = 0.75 it is [2.05, 2.25).
Case 3: v ~ Pareto(4)

Variance estimation

L e e e e
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Fig. 8. Variance estimate of the lost
volume
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Fig. 9. Correlation between adjacent
lost volumes

Figure 8 shows the estimate of the lost volume variance, IADVM7 for different M.
Also, we note that for M = 30Ev, DVj; = 127.46 if p = 0.7, and DV); = 25.41
if p = 0.75. Note that larger bursts can be explained by heavy-tailed volume
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distribution. Figure9 depicts the estimate of correlation between the adjacent
lost volumes for different M. It is seen that, as p increases, the dependence
between the lost volumes decreases, however, more slowly than for the light-
tailed Weibull volume.

We note that the results for Case 4 (heavy-tailed Weibull volume sizes) are
quite similar to Case 3, and by this reason we do not present it.

Based on simulations, we can conclude that approximation (6) is highly con-
sistent with the numerical results when p is near 1 but p < 1. However, in general
the approximation (6) should be used carefully, for instance, for heavy-tailed vol-
umes.

Finally, for the Poisson input with parameter A = 0.9, exponential service
times with parameter 4 = 1 and M = 20 Ev, we illustrate inequality (8).

Estimation Q55 Vs Pioss

0.04

Qioss Qioss
— Ploss 0.04 7 — Puoss
0.03 1
0.03 +
0.02 1
0.02 +
0.01 0.01 4
0.00 0.00 +
TTTTTTT T T T T T T T T T T T T T T T T T T T I T T T TTTrTITT TTTTTTT T T T T T T T T T T T T T T I T I I T I rrrTT
cocoocgcocgcogcoooogog9osg cooocgcoogoogoo0gggoag
O O 0O 0O 0O 0O 90 O 0O O O O O O O O 9O 9 O O © © © © © © © © © © © © 9 9
©O O 0O O 0O 0O 90 O 0 O O O O O O O 9o O ©O O O ©O © © O O © © © O © © © O
2S88BR828BRI2BI281 288R8828BRILIBrRE
————— N N N N AN™mm M - - - - - N N N N N ™
Number of arrivals Number of arrivals

Fig. 10. v ~ Weibull(2) Fig.11. v ~ Pareto(4)

Figures 10 and 11 present estimates of Q;,ss and P for light-tailed Weibull
volume and Pareto volume, respectively (parameters are taken as in Cases 1, 3).
As we see, inequality (8) indeed holds and is agreed with (9).

5 Conclusions

We consider a single-server system in which each customer has both random
service time and random volume. It is assumed that the summary accumu-
lated volume is upper bounded by a finite constant (capacity) M. We consider
a renewal-based approximation of the lost volumes and compare it with the
numerical result for highly and low loaded system for different M and different
volume distributions. In particular, heavy-tailed Pareto volumes and light-tailed
Weibull volumes are considered. We also estimate correlation function between
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two adjacent lost volumes. For a low loaded system and large M, when a loss is
a rare event, we apply splitting technique to accelerate estimation by simulation.
The results detect the range of the parameters (in particular, the value M and
traffic intensity p) where renewal-based approximation can be effectively used in
QoS analysis of the system with random volume customers.

Acknowledgements. Research is supported by Russian Foundation for Basic
Research, projects 15-07-02341, 15-07-02354, 15-07-02360.
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Abstract. One of the modifications of the mathematical models used to
describe processes in multi-service communication networks and telecom-
munication systems is the queueing system with heterogeneous servers.
As a rule, for simulation of such processes the system with non-Poisson
input flows is used. We consider the queuing system with infinite number
of servers of n different types and exponential service time. Incoming flow
is a Semi Markovian Process (SM-flow). Investigation of n-dimensional
stochastic process characterizing the number of occupied servers of dif-
ferent types is performed using the initial moments method.

Keywords: Queueing system - Incoming sm-flow - Heterogeneous
servers + Method of initial moments

1 Introduction

Systems with heterogeneous servers [4,5,10,11,13,14,18] and non-Poisson
incoming flows [12,20,21] are suitable to simulate the functioning of real infor-
mation systems. Such systems include queueing systems with non-ordinary Pois-
son incoming flows and exponential service time [2,8,9]; systems with parallel
functioning blocks [3,6,7,15,19]. These papers deal with different configurations
of parallel-service systems: single-line queueing systems with finite and infinite
buffer, priority maintenance, impatient applications and a common ordinary
incoming flow; queueing systems with two or more service blocs with a finite
number of servers and a common final queue. Mathematical models of inhomoge-
neous infinite-linear systems with different types of servicing devices allow taking
into account the heterogeneity of incoming applications requiring different main-
tenance time, which more adequately describes real information systems [16,17].
In this paper we study a heterogeneous queueing system with SM-incoming flow
and exponential service time.

© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 122-132, 2017.
DOI: 10.1007/978-3-319-68069-9_10
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2 Statement of the Problem

Consider the queuing system with infinite number of servers of n different
types and exponential service time. Incoming flow is a Semi Markovian Process
(SM-flow) which given by matrix A(z) consisting of elements A, x,(z)(k1 =
0,...,N,kp =0,...,N).

Ak () = Fkg, w5 k1) = P{E(k+ 1) = ko, 7(k + 1) <w[¢(k) =k}, (1)

where £(k) — the Markov chain with discrete time and the transition probability
matrix P, 7(k) — non-Markov process for which

F(a) = P{r(k) <z} = ZAi(m)T(i)’ (2)

r(i) — stationary probability distribution of the Markov chain (k).

At the time of occurrence of the event in this stream only one customer flows
in the system. The type of incoming customer is defined as i-type with probability
p; (i =1,...,n). It goes to the appropriate device type, where its’ service is per-
formed during a random time having an exponential distribution function with
parameter p; (i = 1,...,n) corresponding to the type of the customer.

Set the problem of exploring of n-dimensional stochastic process
{li(t),...,l,(t)} describing the number of occupied units of i-type at
time ¢. Incoming flow is not Poisson, hence the n-dimensional process
{li(t),...,1n(t)} is non-Markov. Consider a (n + 2)-dimensional Markov process
{s(t), 2(t),11(t),...,ln(t)}, here z(t) — the time from t until the occurrence of
the following event of SM-flow, s(t) — the process is defined as follows

k
s(t) =&k + 1) if by <t <tgpr, t =D _7(0).

i=1

For the joint probability distribution
P(s,z, b, b, 1) = P{s(t) = s, 2(t) < z,L(t) =l1,...,1n(t) = 1}

we can write
P(s,z — At ly, ..., 1y, t + At)

= [P(s,2,01,. ., Ins t) = P(s, Aty 1y, L, O] T (1 = i)
=1
K
+Y P, Aty =1, D, ) Ay (2)pr + (3)
v=1
K
+ P, Al =10 Ays(2)pn+ P(s, 2, + 1,y ) (i + 1) At 4.

v=1

+P(s,z, 11,y by + 1,0 (L + Dpn At + 0(AL), s=1,..., K.
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System of Kolmogorov differential equations for the probability distribution
P{s,z,1ly,...,ln,t} is the following:

OP(s,z,l1,...,ln,t)  OP(s,2,l1,...,ln,t)  OP(s,0,l1,...,ly,t)

ot o 0z 0z

—le,ul 8y 2,1,y Iy t) (4)
K
8P(1/,0,l1—1,...,ln,t) 8P(1/,0,l1,...,ln—1,t)

Aps+ ...+ pn Ays

er;1 PR +...4p ; o
+ui(ly +D)P(s, 2,0+ 1,0 t) + oo+ pn(ln + DP (s, 2,0, .., L+ 1, 8),

s=1,...,K.

We will find the solution of the sybtem (4) during stationary operation of the
system. Denote 1khrn P(s,z, 01,0 lp,t) = (s, 2,l1,...,l,), s=1,..., K.

Then the equation (4) takes the form

OI(s,z,l1,...,1,) OII (50[1,...,
9% — le,uz S, 2,01,y lp)

K

OIl(v,0,1; — 1,...,1y)
+plz Ajs+ ...

— 0z

K 5)
OIT(1,0,11, ... 1y — 1) (
+pnz 82’ AVS

v=1

+ur(lh + D) (s, 2,00+ 1,...,0) + ...
+ ol + DI (s, 2,01, ..., 0, +1) =0
s=1,...,. K.

Introduce partial characteristic functions [1]:
oo (o)
H(s,z,U1,...,Up) = Z Z eIl et [T (s, 2,00, ),
L=0  1,=0

where s = 1,..., K, j = +/—1 — imaginary unit.
In view of

0H .
(S7Z)u17 ) U —] Z Z l; eul o, eju"l"H(S,Z,ll,...,ln),

ou;
v =1 =1

izl,...,n,s:l,...,K,

and using (4) write the system of differential equations for partial characteristic
functions H(s,z,u1,...,up)



Research of Heterogeneous Queueing System SM|M™ oo 125

OH (s, z,u1,...,up) OH(s,0,u1,...,up)

- 6
0z 0z (6)
n 9H(s,z,ul,. .., o K oHw,0,u,. ..,
I IEEDESS D ML) D SV O
i=1 Oui i=1 v=1 9z
s=1,...,K,

which we rewrite in the form of the vector-matrix equation

OH(z,u1,.. . Up) o o OH(z,ug, .o up)
b bl ; 1 _ Ju; bl ) b
o +J ;u,( e ) o,
OH(0 = ®
y UL, .-, Un jug -
+ 5 <;pie A(z) — I> =0,
H(z,u1,...,un) = [H(l,z,u1,...,un), H(2,z,u1, ..., un),..., H{K, u1,...,
Uy, )] — row vector consisting of characteristic functions of the random process

{s(t), z, (t)l1(t),...,l.(t)} for each state of the process s(t),

OH(0,uy,...,u,)  OH(z,u1,...,up)

0z 0z

(8)

z=0
The solution H(z, u1,...,u,) of system (7) satisfies condition
H(z,0,...,0) =r(z)

and determines the characteristic function of the number of occupied servers in
the stationary mode for the system SM|M™ |oo by the equality

Me =0 = H(co,ug, ..., u,)e. 9)

r(z) — stationary probability distribution of a two-dimensional stochastic
process {s(t), z(t)}, which has the form

z

r(z) = /flr/(P — A(x))dz, (10)

0

where r — stationary probability distribution of the Markov chain £(k),
k=1,... K, k1=, A= [ (P—A(z))da.
0

The equation (7) will be considered as the basis for further research.
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3 The Main Probabilistic Characteristics for System
SM|M™ |co

Theorem 1. For the initial moments of number of employed devices of each
type for the steady-state functioning of the heterogeneous system SM|M ™ |oo
the following statements are true:

Statement 1

The average wvalue of number employed devices of the i-th type
fmi(i=1,...,n) in the heterogeneous system SM|M ™ |co has the form:

Jrg =T, (1)
where A =1'(0)e, e = [1,...,1]" — a unit column vector.
Statement 2

Initial moments of the second order of number of employed devices of the i-th
type sm; (i = 1,...,n) in the heterogeneous system SM|M ™ |oo has the form:

st = 22 [l O)A ) (T = A () e
where A*(a) = Tefasz(Z)-

Statement 03

Correlation moment of number of employed devices of the i-th and g-th types
emig (i=1,...,n,9g=1,...,n,17# g) in the heterogeneous system SM|M™|co
has the form:

emig = LI (0) [ A% (i) (T A% (1) " + A" (1) (T A" (1) e

T
(12)

Proof. Denote:

o fm;(z) = [fmi(1,2), fmi(2,2),..., fm;(K,2z)] — row-vector of conditional
mathematical expectations of number employed devices of i-th type (i =
1,...,n);

e sm;(z) = [smy(1,2),sm;(2,2),...,sm;(K, z)] — row-vector of conditional

moments of the second order of number employed devices of i-th type (i =
1,...,n);

o cm;y(z) = [emig(l,2),emig(2,2), ..., emig(K, 2)] — row-vector of correlation
moments of number employed devices of i-th and g-th types (i = 1,...,n, g =
1,...,n,i# g).

We use the following properties of the characteristic function:

OH(z,u, ..., uy,)

u1=0,...,un=0
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OPH(z,u1, ..., Uy)

2
= j%smy(z2), (13)
au? u1=0,...,uy=0
O?H(z,uq,...,u .
SUERL ~ JPemy(2),
UiUg u1=0,...,un=0

i=1,....,n,9g=1,....,n,1 # g.

Initial moments of the first order.
The average number of occupied devices of each type in the system is deter-
mined as follows:

fm; = fm;(c0)e, i=1,...,n,e=[1,...,1". (14)
Differentiate equation (7) with respect to u;, i =1,...,n.

OPH(z,u1, ..., Up)
Oou;0z

OH(z,u1, ..., up)
aui

+ 2 pie I

u1=0,...,un=0 w1=0,...,u,=0

- cu OPH(z u1, . up)
. 3 1 — —ju, ) 9 s Un
+3)_ m(l—em) g

v=1

PH(0,u, - un) (o= s
+ R ;pie A2)-1

OH(0,ug, ..., uy
I T

(15)

u1=0,...,un=0

u1=0,...,u,=0

piethi A(z) =0,i=1,...,n,

u1=0,...,un=0

taking into account (13) we obtain
fm!(2) — pifm;(2) + fm}(0) (A(2) = I) + p;r’ (0)A(2) =0,i=1,...,n. (16)

This equation will be solved by the conversation of Laplace-Stieltjes, denoting

o0 o0

P;(a) = /e*‘)‘zdfmi(z), i=1,...,n, A%(a) = /e*“ZdA(z). (17)

0 0

Completing the conversation of Laplace-Stieltjes in (16), we obtain the
equality

(i — a)®;(a) = fm(0) (A*(a) — 1) + ' (0)p;A*(a), i =1,...,n, (18)
putting in which a = j;, i = 1,...,n, we find the form of the vector fm}(0)
fn (0) = pir’ (0)A” (1) (T — A" (1)) (19)
Substituting the expression (19) in the (18) we obtain

@ (0) = — L — {fm](0) (A*(0) =)+ pr' (0)A% (@)}, i =1,..n. (20)




128 E. Pankratova et al.
Since fm;(c0) = ®;(0) and A*(c0) = P then putting & = 0 in (20) we obtain

1
®,(0) = fm;(c0) = " {fm}(0) (P —I) + pir'(O)P},i=1,...,n. (21)

Thus we have the following expression for the average value of number
employed devices of the i-th type fm;, (i=1,...,n):

fm; = fm;(co0)e = &r’(O)e: Diyi=1,....ne= [,..., 1",
Hoi Hi

Initial moments of the second order.
To find the second-order moment of the number of employed devices, we
differentiate with respect to u;, i = 1,...,n the equality (15).

PH(z,uy, ..., upy)
ou2dz

OH(z,u1,...,up)
(“)ui

—Jui

+ juie

u1=0,...,un,=0 u1=0,...,u,=0

OPH(z,u1,. .., up)
ou?

(2

+252 eI

u1=0,...,un,=0

T~ i JOPH(zug, . uy)
+]Z,uy(lfe ™) 8u218u

v=1

PH(0,uy, ..., up) [ — s
+ a0 ;ple A(z) -1

(22)

u1=0,...,un=0

u1=0,...,un,=0

OPH(0,uy, ..., uy)
2 . 9 9 y Yn ’ JUiA
+2j 00,07 pie’"" A(z) o
8H 0 . n ju; 3
e uéz ) e A (2) =0 i=1L...,m,
u1=0,...,u,=0

taking into account (13), we obtain the differential equation to find sm;(z),
t=1,...,n
sm)(z) + pifm;(2) — 2u;sm;(2) + smj(0) (A(z) — I)

+p; {fm}(0) +r'(0)} A(z) =0,i=1,...,n. (23)

We will solve equation (23) using the conversation of Laplace-Stiltjes. Denote

oo

¥, (a) = /e_azdsmi(z), i=1,...,n, (24)
0

then the equation (23) takes the form

(O41; — ) ,(0) = iy () + s (0)(A" () — T)
+p; {2fm;(0) +r'(0)} A*(a), i =1,...,n,
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A*(«) is determined by the expression (17).
Let @ = 2u; in (25), we obtain the system of differential equations for
sm;(0),i=1,...,n

sm;(0) = [1;®i(241:)
+ p; {2fm](0) + ' (0)} A" (2u:)] (T— A*(23)) i =1,...,n.

It follows from (25) that

(26)

Wi(0) = 5 i)+ smi(0)(A"(@) =) o

+p; {2fm}(0) + r'(0)} A* ()], i=1,...,n,

and taking into account that

sm;(o0) = ¥;(0) = 2; [ifm; (c0) (28)

+sm}(0) (P —I) + p; {2fm}(0) + ' (0)} P] i =1,...,n.

we can write

1

sm; = sm;(co)e = 2—,uifmi(oo)e + D {2fm}(0) +r'(0)} Pe
i i

2
:&(fm;(O)e—i—)\),i:l,...,n.

Hi

(29)

Thus, taking into account (19) we have expression for initial moment of the
second order

smy; = % [\ + pir’ (0)A* (1) (T — A* (i) Ye] i =1,...,m.

Correlation moment.
Differentiate the equality (15) respect to ug, g =1,...,n,9 # i.

PH(z,u1, .., Up) OPH(z,u1, ..., up)

+ jpie "
Ou;0u g0z w1 =0, 11 =0 du;Ouyg w1 =0,...,up =0
9 Ju O*H(z,u1,...,up)
+ 97 1ge g E)
U;Og u1=0,...,un,=0

= O OPH(z,un, . Uy)
. . 1 — g Juw B} ) s Un
+J;N ( € ) Ou;0u, Oug

3 n
+a HO.u, .. un) (Zpiej“iA(z) I)
=1

(30)

w1=0,...,u,=0

Ou;Oug0z

u1=0,...,u, =0

OPH(0,u1, ..., uy,)

; Jug
ou;0z ipg¢" A(2)

u1=0,...,un=0



130 E. Pankratova et al.

. ) ’ yn i Ui A = 0,
LR P e O HE

i=1,...,n,g=1,...,n,9 #1,
taking into account (13):
emyy (2) — (pi + pg)emig(2) + emiy (0) (A(z) — 1)
—I—{pgfm,/i(()) —l—pifm;(O)}A(z) =0,i=1,...,n,g=1,...,n,9 #i.

We will solve equation (31) using the conversation of Laplace-Stiltjes. Denote

(31)

Oi(a) = /e‘o‘zdcmig(z)7 i1=1,....,n,g=1,...,n,9 #1, (32)
0
then the equation (31) takes the form
(ki + pg — @)Oig(ar) = cmiy (0) (A" (o) — 1)
+ {pgfmg(()) —|—pifm;(0)} A*(a) =0, (33)
i=1,....,n,9g=1,...,n,9 #1,

A*(a) is determined by the expression (17).
Put o = p; + pg in (33), we obtain the system of differential equations for

cm), (0),i=1,....,n,g=1,...,n,g#1i

e}, (0) = {pgfm](0) + pifm! (0)} A (i + pg) (T — A" (i + p1g)) "' =0,
i=1,...,n,g=1,....,n,9 £ i. (34)

Since cm;4(00) = @;4(0), it follows from (33) that the expression for the
correlation moment cm;q is as follows

[cm,(0) (P — 1)

cmyg = cmyg(00)e ig

- Hi T Hg
+ {pyfm}(0) + p;fm(0)} P] e )
= mpiTngr’(O) [A*(ui) (T— A" (1) "+ A" (pg) (T— A*(ug))*l} e,
i=1,...,n,9g=1,...,n,9 #i. O

We can write the expression for finding the variance of the number of occupied
servers of each types in the heterogeneous system SM|M()|oo

Var; = sm; — [fm)*,i=1,...,n,

”? (36)

Var; = P+ P (0) A" () (T— A% () Pesi = 1,...m.

i i
Now, using the obtained expressions for the main probabilistic characteristics,
we can write the equality for the correlation coefficient r;, of the number of
different types devices employed in system SM|M()|co
cov; cmig — fmifm
Tig = 9 =" fmif gi=1,....,n,9g=1,...,n,g#i. (37)

/Var;Var /Var;Var
9 9
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4 Conclusion

In this paper we construct and investigate a mathematical model as a queueing
system with the Semi Markovian incoming flow and heterogeneous service. The
main probabilistic characteristics are found for the system under investigation,
namely, the initial moments of the first and the second order of the number of
employed devices of different type. Furthermore, we found an expression for the
correlation coefficient between the number of different types devices employed.
The resulting correlation coefficient indicates that the processes of change in
the number of employed devices of different type in the system are dependent.
Therefore, we can conclude that this infinitely linear queuing system with n
types of servers can not be considered as a set of n separate systems with only
one type of servers.

In the future it is planned to apply the asymptotic methods of investigation
for finding moments of a higher order and for studying the functioning of the
system under different special conditions. This may include the development of
methods for investigating heterogeneous systems, for example, in the asymptotic
condition of: high intensity of the incoming flow or an equivalent increase in the
service time on devices of different type or extremely rare changes in special flow
states (MMPP, MAP, SM).

There is great interest in the studying of various modifications of hetero-
geneous queueing systems: heterogeneous queueing systems with returns, with
different volumes of applications of special incoming flows, and many others.
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On Steady-State Analysis of [M|M|m|m + n]
-Type Retrial Queueing Systems
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Abstract. In this paper we introduce a bivariate Markov process Q(t) =
(Q1(¢)),Q2(t)) € {0,1,...,m +n} x Z;. The process Q(t),t > 0, can be
seen as the joint process of the number of servers and waiting positions
occupied and the number of customers in the orbit of a [M|M|m|m + n] -
type retrial queueing system. For the truncated model of Q(¢) station-
ary probabilities are written in explicit vector-matrix form. The result
obtained is used for stationary distribution calculation in the model of
Q(t) with the infinite orbit and for construction of explicit formulas for
stationary probabilities of a [M|M|1|1 + 1] -model.

Keywords: Retrial queueing system - Truncated model - Explicit for-
mulas - Stationary distribution

1 Introduction

One of the queueing theory important topics is the theory of retrial queues (or
queues with returning customers, repeated attempts, etc.). Retrial queues arise
naturally in our daily activities, in phone systems and computer networks, in the
field of data transmission systems. They are widely used in designing of computer
networks, in studying of stochastic information processing networks, modern
mobile communication systems, etc. (see, for example, [5,6]). This explains the
fact that over the past decades the theory of retrial queues has been developed
widely. Review of retrial queue literature could be found in [1,4,5].

In all the retrial queueing models considered so far, the underlying assump-
tion has been that the model have some servers and a customer who finds all the
servers busy upon arrival joins a group of unsatisfied customers called “orbit”
and repeats his request after some random time. Such customers become sources
of retrial calls and generate a secondary input flow of customers.

Unfortunately, explicit formulas of stationary probabilities for the most types
of retrial systems were obtained only in simplest cases ([2,3,7], etc.). Note
also, that some sort of a recurrent algorithm for [M|M|m|m + n] queues with
constant retrial rate is presented in [8]. In [9] for multi-server retrial queue
with the rate of a repeated flow independent of the number of retrial sources,

© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 133-146, 2017.
DOI: 10.1007/978-3-319-68069-9_11
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an explicit vector-matrix representation of the stationary distribution was
obtained. This representation allows to write down stationary probabilities via
the model parameters in closed form and to derive explicit formulas for main
performance measures.

In many practical situations, queueing system have in addition some places for
waiting (queue). So, if a customer arrives and all the servers are busy, he/she can
occupy a waiting place. But if all the waiting places are occupied as well, he/she
leaves the service area, joins the orbit and retries to get service after some time.

For example, let us imagine a person arriving into a shopping center who
would like to take some money out from a cash machine. He/she can decide to
do it immediately if there are no people or few people near the cash machine, or
decide to do some shopping first and repeat their attempt to get money later.
This is the concept of multiserver retrial queue under our consideration. Such
systems are considered in works [8,10].

So, in this paper we consider a multiserver retrial queueing system with
the finite number of servers, a finite length queue and an infinite orbit. Such a
system can be denoted by a symbol [M|M|m|m + n] (see, for example, [8,10]),
where m is the number of servers, d is the number of waiting places in the
queue. We also use a symbol [M|M|m|m + n](N) for defining the correspondent
truncated model with the size N orbit. It is assumed that the primary input
flow of customers from outside has a rate A; dependent on the number of retrial
sources j, j = 0,1,..., and that service times are exponentially distributed with
a constant rate p. The investigative techniques is similar to approach in [9] and
it uses an approximation of the initial model with infinite orbit by means of the
truncated one and the direct passage to the limit.

For this aim, a class of bivariate migration processes is introduced to describe
the service process of retrial systems with queue. Its first component is associ-
ated with the number of customers in the working (service) area, that means
the customers being under service and in the queue. The second component is
the number of customers in the orbit. Type of the system is chosen by means of
controlled migration parameters. This paper is organized as follows. In Sect. 2,
we give a brief description of the model as a bivariate continuous-time Markov
chain. Some basic assumptions and the model are described. Conditions of exis-
tence of steady-state regime for service process in the basic model are given. In
Sect. 3, we analyze the steady-state distribution of a truncated model. Station-
ary probabilities for the system with finite orbit is obtained as vector-matrix
formulas. In Sect. 4, we deal with the consequences of result obtained for the
case of one server and one place in the queue. Here we present some numerical
results as well. Finally, the conclusions and some suggestions for future research
are given in Sect. 5.

2 Description of Service Process

Let us define the main model under consideration as a bivariate continuous-time
Markov chain Q(t) = (Q1(t), Q2(t))", with the set of states S = {0,1,...,m +
n}x{0,1,...}. This chain Q(¢) is defined with its infinitesimal rates gag, @, 5 € S,
«a # 3, determined by the system of the following relations:
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—ifa=(i,j)and i <m+n:

>‘j7 if ﬁ:(z—’_laj)a
Gop =  min{s,m}-p, if f=(i—1,7),
Jv, if B=(0G+1,5-1);

—ifa=(m+n,j):

98 = \mp, if B=(m+n-—1,5).

By agreement, the rates of those transitions that go beyond the region S are
equal zero.

We will simulate the service process of customers in the system with a queue
and an infinite number of retrial sources by the migration process Q(t). Thus
we construct a typical model of [M|M|m|m + n] multiserver retrial system with
queue and an infinite orbit, where m is the number of servers, n is the queue
size. The rate \; of the input flow depends on the number of retrial sources j.
Every retrial source generates Poisson flow with the rate v. Service times at the
each of m servers are independent exponentially distributed random values with
the rate p. So, in terms of the system, Q1 (¢),t > 0, is the number of customers in
working area, i.e. the number of occupied servers and occupied waiting places in
the queue at the instant ¢, when Qs(t),¢ > 0, is the number of retrial sources at
the instant ¢. In the paper we propose an effective approach to finding stationary
distribution for the bivariate service process Q(t).

At first, let us find out the conditions of steady-state regime existence for

Q).

Lemma 1. If A = Ej_m/\j < o0 and A\/mp < 1, then the Markov chain
Q(t) is ergodic and its limit distribution coincides with the unique stationary
distribution.

Proof. As Lyapunov test functions, we consider functions of the following form:
¢(i,j) = ai+j, (i,j) € S,
where the parameter a will be determined later.
For these test functions, the mean transfer
vii = Y. gy (6@ 5) — 6(i 1))
(i".4") # (i.9)
will be

- Na—min{i,m}pu+jv(a—1),0<i<m+n—1,
Yij = Aj —mpua, t=m+n.

When A/mpu < 1, there exists such a value ¢ > 0 for any a € (A\/myu, 1), that
y;j < —¢ for any (i,7) € S except of a finite number of states (i,7) € S. Thus,
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for the test functions ¢(i,5), (4,5) € S, the conditions of Tweedy’s theorem are
satisfied ([7], p.97).

The Lemma is proved.

To construct computational algorithms and to obtain explicit formulas for
the system [M|M|m|m + n], we consider the corresponding truncated model
[M|M|m|m + TL](N)7 wherein the number of retrial sources N is finite. In the
last model provided that all places in the working area and in the orbit are
occupied, an arrived customer is lost and does not receive service in the system.
If we find the stationary distribution of such a system and proceed to the limit
under the conditions of Lemma 1 as N — oo, then the stationary distribution
for the system [M|M|m|m + n] can be obtained as well (see [7], Sect. 2.4).

3 Stationary Probabilities for the System with Finite
Orbit

Denote a service process for the multiserver system with a queue and a finite
!
orbit [M|Mmm +n]™ by Q¥ (t) = (@ (1), &V () -

!
The process QW) (t) = ( EN) (1), gN) (t)) takes values in a finite set of
states SV = {0,1,....,m +n} x {0,1,..., N}, and there exists a steady-state

regime for it. We denote its stationary distribution by WEJN), (i,4) € S.

Since the rate of the input flow depends in arbitrary way on the number of
customers in the orbit, then using generating function method is impossible. In
our case we apply the theorem on the equality of probability flows in steady-state
regime ([11], Sect. 2).

To formulate the main result, let us introduce the following notations. Let
A(j), j=0,1,..., N — 1 be a tridiagonal matrix of the form:

a”aY 0 0 .0 0 0
al™) ago) aéﬂ 0 .. 0 0 0
-) (o
Ay =| 0 R S SR 0 0
- 0 +
0O 0 0 0 “.a;ln_Qa%%n_Qa%%n_2
0 0 0 0 .. 0 a$) a9 |

where
0) _ A +ip+gv, 1=0,1,...,m,

i {)\j+mu+ju,i:m+1,m+27...7m+n—1,

al =—);, i=0,1,...m+n-2

7

o) = —ip, 1 =0,1,....,m,
T -mp, i =m+1,m+2,...,m+n—1,
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010...0 00..01
001...0 00...01

B= |, o= ,
000...1 00..01
000..0 00..01

are matrices of size (m +n) x (m +n).
By D(N) we will denote the following tridiagonal matrix of size (m +n —
)x(m+n-1):

P 0 0 0 0 .. 0
—(Nv+An) 2p 0 0 0o .. 0
—Nv —(Nv+An) ... 0 0 0 .. 0
( ) —Nv —Nv . —(Nv4AnN) muy 0 .. 0
—Nv —Nv —Nv —(Nv+An) mp .. 0
—Nv —Nv —Nv —Nv —Nv ... =(Nv+An) mpu

We need also the following vectors:

N, . N) (N N
' )(j)z (Wéj),ng),...,wfnlnflj»

TV A
M) =2 = (6566 )

Denote an (m+mn—1) -dimensional vector composed of units by 1(m+mn—1),
an (m 4+ n — 1) -dimensional vector with i-th entry equal one and other entries
equal zero by e;(m~+n—1). By 1, e; we will denote similar vectors with dimension
m+n.

Theorem 1. If\; >0, 7 =0,1,..., N, then stationary probabilities WEJN), (i,7) €
SWN) can be written as follows:
TIN ToN s Tt n — 1IN

( (N) _(N) (N) )’

= ﬂé%)D_l(N) (NVT(m +n -1+ Ivei(m +n — 1)), (1)

(N)
Ty = GO N) (VT4 e ).

N —
) (NI NN ]G,(N)

! j| (NYT(N = 1) x ... x T(j), j =0,1,.., N — 1, (2)
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T = Wc’(m(zv):r(zv —1) X . x T3 + DI, (3)
. j=0,1,...,N—1,
where
N-1 N_;
ain =My [T+ Y Y TN = 1) X X TG+ 1)
j=0

1

« {T(j) + AJ} T4 miu(NVﬂ )\Nem+n)> }_1 )

1
GM(N) = <D—1<N> (NvI(m+n—1)+ Ayer(m+n— 1))) -0

T(j) = [B + T:\“‘C} A7Y(), j=0,1,.., N — 1.
j

Proof. For convenience let us denote by TI'Z(J]»V) = Tij, GE;V) = CNQ’U, (i,7) € SN,

For every k = 0,1,...,m +n — 1 we shall divide S®) into two subsets Ej =

{(0,N),(1,N),...,(k, N)} and E, = SN\ E}. By virtue of the equality of the

probability flows through the closed contour in the steady-state regime ([11],

Sect. 2), we have:

Yo Nviin + (Nv+An)en = (k + gt w,
E=01,..m—1,

SF oy NvRin + (Nv + AN)Frn = mpig 41w,
k=m,...,m+n—1.

(6)

For éij =7 /7o, (1,5) € SOV the first (m+n — 1) equations from system
(6) have the following form:

uGiN = Nv+ AN,
—(Nv 4+ AN)G1in +2uGan = Nv,
—NvGiny — (Nv+ AN)Gan + 3uGsn = Nv,

—NvGiNy — ... — NvGpy—on — (Nv+ AN )G — 1 N + muGpn = Nu,
—NvGiN — ... = NvGp 1N — (N + AN)GmN +mpGr 41 N = N,
—NvGiN — ... —NVGry4n—3N — (NV+AN)Gmgn—2N +mpGo 4 n—1n8 = Nv.

(7)

With respect to Gin, Gan, -, Gin +n —1 N, the solution of (7) is:

élN
= D7HN) (NvI(m+n —1) + Ayer(m +n—1)),

Gm+n71N
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which yields (5). From (6) for k = m + n — 1 we obtain:
~ 1 ~ _
Gm+nN:miluG/(N)(NV]-'f')\Neern)' (8)

Now we have to obtain C~¥m+nj under assumption, that j = 0,1,...,. N — 1.
Divide S®) into two subsets SJ(-N) = {(,8) e S™ :3<j} and §§'N) =
SN\ SJ(-N). Using again the equality of the probabilities flows through the
closed contour, we have:

NiTmani =+ DvAoj41+ -+ (G + DvTmgn—1j+1,
or B B B

AiGmanj =0 + DvGojp1+ ..+ + DvGmin—1j41,
whence it follows that

~ Jj+ v
Gmtnj= %
J

GG+ DI, j=0,1,...N — 1. (9)

Consider now (m+n)x N closed contours, which contain one point (7, j) from
the domain S™) = {0,1,...,m4+n —1} x {0,1,..., N — 1}. The corresponding
equations for G;j, (4,7) € S(N) have the form:

(/\j —|—j1/)éoj = ,uélj, 1= 0, (10)
()\j —I-Z/J,-I-jy)é” = (j+1)V§i71j+1 +)\jéi,1j (’L 1)MG1+1]7
a27 - 1

(11)

()\j +m/1+]V)éw :(] + 1)V@i,1j+1+)\jéi,1j+mu(~¥i+1j7
t=mm+1,...m+n—2.

When i = m +n — 1, taking into account (9), we obtain:
(Aj +m,u+jl/)ém+n—1j
G+ Dvm,

J

= (j+ DVGman—2j+1 + NjGmsn—2; + B&G+n1 (12)

System (10) — (12) can be represented in a vector-matrix form:
G'li) = G+ GG+ 1) | B

+;4NW>
:(j+1) G

vG@ G+ 1DT@G), j=0,1,..,N—1. (13)

The solution of recurrent relation (13) is the sequence of vectors

. NIyN—J ~, . )
G'(j) = %'G (NT(N-1)x..xT(j), j=0,1,...., N — 1. (14)
4!
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Substituting the right-hand side of (14) in (9), we get

~ NN -3 - —
Guminj = TG’(N)T(N ~ D)% x TG +1DI, j=0,1,..,N — 1. (15)
Aj

The normalization condition for stationary probabilities 7;;, (¢, j) € S, which
looks like 274" ZJ _oTij = 1, can be rewritten as follows:

m+n-—1 m+n—1N-—1
%ON Z GN+Gm+7LN+ Z GTYI+’I’L]+ Z Z sz =1
7=0 =0 7=0

That allows us to find 7o . Thus we obtain formula (4). Relations (1) — (3)
are a direct consequence of (8), (14), (15).

Theorem is proved.

Obviously, these formulas are an effective recurrent procedure for computing
the stationary distribution.

4 Case of One Server and One Waiting Place

Let us apply the obtained result for systems [M|M|1|1+ 1](N) and
[M|M]1]1 + 1] . In this case, we can carry out more detailed analysis and derive
explicit formulas.

Denote by

j—1
]H (14 pe)pp+ Apg1 + (B + 1)
Pr[(Ak + kv)? + kvp
1, i=j,

, ;1< 7,
Ai(j) = P

k=1

where pr = A/ is system load with primary customers when the orbit Q2 (t) = k.

Corollary 1. If \; > 0, j = 0,1,..., N, then for any N stationary probabilities
of the [M|M]1|1 4+ 1}(N)—retm'al system have the following form:

) _ o NWYTIAN) o oo NV I + )44 (N)
ON

’n—Oj ,]' ’ 1j = Ton ]'H ’ (16)
NwN=i A D)A; 1(N
) = a0 N (0 + ]+1+(J+ )W) Aj 1 ( )7 J=0.1,. N—1, (I7)

(N) (N)>\N+Nl/ (N) (N)()\NJrNV)erNV,u
™IN = Ton » Ton = ToN 2 )
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N-1 N—j .

N 1 v NI (4 N+ jr) A (N

W(()N)—{ +;()\N+NV)+N!Z ( J'J!u )A;(N)
i=0

—1
N —j . y ;
(L+X+1+ G + Dr)Aj41(N) n iz (A +NV)2+NVM)} .
1

N-1 v
+N! .
2 I

Jj=0

Proof. For the [M|M|1]1 + 1](N)— retrial system we have

01 01
o= (00)- o= (01).

N )\j—|—jy —)\j
AU)‘( —u Aj+u+ju>'

Since
Aj+jv —A; ) . . .
0t gu| = QI et gv) = A= (g 4 g0)* + g,
then ) _
A_l(j): : ' ()\j+ﬂ+]l/ )‘j‘ )
(Nj 4+ Jv)? + pjv I Aj+ v

and matrix 7'(j) has the form:

T(j) = {BJr;ij}A () = [B+p;tC] A7)
1 ((1+Pj)/~t (1+ )\ +jV)>
pil(Aj + jv)? + pjv] I Aj+gv ’

j=0,1,..,N —1.

Let
N (At (L4+p)(N+iv) )
D(j) = ( i A+ g . j=0,1,..
It is easy to see that
D(j+1)D(j)
_ _ , : (L+pp (L+pi) (N +jv)
— (@t + G+ (1) P,

Which implies

D(m)... 1)D(j)
(1+PM)N (1+Pm)(>‘j+jV)>

(
1;[ 1+Pku+)\k+1+(k+1))< L X+ jv
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for m > j, and therefore

T(N-1).. TG+ 1DT(H) =

N-1

_ 1 H (A4 p)pp+ e +1+ (+ Dy
(14 pn-1)p+ AN + Nv pr[(Ae 4+ k)2 + kuv]

k=3

" ((1 +onv-1)p (14 pn-1)(Aj +JV)>

n A]‘ + jv
_ A;j(N) ((1+PN—1)H (L4 pn-1)(} +jV)) (18)
(14 pn-1)+ AN+ Nv % Aj+jv '

From the first two equations of system (5) we have GV)'(N) =
(G(()]Z\\[,)7 Gg%)) =(1,1/p- (An + Nv)). It is not difficult to verify that

GO () ((1 +p/zlvf Dp (1+ pNA;jr)gij +jV)>

1 .
= (1 + py-1)p+ An + Nv)(1, E(Aj +jv)).
And thus

GO (NYT(N —1)..T(j + V)T (j) = A;(N)(1, iw ). (19)

NWY =7 (ny 1
™ - %G(m (N)T(N —1)..7(j + 1)1
N

NWwN—J

By Aj+1(N)(1, i()‘j-&-l + (G + D). (20)

Now from (18) we obtain:

N—-1 N—j

7N = {G(N>’(N) <1+ my Fi

j=0

T(N—-1) x..x

x TG+ DTG+ /\%I] + miM(NuTJr )\Nem+n)> }7

N1 N=3(1 4 L(\; + juv))A; (N
i ow N N S ( ”(,j AN
p = !

NN =3(1 4+ 201+ G+ D) A +1(N -
S (1+ 2 ( J+1j'>\(.7 WA +1( )+i(i(/\N+NV)2+NV> .
I

Jj=0

Relations (16), (17) can be deduced from (1)—(3) and (18)—(20).
The corollary is proved.
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We now consider the system [ |[M|1]1 4 1]. Lemma 1 yields that this system
has a steady-state regime provided that lim;_. [A;/p] < 1. This condition is
assumed to be satisfied.

Denote
R; = lim 71'( )N'VNA( N).

N—>oo
It is easy to show that

J
Y +’LVA(_] u—f—)\ +ZV

-1
Z (4 Xig1 + G+ Dv)Asga( Z,LL+/\1+1+ G+ 1)v . (21)
= VAN ! (i 4 )i pa!

Indeed, using the representation for Wé%) from Corollary 1, we obtain the
follows:

lim Tr(()%)N!VNAj(N)
N—oo

N-—-1
) (1 + i + i) Ai(N)
{J\IIE»noo ; viuilAj(N)
N (it g+ G4 DA (V)
+ lim SRR itl } . (22)

N —oo i=o VZ)\Z/,I/L'A](N)

It is easy to see that when 7,5 < N, then
A(N) Ai(j)a if 4 < J
B = LA =1, ifi =,
1/ e . .
A (), ifi>j

Accordingly, we can write:

N—-1

. (w+ X +iv)A;(N)
1 4
Ns Z:: VipilA;(N)
-y (.UJF)\ijLZ‘Z'/)Az(]) + fim u{r}'\iﬂv
= vt i N—oo, £ | VialA; (i)

(p+ XN +iv)A ,u—i—)\ +zu
:Z Z :

;! 'A
vt
1) imga VB
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Similarly, it can be shown that

I = (L+ X1+ (E+1v)A 1 (N)
e il Ay (N
N—»ool_:() V)\iMZ- j( )
_ S (it A+ (4 D) A1 ()
izo Vi/\i/,&i!

ZM+>\Z+1+ i+ 1w
viNpilAj(i+1)

From these relations and (22) it follows that (21) takes place.

Corollary 2. If \; > 0, j = 0,1,.., and limj_ (\j/p) < 1 for the

[M|M|1|1 + 1]- retrial system, then for the system there exist stationary proba-
bilities:

WsziRJ. ) lezi( ! —’_-J?/)R],
vijl vipg!
- L+ +G+DR; i\ +5v)* + jrp]
! P A4+pj)p+ X1+ G+’

i=74+1
, -1
+Z(u+/\l+1+(z+1 Aipa(g ZM+AZ+1+ i+ 1)
= Vi pi! viipilA; (i + 1)

Let us consider an example of a system [M[M|1]1+ 1] . Let A= 1.1,
j=0,1,.,20, p=1,v=0,1.

The program, based on the formulas obtained, gives us the following values
of the stationary distribution shown in Table 1.

From here blocking probability is calculated:

20
5’ =3 w3 = 0.34658565.

=0
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Table 1. Stationary probabilities for the system [M|M|1]1+ 1]?% when A; = 1.1,
j=0,1,..,20, u=1,v=0,1.

j 7Téio) Wgo) 7Tgo)

0 |0.00734806 |0.00808286 |0.00355646
1 10.0177823 | 0.0213388 |0.01105

2 10.0264239 |0.034351 0.020315

3 10.0310369 | 0.0434516 | 0.0287473
4 10.031622 0.047433 0.0345834
5 10.0292629 | 0.0468206 | 0.0371954
6 |0.0252561 | 0.0429354 | 0.0368362
7 10.0206734 | 0.0372121 | 0.0342339
8 10.0162316 | 0.0308401 |0.0302457
9 10.0123223 | 0.0246446 | 0.0256405
10 |0.00909825 |0.0191063 |0.0210012
11 0.00656287 |0.0144383 |0.0167072
12 |0.00464089 | 0.010674 0.0129628
13 10.00322603 | 0.00774247 | 0.00984138
14 10.00220929 |0.00552322 |0.00733058
15 1 0.00149327 | 0.00388249 | 0.00536908
16 |0.000997633 | 0.00269361 | 0.0038738
17 10.000659625 | 0.00184695 | 0.00275753
18 |0.000432092 | 0.00125307 | 0.00193919
19 |0.000280672 | 0.000842016 | 0.00134874
20 1 0.00018093 |0.00056087 |0.00105029

5 Conclusion

In this paper a multiserver retrial queueing system of the [M|M|m + n] -type
with a queue is considered. A class of bivariate migration processes is introduced
to describe the service process of the system.

For finding the stationary distribution of the service process in the system,
a two-stage approach is offered. At the first stage, explicit formulas for the sta-
tionary distribution in the vector-matrix form are derived for a truncated system
with a finite orbit. The next step is to approximate the stationary probabilities
for a system with an infinite orbit by the probabilities obtained in the first stage.

As an example, stationary probabilities as well as blocking probability are
calculated for a retrial system of [M|M|1]1 + 1](20) -type.

Note that the input flow rate for the models considered has variable nature.
This feature allows us to use the results obtained for formulation and solution
of various problems on the system optimal control.
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Abstract. The paper presents the study of a two-stage infinite-server
queueing system with feedback. The service time at each stage is given by
an arbitrary distribution function. The method of limiting decomposition
is used for the study. As a result of the research, stationary distributions
of the number of customers at each stage of the system are found. The
obtained analytical results are compared with the asymptotic ones which
were obtained in previous papers.

Keywords: Infinite-server queueing tandem - Method of limiting
decomposition - Feedback

1 Introduction

Multi-stage queueing systems are models in which customers’ service is per-
formed sequentially stage by stage. In these systems, a customer arrives at the
first stage. After the service at this stage is complete, the customer moves to the
second stage, and so on, until it completes the service at the last stage of the sys-
tem. Then it leaves the system. T'wo-stage tandems is a subclass of multi-stage
queueing systems and they are most often considered in scientific literature on
the queueing theory. E.g., such systems were considered in the articles [1-3].

Queueing systems with feedback are mathematical models for many real sys-
tems, in which a customer needs to return to the system again to get an addi-
tional service [4,5]. In the paper [6], infinite-server systems with feedback and
various types of arrival processes were studied.

Infinite-server queueing systems are used in cases when the probability of
losing a customer can be neglected. An important property of such systems is
that customers in the system do not depend on each other, which allows to
analytically solve problems for such systems. In [7,8] it is proved that the num-
ber of customers in the M /M /oo system has the Poisson distribution. In 1958
B.A. Sevastyanov solved the Erlang problem for the systems with an arbitrary
distribution function of the service times in the system M/G/N [9]. He showed
that the distribution of the number of customers in the system converges to a
Poisson distribution if N — co. In 1969, L. Takécs [10] showed that the number

© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 147-157, 2017.
DOI: 10.1007/978-3-319-68069-9_12
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of customers in the M/G /oo system has a Poisson distribution in the steady-
state regime and it depends on the average rate of arrivals and the average
time of service. In many cases, non-Poisson arrivals can be approximated by the
Poisson process, for example, if we have a large number of independent input
flows [11].

An asymptotic approximation of the investigated processes in queueing sys-
tems with an infinite number of servers is of interest for research also. In the
papers [12,13], it was proved that if the intensity of the arrivals in the system
GI/G /o tends to infinity, then the process describing the number of customers
in the system converges to the Gaussian process. In the article [14], this theo-
rem was supplemented, and it was proved that the Gaussian approximation is
the Ornstein-Uhlenbeck diffusion process if and only if the service time is expo-
nential. Similar studies for infinite-server queueing networks were carried out in
[15,16].

For models with an infinite number of servers with arbitrary service times,
as well as multi-stage queueing systems, a few number of analytical results were
obtained. One of the methods for studying such systems is the method of limiting
decomposition, which was proposed to study the M/G /oo system in [17]. In our
paper, the method of limiting decomposition is used to analyze a tandem of
queues with an infinite number of servers and a feedback which is possible at
any stage of the tandem.

Briefly about the content of the paper. In the Sect. 2, the model under study
and the problem are formulated. The main result of the article is presented in
the Sect. 3. This is the probability distribution of the number of customers at the
stages of the system, which is obtained by the method of limiting decomposition.
In the Sect. 4, we present a numerical example and comparison of the analytical
results of this article with the asymptotic ones obtained earlier for more general
models.

2 Mathematical Model

We consider an infinite-server queuing tandem M /G /oo — G /oo with feedback
(Fig.1). The arrival process is a stationary Poisson process with the rate equals
to A. Service times at the first stage are independent and identically distributed
(i.i.d.) with an arbitrary distribution function Bj(x). After a completion of the
service at the first stage, the customer may return back to the first stage for a
new service with the probability 11 or it may move to the second stage with the
probability r15 or it may leave the system with the probability (1 — 11 — ri2).
Service times at the second stage are i.i.d. with an arbitrary distribution function
Bo(z). When the service at the second stage is completed, the customer may
return to the first stage with the probability r9; or it may get a new service at
the second stage with the probability 792 or it may leave the system with the
probability (1 — ro; — ros).

Such models may describe the set of servers where one group of servers
can handle user’s requests and perform some actions similar to these handling,
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Stage 1 Stage 2
A 1-r21=r»
—_— I-ri=ri2
) Bi(x) Ba(x)
r21 ri2
—> _
rn 22
L > I
Bi(x) Ba(x)
Bi(x) Ba(x)

Fig. 1. Queueing tandem M /G /oo — G /oo with feedback.

and another group of servers perform another type of work and users can not
directly send requests to these servers.

The problem is to determine the steady-state probability distribution of the
number of customers at the stages of the system.

3 Method of Limiting Decomposition

To study the queueing system with an infinite number of lines, an arbitrary
service time distribution function and Poisson arrivals, we use the method of
limiting decomposition [17]. It is known that the division of the Poisson point
process performed according to the binomial scheme gives independent Pois-
son processes as a result. Proceeding from this, we divide the arrival process in
the considered tandem into N independent processes according to a polynomial
scheme with identical probabilities. As the rate of the original arrivals was equal
to A, then the intensity of each generated Poisson process will be equal to A/N.
After that we construct a single-line tandem for each of these arrival processes
to serve their customers. The considered single-line two-stage queueing tandem
M/G/1 — G/1 (Fig.2) is a system with loses, that is, customers are not servic-
ing if they arrive during a period when at least one stage is busy (they are lost).
In the article [18], it was proved that the total probability characteristics of the
independent one-line systems constructed in this way coincide with the corre-
sponding characteristics of the original infinite-server system if N tends to co.
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1-ri-ri2
Stage 1 Stage 2
NN
[

) 2
Bi(x)  —— Ba(x)

[

1-r21-r2

Fig. 2. Single-line queueing tandem M/G/1 — G/1 with loses.

Therefore, we first find the stationary probability distributions of the number of
customers at the stages of the constructed single-line tandems.

Let the state of the single-line tandem be a random process k(t) with the
following values:

0, if the system is free,
k(t) = < 1, if the first stage is busy,
2, if the second stage is busy.

The process k(t) is not Markovian. Let z(t) be a length of the interval from the
time moment ¢ to the end of the current service (either at the first or second
stage). If both servers are free at the time moment ¢, then the component z(t)
is not defined.

The random process {k(t), z(t)} is Markovian. We denote the probability
distribution of the process as Py(t) = P{k(t) = k}, Pi(z,t) = P{k(t) = 1,2(t) <
z}, Po(z,t) = P{k(t) = 2,2(t) < z}.

Using the total probability formula, we can write the system of equations:

P()(t + At) = (1 — ;\]At) P()(t) + (1 — 7T — T12)P1(At,t)
+ (1 — T91 — T22)P2(At, t) + O(At)7

Pl(z,t—l- At) = Pl(Z + At,t) - Pl(At,t) + %AtBl (Z)Po(t)
+ 7’11B1(2)P1(At, t) + 7’21B1 (Z)PQ(At, t) + O(At),
PQ(Z, t+ At) = P2<Z + At, t) - PQ(At, t) + TlgBQ(Z)Pl (At, t)
+ 199 Bo(2) Pa (At t) + o At).

Hence we obtain the following system of Kolmogorov differential equations:

AP, (0, 1) AP,(0,1) A

OP(t) 5+ (1—7ry1 — NQ)T - NPO(t), (1)

ot

=1 -riu—ri)
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3P1(Z,t) o 8P1(Z,t) 8P1(0,t)

+[rBi(z) = 1] ——

ot 0z 0z
oPy(0,t) A )
+r2131(z)% + 5Bz,
6P2(Z,t) - 8P2(z,t) 8P2(0,t) 8P1(0,t)
8t = 82 + [TQQBz(Z) — 1]782 + 7’12B2(Z)7az . (3)

We denote the probability distribution in the stationary regime as Py(t) =
Iy, Pi(z,t) = II1 (%), Pa(z,t) = II3(z). Then the system (1)—(3) can be rewritten
in the form

%HO =(1—ry — 7“12)61212(0) + (1 =7 — 7"12)81212(0), (4)
51272(2) — [l =By (2)] azg(()) o By (2) a]?;z(o) - %HOBl(z), (5)
81222(” — [1 = rosBa(2)] 8]222(0) _ r1232<z)8%;;0). (6)

Letting z — oo in system (4)—(6), we derive the following system of three
equations

A oI, (0 oIT, (0
NHO = (1 —Tr11 — 7'12) 812( ) + (1 — 711 — 7”12) 812’( ), (7)
dII1 (0 0I5 (0 A
(1 —711) 612( ) —Ta1 82z( ) _ NHO’ (8)
oIT, (0 oI5 (0
—T12 Blz( ) + (1 —r99) 82z( ) = 0. (9)

In this system, it is easy to see that Eq. (7) can be represented as a linear com-
bination of Egs. (8) and (9). Therefore, we will not use it for further derivations.

11 11
0I1:(0) and 0I1,(0) from the system of equa-

We can express the constants

0z z
tions (8)—(9):
8171(0) 1-— T9292 A
_ 2, 10
82: (1 77”‘11)(1 77”’22) — 712721 N 0 ( )
o1I3(0) _ 12 iﬂo. (11)

8z (1 — 7‘11)(1 — 7“22) — 712721 . N

Substituting expressions (10), (11) into Eqs. (5) and (6), we derive equations
for IT,(z) and II5(z) as follows:

8]71(2) - 1-— 22 ) i B ~
9z (L=ri)(1 —7a2) — rizran NHO[l Bi(@),
o) L -2 (1 - Ba(2)].

82 (1 — 7”11)(]. — 7’22) — 712721 N
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Hence, we obtain

Ihiz) = (1- 7"11)(1 : :zz) — ri2r21 . %HO /02[1 ~ Bz, ()

12 ) i]]o /Oz[l — By (2)]dz. (13)

(1 —7r11)(1 —ra2) — 7121721 N

If we make a limit transition z — oo in expressions (12), (13), then we obtain

HQ(Z) =

1-— 722 A
I, = - 2 ITghy,
! (1 —ri1)(I —7ra2) — 112721 N oo
A
II; = s - —Ilobs,

(1 —=711)(1 —ra2) —riaro1 N

where by, = / [1— B (2)] dz is the average service time at the k-th stage of the

0
system (k =1,2).
Using the normalization condition IIy + II; + IIs = 1, we can write the
following expression for I1j:
N[(1—=ri1)(1 —ra2) — riar21]

1o = N[(1=7r11)(1 —rog) — riara1] + A[(1 — 722)b1 + 112b2] (14)

Then the expressions for IT; and I, take the form

)\(1 — 1"22)[)1
N[(1—r11)(1 = ra2) — riaro1] + A [(1 — ro2)by + r12b2]’

1, = (15)
)\7“121)2
N[(1=r11)(1 = ra2) — riara1] + A[(1 — ro2)by + r12ba]

Thus, the expressions (14)—(16) determine the probability characteristics of
the state of a single-line tandem. Now let us return to the original infinite-server
two-stage queueing system.

Let ¢1(t) be the number of customers at the first stage of the system and
12(t) be the number of customers at the second stage. Denote the probabilities
Pl(i,t) = P{Zl(t) = i}7 Pg(i,t) = P{’Lg(t) = i}, and let Pl(Z) = Pl(i,t), PQ(Z) =
Py(i,t) be the probabilities in a stationary regime. Then, using the Bernoulli
formula, if we let N — oo, we can derive the following:

I, = (16)
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Pii) = lim, CRIT (1 — )N~ =

N! . ( A1 = ra2)bs )11 )
N ((1 = r11)(1 = ra2) — r12r21) + A ((1 — 722)b1 + r12b2)

lim

N—=oco | i1!(N — i1)!
<1 - A1 = ra2)by )N‘“ _
N((1- f“ll)(l —7122) — T12721) + A ((1 — 722)b1 + 712b2) |
lim |:()\(1 — 722)b1)" . N-(N—=1)----- (N—i1+1) .
N—oo i! (N ((1 = 7r11)(1 —722) — r12721) + A ((1 — r22)b1 4Jr_7112bz))11
(1 B A(L = r22)by )N“ _
N (1 —=7r11)(1 —r22) — r12m21) + A ((1 — r22)b1 + r12b2) ]

A(1—722)b

< )\(1 —7’22)1)1 i1 e (=r11)(—=ra2)—7r12721
( .

1 —7“11)(1 —7’22) — T12721 71!

Thus, we obtain

Pii) = 1o, (17)
7!
where A b
—722)b1
= . 18
M (1 =r11)(1 —722) — r12721 18)
Similarly, one can derive
Poli) = 2 e, (19)
7!
where Nrvab
1202 (20)

T2 = -
(1 =711)(1 —722) — r12721
Thus, the marginal probability distributions of the number of customers at
the first and second stages of the system are Poisson distributions with the
parameters y; and v, respectively.

4 Numerical Example

Let us consider an example of applying the obtained results (17)—(20), and also
compare these results with the asymptotic ones obtained earlier in [15,19].

Consider a two-stage queueing tandem with feedback, the configuration of
which is described in the Sect.2. Let the parameters of the tandem have the
following values: 717 = 0.2, r1o = 0.4, ro7 = 0.6, roo = 0.2. The service time
at the first stage has gamma distribution with a shape parameter equal to 0.25
and an inverse scale parameter equal to 0.5. At the second stage, the service
time has gamma distribution with a shape parameter equal to 0.25 and inverse
scale parameter equal to 0.25. The arrival process is a stationary Poisson process
with the intensity A = K, where K > 0 is the high-intensity parameter of the
arrivals as described in [20]. We will change value of this parameter in a series
of experiments.
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For this system, according to the results (17)—(20), we obtain that the mar-
ginal probability distributions of the number of customers at each stage of the
system are Poisson distributions with parameter 1.

In the paper [15], it was obtained that under a condition of a high rate of
arrivals, these distributions can be approximated by Gaussian distributions with
means and variances equal to 1.

In the article [19], a more accurate expression for approximating the multi-
dimensional characteristic function of the number of customers at the nodes of
the queueing network was obtained for the similar asymptotic condition (it is
called as third-order asymptotic or third-order approzimation). From that expres-
sion, we can write the following general form of third-order approximations for
the characteristic functions of the marginal stationary probability distributions
of the number of customers at the stages of the tandem under study:

. N9 . \3
h(u) = exp {jucl + (]g) ¢+ 0?03} , (21)
where ¢; = K, c3 = K 4+ 6K86. In our example, § ~ 0.17644 for the first stage,
and 6 = 0.03024 for the second stage of the system. To obtain the distribution
law from expression (21), we should make the inverse Fourier transformation of
its right-hand side and perform a normalization of obtained values.

The graphs at the Fig.3 show a comparison of the probability distribution
laws for the number of customers at the second stage of the system for different
values of the arrivals intensity K. The graphs are constructed on the base of
the analytical results (19), the Gaussian approximation [15], and the third-order
approximation (21) [19].

Table 1 presents the values of the Kolmogorov distance

x

> [Pa(i) — Gi(i)]

=0

) k:273’

dr = max
x

between the Poisson distribution function P» (i) with the parameter (20) and the
distribution functions for the Gaussian approximation G5(¢) and the third-order
approximation Gs(7).

Table 1. The Kolmogorov distance for the Gaussian approximation d2 and third-order
approximation ds.

d2 | 0.109 | 0.070 | 0.050 | 0.040 | 0.033 | 0.029
dz | 0.026 | 0.020 | 0.018 | 0.016 | 0.012 | 0.009

If we choose di, < 0.03 as a permissible error of the asymptotic result, then
we can conclude that the Gaussian approximation is applicable for values K > 6,



Analysis of Queueing Tandem with Feedback 155

0,25 0.20
0,20 7 N\ N=4
0,15 - / \
0,15 / \
0,10 1 \
0,10 \
0.05 0,05 |
0,00 0,00

0,15 - NS
// \ N=6

/i \
0,10 - \

/

\
0,05 -
v/
0,00 | |
15 0 5 10 15

Fig. 3. Distribution laws of the number of customers at the second stage of the tandem
for different values of the arrivals intensity K, built on the basis of analytical results
(solid line), Gaussian approximation (dashed line) and third-order approximation (dot-
ted line).

and the third-order approximation is applicable for values K > 1. This result
is approximately twice a quality (low boundary of applicability) of the results
obtained in papers [15,19]. This effect is probably due to the fact that we are
considering a system with a Poisson arrival process, but those papers consider
models with renewal arrival process.
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5 Conclusions

In this paper, we consider a two-stage tandem of queues with an infinite number
of servers and a possibility of repeated service at each stage. The service times
has an arbitrary distributions. The arrival process is a stationary Poisson point
process. The study is carried out by the method of limiting decomposition. It
is shown that the marginal steady-state probability distributions of the num-
ber of customers at each stage are Poisson distributions. Parameters of these
distributions are obtained in the paper.

Also in the paper, the obtained analytical result is compared with the asymp-
totic ones that was obtained earlier in the papers [15,19].

Future research can be devoted to the analysis of customers’ flows in the
considered model.
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istry of Education and Science of the Russian Federation [Agreement number
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Abstract. In the paper, we investigate a combination of two following
different queueing systems connected via common limited buffer space:
(1) the system of M/G/1-type, in which service time does not depend
on demand volume; (2) the processor-sharing system, in which demand
length arbitrarily depends on its volume. For such combination, we deter-
mine the steady-state loss probability and distribution of number of
demands present in each system of the combination.

Keywords: Queueing system - Demand volume - Total demands capac-
ity - Buffer space capacity + Processor-sharing system

1 Introduction

We consider queueing systems with demands of random space requirement. It
means that (1) each demand is characterized by some non-negative demand
space requirement ore demand volume (; (2) the total sum o(t) of volumes of
all demands present in the system at an arbitrary time instant ¢ is limited by
some constant value V', which is named the buffer space capacity of the system;
(3) we also assume that service time ¢ of the demand and its volume can be
dependent.

Such systems have been used to model and solve the various practical prob-
lems occurring in the design of computer and communicating systems.

The joint distribution of the random variables { and £ we characterize by
the joint distribution function F(z,t) = P{¢ < x,€ < t}. The buffer space is
occupied by the demand at the epoch it arrives to the system and is released
entirely at the epoch it completes service. The random process o(t) is called
the total demands capacity. The limitation of the buffer capacity V leads to
additional losses of demands. A demand having volume x, which arrives at the
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A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 158-167, 2017.
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epoch 7 when there are idle servers or waiting positions, is admitted to the
system if o(7 — 0) + 2 < V. Otherwise (if o(7 — 0) + 2 > V) the demand is lost.

Queueing systems of different types with limited buffer capacity were ana-
lyzed, for example, in [1-8]. For these systems, the stationary demands number
distribution and loss probability were determined. In particular, in [8] the com-
bination of two different systems of the same (M/G/1) type were investigated
under assumption that service time does not depends on the demand volume for
each of the systems.

In present paper, we investigate combinations of two following systems con-
nected via common limited (by V) buffer: (1) M/G/1/co-type system, (2)
M/G/1 — PS-type system. Such models obviously can be used in computer
and communicating networks designing. A statement allowing determination of
the steady-state demands number distribution and loss probability for each of
the systems connected via common buffer will be presented.

The paper is organized as follows. Section2 contains a description of the
queueing model and necessary notations. In Sect.3, we define a Markovian
process describing the evolution of the system and the functions characterizing
the system behavior. In Sect. 4, we build a system of partial differential equations
for the transient system characteristics and give their steady-state solution. In
this section, we also determine the steady-state queue-size distribution for the
system under consideration. Section 5 presents conclusions and final remarks.

2 The Model and Notation

By a demand length for the second (processor sharing) system in the considered
combination we mean the amount of work required to serve it, that is, the time
of demand sojourn in this system at hand, provided that there are no other
demands in the system during this time [9]. By the demand remaining length for
this system we mean the amount of work required to complete its service after
some time instant, that is, the remaining time of demand sojourn, provided that
there are no other demands in the system during this time.

We shall use the following notation (¢ = 1,2): a; — the rate of demand arrival
process for ith system, (; — the demand space requirement for ith system, & —
the first system demand service time; & — the second system demand length;
L;(x) — the distribution function of {; random variable, B;(t) — the distribution
function of £; random variable that is assumed to be independent of the demand
space requirement (3.

We assume that, for the second system, the demand length & can be depen-
dent on its space requirement, and we denote the joint distribution function
F(z,t) = P{¢ < z,& < t}. So, we have evidently that Lo(z) = F(x,00),
By (t) = F(oo,t), where B(t) is the distribution function of the demand length
for the second system. Let 7;(t) be the number of demands present in ith system

at time moment t; Cj@ (t) — the space requirement of jth demand present in ith

system at the moment ¢, j = 1,7;(¢); f,El)(t) — the remaining service time of the
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demand being on service in the first system at the moment ¢; fﬁ), e 757(7?@)*

the remaining lengths of demands in the second one at this moment.

We agree to assume that the demands present in the second system at an
arbitrary time instant are numerated randomly, that is, if at the time instant ¢
there are k demands in this system, then any of the possible k! numerations can

be used with the same probability 1/k!
2 7]7r(t)

It is clear that o(t) = > > Cj(i) (t).
i=1 j=1

3 Random Process and Functions Describing the System
Behavior

The combination of queues under consideration can be described by the following
Markovian random process:

(m:(), ¢ @.5 = Lm0 = 1.2 00 20,1 =T®) (1)

It is clear that the components di)(t),f,(kl)(t) are absent in (1), if n(¢) = 0;
¢$7(1), €2 (t) are absent, if 1(t) = 0.
Let us introduce the vector Z = (#1,...,2K). We also shall use the notations
(Zi,y) = (215 200 Y)s Z3 = (21, -+ s Zj—15 2415 - - - k)
The process (1) is characterized by the functions with the following proba-
bility sense:
Po(t) =P{ni(t) =0,i=1,2} = P{o(t) = 0} (2)

G(k,0,2,y,t) = P{m(t) = k,(t) = 0;0(t) < w360 (1) <y}, k=1,2,... (3)
G(0,k, 2, Zk, 1) = P{m (t) = 0,m(t) = ks o(t) < ;€2 (1) < 25,5 = Lk}, k=1,2,... (4)
G(k;l,kg,x,y,Zkz,t) = P{m(t) = kl,ng(t) = k‘g;

o(t) < 2 €0 (1) <y, €2(t) < 25,5 = L, k2, (5)
ki,ko =1,2,....

We also introduce the functions

W ks, k2,9, Zias t) = PLm(t) = b, ma(t) = ks €0(0) < 9,62 (0) < 25,5 = LRal} (g
= G(k15k27Vay7Zk27t)y klka = 1,2,....

The functions W (k,0,y,t) and W (0, k, Z,t) can be introduced by similar way.
The demands number distribution is defined by the following functions:

P(k15k27t) = P{Th(t) = khz = 172} = W(klkaaoovook27t)7 klka = 1727- ) (7)
where ooy = (00, ..., 00).
——

k
We can define the functions P(k,0,t), P(0, k,t) analogously.
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We are interested in steady-state demands number distribution and loss
probability. Therefore, let us write out the stationary analogies of the functions

(2)-05):

po = lim Py (t) (8)

g(k,0,2,y) = tlggo G(k,0,z,y,t), k=1,2,... (9)

9(0,k,z, Z;) = tlilglo G(0,k,x, Zp,t), k=1,2,... (10)

g(kr, ko, 2y, Zy,) = T Gk, ko, 20y, Zyys ), R ke = 1,2, (11)
Now we can define stationary analogies of (6) and (7) functions:

w(k, ko, y, Zi,) = g(k1, k2, V,y, Zky)), k1, ke =1,2,. .. (12)

p(k1, ko) = w(ky, ke, 00,00k, ), ki,ka =1,2,... (13)

The functions w(k, 0;y), w(0, k, Zy), p(k,0), p(0, k) can be defined analogously.
The functions p(k1, k2) define the steady-state demands number distribution
in the combination of systems under consideration. We can determine loss proba-
bilities for each system of the combination using the functions (8)—(13). Let PS)
be a loss probability for the first system. Let us define the following functions:
r,il)(y) =w(k,0;y) + Z w(k, k2;y, 00k, ), k=1,2,...
ka=1

Then, the loss probability can be determined from the following equilibrium

equation:

ay (1 - PS)) = g(%g;(y) ‘ =0’

whereas we get

1 e o (1)
PO -1 Ly W

] . (14)
ay = oy y=0
For the second system, let us define the functions
N (Z) = w(0,k; Zi) + Y wik, kioo, Zi), k=1,2,...
k=1
So, we obtain the following equilibrium equation:
a (1 - p(2)) _ i 67"1(3)((0%—1,@) ‘
2 L 8y y:O’
k=1
whereas ©
1 o 9y ((00r-1,9))
PP 1 — k B 15
L as Z ay y=0 ( )

k=1
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4 The Main Statement

Further we shall use the following (convenient for our aims) notation for Stieltjes
convolution (see [8]):

L " e — w)dfa(u) = fu # fole) = fa % fi(@).
OIL‘

/ FLryr, o ¥im1,® = U, Yig 1, oY) du f2 (21, o0 25 -1, U, 2541, -0y 21)
-0

u
= f1(Y1, s Yimo 15 %, Uit 1, o, Uk) * f2(21, 0, 25— 15 %, Zj4 1, -, 20) (T)
= fo(Z1, ey Zj—1, %, Zj 415 s 20) % 1YL, ooy Yie 1 %, Yig 1y o YR ) (T).

xT
3 / filyr, o i1, T — Uy Yig 1, o, Yr)d f2(u)
- Jo
= f1(Y1, o Yim1, % Vit 1, Yk) * f2(T) = fo * Fr{Y1, o Yim1, %, Vit 15 Yk ) ().

2.

Similar notations are used for a convolution of more than two functions.

By supplementary variables method [10], partial differential equations for
the functions (2)—(6) can be written out. From these equations we obtain the
following ones for steady-state functions (8)—(12):

ow(1,0,y) N ow(0,1, 2)

O = —(alLl(V) + CLQLQ(V))pO + ay ‘ y=0 82

_ow(1,0.y) | dw(1,0.y)

Ay dy ‘ oo = @Poln(V)Bi(y) — arg(1,0,%,y) x Lo (V)

ow(2,0,u ow(1,1,y,u
—ag(1,0,0,9) # Lo(V) 4 P20 g S LU )
,aw(g,zl,z) + aw(g;I,Z) .= aspoF (V, z) — a19(0,1, %, 2) x L1 (V) a8)
z= 18
—azg(0, 1,%,2) ¥ Ly(V) 4 P2t | 4 GulOZizll |
ow(k,0, ow(k,0,
—owl0g) | Bulh0y) ‘y:o = arg(k —1,0,%,y) * Ly (V)
—Ublg(k,0>*7y) *LI(V) _a2.g(k707*ay) *LQ(V) (19)
TN | B(y) + 2| k=23,

1 Zk ow(0,k,Zr)  Ow(0,k,Zy)
k £Laj=1 0z; 0z

Zj0:|

=25 900,k —1,% Z]) % F(x,2)(V) (20)
_alg(oa k7 *, Zk)) * LI(V) - a29(07 ka *, Zk) * LQ(V)

ow(l,k,u,Zy) Ow(0,k+1,(Zk,u)) o
+ ou + ou u:O’ k= 2,3,...

u=0
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_ ow(1,1,y,2) + dw(l 1,y,2)
%y 9y y=0 z=0
=a19(0,1, %, 2) % L1(V)B1(y) + a29(1,0, %, y) * F(x,2)(V)
7@19(1, ]-7 Y, Z) * Ll(V) - a?.g(l, ]-7 * Y, Z) * LQ(V)
+6w(2,1,u,z)) _0B1 (y) + aw(l,QégI/L,(z,u))

ou

_ ow(1,1,y,2) + d'w(l 1,y,2)
0z 0z

(21)

)
u=0

dw(ky ka,y,Zk,) 4 dw(ky ka,y,Zg,)

_ szz Ow(k1,k2.4,2ky)  dw(ky,ka,y,Z)
dy oy

|y0 kg 24j=1 9, EEE

= aig(ky — 1, k2, %, y, Ziy) * L1 (V) + 32 82, gk, ke — Lx,y, Z4,) * F(x,2;)(V)

zj=0i|

*%19&’61,116% *, yZ, Ziy) * L1(V) — agg(’ljl,kkml*, y7ZZk2) * Lo (V) (22)
2| p ) Stk G |
kl,k2_1,2,... -
The following evident boundary conditions take place in steady state:
ow(1,0,y) ow(0,1, 2)
LiVipo = 220wl (Vip = S22 (23
a1 1( )PO By =0 a2 2( )PO 92 0 ( )
ow(k + 1,0,
alg(k,O,*,y)*Ll(V)Z%‘ Bi(y), k=1,2,...; (24)
Yy y=0
8 kV 17 )
a29(k707*7y)*L2(V) = M ’ k= 1723 ) (25)
aZ z=0
ow(0,k+1,(Z
a2g(0, k4, Z3) # Lo(V) = ZARET LT W) g ()
8u u=0
ow(l,k,y, Z
alg(o,ka*azk)*[/l(v) = w‘ ) k:]-a?v ) (27)
6y y=0
Ow u
alg(k17k27*7y7 Zkg) *Ll(V) W _OBl(y)v (28)
ki,ko =1,2,...;
Ow(k1,ka+1,y,(Zk,,u))
a2g(k1; k?a *Y, Zkz) * L2(V) - e Su ko u:O, (29)

ki ke =1,2,. ...

Denote by 7;, o the stationary number of demands in ith system (i = 1,2) and

total demands capa(nty in the combination of systems, respectively. Introduce

also the notation 10((J = P{n; = 0}.

Introduce the following notation for the first system of the combination:
1 1
9\ (z,y) = P{m = ko < z,&M <y},

wi (y) = g1 (V,y), (30)
o (@) =P{m = ko <a} = lim g (@.9) = g (w.00). (1)
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p\V =P{m =k} = oD (V). (32)

Let us write out equations for an independent M/G/1/(00,V) system. For
example, they follow from the Egs. (16)—(29), if as = 0. So, for a separate first
queue of the combination with limited (by V') buffer space capacity we obtain
the following equations:

(1)
1 , Owy’(y) ’
0=—a1L,(V —_— ; 33
a1 L (V)py " + oy o (33)
aw(l) aw(l)
- lay(y) + lay(y) ‘y:O = alpél)L1(V)Bl(y) (34)
o (1)
—a1g;” (5, 9) * Lo (V) + 252 | Ba(y):
( v
F) (‘1) ) J(.l) 1
_ w,éy(y) 4 u,éy(y) ‘y:O — algéjl(*,y) x Ly (V) 35)
aw(.l)
—a1gtM () % Ly (V) + k%w W) k=23
i), (y)
algél)(*,y)*Ll(V):%‘ Bily), k=1,2,.... (36)
Yy y=0
For the second system, we introduce the notation:
g](f)('razk) = P{TIQ = k,O’ < xafﬁ) < Z_]?.] = 17k}7

wi (Zx) = 92 (V. Zi), (37)
v (@) = P{np = k,0 < 2} = g (,00), (38)
) =Pl =k} = v (V). (39)

Then, for a separate second system of the combination, we can write out the
following equations (which follow from the Egs. (16)—(29), when a; = 0):

(2)
_ 2) , Owy (2) .
0= —agls(V _— 40
azLa(V)py~ + el B (40)
Bw(z) z 6w<2) z 2
SO B 20| e F(V.2) "
g Lo(V) 4 2w ) |
@29, (*72)* 2( )+ u _07

1k [‘)w,(f)(Zk) . Bwf)(zk)
k j=1 0z 0z
J Zj Zj(z) 2;=0
ow,/, ((Zk,u))
ou

} =2yt g (x, Z]) * F(x, zj><v(>42)

—a29'? (%, Zi) * Lo(V) +

, k=2,3,...;

u=0
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Owi (Zx,w)

agg,(c (%, Zi) % Lo(V) = Du o

,k=1,2,.... (43)
The following statement takes place.

Theorem. Let the number p(()l) and the functions g,(cl) (x,y) satisfy the Egs. (33)-

(36) and the normalization condition

s+ Y gl (Vieo) = 1;
k=1

and the number pgf) and the functions g,(cz)(x, Zy) satisfy the Egs. (40)-(43) and
the normalization condition

s+ 3 97 (Viook) = 1.
k=1
Then the functions

g(k‘,(),x,y) (1)91(:)( )7 g(O,k,x, Zk) = () (2)(1' Zk) k= 1,27~~'>
Po

Po 1
g(kl,kg,;z:,y,ZkQ) ) (2) g](gl)(* y) * g](g )(*7Zk2)(:17)7 kl; k2 =1,2
Py "Po
satisfy the Eqs. (16)—(29) (the number py can be determined from the normaliza-
tion condition).

The theorem can be proved by direct substitution of g(k1, ke, z,y, 2) functions
into Egs. (16)—(29).

Corollary. For the functions w(ky, ka,y, Zk,) we get:
w(k,0,y) = (1) wM(y), w(0,k, Zy) = (2) w(Zy), k=1,2,...,
Po Do

where the functions w,(cl)(y), w(0,k, Zy) are determined by relations (30) and
(36), respectively,

p
w(klvk%yvzkz) = (1)0(2)91(4;?(* y) *g)(g (*7Zk2)(v)’ klak2 = 172a SRR
Po "Po

0

The determination of the steady-state demands number distribution in the system
under consideration has the following form:

p(k,0) = (1) P, p(0,k) = (2) P2, k=1,2,. (44)

where p,(cl) and p,(f) are determined by relations (32) and (39), respectively,

Pl k) = ool # oD (V) b ks = 1,2, (45)

Po "Po

where v,(cll)(x) and vg)(x) are determined by relations (31) and (38), respectively.
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Let, for example, the first system of the combination is M/M/1/(o0, V) (see
e.g. [2]) with exponentially distributed demand capacity: Li(z) = 1 — e~ 17,
f1 > 0. Let p; be the parameter of service time of the system, p; = a1 /p1.
Then, we have:

1—p
p§) ={ 1= pre-O=pAV” ifpr# L
(1+AV) if pr=1;
k—1 i
ot () = pV ol [1 —ef””Z(flf)] CE=1,2,
i=0 '
k‘fl
1 1 -
()pé)pkl flvz k=12,

Assume that, in the second system, demand capacity has an exponential
distribution with parameter fo, fo > 0, demand length is proportional to its
capacity: & = c(a, ¢ > 0, p2 = aac/ fo. Then, we have (see [7]):

1—p2 .
~— - i po # 1,
p(()2) _ ]. — p2647f2v [Slnh(1 /prQV) + /p2 COSh(meV)] 2
if po = 1;
3+ 2foV + e 22V’ =5
2k—1 i
v (@) = " b ll e Y 7(]2?) ] k=12,
=0 ’

k=1,2

g Ly o

2k—1
p(2) péQ) kl o2V Z f2V

Now, we can calculate demands number distribution for the combination of
these systems using relations (44) and (45).

5 Conclusions

In the paper, we investigate combinations of two different queueing sys-
tems (M/G/1-type with independent service time and demand volume and a
processor-sharing with dependent ones) connected via common buffer of limited
space capacity. We determine the loss probability and demands number distrib-
ution for each system of the combination.

We show that the formulas for characteristics of demands number distribu-
tions of the combination have the form of Stieltjs convolution of the character-
istics of separate systems.

The formulas obtained in the paper are not generally convenient for precise
calculation, but the calculation is possible in some special cases. In other cases
we can use the numeric inversion of Laplace transform [11,12] to approximate
calculations of Stieltjes convolutions.
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Abstract. Methods for radical reduction of packet loss probability in
telecommunication networks with fractal traffic are developed. We inves-
tigate ways of preventing the losses within the framework of queueing
theory; relevant simulation experiments are carried out. It is determined
that strategy for the channel number increase in the network nodes has
principally higher efficiency than that for the buffer increasing and/or
channel performance increasing. Approximation methods for loss prob-
ability in the nodes of multiserver queueing system without buffers are
investigated. The paper offers to approximate the loss probability in the
node with n channels by steady-state probability in the state n of relat-
ing infinite-server queueing systems. We develop an analytical-statistical
technique of optimal channel distribution over the nodes in networks
with fractal traffic which is based on such approximation. The example
of the method application is provided. The developed method could be
used by engineers designing the telecommunication networks.

Keywords: Telecommunication networks - Analytical-statistical tech-
niques - Fractal traffic -+ Queueing theory

1 Introduction

It is known that the traffic of modern telecommunication networks has a fractal
(self-similar) structure [1]. Random variables describing such traffic are given by
asymptotically power-law distributions (we will call them power-law distribu-
tions) [2]. The properties of power-law distributions generate specific difficulties
that arise while measuring traffic [3] and designing network devices.

In designing network, devices at a system level are presented in the form of
queueing systems [4,5]. We will call fractal systems the GI/GI/n/m class sys-
tems in which intervals of requests arrival and/or their service time belong to
power-law distributions and have finite mathematical expectation (m.e.) and infi-
nite dispersion. The load coefficient p of the examined systems does not exceed
one: p = Ab/n < 1 where b < oo is the average request service time, A = 1/a
is the intensity of arriving request flow, a < oo is the average time between
the request arrivals, n is a number of channels in the system. We shall call the
GI/GI/n/m systems set only by exponential-tailed distributions (and also by
© Springer International Publishing AG 2017

A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 168-183, 2017.
DOI: 10.1007/978-3-319-68069-9_14
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distributions with tails positive only in finite intervals) the classical systems.
Correspondingly, a queueing network will be called fractal if there is power-law
distribution with infinite dispersion among distributions describing the network.

For instance, the queueing systems Pa/M/n/m, M/Pa/n/m and
Pa/Pa/n/m are fractal when Pa distribution has finite m.e. and infinite disper-
sion. Here the Pa symbol corresponds to Pareto distribution with cumulative
distribution function (d.f.)

F(t)=1-(K/t)*, a>0, K>0, t>K,

where « is a shape parameter, K is the smallest value of a random variable (r.v.)
and simultaneously, a scale parameter. We denote Pareto distribution with K,
a as Pa(K,«). The range of « values, typical for the fractal traffic, belongs
to the interval 1 < a < 2. At such « Pa(K,«) distribution has m.e. equal
to aK/(a—1), and infinite dispersion. In a general case, fractal systems are
calculated through simulation [6,7].

In simulation of fractal systems, there are significant difficulties caused by
hidden defect of power-law r.v. generators - the moments shifting [8]. For cor-
rect realization of power-law distributions, it is necessary either to use random
number generators (RNG) with infinite number of digit positions or to develop
special RNGs. In [9] the correct realization problem for power-law distributions
in simulation has been solved in general terms by constructing ARAND algo-
rithm (Accurate RAND), efficiently applying random numbers, resulting from
any standard well-tested RNG. The simulation, the results of which are to be
used below, has been implemented with the ARAND algorithm and “Mersene
twister” RNG. At the same time, we used widely known classical methods pro-
viding the necessary accuracy of simulation results, adapted to fractal systems
modeling [10]. Taking the aforesaid into consideration, the simulation conducted
in this research is to be called a high-precision one.

The present investigation aims to develop methods for radical reduction of
packet loss probability in telecommunication networks with fractal traffic.

2 Problem Statement

The following notations will be used for queueing networks description: A(t)
is d.f. for intervals of requests arrival, @ and o2 are m.e. and arrival intervals
dispersion, A = 1/a is the intensity of arriving flow, B(¢) is d.f. of service time
with m.e. b. Parameter « in the Pareto distribution is in the range defined by
l<a<2.

Let us consider the M/Pa/1 fractal system as an illustrative example.
According to the Pollaczek-Khinchine formula [4], average queue length L in
this system is infinite at any p > 0:

A2p(2)

21-p)
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since the second moment b(?) of the service time, distributed herein by the Pareto
distribution at 1 < o < 2, is infinite. This example clarifies why in the case of
a finite buffer (i.e., in the M /Pa/1/m system) the reduction of the request loss
probability due to the sufficiently large m and/or the channel operation speed
increase (load coefficient decrease) is inefficient. In [11] this is justified by a more
complete and detailed analysis.

Therefore, the need of finding more efficient ways of combating requests losses
in fractal systems and networks arises.

The theoretical problem considered in this paper is to investigate the effi-
ciency of loss probability reduction in fractal networks by increasing the number
of channels in their nodes.

The development of an efficient technique for loss minimization using the
optimal channel distribution over the nodes of fractal networks is the applied
problem. The creation and use of sufficiently accurate expressions describing
dependence of loss probability on the channels number in fractal system are the
key elements of the developed technique.

3 Classical Infinite-Server Queueing Systems

In classical infinite-serverl system GI/GI /oo both A(t), B(t) distributions have
finite dispersion. With the rise of a load R = Ab, the probability distribution
pr of the occupied channel number k converges to the Gaussian distribution
N(k,or) [12], i.e., pe = gr,

1 (k—k)?
0= ] W

where k = \b, 02 = \b + K3,
k= M\(c?—a?),8=[[1- B(r)%dr.
0

In practice there is a problem of choosing the smallest channels number n
which, in the case of a request buffer absence, i.e., for m = 0, could provide a
low request loss probability not exceeding the given value @. In other words, it
is necessary to find the smallest n, at which a multiserver system GI/GI/n/0
with the same A(t) and B(t) (i.e., a GI/GI/n/0 system that corresponds to
initial infinite-server GI/GI /oo system) will have loss probability not exceeding
Q. This problem will be called the problem of finding n(Q), meaning that @ is
a sufficiently low probability, for instance, Q@ = 10~% or Q = 10715,

When distribution py of the initial GI/GI/co system is known, the prob-
lem of finding n(Q) can be reformulated and solved as the one of finding the
smallest n which satisfies the P(k > n) = > 7- pr < @Q condition, ie., the
1— P(k <n) <Q condition. Considering k,n, P(k < n) as continuous quanti-
ties we can find such n that 1 — P(k <n) =@, i.e., we can obtain n for the
required low @ by solving the equation

1-F(n) =Q, (2)
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by defining d.f. F((n) of r.v. k as P(k < n). A solution n should be rounded up to
an integer.

Problem (2) of finding n(Q) can be solved by using approximation (1) of
distribution py, [12] in case of large load R = Ab and small loss probability.

Let us consider, for instance, the classical infinite-server I'j/I5/00 system
where the gamma distribution [13] I} has parameters oy = 1/3, 81 = 2/3,
and the gamma distribution I's has parameters ag = 1/3, 82 = 1/30. The m.e.
of requests arrival intervals here is equal to A™' = a = a1/f; = 1/2 and the
dispersion is equal to 0? = a1 /(7 = 3/4. The average service time in this system
isb= 042/52 =10.

Further, using formula (1), we obtain the parameters k and oy, of the Gaussian
approximation gy for distribution py:

E=Xb=20,k=\(0% —a?) =4, = 2.86826...,
0%, = \b+ k3 = 31.47304..., 0}, = 5.61008....

For solving problem (2), we will use the derived Gaussian approximation
gr = N(k, o) = N(20,5.61008...) concurrently with the actual distribution py
which is obtained by means of the high-precision simulation.

One might see that graphs of the actual distribution py and its Gaussian
approximation g = N(20,5.61008...) are visually almost superimposed on one
another [14]. However, besides, the relative error in the form of py /gy ratio is
several orders of magnitude for the small p; and increases with k growth.

Therefore, tails of the actual distribution p; and its Gaussian approximation
gr vary by orders of magnitude (Fig. 1).
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Fig. 1. Tail Q = 1— F(n) = P(k > n) of the distribution F(n), calculated on the basis
of probabilities py (marked line) and its Gaussian approximation gx

We will compare the results of the problem (2) solution based on the distri-
butions pk, gr and their associated regression equation (see Fig. 1).

Regression equation for the actual distribution p; can be written as
1— F(n) ~ 6.9259¢70957"  According to this formula, Eq.(2) takes the
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Q ~ 6.9259¢79057" form_ and its solution n(Q) is expressed by the following
simple approximate formula

n(Q) = /—175.41n(Q) + 339.5 . (3)

A similar solution based on the Gaussian approximation g (see Fig.1) is
given by

n(Q) =~ /—88.5In(Q) + 121.7 . (4)

Figure 2 compares solutions (3) and (4). The comparison shows that solu-
tion based on the Gaussian approximation leads to (in this case) a significant
understatement of the channel number compared to the needed one. The use of
this solution in practice would result in loss probability exceeding the admissible
limit value @ by orders of magnitude.

n
80.0
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50.0
[ 40.0
—— 30.0
20.0
10.0

T T T T 1 0.0
1E-04 1E-06 1.E-08 1E-10 1E-12 Q

Fig. 2. Comparison of the problem (2) solution based on the distribution pj (marked
line) and its Gaussian approximation g

Generally, the performed examination of a specific classical multiserver sys-
tem allows one to draw the following conclusions.

Firstly (this is the main conclusion), it is possible to effectively ensure a
low loss probability by increasing the number of channels even without using a
request buffer.

Secondly, in the general way, one should prefer simulation to asymptotic
approximations to solve problem (2) which provides a low loss probability.

Thirdly, the reduction of a loss probability by several orders of magnitude
is achieved via the relatively small increase of channel number redundancy (see
Fig.2 where the average number of the occupied channels equals Ab = 20).

In addition to that, relatively high sensitivity of problem (2) solution towards
the errors of the used approximations, which has emerged in the investigation,
results in the need to analyse errors of such approximations. In the method
under consideration, the state probabilities of an infinite-server system are such
approximations for loss probabilities of relating multiserver system.
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4 Loss Probabilities Approximation by State Probabilities
of Infinite-Server Systems

Let us consider the infinite-server M /GI /oo system. The Poisson distribution
describes its state probabilities

()‘b)kef()\b) _ Rt g

= e )

Request loss probabilities in the relating multiserver M /GI/n/0 system is
defined by the Erlang loss formula

n i\ nfn pi\ !
poss(m) = 2 (Z “?) i,(z?) . )

i=0 =0

Formulae (5) and (6) hold for any d.f. B(¢) with a finite m.e.

If the arriving request flow is not Poisson, one can use approximations to
estimate loss probabilities pjoss(n). The papers [12,15] give the expressions for
approximation of pjoss(n) in the GI/GI/n/0 systems with the finite first and
second moments of A(t) and B(t) distributions. In case of the fractal system
GI/GI/n/0, the state probabilities py = p, or the tail P(k > n)), which are
obtained by simulation, of the relating infinite-server system can be used to
approximate pj,ss(n) [16]. This approximation allows one to significantly (by
several orders of magnitude) accelerate the process of finding the optimal distri-
bution of the channel number over the fractal networks nodes, as will be indicated
below.

We now show that the approximation is consistent. The ratio of approxima-
tion pr = pn (5) to probability pioss(n) (6) when n — oo converges to one in
systems with the Poisson arrival flow

R" —R R R
- €
lim —P"  — Lim nl - e et )
n— oo ploss(n) n—oo &(Zn &> 1
n! i=0 3!

The ratio of tail P(k > n) to piess(n) when n — oo also converges to one:

o RN _—-R
lim P(k>n) i <Zz:n il ) € (140 1 ()
n—00 0ss(M " n>oo g n N e B B
o) A (S )
since summands of the sum y .° %1 = %L + % + ... in () are decreasing too

fast at any finite R > 0 with n growth, the sum converges to its first summand.
For large finite n we have >-5° £ = £L(1 + ¢), where ¢ — 0 for n — cc.

By comparing relative errors 61 = pp/pioss(n) and do = P(k > n)/pioss(n)
of approximations p,, and P(k > n), it can be seen that the state probabilities

pn converge to loss probabilities pj,ss(n) faster than tails P(k > n). Figure3
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Fig. 3. Relative errors 61 and d2 (dashed and solid lines, respectively) of approximations
pn and P(k > n)
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Fig. 4. Loss probabilities pioss(n) (dashed line), state probabilities p, (solid line) and
tails P(k > n) (marked line) for the Pai/Pa2z/n/0, Pai/Pas/co systems with their
parameters oy = 1.6, K1 = 0.1 (for Pay) and as = 1.5, K = 0.445 (for Pas)

illustrates the relative errors for the M /Pa/n/0 and M/Pa/oco systems with
parameters A = 1.154,a = 1.3 and K =1 calculated by (5) and (6).

In [16] a number of simulation experiments show that for general fractal
systems the approximations p, and P(k > n) also may be used, and that p,
approximations are more accurate. Figure 4 shows the results of one such exper-
iment.

The approximations p,, as it may be noted, are simple. Estimation of the
GI/GI /oo system using simulation gives us direct estimators of all steady p,, (as
a ratio of associated cumulative occupancy times in the states n to all simulation
times of steady-state process). To obtain the tails, the relative sums are to be
calculated through p,,.

Results of the performed comparison of two approximations are taken into
account in the developed below method for fractal networks optimization. Prob-
lem (2) of choosing the smallest channels number n(Q) providing the loss prob-
ability not exceeding Q) for multiserver systems is stated above in a traditional
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form, while now it is formulated as the problem of solving the equation

p(n) = Q, 9)

where the probability p, = p(n) of state n in the corresponding infinite-
server system is considered as a continuous function of continuous n due to the
applied approximate expressions. The obtained solution of problem (9) should
be rounded up to the nearest integer value.

5 Fractal Infinite-Server Systems
When in the GI/GI /oo system only d.f. B(t) is fractal, one may use the Gaussian

approximation gy of state probabilities py, since parameter § can be finite in this
case. Suppose, for example, B(t) = 1— (%)a, 1 < @ < 2. Then, according to (1),

B= 7[1 — B(r)Pdr = 7(5)20} = 2?{(1’
0

0

and certainly for any a > 0.5 (that holds automatically since o > 1 always).
Further, it is easy to define the other parameters of the Gaussian approximation
(1) for this system:

Ko - 2K
b:ﬁ;k:Abaﬁ:)‘3(U2_a2)7o—i:)\b+ﬁ2a71' (10)

Thus if A(¢) has finite dispersion o2, then in the GI/Pa/cc fractal system
the distribution py for the number & of the occupied channels will converge to the
Gaussian distribution N (k,0y) with parameters (10) with load R = \b growth.

As an example, let us consider the I'/ Pa/oo system with the gamma distribu-
tion which has parameters a; = 2, 3; = 2 (its m.e. @ = 1 and dispersion 02 = 0.5)
and with distribution Pa(2,1.25) (its dispersion is infinite and m.e. b = 10). Here
the average number of the occupied channels is k = A\b = (1/a)b = 10 and accord-
ing to (10) parameter o,% of the Gaussian approximation equals 25/3 ~ 8.3333.
Figure 5 compares the Gaussian approximation g (dashed line) and the actual
distribution pg (solid line), calculated with simulation. In the simulation 100
million requests were generated. As it is seen, at Ab = 10 the Gaussian approxi-
mation g; already agrees well with the actual distribution of r.v. k.

If we solve problem (2) of finding n(Q) for this I'/Pa/oo system using a
Gaussian approximation of distribution py, it will result in unacceptable errors
as in the case of the considered above I';/I5/00 classical system. As for a clas-
sical system, an actual distribution p,,, obtained by simulation, allows solving
the problem of finding n(Q) for the fractal systems under study with great accu-
racy. Figure 6 displays dependences of probabilities p,, and tail 1 — F(n) on n?,
obtained by simulation, that characterize the investigated I'/Pa/oco system.
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Fig. 5. Distributions py and g in the GI/Pa/oo system at Ab = 10
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Fig. 6. Probabilities p,, (round markers) and their regression equation (at the bottom).
Tails P(k > n) (square markers) and their regression equation (at the top). Quantity
n? is denoted by letter z in the equations

Trend line equation obtained for p, in Fig.6

Pn = 6.682¢ 00230 (11)

provides the following solution of problem (9) for the investigated I'/Pa/oo
system:

n=+/—43.48 In p + 82.58 . (12)

NB. The efficiency of a strategy to increase the number of channels can be seen
from the following example in comparison with the strategies which increase
buffer capacity and performance for a single channel. Let the arriving requests
flow be served by a single channel with the performance equal to the total one of
30 channels (providing, according to (11), the loss probability pioss ~ 1-1078).
In addition to that, suppose this one-channel system has a buffer, sufficient to
store m = 10 000 requests. Hence, we are discussing the I'/Pa/1/m system with
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the same arrival flow and Pareto Pa(2/30,1.25) service time “compressed” by
a factor of 30. Simulation of this system shows that the request loss probability
is equal to pjoss = 0.007 despite the large buffer capacity m and the low load
coefficient p = 1/3. Therefore, in general the battle with losses by increasing
a buffer capacity m and/or a single channel efficiency has proven to be almost
inefficient for fractal traffic.
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Fig. 7. Dependence of p, on n in the investigated Pa/Pa/oco system

Figure7 shows the dependence of state probabilities p, = p(n) for the
Pa/Pa/oo system, in which intervals of requests arrival are distributed by the
Pareto Pa(1/5,1.25) law, and the service time is by the Pa(10/3,1.5) law with
a lighter tail. In this system A = 1,b = 10. More than 100 million requests ran
through the system in the simulation.

The trend line for the low state probabilities p,, of this system is presented
in Fig. 8, which is given by the equation

Pn = 24.204¢ 0013377,

Using it, we find a solution for problem (9) in the following form:
n =+/—75.19 In Q + 239.87. According to this, to provide, for example, the loss
probability @ = 10%, it is enough to set 35.8, i.e., 36 channels in the system.

High-precision simulation experiments with various fractal systems show that
dependence of p, and, consequently, p;,ss on n with growing n in every such
system at sufficient (around A\b = 10) load is well described by the following
formula

DPn ~ Coeich, (13)

where ¢y, are some constants determined independently for each given system.
Law (18) allows one to recommend increasing the number of channels in a system
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as the efficient strategy for combating request losses. Besides, even for extremely
low values of p;,ss the redundancy of the channels number proves to be relatively
low in comparison with average number Ab of occupied channels.

Nevertheless, it is possible to combine a strategy of increasing the chan-
nels number with that of increasing the buffer capacity in networks with fractal
traffic. After choosing channels number n, providing a sufficiently low loss prob-
ability pioss, a request buffer can be added to the system.

Empirically obtained result (13) has all necessary characteristics of a univer-
sal law which holds for both classical and fractal systems. This law correlated
well with theoretical result (1) as well, that was proven in [12] for classic systems.
Therefore, taking into consideration similarity relation between dependence (13)
and Gaussian distribution tails, (13) can be rewritten in a more theoretically cor-
rect form. With n growth

Ploss ™~ Pn ™~ Coeic(niAb)Qv (14)

Consequently, one may suppose that approximations (13) and (14) will hold
for the queueing network nodes as well (both fractal and classical ones).

6 Fractal Networks with Multiserver Nodes

Simulation experiments with various networks having multiserver nodes with-
out buffers demonstrate that approximations (13) and (14) hold true for such
network nodes with great accuracy. For instance, Fig.9 gives state probabili-
ties distributions for each of four nodes in a multiserver network, obtained by
modification (sophistication) of the four-nodal network described in [12].

After modification, the routing matrix of the network

0.1 0404 0
0 04 0.1 0.2
0.1 0 0.20.1
030205 0

M =



Minimization of Packet Loss Probability in Network with Fractal Traffic 179

"\
I/ L
e 1] A X

Fig. 9. State probabilities distribution for the network nodes

stays unchanged. The arriving requests flow and the service time in the nodes
are changed and specified as follows.

From the outside, four flows enter the network. A regular flow with intensity
2 enters the first node from the outside. A Poisson flow enters the second node
with intensity 2. A flow with Pareto Pa(0.2,1.25) distributed intervals of request
arrivals enters the third node. And the fourth node has a flow with arrival inter-
vals distributed by the Pa(1/15,1.5) law. Requests service time in the first node
is deterministic and equal to 0.5. In the second one, the service time is exponen-
tially distributed with the average 1, in the third one - by the Pa(1/6,1.5) law,
and in the fourth - by the Pa(0.4,1.25) law.

Figure 10 depicts the dependences of probabilities pjss on z = (n — )\b)Q,
obtained by the simulation, as a relation (14), for all four nodes in the form
of corresponding trend lines and trend equations. Trend line equations in the
bottom of the figure are enumerated (according to the lines drawings) in the
order of numbers 1, 3, 2, 4 of the corresponding network nodes. Initial depen-
dences obtained in simulation experiment are shown in Fig. 10 as the lines almost
coinciding with the trend lines.

Similar results are obtained when using approximations (13).

The experiment results support the hypothesis for the correctness of approx-
imations (13) and (14) not only in isolated systems but in the networks nodes.

Approximations (13) and (14) can be used as a basis to develop various
methods of structural optimization for fractal systems and networks to guarantee
low loss probability. The most important feature of laws (13) and (14) is that the
increase of the channel number in the nodes at their relatively small redundancy
leads to drastic reduction of a loss probability. Under conditions of fractal traffic,
it distinguishes the strategy of the channel number increase from that of the
buffers capacity and/or channel performance increase.
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A rather simple and quick methods of optimal channels distribution over the

fractal network nodes is proposed as a practical application for the results of
(13) and (14).

7 Optimization of Channel Distribution over the Nodes

Suppose a fractal network routing matrix, d.f. B;(¢) of service time in nodes i
(i = 1,...,M) and arriving requests flows are given. There are no buffers in
the network nodes. It is required to distribute N channels (N > M) over the
network nodes in order to minimize the sum of loss probabilities in the nodes.

In practice, whatever number of the channels we have, it is always finite.
Moreover, the efficiency of the channels usage depends on the way these channels
are distributed over nodes.

Considering approximations (13) and (14), formally, the problem of optimal
channel distribution can be rewritten as follows:

M
. 2 .
E coie” ™ — min, (15)
i=1
or in a form of
M
. P . . 2 .

g core” CilnimAibi)™ min, (16)
i=1

in both cases, limitations are used

M
> =N, n; >0, i=1,..,M.
=1
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In both cases coefficients cg; and C; are calculated by simulation, just as it
was demonstrated above. Intensities A; of the entering flows are easily calculated
by the network routing matrix through the given intensities of the entering flows
(for example, by constructing and solving intensity balance equations).

In (15) or (16) the solution of optimal channels distribution problem can
be obtained with any known numerical methods. For instance, we can consider
variables n; as continuous quantities, look for their optimal values by any known
gradient method, then we can round these values accordingly.

Let us consider the problem of optimal distribution of 100 channels over the
nodes of the network described in Sect. 6.

Using its simulation data shown in Fig. 10, we write the optimization problem
in the form of (9):

0.0174¢—0-0858(n1-3.039)% 4 () 455,—0-0297(n2—10.08)

+ 0.0261 ¢~ 0-0427(n3—5.225)* + 0.0674¢~0-0202(na—15.715)* _, min, (17)
4
> ni =100, n; >0, i=1,..4. (18)
i=1

Solving problem (17) and (18) with the help of Excel add-in program Solver,
we get n; = 13.51,ny = 28.3,n3 = 20.12, n4 = 38.05 or, after rounding;:

ny = 13,712 = 29,713 = 20, ng = 38. (19)

In this case, there are six possible rounding procedures that preserve Eq. (18).
The correct rounding is the one that provides the smallest value when substituted
in target function (17).

Channels distribution (19) is tested by simulation. At such distribution,
cumulative failure probability in the nodes is 1.34-1076. All “neighboring”
distributions (in which one of the four solution (19) coordinates is decreased by
one, and the other is increased by one) are characterized by a worse cumulative
failure probability in the nodes than that of distribution (19).

It should be noted that the values of target function (17), using approxima-
tion, differ significantly from the corresponding values obtained in the simulation.
The results of problem (17) and (18) solution, however, are rather accurate.

The problem in the form of (15) gives the same solution (19).

If loss probability approximation in the form of tails P(py > py) is used, the
result is a less accurate solution ni = 13,ny = 28,ng = 20,n4 = 39, at which
the simulation provides cumulative loss probability 1.85 - 10~6.

Let us compare the optimal distribution (19) and a uniform channels distrib-
ution over the nodes and channels distribution providing similar coefficients p; of
the nodes load. With the help of simulation, having set the optimal channels dis-
tribution as 25 channels per each node, we get cumulative loss probability in the
nodes 2.4 - 1073, If the channels are distributed in such a way that nodes load
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coefficients are equal (then ny; = 9,ny = 30,n3 = 16,n4 = 45 and all p; = 0.33),
the cumulative loss probability will be 2.6 - 10~4. In both cases the results are
worse than optimal ones by several orders of magnitude, and this indicates the
practical significance of the proposed optimization method.

When designing a telecommunication network after optimal channels distri-
bution over the nodes, the requests buffer can be added to every node. In this
way, the loss probability can be reduced almost to zero.

For example, after adding buffers with size m; = 100 to the nodes of the
newly optimized network, there were no queues longer than 7 at 10 mln requests
passing the network multiple times. It is obvious that requests loss is almost
eliminated in the resulting network.

8 Conclusion

The main research results are relations (13) and (14), that not only give the key
to solving the loss problem in the networks with fractal traffic but allow solving
the problems of their optimization and analysis. As a rule, approximations (13)
and (14) can be used when loading multiserver nodes Ab = 10 and more.

In combating the request losses in fractal networks, the strategy of increasing
the channels number has the principal advantages over those of increasing the
buffer capacity and the channels performance.

The proposed herein approximate method for channels distribution optimiza-
tion over the nodes of a queueing fractal network is rather simple, effective and
can be directly used by designers of networks.

The architecture, proposed in the article for the networks with fractal traffic
and oriented at multiserver nodes, allows one to combat the messages loss effi-
ciently and it is characterized by low redundancy of cumulative performance of
hardware facilities. Moreover, such architecture exhibits high immunity of the
solutions towards the second moments of the arrival intervals and the service
time, for it guarantees low losses even at their infinite values.

References

1. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature
of ethernet traffic. ACM/SIGCOMM Comput. Commun. Rev. 23, 146-155 (1993)

2. Crovella, M.E., Taqqu, M., Bestavros, A.: Heavy tailed-probability distributions
in the world wide web. IEEE/ACM Trans. Netw. 5(6), 835-846 (1997)

3. Czachérski, T., Domanska, J., Pagano, M.: On stochastic models of internet traffic.
In: Dudin, A., Nazarov, A., Yakupov, R. (eds.) ITMM 2015. CCIS, vol. 564, pp.
289-303. Springer, Cham (2015). doi:10.1007/978-3-319-25861-4_25

4. Kleinrock, L.: Queueing Systems: Computer Applications, vol. 2. Wiley Inter-
science, New York (1976). 576 pages

5. Zwart, A.P.: Queueing Systems with Heavy Tails. Eindhoven University of Tech-
nology (2001). 227 pages

6. Asmussen, S., Binswanger, K., Hojgaard, B.: Rare events simulation for heavy-
tailed distributions. Bernoulli 6(2), 303-322 (2000)


http://dx.doi.org/10.1007/978-3-319-25861-4_25

10.

11.

12.

13.

14.

15.

16.

Minimization of Packet Loss Probability in Network with Fractal Traffic 183

Boots, N.K., Shahabuddin, P.: Simulating GI/GI/1 queues and insurance risk
processes with subexponential distributions. In: Proceedings of the 2000 Winter
Simulation Conference, pp. 656-665 (2000). Unpublished manuscript, Free Univer-
sity, Amsterdam. Shortened version

Zadorozhnyi, V.: Fractal queues simulation peculiarities. In: Dudin, A., Nazarov,
A., Yakupov, R. (eds.) ITMM 2015. CCIS, vol. 564, pp. 415-432. Springer, Cham
(2015). doi:10.1007/978-3-319-25861-4_35

Zadorozhnyi, V.N.: Peculiarities and methods of fractal queues simulation. In: 2016
International Siberian Conference on Control and Communications (SIBCON),
Fundamental Problems of Communications, Moscow, Russia, 12-14 May 2016
Zadorozhnyi, V.N., Zakharenkova, T.R.: Methods of simulation queueing systems
with heavy tails. In: Dudin, A., Gortsev, A., Nazarov, A., Yakupov, R. (eds.)
ITMM 2016. CCIS, vol. 638, pp. 382-396. Springer, Cham (2016). doi:10.1007/
978-3-319-44615-8_33

Zadorozhnyi, V.N. Simulation modeling of fractal queues. In: Dynamics of Systems,
Mechanisms and Machines (Dynamics), pp. 1-4 (2014). doi:10.1109/Dynamics.
2014.7005703

Moiseev, A.N., Nazarov, A.A.: Beskonechnolinejnye sistemy i seti-massovogo
obsluzhivaniya [Infinite-linear queueing systems and networks]. NTL Publ., Tomsk
(2015). 240 pages

Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers:
Definitions, Theorems, and Formulas for Reference and Review. General Publishing
Company (2000). 1151 pages

Zadorozhnyi, V.N., Zakharenkova, T.R.: Optimization of channel distribution over
nodes in networks with fractal traffic. In: 2016 Dynamics of Systems, Mechanisms
and Machines, Dynamics, Omsk, Russia, 14-16 November (2016). doi:10.1109/
Dynamics.2016.7819112

Li, A., Whitt, W.: Approximate blocking probabilities in loss models with inde-
pendence and distribution assumptions relaxed. Perform. Eval. 80, 82-101 (2014)
Zakharenkova, T.R.: On loss probability in fractal multiserver queueing systems.
Omsk Sci. Bull. 3(153), 110-114 (2017)


http://dx.doi.org/10.1007/978-3-319-25861-4_35
http://dx.doi.org/10.1007/978-3-319-44615-8_33
http://dx.doi.org/10.1007/978-3-319-44615-8_33
http://dx.doi.org/10.1109/Dynamics.2014.7005703
http://dx.doi.org/10.1109/Dynamics.2014.7005703
http://dx.doi.org/10.1109/Dynamics.2016.7819112
http://dx.doi.org/10.1109/Dynamics.2016.7819112

Optimization of Pipelining and Data Processing

Pavel Mikheev(™) Anastasiya Pichugina, Sergey Suschenko,
and Roman Tkachev

National Research Tomsk State University, Lenina Str., 36, 634050 Tomsk, Russia
doka.patrick@gmail.com , ssp.inf.tsu@gmail.com

Abstract. The method of optimal partitioning of subscriber messages
into protocol data units by the transport layer according to the criterion
of delays in the multi-hop transmission path is proposed. The terms of
the appropriateness of the fragmentation of messages into packets during
its transmission over multi-hop virtual channel are obtained. Analytical
dependences for the optimal packet size from the structure of network
traffic and settings of the virtual connections are obtained.

Keywords: Transport connection - Delay - The multiplex packet -
Anon-uniform path - The pipelininig effect

1 Introduction

The most important indicator of efficiency of functioning of the network packet
switching is the transmission time of user data between the communicating sub-
scribers [1,2]. Functions for the delivery of message flow to the user and com-
pensation of overhead in the transmission of packets that may occur in the
communication network are performed by the transport layer protocol [2]. The
basis of a reliable transport protocol is the principle of decision feedback. The
delay in subscriber traffic in a virtual connection depends to a large extent on
the characteristics of the individual links of the connecting path, the length of
the data transmission path, the size of the user messages, the intensity of the
network streams and the protocol parameters, among which the most important
is the packet size, which actually determines the power of the pipeline effect
[3-6]. It should also be noted that the connecting path of the virtual channel in
the packet switching network is used in by many interacting subscribers. This
leads to the fact that the load on various parts of the data path along which the
virtual connection goes can be significantly different. Then the effective band-
width of individual links for the traffic of this virtual connection will be reduced
by the corresponding parts of “external” flows, as a result of which the time
of packet transfer over inter-node connections even of a uniform virtual chan-
nel can be substantially different [6-8]. Simulation of the transport connection
and analysis of its operational characteristics under various loading conditions
is performed in [3-8]. A wide range of studies [9-13] are aimed at optimizing
protocol parameters by various criteria and adapting protocol parameters to the
© Springer International Publishing AG 2017
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changing network load, the level of losses, the activity of interacting subscribers.
A key indicator of the quality of service for network subscribers is the mes-
sage delivery time, which is determined by the pipelining effect. This indicator
is also very important for pipelined implementation of the instruction process-
ing [14,15]. The development of the results of [9-15] is to optimize the size of
the protocol data units when sending the subscription message via the transport
connection and the structure of the data transmission path. The most important
tool of the analysis of processes of data transmission and processing in a random
environment are Queuing systems [16,17]. A Queuing system in continuous time
allow to investigate the operating characteristics of inhomogeneous systems of
data transmission and processing, but ignores their essentially discrete nature. A
Queuing system with discrete time adequately describes such processes, but does
not allow analysis of heterogeneous systems of data transmission and process-
ing. In addition, models based on queueing systems do not take into account
the pipeline effect, which is manifested in the transmission and processing of
data streams. However, in the particular case of a deterministic environment,
data transmission and processing can be obtained the analytical results with the
conveying effect of the discreteness and heterogeneity of the processes of data
transmission and processing. In the proposed method of this work the partition-
ing the subscriber messages into packets of optimum size and the conditions the
feasibility of converting transmission path and pipelined processor to a uniform
appearance.

2 The Virtual Connection Model

Consider an nonuniform virtual connection consisting of D links of data trans-
mission. Define the time of the message transmission from the N packets, accord-
ing to the deterministic virtual connection in the data transfer phase. We believe
that the flow control procedure carried by the virtual connection provides end-to-
end confirmation of the delivery of individual messages, and each virtual connec-
tion node can simultaneously perform data reception and transmission, however,
packet transmission can be started only after its reception is completed. All mes-
sage packets have the same length, except the last one, which can contain the
remainder of dividing the message into fragments and can be smaller. We believe
that there is no competing traffic and there are no packet queues at the switching
nodes to the output communication channels. Then the delay of the subscriber’s
message in the data transmission path will be [10]:

D
T(D7N) = (N — ]-)Tm + ZTd7 Tm = axX Td, (1)
d=1 d

=1,D

)

where 74, d = 1, D — packet delay in d sector of the hops.
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3 The Optimal Partitioning of the Message
into the Packets

For further analysis, we express explicitly the time of packet transmission in
inter-node connection through the parameters of data transmission link. Suppose
that the transmission rate and time of node packet processing is independent of
the size of the package. In fact, the assumption of rate is true only for absolutely
reliable inter-node communication channels included in the virtual connection.
Then the packet delay at the d link of the transmission path taking into account
the previously introduced notation we can write as: 74 = C% + t4. Here tq4,

d = 1, D the packet processing time in the receiver node of the d data link.
Substituting this relation in (1) and taking into account that L = £ + H, where
B is the size of the transmitted message, we get:

T(D,N):(N—l)[B/]g:H—k } i{BﬂEH td}; 2)

(B/N—i—H )

B/N+ H
/7+ + 1y = max
Crm d=1,D

Obviously, when transmitting a message in the form of a sequence of packets,
it is possible to reduce the time of its delivery significantly over a virtual con-
nection in comparison to its transmission by one packet. This gain is due to the
pipelining effect [10], as a result of which the different parts of the message are
simultaneously in the transmission state at different parts of the path. On the
one hand, the number of packets in the sequence should be increased in order to
enhance the pipelining effect and thereby reduce the message delivery time. On
the other hand, sequence growth leads to an increase in the volume of the trans-
ferred service information and the processing time of packets by nodes. Hence it
follows that the dependence (2) is unimodal from the argument N. Using (2), we
determine the benefit in time from the transmission of a message over a virtual
connection of length D by a sequence of N > 1 packets in comparison with its
delivery as a whole:

D
A(D,N)=T(D,1) —T(D,N) = (N — 1) %Zi—ci—tm . (3

For uniform virtual connection, Cy = C, tq = t, d = 1, D the benefit (3) is
converted to the form:

A(D,N)Ncl{ﬁ(Dl)HCt}. (4)
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Fig. 1. The dependence of the benefit from argument N

The relations (3) and (4) define unimodal of the argument N > 1 functions
(Fig. 1) with asymptotes

m

H Do
e

A(D,N) = —(N —1) (éH) +%

accordingly. It can be seen from (3) and (4) that it is expedient to split/divide
the message into packets only for long D > 1 virtual connections and if condition

1 H
B — > — +1in
et
d=1,
d#m

is fulfilled, and benefit (3) is positive for partitions that satisfy the inequality

BC, 5~
"™ i1 Ca
d#m

1< N<——F—.
H+ Chutm,
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For a uniform virtual connection, this inequality, which determines the set of

B(D
expedient partitions, takes the form of 1 < N < ﬁ When
D
1 H
By & e Tim
d=1,
d#m
splitting
BC,, >
PaNer
d;ém
N> —— "
- H+ Cputm

lead to the fact that the losses from transmission and processing of the sequence
of packets prevail over the benefit from the pipeline effect. When

°. 1 _H
de:; o <o tim
d#m
splitting N > 1 increase the negative effect of exceeding the overhead on user
information.

On virtual connections of a single length, there is no pipelining effect, and
N > 1 partitions lead to an increase in the multiplex packet delay due to an
increase in the amount of overhead transfer of the service information and the
node packet processing (Fig. 1).

From the size of the subscriber message B the benefit (3) and (4) has a linear
dependence (Fig. 2). When transferring over the uniform virtual connection, the
benefit (4) also grows linearly with the path length, and the values A(D, N) are
positive for D > 1+ W.

From (3) we find that the partition

I V
—_

D
No= H/C Ftm Z

d;ﬁ 'rn

maximizes the benefit (3). Substituting the relation for N in (3) we obtain:

D
1 H
A(D,Nog) =B — + = -2 |B -
(DN =B Y o+ g+ T Zd ().
d;ﬁm

— m
d#m
Hence it is easy to see that the optimal benefit is equal to twice the difference
between the arithmetic mean and geometric mean values

D
1 H
B Z Fd and a + tm7
d=1,
d#m
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Fig. 2. The dependence of the benefit from the message size

which correspond respectively to the transmission time of the information part
of the message as a single unit over a virtual connection without a narrow link
and the overhead of a narrow link in the form of the time for transmitting the
service part of the packet and the processing time of the packet. For a uniform
virtual connection, the optimal benefit is:

A(D, Ny) = {\/B \/H+Ct}

Since N > 1, we can conclude that the area of definition A(D, Np) for the
uniform virtual connection is the length of the paths that satisfy the inequality
D > B0t Figure 3 shows the dependence A(D, Np) from B.

Knowing the optimal relation of splitting N, it is easy to determine the
packet size Lo, that minimizes the delivery time of a message over the virtual
connection:

LO:HJFNEZHJr M

’ Z 1/Ca
d;ﬁm

On the uniform connection the expression for the optimal packet size is simpli-
o B(H+Ct

fied: Lo = H + / ZHEXCL.

4 Select the Size of the Package

In order to apply the obtained ratios of the optimal packet length in practice, it
is necessary to take into account the sheer size of the messages transmitted via
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Fig. 3. The dependence of the benefit from the message size

the virtual network connections. In addition, since the largest packet size for a
static selection should usually have a single value for the entire network, it should
be determined from the maximum benefit condition for virtual connections of
all possible lengths. Thus, the obtained dependencies must be generalized to the
case of an integral criterion.

Assume that the transmission network is set to all possible path lengths D;,
j = 1,J and the distribution of intensities (parts) of network traffic on the
transmission paths of the data «;, j = 1,J which satisfies the normalization

condition ijl oj = 1 where J is the number of different information flows.
Let also for each information flow a continuous distribution of message lengths
is given f;(B). Consider, as an objective function, the average benefit, which is
a natural generalization of criterion (3) to the entire data network:

A(Nl,N27...,NJ) :ZOL]/A(DJ,N])dfj(B)

j=1 0
J 5 Dj
B; 1 H
= Yoy 1) 2 (gt tm) (-0
jz:; Y Ni i Cia Crm, ’
d;émj

where Bj = fooo Bdf;(B) the average length of messages in j information stream.
Since each virtual connection has its own partition coefficient, in this relation it is
more convenient to go directly to the required length of the frame L. Substituting

Lo=H+ % from (5) we obtain:
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J J Dj
_ 1
DY Y oY Y
=1 =1  q=1, Jd
d;ﬁm] d#m;
J J
1 _ H H
7mza]Bj (an +tmj) +ZO[] (an +tmj) .
Jj=1 E Jj=1 ’

Hence we determine the optimal value Ly:

Here the parameters C,; and t,,, which determine the narrow link of the j
virtual connection, are found from condition

L +t ( L + ) (7)
—— +ty,, = max | — q .
Cm, P i \Cia

In the case of the uniform network the dependence for the optimal Lg is trans-
formed to the form:

B(H + Ct)

Lo=H _—

0 + D1

where B = Ej:l aj B the average size of messages transmitted over the network
D= Zj:l oD — average length of network transmission paths.

It is not difficult to see that condition (7) uniquely determines the narrow
links of virtual connections only when the packet processing time is zero at
the switching nodes, in general, the parametric dependence of condition (7) on
L does not allow unambiguous definition of bottlenecks before calculating the
optimal frame size. For the case when packet processing time in nodes can not
be neglected, it is possible to propose a procedure for consistent calculation of
the optimal frame size. According to this procedure, the optimal value of L
is calculated iteratively. As initial value L for definition of narrow links by a
condition (7) it is possible to accept L = H. Using the parameters found in this
way Cp,, tm;, j = 1,.J, the frame size is calculated from (6), which is used to
determine the narrow links in the next step. The stop criteria for stopping the
iterative process is the match of the frame size or the set of indices of narrow
links mj, j = 1,J in two consecutive iterations.

5 The Conditions of Feasibility of Unification
of the Non-uniform Phases in the Pipeline

One of the most important conditions for achieving minimum latency on the
line as in (1) is to eliminate the most time-consuming stages of processing
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(transmission) data through their pipeline. Most often, this approach of bringing
the individual phases of the pipeline to a uniform duration of stages is used in
the processor of the data processing or telecommunication systems to eliminate
low-speed, geographically distributed network sections. In this case, the narrow
phases of the pipeline are broken (if possible) into sub-phases of the minimal
complexity of the input of the original or desired conveyor, which leads to an
increase in its length. Let us analyze the conditions under which such a parti-
tion of complex phases into sub-phases reduces the processing time of the data
stream. Consider fully ununiformed pipeline, which should lead to a uniform
with the duration of the phases equal to 7 < 74, d = 1, D. We assume that
each phase of an ununiformed pipeline has a duration 74 = lg, d = 1, D, where
lg > 1—is an integer. Then every d phase of the source pipeline should be
pipelined in the form of stages of the same duration 7. The normalized delay in
the original ununiformed pipeline length is

T(D,N)

T

tn(D,N) =

D
= (N -1, + Lg, 1, = max lg,
(V= Dln+ 2, L I = magly

and in the uniformed — with the resulting number of stages, equal ZdDzl lg, will
take the form

D D
to (Zld’N>: ZN—l—‘erd.
d=1 d=1

We determine normalized to the complexity of the uniformed phase 7 the benefit
from the unification of pipelining IV applications in the form of a difference of the
processing times of the original ununiformed pipeline and extended uniformed
pipeline:

T (Zfi):l lva>
—

D

V(D,N) = t,(D,N) — to (Z ld,N> = (N = D(lm —1).

d=1

Hence it follows that the positive values of the benefit are invariant to the com-
plexity [y of all stages of the pipeline, except the most labor-intensive and pos-
sible when N > 1 and [,,, > 1.

6 Conclusion

The paper proposes the method of optimal partitioning of subscriber messages
into protocol data units by the transport layer according to the criterion of
delays in the multi-hop transmission path. Analytical dependences for the opti-
mal packet size from the structure of network traffic and settings of the virtual
connections are obtained. The terms of the appropriateness of the fragmentation
of messages into packets during its transmission over multi-hop virtual channel
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are obtained. The direction of the further development of research on the unifica-
tion of the pipeline should be distinguished by the task of analyzing the delay in
conditions of rebooting of the pipeline with repeated transmissions of distorted
data in networks or incorrect branch prediction processed by the processor of
instruction stream.
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Abstract. This paper introduces a finite-source retrial queueing system
which models cognitive radio networks. We assume two non-independent
frequency bands servicing two classes of users: Primary Users (PUs) and
Secondary Users (SUs). A service unit with a priority queue and another
service unit with an orbit are assigned to the PUs and SUs, respectively.

In this work, we focus on the non-reliability of the servers and the
collisions at the secondary servers. The primary and secondary servers
are subject to random breakdowns and repairs. A collision is introduced
at the retrial part of the cognitive radio network. This conflict invokes
the interruption of a servicing packet when a new arriving call requests
the server unit.

The novelty of the investigation is the non-reliability of servers and
the inclusion of conflicts at the secondary server.

By the use of simulation, we analyze the effect of the non-reliability
of the servers on the mean response time of the secondary users.

Keywords: Finite source queuing systems - Simulation - Cognitive
Radio Networks - Performance and reliability measures - Collision *+ Non-
reliable servers

1 Introduction

Cognitive radio (CR) has emerged as a promising technology to realize dynamic
spectrum access and increase the efficiency of a largely under utilized spectrum.
As it was defined in [1,2], the cognitive radio network (CRN) is a network made
up of CRs by extending the radio link features to network layer function and
above. By means of CRs cooperation, the network is able to sense its environ-
ment, learn from the history, and accordingly decide the best spectrum settings.

In other words, cognitive radio allows efficient use of the available spectrum
by defining two types of users in wireless networks: licensed and unlicensed users.
An unlicensed user (also called secondary user (SU)) can use the spectrum if it
is not being used at that time by licensed users (also called primary user (PU)).
When the licensed user appears to use the spectrum, the unlicensed user must
find another spectrum to use. see for example [3-5].

© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 194-203, 2017.
DOI: 10.1007/978-3-319-68069-9_16



Performance Simulation of Non-reliable Servers 195

In this paper we introduce a finite-source queueing model with two (non
independent) frequency channels. The cognitive radio architecture consists of
two main networks: The Primary Channel Service (PCS) and Secondary Channel
Service (SCS). The PCS refers to the existing network, wherein the primary users
(PUs) have got a licensed frequency which does not suffer from overloading. The
SCS does not have a license to operate in a licensed frequency. Hence, SCS is
designed to work with PCS to provide the capability to utilize or share the
unused spectrum in an opportunistic way. The secondary users have got also a
frequency band but it suffers from overloading.

In our environment the band of the PUs is modelled by a queue where the
requests has preemptive priority over the SUs requests. The band of the SUs is
described by a retrial queue: if the band is free when the request arrives then
it is transmitted. Otherwise, the request goes to the orbit if both bands are
busy. The primary server unit and the secondary server unit are not reliable and
are assumed to be subject to breakdown and repair. Also, the retrial part of
the cognitive radio network suffered from collision at the secondary server unit,
which means that the arriving packets involve into collision with the servicing
packets [6,7].

Hence, it should be noted that the novelty of this model is the introduction
of the non-reliability of the servers with conflict (collision), and by using sim-
ulation, we analyze the effect of the request generation, retrial, service, failure
and repair rate of the primary and secondary users on the mean response time
of the secondary users.

2 System Model

Figure 1 illustrates a finite source queueing system which is used to model the
considered cognitive radio network. The queueing system contains two inter-
connected, not independent sub-systems. The first part is for the requests of
the PUs. The number of sources is denoted by N;. These sources generate high
priority requests with an exponentially distributed inter-request times with the
parameter A;. The generated requests are sent to a single server unit (Primary
Channel Service - PCS). The service times are supposed to be also exponentially
distributed with the parameter p.

The second part is for the requests of the SUs. There are Ny sources, the inter-
request times and service times of the single server unit (Secondary Channel
Service - SCS) are assumed to be exponentially distributed random variables
with rate Ay and us, respectively.

The servers can be in three states: idle, busy and failed. For the primary
server unit, if it is idle, the service of the generated high priority packet starts
immediately. If the server is busy with a high priority request, the packet joins
the preemptive priority queue. When the unit is engaged with a request from
SUs, the service is interrupted and the interrupted low priority task is sent back
to the SCS. Depending on the state of secondary channel the interrupted job is
directed to either the server or the orbit. The server unit can fail during an idle
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Fig. 1. A priority and a retrial queue with collision

or busy state according to an exponentially distributed time with parameter ;.
If the server fails in busy state, the service is interrupted and the interrupted
request joins the preemptive priority queue. The repair time is exponentially
distributed random variable with a parameter o;.

In case of requests from SUs. If the SCS is idle, the service starts. If it is
busy, the packet looks for the PCS. In case of an idle PCS, the service of the low
priority packet begins at the high priority channel (PCS). If the PCS is busy,
the packet involves into collision with the low priority servicing packet and both
goes to the orbit. the same failure state can occur at the secondary server unit
according to an exponentially distributed time with parameter 75, the repair
time is exponentially distributed with the parameter os. The interrupted packet
also goes to the orbit. From the orbit it retries to be served after an exponen-
tially distributed time with parameter v. All the random variables involved in
the model construction are supposed to be independent of each other.

To create a stochastic process describing the behaviour of the system, the
following notations are introduced

— k1(¢) is the number of high priority sources at time t,

— ko(t) is the number of low priority sources at time t,

— q(t) denotes the number of high priority requests in the priority queue at
time t,

— o(t) is the number of requests in the orbit at time t,

— y(t) = 0 if there is no job in the PCS unit, y(¢) = 1 if the PCS unit is busy
with a job coming from the high priority class, y(t) = 2 when the PCS unit
is servicing a job coming from the secondary class at time t

— ¢(t) = 0 when the SCS unit is idle and ¢(t) = 1, when the SCS is busy at
time t.
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It is easy to see that

le (t)7 (t):()v?a
k() = {m I S

Ny — o(t) — c(t), (t)=0,1,
ka(t) = {N2 —o(t) —c(t) — 1, z(t) =2

Since all the random variables involved in the model construction are assumed
to be exponentially distributed we could create a continuous time Markov chain
with multidimensional state space. However, the main problem is the determina-
tion of its stationary distribution. Instead we prefer the stochastic simulation and
in a further paper we aim to use non-exponentially distributions and to investi-
gate the effect of distribution of specific random time on different performance
measures.

The input parameters are collected in Table 1.

Table 1. List of simulation parameters

Parameter Maximum | Value at ¢
Active primary sources N1 k1(¢)
Active secondary sources | Na ka(t)
Primary generation rate A1
Secondary generation rate A2

Requests in priority queue | Ny — 1 q(t)

Requests in orbit Ny — 1 o(t)
Primary service rate “1
Secondary service rate 2
Retrial rate v
Primary failure rate T
Secondary failure rate Y2
Primary repair rate o1
Secondary repair rate o2

3 Simulation Results

In order to estimate the mean response times of the requests, the batch mean
method is used which is the most popular confidence interval technique for the
output analysis of a steady-state simulation, see for example [8-10].

There are many possible combinations of the cases, we considered only the
following sample results showing the effect of the non-reliability of the servers
on the mean response time of the secondary users.
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Table 2. Numerical values of model parameters

No Ny | Nz | A1 | Az M1 p2 | o1 o2 71 2 v
Figures2 and 3 | 6 6 0.6 | x - axis | 4 4 1 1 0.05 0.05 0.4
Figures4 and 5 | 6 6 0.6 | 0.6 4 4 1 1 0.05 0.05 X - axis
Figures6 and 7 | 6 6 0.6 | 0.6 X - axis | 4 1 1 0.05 0.05 0.4
Figure 8 10 |10 |0.1]0.1 4 4 x - axis | x - axis | 0.05 0.05 0.4
Figure 9 10 |10 |0.1]0.1 4 4 0.05 0.05 X - axis | x - axis | 0.4
Figure 10 10 |10 |0.1]0.1 4 4 0 x - axis | 0 0.05 0.4

For the easier understanding the numerical value of parameters are collected
in Table 2.

Figure 2 shows the effect of the request generation rate on the mean response
time of the secondary users in the two cases: Secondary server unit non-reliable
and both servers non-reliable, where the Fig. 3 shows the same effect in the two
cases of non-reliability with collision in the retrial part of the system. Figures
show the phenomenon of having a maximum value of the mean response time
which was noticed in [11]. The collision involves longer response time for the
users as it was expected.
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Fig. 2. The effect of servers non-reliability on the mean response time of secondary
users vs Ao

Figures4 and 5 shows the effect of the retrial rate on the mean response time
of the secondary users. In Fig. 4, the non-reliability of the primary server unit
does not have any effect on the mean response time of secondary users where the
retrial rate is increasing. However, the non-reliability of the primary server has
an effect on the mean response time which can be shown on the Fig. 5. It means
that in the cognitive radio networks, having a reliable primary server involves
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shortest mean response time of secondary users where there is a collision in the
retrial part of the system.

Figures6 and 7 illustrate the effect of the primary service rate on the mean
response time of the secondary users. The non-reliability of the primary server
has an effect on the mean response time of the secondary users in the case of
the collision where the primary service rate is increasing. A longer response time
can be seen in the case of the collision in the retrial part, as it was expected.

Figure 8 shows the effect of the non-reliability of the servers on the mean
response time of the secondary users where the repair rate is increasing.
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The first case is where the primary server is non-reliable, in this case the value
of the mean response time of the secondary users becomes a constant when the
primary repair rate (o) is higher. The second case is where the secondary server
is non-reliable, in this case, the value of the mean response time of the secondary
users is decreasing when the secondary repair rate (o2) is increasing.

Figure9 illustrates the effect of the non-reliability of the servers on the mean
response time of the secondary users where the failure rate is increasing. As it
was expected, increasing the failure rate involves longer response time in the
both cases (primary server non-reliable and secondary server non-reliable).
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The last Figure shows the effect of the collision on the mean response time
of the secondary users. The conflict on a non-reliable secondary server causes a
very long response time.
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4 Conclusions

In this paper a finite-source retrial queueing model was proposed with two bands
servicing primary and secondary users in a cognitive radio network. Primary
users have preemptive priority over the secondary ones in servicing at primary
channel. At the secondary channel an orbit is installed for the secondary packets
finding the server busy upon arrival. The non-reliability and conflict (collision)
of the servers were introduced. By using simulation, several sample examples
illustrates the effect of the non-reliability of the servers and the collisions at the
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secondary service on the mean response time of the secondary users. This paper
is the starting point of a more complex investigation where generally distributed
random variables are introduced to see the effect of the distribution of the specific
random variable on the main performance measures of the system.
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Abstract. The present paper is devoted to the research of the math-
ematical model of an insurance company in the form of the queue-
ing system with an infinite number of servers. The arrival process of
risks is regarded as a modulated Poisson arrival process. Applying the
asymptotic analysis method under the condition of a high-rate arrivals,
the characteristic function of the probability distribution for the two-
dimensional process of the number of risks and the number of claims for
insurance payments is obtained. It is shown that this probability dis-
tribution can be approximated by Gaussian distribution. These results
can be applied to the estimation of functioning of the various economic
systems.

Keywords: Mathematical model - Insurance company - Insurance pay-
ments - Queueing system - Characteristic function - Asymptotic analysis

1 Introduction

At present, the research and modeling of economic systems are paid a great
deal of attention. These problems is usually related to research in the field of
arrival processes. The results of these studies show that the classic models (for
example, the Poisson ones) are not exactly modeling real arrival processes. Thus,
the problem of the research models of economic systems with reference to this
aspect becomes quite relevant. For example, the intensity of incoming risks into
the insurance company is not a constant and it depends on the impact of external
random factors such as season, state policy, probability of natural disasters,
fashion, etc. On the whole, all papers focused on the research of mathematical
models of insurance company include characteristics of the performance of a
company with a stationary Poisson arrival process of risks. Thus, these models
are reviewed in [1]. In the paper [2] the distribution of claims for insurance
payments with a random value of contract duration is obtained. Applying an
asymptotic analysis method, in [3] we obtain the two-dimensional probability
distribution of the number of risks and the number of payments. The model
with a possibility of reinsurance is investigated in [4]. Papers [5,6] cover the
model with implicit advertisement and one-time insurance payment for limited
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and unlimited insurance coverage. In this paper, we consider the mathematical
model of an insurance company in a random environment, when the rate of the
arrival process, the rate of occurrences of the insured events and the contract
duration are not constants and depend on the impact of external factors and
change with time, which is undoubtedly present in real life.

2 Mathematical Model

Let us have a look at the model of an insurance company with infinite insurance
coverage [7] (Fig.1) in the form of a queueing system with an infinite number
of servers. We can assume that risks (customers) coming into the company form
high-rate modulated Poisson arrival process that is regulated by the random
process k(t) [8]. This process is a Markov chain with a continuous time that
is defined by the matrix NQ of infinitesimal characteristics Nqx,, where k =
1,...,K,v=1,...,K and N has a large value (we suppose that N — oo ).

Let us define the matrix NA with elements N \; on the main diagonal. Here
N\, —the intensity of risks coming into the company, when Markov chain is in
k state, A, —fixed value. Thus, the Markov chain k(¢) state defines the state of
a random environment.

TR

Ni

TR

Fig. 1. Model of the insurance company in the form of queueing system with an infinite
number of servers in a random environment.

After coming into the company the risk makes the insurance contract. The
contract duration is the duration of serving a customer at a server. Each risk that
is in the company during the contract duration generates claim for the insurance
payment with intensity ~, independently from other risks. These intensities also
depend on the environment state and form a diagonal matrix I". Requirements
for insurance payments also form a random process. It is natural to assume that
the claim for payment is determined by the occurrence of the insured event.
The contract duration for each risk in the company is considered to be random
value, exponentially distributed with a parameter py, that is also dependent on
the environment state. These values form the diagonal matrix M.

Let us denote: n(t) —number of claims for payments over the time interval
[0,¢], i(t) —number of insurance risks that are in the company at the moment
t, Py(i,n,t) = P{i(t) = i,n(t) = n,k(t) = k} — probability of a number of risks
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in the company at the moment ¢ equals to i, a number of claims for payments at
the moment ¢ equals to n and environment is in the k state at the moment ¢. The
problem is to obtain the expression for characteristic function of two-dimensional
random process (i(t), n(t)) .

3 Kolmogorov Equations

Let us set up a system of Kolmogorov differential equations [9] for probabil-
ity distribution Py(i,n,t). Using the notation Py (i,n,t) = P{i(t) = i,n(t) =
n,k(t) = k} and applying the formula of total probability, we can write the
following equations

Pi(i,nyt + At) = Py(i,n, t)(1 — N\ AD (L — i At)(1 — ipp At)

X (1 + qukAt) + N)\kAth(Z — ]., n, t) + i’}/kAth(i, n — ]., t) (1)
+ (i + D) AtPe(i + 1,n,t) + > Po(iyn, t) Ngup At + o(At) .
v#k
for k =1,..., K. After performing some transformation, we derive the following

system of the Kolmogorov differential equations for the probability distribution
of the two-dimensional process (i(t), n(t))

OP(i,n, t
% = —(N Ay + i + ) Po(i,n,1) + NAPL(i — 1,n, 1)
K (2)
+ (i DpaPrli + 1m0+ iyePe(ion = 1,6) + 30 P(iin, t)Ngur

v=1

To solve the system (2) let us consider partial characteristic functions:

o0
Hk(ul,ug,t) = Z ejuliejlwnljk;(2’7’rLﬂf)7

1,n=0

for k = 1,..., K, j—imaginary unit. Then, using system (2) and takint into
account the properties of characteristic functions, we will obtain the first-order
partial differential equation for Hy(uq,us,t) in the following form:

OHj,(u1,us, t) j 3
% = NXp(e’" — 1) Hy(u1, ug,t) + ZHv(uhuQ’t)q”k
ot (3)
—i—jw(ﬂk — ppe I 4 g — ype?2)
Uy

Let us consider the vector characteristic function

H(ui,uz,t) = {Hi(u1,uz,t), Ha(ui,uz,t), ..., Hx(u1,uz,t)} .
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Thus, using (3) we can write the matrix differential equation for the function
H(U1 , U2, t)

W = H(u1,up,t)[NA(e’" = 1) + NQ]
o !
4 IH @, u2, )

8’11,1

matrixes NA, M, T', NQ are defined above.

We will solve the Eq. (4) for vector characteristic function H(uy, uz,t) using
the asymptotic analysis method [10] under conditions of high-rate arrival process
and extremely often changes of a random environment states (N — o).

(L= e")M + (1= ™))

4 The First-Order Asymptotic Analysis

Let us make the following changes to the variables in the Eq. (4):

1
= Na Ul = EW1, U2 = EWs, H(u17u27t) = F(whwlatvs) . (5)

Using these new variables we will write the equation for function F(wy,ws,t,¢):

OF (w1,w2, t, &)

ot = F(wh w2, t’ 6) [A(ejwlf - 1) + Q]

,BF(u}l,wg, t, 6)

+7 [(1—e_jw15)M+(1—ejw25)I‘] .

(6)
Denote an asymptotic solution to this equation under the condition € — 0 by
F(wl, w2, t):

8(.01

linéF(wl,wg,t,E) = F(w1,wa,t) .
E—

Let us perform the asymptotic transition ¢ — 0 in the Eq. (6). We will obtain
F(wi,ws,1)Q =0. (7)

Thus, the function F(wq,ws,t) is a solution for the homogeneous system of the
linear algebraic Eq. (7). Solution for this system has the following form:

F(wl,wg,t) = R@(wl,a@,t) , (8)

where &(wy, ws, t) —some scalar function, R—a row vector of stationary prob-
ability distribution of Markov chain k(t), that is defined by the equations system
RQ = 0 and a normalization condition RE = 1, where 0—a row vector with
zeros and E—a column vector with enteries all equal to 1. To obtain function
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& (w1, ws,t), we will sum up equations of the system (6). Taking into account
condition F(wy,ws, t)Q = 0, we can write

F t .
6WE = F(w1,w,t,€)(e’*" —1)AE
9)

.8F(w17w27t35)

_ p—jwie _ pJwaE
+7 Doy [(1 e JME + (1 —e¢ )FE] .

Let us divide left and right sides of the Eq. (9) by ¢ and perform the asymptotic
transition € — 0. We obtain the equation for F(wq,ws,t):

WE = F(w1,w2,t)jw1 AE
(10)
ECACALEIUEVY - L ACIEE D) o)
awl awl

Now we can write down the equation for the unknown scalar function
& (w1, wa, t) considering F(wy,we, t) = RP(w;,ws,t) and RE = 1 in the following
form:

L7
w = @(wl,wg,t)jwlRAE
(11)
g t Lo t
7w18 (w17w27 )RME+Q)26 (w17w2a )RFE
8w1 W1

We have the first-order partial differential equation. Its solution is defined by
solving a system of ordinary differential equations for characteristic curves [11]:

@ _ 0P(wy,wa,t) OJwy (12)
1 ®(wi,wa, t)jwrk Wik — woky

where kK = RAE, k1 = RME, ko = RI'E. Let us obtain first two integrals of
this system. We can write following equation:

@ 8@(&)1,0)2, t)

= —1_= 7 13
1 P(wr,wa, t)jwik (13)
The solution of Eq. (13) we will write down in the following form:
1
t=—In(w1k1 —wake) —InC, (14)

K1
where C is constant. Let us denote C; = C**, then O] = (w1K1 — wakg)e "1 .
The other first integral we will obtain from the equation

0P(wy,wa,t) Owy
B(wy,wa, t)jwik Wik — waks

(15)
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The solution of the Eq. (15) has the following form:

- kwy . Kwo Ko

@(wl,wg,t) = GJT(wll{l - WQHQ) ~f CQ . (16)

Let us introduce an arbitrary differentiated function ¢(Cy) = C. Then the
general solution of the equation (15) will have the following form

Wy . KWo Ko

P(wr,wa, t) =€’ *1 (wik1 — waka) =1 d(w1k1 — wg,‘{g)e*t’“) . (17)

Let us define the partial solution with the help of initial conditions. We have
to define @(wq,ws,0) first. Let us write down value of functions Hy(uq,us,t),
k=1...K, at the moment ¢t = 0:

Hy(ur,u2,0) = Z Z Mt Py (i,m, 0) = Zejulip(i) ;

i=0 n=0 =0

because at the initial moment of time (when the insurance company starts to
work) there were no claims for insurance payments, thus P(i,n,0) = P(i) if
n =0 and P(i,n,0) =0 if n > 0. Let us denote the function Hy(u1,us,0) =
Gr(u1) and the vector function G(uy) = {G1(u1),Ga(u1),...,Gk(u1)}. Then
we will write down the equation for G(uq) in the following form:

G(u)[NA(" — 1) + NQ] + jG (u1)M(1 — e %) =0 . (18)

We will solve Eq. (18) applying an asymptotic analysis method under similar
asymptotic conditions and substitutions:

1
€= Ny Uy = &wn, G(ul) = F(wlae)v e—0.

For the function F(w,€) we can write

Pln, o)A 1)+ Q1+ o)

M(l—-e7")=0. (19)
Let us denote

lir% F(wi,e) = F(wy)

E—
and perform the asymptotic transition € — 0 in the Eq. (19). We will obtain
F(w1)Q = 0, therefore F(w1) = R¥(w;), where scalar function ¥(w;) =
&(w1,ws2,0), R—a row vector of stationary probability distribution of the
Markov chain states. To obtain this function, we will sum up equations of the
system (19), then divide by ¢ and perform the asymptotic transition € — 0. We
will obtain the equation for the unknown function @(w;,ws,0) = ¥(wy) :

’

¥ (wi)k1 = j¥(wi)k (20)
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where kK = RAE, k; = RME.As a result, we obtain the following solution of
this equation under initial condition ¥(0) =1 :

W (wy) = el (21)
Then we can write down the expression for function ¢(Cy) :

. KK
—jwa =

gb(Cl) = [e_t’“ (wlm - LLJQKQ)] 1o (22)
Taking into account (22), the function @(wq,ws,t) will have the following form:
D(w1,ws,t) = exp {jwlﬁ +jw2mt} . (23)

K1 K1

Substituting this expression into (8), we obtain the expression for the function
F(w1,ws,t) in the following form:

F(wy,w1,t) = Rexp {jwlﬁ —|—jw2’m2t} ) (24)
K1 K1
For the function H(u1,us,t) we can write down

H(uy,uz,t) = F(wy,wa,t,e) = F(wy,ws,t) = Rexp {jwlli +jw2mt} .
K1 K1

Let us make in this formula substitutions that are inverse to changes (5). Using
expression (8), we obtain the following expression for the vector characteristic
function of the probability distribution of the two-dimensional process (i(t), n(t))

H(uy, uz,t)E ~ exp {jwl“ + ng’mt}
K1

K KK " (25)
= exp {jNU1 +jNU22t} .
K1 K1
5 The Second-Order Asymptotic Analysis
Let us denote the vector function Ha(u1, ug,t) satisfying the expression:
H(uy,us,t) = Ha(uy, us,t) exp {jNulfi +jNu2Wt} ) (26)
K1 K1

Substituting this expression in the Eq. (4), we obtain the equation for the func-
tion Ha(uy,us,t) :

8H2 (’LL1 , U2, t)
ot

— Ha(u1,uz,t) [jNuQ%I + ng ((1 — e TMYM 4 (1 — ef“2)r>}
1 1

. 6H2 (’LL1, uz, t)
)
U1

= Ha(u1,u2, t)[NA( — 1) + NQ]

+ (L= e )M (1= )],

(27)
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where I—a diagonal unit matrix. Let us make the changes variables:

1

= 20 U1 = Ewi, up = ey, Hs(u1, us,t) = Fa(wy,ws,t,€) . (28)

3

Using the new variables, we can rewrite the problem (27) in the form:

F .
EQM = Iy (wy,ws, t,e)[A(e —1) + Q]

ot
— Fg(wl,WQ,t,E), [ijEWI + Al <(1 — e_jwls)M + (1 — 6jw2€)]._‘):| (29)
K1 K1
JF t . .
—|—j€ 2(&)1,(‘02, 76) [(1 _ e*jwls)M 4 (1 _ e]uJQE)I\] .

(“)wl

Let us denote
liH(l)FQ(wth,t,E) = Fy(wi,wo,t) .
E—

Furthermore, we will perform the asymptotic transition e — 0 in (29), then we
will obtain the equation Fa (w1, ws,t)Q = 0. Thus, the function Fa(w;,ws,t) can
be written in the following form:

Fa(wi,ws,t) = RPy(wr,wo,t) , (30)

where @s (w1, ws,t) —some scalar function that will be defined below.
We will find the solution Fa (w1, ws, t, €) of the Eq. (29) in the following expan-
sion form

Fa(wi,wa,t,e) = Py(wr,ws, t) (R + jwiefy + jwsefa + O (£2)) (31)

where f;, fa —some row vectors, O (52) — a row vector that consist of the infin-
itesimals of the order £2.

Substituting (30) in the Eq. (29) and taking into account RQ = 0, we obtain
the matrix system of the equations for the row vectors fy, fa :

Q= “RM—RA , £Q = “Rky — “RT. (32)
K1 K1 R1

To obtain function @o(w1,ws,t) let us sum up all equations of the system (29).
We will obtain the following equation

2 aFZ(w17w27 ta 6)

o0 E = Fa(wi,ws, t,)[A(e7° — 1) + QE
— Fa(wy,w,t,¢) [jwzs’:”l + 5 ((1 — eI M + (1 — emﬂrﬂ E (33)
1 1
F ¢ . _
4 jedF2lonwa bie) 2(“’5""2’ ) [(1 — 1%\ M + (1 — &) L]E |
w1
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(jwie)?

B +

In the Eq. (33) let us substitute the expansion e/“1¢ = 1+ jw;e +
O (%) and the expansion (31). We obtain the following equality

1)) 2
5276 2(w1,ws, 1) (wie)” +Q —ijE@I E
ot 2 K1

2 2
7452(601,@2,15)117: [(jwls + (““26) > ME + (jwls + (“’125) ) I‘E]
1

= @2((4)1,(4)2,1;)R |:A (jwle -

— P (w1, wa, t)e(jwify + jwata)
X (jﬁﬁgang — QE — juwieAE —&—jiawlME — jnang‘E>
K1 R1 K1
2 6@2 (wl, wWa, t)

te awl

R (wiME — woTE) + O (53) .

In the last expression let us divide left and right sides by €2, and after
using the asymptotic transition ¢ — 0, we obtain the equation for the func-
tion @9 (wy,ws,t):

oP t 0P t
2(w1, wo, ) + 2(w1, wa, )(w1/<é1 — wakg) = Po(wi,wo,t)

8t 6(.«)1
) ) Kk (34)
X |:w1 (f]_A]_ — K,) + w1w2<f2A1 + f]_Az) =+ Wo <f2A2 — 725 >:| s

1

Alfl — K 9
]

under the initial condition @5 (w1, ws,0) = exp { } and where vectors

2/@1
A4, A, are defined by expressions

A1=<“M—A)E,A2=(WI—“F>E. (35)
K1

K1 K1
We will find a solution of the Eq. (34) in the following form:
1
@g(wl,WQ, t) = exp {—2 (Kllw% + 2K12(t)(4)1¢d2 + Kgg(t)wg)} . (36)
Substituting this expression in the Eq. (34), we obtain the following system for

K11, Kia(t), Kaa(t):
Kk =r—-1A,

Kio(t) + k1 K12(t) — ko K11 (t) = —f1 A2 — A4 (37)
1 KK
§K52(t> — K2K12(t> = 27’; — szz 5

where vectors fy, fa are defined by the system (32), Aj, Ap are defined by
expressions (35) and kK = RAE, k; = RME, k; = RI'E. Solving the system
(37) under initial conditions K12(0) = 0, K22(0) = 0, we obtain the expressions
for Kll, Klg(t), KQQ(t):

Kyj=—— (38)
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— A;f Aqfy + Aof
K12(t):(1—e”“t) {/‘0 21 1/{27 1is + 21] ’ (39)
K1 K1
— A f A fy + Asf
K22(t):2t{& A2 ifa ¥ Azh Azfz_’“?ﬂ
K1 K1 2K1 (40)
Lty | F—Aafr 5 Agfa + Aofy
+2(1—e ) 3Ky — 5 K| .
K1 K

Substituting these expressions into (30), we obtain the final form of the func-
tion Fa(wi,ws,t) as following expression

1
Fz(wl,wg,t) = Rexp {—2 (anf + 2K12(t)(4)1bd2 + KQQ(t)W%)} ) (41)

Let us make in this formula substitutions that are inverse to changes (28).
Using (26), we can write the expression for the vector characteristic function
H(u1, uz,t) in the following form:

1
H(Ul,UQ, t) = Rexp {—2 (Kll(NU1)2 + 2K12(t)N2U1’U,2
(42)

Nk Nkk
+K22(t)(NU2)2) +]?1’LL1 +] ot 1U2t} .

Thus, we have the following formula for second-order approximation hg(u1, usg,t)
for the characteristic function h(uy, ug,t) = H(u, us, t)E of the two-dimensional
process (i(t), n(t)) under the condition that N is large enough:

(Kll(NU1)2 + 2K12(t)N2U1UQ

1
h(u1,ug,t) & ha(uy, ug,t) = exp{2

(43)

Nk Nkk
+ Koo (t)(Nug)?) +JTU1 +J - 1U2t} )
1 1

where K11, Ki2(t), Kao(t) are defined by the expressions (38), (39) and (40).

6 Conclusions

In this paper we have researched the mathematical model of the insurance com-
pany in the form of queueing system with infinite number of servers with high-
rate arrival process and in a random environment. We have shown that the prob-
ability distribution of the two-dimensional process of the insurance risks and the
insurance payments under the above conditions can be approximated by the
two-dimensional Gaussian distribution. These results can be used to analysis
the activity of insurance companies and other economic systems.
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Abstract. Tandem queueing systems often arise in wireless networks
modeling. Queueing models are very suitable for network performance
evaluation but the system complexity exponential growth (or state space
explosion) could make the analysis barely feasible. The paper presents
a comparative study of various methods of a state space reduction for
markovian arrival processes (MAP) and phase-type distributions (PH)
applied to tandem queueing systems. The applied methods include non-
linear optimization, EM-algorithm and linear minimization. While most
of the described algorithms are well-studied, a number of issues arises
when applying them to a tandem system of a real wireless network. Par-
ticularly, it is shown that while all the algorithms could be applied to
tandems with a small number of queues, bigger tandems require addi-
tional effort to get the appropriable results. Nevertheless, the results
presented show that the departure MAPs reduction may help to solve
the state space explosion problem.

Keywords: Queueing systems + Random process fitting - Markov chain
space reduction - MAP - PH - Wireless networks modeling

1 Introduction

Wireless backbone networks play essential role in modern communication sys-
tems. One of the crucial applications of wireless networks are backhauls along
the long objects like roads, railways or pipes. Such networks could be used for
data transmission from surveillance cameras or sensors to data centers, as well as
for providing Internet connection. IEEE 802.11 is a frequently used technology
for such networks implementation due to a reasonable data transfer rate and
a wide range of the available inexpensive equipment. While IEEE 802.11-based
networks have many advantages, the performance of multi-hop networks could
be insufficient, thus performance estimation and analysis are required.

A prospective approach for wireless networks performance analysis involves
queueing systems with correlated arrivals. Such models become especially attrac-
tive when Markov random processes are used for both arrivals and service time

© Springer International Publishing AG 2017
A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 215-230, 2017.
DOI: 10.1007/978-3-319-68069-9_18
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distribution modeling. One of the perspective models are tandem queueing net-
works MAP/PH/1/N — --- — ¢/PH/1/N with cross-traffic [20]. In this queue-
ing system data transmission time is modelled with phase-type (PH) distribu-
tions and user traffic is modelled with Markovian arrival processes (MAP) [15].
Representing the user data with Markovian arrival processes allows to take into
account correlated nature of real network traffic [5,13] and PH-distributions
provide sufficient approximation for a complex random process describing data
transmission. The application of the tandem queueing systems described above
for networks with linear topology was studied in general in the previous work [20].

The tandem queueing system analysis is affected by the exponential state
space growth with the number of hops increasing. State space reduction tech-
niques could be applied to solve this problem but their usage may lead to the
precision loss and needs to be analysed carefully. Another issue to solve is to
find a PH-distribution approximating the specific medium access scheme pre-
cisely enough.

While a plenty of MAP fitting approaches exists, their application to the
wireless networks models analysis faces several difficulties. The data transmis-
sion over wireless channels involves a number of constant intervals for channel
listening or scheduling which makes service time distribution more deterministic
and causes additional correlation in departure processes. Another issue relates
to very small values of distributions moments and large values of MAP generator
entries (to be noted, the generator itself may contain hundreds or thousands of
states), leading to the relative errors growth when applying the fitting algorithms
to real data and it further requires an additional effort to improve accuracy. Last
but not least is the performance issue since some algorithms could take hours of
processor time to converge.

The paper presents a comparative study of various methods of state space
reduction for markovian arrival processes and phase-type distributions applied
to tandem queueing systems. We study the application of different methods and
compare their performance and accuracy. We also provide the results of applying
the state reduction techniques to a wireless tandem network containing up to
ten stations and show that the departure process state space reduction methods
could be applied for a real network analysis.

2 Tandem Queueing System

Let us consider MAP/PH/1/N — --- — ¢/PH/1/N system as a wireless net-
work model. This system consists of a chain of servers with PH-distributed ser-
vice time and a buffer size V. Each server receives the output flow from a previous
station and a cross-traffic modelling the data flow from the external users as a
Markovian arrival process (MAP), see Fig. 1.

A Markovian arrival process is defined by an irreducible continuous-time
Markov chain v¢,t > 0 with a finite state space {0, ..., W}. The process v, t > 0
is in state v during exponentially distributed time with parameter \,,v € 0, W.
After the time expires the chain jumps from state v to state 7 with probability
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I -

—> Backhaul network —. > Traffic

Fig. 1. A tandem network model

po(v, ) if the transmission is unobserved and p;(v,7) otherwise. An observed
transmission generates a message. It is also assumed that the process can not
stay in the same state 7 = v without message generation. Matrices Dy, D1 are
used to define the MAP:

-, ifv=1
(DO)V,I/' - / .

Avpo(v, V'), otherwise
(Dl)u,u’ - >\Vp1 (V7 V/)'

The matrix D = Dg + D; defines an infinitesimal generator of the random
process vy, t > 0. Its stationary probability vector 8 is obtained from the system

6D =0, 61=1,

where 0 is a row vector of zeros and 1 is a column vector of ones. The steady-
state probability vector 7 of a discrete time Markov chain embedded at arrival
instants with a generator P = (—Dg)~1D; can be obtained as the solution of
the following linear system:

7P =m, wl=1.

The average arrival intensity of a MAP is A = 1/mw(—Dg)~'1. The k-th
moment and lag-k correlation can be expressed as

my = klw(=Do) %1, k>1, (1)

Azﬂ(fDo)ilpk(fDo)ill —1
L, = k> 1. 2
¥ Nr(—Dg) 21— 1  v= 2)

A phase-type (PH) distribution is defined as a hitting time of the absorbing
state in a continuous-time Markov chain with a single absorbing state. Formally,
a random variable X is said to have PH-distribution X ~ PH(S,7) if 7 €
RY is a probability distribution and S € RY*V is a subinfinitesimal matrix
defining initial states probabilities and transition rates between non-absorbing
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states respectively. The background Markov chain has the following generator

matrix:
S —S1
0 1

The k-th moment E[X*], X ~ PH(S,T) can be found via the expression
my, =k T(=8)7*1, k>1. (3)

Markovian arrival processes and M AP/PH /1/N queues satisty the following
properties [20-22]:

1. The result of sifting a MAP with constant probability is also a MAP;
2. The composition of a finite number of MAPs is a MAP;
3. The departure process of MAP/PH/1/N system is also a MAP.

Note that M AP/PH/1/N queue can lose packets due to the queue overflow
and the flow of lost packets is also a MAP. Taking into account these properties
it can be shown that a departure process form the first server is a MAP and
consequently the arrival processes to all succeeding servers are also MAPs as
well as the departure processes. Thus an iterative procedure can be built to
compute parameters of a queueing network [20].

However a state space of departure process is expressed as a cartesian prod-
uct of the state spaces of MAP-input, PH-distribution and the queue length (the
number of messages being queued and served). This fact results into an expo-
nential state space growth also referred to as a state space explosion, making
a precise analysis barely feasible for an arbitrary number of servers. To solve
the state space explosion problem, the departure process of each queue can be
approximated with a lower order MAP. Alternative approach is to approximate
a process arriving at the queue, i.e. after the composition with cross-traffic.

Another problem considered is to find a PH-distribution adequately describ-
ing the medium access scheme operation. This problem is closely related to MAP
fitting and will also be discussed further.

3 Related Work

There is a plenty of works describing various MAP and PH fitting. These stud-
ies could be divided into three areas. The first direction is the reconstruction
of MAP and PH-distributions based on the known moments and lag-k corre-
lation coefficients [7]. The second direction is to improve distributions already
constructed and to choose the parameters closest (in the sense of some criterion)
to the parameters of the statistical series [16]. The third one is to find MAPs
and PH distributions maximizing the likelihood function based on the statistical
data. These approaches are often based on the expectation-maximization (EM)
algorithms [11,17,19]. We refer a reader to [2,16] for the state-of-art and open
problems in this area.
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Bodrog et al. [3] describe a method to find second-order matrices for MAP
and phase distributions. To describe MAP with a large number of states and
a specified correlation coefficient, it was suggested in [7] to build a phase-type
distribution with a given number of states first, and then use it to construct
MAP matrices. The inter-arrival time distribution is fitted by a PH distrib-
ution where the PH generator determines matrix Dy of MAP and the initial
probability vector 7 determines the steady state probability vector of the MAP
embedded process. On the next stage the matrix D; is constructed by approxi-
mating the lag-k correlation values. Note that the system for matrix D; contains
2n 4+ 1 equations for n? unknowns leading to a linearly constrained non-linear
optimization problem. The matching of order 3 and higher phase distributions
was considered in [1,8,9].

Bobbio et al. [1] proposes a method to compose minimal order phase type
distribution with first three moments and present a simple transformation from
APH(n-1) (acyclic phase type distribution of order n — 1) to APH(n) with
an additional phase. The authors also evaluate the bounds for the first three
moments of APH(n).

Telek and Horvath [18] present the minimal representations of PH and MAP
(Markovian, Jordan, Laplace, moments and MRP representations) and trans-
formations between them. They construct an algorithm to optimize Dy and D,
matrices of MAP by means of a transformation matrix B such that matrices
B71DyB and B~1D;B minimize a goal function (or improve its value). The
method allows improving any MAP fitted by other methods.

Casale et al. [4] propose a MAP fitting algorithm based on the first three
moments and high order autocorrelations. They define a process composition
method called a Kronecker Product Composition (KPC). Given J MAPs with

matrices D ((Jj) and D gj)» j =1, J, the composed MAP is defined as
Dy = (_1)J—1D((Jl) ®--- ®D((J']), Dy = Dgl) & - ®D§J) (@)

and can be constructed of any order to fit data traces or reduce a state space of
an arbitrary MAP. The algorithm consists of three steps. The first step fits the
sample squared coefficient of variation and correlation coefficient to minimize the
distance between sample lag-k correlations and numerical ones. On the second
step, the first and third moments for each MAP D(()] ) and ng ), j =1,J, are
determined from an acceptable region and further optimized to minimize the
distance between the sample joint moments and their estimated values. Based
on the optimal values of the first three moments and the correlation coefficients,
we can construct J MAPs D(()J) and ng), j =1,J (e.g., of the second order) and
compose the final form of matrices (4).

In this paper we use three different approaches to reduce the tandem depar-
ture processes state spaces: MAP fitting as a solution of nonlinear optimization
problem, EM-based approach [1,8] and a method of building a phase-type dis-
tribution with a given number of states and construction of a D; matrix for
fitting lag-k correlation coefficients [7]. We also use G-FIT approach based on
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EM procedure [19] to fit the PH distributions. These methods will be described
in more details in the following sections.

4 MAP and PH Fitting

The fitting methods allow to construct a markovian arrival process or a phase-
type distribution using a given trace (a set of samples) or a set of estimated
metrics including moments and lag-k autocorrelation coeflicients. In the tandem
queueing system described above the fitting methods allow to approximate an
operation of a specific communication protocol as well as to reduce the size of
the departure processes (the latter case will be discussed in more details in the
following section). Here we describe several fitting methods as they are; we sup-
pose the data trace or estimated moments and lag-k autocorrelation coefficients
values to be given as an input. The described methods include the expectation
maximization (EM) algorithm [11,17,19], search for the MAP or PH as a solu-
tion of the nonlinear optimization problem constrained by the given moments
and lag-k values, and a sequential independent fitting of the PH distribution
using the trace or estimated moments values and MAP matrix Dy using lag-k
values constraints [7].

4.1 Fitting by Trace

The paper [19] describes a PH distribution fitting technique based on the EM
algorithm (the authors call this algorithm G-FIT). MAP fitting using the EM
algorithm is described in the papers [11,17]. While both algorithms will be used
in numerical experiments, we describe briefly only G-FIT algorithm here due to
the paper space limitations. The details of the algorithms could be found in the
papers cited above.

G-FIT algorithm attempts to find a PH distribution fitting the given trace
as a Hyper-Erlang distribution. Let X be a Hyper-Erlang random variable
with M mutually independent Erlang distributions weighted with probabili-
ties & = (@, ..., ), m-th chain containing r,, phases jointly forms a vector
r = (r1,...,ry) and its intensities describe a vector A = (Aq1,..., Ay ). Then
the pdf of X is fx(x) = Z%:l am%)\me*“”.

The parameters (7, a, A) are chosen while fitting. Consider EM algorithm
to maximize a log-likelihood expression. The authors first apply it for a general
set of independents distributions with density functions p,, such that p(z|@) =
2%21 mPm(2|0m) where @ = (o, 0) and 6; is a parameter (or vector) of p,.

Then the authors suggest considering an unobserved random variable Y hav-
ing values in {1,..., M} and specifying which component is used to generate a
specific item x of the trace in order to simplify the a log-likelihood calculation.
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Applying this idea the expected value of complete log-likelihood is

Q(0,0)= Z Z log(aum)g(mlz, ©) o)
5
Log(pim (21[0m))a(mly., ©)

Jr
ﬁmin
MM

H
~
Il

—

where @ is an initially chosen parameter set, required to compute a conditional
pdf of Y:

3 Qy, 1|0
q(yxlzK, ©) = My"pyk( k10y, ) . ©)

m=1
Computing expression (5) for some vector O is a E-step of EM algorithm. For
performing M-step (maximization), parameters © = (a, 8) maximizing Q (O, é)
should be found. & can be found by applying Lagrange multipliers to (5); to find
0 a specific pdf required, so let @& = X for Hyper-Erlang. Then

K A
cim Z (e, ©),  Am= a(mlzs, ©) -
kz Z q(m|xl€a @) c Tk
k=1

4.2 Fitting as Optimization

The MAP or PH distribution fitting may be described as a solution of the opti-
mization problem constrained by the values of the moments and lag-k autocor-
relation coefficient values. Let mp,  be the vector of the first K, moments of
MAP, 1k, be the vector of the first K lags given in (1) and (2) correspondingly;
p and v be the vectors of moments and lags of a random process to fit corre-
spondingly. Using this notation the problem of MAP fitting can be formulated
via solution of a nonlinear algebraic system

m m(D ,Dl) = U,
{IKLK(D(),ODl) = V.“ (8)

System (8) should be solved for Dy and D; such that D = Dy + D is
an infinitesimal generator and Dy is a subgenerator. By these restrictions, the
system may have no solution for some pairs (u, ) and the order N thus a MAP
with such lags and moments does not exist. It should be noticed that there are
no known closed form margins for the moments and lags values for MAPs and
PH distributions of an arbitrary order making the problem much harder.

We suggest that approximate solution of the system can be brought to an
optimization problem as follows. Define a loss function Z(:) = (| - [)? and a loss
functional

Q(Do, D1) = Z(mg,, (Do, D1) — p) + Z(1x, (Do, D1) = v). 9)
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Then a proper MAP is found as a solution of (Dg, D;) = arg min Q(Dy, D1).
Do,Dy
The fitting procedure is iterative and start with the lower possible N. The tol-
erance € should be chosen such that min Q(Dg, D1) < € holds. If for given N
there is no solution (Dg, D7) the order N should be incremented and the new
fitting procedure starts until the criterion is satisfied or the maximum number of
iteration is exhausted. Otherwise, the pair (Dg, D1) with the lower error min @
is supposed to be a solution. Also another loss function .Z can be considered.
For PH distribution the optimization problem can be simplified as it has
zero lags and less difficulty in moments computation. The loss functional for PH
fitting is as follows:

Q(r,5) = Z(mk,, (7,5) — ).

The problem described is generally nonconvex which leads to local optima
solutions and require additional effort to randomize the initial vectors and look
for the best solution.

4.3 MAP Fitting by Given PH

The MAP moments depend on the matrix Dy and a steady state probability
distribution of the embedded discrete process which allows to fit them indepen-
dently of the lag-k autocorrelation values; the lag-k values could be used to find
the appropriate matrix Dy [10]. Suppose we have a PH(7, S) distribution. It is
assumed that the MAP(Dg, D1) has Dy = S and # = 7 where & is a steady
state probability distribution of the embedded Markov chain with the transi-
tion matrix P = (—Dg) ! D;. Combining the restrictions for D; to be held and
considering the autocorrelation ¢, the authors [10] obtained a linear system:

Dl]-:_DO]-a 7T(—D0)71D1 = Tr, 6D1f:’U

where the values 4, f and v can be derived from the lag-1 expression (2). Con-
sidering a vector x = [dy,ds, ..., das]|T where d; is the i-th column vector of Dy,
the authors has transformed these three matrix equations into one that have the
following form:

I I I
04 g
vy
x=|=m (10)
Y v
|10 f26 ... fad]

This linear equations should be solved for non-zero elements of x. To find
the higher-order lags the authors suggest to use an optimization procedure.
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5 State Reduction

While the process fitting is the only approach for obtaining PH distributions of
the service time when only the trace is known, the departure MAP processes
state space could be reduce by other methods. Generally any reduction method
supposes the given matrices Dy and Dy of a MAP to decrease the order. For
PH-distribution the problem is set in the same way taking into account a vector
7 and a matrix S instead of Dy and D;.

To apply the fitting methods described in the previous section to MAP state
space reduction, the moments and lags of the source MAP should be calculated. If
the fitting method requires a trace (e.g. EM algorithm), the source MAP should
be randomized to get a trace. It should be noticed that for the MAPs with a
huge number of states the consistent trace may contain over a million samples.
To simplify the problem and avoid the randomization, two additional techniques
of state space reduction are described below including the nonlinear optimization
problem solving constrained by the distance between the cumulative distribution
functions and cutting the tail states of the QBD (quasi-death-and-birth) process.

5.1 Reduction as Optimization

The state reduction can be performed by solving an optimization problem. For
that aim let us consider the difference of the stationary cumulative distribution
function of the given MAP and some lower order MAP

AF(t) = F(t) — F'(t) = w'ePo'1’ — wePo'1.
Taking into account that eo¢ ~ I+3 | L Dt* for some K and 71 = /1’ = 1
this difference takes a form:
K tk K
AF(t) =Y — (7' (Dy)*1 = aDf1) = > w(k,t) (x'(DG)¥1' — =Df1), (11)
k=1

B k!
k=1

where w(k,a) = a*/k! is a weight for the k-th power of Dy. Multiple ways to
define the weights exist; here we define the weights as % applying a = T
that arises out of integrating (11) in a range [0, 7]
T K T
AF = /AF = /k'dt (7' (D))*1" — wDE1)
0 k=1 1o
Taking Dy = S, D] = 7 in case of PH and Dy, D; in case of MAP reduction,

the loss functional can be expressed as

Q(DévD/l):g(AF(D(/hD/l)) (12)
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5.2 State Truncation

This method is applied to servers without the memory, i.e. MAP/PH /1 systems
when the utilization coefficient is sufficiently small. A system with a limited
memory could be approximated if it has a very large capacity. The authors of [6]
consider the departure MAP as a pair of block matrices and suggest to trunk the
tail blocks stating with some level N 41 by merging the stationary probabilities

. . + [ee) . . . . .
into N-th state: wy = > .= v | 7; and considering matrices:

/:10 = Ao+ A,
Ay = diag(ﬂ'N)diagfl(ﬂ'N + WJJ(,)AQ,
Ay = diag(w)diag™ ! (mx + 7)) Ag

to describe the reduced matrices of the departure MAP

A1 A() BQ
, D =| A . (13)
Ao Ay Ay

The matrices A;, B; fori = 0, 1, 2 describing the blocks of the initial departure
MAP and their definition are provided in [6]. This method allows to restrict the
state space growth by decreasing the effective queue length. Unfortunately, the
state space continues exponential increasing along with the number of queues in
the tandem since the size of the service time PH-distribution is greater than 1

which makes the method not applicable to analyse a tandem queuing systems
with an arbitrary number of queues.

6 Experimental Results

In the numerical experiments we used three different methods of MAP fitting:

1. Searching for a MAP (defined by the matrices Dy and D7) as a solution of
an optimization problem constrained by the values of the first moments and
lags (this method is referred to as OPT below).

2. MAP fitting using the EM algorithm [11];

3. Successive independent fitting of Dy matrix as a PH distribution using the
moments or a trace provided and looking for D; as a solution of the opti-
mization problem constrained by the lag-k correlation coefficients (INDI in
the following text). The algorithm was described in [7].

Queueing system analysis framework [14] was developed in the Python 3
language using NumPy/SciPy packages. We used EM algorithms implementa-
tions from a BuTools [12] package. Simulation models were developed using
OMNeT++ network simulator. All the experiments ran on a generic laptop
with i7 processor and 16 GB of RAM.
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While the OPT method shown good results, it often fell into a local optima
and required initial solutions randomization to converge good. The key problem
is a lack of easy checkable conditions on the solution existence and moments and
lags values, so it was often hard or impossible to find a solution of a given order
under the given constraints while the attempt to find it takes significant time. It
should be noted that algorithm converged rapidly for small MAPs and PHs with
up to 8 states but required lots of time when called for bigger orders (5 min and
more). It was also noticed that order increasing didn’t provide better results in
many cases so we decided to use the algorithm with small orders. The solution
error was also reduced by normalizing the moments and the Dy and D; matrices
consequently.

The EM algorithm provided good results but required too much time to
converge. Typically, it takes up to 20 min to fit a given trace with 40000 samples
using a MAP with 12 states. While it is possible to speed up the algorithm
as described in [19], it didn’t completely solve the problem and the algorithm
still required lots of processor resources. Since the algorithm had to be applied
several times, we decided to limit the search with MAPs containing up to four
states. The similar problem arose during G-FIT execution while it still allowed
to fit PH distributions with up to 10 states in a reasonable time. Due to the
order limitation, the EM algorithm for MAP fitting provided the worst results
considering moments and lags matching.

The third (INDI) approach was implemented as described in the paper [7].
We tried both nonlinear optimization and G-FIT [19] algorithm for fitting the
PH distribution for Dy matrix construction, and G-FIT provided much better
overall results. To keep the problem of D; construction linear, we limited the
constraints with lag-1 correlation. In this case the problem could be solved as a
linear minimization problem ||Az — b||2 — min. The key problem was that the
existence of D matrix was dependent on the particular Dy and it sometimes
required several Dy fitting iterations to find an appropriate matrix to make the
D1 construction with a reasonable error possible.

First of all, the fitting algorithms were applied to fit the PH-distribution
approximating data transmission intervals. To simplify the analysis, a tandem
consisting of two stations was considered. The wireless channel bitrate was 5
mbps (e.g. a slow sensor network link) and an arrival traffic bitrate was 2.8 mbps.
The arrival traffic was described with a MAP approximating a real network trace
LBL-TCP-3 described in [10]:

—508.11 0 0 0
Do = 0 —526.82 0 0
0 0 —112.88 0
0 0 0 —292.87
281.9  226.06 0 0.15872
D, — 526.66 0.024505 0.13422
0 0 82.094 30.79

0.056728 0 38.799 254.01
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Fig. 2. Service time fitting. Lines labeled as ‘opt-n’ show solutions of a nonlinear opti-
mization problem and ‘gfit-n’ show G-FIT [19] where ‘n’ is the order of PH

Table 1. Moments and lags of the approximated departure processes from the first
station.

Algorithm Order | M1 M2 M3 Std. Lag-1 | Lag-2
Original MAP 192 0.00453 | 0.000048 | 1.032e-06 | 7.329e-10 | 0.176 | 0.126
Nonlinear opt. 6 0.00453 | 0.000048 | 1.032e-06 | 7.328e-10 | 0.176 | 0.126
EM 3 0.004371 | 0.00005 | 1.248e-06 | 9.566e-10 | 0.109 | 0.048
G-FIT and linear opt. 8 0.00428 |0.000038 | 6.079e-07 | 3.982e-10 | 0.176 | 0.075

The packets sizes were assumed to have a normal distribution truncated to
positive values with an average value 12 kbit and standard deviation 3 kbit.
We applied G-FIT algorithm [19] and nonlinear optimization approach with a
number of moments equations equal to 3 for PH orders 4, 6 and 8. The results are
shown on Fig. 2 (while more lags could allow to fit the service time distribution
better, it was crucial to use a small distribution due to the state space growth
appearing on the next stations). It should be also noticed that applying G-FIT
for a greater number of states takes a rather long time due to combinatorial
complexity of inspecting various structures of the Hyper-Erlang distributions.

The PH distribution obtained with G-FIT containing 8 states was used for
the later computations. This distribution matched the mean value and had a
32% error in standard deviation. It was used to build the departure process
of the first station having capacity 5, which was approximated with the EM-
algorithm [11], nonlinear optimization with moments and lags constraints and
the approach of independent construction of a Dy matrix as a PH-distribution
and D; matrix with linear constraints [7]. In the latter approach only the lag-1
correlation coefficient was constrained. The results are shown in Table 1. The last
row describes a separate Dy fitting with G-FIT and D; as a solution of linear
minimization problem [7]. It should be noticed that EM-algorithm was used for
a small MAP order equal to 3, its stop condition was reduced to 10~ and the
maximum number of iterations was 100. This could be the reason of the worst
results shown.

The system size distribution of the second station was also investigated. Since
the arrival traffic required more than a half of the modeled channel bandwidth,
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System size distribution System size distribution

at the 2nd station with cross-traffic at the 2nd station without cross-traffic
% Original tandem % Original tandem
0.4 {__ Approximation opt-4 4 Approximation opt-4
E Approximation em-3 Approximation em-3
E _®_ Approximation indi-6 _®_ Approximation indi-6
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Fig. 3. Number of packets probability distributions of the second station with and
without the cross-traffic and various fitting algorithms.eps

End-to-end delays Busy ratio
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0.08 1 —— Map/PH/1/N approximation —— Map/PH/1/N approximation

Delay, sec.

T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Station Station

Fig. 4. End-to-end delays and busy ratios computed for a wireless network tandem
model.

adding the cross-traffic caused a system overflow. All the described algorithms
allowed to get sufficient approximation of the system states distributions as
shown on Fig. 3.

Finally, the OPT approach was applied to fit the departure MAP processes in
the model of a real wireless network containing 10 nodes and operating under the
IEEE 802.11 standard. To simplify the simulation a simple DCF channel access
scheme was considered and the wireless channels provided 54 mbps bitrate. Each
arrival process was described with the same MAP as above. The cross-traffic
arrived at each wireless station.

The measured transmission time was fitted by the first three moments with
0.05 relative error with a PH-distribution PH (S, 7):

—6267.56 1412.75 0.001814 943.60
1008.28 —3337.85 0.000100 258.21
0.002726 0.0000027 —107.766 2.744
1565.226 1563.65  3.9327 —6778.49

S =

T= [0.038351 0.961517 0 0.000132]

The measured end-to-end delay and busy ratios are shown on Fig. 4. The busy
ratios were approximated well but end-to-end delays approximated values were
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not precise. This problem could be solved with other approximation methods or
fitting PH distributions and MAP arrivals with higher order processes.

7 Conclusion and Future Work

It was shown that departure MAP state space reduction provided sufficient pre-
cision while allowing to analyze the tandem queueing systems of an arbitrary
length. However the fitting algorithms performance along with time limitations
may lead to accuracy degradation. The nonconvex nature of the problems arising
leads to local optima convergence and impossibility to find the optimal solution
in many cases. To face these issues, a randomization of initial parameters should
be applied to find multiple optima and more efficient algorithms along with the
existing algorithms optimization should be explored. These investigations are
the focus of our future work.

The combined PH fitting using G-FIT algorithm with D; construction using
autocorrelation coefficient constraint provided a good accuracy with sufficient
performance and looks promising. The best results were retrieved with the solu-
tion of the nonlinear optimization problem constrained by the moments and
lag-k autocorrelation coefficient constraints while the EM algorithm application
to MAP fitting was limited by the performance issues. While several approaches
were studied in this paper, there is still a plenty of methods to be examined,
including the KPC approach. These methods would be applied and optimized
in the future works.

Finally, it should be noticed that the lag-k autocorrelation coefficients of the
departure processes grow along with the number of stations in the tandem net-
work. While the typical moments values allowed to fit the service time distribution
with a good precision, it was often a problem to find a valid MAP process with
the precise autocorrelation coefficients values. The solution may be found using
the processes with the greater number of states, but this requires more intelligent
methods of predicting the structure of the approximating MAPs due to perfor-
mance limitations. These methods will also be studied in the future works.
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Abstract. The volume of mobile traffic is growing every year. More
and more frequency resources are needed to provide users services with
a required level of quality of service (QoS). One of the possible solu-
tions to a problem of radio spectrum shortage is the sharing of spectrum
between the owners and LSA licensees. Licensed shared access (LSA)
framework gives the owner priority in spectrum access, to the detriment
of the secondary user, LSA licensee. If the mobile operator users of both
need continuous service without interruptions on the rented part of the
spectrum, the rules of shared access should guarantee the possibility of
simultaneous access. In this paper we simulate a queuing system and con-
sider a scheme model of LSA framework with the limit power policy. We
propose formulas for calculation of main characteristics of the model — a
blocking probability and a mean bit rate. These characteristics are very
important in teletraffic theory. For example, blocking probabilities help
to determine the number of required channels.

Keywords: Queuing system - Licensed shared access + Limit power pol-
icy - Blocking probability - Mean bit rate

1 Introduction

Teletraffic theory is a mathematical theory, or one of branches of queueing the-
ory. It is used for studying and designing telecommunication systems (telephony,
computer networks, etc.). More generally, one can set the goal of teletraffic the-
ory: construction of mathematical models that map real processes in information
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distribution systems and development of methods for assessing the quality of
their functioning [11-13]. The number of user devices connected to a high-speed
network as well as the volume of traffic transmitted between them is constantly
increasing [1]. Consequently, an increasing amount of resources is needed to pro-
vide quality services. The problem of resource shortage could be solved by using
the licensed shared access (LSA) framework [2-4]. LSA framework could improve
the efficiency of resource usage and ensure the access to a spectrum which oth-
erwise would be underused [5]. By using this framework, the spectrum is shared
between the owner (so-called incumbent) and a limited number of LSA licensees
(mobile operators). The LSA licensee has access to single-tenant band (the part
of the spectrum, belonging only to the mobile operator) and rents the multi-
tenant band (the part of the spectrum, belonging to the incumbent and the
mobile operator), whereas the incumbent has access only to multi-tenant band.
For interference coordination between the incumbent and the LSA licensee three
policies [6] are proposed: limit power policy, shutdown policy, and ignore policy.
According to the limit power policy [7], there is no interruption of service due
to the incumbent accessing spectrum. It implies managing the user equipment
power in uplink and eNodeB (eNB) power in downlink. According to shutdown
policy [8,9], at any time, LSA spectrum could be used by incumbent or LSA
licensees but not together at once. According to ignore policy LSA licensees use
the shared spectrum without interference coordination.

In this paper we propose a scheme model of 3GPP wireless network within
LSA framework [10]. For efficient interference coordination we consider the limit
power policy, which allows us to continue the service of multi-tenant band users,
even if the incumbent needs this part of the spectrum. In this case, the service
of mobile operator users will not be interrupted, but the service bit rate will
be reduced (degraded). At this time, the multi-tenant band goes into the so-
called unavailable mode and user’s requests arrived on the multi-tenant band
continue their service at the degraded bit rate — minimum bit rate. After the
incumbent releases the multi-tenant band, the band goes from the unavailable to
the operational mode and the service bit rate for the connected mobile network
users increases to the maximum value - maximum bit rate. The service on the
single-tenant band is always carried out at the maximum bit rate.

This model is an improved version of the model described in [7]. One of the
main disadvantages of the previous model was that after the disconnection the
band was not recovered which means that even after the band was vacated by
the owner, the service continued with degraded quality until all users of multi-
tenant band were served. In our model this drawback is eliminated, the band
goes into operational mode as soon as the owner frees it, while the quality of
user service is increased to the original level.

This paper is organized as follows. In Sect.2, we propose a mathematical
model of the LSA framework with the limit power policy. In Sect. 3, we analyze
main characteristics of the model: the blocking probability and the mean bit
rate. Finally, we conclude the paper in Sect. 4.
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2 Mathematical Model

2.1 General Assumptions and Parameters

We propose a scheme model of a single mobile network cell with LSA framework
and limit power policy. We suppose that the mobile operator has access to the
single-tenant band with the total capacity of C; bandwidth units (b.u.) and rents
the multi-tenant band with the total capacity of Cy b.u. Let the arrival rate A
be Poisson distributed and let the service time be exponentially distributed with
mean g~ 1. Then, we denote the corresponding offered load as p = \/u.

Each request processed on the single-tenant band is served at the maximum
bit rate dyax. Request on the multi-tenant band could be served at the maximum
bit rate dyax or at the minimum bit rate d;, depending on the state of the
multi-tenant band — operational or unavailable. Figure1l shows the scheme of
the model.

We assume that the multi-tenant band goes into unavailable mode with rate
« and recovers into operational mode with rate 3. Recovery and failure intervals
follow the exponential distribution. All necessary notations are given in Table 1.
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Fig. 1. The scheme of the model.

2.2 Limit Power Policy

Let us consider in more detail the limit power policy. First of all, we determine
the rules for accepting requests for service.
When a new request arrives, four scenarios are possible:
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Table 1. System parameters

Notation | Parameter description

Cy Total capacity of the single-tenant band

Cso Total capacity of the multi-tenant band

A Arrival rate

ut Mean service time

Amax Maximum bit rate

dmin Minimum bit rate

o Rate of a transition the multi-tenant band into unavailable mode
Jo] Rate of a transition the multi-tenant band into operational mode
n1 The number of single-tenant band users

No The number of multi-tenant band users

s The state of the multi-tenant band, s equals to 1 if the band is

operational and s equals to 0 if the band is unavailable

e The request will be accepted for service on the single-tenant band, if the
single-tenant band has not less than d,.yx free b.u.

e The request will be accepted for service on the multi-tenant band, if the single-
tenant band has less than d,.x b.u. free, the multi-tenant band is operational
and has not less than d,.x b.u. free.

e The request will be blocked, if the single-tenant band has less than dax b.u.
free and the multi-tenant band is unavailable or has less than d.x b.u. free.

Let us note if the owner does not use the frequency spectrum of the multi-
tenant band, the data transfer can be carried out at the highest possible rate,
which equals to dp,ax, in other case the service bit rate for the mobile operator
users is degraded from the maximum dyayx to the minimum d,;, value. When
the multi-tenant band recovers, the bit rates are switched back and all users that
have been degraded continue to receive service at bit rate dpax-

2.3 System of Equilibrium Equations

The behavior of the system is defined by the Markov process X (t) = {(N1(¢),
Ny(t), S(t)),t > 0}, where N;(¢) is the number of single-tenant band users, Na(t)
is the number of multi-tenant band users, S (t) is the state of the multi-tenant

max

band at the moment ¢ > 0. Let us denote N; = L d01 J the maximum number

of single-tenant band users, Ny = { d02 J the maximum number of multi-tenant

max

band users. Then the system state space is the following:

X :{n1:0,...,N1, HQZO,...,NQ, s=1
Vn=0,...,Nq, ’I’LQZO,...7N2,S:O}. (1)



Analyzing of Licensed Shared Access Scheme Model 235

State space (1) could be divided into two subspaces: {ny = 0,..., Ny, ng =
0,...,No, s =1} if the multi-tenant band is operational and requests could be
served at the maximum bit rate dyax, and {ny = 0,..., N7, ny = 0,..., N,
s = 0} if the multi-tenant band is unavailable and requests continue their service
at the minimum bit rate dp;,. Figure2 shows the structure of the state space,
considering the two subspaces.

The corresponding Markov process X (¢), which representing the system’s
states, is described by the following system of equilibrium equations

p(ny, na, $)[A-I(ny < Ny) +A-I(np = Nyp, ng < Nay, s = 1)

+ (m+n)p+a-I(s=1)+p5-1I(s = 0)]

= p(n1+1,n2,s)[(n1+1) - T(ny < N1)]

+p(ni,n2+1,5)[(n2 +1) p-I(ng < Na)] (2)
+ p (1 —1,n2,5) [A-I(ny > 0)]

+ p(ny,ne —1,1)[A-I(ng = Ny, ng >0, s =1)]

+ p(n1,ng, 1) [a-I(s=0)]+p(n1,ne,0)[B-I(s=1)], (n1,ns2,s) € X,

where (p (n1,n2,s)) p is the stationary probability distribution.

(n1,n2,8)€EX

Fig. 2. The state space.
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Fig. 3. Central state.

2.4 Infinitesimal Generator

The system probability distribution is calculated as the numerical solution of the
system of equilibrium equations p-A = 0, p-17 = 1, where A is the infinitesimal
generator of Markov process X (t). Let us denote n = 0, N1 + Ng — the number
of users.

The infinitesimal generator A has a block tridiagonal form

No Ap -+ 0 0
M; Ny --- 0 0
A: . . . . .

0 0 'NNl + N2—1 ANl + N2—1
0 0 - MN1+N2 NN1+N2

Blocks A, n = 0, N7 Ny — 1 have the sizes

(2n+2) x (2n+4), n=20, Ny —1,
(2N2 —|—2) (2N2 —|—2) n = Ny, Ny —1, if Ny > No,
( (N1 + N2 —n)+2)

( (N1+N2—7’L)), 7’L=N17N1+N2—1.

dim A, =

and the following form:
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(1) TL:O,NQ—l

O -
ON---
00---
00---
(2) n = No, Ny —1,if Ny > Ny

00---
ON---
A0 ---

00---
100

(3) ﬂ:Nl,N1+N271

_00

0000

00 ---
ON---
20 ---
A, = ON---

00---

0000
0000

A000
0X00

00007
0000
0000

2000
0A00 ]

00]
00
00
00

A0
0\

Blocks M,,, n = 1, N; + N5 have the sizes

(2n +2) X 2n,

(2N2+2) X (2N2+2),
(2(N1 + N2 —n) +2)
X (2(N1+ Ny —n) +4),

dimM,, =

and the following form:

= 17 N?a

n
n = Ny + 1, Ny, if Ny > No,

’I’L=N1—|—1,N1—|—N2.
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(l)nzlaNQ
[np 0 0 0 0 0]
0 nu 0 0 0 0
p 0 (n—1)u 0 -0 0
0 u 0 (n—Dp---0 0
0 0 21 0 -0 0
M, = 0 0 0 20 0 0 7
0 0 0 0 TN
0 0 0 0 -0
0 0 0 0 ny 0
| 0 0 0 0 0 npy |
(2) n=Ny+1, Nl, if Ny > Ny
w0 N 0O 0 0]
Op 0 Nip 0 0
M.=100 0 0 - p 0>
00 0 0 -0 pu
00 0 O ---nuoO
100 0 0 0 nu
(3)n:N1+1,N1+N2
(m—N)p 0  Niyg 0 -~ 0 0 0 0
0 (m=N)pg 0 Nig-—- 0 0 0 0
Mo=| R :
0 0 0 0 -~ Nopp 0 (n—No)p 0
0 0 0 0 - 0 Noppg 0  (n—No)p
Blocks N,,, n = 0, N; + N5 have the sizes
(2n+2) x (2n+2), n=0,Ny— 1,
. 2N +2) X(2N2+2) n:Ng N1+N2—2
d Nn: ( 2 ) 9 )
H (2(Ny + Ny —n) +2)

X (2(N1—|—N2—7’L)+2),7’L:N1 +N2—1, N1—|—N2.
and the following form:

(1) n :O,Nl—l

—(A+np+p) B 0 0
! —A+npu+a)--- 0 0
Ny, = : : : :
0 0 o= AN+ np+pB) B
0 0 a —(A+np+a)
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(2) TL:Nl,N1—|—N2—1

—(u+p) B 0 0
o —A+np+a)--- 0 0
No=| S ; ,
0 0 o= (N np+pP) &)
0 0 a —(A+nu+a)

_ |~ (wutp) B
Nn = a —(np+ @)

3 Numerical Analysis

3.1 Performance Measures

Having found the probability distribution p (n1,ns,s), (n1,n2,s) € X, one may
compute performance measures of the considered scheme:

e Blocking probability

No
B=> p(N,i,0) +p(Ni, Na, 1); (3)

i=0
e Mean bit rate
n1dmax + n2dmax (s =1) + nadninI(s=0) |

2 (ny.n, )EX/(0,0,0),(0,0, 1) 71+ na p(ni, n2,s)
b

(4)

a =
Z(nl,ng,s)EX/(070,0), (0,0, 1)p(”1u na, s)

e Mean bit rate on the multi-tenant band

Z(nl,ng,s)GX:ng;éO (dmax 'p(nh na, 1)7 + dmin 'p(nh na, 0))

Z(nl,ng,s)eX:ng #Op(nl’ na, 5)

d(Cy) =
(5)

3.2 Numerical Example

Let us assume that users view short video in high quality at a bit rate dpnax= 1
Mbps. If a part of the frequency band has to be returned, the bit rate decreases to
dmin= 0.5 Mbps. So the users continue watching video but in a lower quality. The
multi-tenant band goes into unavailable mode every hour (3600 s) or every four
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Table 2. System parameters

Parameter description Notation | Value
Total capacity of the single-tenant band 4 10 Mbps
Total capacity of the multi-tenant band Cy 10 Mbps
Mean service time of one user T 30s

Mean time when multi-tenant band is available a

3540, 14340s

Mean time when multi-tenant band is unavailable

60s

Maximum bit rate

1 Mbps

Minimum bit rate

0.5 Mbps

Offered load

0-+30

0.4
o= 1 hour
a’'= 4 hours

() o
o [
N\

N\
\Y

=)
»
—
N
N

Blocking probability. B

15
Offered load, p

20

Fig. 4. Blocking probability B for different o™ *.

hours (14400 s) and the recovery takes around one minute. Table 2 summarizes

the initial data of the example.

The figures below show the behavior of each characteristic — blocking prob-
ability B (Fig.4), mean bit rates d and d (C2) (Fig.5) — for different values of

a~! (the mean time when the multi-tenant band is available). All figures show

that the less multi-tenant band goes into unavailable mode, the better the per-
formance metrics, namely, the blocking probability is lower, whereas the mean

bit rate is higher.
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Fig. 5. Mean bit rates d and d (C2) for different ™.

4 Conclusion

We have presented the scheme model for analyzing the simultaneous access to
spectrum in 3GPP cellular network within LSA framework for intolerant to delay
traffic under the limit power policy. This policy is based on the implementation
of a mechanism the service bit rate degradation for the mobile operator users
on multi-tenant band, if it is necessary to release the resources of this band for
the owner. We have obtained the infinitesimal generator as a block tridiagonal
matrix, what is required for the numerical solution of the equilibrium equations
system and the calculation of the performance metrics for the considered queuing
system that characterize the impact of LSA on the QoS — the blocking probability
and the mean bit rate.
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Abstract. The paper deals with two-way communication M/M/1/1
retrial queue where the server during its idle time makes outgoing calls
of two types - to the customers in orbit and to the customers outside
it. Durations of these calls follow two distinct exponential distributions.
After completion of the outgoing call to a customer from orbit, this cus-
tomer with probability p rejoins the orbit, and with its complementary
probability leaves the service area. Using generating functions approach
we derive explicit and recursive formulas for the stationary system state
distribution and its factorial moments.

Keywords: Two-way communication - Retrials - Server-orbit interac-
tion - Feedback

1 Introduction

The basic characteristic of retrial queues is the behaviour of customers whose ser-
vice cannot start immediately upon their arrival. These customers join a virtual
waiting room, called orbit and after some time try to get service again. Retrial
queues have been widely used to model diverse problems arising in telephone
switching systems, telecommunication and computer networks, call centers, celu-
lar and local area networks, etc. [1,2,5,7,14,17,18]. A systematic account of the
fundamental methods and the latest results, as well as an classified bibliography
on this topic can be found, for example in [2,11-13], and references therein.

In many real situations, especially in models with human servers, the servers
in their idle time can perform some additional activity. In recent literature this
additional activity is usually referred to as an outgoing call, and the models
with both incoming and outgoing calls - as two-way communication queues.
Queueing systems with two-way communication have been investigated in not
a small number of papers. Ones of the first results on this topic are presented
by Falin [9], who analyzes a single server model in which the outgoing and the
incoming calls follow the same arbitrary service distribution. Later, Artalejo and
© Springer International Publishing AG 2017

A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 243-255, 2017.
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Phung-Duc [3] extend this investigation, considering single and multiple servers
retrial models with two-way communication where the service times of incoming
and outgoing calls follow the exponential distribution with distinct parameters.
The corresponding M /G/1/1 queue where the service times of incoming and
outgoing calls follow two distinct arbitrary distributions is studied by Artalejo
and Phung-Duc in [4], while the same model under the assumption of multiple
types of outgoing calls is considered by Sakurai and Phung-Duc, [15]. The priority
retrial queues with available buffers for the outgoing calls, studied in [6,10]
could also be considered as two-way communication models. Deslauriers et al.
[7] consider five Markovian models for blending call centers where operators
not only serve incoming calls but also make calls to outside. In this article,
however the retrial behavior of customers is not taken into account. Dragieva and
Phung-Duc [8] consider two-way communication M /M /1/1 retrial queue where
the server makes outgoing calls not only to customers outside the orbit (outgoing
calls of type 2) but also to the customers in orbit (outgoing calls of type 1).
Investigation of this model is motivated by many real situations like call centers
or mobile phone where the operator can be notified about the customers in orbit,
for example by registering all failed calls. The operator during his/her idle time
may call to these customers to inform or to offer some different proposals. One
of the main goals of the operator could be to reduce the number of customers in
orbit (orbit size). In such situation it is natural to measure the operator’s success
or failure with a certain probability and its complementary. This motivated us
to extend the model considered in [8] by introducing a feedback probability for
the outgoing calls of type 1. Namely, in this paper we assume that after the
service completion of an outgoing call of type 1, i.e. with a customer from the
orbit, this customer returns to the orbit with probability p and with probability
(1 —p) leaves it, p € [0,1]. The present paper also extends [8] by assuming that
both types of outgoing calls (i.e. to the orbit and to outside) follow two distinct
exponential distributions.

Further on, the structure of the paper is as follows. A detailed description of
the model is given in Sect. 2. Section 3 presents explicit and recursive formulas
for the stationary joint distribution of the server state and orbit size. In Sect. 4
we derive explicit and recursive formulas for the partial factorial moments of
this distribution and formulas for the basic macro characteristics of the system
performance. Concluding remarks and some topics for future investigations are
presented in Sect. 5.

2 Model Description

We consider single server retrial queue with two-way communication. This, as
described in previous Section, means a queue with two flows of calls - incoming
and outgoing calls. Incoming calls arrive at the system according to a Poisson
process with rate A. An incoming call is accepted for service if upon arrival it
finds the server idle. Otherwise, if the server is busy, the call enters the orbit of
retrial customers (calls), stays in it for an exponentially distributed time with
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mean 1/u, and retries to get service. An arriving retrial call is accepted if the
server is idle, otherwise it enters the orbit again.

On the other hand the server makes an outgoing call after some exponentially
distributed idle time. There are two types of outgoing calls whose durations
follow two distinct exponential distributions. The outgoing calls of the first type
are directed towards the customers in the orbit, while the outgoing calls of the
second type - to the customers outside it. The outgoing calls of first type are also
referred to as outgoing retrial calls, while the outgoing calls of second type - as
outgoing primary calls. If the server is idle it makes an outgoing retrial or primary
call in an exponentially distributed time with mean 1/a and 1/, respectively.

The service times of the incoming and outgoing retrial and primary calls are
exponentially distributed with rates 11, o and v3, respectively. We accept that
when the service is over the incoming calls as well as the outgoing primary calls
leave the service area while, as stated in the Introduction, the outgoing retrial
calls rejoin the orbit with probability p and with the complementary probability
1 — p leave the service area.

We assume that the arrival of incoming calls, retrial interval of incoming calls,
service times of incoming and outgoing calls, and the time to make outgoing calls
are mutually independent.

Let R(t) denote the number of incoming calls in the orbit, and S(¢) - the
state of the server in time ¢,

0, if the server is idle,

1, if an incoming call is in service,

2, if an outgoing call of type 1 is in service,
3, if an outgoing call of type 2 is in service.

It is easy to see that the process {(S(t), R(t));t > 0} forms a Markov chain
on the state space {0, 1,2,3} x Z; where Z, = {0,1,2,...}.

In what follows we consider the system under the stability condition which
will be derived later. Let

T4, = thm P(S(t) = Z7R(t) :j) 1= 07 152737 jeZ-‘m

— 00

denote the stationary joint distribution of the server state and the orbit size.
The system of balance equations for {m; ;i =0,1,2,3, jeZ,} is given by

A+ B+ (e + p)lmo; =i +ve [praja + (1= p)ma,s] +vsmsy, (1)
(>\—|—I/1)7T17j :)\7T07j—|—(j—|—1),uﬂ'07j+1 +)\7T17j_1, (2)

()\ + 1/2) 2,5 = (] + 1)0&7’(’0’j+1 + )\’/T27j71, (3)

()\ + Vg) m3 5 = ﬁﬂo,j + )\71'3’]‘,1, (4)

for j € Z4, where m; _1 =0 (i =1,2,3).
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3 Stationary Distribution of the System State

In this Section, using the generating functions approach we derive explicit and
recursive formulas for the joint stationary distribution of the server state and
the orbit size.

3.1 Partial Generating Functions
Let IT;(z) denote the partial generating functions
[e.9]
Oi(z) =Y 2mj, i=0,1,2,3, || <L
§=0

Multiplying (1)—(4) by 2/ and summing up over j yields

A+ B) Ho(z) + z(o + p)IIj(2) = 111 (2) + v2q(2) I2(2) + v31l5(2),  (5)
(A+ 1) I (2) = Mo (2) + plIg(2) + AzIT(2), (6)

(A + o) II2(2) = allj(z) + AzIa(2), (7)

AN+ v3) II3(2) = BIIy(2) + A\z21I3(2), (8)

where
q(z) =1—(1-2)p=D+pz,
p=1-p.

Solving the system (5)—(8) we derive formulas for the generating functions II;(z).
They are presented in the next theorem.

Theorem 1. The partial generating functions I1;(z) (i = 0,1,2,3) are given by
the following explicit expressions

Dy Do D3

1 ath 1 otn 1 oth
11 = 9
o(2) 7T0’0<1—7'1z) (1—7’22> <1—ng> ’ )

O e Py (10)
_ ag(?) s
T =1 G- ) -
1E@)=;Z?@;, (12)
where
Di _ (_1)1_1 [)\()\+I/3 7>\Zi)+ﬂ(>\+V1 7/\21')](/\4’1/2*/\21) i=1 9

A2 (23 — 21) (23 — %) ’ B
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B (v —vs3) (v2 —v3)

Ds = A2 (21 — 23) (22 — 23)’ (14)
g2)=A(A=dz+v3)+BAN—Az+11), (15)
fo(2) = az® + (b+ phaws) z + ¢ — pave (A + 11), (16)
with

a=X\(a+p), (17)
b=—-Xa+p)(A+re+11), (18)
c=wnvy (a+p) + A(pv + avs). (19)

Further,

1 .
Ti=— 1= 1a2a37
i
. A+ v
=
z1, z2 are the roots of the equation fy(z) = 0 which are different real numbers
for all values of the system parameters. Finally,

z3 (20)

D1 D2 D3
7'('0,0 = Ho(l) (1 — Tl)a+u (1 _ 7-2) atp (1 — 7-3)oc+u , (21)
1—p
)= ———F 22
0( ) 1__p.+,2L4_li ( )
V1 v3
with \

o«
= —+— . 23
’ ap+u(vl Vz) 25)

Proof. We multiply Eq. (7) by ¢(z) and then sum Egs. (6)—(8):
A1 (2) + q(2)112(2) + I5(2)] = (ap + ) T (2). (24)
Next, from (6)—(8) we express I1;(z) (i = 1,2,3) in terms of II(z) and IIj(2)

_ AT(2) + Ty (2)

11y (z) = AL I (25)
Hl
Mmy(z) = ;20 (26)
11
”3(@:%-

The last equation coincides with (12). Thus, we get the following differential
equation for ITy(z)
Ag(z) A+ v2 — Az)
Fo(2) (= Az + 1)

() = o (2), (27)
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where g(z) and f,(z) are given by formulas (15)—(19). Substituting II}(z) from
(27) into (25)—(26) we prove formulas (10)—(11).

Further, in order to find the roots of equation f,(z) = 0 we consider its
discriminant,

A, = (b+ pray)® — da e — pavy (A + 1))
= p? X222 + p[2bhawy + daavy (A + 1) + A,
where
A =b% — 4ac.
Applying formulas (17)—(19) it is not difficult to verify that

A=)\ (a+p) |:04(V2—l/1—>\)2+[L(V1—V2—)\)2]

and
A, =p*N2a?vg +2p)% (o + p) ave (A + vy — 1) + A
The last expression as a function of the parameter p has discriminant
A= (a+p)? i A+ — 1) — Vi (a+p) [a(ve —11 — N 4+ —va— )\)2]
=4X®v3 (a+p)p (1 —1a).

This means that when vy < vs, A, is positive for all values of p. When
V1 > 1o, then we can see that the function A, is increasing for non negative
values of p and since Ap|p:0 = A > 0 this implies that A, is positive for
positive values of p, in particular for p € [0,1].

Thus, the function f,(z) has two different real roots 21 and z, for all possible
values of the system parameters. Then the differential Eq. (27) can be expressed

in the form

Iy(z) 1 < D, Dy n Ds )

Io(z) (a+p)\z1—2 20—2 23—z
where D; (i = 1,2,3) and z3 are given by (13), (14) and (20). The solution of
this equation is the function ITp(z) given by formulas (9) and (21). Finally, to
prove Egs. (22) and (23), we express I1;(1) (i = 1,2,3) according to (10 )—(12)
and, as it is easy to verify that

(1) =a+b+c—pavery = vovy (a+ ) (1 - p),

with
_ 7 a ap
I TS
g <m«wwn wlatp) atu
and that
g(l) = )‘V3 +/8V1a
we obtain

(1 =) (a+ p) vivs + p(Avs + fry)

BN CEn T 7

HO(1)7 (28)
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ar(Avs + Bri)

h(l) = (1=7) (o + p) vivavs o (29
m3(1) = 2 1my(0). (30)

Substituting with these expressions in the normalizing condition
Io(1) + I (1) + (1) + I3(1) = 1,

after some transformations we get

1-p
IIH(1) = .
oD l—p+ (2 4+ 2) aptu
p V1 V3 atp

The last expression, together with the equation

1-75
aptp
o+

:1_[)7

where p is given by (23), proves formula (22). This finishes the proof of the
theorem.

Corollary 1. The necessary and sufficient condition for the stability of the sys-
tem s
p <l

Proof. Formula (21) shows that 7 ¢ exists if and only if both roots of the equa-
tion f,(z) = 0 are greater than 1. This in turn holds if and only if

_btprave _ Advi4rvs - pavs >1
2a - 2\ Aatp) ’

fo(1) = vary (@4 p) (1 —75) > 0.

The second inequality holds if and only if p < 1 which, in turns holds if and only
if p < 1. Now, it is not difficult to verify that when p < 1 the first inequality
also holds and that my ¢ > 0.

3.2 Stationary Joint Distribution of the Server State and the Orbit
Size

In this Section we derive explicit and recursive formulas for computing the sta-
tionary joint distribution m; ; (i = 0,1,2,3, jeZ,) of the server state and the
orbit size. Inverting formula (9), then applying (25), (26) and (12), it is not
difficult to prove the next proposition.

Proposition 1. The stationary distribution m; ; can be calculated by the follow-

ing explicit expressions:
)3 () (2L
p)pk Na+p) W \atp), (G —k=1) ’

Jj j—k D
(55 (2

k=01=0
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i N
1,5 = )\+VIZ[)\7T0J€+(l€+1),u,7r07k+1] <)\+V1> y

J A j—k
1 -
/\+VQZ (k+ 01770k+1(>\+y2) 7

1 AN
”3vj—wkz_f“°vk<x+ug> ’

where 79,0 as well as the values of D;, T; are given in Theorem 1, and (a:)]
denotes the Pochhammer symbol,

T2, =

@), = Lif j=0,
J z(z+1).(z+j-1), if jeN={1,2,..}.
In the next proposition we derive recursive formulas for calculation of m; ;.
They are more convenient than the explicit ones, presented in the previous propo-
sition.

Proposition 2. The stationary probabilities m; ; can be computed from the fol-
lowing recursive formulas:

A(m1,jo1 + Do j—1 + Pproj_o + T3 i-1)

To.; = J1 =12, 31
o j(aB + p) ’ 3D
aApr
(Vl + uz(ap+pu)2+ /\u) TLj
_ BrA+v2) ) )
= A (1 * [u2(a§+u)+>\#2](>\+”3)> oy + AL -1 (32)

_Aplrap+N) AP (A +va) _
valap+ @) F A 21 T pap+ ) F A Fre) T3

pAVL )
(”2 MR +04>\§) 72,5

_ al A+, . a)? .
BRC ET R </\ + 5A+u3> T0.5 T Trap+m) T anp T Li—1

Avi(a+ p) + ad] ) aX(vy +2)
T Uiap ) Faxp "2i-1 T (@ + )+ arpl Fog) (310

(33)

M3, = To,j 7T3g 1,J=0,1,.

A+ s /\ + v
the last one coinciding with balance Eq. (4 ) Here w31 = 0, and mg ¢ is given in
Theorem 1.

Proof. The level crossing formula (31) follows from Eq.(24). Combining this
formula with balance Eqgs. (2)—(3), we get

vi(ap +p)+arp
ap+p

_ Ao, ;P + 73,5)
T = Ao+ S

) Appma 1
+ AT+ s
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va(ap +p) + Ap

Ao+ p)
ap+ p 2,5

T+ 35) T op e T2i-1-

A
a;+u (

Here we substitute 73 ; according to balance Eq. (4),

vi(@p+p)tadp B _ L Aupma,;
LT </\ T CFws)errw ) ™05 T optp
) AppTa j 1 A pms,
tATL I+ T Y @G ey
va(aP+p)+Ap aXBmo, admy

v+ 20T DFwap T T apta
+ Mo+ p)m -1 + a>\27r3,j,1
ap+p (A +v3)(ap+p)”

Now we substitute w2 ; from the second into the first and 71 ; from the first -
into the second of the last two equations and after some transformations we get

_ _ Aup
(07 + 1+ 07 - o

o _ Jéj afAup ey
=A (ap +pt >\+#V3 + ()\+u3)[1/2(0£%iﬂ)+)\,u]) 70, + )\(ap + M) -1

o+ ) 22 \p
+Au (p + Vz(a§+u)+>\u) T2,j-1+ X Fvm) (1 + er T 5)+Au) T3.4-15

— \2up
{Vz (Por + p) + pA — m} T2,j

= (A +vs)(aP + 1) + Bu] 4 aX(aptp)
= 5% <6+ nap+m+axs ) "0 T vilap+ ) +axp L1

alpup a)? Ap .
A (Ol—I—M+ V1(aﬁ+u)+a)\5) T2,j-1 T x50, (1 * vi(ap+p) +arp ) TBi—1:

Tt is easy to verify that each of the last two equations can be divided by (ap + p) ,
which leads to formulas (32) and (33). The proposition is proved.

4 Basic Performance Macro Characteristics

The basic macro characteristics of the steady state system performance are the
server utilization,
P,=1-lim P(S(t)=0),

t—oo

and the moments of the orbit size, in particular the mean orbit size,
lim_, o E [R(t)]. The probabilities

lim P (S(t) = i) = II;(1), i =0,1,2,3

t—oo

can be calculated by formulas (22), (28)—(30). In this section we deal with the
partial factorial moments {M};i = 0,1,2,3, k € Z, }, defined as

oo

M= (= k+ 1)gm ;.

=k
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Obviously,

My =Y "m;=1II(1) = lim P(S(t)=1i), i=0,1,2,3,

t—o0o
§=0
presents the stationary server state distribution which we already know. Since
o M
{1+ 2) Z ko i=0,1,2,3,
P !

we can obtain M; from the coefficients of z* in the series IT;(1 + z).Using this
property and Egs. (9), (25), (26) and (12) we express I1;(1 + z) as a convolution
of 2 or 3 series. Converting these convolutions we prove the following proposition.

Proposition 3. The partial factorial moments are given by the following

explicit formulas
D D D
e (), (), ()
atp g \Netr Jp\etn ) i

M = M"k'ZZ W (k—j— D (21 — 1) (20 — 1)} (25 — DFI7

j=01=0J"

k k—j
N M ()
k ” )

=0

ak! O /AN
Ml? J' (> )
vy 2 J: 1)

7=0
M3 = SF! A\
k Vs Z 4! (1,3) )

Now, similarly to the investigation of the stationary distribution we turn our
attention to a recursive scheme for computing the factorial moments.

Proposition 4. We have the following recursive formulas for the partial facto-
rial moments:

A

MY, = v (M} + M? + M2 + kpM?_)), (34)

1 _ yvavs(ap+ p) + pBro—alv 0
(1—P)Mk = A= 3i€u253(a5+2) =My,

(35)
va(ap+p) Auk(A+pr2) 7 r2 Nk 3
+ kA 12/1V2(04P+#) M’f 1T Vle(aPJri)M 1V viatap ) k-1
2 aX(Avs + PBr1) 0
(1 - P) Mk V1V2V3?QP+L)M (36)

akA? 1 Ak[v (a4 p)=Ap] 4 r2 Aok 3
+V1V2(a§+u)Mk—1+ viva(ap + p) M 1+V2V3(a5+u)Mk—1’
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BMP + kAM}_ L

6]

vsMP — kAM?_| = (37)

Here M*, =0 (i =0,1,2,3), p is determened by formula (23).
Proof. We differentiate formulas (24)—(26) and (12) k times at z = 1 and obtain
(ap + p) Mp = X (M} + M; + M + kpM7_,),
viMy — kAM;_y = AM + pMy, 4,
vaMp — kAM | = aMy,,
vsM — kAM}_| = M.

The first of these equations gives formula (34), and the last - formula (37). We
substitute according to the first equation into the next two,

[v1 (ap + ) — Au] M, —A(ap+u)M°+>\u(M2+M3)
+RA (P + i) My_y + ApkpMy_y,

[va (ap + p) — aA] M7 = aX (M + M) + [Mk (ap + p) + Aakp] Mp_,,
and, replacing M} according to (37), obtain
[vr (0B + ) = Al M = A (B + po + 42) MY + A\aM
2
+EA (0P + p) My_y + \ukpME_, + )\yl:le:c))—lv

AN ak
[Vo (P + p) — @A ME = a (M,i—i—fM,?)—F/\k(oz—i—,u)Mk 1+ < Mk 1-
3

Now we substitute M. ,3 from the second into the first, and M} i from the first
- into the second of these equations:

(1 (0B + 1) = A — ot | M}

— )\ (ap tpp oy e m) MO + kX (o] + p1) M},

Ao+ p) 2 Auk aA 3
vk (p+ s ) MR+ (14 i —as) Mi,

2
[v2 (0B + 1) = ad = et | M

— o Alvs(ap+p) +pB]\ pr0 o _akX(aB+p) i
=7 (ﬁ—i_ vi(ap+p) — A )M BTV FT By Mk 1

aX Aok A
+)\k {(a + ﬂ) + W] Mlg—l + V? (1 + Vl(&ﬁ#*i)f}\p,) Ml?—l'

Here, like in the proof of Proposition 2 we can divide both equations by (ap + 1) ,
which leads to the following formulas

<u1—%)M,§:/\(1+%)M£

va(ap +p)—aX 3[v2(ap + 1)

1 Apk(A+pra) ar2 A2 pkv: 3
HEAM 1+ T —ax Mi-1 T Stan 1 0—ax Mi-1
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o alvy 2 _  aXAvs+pPri) 0
(”2 7m(aﬁ+m4u) k= Tl (ap 10—l Mk

ak)? 1 Ak[vr (a4 ) =] 4 r2 Naky 3
@+ 0= M1+ st wow M-t Stas + o= Mi-1-
It is easy to verify that these equations can be presented in the form, given by
(35) and (36), which finishes the proof of the proposition.

For k = 1 formulas (34)—(37) give a simple procedure to calculate the mean
orbit size.

Remark 1. For p = 0 and v, = v3 all results presented in this paper coinside
with the results obtained by Dragieva and Phung-Duc [8] for the corresponding
model without feedback, and with the same exponential distribution for outgoing
calls of both types.

5 Conclusion and Future Work

In this paper we analyze M /M /1/1 retrial queue with two-way communication
in which the server makes outgoing calls of two types - to the customers in orbit
which are referred to as outgoing retrial calls, and to the customers outside the
orbit. Durations of the outgoing calls of both types follow two distinct exponen-
tial distributions. In addition, after the service completion any outgoing retrial
customer returns to the orbit with certain probability p. We derive explicit and
recursive formulas for the stationary joint distribution of the server state and
the orbit size and its factorial moments. This investigation could be extended
by considering the corresponding model with feedback not only for the outgoing
retrial calls. We are also planing to investigate the corresponding model in which
the durations (service times) of the outgoing calls of both types follow two dis-
tinct arbitrary distributions. The corresponding model with finite population (a
finite number of customers) could also be investigated.
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Abstract. The paper provides the description of 13 structured and
simulation modeling systems: AnyLogic, Arena, Bizagi Modeler, Busi-
ness Studio, Enterprise Dynamics, ExtendSim, Flexsim, GPSS W, Plant
Simulation, Process Simulator, Rand Model Designer, Simio Simul8. The
routes of dynamic objects movement in modeling systems in structured
models built in these SSMS are visually represented. SSMS are compared
according to structural models of M /M /5 queuing systems obtained in
these SSMS and the difference of simulation modeling from analytical
modeling results. The reliability was assessed by the values of mathemat-
ical expectation and standard deviations of quantity and time indexes.
The paper aims to select SSMS for modeling probabilistic objects in con-
formity with the area the object refers to, consideration of simulation
modeling results credibility, and users personal preferences as well.

Keywords: Simulated model - Analytical model - Queueing system -
M/M/5

1 Introduction

Significant developments in simulation modeling (SM) have taken place recently;
they are primarily related to the transference of SM specialized languages appli-
cation to structural and simulation modeling systems (SSMS). SSMS allow users
to abandon model programming and start model drawing. The programming
process is the responsibility of software designers creating imitation subprograms
of elements functioning in modeling objects; they are presented by specialized
libraries.
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A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 256-267, 2017.
DOI: 10.1007/978-3-319-68069-9_21
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The monograph [1] gives a detailed review of SM systems as of late 1995;
more than 20years after its publication have passed and a great deal of new
advanced SSMS have appeared. The article [2] provides more than 10 promising
SSMS with their application ratio. This article compares 13 SSMS, accommo-
dates their brief descriptions, supplies structural models of M /M /5 queueing
system, identifies SM reliability results obtained in these systems and compares
them with analytical modeling (AM) results of M /M /5 queueing system. Such
approach further develops the study done by the authors of this article [3,4] and
from their point of view, it will foster a qualified selection of modeling means
within the subject area the modeling object related to, reliability of results and
users personal preferences. 13 systems have been chosen from the set of SSMS
given in [2]; there is no programming process for large scale users in them, their
free versions are available on the Internet: AnyLogic, Arena, Bizagi Modeler,
Business Studio, Enterprise Dynamics, ExtendSim, Flexsim, GPSS W, Plant
Simulation, Process Simulator, Rand Model Designer, Simio Simul8.

1.1 The Brief Description of SSMS

AnyLogic. AnyLogic SSMS [5] was designed by the Russian company XJ Tech-
nologies. The first version of AnyLogic system 4.0 was created in 2003. AnyLogic
7.0 was made in 2014. AnyLogic SSMS includes graphical modeling language and
allows the user to maximize created models with the help of Java. The relation of
the concepts accepted in AnyLogic SSMS to the concepts accepted in the queue-
ing system theory is the following: claims - entities, queues - queues, service
machines - tasks. There are many references including [5].

Arena. Arena SSMS [6] was fashioned by Systems Modeling Corporation. Its
first version appeared in 1993. In 2014 Arena SSMS 3.0 was developed. The
foundation of Arena includes modeling metacompiler Siman and animation sys-
tem Cinema Animation. The relation of the concepts accepted in the system to
the concepts accepted in the queueing system theory is the following: claims -
entities, queues-queues [7], service machines - tasks [8]. The key advantage of
Arena SSMS is the possibility to transfer automatically from IDEF3 diagram,
widely spread in BPwin [9], to a structured model in Arena SSMS.

Bizagi Modeler. Bizagi Modeler SSMS [10] was designed by a group of compa-
nies Object Management Group established in 1989. Bizagi Modeler SSMS was
developed in 2007. In 2016 the 11th version of Bizagi BPM Suite was worked out.
Business-process modeling notation is used to indicate modeled system elements
(BPMN 2.0). The relation of the concepts accepted in Bizagi Modeler to the
concepts accepted in the queueing system theory is the following: claims - mes-
sages, queues-queues, service machines - actions. Gateways are used to indicate
the route selection of entities movements.
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Business Studio. Business Studio SSMS [11] was elaborated by a group of
companies Modern management technologies in 2004; in 2013 the version 4.0
was worked out. Business- process modeling notation is used to indicate modeled
system elements (BPMN 2.0). The relation of the concepts accepted in Business
Studio SSMS to the concepts accepted in the queueing system theory is the
following: claims - messages, queues-queues, service machines - actions. Gateways
are used to indicate the route selection of entities movements.

Enterprise Dynamics. Enterprise Dynamics SSMS was generated by InCon-
trol Simulation, founded in 1998. Enterprise Dynamics system was developed in
2004 [12]. The concepts accepted in Enterprise Dynamics SSMS are the following:
claims—products, queue—queues, service machines—servers.

ExtendSim. The first version of ExtendSim SSMS [13] was designed by Imag-
ine That Inc. in the beginning of 1987. It was one of the first programming
products on the SM market which could create a simulated model by SSMS
structural scheme. Currently ExtendSim SSMs is being upgraded. The last ver-
sion was launched on the market in 2015. The relation of the concepts accepted
in ExtendSim SSMS to the concepts accepted in the queueing system theory is
the following: claims - elements, queues-queues, service machines activities [14].

Flexim. Flexim SSMS [15] was produced by Flxim Software Products Inc
(ESP), set up in 1993. The year of Flexim development is 2003. The relation of
the concepts accepted in Flexim SSMS to the concepts accepted in the queueing
system theory is the following: claims - claims, queues-queues, service machines
processors, memory [15].

GPSS W with Exceeded Editor. In 2014 Elina-Computer created an
exceeded editor of simulated models for GPSS W SSMS [16]. Exceeded editor for
mass user allows to abandon programming and to start drawing models. Soft-
ware designers can create software for modeling new elements and add them into
structured and simulated models. In addition, exceeded editor allows designers
to plan simulated tests and process modeling findings. The relation of the con-
cepts accepted in GPSS SSMS to the concepts accepted in the queueing system
theory is the following: claims - transactions, queues - queues, service machines
processors, memory [16].

Plant Simulation. Plant Simulation SSMS [17] has been supplied by Siemens
PLM Software since 2007. In 2016 the 13th version of Plant simulation SSMS
appeared. The relation of the concepts accepted in Plant Simulation SSMS to the
concepts accepted in the queueing system theory is the following: claims - details,
queues storage facilities, service machines occasional operations, in-parallel oper-
ations [17]. There is an opportunity to model manufacturing processes with liquid
products.



The Comparison of Structured Modeling and Simulation Modeling 259

Process Simulator. Process Simulator SSMS was elaborated by ProModel
Corporation and appeared in the market in 2001 [18]. The last version of Process
Simulator SSMS is version 9.3.0.2701 developed in 2016. The relation of the
concepts accepted in Process Simulator SSMS to the concepts accepted in the
queueing system theory is the following: claims - claims, queues - queues, service
machines actions.

Rand Model Designer. A well-known Model Vision Studium SSMS changed
its name, and since 2011 it has been called Rand Model Designer [19]. It was
developed by MVSTUDIUM Group founded in 1997. The last version of Rand
Model Designer (RMD) SSMS was designed in 2016 based on Modelica modeling
language [19]. The relation of the concepts accepted in Rand Model Designer
SSMS to the concepts accepted in the queueing system theory is the following:
claims - transactions, queues - queues, service machines services.

Simio. Simio SSMS was generated in 2007 [20] by Simio LLC, established in
2005. The concepts accepted in Simio SSMS are the following: claims - agents
(initiators), queues - queues, service machines - servers.

Simul8. The full version of Simul8 SSMS [21] was created by the corporation
of the same name in the beginning of 2003. Currently Simul8 SSMS is being
developed. The last version of this product appeared in 2017. Routs of claims
movement and processes of their service are specified in details in Simul8 SSMS
[21]. The concepts accepted in Simul8 SSMS are the following: claims - entities,
queues - queues, servicing machines - work centers. Simul8 SSMS test version
can be downloaded from the Internet free of charge; the trial period is up to
14 days.

2 Analytical Modeling of M /M /5 Queueing System

Analytical modeling of M /M /5 has been done by queueing system formula given
in the book [22] for M /M /m and has been calculated according to indicators of
queueing system functioning. For calculations the quantity of servicing machines
m = 5, average time between claims inflows ¢;,,;; = 10 time units, average time
of claim servicing s, = 30 time unit were accepted.

1. Given density of claims inflows into the system:

_ Eserv _ 30 _

= Lserv _ 2 3
P tn 10

2. The probability of application absence in the system:

1 1

Py = bl 3 1 5 = 9 | 27 , 81 243
Ltpt gty tam—p 1T3T2T 5 ot mucg

= 0.0466
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3. Waiting probability:

p™ - Py 35 0.0466
Poait = = =0.236
YT m = 1) (m - p) 412

4. Average quantity of claims in servicing machine:
m=p=3
5. Average quantity of claims in the queue:

— p-Pyus  3-0.236
=" t_ — 0.354
m—p 5—3

6. Average quantity of claims in the system:

7 - Pwai : - 2
k:p(m p+ t):3 (5-3+0 36):3'354
m-—p 5—3

7. Average waiting time of claims in the queue:

by tserv ) Pwai 30 -0.236
twait = L= = 3.542
m—p 5—3

8. Average time of claims inflows into the system:

I Eserv - Pwai 30-(5—3 0.236
tinflow = (m Pt t) = ( i ) = 33.542
m-—p 5—3

9. The dispersion of claims quantity in the servicing machine:
02 = p(1 — Pyair) =3 - (1 —0.236) = 2.292

10. The dispersion of claims quantity in the queue:

s (m+p)-l 2 (5+3)-0.354 )
= —-—— —l =_- . 4 = .
o= 53 0.3542 = 0.583

11. Covariation:
K = p- Pwait =3-0.236 = 0.708

12. The dispersion of claims quantity in the system:
0f =02 4+ 0f + 2K, = 2.292 + 0.583 + 1.416 = 4.291

13. The dispersion of claims servicing time in the servicing machine:

2
serv

02 0 = taers = 302 = 900

14. The dispersion of claims waiting time in the queue:

2
serv

s 1

serv

(2 = Pyair) _ 30%-0.236 - (2 — 0.236)
(m—p? (5-3)°

= 93.668
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15. The dispersion of claims being time in the system:

2 _ %serv : ((mfp)Q + Puait - (2*Pwait))
Utime - (m _ p)2
_ 302 - ((5 — 3)2 + 0.236 - (2 — 0.236)) — 993668
- (5-3)2 S

Table 1 provides the findings of M /M /5 queueing system analytical modeling

3 Structured Models of M /M /5 Queueing System

Structured models of M/M/5 queueing system were developed in AnyLogic,
Arena, Bizagi Modeler, Business Studio, Enterprise Dynamics, ExtendSim,
Flexsim, GPSS W, Plant Simulation, Process Simulator, Rand Model Designer,
Simio and Simul8. Structured models of M /M /5 queueing system in AnyLogic,
Flexsim and Plant Simulation are presented in Figs. 1, 2 and 3 as examples.
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Fig. 1. Structured model of M/M/5 queuing system in Plant Simulation SSMS

Other structured models of M /M /5 queueing system are similar.
Based on the images of structured models of queueing system the following;:

1. All 13 SSMS, the structured models of M /M /5 queueing system (QS) of
which are given in drawings, illustrate the routes of claims movements with
the help of arrows.

2. AnyLogic and Arena SSMS allow to specify the selection criteria of servicing
machine from prescribed collection by the Select block.
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Source2

Processor8

Fig. 3. Structured model of M/M/5 queueing system in Flexsim SSMS

3. The change criteria of claims movement routes can be indicated fully in Bizagi
Modeler and Business Studio SSMS which employ the notation of BPMN
business process modeling.

4. The modeled processes are shown conclusions can be made fully in AnyLogic
system.

The basic graphical elements of SSMS allow us to draw the following conclusions:

1. Bizagi Modeler and Business Studio SSMS should be used for modeling prob-
abilistic objects, element functioning in which can be described in a relatively
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simple way. Structured models in these systems show the claims movement
process in a modeled object in a clear view. Mastering Bizagi Modeler and
Business Studio SSMS is not difficult.

2. It is preferable to apply AnyLogic SSMS for modeling probabilistic objects
in which complex functioning processes of their elements must be shown.
Structured models in this system show both claims movement in the modeled
object and procedures of their processing. AnyLogic SSMS is much more
difficult for mastering than Bizagi Modeler and Business Studio SSMS.

3. The list of graphical elements in Bizagi Modeler and Business Studio SSMS
contains 21 elements. The list of graphical elements in AnyLogic includes 23
elements. 5—6 elements from the given SSMS are enough to start with.

3.1 Comparison of Simulation and Analytical Modeling Findings

The findings reliability assessment of simulation modeling (SM) of M /M /5
queueing system can be calculated by comparing their results with analytical
modeling (AM) results according to the average value differences using formula:
* — .
AVIES M - 100, (1)
Yi

where yizj is the estimation of ¢ parameter calculated by simulation modeling
findings in the j of SSMS; y;; is the value of ¢ parameter calculated by AM
findings.

It is accepted for SM: the quantity of servicing machines m = 5, the average
time between claims entering is fmfl = 10 of time units, the average time of
claims service is fser, = 30 of time units. The quantity of serviced claims is
25000.

Table 1 shows AM and SM in AnyLogic, Arena, Bizagi Modeler and Business
Studio systems and evaluation of their differences in percentage terms by Eq. (1).
SM in AnyLogic - SMAn, SM in Arena - SMA, SM in Business Studio - SMBS,
SM in Bizagi Modeler SMBM.

Table 2 illustrates the findings of AM and SM in Enterprise Dynamics,
ExtendSim, Flexsim GPSS W systems and their difference evaluation in per-
centage terms Eq. (1).

SM in Enterprise Dynamics has the abbreviation SMED, SM in ExtendSim -
SMES, SM in Flexsim - SMF, SM in GPSS W - SMGPSS.

Table 3 identifies findings of AM and SM in Plant Simulation, Process Simula-
tor, Rand Model Designer, Simio Simul8 systems and their difference evaluation
in percentage terms Eq. (1).

In Table3 7SM in Plant Simulation has the abbreviation SMPS, SM in
Process Simulator - SMPrS, SM in Rand Model - SMRM, SM in Simio - SMS,
SM in Simul8 SMSim8.

According to the findings shown in Tables 1, 2 and 3, the following conclusions
can be made:
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Table 1. The evaluation findings of main functioning indexes of M /M /5 queueing
system in SSMS: AnyLogic, Arena, Bizagi odeler Business Studio by 6 parameters.

Name AM SMAn | A SMA | A SMBM | A SMBS | A

1 0.354 | 0.34 [3.954| 0.355/0.282| 0.352 |0.565| 0.369 |4.237
m 3.00 3.09 | 3.00 3.152|5.067| 3.075 | 2.5 3.125 | 4.167
k 3.354 | 3.43 |2.265| 3.507|4.562 | 3.427 |2.177| 3.494 |4.174
twait 3.542| 3.5 1.185| 3.681 1.92 3.52 0.621| 3.664 3.4
tserv 30.00 |30.9 3.00 |30.85 |2.827|30.79 2.633|31.02 |34
iinflow 33.542 | 34.4 2.557|34.531 | 2.325 | 34.31 2.289 | 34.684 | 3.405
Average 2.66 2.83 1.798 3.805
difference in %

by 6 tests

Table 2. The evaluation findings of the main functioning indexes of M/M/5 queue-
ing system in SSMS: Enterprise Dynamics, ExtendSim, Flexsim and GPSS W by 6
parameters

Name AM SMED | A SMES | A SMF | A SMGPSS | A

1 0.354 | 0.342 |3.389 | 0.346 | 2.26 0.366 | 3.389 | 0.346 2.312
m 3.00 2.961 1.3 2.97 |1.00 | 3.11 |3.666| 3.015 0.5
k 3.354 | 3.303 |1.521| 3.316|1.133| 3.476|3.637 | 3.362 0.239
twait 3.542 | 3.474 |2.033| 3.441|2.851| 3.679|3.733 | 3.463 2.23
tserv 30.00 |30.095 |0.317/29.58 |1.401|31.12 |3.867|30.17 0.567
tinflow 33.542 1 33.327 | 0.641 | 33.021 | 1.554 | 34.799 | 3.747 | 33.633 0.271
Average 1.534 1.7 3.673 1.02
difference

in % by 6

tests

Table 3. The evaluation findings of the main functioning indexes of M/M/5 queueing
system in SSMS: Plant Simulation, Process Simulator, Rand Model Designer, Simio
and Simul8 by 6 parameters

Name AM | SMPS | A SMPrS|A |SMRM | A |SMS | A |SMSim | A

1 0.35| 0.37 |4.52| 0.34 |2.82| 0.37 |3.95 0.34/4.15| 0.36 |1.7
m 3.00| 3.05 |1.53| 2.98 |0.73| 2.95 |1.77 2.98|0.64| 3.0 0.03
k 3.35| 3.43 |236| 3.32 |0.95| 3.45 |298| 3.32|/1.01| 3.36 |0.21
twait 3.6 3.6 1.64| 3.5 1.15| 347 |21 3.39/0.7 | 3.6 1.66
tserv 30.00 | 30.76 |2.54|29.96 |0.13|30.22 |0.72]29.79|4.29|29.94 |0.18
Tin flow 33.54|34.0 |1.37/33.46 |0.24[34.13 |1.75/33.18/1.08/33.55 |0.01
Average 2.33 1.0 2.2 1.98 0.63
difference in

% by 6 tests
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1. The compared findings are thought to be satisfactory if the SM and AM

difference doesn’t exceed 5%. According to this principle, one dissatisfactory
evaluation has been obtained in Arena system. It can be thought that all
findings are acceptable.

The average difference in percentage according to 6 tests for all 13 SSMS does
not exceed 5%, so the findings are satisfactory.

SSMS according to SM test validity by the mean difference between AM and
SM in percentage due to 6 tests can be selected by the graded list in which the
average difference in percentage for SSMS is given: Simul8 (0.633), Process
Simulator (1.004), GPSS W (1.020), Enterprise Dynamics (1.534), ExtendSim
(1.700), Bizagi Modeler (1.798), Simio (1.978), Rand Model Designer (2.211),
Plant Simulation (2.326), AnyLogic (2.660), Arena (2.830), Flexsim (3.673),
Business Studio (3.805).

4 Conclusion

The paper provides the comparison of 13 SSMS which allow conventional users,
not software designers, to create structured and simulated models without pro-
gramming structured schemes of modeling objects. Software designers merely
have to code element functioning of modeled objects and new ways of modeling
finding processing. To compare SSMS structured, simulated and analytical mod-
els of queueing system (particularly M /M /5 queueing system) have been used.
In accordance with obtained findings, the conclusion can be made. By virtue
of these figures SSMS can be selected in accordance with the area the modeled
object is related to and users preference.

1.

All 13 SSMS, the structured models of M /M /5 queueing system (QS) of
which are given in Figs. 1, 2 and 3, illustrate the routes of claims movements
with the help of arrows. Based on these figures, SSMS can be selected in
accordance with the area the modeled object is related to and users preference.
The criteria of claims movement route changes can be indicated fully in Bizagi
Modeler and Business Studio SSMS, which employ notation of BPMN busi-
ness process modeling. The list of graphical elements in BPMN can be used
for creation structured models that are essential at the initial stage of learning
these SSMS.

Modeled processes are indicated in detail in AnyLogic SSMS. The main graph-
ical elements of Anylogic SSMS allow users to employ them as a hint in.

. The average difference between SM and AM does not exceed 5%, so the

findings are satisfactory.

By finding validation on average difference between AM and SM in percent-
age SSMS can be selected in compliance with the grading list, in which the
average difference for SSMS is given in percentage: Simul8 (0.633), Process
Simulator (1.004), GPSS W (1.020), Enterprise Dynamics (1.534), ExtendSim
(1.700), Bizagi Modeler (1.798), Simio (1.978), Rand Model Designer (2.211),
Plant Simulation (2.326), AnyLogic (2.660), Arena (2.830), Flexsim (3.673),
Business Studio (3.805).
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A Sweep Method for Calculating Multichannel
Queueing Systems
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Abstract. The necessity is shown to design queueing systems with non-
Markovian service time distribution and the big number of channels. A
general characteristic is given on phase approximations. Techniques of
iteration and matrix-geometric progression are discussed. A new (sweep-
ing) method is suggested. Results of numerical calculations and the evalu-
ation of theirs complexity are presented. Recommendations are proposed
how methods discussed in this paper can be applied.

Keywords: Queueing systems - Big number of channels - Sweeping
method

1 The Statement of the Problem

Because the production of the big integral circuits technology has achieved the
fundamental physical limitations, a required computing performance can be
attained only using multiprocessor and multicomputer systems. The basis of
the methods of their design, data processing and transmission and performance
evaluation is the queuing theory (QT), in which the apparent lack of attention
is given to multi-channel systems. Note that these problems are also relevant
for many other applications: industrial, transportation, healthcare, emergency
services etc.

In this paper an overview of modern methods to calculate the multichannel
systems is given, and a new (sweep) method is proposed. The analysis of the
range of theirs applicability and computational efficiency is done. All discussions
are applied to the most typical case of the Poissonian incoming flow (especially
having in mind the calculation of service networks where the flows are exposed
to multiple summation and random screening operations).

2 Phase Approximations for Multichannel Systems

The efficient numerical methods to calculate the multichannel queuing systems
M/M/n, GI/M/n, and M/D/n were known more than a half a century. Their
further generalization (and thus more realistic analysis of the real systems)
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A. Dudin et al. (Eds.): ITMM 2017, CCIS 800, pp. 268-278, 2017.
DOI: 10.1007/978-3-319-68069-9_22
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became possible only after the presentation of non-Markovian distributions in
the form of successive (E}), parallel (Hy) or combined (Cj, Ph) phase systems
with exponentially distributed delay in the each phase. In [6] the possibility of a
such approximation by the combination of Erlangian and Coxian distributions is
considered, and there are 5 references in support of the adequacy of the equaliz-
ing three distribution moments only. In [3,7] Coxian approximation which uses
three moments also was offered. Equalizing them, taking in account the low
precision of the high order statistical moments of the parent distributions and
the increasing complexity of approximations calculation, seems quite sufficient.
However, in the above-mentioned works all parameters of approximations were
assumed to be real, that restricts the range of realizable coefficients of variance:
v > 1/4/2. Acceptability of averaging service transition intensities proposed in
[3] is questionable; calculations of its authors has not been confirmed by numeric
results, and the experience of the author of this article refutes it.

In our opinion, a more valuable tool is the model M/Hy/n which remove
the mentioned restrictions. The operating of such system can be interpreted
as a process of serving the flow of heterogeneous demands, there the demand
type choice determines parameter of exponentially distributed service time. The
microstate key indicates the number of each type of demands serving in the
channels — see Figs. 1 and 2 for M/H3/3 model.
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Fig. 1. Transitions on arrival

The demand arriving in the empty channel belongs with probability ¥; to
the i-th type. On the Fig. 2 at j > n the parameter of i-th type servicing flow is
m;t;, where m; is the contents of the i-th “key” position. Completion of service
leads to one of the overlying tier microstates with probabilities {y;} depending
on the type of demand selected from the queue.

Similar diagrams can be drawn for Erlangian service E, — see [8], as well
as for the Coxian distribution. With regard to the choice of the approxima-
tion type one of the most frequently cited modern QT classics M. Neuts gives
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Fig. 2. Transitions on service

the “folklore” recommendation: when the variation coefficient v > 1, apply Hs-
approximation, otherwise — the Erlangian. Because the order of Erlangian dis-
tribution is & = 1/v2, this leads to extremely rapid growth in the number of tiers
microstates by the number of channels (see corresponding table in [9]). More-
over, this distribution allows us to equalize only the first and approximately —
the second moment, which induce an appreciable loss of precision. On the other
hand, H,-distribution, equalizing three moments, generates transition diagram
having width (n + 1) microstates only. But for 1/v/2 < v < 1 it has para-
dozical parameters (one of probabilities is more than unit, other is negative),
and for v < 1/4/2 the parameters become complex. The numerous calculations
made by the author show that the “pathologies” mentioned above influence only
the intermediate computation results, while the final ones have the traditional
probabilistic sense and agree well for models M/FE}/n and theirs approximating
M/Hy/n. For these reasons, and taking into account the above arguments in
favor of the Poissonian incoming flow model, we shall consider further M/Hy/n
model.

Below we present the common statement of the problem for all discussed
methods. We denote by S; the set of all possible system microstates then exactly
J demands are in the system, and by o; — the number of elements in S;. Fur-
ther, in accordance with the transition diagram we construct the matrices of
infinitesimal transitions intensities:

Ajloj x 0j11] — in Sj41 (demand arrival),
Bjloj x 0j_1] — in S;_1 (completion of service),
Djlo; x ;] — leaving the states of the tier j

(in square brackets the size of matrices is exposed).

We introduce the row vectors v; = {v;1,7j.2,---,%j0, ) of the system (j,1)
state probabilities, j = 0,1,... Now we can write the vector-matrix equations
for the balance of inter-state transitions
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’YO‘DO :’VlBh (1)
v Dj =vi-14j-1 +vj+1Bj+1, j=1,2,...

System (1), supplemented by the normalizing condition, must be written
component-wise. Even for models with bounded queue it is characterized by
extremely high dimension, and the standard methods for solving systems of
linear algebraic equations are ineffective for it.

3 Iterative Method

Takahashi and Takami [11] proposed an algorithm of iterative calculation for such
systems, the central idea of which is the calculation of conditional (normalized
to unit) probabilities of microstates {”yJ(T)} for a fixed number of demands in
the system (tier of the chart) and parallel computing of relations z; = pj+1/p;,
j = 0,1,..., for total probabilities. The calculation is performed for a limited
number of tiers j = 0, N. In iteration number m the vector '_yj(-m) of conditional
probabilities for each tier, when sweeping downward, is expressed through %(T{

and %(T; D When computing the last tier, the approximate equation closing the

system is used:

—(m—1 _(m
%(VH ) 71(V31~ (2)

In [11], however, several key details of algorithm were not mentioned. The
full scheme modified by author was described in [8,10]. In [9] its variants are
discussed (choice of initial values for vectors {%;}, the change of sweep direc-
tion). The conclusion was made from the numerical experiment results about
the preference of binomial initial approximations to vectors of the microstates
conditional probabilities and counting tiers of the chart from top to bottom.

4 Matrix-Geometric Progression

For computation of an open queueing systems the method of the matriz-
geometric progression (MGP) proposed by Evans [5] and developed by M. Neuts
and his followers looks very promising (see [2,4,13]). The idea of this method is
to represent the vectors of microstates probabilities for a full-bused system by
relationship as A

Yi = 7nRJ7n7 ] = ’