Chapter 6
Catalytic Efficiency in Metallic Nanoparticles:
A Computational Approach

Hector Barron

6.1 Introduction

Computational modelling and simulations are among the most significant devel-
opments in the practice of scientific inquiry in the twentieth century. Within the
past few decades, scientific computing has become an important contributor to
all scientific research programmes. It is particularly important for the solution of
research problems that are insoluble by traditional theoretical and experimental
approaches, hazardous to study in the laboratory or time-consuming or expensive
to solve by common techniques. Under this context, computational simulations
have change from merely performing a calculation to become virtual laboratories
in which a system can be studied from a different perspective. This triggered the
rise of a wide variety of modelling techniques developed over the years, including
the models to study systems at the molecular level such as molecular dynamics
(MD), classical Monte Carlo [1, 2], quantum-based techniques [3] and Monte Carlo
methods [4], and MD combined with electron density functional theory. The results
of model simulations help researchers make predictions about what will happen in
the real system that is being studied in response to changing conditions. Modelling
can expedite research by allowing scientists to conduct thousands of simulated
experiments by computer in order to identify the actual physical experiments that
are most likely to help the researcher find the solution to the problem being studied.

Over the past decade, computational methods in catalysis have attracted a
widespread interest as means for investigating the underlying pathways of an
overall reaction and providing insights into the design of suitable catalysts [5—
8]. As in many other areas of materials science, modern computational science is
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becoming a key contributor in the quest to quantitatively understand the molecular-
level mechanisms underlying the macroscopic phenomena in chemical processing,
envisioned to ultimately enable a rational design of novel catalysts and improved
production strategies.

Of particular relevance are hierarchical approaches that link the insights that
modelling and simulation can provide across all relevant length and time scales.
For example, first-principles methods, such as the widely used density functional
theory (DFT), can be employed at the molecular scale to understand the elementary
events and the reaction mechanisms giving rise to catalytic activity. Application
of DFT methods can be found in studies of the stability of Ni catalysts for
steam reforming by the addition of gold, the mixing of cobalt and molybdenum
in ammonia synthesis catalysts [5], new mixed transition metal sulphides for
hydrodesulphurisation [9], new CO-tolerant alloys for fuel-cell anodes [10] and
near-surface alloys for hydrogen activation [11]. With the success of this approach,
an extensive computational screening of surface structures for new catalysts was
performed for the methanation reaction [12].

Another important theoretical approach to study the activity and selectivity
at the catalyst scale is the kinetic models. Some of these models may employ
Langmuir-Hinshelwood-type models [7], Sabatier analysis [13], mean-field micro-
kinetic models or more sophisticated statistical-mechanical treatments, in particular
kinetic Monte Carlo (KMC) simulation [14, 15]. The latter is motivated by the
structural complexity exhibited by heterogeneous catalysts, which expose several
different types of sites that may have distinct functionalities. For instance, sites
at the interface between metal and support may behave differently than these two
phases, planar versus low coordinated sites or defects may exhibit disparate catalytic
activity, and alloys may expose a variety of sites at the interface of the two (or more)
components. KMC models have indeed been successfully used to unravel such
complexities and aid in catalyst discovery; recent studies on ethanol synthesis from
syngas identified effective promoters for Rh-based catalysts and made connections
with experiments [16, 17].

More recently, Barron et al. [18] studied the nucleation, growth and catalytic
activity of Pt nanoparticles by using classical molecular dynamics (CMD). The
structures obtained exhibit surfaces characterised by a high free energy and a
much higher density of steps, kinks and terraces (composed of atoms with low
coordination number) than ideal polyhedra, making them highly desirable for use
in various types of catalytic reactions. By using a classification of those surface
defects, it was possible to link each of those groups to a specific catalytic reaction.

In this perspective, we first review some of the computational techniques
available to investigate some of the most important catalytic reactions from first
principles to kinetic Monte Carlo to shed light on specific chemistries. Furthermore,
we show how CMD simulations can be an alternative method to ab initio models
in the design of novel nanocatalysts by tuning the nucleation and growth process
obtaining particles with high density of surface defects. Finally, we propose
directions for future research towards achieving these goals.
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6.2 Ab Initio Calculations

Extensive theoretical and computational approaches have been employed to try to
meet the goal of developing a fundamental understanding as a basis for catalyst
design [6]. The solution of the Schrédinger equation to obtain the energy of a given
configuration of nuclei and their electrons is a nontrivial task even for small systems,
and it becomes especially arduous when the system involves multiple phases as is
the case in a surface reaction. The formal cornerstone of DFT is a theorem derived
by Hohenberg and Kohn [22], which states that the ground-state electronic energy
is a unique functional of the electronic density n (r), with r the space coordinate.
In other words, there exists a one-to-one correspondence between the r-dependent
electronic density of the system and the energy. Further development of this method
was conducted by Kohn and Sham in 1965 [23]. They decomposed the exact kinetic
energy functional into two parts to approximate the universal functional. However,
the exact functional giving the exact energy is not known, and in practice one
must therefore resort to one of the many approximate expressions available. The
quality of these functionals is now such that one may calculate overall energies to
within an accuracy of about 5-10 % of the exact result, which is sufficient for many
purposes. DFT calculations nevertheless provide useful and important perspectives
on chemical reactions that are not accessible through experimental observations
alone.

6.2.1 Electrocatalysis

The field of electrocatalysis has recently undergone a significant resurgence in
research activity. This is due to several factors including the urgent need to create
better technologies in a clean and sustainable manner [12, 14, 19, 24, 71]. The
electrochemical processes always involve multiple reaction pathways, active sites
and products and cannot be well characterised experimentally. The development of
DFT in electrochemistry makes it possible to understand the reaction mechanism
at the atomic level. Such understanding allows the theoretical screening for better
catalysts. In order to model electrochemical systems, several factors have to be
modelled simultaneously: the structure and chemistry that occur at the anode and the
cathode, the electron transfer between the two electrodes and the local changes in the
electrolytes. To this end, various approximated approaches have been developed to
simulate the electrochemistry, which describe the solid electrode surface, the liquid
solution, the solvated ions and the effect of changes in the chemical potential of the
electrons in the solid.
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6.2.1.1 Description of Different Electrochemical Reactions

One of the most important advances in DFT is in the accurate description of
electrocatalytic reactions at surfaces with great detail. The method developed by
Neurock et al. [27] described qualitatively various electrochemical reactions, water
activation, oxygen reduction reaction (ORR) as well as methanol decomposition on
metal surfaces, being able to gain insights into the reaction mechanism under poten-
tial over aqueous-metal interfaces [26, 28, 29]. The ORR is a canonical chemical
reaction due to its ubiquitous presence in corrosion, combustion, energy conversion
and storage processes. Besides its importance in basic electrochemistry, the oxygen
reduction reaction is also relevant to energy conversion in polymer electrolyte
membrane fuel cells (PEM-FCs). In principle, gaseous H; is oxidised at the anode,
and its protons migrate through the electrolyte to the cathode where they finally
react with O, under uptake of four electrons to form two water molecules. Despite
the apparently simple reaction mechanism and thus the fundamental reaction steps
of the ORR are still not fully understood. Indeed, this reaction is highly complex
since it occurs in a multicomponent environment and is influenced by various
environmental parameters: temperature, pressure and electrode potential. Another
method to describe the electrochemistry, which gives in some cases accuracy
required for computational results to compare with experiment in a meaningful
way, was proposed by Norskov [30]. In this work, DFT calculations and a micro-
kinetic modelling are combined to describe the H,/CO electro-oxidation on Pt and
Pt alloy surfaces. The model is very simple and is able to express the kinetics of a
promoted anode surface relative to the activity of pure Pt directly from the calculated
adsorption energy differences. DFT-based studies also provide the understanding of
changes in catalytic activity from one catalyst to another, which is also qualitatively
comparable to the experimental measurement [30-34]. This allows more insight into
the reaction mechanism. Both experiment and theory show that PtRu and Pt;Sn are
better electrocatalysts than Pt, being able to oxidise H, and CO at lower potential; in
contrast, higher potential should be applied to oxide CO on Ru. Within the model,
the origin of the promoting effect of alloying can be analysed. That is, the promoting
effect of alloying on H,/CO oxidation reaction can be attributed to the fact that
alloyed metals modify Pt in the surface to bond CO weaker, thus decreasing the CO
coverage under working conditions of the electrode. Such detailed understanding
cannot be achieved merely using experimental techniques and is very important to
the rational catalyst screening.

6.2.2 Future Directions

Even though some progress has been made towards understanding electrocatalytic
process and screening electrocatalysts from DFT, the method has difficulty in
providing quantitative numbers for detailed reaction steps. DFT studies are too
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simplified to model the real catalysts effectively. For example, some fabricated
catalysts are powders, which may behave differently with size. Recently, efforts
have been made to model the nanoparticles with the size of experimental catalysts
(5 nm), showing indeed different behaviours from the extended surfaces [35, 36].
Thus, theoretical predictions based on the calculations of extended surfaces may
not necessarily be able to describe the electrocatalysts with small size. In addition,
the electrochemical processes may always be complex, including multiple reaction
pathways, rate-limiting steps and products. As a consequence, more sophisticated
models are needed to capture knowledge for catalyst optimisation. With the further
development of DFT method and models that can effectively treat more realistic
catalysts and their environments, it can be envisioned that soon DFT modelling in
electrochemistry will not only provide insight into the experimental measurements
but also become the standard choice for designing a new catalyst for a catalytic
process.

6.3 Monte Carlo

This method is especially useful for studying catalytic reactions taking place on the
reaction sites of a catalyst surface. The evolution of the entire system is obtained
by solving the so-called master equation (Eq.6.1) using an MC-type algorithm
[37-40].

dP,
g = D MhapPs — kgaPel. 6.1)
B

Equation 6.1 describes the evolution of probability P, for the system being in the
surface configuration state «. Here, ko4 defines the transition probability from state
« to state B. The transition in the sense of surface simulation can, for instance,
be a diffusion step or a reaction with rate k,g. Analytical solutions to the master
equation can be derived only for simple cases. In general, a numerical solution is
required. A MC simulation starts from a state o and repeatedly picks a random
possible process and advances in time. Averaging over several trajectories leads to a
numerical solution of the master equation. This algorithm is designed such that the
exact time dependence is obtained, i.e. that the subsequent configurations generated
satisfy the correct detailed balance. Kinetic Monte Carlo (KMC) is the method
of choice for the micro-kinetic modelling of catalytic reactions on surfaces when
ordering, island formation and slow surface mobility are of our interest. Although
kinetics plays such an important role in catalysis, its theory has for a long time
mainly been restricted to the use of macroscopic deterministic rate equations. These
implicitly assume a random distribution of adsorbates on the catalyst surface. Effects
of lateral interactions, reactant segregation, site blocking and defects have only been
described ad hoc.
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6.3.1 KMC Approach in Catalysis

KMC methods have been used to simulate the catalytic surface chemistry for
various different reaction systems. The vapour-phase oxidation of CO to form CO,,
however, has been the most widely studied due to its simplicity as well as its general
applicability. Pioneering work by Ziff [41] and Neurock [14] shows the formations
of interesting phase transitions as a function of the kinetics and lateral interactions.
Many subsequent studies by various other groups extend the basic models to cover
more general features.

6.3.1.1 CO Oxidation

The CO oxidation chemistry has attracted significant attention over the past decade,
since its simplicity enables detailed modelling. This chemistry is of environmental
importance for removing toxic CO from exhausts [15]. The CO oxidation on
RuO; (110) has been extensively investigated by Reuter, Scheffler and co-workers
[15, 42, 44-47]. In those studies, the RuO,(110) surface was modelled as a lattice
with two types of sites, bridge and cus. The adsorption of O, (dissociative) and
CO, the diffusion of adsorbed CO and atomic oxygen as well as the CO, formation
were analysed with DFT, and the parameters were incorporated into a first-principles
MC framework. The simulation results were in agreement with experimental data
for conditions ranging from ultrahigh vacuum (UHV) to industrially relevant
pressures [15, 43]. The CO oxidation reaction has also been modelled on metal
catalysts, in particular Pt, Rh and Pd single crystal surfaces and Au nanoclusters
[51]. Volkening and Wintterlin [50] presented KMC simulations of this reaction
on Pt (111). This model was subsequently extended to incorporate coordination-
dependent reactivity, thereby being able to reproduce experimental observations, in
particular, the reaction order of 1/2 with respect to oxygen coverage, the shapes of
the domains occupied by adsorbed CO and O, as well as the higher reactivity of
the domain boundaries. Furthermore, Rogal et al. [48] studied the CO oxidation
chemistry on Pd (100) and showed that a surface oxide structure can be stable
at ambient pressures, under which the surface can be catalytically active. They
postulated that at steady state, transitions between the reduced and the oxidic
Pd (100) structure may take place. In a detailed study, Liu and Evans [49] used
KMC simulation in a multiscale modelling context, to simulate the CO oxidation
on Rh (100) and Pd (100). The simulations were found to be in good agreement
with experimentally obtained TPR spectra and provided insight into the onset of
propagating reaction fronts at mesoscale. Finally, Stamatakis et al. [51] recently
investigated the reaction rates and poisoning effects for the CO chemistry on MgO
supported Au6 nanoclusters.
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6.3.1.2 NO Reduction and Oxidation

NO-related catalysis have also served as prototypes for the assessment of KMC
modelling techniques and are of practical significance because of environmental
and health impacts. Thus, several studies have investigated such chemistries using
KMC models focusing on the impact of geometry for clusters of sites catalysing the
NO reduction by CO [52-54], the effect of impurities blocking catalytic sites [53]
as well as the effect of step sites [55] in this system, the adsorbate-induced phase
transition and the oscillatory characteristics of NO reduction by NHj [56], as well
as the different pathways and the effect of lateral interactions of NO decomposition
during TPR experiments [57, 58]. Further, kinetic oscillations, reaction fronts and
pattern formation phenomena for the NO chemistries have received much attention
and have been simulated with deterministic models [59, 60] as well as KMC
methods [61-67].

6.3.1.3 Ethylene Hydrogenation

The hydrogenation of ethylene is a prototype system of hydrogenation reactions
and is important in the conversion of olefins into higher-octane gasoline blending
components. An early KMC study of this reaction on Pt focused on diffusion,
activation of surface intermediates and steric hindrance effects [68]. Hansen and
Neurock developed a first-principles KMC model of ethylene hydrogenation on
Pd (100), which utilised DFT calculated energetics at the zero coverage limit,
whereas adsorbate lateral interaction effects were incorporated within the BOC
framework [69]. Their model predicts an apparent reaction order which is negative
with respect to ethylene and less than unity with respect to hydrogen, in agreement
with experimental data. This work was later extended by Neurock and co-workers
[14], to study Pd (111) as well as bimetallic Pd/Au (111) surfaces. It was found
that higher surface Au compositions result in a strengthening of the metal-hydrogen
and metal-carbon bonds, thereby promoting the hydrogenation activity, but also in
a weaker binding of H, on the surface, which hinders the catalytic activity. Com-
pensation between these two effects leads to alloying Au with Pd having an overall
negligible effect of on the activity, consistent with experiments [70, 71]. Clearly,
first-principles KMC constitutes a powerful and versatile multiscale modelling
framework that can offer valuable insight into catalytic phenomena. Nevertheless,
there are still major challenges in the development of accurate KMC methods with
predictive power. These challenges may pertain to the inadequate description of the
underlying physics and chemistry, as well as to the computational cost arising from
the inefficiency of the simulation.
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6.3.2 KMC Simulations for Catalysis in Nanoparticles

The study of catalytic reactions requires to model catalytic surfaces that are not
uniform; site heterogeneity exists because the surface of practical catalyst particles
is characterised by terraces of different crystal structures, steps, edges, additives,
impurities and defects. Therefore, it is required to enable KMC simulations for
such systems in order to derive technical meaningful rates and give insight into
geometric and communication effects. Prior attempts have been made to perform
KMC simulations on nanoparticles. One approach is to regard a single lattice
without periodic boundary conditions as particle and describe the facets as different
regions [72-74]. Another simulation approach uses three-dimensional particles,
which can vary their height to mimic shape transformation. These models use
a single lattice with additional information about the particle height for each
adsorption place [75]. Both models neglect the nature of different facets regarding
their neighbourhood because they are limited to one lattice type and cannot represent
the different neighbourhoods of combinations like fcc(111) and fcc(100) faces. A
hybrid approach between a lattice and an off-lattice method can overcome these
limitations. The facets of the catalyst particle and the support are each described
by a lattice, which are linked along their edges. Since such models lead to a high
number of different processes, it is favourable to have a general implementation,
which is not restricted to a specific mechanism and allows different particle shapes.

6.3.3 Future Directions

The impact of KMC simulation will mainly be manifested in problems incorporating
spatial effects where multiple active sites are involved and the activity and selectivity
arise from nonlinear coupling among these sites. Examples include the dependence
of the structure sensitivity of a reaction on nanoparticle size and shape, promoters,
whose specific location may be important, multifunctional materials (e.g. Lewis
and Brgnsted acid sites or metal and Brgnsted acid sites) and support effects due
to parts of the chemistry occurring on the support, the metal sites and interfacial
support/metal sites. The ongoing efforts to incorporate more detailed physics and
chemistry in these simulations in conjunction with the never-ending pursuit of more
efficient methodologies is bound to improve the predictive power of first-principles
KMC, making it a quantitative tool for mechanism understanding and eventually in
silico catalyst discovery and optimisation.

6.4 Molecular Dynamics

In classical molecular dynamic methods [20], the atoms and molecules in the system
of interest interact through many-body effective potentials. In this context, the word
classical means that the nuclear motion of the constituent particles obeys the laws
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of classical mechanics. The electronic and quantum nature of the system is not
explicitly taken into account, and the time evolution of the system is obtained by
solving Newton’s classical equations of motion. Averaging of the CMD trajectories
over a sufficiently long simulation period allows one to extract thermodynamic,
dynamical and other macroscopic properties. If we consider a classical system
A consisting of N particles, its microscopic state is described in terms of the
positions r and momentum p of each particle. If V is the interparticle potential,
then V = V(ry,...ry) and T the kinetic energy of the system; thus the Hamiltonian
H = T + V represents the total energy in the system. In a classical environment,
being r; the Cartesian coordinates, the time evolution of the system is given by the
Newton equations:

where m; is the mass of particles i and f; = —Vr; H = —Vr; V is the force on
particles i.

CMD is one of the best tools to study nanocluster growth since it is possible
to simulate, with the present computational resources, time scales comparable with
the experimental ones. Moreover, by CMD it is not necessary to make any a-priori
assumptions, as happens in KMC simulations [21, 22]. It’s important to mention that
molecular dynamics can be also be performed using ab initio methods that take into
consideration the electronic nature of the system to calculate different properties
[25].

6.4.1 Metallic Nanoparticles for Catalytic Applications

There has been a great interest in using nanocrystals as catalysts due to their high
surface area-to-volume ratios and high surface energies, which make their surface
atoms to be highly active [76]. Generally, catalytic performance of nanocrystals can
be finely tuned not only by their composition, which mediates electronic structure,
but also by their shape, which determines surface atomic arrangement and surface
coordination [77]. In this context, metal nanoparticles exhibit a wide variety of
shapes, facets and fraction of surface atoms, which makes it critically important
to study the effect of metal nanoparticles shape on the catalytic activity of various
organic and inorganic reactions. The shape sensitivity of nanocatalysts is attributed
to electronic and geometrical effects that influence adsorption energies and reaction
pathways [31]. The chemisorption of reaction species can occur preferentially
on surface atoms with low coordination number allowing more energetically
favourable transition states compared to close-packed surfaces [78—81]. The purpose
of targeting specific shapes is to enrich samples with the greater density of specific
types of under-coordinated atoms at the surface, with preference given to those with
as lower atomic coordination number as possible. Each crystallographic facet has
a characteristic surface atomic arrangement and degree of “under-coordination”,
and although this ultimately determines the concentration of active sites available
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Fig. 6.1 Snap shot of the
final stage from the formation
of Pt nanoparticles. The main
nuclei surrounded by small
clusters as a consequence of
coalescence and sintering can
be seen as well as islands,
kinks and steps decorating the
cluster surface. In general,
coalescence and sintering is
more common to appear in
cluster formed at slower
deposition rates leading the
formation of longer branches
in their final stage

for reactions, it is still challenging to predict the structure-dependent activity
a-priori. The structure-dependent activity can be empirically obtained; however
the type of defect and performance in the nanocrystal is highly dependent in
the polydispersivity of the sample, making this a challenging task. Alternatively,
analytical models can be used to address the issue of sample diversity but in
most predicative models are usually idealised [82]; the imperfections and surface
defects omitted for simplicity. Defects, including stacking faults, kinks, steps and
terraces, routinely appear during crystal growth, and the inclusion of these features
in predictive models can yield important insights [83] (Fig. 6.1).

6.4.2 Nucleation Process of Catalytic Nanoparticles

Experimentally, the shape control synthesis has been widely investigated in order to
find better strategies to manipulate particle growth processes, and these processes
are also well described by computer simulations. Typically two types of CMD
simulations are used to model this process: the single atom (or monomers)
insertion to coalescence, under a specified set of conditions (often referred to as
coarsening) [84—-86], and via the collision of two preexisting particles to form a
single aggregate which then undergoes restructuring, again under specific conditions
(often referred to as sintering) [87]. In order to generate anisotropic nanoparticles
with a high density of surface defects for catalytic applications, we adopted the
first computational approach (single atom insertion) to investigate the relationship
between the formation temperature and the growth rate with the degree of disorder
in Pt nanoparticles. In this way, we related the initial conditions of the formation
process with some simple indicators of catalytic efficiency, by tracking the density
of different types of under-coordinated surface atoms as a function of time. The
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Fig. 6.2 Distribution of catalytically active sites in Pt nanoparticles. Atoms coloured in red (SCN
of 1, 2 and 3) are active sites for carbon oxidation (CO) reactions, atoms in green (SCN of 4, 5, 6
and 7) are suitable for oxygen reduction reactions (ORR), and atoms in blue (SCN of 8, 9, 10 and
11) are suitable for hydrogen evolution reaction (HER) and hydrogen oxidation reactions (HOR)

CMD simulations were carried out using the LAMMPS code [88], under the
embedded atom method (EAM), with a potential parameterised by Foiles et al. that
proven to accurately describe the platinum atomic interactions [89]. The simulation
consists in the random insertion of atoms at different temperatures of 30 °C, 100 °C
and 200 °C, with atomic deposition rates (r) of 1 atom each 5 simulation steps
(t = 2.5 x 107 atoms per ns) and 1 atom each 100 simulation steps (t = 5 x 107*
atoms per ns). The temperature values were chosen based on the experimental
synthesis of Pt nanoparticles [90] and the deposition rates in accordance with
previous computational studies [91]. The atoms were deposited for 2 and 5 ns
depending on the atomic deposition rate (t). The trajectories generated by the
simulations were analysed to track the evolution of different types of surface defects,
by quantifying the coordination numbers of all surface atoms (SCN) as a function
of time (Fig. 6.2).

6.4.2.1 Classification of Surface Defects

During the nucleation process, nanoparticles experience different structural trans-
formations due to the sintering, coalescence and the energetic competition between
facets, giving rise to different surface defects. These defects can be classified accord-
ing to their coordination number (SCN). In previous work we have established
a simple classification scheme relating SCN to functional similarities [82]. For
instance, all atoms with SCN of 1, 2 or 3 are classified as surface defects (adatoms
placed on “top”, “bridge” and “hollow” sites); atoms with SCN of 4, 5, 6 or 7
are termed surface microstructures (kinks/steps-like defects); and atoms with SCN
of 8,9, 10 or 11 are termed surface facets (surface-like defects that include any
planar configuration). Each of these groups is linked to a specific catalytic reaction.
For example, it has been well established that CO oxidation is initiated on step
sites on (111) terraces and diffuses rapidly to surface defect sites [92, 93]. Surface
microstructures are important in the first stage of CO reactions and oxygen reduction
reactions (ORR) [92], since electrolyte anions adsorb more strongly on steps and
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Fig. 6.3 Final morphologies
obtained at the end of the
simulations and their SCN
distribution at different
temperatures and atomic
deposition rates (t/atoms per
ns). Lower coordinated atoms
are localised on the tips and
along the branches, while
higher coordinated atoms
occupy “flat” areas over the
surface. Since atoms with
SCN of 1, 2 and 3 are present
at early stages during the
simulation, the colour scale
goes from SCN 4 (in grey) to
SCN 11 (in red). Orange and
red colours cover the majority
of the surface; this means that
SCN of 10 and 11 are
dominant at the end of the
simulation

SCN 11

SCN 4

kinks with coordination numbers of 4, 5 and 6, where oxygen-oxygen bonds can
be readily broken. For the H oxidation (HOR) and evolution (HER) reactions [21],
the desorption/adsorption of hydrogen increases with atoms in surface facets (with
SCN of 7, 8 or 9) (Fig. 6.3).

6.4.2.2 Catalytic Activity in Pt Nanoparticles

Beyond the availability of different types of active sites, the time evolution of
these sites determines when the catalyst achieves maximum activity and can
provide guidance as to when to stop growing. For instance, particles formed
att = 2.5 x 107> atoms per ns reach their maxima in only 0.5 ns, whereas the
particles formed at higher rates at 1 = 5 x 10~* atoms per ns, require 5 ns to
reach maximal performance (see Fig.6.4). This is not a simple relationship that
can be predicted based on the rates alone, since the time evolution of the surface
defects depends on the atomic diffusion rate which increases at lower depositions.
Looking to the different classes of defects, we can see that surface facets and
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Fig. 6.4 Surface defects evolution. (a) Surface defects for Pt nanoparticles formed at atomic
deposition rates of T = 2.5 x 107> atoms/ns. Adatom-like defects are present in the first 0.5
ns in the simulation in low amounts and then vanish as the nucleation continues. Kinks/steps-
like defects achieved their maxima after 0.5 ns keeping this value constant along the simulation.
Surface-like defects exhibit a higher number density of atoms with this defect, achieved after 0.5
ns maintaining this value constant during the simulation. (b) Surface defects for Pt nanoparticles
formed at atomic deposition rates of T = 5 X 10~ atoms/ns. Adatom-like defects are formed
after 1.5 ns. Kinks/steps-like defects started to appear after 1.5 ns increasing the number density
of atoms with this defect linearly until the end of the simulation. Surface-like defects are formed
at 1.5 ns increasing the amount of atom linearly during the simulation and reaching the maxima
at the end of the simulation. In all the simulations the temperature does not affect the evolution of
the surface defects. The cluster size has been traced during nucleation in terms of their mass (This
image is reproduced from reference [18])

surface microstructure dominate, indicating that these conditions produce particles
more suitable for CO first-step reactions to break oxygen-oxygen bonds, HOR and
HER reactions after the first 0.5 ns of the growth process in particles formed at
T = 2.5 x 107> atoms per ns, which will be smaller, and at the end for particles
formed at T = 5 x 10~* atoms per ns, which will be larger (and therefore more
expensive). The dependence of the SCN on the temperature does not contribute
to the relative abundance of under-coordinated surface atoms; temperature curves
exhibit similar values for the density of active sites in all the simulations; it is
the atomic deposition rate that determines the surface. This is a useful finding, as
the temperature can be selected to control the decomposition rate of the precursor
without changing the relative abundance of under-coordinated active surface atoms.
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6.5 Conclusions

In this chapter we have described some recent applications of various computational
methods to understanding some basic principles of complex catalytic and electro-
catalytic processes. These methods rely on either quantum-mechanical or statistical-
mechanical principles, and the level of detail and the kind of insight into a certain
catalytic problem depend on the system under investigation. Quantum-chemical
electronic structure calculations, in practice usually DFT calculations, allow one
to calculate binding energies and activation barriers of processes taking place on the
catalyst surface. From many detailed calculations, it can be concluded that many
adsorption processes and surface reactions are governed by the energy level of
the d-band at the site where the process is taking place. We have illustrated how
DFT calculations are useful to investigate electrochemical reactions on different
surfaces. The model suggested by Norskov explains the H,/CO electro-oxidation
on Pt and Pt alloy surfaces. The DFT calculations also show that, unfortunately,
the current models are too simplified to treat real catalysis effectively. Kinetic
Monte Carlo is very useful in assessing the overall reactivity of a catalytic surface,
which must include the effects of lateral interactions between adsorbates and the
mobility of adsorbates on the surface in reaching the active sites. The importance
of treating lateral interactions was demonstrated in detailed ab initio-based dynamic
Monte Carlo simulations of ethylene hydrogenation on palladium and PdAu alloys.
Surface diffusion of CO on alloy surfaces was shown to be essential to explain
the qualitative features of the experimental CO stripping. The combination of first-
principles approximation with KMC in ethylene hydrogenation has been proven
to be very efficient to describe catalytic activity. Future models should consider
this hybrid approximation as a starting point to improve the description of catalytic
activity. Finally, CMD simulations were carried out to investigate the nucleation,
growth and catalytic activity of Pt nanoparticles by analysing the surface atom
coordination and final shapes. The formation of these nanoparticles under different
temperature and deposition conditions shows that the atomic deposition rates
lead to the coalescence and sintering conditions that act as an activation for the
reorganisation of the atomic surface structure and distribution of active sites. In this
context, nanoparticles formed at slower atomic deposition rates have the tendency to
exhibit inhomogeneous surfaces with a higher density of under-coordinated atoms.
This directly impacts the catalytic activity for many technologically important
reactions. The particles obtained in the conditions considered herein are more
suited to CO oxidation HER and HOR reactions. This method is a more “realistic”
way to produce nanoparticles compared with other computational studies in which
the particles are highly symmetric no considering surface defects as experimental
evidence reveal.
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