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Abstract. There is increasing realisation that edge devices, which are
closer to a user, can play an important part in supporting latency and pri-
vacy sensitive applications. Such devices have also continued to increase
in capability over recent years, ranging in complexity from embedded
resources (e.g. Raspberry Pi, Arduino boards) placed alongside data cap-
ture devices to more complex “micro data centres”. Using such resources,
a user is able to carry out task execution and data storage in prox-
imity to their location, often making use of computing resources that
can have varying ownership and access rights. Increasing performance
requirements for stream processing applications (for instance), which
incur delays between the client and the cloud have led to newer models of
computation, which requires an application workflow to be split across
data centre and edge resource capabilities. With recent emergence of
edge/fog computing it has become possible to migrate services to micro-
data centres and to address the performance limitations of traditional
(centralised data centre) cloud based applications. Such migration can
be represented as a cost function that involves incentives for micro-data
centres to host services with associated quality of services and experi-
ence. Business models need to be developed for creating an open edge
cloud environment where micro-data centres have the right incentives to
support service hosting, and for large scale data centre operators to out-
source service execution to such micro data centres. We describe potential
revenue models for micro-data centers to support service migration and
serve incoming requests for edge based applications. We present several
cost models which involve combined use of edge devices and centralised
data centres.

Keywords: Edge computing · Micro-data centres · Resource sharing ·
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1 Introduction and Motivation

With the increasing number of devices that are now generating data, it is nec-
essary to understand how this data should be stored, processed and archived.
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Various projections have been made about the number of Internet of Things
(IoT) devices we are likely to see over the next few years (often around 2020) –
from Cisco, Gartner, etc. The numbers vary, but there is general agreement that
this is likely to be in the order of billions, and 40% of generated data will come
from sensors [5] by this projected time period. Currently, most data generated
in this way is transmitted to a cloud-based data centre, processed and returned
back to the user. Although this has become the dominant mode of operation, this
introduces significant limitations for applications that have latency constraints,
or which require response times to be within a particular threshold. Supporting
application requirements through a cloud-based data centre is constrained by
the last-mile network connecting the user to the network. Whereas the network
around the data centre is often high speed and of high capacity, the network
from the user to the first hop network component can have varying properties
(especially true for mobile users).

To overcome these constraints, the fog and edge computing paradigm has
been proposed, to enable processing and data storage between the user and
the data centre. Fog and edge computing (FEC) resources can have signifi-
cant heterogeneity (performance, data formats, energy use, type, security capa-
bility, etc.), and may be offered by a variety of different vendors, e.g. coffee
shops, University campuses, Point of Presence from mobile network providers,
etc [11]. There is also differing terminology associated with such FEC resources,
for instance, some also refer to these as “cloudlets” [9] “micro data centres”
(MDC) [1] that exist at the network edge, and peer with cloud-based data cen-
tres, etc. Many also consider a Peer-2-Peer approach for aggregating edge capac-
ity, by enabling such cloudlets to interact with each other directly. A variety
of applications have been suggested to benefit from FEC infrastructure, such
as supporting storage and caching, partial processing of video feeds, monitoring
physical assets (e.g. in retail or supply chain applications), on-line and interac-
tive gaming etc. There is also emerging literature on how potential interference
caused by co-located workloads in a cloud environment can be migrated to FEC
devices, focusing on just-in-time migration of services, e.g. INDICIES [10], Caglar
et al. [3].

There is now increasing literature on how such FEC infrastructure can
be realised in practice [6–8]. Approaches range from the use of Raspberry
Pi/Arduino-based resources that can host a Web Server (such as Flask), to more
specialist micro data centres that can implemented using a computing cluster.
There is however limited coverage on business and revenue models that would
incentivise resource providers to offer FEC resources for third party use. We
investigate this aspect in here using two application scenarios. An architecture
is proposed for supporting these business models, which can be generalised to
a variety of applications. We use simulations using iFogSim [4] to demonstrate
the benefit of using FEC resources using our prototype applications. Section 2
provides an architecture to give context to the discussion in this paper. The
reminder of the paper is as follows: In Sect. 2 we present our micro-data centre
architecture and description. In Sect. 3 we describe the application scenario and



206 I. Petri et al.

overall methodology followed by the performance evaluation in Subsect. 3.3). In
Sect. 4 we present business models for fog computing and conclude our work in
Sect. 5.

2 FEC Architecture

Figure 1 illustrates a conceptual architecture for FEC application orchestration.
A mobile device (D) has the ability to generate/ingest data and submit tasks
for processing. The tasks are submitted to a micro data centre (MDC), that is
“closer” to the user device (geographically or based on access latency). MDCs are
capable of holding data and executing tasks with a very low latency (compared
to a cloud data centre). For simplicity, we assume that each device is connected
to one MDC (their “home MDC”). However, it is possible for user devices to
connect to multiple MDCs. Similarly, each MDC is connected to its Cloud Data
Center (CDC), i.e., home CDC; it is possible for one MDC to be connected to
multiple CDCs. Existence of an MDC therefore data transfer from a user to
this MDC in the first instance. The MDC can also act as a data cache to to
subsequently transfer this data to a CDC if needed. To ensure support for data
privacy and security (a major constraint in use of MDC at present), we assume
that a device D can trust its home MDC. The home CDC is classified as semi-
trusted, i.e., it can do the task as requested, but cannot guarantee the privacy of
data and tasks. Here, the data and tasks are exposed to potential attacks such
as an insider attack. Other MDCs and CDCs are untrusted.

We consider a decentralised distributed orchestration model, in which each
computing device in the network has an orchestration agent. Agents work collab-
oratively towards achieving the goal, i.e. complete a user task within a budget
and a given deadline, subject to security constraints.

Fig. 1. Conceptual architecture for FEC application orchestration.
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2.1 Best Effort Orchestration Protocol

Orchestration Agents (OAs) at both MDC and CDC work together to sched-
ule user submitted tasks. Consider three task execution scenarios, at: (a) home
MDC, (b) home CDC, and (c) remote MDC, as illustrated in Fig. 2. The diagram
demonstrates a best effort orchestration protocol as an example to illustrate the
concept.

Fig. 2. Orchestration Protocol between MDC and CDC.

In scenario 1, device (D) submits a task to its home MDC (MDC1), which
can meet the cost, deadline and security requirements. The task is then executed
at the local MDC and result returned to D. As local MDCs are trusted, this case
uses the highest level of security. In scenario 2, the task submitted by D cannot
be executed at the local MDC, being unable to meet task deadline due to existing
workload. The local OA forwards to CDC (CDC1) OA to create a proxy agent.
The proxy agent then takes over the responsibility for task completion. The
task is then completed by CDC1 and the result is returned to D via MDC1. As
CDC1 is considered to be semi-trusted, this scenario represents a semi-trusted
task execution at CDC (meeting the other two constraints of cost and deadline).
In scenario 3, the task cannot be completed by the home CDC (CDC1), requiring
other CDCs or MDCs that can complete the task. In our example, the CDC1 first
contacts CDC2, but it cannot meet the latency requirement as the result of the
task is much bigger in size than the original task. This means the task has to be
computed closer to the device to meet the latency requirement. The CDC2 finds
another MDC closer to D that can meet the latency requirement. It instantiates
a new proxy agent at the remote MDC (MDC3) and passes the task to it – and
the local agent is terminated. MDC3 completes the task and returns the results
directly to MDC1, which then passes this to D. All proxy agent instances for a
specific task are killed once the task is completed. Note that we have described
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normal execution scenarios using a best effort orchestration protocol. Our multi-
agent based distributed orchestration can handle variations in the execution of
the protocol due to failures, including failures to meet the specified requirements
(cost, security and deadline).

Data transfer between OAs remains an important challenge in these scenar-
ios, which may involve two aspects: (i) a user device submits data to the “local”
MDC, and from this point onwards requires the OA at the MDC to manage and
coordinate data management. This could involve migrating the data to a CDC
or another MDC, based on the level of “trust” that has been identified by the
user. Alternatively, the OA can also encrypt this data prior to migrating this to a
CDC, depending on the sophistication and computational capacity of an MDC;
(ii) a user device aims to find a suitable location to execute a task, but does
not undertake any data submission before it has found a valid location for task
execution (i.e. local MDC, CDC). Once a suitable location has been confirmed,
and an OA has been deployed, data is transferred directly from the user device
to the device hosting the OA. In case (ii), data only needs to be transferred once
and the user device takes control of undertaking this transfer.

3 Application Use Cases

We consider two application scenarios to motivate the use of FEC resources, a
Vehicle-2-Vehicle (V2V) and Vehicle-to-Infastructure (V2I) scenario (Sect. 3.1)
and a healthcare data processing scenario (Sect. 3.2).

3.1 Vehicle-2-Infrastructure Interaction

This scenario involves determining congestion within a particular area by using:
(i) localised information and alerting; (ii) global processing of the information
at a CDC. The scenario is realised using three agents, represented as controllers
in Fig. 3. A camera monitors a given traffic area, and based on observed motion,
alerts an “Area Traffic Controller” (acting as MDC) – which takes into account
location of vehicles (and co-position to each other), and sends updates to a “Car
Controller” (alongside the road, another MDC) and a “Global Traffic Controller”
(running in a CDC) – the last of these can aggregate forecast received from other
Area Traffic Controllers across multiple regions. Each of these controllers have
different resource capacities and latencies from the Car Controller. The Car
Controller measures speed of each passing vehicle in its vicinity, and sends this
data for aggregation to the other controllers. We simulate this scenario using
iFogSim, giving different capacities to each of these controllers (including an
energy consumption profile), as illustrated in Table 1.

In this scenario both the MDC and CDC are considered to be “trusted”, i.e.
data can be exchanged between any MDC and the CDC. Trust in this case can
also be related to potential availability of an MDC, i.e. if the network connecting
the MDC to the CDC is likely to fail, then multiple MDCs may co-exist at the
same location to provide greater resilience. Trust in this instance measures the
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Fig. 3. Controllers for V2V/V2I scenario. Fig. 4. Controllers for healthcare
scenario.

Table 1. V2V configuration for iFogSim.

Src Dest. CPU (MIPS) Network (pckts) Data type Direc.

Camera Motion Detec. 1000 20000 Stream Up

Motion Detec. Area Traffic Contr. 3000 2000 Obj. Loc. Up

Area Traffic Contr. Glob. Traf. Contr. 5000 2000 Traf. Loc. Up

Car Contr. Area Traffic Contr. 500 2000 Car Update Up

Car Contr. Speed 100 100 Speed Upd. Down

likelihood that an MDC will return a suitable reading to a CDC within a given
time interval.

3.2 Healthcare Data Processing

In this scenario, all beds within a hospital ward have sensors that monitor vital
signs of a patient (such as heart rate, movement pattern, ECG data, etc.). The
“Ward Controller” takes this raw data and performs analysis of the data locally,
and acts as an MDC in this case. Data from each patient can be analysed to
identify any particular triggers or anomalies that should be identified to a clin-
ician – referred to as the “allNurse” alarm tuple in Fig. 4. In this instance, the
data remains within the ward (i.e. the context of the local MDC), and does not
need to be exported to any external system. The “Nurse Control” involves inter-
action with local nurses, and if an alarm is received a “nurseAlarm” actuator is
triggered.

Where an anomaly has been found and further analysis needs to be car-
ried out, the data is exported to an extended data centre (CDC). This analysis
could involve: (i) integrating this data with other sources available about the
same individual; (ii) carrying out a multi-patient population study to investi-
gate patients with a similar profile. In both case, the data can be presented to
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a clinician for further analysis. The objective in this application scenario is that
in the majority of cases the data will remain within a Ward Controller (MDC),
and will not need to be exported to a CDC. In this instance, the MDC is trusted
as it collects data directly from a patient within a ward. Migration of the data
to a CDC would imply that confidential data needs to be exported to a remote
location for analysis, requiring security credentials of the CDC to be validated
before this is undertaken (Table 2).

Table 2. Healthcare scenario configuration for iFogSim.

Src Dest. CPU (MIPS) Network (pckts) Data type Direc.

Bed sensor Heart Rate Detec. 1000 200 Raw data Up

Heart Rate Detec. Nurse Contrl. 2000 1000 Call Nurse Up

Nurse Contrl. Alarm 100 100 Alarm Down

3.3 Evaluation: Performance

Both scenarios have been simulated via iFogSim changing a number of para-
meters associated with each. For the V2V scenario, the number of areas and
cars/area were modified, to investigate the impact of executing car updates at
local MDC (Area Controller) vs. at the CDC (Global Controller). As illustrated
in Fig. 5, the benefit of using an MDC alongside a CDC is illustrated, where
the processing time on a CDC which takes 11000 simulation cycles is reduced
to 4000 cycles using a combination of CDC+MDC for 100 cars per area. In his
simulation a total of 10 areas were considered, with this graph representing the
average obtained from the simulation.

Figure 6 illustrates how data exchanged between the MDC and CDC varies,
due to network congestion. The aim is to demonstrate that due to network
congestion between the MDC and CDC, it does not make sense to transmit
local data to the CDC for processing, necessitating se of local MDC. This could

Fig. 5. MDC+CDC – Sim. Time on y-
axis.

Fig. 6. MDC vs. CDC – Net. Traffic.
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occur, for instance, if more wards or more beds per ward are introduced into the
simulation. For this particular simulation, we maintain the number of beds/ward
at 10 and increase the number of wards to 50. The y-axis shows total network
usage when the simulation was run at CDC (the red bars) being significantly
larger than the total network usage with MDC (blue bars). Utilizing local MDC
reduces network traffic, as smaller amounts of data need to be shipped outside
the local region/area of the MDC, thereby leading to lower network congestion.
Within a decentralised hospital we would expect to have thousands of sensors
constantly sending data so network congestion would be a real problem, looking
at the results from this scenario we can see that a decentralised hospital would
not be possible without use of FEC devices.

3.4 Evaluation: Cost Analysis

Based on the V2V scenario in Sect. 3.1, we consider that we have a set of
MDCs – N = {n1, ..., nm}, responsible for managing data from Car Controllers
C = {c1, ..., cn}. Each ci broadcasts data to an MDC based on an analysis of
congestion within a given area. Therefore, we have a number of computational
jobs that need to be processed to calculate this congestion profile, with a prefer-
ence for execution at a particular nj . We consider that a job has an associated
cost c, calculated as:

c = exec.time × costexcution + net.tranfer × costtransfer + storagetime × coststorage

where costexecution is the cost per CPU, costtransfer represents data size trans-
ferred and coststorage represents cost for storage of data. The costs reported
in the experiments are calculated based on Amazon EC2 small instances in
dollars($). We present only the MCDs cost perspective and we are not taking
into consideration aspects related to delays in execution and time-to-execute
constraints.

Increasing number of cars: In this scenario we investigate the impact on cost
when increasing the number of vehicles for a fixed number of areas. As illustrated
in Fig. 7, on the x-axis the parameters [5, 10] refer to 5 areas and 10 cars per area.

Fig. 7. Transaction costs – Cars. Fig. 8. Transaction costs – Areas.
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We observe that the cost fluctuates with the number of cars. When increasing the
number of cars per area, due to an increase in the number of devices submitting
jobs, the network communication increases requiring greater congestion on FEC
devices. We observe that when using 5 areas and 50 cars [5, 50] the cost reaches
the highest level.

Increasing number of areas: We measure the impact of changing the number of
areas with associated FEC devices monitoring a number of vehicles in their
proximity. An area can host an MDC that can be used to carry out analysis on
data from the vehicles. In this experiment the number of vehicles is fixed while
the number of areas is modified.

In Fig. 8 we observe that changing the number of areas has a more significant
impact than number of vehicles. Areas have a specific number of Car Controllers
that can execute jobs by estimating car speeds and locations. The maximum cost
is recorded when using 30 areas with 10 cars per area, expressed as [30, 10]. We
also consider how the system reacts to different loading scenarios (i.e. changes
in number of jobs that need to be processed) when both cars and areas change.
Figure 9 shows how execution time changes with increasing number of cars and
areas, and subsequent impact on execution time due to increase in network traffic
and number of tasks.

Fig. 9. Execution time: increasing cars & areas.

These simulations demonstrate how FEC devices (represented as Car and
Area Controllers) can be used alongside a cloud system (represented as a Global
Controller), and the associated cost of using such resources.

4 Business and Coordination Models

Given the two scenarios in Sect. 3 and the general interaction protocol outlined
in Sect. 2, we generalise business models for making use of FEC resources. In
this discussion we are not using FEC resources on their own, but alongside
the availability of CDC(s). Several business models may become relevant when
considering migration of services between MDC and CDC. As illustrated in the
V2I scenario, multiple MDCs may exist between the user device (D) and the
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CDC, and the potential revenue generation for each of these MDC layers should
be taken on board. Similar to current broad availability of WiFi access points,
we envisage three general ways of funding MDCs: (i) by cloud providers; (ii)
by local businesses; (iii) by public funding. We expand on each of these aspects
below. In a previous analysis [2] we investigate similar approaches for Virtual
Machine migration in Fog systems.

Our business models are centered on the use of an Orchestration Agent (OA),
as described in Sect. 2. An OA is responsible for executing one or more tasks on
the behalf of a user application, and can launch proxy OAs on remote resources
(e.g. other MDC or CDC) to achieve this. An OA also interrogates remote
resources to determine potential costs of execution, and ensure that security
credentials of the remote resource are valid. Our business models are centered
on the use of the OA-based abstraction:

– Dynamic MDC discovery: In this model, an OA would be able to choose
an MDC provider on-the-go, according to the MDC availability profile, secu-
rity credentials, or type. The use of a service-based approach enables loose
coupling, enabling an eco-system of providers to co-exist. However, there is no
guarantee that integrating externally provisioned services will lead to the ful-
filment of the OA objectives. An OA can therefore record “preferred” MDCs
and cache this information locally. We envision cloud providers maintaining
and operating MDCs in order to extend their revenue beyond resource pro-
visioning in CDCs. Dynamic MDC discovery equates to finding an MDC in
the vicinity of a user device.

– Pre-agreed MDC contracts: In this model, the OA would rely on informa-
tive/detailed contracts that adequately capture the circumstances and criteria
that influence the performance of the externally provisioned services that are
subject of the contract. An OA would therefore have pre-agreed contracts
with specific MDC operators, and would interact with them preferentially.
This also reduces the potential risks incurred by the OA. In performance-
based contracts, an MDC would need to provide a minimum level of perfor-
mance (e.g. availability) to the OA which is reflected in the associated price.
This could be achieved by interaction between MDCs being managed by the
same operator, or by MDC outsourcing some of their tasks to a CDC.

Consider the following scenario to illustrate the pre-agreed MDC contracts
business model: a coffee chain offers contracts for use of MDCs operated by
this coffee chain across a city or country. A user wishing to make use of
MDCs owned and operated by this coffee chain would need to agree to a: (i)
security certificate provided by this coffee chain; (ii) have a pre-agreed sub-
scription for use of resources provided at MDCs operated by this coffee chain.
With an increasing number of branches/locations of this coffee chain, a user
would have a greater choice of locations available for use of an MDC. This is
equivalent to accessing wireless networks (Wifi) at locations offered by a par-
ticular provider which can have presence at multiple locations. Such a coffee
shop chain may also decide to enter into preferential agreements with cloud
data centre operators (e.g. public cloud providers) to integrate their regional
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MDCs with CDCs operated by the data centre provider. This aligns closely
with expansion of Amazon Web Services (AWS) from an infrastructure owned
and operated by an ecommerce provider, to a more globally accessible public
cloud infrastructure. In the same way, a coffee shop chain which operates local
infrastructure to offer Wifi services to customers, could also operated micro
data centres that can offer additional services to customers.

– MDC federation: In this model multiple MDC operators can collaborate to
share workload within a particular area, and have preferred costs for exchange
of such workload. This is equivalent to alliances established between airline
operators to serve particular routes. To support such federation, security cre-
dentials between MDCs must be pre-agreed. This is equivalent to an extension
of the pre-agreed MDC contracts business model, where MDCs across multi-
ple coffee shop chains can be federated, offering greater potential choice for a
user.

– MDC – CDC exchange: In this model an OA would contact a CDC in
the first instance, which could then outsource computation to an MDC if it
unable to meet the required Quality of Service targets (e.g. latency). A CDC
could use any of the three approaches outlined above – i.e. dynamic MDC
discovery, preferred MDCs, or choice of an MDC within a particular group. A
CDC operator needs to consider whether outsourcing could still be profitable
given the type of workload a user device is generating.

5 Conclusion

In this paper we present how micro-data centres can be used to support ser-
vice migration and serve incoming requests from applications. We consider that
micro-data centres have a cost function that involves incentives for micro-data
centres for hosting various services and an associated quality of services.

We describe, using two scenarios, how FEC resources can enhance the capa-
bility of a cloud-based data centre. Revenue models for supporting the combined
use of such resources are outlined, demonstrating how latency sensitive appli-
cations can be supported across such infrastructure. We use a V2V application
to demonstrate how FEC resources, closer to the data generation source, can
reduce processing times as the data sources are scaled.

We demonstrate that in our applications cost is directly related to the number
of fog devices, network architecture and application specificities. Such factors
should be considered when developing corresponding business models.
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