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Abstract. The security models for Authenticated Key Exchange do not
consider leakages on pre-computed ephemeral data before their use in
sessions. We investigate the consequences of such leakages and point
out damaging consequences. As an illustration, we show the HMQV-C
protocol vulnerable to a Bilateral Unknown Key Share (BUKS) and
an Unilateral Unknown Key Share (UUKS) Attack, when precomputed
ephemeral public keys are leaked. We point out some shades in the seCK
model in multi-certification authorities setting. We propose an enhance-
ment of the seCK model, which uses a liberal instantiation of the cer-
tification systems model from the ASICS framework, and allows reveal
queries on precomputed ephemeral (public and private) keys. We propose
a new protocol, termed eFHMQV, which in addition to provide the same
efficiency as MQV, is particularly suited for implementations wherein a
trusted device is used together with untrusted host machine. In such set-
tings, the non-idle time computational effort of the device safely reduces
to one digest computation, one integer multiplication, and one integer
addition. The eFHMQV protocol meets our security definition, under
the Random Oracle Model and the Gap Diffie-Hellman assumption.

Keywords: Unknown Key Share · seCKcs · ASICS · HMQV-C ·
eFHMQV

1 Introduction

A large body of works on the modelling of Authenticated Key Exchange (AKE)
security have been proposed since this approach was pioneered by Bellare and
Rogaway [3]. The recent security models, CK [7], eCK [21], CKHMQV [17] and
seCK [25,28] for instance, consider finely grained information leakages, including
leakages on static and ephemeral private keys, session keys, and intermediate
results. Working in another direction, Boyd et al. propose the ASICS frame-
work [5] which provides a finely grained model of multi-certification systems and
related attacks.
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In implementations of AKE protocols, ephemeral data are often pre-compu-
ted to boost implementations performance. The pre-computed data may then
leak to an adversary. To take this into account, the recent models, such as CK [7],
eCK [21], CKHMQV [17] and seCK [25,28] among others, consider adversaries
which may gain access to ephemeral secrets. Unfortunately, while leakages on
precomputed ephemeral secrets may occur before their use in sessions, these
models consider such leakages only while the keys are in use in a session (i.e.
after the session owner knows his peer), not before.

The works [5,6] provide a generic framework termed ASICS, which considers
not only leakages on the randomness used for ephemeral key generation, but
also various attacks related to Certification Authorities (CAs) corruptions. Ins-
tantiations of the framework lead, depending on the allowed queries, to the
eCK [21], the eCKw [9], eCK-PFS [9], and to the CKHMQV [17] models.

By considering an adversary which may learn the intermediate results in a
session, the seCK model [25,28] aims at a better capture of information lea-
kages. In this model, it is assumed at each party that a trusted computation
area (a trusted platform module, a smart card, a hardware security module,
etc.) is used together with an untrusted one (an untrusted host machine). It is
assumed also that AKE implementations may differ from one party to another.
Two implementations approaches are considered depending on the area wherein
the ephemeral keys are computed. And, reveal queries are defined to allow an
adversary to learn any information which is computed or used in the untrusted
area.

Albeit the seCK model seems to provide a better capture of information leak-
ages than the CK, eCK or ASICS models, the seCK definition considers only
one honest CA and assumes that each party registers only one public key. The
attacks that may occur in the multi-CA settings, wherein a party may have many
certificates, and some of the CAs may be adversary controlled are not captured.
Moreover, similar to the ASICS, eCK, and CK models, the seCK definition un-
naturally omits leakages of ephemeral public and private keys, before their use
in sessions. We investigate, in the multi-CA setting, the consequences of leak-
ages on precomputed ephemeral keys. We show that even leakages on ephemeral
public keys may have damaging consequences. As an illustration, we point out
Unknown Key Share (UKS) attacks against the HMQV-C protocol [17], which
was designed to provably provide explicit mutual key authentication. We pro-
pose an enhancement of the seCK model which uses a liberal instantiation of the
ASICS certification systems model. Contrary to the previous models, the seCKcs

definition considers leakages on precomputed ephemeral public and private keys
before their use in sessions, and captures various kind of UKS “related” attacks.
We propose also an efficient protocol, termed eFHMQV, which is seCKcs-secure
under the Random Oracle model and the Gap Diffie-Hellman assumption.

This paper is organized as follows. In Sect. 2, we point out some limitations in
the security models for AKE, we illustrate with UKS attacks against HMQV-C.
In Sect. 3 we present the seCKcs model. In Sect. 4 we propose the eFHMQV
protocol.
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We use the following notations. H is λ bits hash function, where λ is the
security parameter, H̄ is a l = λ/2 bits hash function. G = 〈G〉 is a multiplica-
tively written group of prime order p, G∗ is the set non-identity elements in G. If
n is an integer, |n| denotes its bit-length and [n] denotes the set {1, · · · , n}. The
symbol ∈R stands for “chosen uniformly at random in”. For two bit strings m1

and m2,m1||m2 denotes their concatenation. If x1, x2, · · · , xk are objects belong-
ing to different structures (group, bit-string, etc.) (x1, x2, · · · , xk) denotes the
concatenation of their representations as bit-strings.

2 Some Limitations in Existing Security Models

In this section we point out some limitations in the security models used for
the analysis of Authenticated Key Exchange (AKE) protocols. We show that
even leakages on pre-computed ephemeral public keys, may have damaging con-
sequences. Such leakages are not considered in any of the security definitions for
AKE we are aware of.

There are many arguments in favour of considering leakages on ephemeral
keys (both public and private) before their use in sessions (i.e. before the peer in
the session wherein the key is used is known). First, ephemeral keys pairs may be
precomputed and stored in an untrusted memory; this matches, for instance, the
implementation approach 1 in the seCK model [25,28] (see Fig. 1), and motivates
the HMQV analysis in [17, Sect. 7]. Second, even in the seCK’s implementation
approach 2, wherein ephemeral keys are computed in a trusted area, there may be
a limited storage space in a this area (a smart card, for instance). The ephemeral
public keys may then be stored unencrypted1 in the untrusted area, as when
encrypted, the advantages of pre-computing may be (partially) lost, because of
the time required for deciphering. It seems then realistic to consider leakages on
precomputed ephemeral public keys before their use in sessions.

2.1 (Bilateral) Unknown Key Share Attacks

Key authentication is a fundamental AKE security attribute which guarantees
that, besides a session owner, a session key is (possibly) known only by the peer.
A key authentication is said to be implicit from a party Â to another party B̂, if
when B̂ completes a session with intended peer Â, then he has some assurance
that Â is the only other entity that can be in possession of the session key.
Explicit key authentication from Â to B̂ is achieved if at the completion of the
session at B̂, he has some assurance that Â is the only other entity in possession
of the session key. A protocol is said to provide mutual key authentication (either
explicit or implicit) when it provides key authentication both from Â to B̂ and
from B̂ to Â.

Unknown Key Share (UKS) attacks, also termed identity misbinding [16],
seem to have been identified for the first time in [10]. Different formulations of
1 However, digests of the public keys are stored in the tamper proof device, so that it

is possible to verify that the keys were not altered.
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an UKS attack can be found in the literature [4,15,16,23], although they convey
essentially the same idea. The definition from [15], requires that an attacker, say
Ê, coerces two entities Â and B̂ into sharing a session key while at least one of
them does not know that the session key is shared with the other; vulnerability
to UKS attacks is then a failure in key authentication. A protocol is said to be
vulnerable to an Unilateral UKS (UUKS), if an attacker can succeed in making
two parties, say Â and B̂ share a session key, while exactly one of the parties,
say Â believes having shared the key with a party Ĉ �= B̂. A protocol is said to
be vulnerable to a BUKS attack if an attacker is able to make two entities, say
Â and B̂, share a session key, while Â believes having shared the key with some
party Ê1 �= B̂ and B̂ believes having shared the key with Ê2 �= Â, the parties Ê1

and Ê2 may be different or not. BUKS attacks are then a specific case of UKS
attacks (see [8] for a further discussion about UUKS and BUKS attacks).

Usually, in an (B, U)UKS attack, the attacker does not know the shared
session key, he cannot then decipher or inject messages in the communications
between the parties sharing the key. However, he may take advantage from the
“unknown key share(s)”, as shown in [4, Sect. 5.1.2] for UUKS attacks. For BUKS
attacks, suppose that Â is renowned chess player, B̂ is a famous Artificial Intel-
ligence (AI) creator, who claims having created an AI program that can win
against Â, and the attacker Ê is an AI program creator who wants to take
advantage from the reputations of Â or B̂. If the game parties between Â and
B̂’s program are played online, using some AKE protocol Π which is vulnera-
ble to a BUKS, Ê may claim having created an AI program that he expects to
win against both Â and the program from B̂. Then Ê interferes in the session
between Â and B̂ such that Â (resp. B̂) believes having shared the session key
with Ê, while it is shared with B̂ (resp. Â). If Â wins the game, Ê claims that
his program won against the one from B̂. Otherwise, he claims the converse. In
any case, Ê takes advantage from the reputation of either Â or B̂. Such attacks
may be damaging in any setting wherein the attacker can get some credit from
a BUKS attack.

2.2 BUKS and UUKS Attacks Against HMQV-C

The HMQV protocol is a “hashed variant” of the MQV protocol [22], designed to
provably overcome the “analytical shortcomings” in the MQV design [17,18]. In
particular, HMQV is claimed to be provably resilient to UKS attacks. The three
pass variant of HMQV, termed HMQV-C (the ‘C’ stands for key confirmation)
is designed to provide, besides the HMQV security attributes, explicit mutual
key confirmation and perfect forward secrecy. It is then a major design goal in
HMQV-C that when a session key is shared between two honest parties, say
Â and B̂, Â (resp. B̂) gets assurance that, besides himself, the session key is
known only to B̂ (resp. Â). Let Â and B̂ are two parties with respective static
key pairs (a,A = Ga) and (b,B = Gb), with A,B ∈ G∗. An execution of the
HMQV-C protocol between them is as in Protocol 1; the execution aborts if any
verification fails.



40 P.B. Seye and A.P. Sarr

Protocol 1. The HMQV-C Protocol

(I) The initiator Â does the following:
(a) Choose x ∈R [p − 1] and compute X = Gx.
(b) Send (Â, B̂, X) to B̂.

(II) At receipt of (Â, B̂, X), B̂ does the following:
(a) Choose y ∈R [p − 1] and compute Y = Gy.
(b) Compute d = H̄(X, B̂), e = H̄(Y, Â), sB = y + eb mod p, σB = (XAd)sB ,

K = H(σB , 1), and Km = H(σB , 0).
(c) Send

(
B̂, Â, Y, MACKm(“1”)

)
to Â.

(III) At receipt of
(
B̂, Â, Y, MACKm(“1”)

)
, Â does the following:

(a) Compute d = H̄(X, B̂), e = H̄(Y, Â), sA = x + da mod p, σA = (Y Be)sA ,
K = H(σA, 1), and Km = H(σA, 0).

(b) Validate MACKm(“1”).
(c) Send

(
Â, B̂, X, MACKm(“0”)

)
to B̂.

(IV) At receipt of
(
Â, B̂, X, MACKm(“0”)

)
, B̂ validates MACKm(“0”).

(V) The shared session key is K.

A BUKS Against HMQV-C. Suppose an attacker, with identity Ê (X509
Distinguished Name in [19]), which learns Â and B̂’s pre-computed ephemeral
public keys X and Y , respectively, before their use. Proceeding as in Attack 2,
Ê interferes such that Â and B̂ share a session key, while each of them believes
having shared the key with Ê.

Attack 2. BUKS Attack against HMQV-C

(1) Compute d = H̄(X, Ê), X ′ = XAdG, u = H̄(X ′, B̂), and E1 = G−u−1 mod p.
(2) Register the key E1 using the identity Ê to get a certificate crt1.

(3) Compute e = H̄(Y, Ê), Y ′ = Y BeG, v = H̄(Y ′, Â), and E2 = G−v−1 mod p.
(4) Register the key E2 using the identity Ê to get a certificate crt2.
(5) Induce Â to initiate a session with peer Ê (using crt2), and receive (Â, Ê, X)

from Â.
(6) Initiate a session with peer B̂ (using crt1) by sending (Ê, B̂, X ′).
(7) Receive (B̂, Ê, Y, tB = MACKm(“1”)) from B̂.
(8) Send (Ê, Â, Y ′, tB) to Â.
(9) Receive (Â, Ê, X, tA = MACKm(“0”)) from Â.

(10) Send (Ê, B̂, X ′, tA) to B̂.

As the attacker knows the static private keys corresponding to the keys he regis-
ters using his own identity, the registrations succeed even if a proof of knowledge
of the private keys is required; he may register the keys at different CAs, in
the case CAs do not register one identifier for many keys. Furthermore, the
dual signature Â derives is σA = CDH(XAd, Y ′Ev

2 ) wherein d = H̄(X, Ê)
and v = H̄(Y ′, Â). As Y ′ = Y BeG where e = H̄(Y, Ê), and E2 = G−v−1

, we
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have Y ′Ev
2 = Y BeG(G−v−1

)v = Y Be, and σA = CDH(XAd, Y Be). Similarly,
the session signature at B̂ is σB = CDH(Y Be,X ′Eu

1 ) where u = H̄(X ′, B̂).
As X ′ = XAdG, we have X ′Eu

1 = XAdG(G−u−1
)u = XAd, and σB =

CDH(Y Be,XAd) = σA. Then Â and B̂ derive the same session signature, the
same session key K = H(σA, 1) = H(σB , 1), and also the same MACing key
Km = H(σA, 0) = H(σB , 0). Hence the MAC validations succeed in the sessions
at Â and B̂, which both accept. As a consequence, Â and B̂ share the same ses-
sion key (K = H(σA, 1) = H(σB , 1)) while each of them believes having shared
the key with Ê (who is not in possession of the session key).

Applicability of the Attack Against other Protocols. Variants of our BUKS
attack can be launched against the MQV [22], HMQV [17], SIG-DH [7], P [24],
and DIKE [34] protocols; similar attacks are already known, from [8], against the
four DHKE [29], the modified STS [4], and the alternative Oakley [4] protocols.
In the HMQV instantiations under consideration for P1363 standardization (see
the current P1363 draft at tinyurl.com/jolno5n), it is not mandated that the
protocols be executed in the pre-specified-peer model (see [24] for a further dis-
cussion about the pre- and post-specified peer models). When these protocol are
executed in the post-specified-peer model, i.e. when a session initiator discovers
his peer’s identity after he receives a message from him, variants of the attack can
be launched without any leakage assumption. Without further assumptions the
attack fails against the MQV-C and FHMQV protocols. In MQV-C, B̂ provides
to Â a MAC of (2, B̂, Â, Y,X) and receives from him a MAC of (3, Â, B̂,X, Y ),
so when the attack is launched, although the MACing keys at Â and B̂ are the
same, due to changes in the MACed data they expect, the validations fail.

An UUKS Attack Against HMQV-C. In [24], Menezes and Ustaoglu point
out an UUKS against the two-pass HMQV in post-specified peer model. The
attack can be launched if (i) a party can select its own identifier, and (ii) at key
registration a proof of knowledge of the private key is not required. In a setting
with 2k honest parties, the attack requires roughly 2|p|/2−k operations.

Assuming that the attacker may learn precomputed ephemeral public keys,
we propose in Attack 3 an UUKS attack against HMQV-C. Our attack
holds in the pre-specified peer model and seems to be more realistic than
Menezes and Ustaoglu’s attack. When Attack 3 is launched, Â computes
σA = CDH(XAd, Y ′Ev) where d = H̄(X, Ê) and v = H̄(Y ′, Â). As Y ′Ev =
Y BeG(G−v−1

)v, it follows that σA = CDH(XAd, Y Be) where e = H̄(Y, Â).
The party B̂, activated with peer Â, computes σB = CDH(Y Be,XAd) wherein
d = H̄(X, B̂) = H̄(X, Ê). Then Â and B̂ share the same session dual signature,
making the MAC validations succeed in the sessions at both Â and B̂. So, Â
and B̂ derive the same session key, while Â believes having shared the key with
Ê, and B̂ believes having shared the key with Â.

Similar to the attack from [24], in a setting with 2k parties, our attack requires
roughly 2|p|/2−k operations (the computations at step 3). For |p| = 160 and
k = 20, the attack requires 260 operations and is not then out of reach of our
computational capabilities [13,20]. Moreover, contrary to the Attack from [24],

http://tinyurl.com/jolno5n
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in our attack (i) the computations at step 3 are performed offline (after the
attacker learns X), and (ii) the attacker knows the private key corresponding to
the static key he registers. Our UUKS attack (against HMQV-C) is then more
practical than the one from [24].

Attack 3. UUKS Attack against HMQV-C
(1) Learn an ephemeral public key X from a part, say Â.

(2) Compute D =
{

(C, H̄(X, Ĉ)) : Ĉ is an honest party
}

.

(3) Find an identifier Ê (which is different from honest parties identifiers) such that
for some honest B̂, (B̂, H̄(X, Ê)) ∈ D.

(4) Learn an ephemeral public key Y at B̂.

(5) Compute e = H̄(Y, Â), Y ′ = Y BeG, v = H̄(Y ′, Â), and E = G−v−1 mod p.
(6) Register the key E using the identifier Ê.
(7) Induce Â to initiate a session with peer Ê, and receive (Â, Ê, X) from Â.
(8) Send (Â, B̂, X) to B̂.
(9) Intercept B̂’s response (B̂, Â, Y, tB = MACKm(“1”)).

(10) Send (Ê, Â, Y ′, tB) to Â.
(11) Receive (Â, Ê, X, tA = MACKm(“0”)) from Â.
(12) Send (Â, B̂, X, tA) to B̂.

2.3 About the Capture of UKS Related Attacks in Security Models

By UKS related attacks we refer to the attacks wherein the attacker succeeds in
making non matching sessions yield unhashed secrets (session signatures) such
that given one of the secrets, the other can be efficiently computed. Our attacks
occur in the specific case wherein the unhashed secrets are the same.

Two weaknesses in the CKHMQV model explain the co-existence of our attack
and the HMQV(-C) security reduction. First, although the settings wherein
ephemeral keys are pre-computed motivate the analysis in [17, Sect. 7], leak-
ages on ephemeral keys are considered only while they are in use (i.e. after the
peer in the session is known), not before. Then, the attacks assuming leakages
on ephemeral public keys before their use are not captured. Moreover, when
in addition to considering leakages on precomputed ephemeral keys, an attacker
may learn some intermediate secrets (as modelled in the seCK definition [26,28]),
further attacks can be launched. We stress that leakages on intermediate results
is a realistic assumption. For instance, the AKE implementations in TPM2.0 are
divided into two phases. In the first phase an outgoing ephemeral key is gen-
erated, using the command TPM2 EC Ephemeral() (see [31, Sect. 19.3]). In the
second phase (the relevant command is TPM2 ZGen 2Phase() [31, Sect. 14.7])
the TPM computes (using the peer’s public keys) the unhashed shared secret (σ
in the case of MQV). The session key is computed on the host machine (which
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may be infected by a malware), using the unhashed shared secret. When leak-
ages on the unhashed shared secrets are considered, variants of our attacks can
be launched against (H, C)MQV-C, even if nonces or the peers identities are
included in the final digest for session key derivation.

We found no variant of our attacks against the FHMQV or SMQV proto-
cols [25,28], as long as the CAs are honest and each party has only one certificate.
However, in a multi-CA setting, where a party may have many certificates, some
shades occur. We stress that considering a multi-CA setting, as modelled in the
ASICS framework [5] wherein some of the CAs may be adversarially controlled,
seems to be realistic. Indeed, for most browsers, only few clicks are required to
add a rogue CA certificate in the trust-store (the set of CA certificates the user
trusts), and it may also occur that users do not change their systems default
trust-stores passwords.

For a party, say Â, with two certificates (with different keys), say crt1 and crt2,
the disclosure of the private key corresponding to crt1 should have no adverse
effects in the sessions wherein Â uses crt2. And, when an attacker registers a
certificate crt∗ using Â’s identity and a static key which is different from the one
corresponding to crt2, the existence of crt∗ should have no adverse effect on the
sessions wherein Â uses crt2. Hence, the notion of “corruption” should be about
certificates, not on parties. As a shade in the seCK model, in multi-CA settings,
consider two parties Â and B̂, with respective certificates crt and crt′, executing
the (C, F)HMQV protocol (see [32] and [25,28] for descriptions of CMQV and
FHMQV respectively), and an attacker which performs as in Attack 4.

Attack 4. Attack against (C, F)HMQV in a multi-CA setting

(a) Register E = GA where A is Â’s static public key using Â’s identifier to obtain a
certificate crt∗.

(b) When Â initiates a session with peer B̂ intercept his message (crt, crt′, X) and send
(crt∗, crt′, X) to B̂.

(c) Intercept B̂’s response (crt′, crt∗, Y ) and send (crt′, crt, Y ) to Â.

The session signatures Â and B̂ derive are respectively σA =
CDH(XAd, Y Be) and σB = CDH(X(GA)d, Y Be) = σAY Be, where B is B̂’s
static key and d and e are the H̄ digest values in (C, F)MQV. The sessions at Â
and B̂ are non-matching and the session at Â is seCK-fresh. When the attacker
issues a session signature reveal query (to learn σB), he can compute the session
key at Â and succeed in a distinguishing game. An enhancement of the seCK
security definition to clarify the shades and capture the consequences of leakages
on precomputed ephemeral public keys is desirable. We propose such a model.

3 Enhancing the seCK Security Model

Broadly, in the seCK model [25,28], it is assumed two computation areas at
each party, a trusted one (a smart card, a tamper proof device, etc.) and an
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untrusted one (a host machine), and that any information which is computed or
used in the untrusted area can leak to an adversary. In addition, it is assumed
that implementations may differ from one party to another; information leakages
may then differ from one party to another. This seems to correspond to real word
vulnerabilities [14,30,33]. Unfortunately, the seCK definition considers only one
honest CA, and assumes that each party has only one honestly generated static
key pair, and does not capture some attacks in a multi-CA setting.

In contrast, the ASICS framework considers a multi-CA setting, and captures
a wide class of attacks based on adversarial key registration, including small
subgroup attacks, UUKS attacks, and the attacks that may occur when a party
can register many static keys. However, the ASICS model defines reveal queries
only on static keys, randomness and session keys, leaving realistic leakages that
may occur, through side-channel attacks for instance. As an example, in the
CMQV variant, shown secure in [5,6], if an attacker learns a sufficiently large
part of the ephemeral secret exponent at a part (sA or sB in Protocol 1), he can
impersonate indefinitely the session owner to its peer [1,26].

We propose the seCKcs (the ‘cs’ stands for certification systems) to enhance
the seCK model [25,28] in the following ways: (i) seCKcs provides a capture of
the attacks exploiting leakages on pre-computed ephemeral public and private
keys, (ii) it uses a liberal instantiation of the multi-CA model from [5], and (iii)
captures various “kinds” of UKS related attacks.

3.1 The seCKcs Security Model

We suppose m parties M1, · · · ,Mm, and an adversary A, modelled as PPT
Turing machines, sharing a securely generated set domain parameters, we denote
by dp. The adversary is supposed to be in total control of the communication
links between parties. We assume also n identities id1, · · · , idn, with m � n �
R(λ) for some polynomial R. And, we require that different honest parties have
distinct identities; we allow however a party to have many identities.

Key Generation and Certificate Registration. We assume a liberal certifica-
tion authority (CA) which accepts all the queries from the adversary, includ-
ing queries with the key and identity of an honest party. We only require that
two certificates issued at distinct registrations be different, even if they have
the same key and identity. In other words, we assume that each certificate has
some specific information, we denote by Unique Identifier (ui), which is unique
and efficiently computable. When various certificate formats are used, assuming
that a CA does not issue two certificates with the same serial number, the ui can
be, for instance, the quadruple (date of issuance, serial number, issuer, subject).

The adversary can direct a party, say Mi, to generate a static key pair trough
GenSKP(Mi) query. This query can be issued many times at each party. When
it is issued, Mi generates (using dp) a key pair (a,A) and provides A with A.
Once A generated, A is allowed to direct Mi to honestly register A by issuing
HReg(Mi, A, idk). When this query is issued, Mi registers A with the identity
idk to obtain a certificate. We stress that the HReg query is for honest key
registration, so for the query to succeed, we require that no HReg(Mi′ , A′, idk)
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with i′ �= i have been successfully issued before; i.e. that when different parties
honestly register static keys, they use different identities.

The attacker can maliciously register any (valid or invalid) key, including
honest parties static keys, together with any string of its choice (including a
honest party’s identity) using the MReg(Q, id) query; this query always succeeds.
For a certificate crt, we refer to the certificate’s public key, identity, and ui
respectively by crt.pk, crt.id, and crt.ui.

Sessions. A session is an instance of a protocol run at a party; A decides about
session activations. To activate a session, say at Mi with peer Mi′ , A issues a
Create query with parameters (crt, crt′) or (crt, crt′,m), where m is a message
supposed to be from Mi′ , and crt and crt′ are certificates belonging to Mi and
Mi′ respectively. If the creation parameter is (crt, crt′), Mi is said to be the ini-
tiator (I), otherwise he is said to be the responder (R). At session creation, the
activated party may provide A with an outgoing message (sid′,m′) where sid′

is a session identifier and m′ is a message to be processed in sid′. Each session
is identified with a tuple (crt, crt′, out, in, role), where crt is the owner’s certifi-
cate, crt′ is the peer’s certificate (in the owner’s view), out is the list of the
outgoing messages, in is the list of the incoming messages, and role ∈ {I,R}
is the owner’s role. For an identifier sid = (crt, crt′ out, in, role), we refer respec-
tively to crt, crt′, out, in, and role by sidoc, sidpc, sidin, sidout, and sidrole. For the two
pass Diffie-Hellman protocols, we refer to the incoming and outgoing ephemeral
keys by sidiEPK and sidoEPK respectively. Each session has a status we denote
by sidstatus ∈ {active, accepted, rejected}. The status is accepted if the session
has completed, i.e. the session key is computed and accepted. It is rejected if
the session has aborted, it is active if it is neither accepted nor rejected. For
an accepted session sid, sidkey denotes the derived key. The adversary can issue
a Sd(sid,m) query, where m is a message to be processed in sid. When this
query is issued, the session owner is provided with m. He may update sidin
to include m; he may also compute an outgoing message (sid′,m′) and update
sidout and sidstatus accordingly. Two sessions sid and sid′ are said to be matching
if sidoc = sid′

pc, sidpc = sid′
oc, sidout = sid′

in, sidin = sid′
out, and sidrole �= sid′

role.

Reveal Queries. Similar to the seCK model [25,28], we assume two computation
areas at each party, a trusted and an untrusted one. We suppose that imple-
mentations may be performed differently from one party to another, and define
reveal queries to allow the adversary to learn any information that is computed
or used in the untrusted area. Moreover, the adversary may bypass the tamper
protection mechanisms and learn the long term secrets. We assume implemen-
tations performed using one of the seCK approaches. In Approach 1, the static
key is computed and used in the trusted area, and the ephemeral keys are com-
puted in the untrusted area. This implementation approach corresponds to reveal
queries as defined in the eCK and ASICS models. In Approach 2, both static
and ephemeral private keys are computed and used in the trusted area, and all
the other intermediate results are used in the untrusted host-machine. This app-
roach is similar but stronger than the way AKE implementations are performed
in TPM2.0. In both approaches, the session key is used in the untrusted area.
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These approaches are not the only possible, and the model can be enriched with
other implementation approaches, however the two approaches we consider seem
to be typical in real word settings.

The adversary is allowed to direct a certificate owner, say Mi, to generate
an ephemeral public key pair using a GenEKP(crt) query. When it is issued, Mi

generates a key pair (x,X) and provides the attacker with X. If Mi, follows
the Approach 1, A can issue a RvEPK(X) query to learn the ephemeral private
key x. We stress that this query may be issued before the public key X is used
in a session. At a party using Approach 2, a reveal query is defined to allow A to
learn any information that is computed of used in the untrusted area. In both
approaches, the adversary can learn the private key corresponding to a static
public key A, by issuing RvSPK(A). For a completed session sid, the attacker
can issue a RvSesK(sid) query to learn sidkey. For the protocols of the MQV
family, at a party using the Approach 2, A can issue RvSecExp(sid) to obtain the
ephemeral secret exponent in sid (sA or sB in HMQV-C), and a RvSesSig(sid)
query to obtain the dual signature (σA or σB) (Tables 1 and 2).

Fig. 1. (e)FHMQV implementation approaches in the seCK model [25,28]

Table 1. Summary of the queries

GenSKP,RvSPK static key pair generation, static private key reveal query

HReg,MReg honest key registration, malicious key registration

GenEKP,RvEPK ephemeral key pair generation, ephemeral private key reveal query

Create,Sd Session creation, message sending

RvSesK session key reveal query

RvSecExp ephemeral secret exponent reveal query (for the MQV family)

RvSesSig session signature reveal query

Test test session query
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Table 2. Overview of the notations

dp public domain parameters

crt, crtx,x∈{pk,id,ui} a certificate, the public key (pk), identity (id), or unique

identifier (ui) in the certificate crt

sid, sidx,x∈{oc,pc,out,in,role} session identifier, the owner’s certificate (oc), peer’s certificate

(pc), list of outgoing messages (out), list of incoming messages
(in), or the owner’s role in the session sid

sidx,x∈{iEPK,oEPK} incoming ephemeral public key (iEPK) or outgoing ephemeral
public key (oEPK) in a session (for DH protocols)

Session Freshness. A completed session with identifier sid is said to be:

Locally exposed: if (a) A issued a RvSesK(sid) query, or (b) the session
owner follows the Approach 1 and A issued both RvSPK(sidoc.pk) and
RvEPK(sidoEPK), or (c) the session owner follows the Approach 2 and A issued
a reveal query on an intermediate result which is computed or used in the
untrusted area.

Remark 1. For the protocols of the MQV family, the condition (c) is “the session
owner follows the Approach 2 and A issued RvSecExp(sid) or RvSesSig(sid).”

Exposed: if (a) it is locally exposed, or (b) its matching session exists and is
locally exposed, or (c) its matching session does no exist and (c.i) sidpc was
maliciously registered, or (c.ii) sidpc was honestly registered and A issued
RvSPK(sidpc.pk);

Fresh: if it is not exposed.

The security experiment is initialized with a securely generated public set of
domain parameters dp for some security parameter λ. The adversary is allowed to
issue all the queries defined above. At some point of the game he issues a Test(sid)
query on a completed and fresh session sid. When the Test query is issued a bit

b ∈R {0, 1} is chosen, and A is provided with k =
{
sidkey if b = 1
k′ ∈R {0, 1}λ, otherwise.

After the Test query is issued, A can issue all the queries of its choice as long as
sid remains fresh. Finally, he produces a bit b′ and wins the game if b = b′.

Definition 1 (seCKcs security). A protocol Π is said to be seCKcs secure if,

– except with negligible probability, two sessions yield the same session key
if and only if they are matching, and

– for all efficient attacker playing the above game, |2Pr(b = b′)−1| is negligible.

3.2 Comparing the seCKcs with the seCK and ASICS Models

The seCKcs definition encompasses the seCK model [25,28] together with a
liberal instantiation of the ASICS multi-CA setting [5,6]. The modelling of the
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CAs is realistic, as illustrated with recent CA breaches [11,12]. And, as already
pointed out in [5, p. 6], although we explicitly consider one CA, we implicitly
capture multi-CA settings with independent CAs.

However, there are some differences between the key registration queries in
the ASICS and seCKcs models. The honest key registration query in the ASICS
model, hregister, takes two parameters, a public key and an identity. The par-
ties and their implementation approaches are modelled in seCKcs, so the honest
key registration, HReg, is enriched to include a parameter which indicates the
party registering the key. Also, we do not differentiate malicious key registra-
tions depending on the validity of the static key the adversary provides, as with
the pkregister and npkregister in ASICS. We assume simply that any malicious
registration query succeeds (i.e. the MReg query always succeeds). Moreover,
there are less restrictions in the seCKcs freshness definition than in the ASICS
instantiations from [5, Sects. 3–4]. For a session sid without a matching session,
both definitions require that no RvSPK(sidpc.pk) was successfully issued. How-
ever, while [5,6, Theorem 1] requires that MReg(sidpc.pk, sidpc.id) was not issued,
we require that sidpc was not registered by A, meaning that sid remains fresh
even if A issued MReg(sidpc.pk, sidpc.id), as long as sidpc was not registered by
A. Besides, the ASICS model considers only leakages on static keys, randomness
and session keys, leaving realistic leakages that may occur, on unhashed shared
secrets (in AKE implementations in TPM2.0 for instance); while seCKcs consi-
ders reveal queries on precomputed ephemeral keys and any information which
is computed or used in the untrusted area.

The seCKcs definition is strictly stronger than seCK, which is already known
to be strictly stronger than the eCK model [28]. To illustrate the separa-
tion between the seCKcs and seCK models, we consider the Attack 4 against
(C, F)HMQV, wherein B̂ belong to the set of parties following the second imple-
mentation approach. We recall that FHMQV and CMQV are known respectively
to be secure in the seCK and ASICS models. In Attack 4, the session at Â is
seCKcs-fresh. Given the relation between the session signatures in the sessions
at Â and B̂, A succeeds in the seCKcs distinguishing game, with probability
≈ 1, as follows: (i) he chooses the session at Â as a test session, (ii) issues a
RvSesSig on the session at B̂ to obtain σB , and (iii) compute the session signa-
ture and the session key Â derives. The attacker’s success follows from its ability
to make non-matching sessions yield related session signatures, such that given
one of the session signatures, the other can be efficiently computed. By requiring
that non-matching sessions do not yield the same session key, seCKcs-security
captures classical (B, U)UKS attacks. Moreover, it ensures that non-matching
session do not yield related session signatures. The seCKcs model captures not
only “classical” UKS attacks, but also the attacks related to unknown share of
unhashed session secrets.

4 The enhanced FHMQV (eFHMQV) Protocol

A main improvement in FHMQV [25,26] compared to HMQV [17] is the use of
the incoming and outgoing ephemeral keys in the computation of the digest
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values d and e; this design choice makes FHMQV resilient to leakages on
ephemeral secret exponents (sA and sB). We use a similar idea in the eFH-
MQV design. An execution of eFHMQV between two parties Â and B̂ with
respective certificates crt and crt′ is as in Protocol 5.

Protocol 5. The eFHMQV Protocol
(I) The initiator Â does the following:

(a) Verify that crt′.pk ∈ G∗, choose x ∈R [p − 1] and compute X = Gx.
(b) Send (crt, crt′, X) to B̂.

(II) At receipt of (crt, crt′, X), B̂ does the following:
(a) Verify that X ∈ G∗ and crt.pk ∈ G∗, choose y ∈R [p−1] and compute Y = Gy.
(b) Send (crt′, crt, X, Y ) to Â.
(c) Compute d = H̄(X, Y, crt.pk, crt.id, crt.ui, crt′.pk, crt′.id, crt′.ui).
(d) Compute e = H̄(Y, X, crt.pk, crt.id, crt.ui, crt′.pk, crt′.id, crt′.ui).
(e) Compute sB = y + eb, where b = logG crt′.pk, and σB = (X(crt.pk)d)sB .
(f) Compute K = H(σB , crt.pk, crt.id, crt.ui, crt′.pk, crt′.id, crt′.ui, X, Y ).

(III) At receipt of (crt′, crt, X, Y ), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X, Y, crt.pk, crt.id, crt.ui, crt′.pk, crt′.id, crt′.ui).
(c) Compute e = H̄(Y, X, crt.pk, crt.id, crt.ui, crt′.pk, crt′.id, crt′.ui).
(d) Compute sA = x + da, where a = logG crt.pk, and σA = (Y (crt′.pk)e)sA .
(e) Compute K = H(σA, crt.pk, crt.id, crt.ui, crt′.pk, crt′.id, crt′.ui, X, Y ).

(IV) The shared session key is K.

In an eFHMQV session with identifier sid = (crt, crt′,X, Y, I) the digests d
and e are computed as indicated in the steps (IIIb) and (IIIc). As a result, even
if the step (a) of Attack 4 is modified to make A issues MReg(crt.pk, crt.id),
i.e. A registers Â’s key using Â’s identity to obtain crt∗, the attack fails
as long as different certificates have different unique identifiers. Indeed,
as B̂ computes d′ = H̄(X,Y, crt∗.pk, crt∗.id, crt∗.ui, crt′.pk, crt′.id, crt′.ui) and
e′ = H̄(Y,X, crt∗.pk, crt∗.id, crt∗.ui, crt′.pk, crt′.id, crt′.ui) and crt∗.ui �= crt.ui,
except with negligible probability d′ �= d and e′ �= e. Then, even if A issues
RvSecExp(crt′, crtA, Y,X,R) in the distinguishing game and receives sB = y+e′b,
as e′ �= e, he cannot derive σA = CDH(XAd, Y Be) wherein A = crt.pk,
B = crt′.pk. A direct proof of this claim can be obtained using the Knowledge of
Exponent Assumption [2]. However, as we show in Theorem 1, this assumption
is not necessary.

An execution of eFHMQV requires at most 2.5 times a single exponentiation;
this equals the efficiency of the famous MQV protocol. In addition, in Approach
2, the ephemeral public keys can be computed in idle time on a trusted device (a
smart card for instance) and stored unencrypted in an untrusted host machine.
It is only necessary that a digest of the keys be stored on the device so that
alterations can be detected. When eFHMQV is implemented in this way, the
non-idle time computational effort on the device reduces to one digest compu-
tation, one integer addition, and one integer multiplication. We stress that the
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(C,H)MQV protocols [17,22,32] cannot achieve such a performance, as they do
not confine the adverse effects of leakages on secrets exponents (sA and sB). And,
in the seCKcs security definition, FHMQV and SMQV [26–28] are insecure, and
cannot then provably achieve such a performance.

Theorem 1. Under the Gap Diffie-Hellman assumption and the Random Ora-
cle model, the eFHMQV protocol is seCKcs-secure.

The FXCR and FDCR schemes [25,28] are the main ingredients in the proof of
this theorem we do not provide here (for lack of space). A detailed proof is given
in the extended version of this paper.

5 Concluding Remarks

We pointed out and illustrated some limitations in existing AKE security mo-
dels. We showed that even leakages on precomputed ephemeral public keys may
have damaging consequences, we illustrated with (B, U)UKS attacks against the
HMQV-C protocol. We proposed the seCKcs security definition which encom-
passes the seCK model, integrates a strong model of multi-CA settings, and
considers leakages on precomputed ephemeral (public and private) keys.

We proposed the eFHMQV protocol, which is particularly suited for dis-
tributed implementation environments wherein an untrusted computer is used
together with a tamper-resistant device. In such an environment, the non-idle
time computational effort of the device reduces to one digest computation,
one integer addition, and one integer multiplication. The eFHMQV protocol
is seCKcs-secure under the Random Oracle Model and the Gap Diffie-Hellman
assumption.

In a forthcoming stage, we will be interested in Perfect Forward Secrecy in
the seCKcs model.
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