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Abstract. Attack trees allow a security analyst to obtain an overview
of the potential vulnerabilities of a system. Due to their refinement struc-
ture, attack trees support the analyst in understanding the system vul-
nerabilities at various levels of abstraction. However, contrary to man-
ually synthesized attack trees, automatically generated attack trees are
often not refinement-aware, making subsequent human processing much
harder. The generation of attack trees in which the refined nodes cor-
respond to semantically relevant levels of abstraction is still an open
question. In this paper, we formulate the attack-tree generation problem
and propose a methodology to, given a system model, generate attack
trees with meaningful levels of abstraction.

1 Introduction

Attack trees are a well-known graphical security model [Sch99,MO05,RKT12,
KMRS14]. They are widely used in industry and academia for handling threat
modeling and security risk assessment [Sho14], as they help the analysts to struc-
ture the reasoning, facilitate communications across the board, and can store
succinctly very complex threat scenarios [FFG+16]. Yet, the process of creat-
ing an attack tree is quite lengthy, tedious, and error-prone [FFG+16,Sho14]. It
can be facilitated by applying industry threat catalogues [FFG+16] and security
knowledge bases [GLPS14], but these information sources may be unavailable
for particular organizations or too generic to be useful. This is why recently
researchers started to develop techniques for generating attack trees automati-
cally [VNN14,IPHK15,HKT13,PAV15,Gad15].

Automatic generation of attack trees can be interpreted as model transfor-
mation. The initial model is typically a domain-specific language specifying the
system components, their interactions, and the attacker’s goal as an undesired
state of the system, and formalizing attack paths towards the goal. In that regard,
the attack-tree generation problem consists in encoding all attacks achieving a
common goal into an attack tree model. However, this problem formulation over-
looks one of the strengths of attack trees: its refinement structure.
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Refining a goal into subgoals is an intuitive process for humans, used in attack
trees and other visual languages, e.g., mind maps. That makes attack trees easily
readable and comprehensible by a simple top-down inspection, as it allows the
analyst to understand the attack potential at various levels of abstraction. This
dimension, however, almost completely escapes in the literature on attack-tree
generation, as we discuss in the following short overview of relevant approaches.

Vigo et al. [VNN14] generate trees from a process calculus system model by
translating algebraic specifications into formulae and backward-chaining these
formulae into a formula for the attacker’s goal success. Reachability-based
approaches, such as [IPHK15,Gad15,HKT13], transform system models into
attack trees using information about connected elements in the model. In essence,
these approaches reason that the attacker can reach the desired location from
any system location adjacent to it. This reasoning is applied recursively to tra-
verse complete attack paths. The main drawback of the techniques proposed
in [VNN14,IPHK15,HKT13,Gad15] is that they do not leverage the refinement
structure of attack trees, when parent nodes are more abstract than child nodes.
In fact, [VNN14] does not provide any meaning to intermediate nodes, which only
serve to express how child nodes are combined, while [IPHK15,Gad15,HKT13]
have intermediate nodes at the same level of abstraction as child nodes, repre-
senting actions in the system model.

The attack traces-based approaches rely on a set of successful traces that
capture transitions from the initial state to the state in the system in which the
attacker has achieved the goal. The basic idea of generating successful attack
paths has been explored in, e.g., [RA00,SHJ+02], where the authors applied
model-checking to network system models. Dawkins and Hale [DH04] have gen-
erated attack trees from network attack graphs (a formalism different from attack
trees [SHJ+02]) by finding minimum cut sets for successful attack paths (traces).
This approach also does not offer a refinement structure, and each branch in a
generated attack tree corresponds to a sequence of vulnerability exploitations.

The ATSyRA approach [PAV14,PAV15] synthesizes attack trees from attack
graphs. It requires that the analyst first defines a set of actions at several abstrac-
tion levels in the system model, and a set of rules for refinement of higher-level
actions into combinations of lower-level ones. This action hierarchy allows to
transform successful attack paths in the attack graph (generated by model-
checking) into an attack tree, containing precise actions as leaf nodes, while
intermediate nodes represent more abstract actions. This tree enjoys a refine-
ment structure that is more familiar to the human analyst, but the analyst still
has to define the refinement relation herself; it is not created automatically.

We conclude that there exists a gap between manual and automatic gen-
eration of attack trees that has not been covered in literature yet. Automatic
generation approaches work with concrete attacks, while manual creation of
attack trees focuses on the refinement of goals into subgoals. In this paper, we
address this gap by formalising the attack-tree generation problem that connects
both properties, namely that of encoding a set of attacks and that of respect-
ing a given refinement structure. Further, we develop a methodology to, given a
system model, generate attack trees with meaningful abstraction levels.
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Our Contributions. This paper presents the following main results:

– We formally define the attack-tree generation problem as a task to generate
a tree with an expected meaning that respects a given refinement structure.

– We propose an approach for generating attack trees from traces of successful
attacks in a system model. Our approach utilizes a heuristic for encoding and
decomposing attack traces that is based on the edge biclique problem [Pee03].
Furthermore, we derive the refinement structure from an abstraction relation
on system predicates.

– We demonstrate the feasibility of our approach with a running example of a
network security scenario.

2 The Attack-Tree Generation Problem

In this section we first formally introduce attack trees and the notion of a refine-
ment specification. Next, we define what it means for an attack tree to satisfy
a refinement specification and we formulate the attack-tree generation problem.
Informally, this problem requires the derivation of a tree with a given semantics,
that satisfies a given refinement specification.

Intuitively, an attack tree defines how higher (parent) nodes are interpreted
through lower (child) nodes. The interpretations are defined by the refinement
operators: OR specifies that if any of the child nodes is achieved, then the imme-
diate parent node is also achieved; and AND defines that all child nodes need to
be achieved to achieve the parent node’s goal [MO05]. We will consider also the
sequential AND operator, or SAND, that demands that the goals of the child nodes
are to be achieved in a particular order for achieving the parent node [JKM+15].

Formally, let B denote a set of actions, OR and AND be two unranked asso-
ciative and commutative operators, and SAND be an unranked associative but
non-commutative operator. A SAND attack tree t is an expression over the signa-
ture B ∪ {OR, AND, SAND}, generated by the following grammar (for b ∈ B):

t ::= b | b � OR(t, . . . , t) | b � AND(t, . . . , t) | b � SAND(t, . . . , t).

We use TSAND to denote all SAND attack trees generated by the grammar
above. Different to the definition of SAND trees given in [JKM+15], we require
every node in the tree to be annotated with an action. An action in a node
typically provides a generic (sometimes vague) description of the type of attack,
e.g. get a user’s credentials or impersonate a security guard, which is helpful
to a top-down interpretation of the tree. An expression like b � SAND(t1, . . . , tn)
denotes an attack tree of which the top node is labelled with action b, and which
has n children t1, . . . , tn that have to be executed sequentially.

Example 1. Figure 1 illustrates a simple SAND attack tree in which the goal of
the attacker is to gain unauthorized access to a server. To achieve this goal, the
attacker must first get a suitable credential for the server, and then, use this
credential to log in remotely. A suitable credential can be obtained by eaves-
dropping on communications of an honest user, who knows the server password.
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Fig. 1. A human-designed attack tree representing possible threat scenarios

Alternatively, the attacker can bruteforce the password on the server, or use an
exploit to create a new password.

Using shorthands for the action names, this tree can be represented by the
following expression: a � SAND(c � OR(eu � SAND(w , ec), b, x ), l).

We define the auxiliary function top to obtain the action at the root node as
follows (for Δ ∈ {OR, AND, SAND}):

top(b) = top(b � Δ(t, . . . , t)) = b.

We say that t′ is a subtree of t, denoted t′ ∈ t, if t = t′ or t = Δ(b, t1, . . . , tn)
and t′ ∈ ti for some i ∈ {1, . . . , n}, where Δ ∈ {OR, AND, SAND}.

Given a semantical domain D, an attack-tree semantics S defines a function
[·]S : TSAND → D. We denote semantic equivalence of two trees t, t′ ∈ TSAND by
t =S t′, which means [t]S = [t′]S . In the next section we will provide an example
of a semantics for SAND attack trees, which is called the SP semantics [JKM+15].

In this article we use the SP semantics [JKM+15] as the semantic domain
for SAND attack trees. Note that our attack-tree generation problem formulation
abstracts away from any concrete interpretation of the attack tree semantics.

The SP semantics encodes an attack tree as a set of Series-Parallel graphs
(SP graphs). An SP graph is an edge-labeled directed graph with a source vertex
and a sink vertex. The simplest SP graph has the form u

b−→ v, where b is an
edge label, u is the source vertex because it has no incoming edges, and v is the
sink vertex because it has no outgoing edges. Any other SP graph is obtained
as the composition of single-edge SP graphs.

Two composition operators are used to build SP graphs: the sequential com-
position operator (·) and the parallel composition operator (‖). A sequential
composition joins the sink vertex of a graph with the source vertex of the other
graph. For example, given G = u

b−→ v and G′ = x
z−→ y, we obtain that

G · G′ = u
b−→ v

z−→ y. Note that the source vertex of G′ has been replaced
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in G · G′ by the sink vertex v of G. A parallel composition, instead, joins the
source and the sink vertices of both graphs. For example, given G = u

b−→ v and
G′ = x

z−→ y, the parallel composition G ‖ G′ gives the following SP graph.

u v

b

z

In the SP semantics, edge labels represent basic actions in B, and vertex labels
are ignored. Hence a graph of the type u

b−→ v
z−→ y is read as b−→ z−→. Moreover,

both composition operators are extended to sets of SP graphs as follows: given
sets of SP graphs G1, . . . ,Gk,

G1 ‖ G2 ‖ . . . ‖ Gk = {G1 ‖ . . . ‖ Gk | (G1, . . . , Gk) ∈ G1 × . . . × Gk}
G1 · G2 · . . . · Gk = {G1 · . . . · Gk | (G1, . . . , Gk) ∈ G1 × . . . × Gk}.

Definition 1. Let GSP denote the set of SP graphs labeled with the elements of
B. The SP semantics for SAND attack trees is given by the function [[·]]SP : TSAND →
P(GSP), which is defined recursively as follows: for b ∈ B, ti ∈ TSAND, 1 � i � k,

[[b]]SP = { b−→}
[[OR(t1, . . . , tk)]]SP =

⋃k
i=1 [[ti]]SP

[[AND(t1, . . . , tk)]]SP = [[t1]]SP ‖ . . . ‖ [[tk]]SP
[[SAND(t1, . . . , tk)]]SP = [[t1]]SP · . . . · [[tk]]SP .

We kindly refer the reader to [JKM+15] for more details on the SP semantics.

Example 2. The SAND attack tree in Fig. 1 has the following SP semantics:
{ w−→ ec−→ l−→,

b−→ l−→,
x−→ l−→}. Note that the labels of the internal nodes are not repre-

sented in the SP semantics. Further note that the SP graphs occurring in this
example are linear traces because the tree has no AND nodes.

Refinement Specification. The transition from one level in an attack tree to the
next level defines a refinement. More precisely, a refinement is an expression of
the form b�Δ(b1, . . . , bn), where b, b1, . . . , bn ∈ B and Δ ∈ {OR, AND, SAND}. That
is to say, a refinement corresponds to a tree of depth one. It follows that the
set of refinements, denoted R, is a subset of the set of attack trees TSAND. In
particular, the refinement of the root node of an attack tree is determined by
the partial function ref : TSAND → R, defined by

ref (b � Δ(t1, . . . , tn)) = b � Δ(top(t1), . . . , top(tn)).

This is a partial function, since the refinement of an attack tree that consists of
a single node is not defined. This function can be generalized to non-root nodes,
allowing us to determine the set of all refinements that occur in an attack tree.
Therefore, we define the function refs : TSAND → P(R), as follows:

refs(t) = {ref (t′) | t′ ∈ t ∧ ¬∃b ∈ B : t′ = b}.
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A refinement specification specifies which refinements should be satisfied by
an attack tree. A refinement specification is simply defined as a set of refinements.
Given an attack tree t ∈ TSAND and a refinement specification ρ ⊆ R, we use t 	 ρ
to denote that t satisfies ρ. We define satisfaction by t 	 ρ ⇐⇒ refs(t) ⊆ ρ.
That is, a tree satisfies a refinement specification, if all refined actions in the
tree also occur as refined actions in the specification.

Attack Tree Generation Problem. Given an attack tree semantics and a refine-
ment specification, the challenge is to design or derive an attack tree with this
semantics that satisfies the refinement specification. We call this problem the
attack-tree generation problem.

Definition 2 (The attack-tree generation problem). Let S be an attack-
tree semantics with semantic domain D. The attack-tree generation problem
consists in, given a semantical element d ∈ D and a refinement specification
ρ ⊆ R, finding an attack tree t ∈ TSAND, such that [t]S = d and t 	 ρ. Such a tree
is called correct with respect to a semantics and refinement specification (d, ρ).

Example 3. Given required semantics { w−→ ec−→ l−→,
b−→ l−→,

x−→ l−→} and refinement
specification {a�SAND(c, l), c �OR(eu, b, x), eu�SAND(w, ec), c �SAND(p, q)}, a pos-
sible solution to the attack-tree generation problem is given in Fig. 1. Note that
the last refinement does not occur in the tree.

Clearly, an instance of the attack-tree generation problem may not have a
solution. If it has a solution, the solution may not be unique. Depending on the
purpose of the tree, the application domain, or even the taste of the designer,
one could have a preference for a certain type of tree, aiming at, e.g., trees with
minimal width, balanced trees or trees with a minimum number of leaf nodes.

The remainder of this paper is devoted to addressing the attack-tree gener-
ation problem.

3 Generating Correct Attack Trees

In this section we will specialize the attack-tree generation problem by focusing
only on OR and SAND nodes, and considering the semantic domain for attack
trees to be the SP semantics [JKM+15]. Given this restriction, we develop an
algorithm to generate correct attack trees using a greedy heuristic based on the
edge biclique problem.

The motivation for omitting the AND operator is the following. One of the
inputs to the attack-tree generation problem is the intended semantics of the tree.
We assume that the intended semantics is given by a set of traces, where each
trace is an ordered sequence of actions. Such a set of traces could, e.g., be gener-
ated by a model checker that aims to reach the goal of the attacker [LMO15]. As
traces are totally ordered, we can use the SAND operator to represent a trace and
the OR operator to represent the choice between the alternative traces. Hence,
starting from a set of traces, there is no need for the AND operator. An example
of a trace model based on labelled transition systems is given in Sect. 4.
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Properties of Correct Attack Trees. Next we provide necessary and sufficient con-
ditions for a tree to be correct. For the sake of simplicity, we focus on binary
instances of the attack tree operators only. This simplifies the analysis and gen-
eralizes easily due to associativity of all operators.

Theorem 1. Let G be a set of SP graphs with labels in B, ρ a refinement speci-
fication, and t an attack tree of the form b�SAND(tl, tr) (resp. b�OR(tl, tr)) where
tl and tr are attack trees. The attack tree t is correct w.r.t. (G, ρ) if and only if
there exist sets of SP graphs Gl and Gr such that all the following conditions are
satisfied:

1. tl is correct with respect to (Gl, ρ),
2. tr is correct with respect to (Gr, ρ),
3. G = Gl · Gr (resp. G = Gl ∪ Gr),
4. b � SAND(top(tl), top(tr)) ∈ ρ (resp. b � OR(top(tl), top(tr)) ∈ ρ).

Proof. (⇒) Let t be a correct tree w.r.t. (G, ρ) of the form b � SAND(tl, tr) (resp.
OR(tl, tr)). Condition 1 holds by definition given that t 	 ρ. Similarly we obtain
that tl and tr must satisfy that tl 	 ρ and tr 	 ρ, otherwise t � ρ. Condition 1
holds by definition of the SP semantics, where [[t]]SP = [[tl]]SP · [[tr]]SP if t is of
the form b � SAND(tl, tr), [[t]]SP = [[tl]]SP ∪ [[tr]]SP otherwise. Therefore, tl and tr
are correct w.r.t. ([[tl]]SP , ρ) and ([[tr]]SP , ρ), respectively.

(⇐) Now, let us assume that the four conditions above are satisfied. On the
one hand, because tl and tr are correct w.r.t. (Gl, ρ) and (Gr, ρ), respectively,
it follows that Gl = [[tl]]SP and Gr = [[tr]]SP . Therefore, an attack tree t of the
form b � SAND(tl, tr) (resp. b � OR(tl, tr)) satisfies that [[t]]SP = Gl · Gr = G (resp.
[[t]]SP = Gl ∪ Gr = G). On the other hand, because b � SAND(top(t1), top(t2)) ∈ ρ
(resp. b � OR(top(t1), top(t2)) ∈ ρ) and t1 and t2 both satisfy ρ, we obtain that t
satisfies ρ as well. This gives that t is correct w.r.t. (G, ρ). �

According to Theorem 1, a disjunctive refinement requires finding two subsets
Gl and Gr that cover G, i.e. Gl ∪ Gr = G. This is a fairly trivial task as, for
example, a partition of a set is also a covering. However, a sequential conjunctive
refinement requires finding a sequential decomposition of G in two sets Gl and
Gr such that Gl · Gr = G. Clearly, such a decomposition is not always possible.
Therefore, we focus on the problem of finding two sets Gl and Gr such that
Gl ·Gr ⊆ G and |Gl ·Gr| is maximum, which we call the set decomposition problem.

In this article we tackle the set decomposition problem by reducing it to
the edge biclique problem [Pee03], which benefits from well-known efficient algo-
rithms [GG14] in the graph theory field. For the sake of comprehensibility, we
next introduce in detail the edge biclique problem and how it can be approxi-
mated by a greedy heuristic. Afterwards we show our reduction.

The edge biclique problem consists in finding, given a bipartite graph G, a
biclique in G with maximum number of edges. A graph G is bipartite if its set
of vertices can be partitioned into subsets V1 and V2 such that every edge in G
connects a vertex in V1 with a vertex in V2. And G is said to be a biclique if
every (u, v) ∈ V1 × V2 is an edge in G. We usually write G = (V1 ∪ V2, E) to
denote that G is bipartite with partite sets V1 and V2.
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Theorem 2. The set decomposition problem is polynomial-time reducible to the
edge biclique problem, and vice-versa.

Proof. (⇒) Let G be a non-empty set of SP graphs. Given an SP graph α = b1−→
. . .

bn−→, let αl
i and αr

i denote the SP graphs b1−→ . . .
bi−→ and

bi+1−−−→ . . .
bn−→,

respectively. Let G = (V,E) be a simple graph with set of vertices V = {αl
i|α ∈

G ∧ i < |α|} ∪ {αr
i |α ∈ G ∧ i < |α|} and set of edges E = {(αl

i, β
r
j )|αl

i · βr
j ∈ G}.

Now, let G′ = (U ′ ∪ V ′, E′) be a biclique in G. By construction of G we obtain
the following two results. First, for every (u, v) ∈ U ′ × V ′ it holds that u · v ∈ G.
Hence U ′ ·V ′ ⊆ G. Second, for every pair of sets Gl and Gr such that Gl ·Gr ⊆ G it
holds that Gl ⊆ U and Gr ⊆ V . Hence the subgraph of G induced by the vertices
Gl ∪ Gr is a biclique. Therefore, G′ = (U ′ ∪ V ′, E′) is a maximum biclique if and
only if (U ′, V ′) is an optimal solution to the set decomposition problem.

(⇐) Let G = (U ∪ V,E) be a bipartite graph and G = {u · v|u ∈ U ∧ v ∈
V ∧(u, v) ∈ E}. Let Gl and Gr be a decomposition (not necessarily optimal) of G,
i.e. Gl ∪ Gr ⊆ G. As before, we obtain by construction the following two results.
First, because Gl ⊆ U and Gr ⊆ V , it follows that the subgraph in G induced by
Gl ∪ Gr is a biclique. Second, for every biclique G′ = (U ′ ∪ V ′, E′) in G it holds
that U ′ · V ′ ⊆ G. Therefore, Gl and Gr form an optimal decomposition of G if
and only if the subgraph in G induced by Gl ∪ Gr is a maximum biclique. �

From Theorem 2 we extract two conclusions. First, the set decompo-
sition problem is NP-complete, given that the edge biclique problem is
NP-complete [Pee03]. Second, we can use well-known approximation algorithms
for the edge biclique problem to find approximate solutions for the set decom-
position problem. Due its simplicity, in this article we use the greedy heuristic
proposed by Gillis and Glineur [GG14]. A pseudocode description of such a
heuristic is given in Fig. 2.

Example 4. To illustrate the procedure of decomposing a set of SP graphs in two
sets of SP graphs, let us consider the following set G = { a−→ a−→,

b−→ a−→ a−→,
b−→ a−→ c−→,

a−→ c−→}. We first transform G into a graph G as indicated in Theorem 2. The
resulting graph is depicted in Fig. 3. Note that, for the sake of simplicity, we have
omitted the arrow (−→) representing single-edge SP graphs in the vertex labels in
G. By running the Biclique algorithm depicted in Fig. 2, we obtain a subgraph
of G that is a biclique. The obtained complete bipartite graph (see Fig. 3) is then
transformed into two sets of SP graphs by considering the vertex set partition.
In the example, the two sets are Gl = { a−→,

b−→ a−→} and Gr = { a−→,
c−→}. The pair

of sets satisfies that Gl × Gr = G, because the biclique found by Biclique is
optimal. If the biclique is not optimal, then Gl × Gr � G.

Binary Attack Trees. We use the Decomposition procedure on a set of SP
graphs to generate correct attack trees, with the peculiarity that the resulting
tree is binary, until, possibly, the last refinement (i.e., parents of the leaf nodes
may be decomposed in more than 2 nodes). The algorithm is given in Fig. 4.
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Fig. 2. Biclique is a greedy heuristic that approximates the edge biclique problem.

Fig. 3. An example of the execution of Biclique on graph G. The vertex with maxi-
mum degree chosen in this execution is al. The resulting graph is already a biclique.

The procedure Gen-Bin-Tree focuses on creating an attack tree t such that
[[t]]SP = G, where G is a set of SP graphs given as input. For example, if G con-
tains a single SP graph b1−→ · . . . · bn−→, then it outputs the tree b�SAND(b1, . . . , bn),
where b ∈ B satisfies that b � SAND(b1, . . . , bn) ∈ ρ. Moreover, Gen-Bin-Tree
guarantees that all refinements in the generated tree are in the refinement spec-
ification ρ, otherwise the algorithm aborts. Therefore, it follows that Gen-Bin-
Tree either generates a correct tree or aborts.

It is worth remarking that Gen-Bin-Tree favours SAND refinements over
OR refinements. The reason is that a SAND refinement requires solving the edge
biclique problem. Thus, whenever a sequential decomposition of G is found, a
SAND refinement is created.

Example 5. To illustrate the attack-tree generation approach, consider the SAND

attack tree in Fig. 1, whose SP semantics is G = { w−→ ec−→ l−→,
b−→ l−→,

x−→ l−→}. For the
sake of simplicity, let us also consider the existence of a special action ε ∈ B

and a refinement specification ρ defined as the minimum set satisfying that
ε � OR(b1, b2) ∈ ρ and ε � AND(b1, b2) ∈ ρ for every b1, b2 ∈ B. This is for the
moment an oversimplification of the role of the refinement specification. We defer
the task of providing a tree with meaningful refinements to the next section.

By using the Biclique procedure we obtain that G can be decomposed by
Gl = { w−→ ec−→,

b−→,
x−→} and Gr = { l−→}. The application of the Gen-Bin-Tree

algorithm on input Gl gives the tree displayed in Fig. 5. The same figure depicts
the tree obtained on input Gr. The sequential composition of the two trees is
finally the output of Gen-Bin-Tree on input G.
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Fig. 4. Gen-Bin-Tree generates correct and binary attack trees.

We observe that Algorithm Gen-Bin-Tree generates trees that, although
correct, use a rather artificial binary branching structure. We thus use
semantics-preserving transformation rules to optimize the structure of the tree.
A semantics-preserving transformation rule is a total function r : TSAND → TSAND

such that ∀t ∈ TSAND : [[t]]SP = [[r(t)]]SP . In our approach we use the following
rule: for every Δ ∈ {OR, SAND} and every t = b � Δ(t1, . . . , tk),

r(t) =

{
b � Δ(t11, . . . , t

1
k(1), . . . , t

k
1 , . . . , tkk(k)) If ti = bi � Δ(ti1, . . . , t

i
k(i)), ∀i ∈ {1, . . . , k}

t otherwise.

This simply amounts to aggregating nodes whenever allowed by associa-
tivity of the operator. Figure 5 shows the result of the application of this
rule to the binary tree obtained by Gen-Bin-Tree algorithm. Note that the
semantics-preserving transformation rule does not take into account the refine-
ment specification ρ. Thus, if ρ is an arbitrary set of refinements and it is not
closed under the SP-semantics equivalence relation, the optimized tree may not
be correct, while being semantically-equivalent to the original tree.
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Fig. 5. The attack-tree generation process for the SP-semantics given in Example 2.

4 Specifying a System and Refinement Relation

The attack-tree generation problem is based on two inputs: an intended seman-
tics and a refinement specification. In this section we show how both can be
obtained from an LTS-based system model. Finally, we illustrate our methodol-
ogy through a simple example.

System Specification. Labelled transition systems are used to describe the behav-
iour of a system by defining the transitions that bring a system from one
state into another. Formally, a Labelled Transition System (LTS) is a quadruple
(S,Σ,→, s0), where S is a set of states; Σ is a set of labels; → : S × Σ × S is a
transition relation; s0 ∈ S is the initial state.

We define a state as a set of predicates. A predicate defines a mutable prop-
erty of the system, such as knows(Alice, psw), which means that Alice knows
password psw . States are denoted by [p1, . . . , pn], where p1, . . . , pn are the pred-
icates that determine the state. If s is a state, then by s[p1, . . . , pn] we mean the
state s augmented with predicates p1, . . . , pn. If a predicate is preceded by a ¬
symbol it means that the predicate is removed from the state. For instance, if
s0 = [p1, p2], then s0[p3,¬p1] = [p2, p3].

The states will be used to label the nodes of the attack tree that will be
generated, so we will equate the set of states and the set of actions in the attack
tree, B = S.

The transition relation is defined through transition rules. Figure 6 shows
some example transition rules. Every transition rule contains a condition (above
the horizontal line) and a conclusion (below the line). The name of a transition
rule is given left of the line. The condition consists of a number of predicates that
must be present in the current state to enable the transition rule. The conclusion
describes the state change when the transition occurs. The old state is described
left of the transition arrow and the new state right of the arrow. The arrow is
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Fig. 6. Transition rules for the example (a, a1 ∈ A, m, m1 ∈ M, t ∈ T and r ∈ R).

labeled with the event that describes the transition. The predicates may contain
variables, which are implicitly universally quantified.

Refinement Specification. The second input to our algorithms is the refinement
relation. We first define a partial order � on B, which we call an abstraction
relation. Given that states are sets of predicates, we can define this abstraction
relation as set inclusion, s � s′ ⇐⇒ s ⊆ s′. If s � s′, we say that s is
more abstract than s′. From this abstraction relation we can derive a refinement
specification, as follows.

Definition 3 (Abstraction-based refinement specification). Let B be a
set of actions with abstraction relation �. The abstraction-based refinement rela-
tion is the smallest refinement relation ρ� that satisfies (for ∀b, b1, . . . , bn ∈ B):

if b � b1 ∧ . . . ∧ b � bn then b � OR(b1 · · · bn) ∈ ρ�, and
if b � bn then b � SAND(b1 · · · bn) ∈ ρ�.

This definition expresses that the attacker’s goal of an OR node must be more
abstract than the attacker’s goals of its children, and that the attacker’s goal of
a SAND node must be more abstract than the goal of its right-most child.

Note that for more elaborated definitions of the system state, the abstraction
relation can be modified accordingly. We could, for instance, consider a state
consisting of two sets of predicates describing desired and undesired properties.

Network Security Example. We consider a set of machines M on a simple network
and a set of human actors A that can use these machines. We also consider a
set of credential records R, and a set of user terminals T ⊆ M .
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Further, we consider the following set of predicates:

– located : A × M determines to which machines actors are connected;
– connected : M × M defines directly connected machines;
– stores : M × R identifies credentials accepted by a machine.
– knows : A × R determines which credentials are known to actors.

Figure 6 presents a set of transition rules for this system. The first three rules
define the behaviour of legitimate users, and the other three rules introduce
actions for attackers.

As an example system we consider the set M consisting of just two machines,
client C and server S, and the set of terminals T to contain only C. We consider
two actors Alice and Mallory , and two credentials psw and psw1 .

Initial state:
s0 = [located(Mallory , C), connected(C,S), stores(S, psw), knows(Alice, psw)].

Final state: Any state sf that contains located(Mallory , S).

Traces: We consider the following three traces that lead to a successful attack.
Trace T 1:

s0
exploiting(Mallory,C,S,psw1 )−−−−−−−−−−−−−−−−−−−→ s0[stores(S, psw1 ), knows(Mallory , psw1 )]

loggingInRem(Mallory,C,S,psw1 )−−−−−−−−−−−−−−−−−−−−−→ s0[stores(S, psw1 ), knows(Mallory , psw1 ),
located(Mallory , S)]

Trace T 2:
s0

bruteforcingPsw(Mallory,C,S,psw)−−−−−−−−−−−−−−−−−−−−−−→ s0[knows(Mallory , psw)]
loggingInRem(Mallory,C,S,psw)−−−−−−−−−−−−−−−−−−−−−→ s0[knows(Mallory , psw), located(Mallory , S)]

Trace T 3:
s0

startTerm(Alice,C)−−−−−−−−−−−−→ s0[located(Alice, C)]
eavesdropping(Alice,Mallory,C,S,psw)−−−−−−−−−−−−−−−−−−−−−−−−−→ s0[located(Alice, C), knows(Mallory , psw)]
loggingInRem(Mallory,C,S,psw)−−−−−−−−−−−−−−−−−−−−−→ s0[located(Alice, C), knows(Mallory , psw),
located(Mallory , S)]

Intuitively, the tree for Mallory accessing the server S would be as presented
in Fig. 1: Mallory can attempt to eavesdrop on Alice to learn psw or to bruteforce
psw ; or he can exploit S to create a new credential psw1 . Next we show the tree
obtained by using our approach for automated attack-tree generation.

– The path in T 1 is characterised by b11b
1
2, where

b11 = (∅, {stores(S, psw1 ), knows(Mallory , psw1 )} and b12 = ({∅, {located
(Mallory , S)}.

– The path in T 2 is characterised by b21b
2
2, where b21 = (∅, {knows(Mallory ,

psw)}, b22 = (∅, {located(Mallory , S)}).
– The path in T 3 is characterised by b31b

3
2b

3
3, where b31 = (∅, {located(Alice, C)}),

b32 = (∅, {knows(Mallory , psw)}), and b33 = (∅, {located(Mallory , S)}).
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Fig. 7. Generated attack tree for the network example. (Color figure online)

Based on these runs, our approach generates the tree presented in Fig. 7. In
this figure, the node labels identified by our approach are in boxes. Furthermore,
note that we have also labelled leaf nodes in a more meaningful way (labels in
the red circles) by using the corresponding actions (labels in the LTS) of the
system transitions. At the same time, most of the labels for the intermediate
nodes in the generated tree are also informative, as they specify only the facts
relevant for achieving the attack’s success in a particular subtree.

Note that one intermediate node has a label that represents an empty set of
facts, as there are no common facts for its children. This node has to be inter-
preted by the analyst as a combination of its children nodes. Yet, our approach
can be extended to be able to suggest meaningful labels also for such nodes. This
can be realized, e.g., through supporting first-order logic facts with quantifiers,
such as {∃r ∈ R : knows(Mallory , r), stores(S, r)}.

It is worth remarking that the generated tree is identical in structure to the
human-designed tree (Fig. 1). However, this is not guaranteed for other scenarios.

5 Conclusions

In this paper we have introduced the attack-tree generation problem as a task
of constructing a correct attack tree that both has some expected meaning and
respects a pre-defined refinement relation. This problem definition supports a
more uniform treatment of the issues arising in both manual creation of attack
trees and automatic generation from system models. Furthermore, we have devel-
oped a solution for this problem that utilizes an abstraction-based refinement
specification derived from a system model and a set of traces representing suc-
cessful attack scenarios in the model to generate a correct attack tree.

The trees we generate are refinement-aware, and thus provide more insight
to the analyst than attack trees generated by previously proposed approaches,
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such as [IPHK15,Gad15,HKT13,VNN14]. Furthermore, our approach derives
the refinement relation from the system model itself, and so it reduces the load
on the analyst in comparison to the ATSyRA approach [PAV15].

The novelty of our approach consists also in the labelling technique for inter-
mediate and leaf nodes. Our labelling is based on the facts about the system
state that the attacker wants to achieve or avoid in order to realize the attack.
Our running example of the network security case has shown that the proposed
generation and labelling technique is practical and yields meaningful attack trees.

To continue this work, we plan to integrate a model checker for obtaining
system traces, and to implement the generation algorithm in the open-source
attack tree software ADTool [GJK+16].
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