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Abstract. This paper presents an approach to estimate the potency of
obfuscation techniques. Our approach uses neural networks to accurately
predict the value of complexity metrics – which are used to compute the
potency – after an obfuscation transformation is applied to a code region.
This work is the first step towards a decision support to optimally protect
software applications.
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1 Introduction

Obfuscation is one of the most effective and used solution to protect the software
against reverse engineering and tampering. Several obfuscation techniques are
available in literature [5] that can be driven by different protection/performance
degradation parameters. While some results proved that it is impossible to create
a perfect obfuscator [2], empirical results showed that obfuscation works well in
practice [3,21]. Several tools are also prominent at industrial level1.

Nevertheless, the strength of obfuscation in mitigating the attacks cannot be
formally defined. Collberg et al. have proposed to compute an effectiveness index,
named potency, by measuring the changes in complexity metrics induced by the
obfuscation transformations [5]. This value can only be measured a posteriori,
after the actual application of the transformation. As it is impractical to apply
and measure all the possible ways to apply obfuscation, protection experts are
asked to (1) use their intuition and past knowledge to select the parts to protect
and the most promising techniques to apply on each of them, then to (2) apply
the protections, and to (3) actually measure the effects. This practice conflicts
with the need that several companies have to protect different versions of one or
more applications in a very short time.

This paper proposes to estimate a priori the potency of obfuscation tech-
niques, before they are applied on a specific code region. We used Artificial
1 Two examples of commercial obfuscators are Stunnix (http://stunnix.com) and Pro-

guard (https://www.guardsquare.com/en/proguard).
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Neural Networks (ANNs) to predict the changes that obfuscation techniques
cause on a set of metrics. Then, the predicted metrics have been used to esti-
mate the predicted potency of the protection. Finally, the predicted potency has
been used to make decisions about the best way to protect the application. Our
assessment has proved that the estimated potency allows making nearly optimal
decisions in a very limited time. Our ANNs predict very well the metric changes
when a single protection is applied on each asset. However, the prediction ability
decreases when ANNs are serially connected to estimate the changes created by
the subsequent application of more protections, because of the error propaga-
tion. Nonetheless, this paper discusses how to improve the prediction abilities
and extend this approach to be used to build a decision support system.

This paper is structured as follows. Section 2 contains the background of our
approach, Sect. 3 introduces our methodology with a simple motivating example.
Sections 4 and 5 discuss how we gathered our training/test data and detail the
achieved results. Finally, Sects. 6 and 7 list the related works, draw our conclu-
sions and sketch the future work.

2 Background

Software protection has been a crucial research topic since the last decades [7].
One of the most enduring technique is obfuscation [12,15], a set of transforma-
tions that can be applied both on data and code and at different levels: source,
byte, or binary level. These transformations aim at making the software less
intelligible thus hardening any attack that implies software understanding.

Obfuscation is not provably secure, as it has been demonstrated that it can
be reverted, even automatically [19]. Moreover, a general obfuscator able to
protect an application in untrusted environments cannot be created [2]. Although
obfuscation is actually a kind of security through obscurity, it enhances the level
of protections of the applications, as it delays attacks (rather than preventing
them at all), as empirically assessed by Ceccato et al. for code obfuscation [3],
and by Viticchié et al. for data obfuscation [21].

Collberg et al. have proposed several measures to evaluate the effectiveness
of an obfuscation [5]. The potency aims at evaluating the complexity introduced
by the transformation and gives an index of how hard would be to understand
the obfuscated code. Given the transformation T : P

T−→ P ′ that transforms
the original program P into the obfuscated program P ′, the potency of T with
respect to the program P can be obtained with the following formula (from [5]):

TPOT (P ) =
E(P ′)

E(P ) − 1

where E(·) is a complexity metric of a program. Therefore, the potency can only
be computed after the transformation has been applied, or, as proposed by this
work, by predicting the values of the metrics in the transformed program.

A code region is a portion of well-formed code, that is, a slice of syntactically
valid code if parsed in isolation. A code region is unequivocally determined by
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the containing source file, its starting and ending line numbers. Code regions are
hierarchical, i.e. one can contain another. Therefore, a program (or one of its
portions) can be seen as a tree where each node is a code region containing all
its descendant nodes.

A protection is a technique that applies a transformation on the application
source or binary code. The transformation applied by a protection can be fixed or
depending on a set of parameters. We will use the definition Protection Instance
(PI) to identify a selection of the parameters of a protection. In other words,
a PI is a precise way to use a protection. For example, the Diablo binary code
obfuscator [20], allows the selection of various obfuscation types (e.g. opaque
predicates or control flow flattening), and the (expected) level of obfuscation
effectiveness (passed as an integer). Hence, a Diablo protection instance includes
one obfuscation technique and an integer for the expected effectiveness. The PIs
of a protection are determined by the combinations of the allowed values of the
parameters. Since some parameters can be unbounded, the cardinality of the PIs
set may be infinite. However, the bare combination of the parameters domain
sets may produce PIs that are meaningless or do not significantly differ one from
another. Carefully selecting a set of PIs may reduce the decision space.

A metric is a measurement of a software feature. In this work, we only use
binary level complexity metrics. Indeed, metrics computed at source level can
be altered, thus invalidated, by the compiler (e.g. for optimisation purposes).
Software metrics can be defined depending on several aspects of the software
structure [4,10,16]. We concentrated on the the seven metrics that Collberg et
al. proposed to use to compute the potency [5], however, the tool that we choose
to work with, Diablo, is only able to compute the cyclomatic complexity and Hal-
stead length. The cyclomatic complexity measures the complexity as the number
of linearly independent paths in the program’s control flow graph [16], an index
of the nesting level easily computed on binary code. The cyclomatic complexity
v of a control flow graph G is v(G) = e − n + p, where e is the number of edges,
n is the number of nodes and p is the number of connected components of the
graph. The Halstead length considers a program implementation as a sequence
of operators and their relative operands [10]. The length N of a program, accord-
ing to Halstead, is calculated as N = N1 + N2, where N1 is the total number of
operators and N2 is the total number of operands.

3 Motivating Example

In this section we show how our approach can positively impact the process
of protecting, by means of binary code obfuscation, the intellectual property of
the algorithms underlying a test application. Our test application is Sumatra2,
an open-source command line tool written in C that compares DNA sequences.
Sumatra provides two functionalities: comparing among all the DNA sequences
in a single dataset, or (pairwise) comparing DNA sequences from two datasets.

2 https://git.metabarcoding.org/obitools/sumatra/wikis/home.

https://git.metabarcoding.org/obitools/sumatra/wikis/home
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We will behave like it was a proprietary software that must be protected against
reverse engineering, to preserve the IP of the comparison algorithms.

Sumatra performs the DNA comparison in four consecutive phases. The first
phase evaluates the command line arguments and calls the proper comparison
functions. During the second phase, Sumatra parses the DNA datasets and stores
them in several internal data structures. The third phase is the core of the
program as it performs the actual comparison of the DNA sequences, so it should
be obfuscated in a thorough way. The fourth and last phase presents the results to
the user. These algorithm should be also strongly protected since they access the
internal data structures, thus revealing information about the core algorithms.

We have classified the phases with a sensitivity value on a two level scale
(i.e. high, low), as high sensitive assets should be protected with highly effective
obfuscation techniques. Namely, the first, second and forth phases have a low
sensitivity (and contains respectively one, five and three assets), and the third
phase has a high sensitivity (and contains ten assets).

Mitigation is performed by applying on every asset a tuple of PIs, as applying
them in different orders may lead to different results. Ideally, we must aim at
reaching the best level of protection, by exploring the whole space of the possi-
ble ways to protect each asset. Thus, the solution space of the best protection
becomes the set of all the PI combinations. As some PIs can be applied to the
same code region several times, the number of PI combinations is theoretically
unbounded. Therefore, we fixed the maximum length of PI sequences to l, so that
the number of the sequences to consider is c ≥ comb(l, np), where comb(l, np)
is the number of l-combinations with repetition of np PIs.

To measure the overall effectiveness of a sequence of PIs σ on the asset a we
introduced the combined potency P :

Pσ,a =
∑

m∈M

wm · πσ,m,a (1)

where πσ,m,a is the potency of σ on a for the metric m (which uses the value of
m before and after the protection has been applied [5]), M is the set of all the
metrics m where the values πσ,m,a are computed and wm are arbitrary weights.

Deciding the best protection would need the computation of the potency of
all the possible σ sequences on each asset. Since we can protect all the assets
with the same sequence of PIs, the number of times the target program needs
to be obfuscated equals the number of the possible sequences3.

Instead of computing the metrics a posteriori, we use ANNs to predict, from
the value of the metrics of the unprotected application, the value of the metrics
after the application of a PI. A single ANN predicts the changes of the metric
m induced by the application of a single PI. Hence, we have trained an ANN
for each pair (PI,m). The changes in the metric m when a sequence σ of PIs is
estimated by using ANNs serially, i.e. by using the output of an ANN as input
3 We do not take into account the case of nested assets, i.e. when an asset contains

other asset. With nested assets, the number of compilation needed increases, since
all the compilations should be repeated separately for each nesting level.
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of the next one. Evaluating the potency of all possible PI sequences on all the
na assets requires b = na · nm · (comb(l, np) − 1) ANN simulations, where nm is
the number of metrics needed to compute the combined potency.

We experimentally demonstrated that our approach is faster, by testing it
on Sumatra (see Sect. 5). We need more ANN interrogations than the protection
applications required by the current approach, however, a ANN interrogation is
typically completed in a few milliseconds, while the time needed for obfuscating
assets (and often also compiling the whole application) may be in the order of
seconds. Moreover, nm is a small value and, from our experience in the ASPIRE
project4, increasing the application’s lines of code slightly increases the number
of assets na, but greatly increases the obfuscation (and compilation) time.

4 Data Set Acquisition

We trained the ANNs with a set of pre- and post-transformation metrics’ values
on a sufficiently large set of code regions. The Diablo linker [20] has been used
to compute the complexity metrics on a set of code regions and to apply branch
functions [12], function flattening [22] and opaque predicates [6] obfuscations.
Diablo takes as input the object files and a JSON file, which allow the selection
of the code regions of interest, then it maps these regions to the corresponding
assembler instructions via the debugging information.

We selected 21 open source packages from the Debian repository. They
encompass different areas such as scientific computations (e.g. the libstarlink-
pal astrophysical library), security (e.g. the ccrypt cryptographic tool), network
management (e.g. the qmail mail server) and utilities (e.g. the bc calculator).

For each application, our work-flow consisted of the following steps:

1. automatically divide the application in code regions (i.e. potential assets);
2. for each optimization flag -Os, -O2 and -O0 do:

(a) compile the application without any obfuscation and extract the metrics;
(b) for each PI, compile the application, apply the current PI to all the code

regions in Step 1, and extract the post-PI metrics.

To implement the Step 1, we created a simple tool that parses the source
files and automatically generates the JSON file with the code regions. The tool
selects as valid code regions every function body and, recursively, each nested
loop, if statement, or curly brackets block (see Fig. 1 for an example). With this
tool, we identified 35510 code regions.

We have defined 2 PIs for each of the three supported Diablo obfuscations
types. One PI has been defined (using an effectiveness parameter) to have a
low protection/overhead obfuscation, for the other one, we required a high
protection/overhead obfuscation. Figure 2 shows the graphs of the cyclomatic
complexity (CC) and Halstead length (HL) before and after applying the PI

4 https://aspire-fp7.eu/.

https://aspire-fp7.eu/
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Fig. 1. Example of function splitting.

Fig. 2. Code region metrics for the “branch functions, high overhead” PI.

“high overhead, branch functions” to a 1% random selection of the data set5.
The plots clearly show that the relationship between the pre- and post-PI met-
rics cannot be easily modelled since it is a complex non-linear multivariate
transformation.

5 Experimental Results

We tested our ANNs to estimate the potency of protected versions of the Sumatra
application (Sect. 3). We used Diablo 2.82, GCC 4.9.2 and MathWorks MATLAB
R2017a on an Intel i7-4980HQ CPU @ 2.80 GHz with 16 GiB RAM under Debian
GNU/Linux testing with kernel 4.9.0.

We randomly selected 10% of our data set as the test set (3551 samples) and
the remaining observations formed the training set (31959 samples). Then, we
trained 36 feed-forward neural networks (6 PIs × 6 metrics) by using a multi-
loop approach to iteratively try different parameters (i.e. training and activation
functions, number of neurons) and find the ideal architectural structure. We
selected the parameters that minimized the Root Mean Square Error (rmse),
which was computed using a k-fold cross-validation approach with k = 10 where
we averaged the errors of each validation fold [11].
5 For the sake of readability, we limited the y-axis to about one quarter of the maxi-

mum metric value in Figs. 2, 3, and 4.
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Fig. 3. CC predictions for “branch functions, high overhead” PI.

Fig. 4. HL predictions for “branch functions, high overhead” PI.

Table 1. Neural networks performance.

PI CC HL

rmse mae r2 [%] rmse mae r2 [%]

Branch functions, low overhead 2.4 0.7 97.3 160.5 32.9 97.8

Branch functions, high overhead 3.2 0.9 96.9 142.6 33.9 97.8

Function flattening, low overhead 3.2 0.7 96.1 86.4 24.8 99.1

Function flattening, high overhead 4.5 0.9 92.8 74.2 26.4 98.7

Opaque predicates, low overhead 2.6 0.7 97.6 110.1 37.8 98.2

Opaque predicates, high overhead 3.3 0.8 96.4 94.9 34.5 98.8

Each network receives as inputs six metrics (i.e. cyclomatic complexity, Hal-
stead length, the number of input/output operands, instructions and edges in
the control flow graph). These values are normalized in the [−1,+1] range and
then processed by the ANNs, having one hidden layer with three neurons. We
used the Levenberg-Marquardt back-propagation training with early stopping to
avoid overfitting (the trainlm function). The hidden layer activation function is
the hyperbolic tangent sigmoid, while the single neuron output layer function is
a simple linear transfer (the tansig and purelin functions).

Table 1 reports the rmse, the Mean Absolute Error (mae) and the coefficient
of determination (r2) of the ANNs used to predict the cyclomatic complexity
(CC) and the Halstead length (HL). The average cyclomatic complexity in our
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Table 2. Test application results.

Priority Length 1 Length ≤ 2 Length ≤ 3

High Low All High Low All High Low All

Compilation time [s] 156.1 949.6 5535.9

Simulation time [s] 1.6 9.2 31.6

Accuracy [%] 100.0 77.8 89.5 50.0 66.7 57.9 12.1 37.0 21.9

Proximity [%] 100.0 87.0 93.9 84.6 75.4 80.2 64.2 70.4 67.2

data set is 5.1 with a maximum value of 187 and all our CC networks show a mae
less than one. On the other hand, the average HL is 206.2 with a peak at 6887
and our HL networks have a mae of about 30. The coefficient of determination r2

is well beyond 90%, proving that our ANNs accurately predict metric changes.
Figures 3a and 4a plot the targets (i.e. actual) and predicted metrics (random

selection of the 10% of the test set). The ANN predictions easily follows the real
data, grasping the general trend of the metrics. Note that the Halstead length
curves are very close together, so that the ANN is also able to model several
spikes in the graph. Figures 3b and 4b sketch the scatter plots of the predicted-
target ratios. Each point represents a sample, the closer the point to the dashed
line the better. The cyclomatic complexity prediction shows more dispersion,
but the overall trend is still close the ideal line.

Assessing how the estimated metrics can be used to select the best PI
sequence for each asset is more complex, as this prediction requires to serially
connect multiple ANNs, thus propagating the errors. For the 10 high priority
Sumatra assets we use the high overhead PIs, and for the 9 low priority ones the
low overhead PIs. We fixed the maximum length of the PI sequences to l = 3,
giving us a grand total of 760 sequences. We computed the combined potency
of each sequence (Eq. 1) using both the real and predicted metrics, as shown in
Table 2, which also reports the compilation and the simulation times (the time
to estimate all the metrics with our ANNs). As expected, the time exponentially
increases as the length of PI sequences grows. However, actually applying the
protections required 1.5 h, while the prediction was completed in 31.6 s.

To assess how good are our predictions, we introduced the accuracy, a per-
centage that reports how often the estimated potency allowed the selection of
the same protections using the measured potency. For sequences of length 1,
we yield nearly a perfect score, which decreases as the depth increases. We also
introduced the notion of proximity, as accuracy does not report how close a solu-
tion is to the optimum. The function ord(σi, ai) returns the position of σi in
the list of PIs for the asset ai sorted in descending order of measured potency.
Let’s take one PI sequence for each asset, Π = (σ1, . . . , σna

), the proximity of
Π with maximum length l and with np PIs is defined as:

prox(Π) =
1
na

na∑

i=1

comb(l, np) − ord(σi, ai)
comb(l, np) − 1
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A proximity of 100% indicates that the optimum was reached and a 0% means
that the worst solution was chosen. At length 1, the proximity of our solution
is 93.9%, very close to the optimality. When the length increases to 2 and 3, it
decreases to 80.2% and 67.2%, still being relatively close to the best value.

6 Related Works

To our knowledge, the only work that leverages ANNs for software security
assessment, by identifying security flaws in software design, is a paper of Adebiyi
et al. [1]. They manually converted 715 attack scenarios gathered from various
vulnerability databases into regular expressed attack patterns [9], and used the
latter to train a back-propagation neural network to classify the attacks.

On the other hand, several works used ANN to assess the security of computer
networks. Liu et al. proposed a message security scheme to encrypt messages
with a Real-time Recurrent Neural Network-based (RRNN) cipher [14]. Fu et
al. leveraged a back-propagation ANN to assess the security of wireless networks
against risk assessment models defined by the authors [8]. Turčańık designed a
packet filter that uses ANNs to greatly reduce the time needed to perform the
filtering [18]. Finally, several intrusion detection systems makes use of ANNs to
classify access logs (e.g. firewall logs) in normal and anomalous [13,17].

7 Conclusions and Future Work

This paper presented an approach to estimate the potency of obfuscation tech-
niques with neural networks that are able to accurately predict the value of
several software metrics. To improve the precision of the technique and achieve
a higher lever of accuracy, we will enlarge the data set used to train the ANNs,
allowing them to be more accurate on a single protection. Moreover, we will
train ANNs that predict changes created by sequences of protections.

In addition, we are also considering other obfuscators and protection tech-
niques that alter software metrics. Finally, by also taking into account the
dynamic metrics, we will exploit machine learning to predict protection over-
heads introduced on execution performance, memory allocation and network
usage.
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21. Viticchié, A., Regano, L., Torchiano, M., Basile, C., Ceccato, M., Tonella, P., Tiella,
R.: Assessment of source code obfuscation techniques. In: IEEE 16th International
Working Conference on Source Code Analysis and Manipulation, pp. 11–20 (2016)

22. Wang, C., Davidson, J., Hill, J., Knight, J.: Protection of software-based surviv-
ability mechanisms. In: 2001 International Conference on Dependable Systems and
Networks, pp. 193–202 (2001)


	Estimating Software Obfuscation Potency with Artificial Neural Networks
	1 Introduction
	2 Background
	3 Motivating Example
	4 Data Set Acquisition
	5 Experimental Results
	6 Related Works
	7 Conclusions and Future Work
	References




