
TOM: A Model-Based GUI Testing Framework

Miguel Pinto1,2, Marcelo Gonçalves1,2, Paolo Masci1,2,
and José Creissac Campos1,2(B)

1 HASLab, INESC TEC, Braga, Portugal
2 Dep. Informática, Universidade do Minho, Braga, Portugal

jose.campos@di.uminho.pt

Abstract. Applying model-based testing to interactive systems enables
the systematic testing of the system by automatically simulating user
actions on the user interface. It reduces the cost of (expensive) user test-
ing by identifying implementations errors without the involvement of
human users, but raises a number of specific challenges, such as how to
achieve good coverage of the actual use of the system during the test-
ing process. This paper describes TOM, a model-based testing frame-
work that uses a combination of tools and mutation testing techniques
to maximize testing of user interface behaviors.

Keywords: Model-based testing · User interfaces · Tool support

1 Introduction

User interface testing is an important aspect of interactive computing systems
development, and a range of techniques can be useful in this context. Analy-
sis techniques based on user experiments are mostly concerned with assessing
the quality from the users’ perspective (e.g. satisfaction, reliability, learnability,
efficiency – cf. the notion of usability [7]). They can be used to explore a lim-
ited number of scenarios, and do not allow developers to identify all potential
user interface problems. Model-based verification tools provide an alternative
perspective, and enable the exhaustive analysis of core usability aspects such as
mode visibility and consistency of response to user actions (cf. [4]). However,
usability properties proved over the models are “inherited” by the final system
implementation only if the final system faithfully implements the models.

Model-based Testing (MBT) [18] is a technology that can help bridge this gap
between model-based verification and a system’s implementation. It is a black-
box testing technique that compares the behavior of an implemented system
(called SUT, System Under Test) with that prescribed by a model of the same
system (the Oracle). One advantage of MBT is that it facilitates full automation
of the testing process, from test case generation to test execution.

Several authors have explored a range of approaches for using MBT on user
interfaces: based on reverse engineered models [1,6] or purpose built models [15]
representing the UI behavior; using Oracles that capture the control dialogues

c© Springer International Publishing AG 2017
J. Proença and M. Lumpe (Eds.): FACS 2017, LNCS 10487, pp. 155–161, 2017.
DOI: 10.1007/978-3-319-68034-7 9



156 M. Pinto et al.

Fig. 1. TOM framework: conceptual architecture

implemented in the UI (e.g., to capture normative interactions between users and
system [3,17]); or using predefined patterns to generate test cases based on given
Oracles [12,13]. Different alternatives have also been explored for executing test
cases: using code instrumentation, UI automation frameworks, or higher-level
co-execution tools.

Memon was among the first to apply MBT to graphical user interfaces [11].
He developed the GUITAR [14] testing framework, which supports a variety
of model-based testing techniques. The framework uses a reverse engineering
process to generate a model of the SUT. One limitation of GUITAR and other
similar tools (see [9] for a recent survey of similar tools) is that oracles focus on
the SUT, making it harder to select test cases that are relevant from the user’s
perspective. In this work, we introduce TOM, a model-based testing framework
that aims to address this gap by enabling automatic generation of user relevant
test cases.

Contribution. The specific contributions of this paper are: (i) a presentation
of the architecture and prototype implementation of the TOM framework; (ii)
an example application of the framework to an existing Web application.

2 The TOM Framework

The framework adopts a modular approach to better support the exploration of
different model-based testing techniques. It is divided into two layers (see Fig. 1):
the Adapter Layer, and the Core Layer.

The Adapter Layer is the interface between the core of the framework, and
the oracles and test automation frameworks. It includes a set of Model Loaders
responsible for importing a UI model, and a set of Test Cases Exporters necessary
for generating test cases. A number of other components support the user during



TOM: A Model-Based GUI Testing Framework 157

the configuration process and while running the test cases: a Values Editor is
provided to support editing of values to be used as inputs; a Mapping Editor links
a state machine model of the UI to the graphical UI of the SUT; a Mutations
Editor allows users to define the type of mutations to be introduced in the test
cases; and a Results Analyzer presents test results.

The Core Layer uses a graph representation of the SUT to perform the gener-
ation of test cases. The generation process uses a directed graph produced by the
Adapter Layer. Each node in the graph represents a dialogue unit in the interface
(e.g. a modal window, or a page in a Web application), and contains information
about the actual content of the dialogue unit and the validations checks to be
performed over it. Edges represent changes to the interface in response to user
actions (e.g. button clicks). A Path Generator component in the Core Layer
generates Abstract test cases as paths over the directed graph. These paths rep-
resent normative usage scenarios of the system. These usages are specified in a
way that is independent of any specific implementation, as they are expressed
over the graph. They are converted into concrete test cases by a Test Cases
Generator component in the Core Layer. This component uses two additional
sources of information (provided by the Adapter Layer): a mapping between the
state machine and the graphical UI of the SUT, and input values for specific
UI widgets. Finally, a Mutations component generates additional test cases with
the aim of achieving fault coverage. The considered fault classes are based on
Reason’s use error types [16] (slips, lapses and mistakes). Mutations are intro-
duced in the normative usage scenarios, either randomly or according to user
defined criteria, to check the impact of these use errors.

Prototype Implementation. We have implemented an Adapter Layer for
Web applications1 as a Google Chrome extension (see Fig. 2, left). The Adapter
captures the user interaction with a Web page to create a first version of the
model. It then supports editing the model (to add new states and transition not
covered in the capture phase, define the values to be used and the validations to
check), as well as the mapping between the final model and the graphical user
interface. A companion component exports test cases to Selenium WebDriver, a
tool to automate testing of web pages.

The directed graph representing the UI model is expressed in SCXML [19]. The
main tags are: <state>, used to represent dialogue units; and <transition>, used
to represent events. <state> tags have a type that defines the characteristics of
the dialogue unit. An example state type is ‘Form’, which represents a modal win-
dow where a number of input fields must be input before the interaction can pro-
ceed. Validation checks are declared in the state using <onentry> and <onexit>
tags, which are assessed when entering or leaving a state, respectively. Example
validation checks include: displayed? (checks whether a given element is visi-
ble); is selected (checks whether an element in a drop-down list or check-box is
selected); enabled? (checks whether an element is enabled); attribute (checks
the value of an attribute of an HTML element); and regex (checks whether an ele-
ment contains a value that matches a regular expression). Transition tags can use a
1 Available at http://gitlab.inesctec.pt/jccampos/ise-public-builds.

http://gitlab.inesctec.pt/jccampos/ise-public-builds


158 M. Pinto et al.

<step> attribute to decompose a logically atomic action into its constituent physi-
cal actions. Example transitions are <select> (the action of selecting an option in
a drop-down menu); <submit> (the action of ending a dialogue unit) and <error>
(events triggered in the case of errors).

The Path Generator module converts the SCXML file into a graph using
the JGraphT Java library. JGraphT provides a number of traversal algorithms
(from calculating the shortest path between two nodes using Dijkstra’s algorithm
to calculating all paths), which can be used on the graph to yield abstract test
cases. Test case generation is controlled by defining a start and an end state, and
upper bounds on the number of visits/traversals to nodes/edges on the graph.

The Mutation component simulates use errors as follows: Slip errors are a
change of the order of execution of normative user actions; Lapses are an elimi-
nation of an action; and Mistakes are a change of a value in a form. While these
formulations are rather simple, they are sufficient for assessing the utility of the
mutation approach used in the TOM framework.

3 Demonstrative Example

This section presents an example use of TOM to test OntoWorks, a Web appli-
cation supporting online editing and querying of ontologies (see Fig. 2, right).
Features include: visualization and execution of queries; loading, removing, edit-
ing and visualization of ontologies; association of queries to ontologies.

Building the Model. The TOM Editor was used to aid build the system
model. The final model consisted of 15 states and 24 transitions. A screen-shot
of the editor while building the model is in Fig. 2: it shows the “home” state,
which includes two transitions and a login form. Transitions for the home state
lead to states “About us” and “Sign up”. Modeling the OntoWorks system in

Fig. 2. TOM Web editor (left) and OntoWorks (right)



TOM: A Model-Based GUI Testing Framework 159

the TOM Editor took about 5 h, a significant reduction compared to a previous
manual modeling effort which took 27 h. The bottleneck of the manual modeling
effort was the cost of mapping each element of the state machine to the web
page. In the current model of the system there are 102 such mappings, mostly
obtained automatically. After constructing the model, validation checks were
added to the states. This was manually done with support from the tool (e.g.,
to identify elements in the page). In total, 61 validation checks were defined, 57
when entering the web page and 4 when leaving. The “displayed?” validation
was the most used (27 times). Three user-defined mutations were configured,
which are specifically targeted at Web applications: pressing the back button;
refreshing the page; double-clicking a user interface element.

Generation of Test Cases. The predefined AllDirectedPaths algorithm from
JGraphT was used to traverse the graph. To ensure that the algorithm traverses
all nodes and edges at least once, the following constraints were defined: the
number of visits to nodes is at most 1, and the number of visits to edges is at most
2. A total of 273 paths were generated, which are automatically converted into
concrete test cases for OntoWorks using the exporter for Selenium WebDriver.
Starting from these paths, TOM generated 2,730 additional test cases based on
the identified mutation strategies. The test cases were run in Google Chrome.
In case of error, a screen-shot of the web page was saved.

Results. A total of 935 step failures were obtained during the execution of the
tests. The tests highlighted a latent implementation problem in the OntoWorks
application (a same identifier was used twice in the same page, when it should
have been unique), and gave us important insights on how to improve the gen-
eration and execution of test cases. These aspects are now discussed.

Positive and Negative Tests. Careful analysis of the test results revealed that
several test failures were actually desired behavior of the system. For example,
swapping the order of input in the user name and password fields prevents the
login process. This indicates that we need to introduce the notions of “positive”
and “negative” tests (i.e., tests that should be considered as passed if the inter-
action succeeds vs. tests that should be considered as passed if the interaction
fails). Whether it will be possible to automatically categorize mutated tests into
positive/negative tests needs to be explored.

Cascading Errors. While our main goal was to detect as many errors as possible
in a single test, we observed that a failed step in a test case tends to propagate
to the remainder steps of the test case, causing the subsequent steps to fail too.
The three steps that failed in the non-mutated tests category are an example of
this. The problem happens in the login form: the user name input field is being
reported as not visible. This error occurs because Selenium is attempting to
populate a form field that is hidden at runtime. Manual inspection of the form,
however, showed the field visible on the form. After inspection of the code it was
realized that there were two elements with the same identifier in the same page,
when they should have been unique. Therefore the failure in the test highlighted
a latent implementation error. Subsequent failures in the test where due to the



160 M. Pinto et al.

fact that the login process had failed, and not because of problems with the
SUT. A redesign of the test case generation module is currently under way, that
flags a test as failed as soon as a step in the sequence fails.

4 Conclusion

This paper described the TOM framework, which aims at supporting the model-
based testing of interactive computing system. The architecture and main func-
tionalities of the framework were introduced, including all steps necessary for
the creation of the user interface model and the generation and execution of
test cases. A layer supporting MBT of Web application was also developed and
an example illustrating its application was described. The example makes use
of TOM Editor, a model editor for web applications. The example application
allowed us to identify a number of lines for future work: from the need to better
consider the role of mutations in the test case generation process, to fine-tuning
the executable test cases generation process. The definition of coverage criteria
is also a topic for future work. The framework was developed in a modular and
structured way, allowing the addition of new features. We plan to explore fur-
ther the integration with task modeling tool-sets such as HAMSTERS [2], taking
advantage of information task models might have about use error to improve the
test cases generation and mutation processes (see [5]). Other extensions under
development include interface modules for Alloy [8] and the PVSio-web [10] pro-
totyping tool.

Acknowledgements. Work financed by the ERDF (European Regional Development
Fund) through the COMPETE 2020 Programme, and by National Funds through the
Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within
project POCI-01-0145-FEDER-016826.

References

1. Amalfitano, D., Fasolino, A.R., Tramontana, P., Ta, B.D., Memon, A.M.: MobiGU-
ITAR: automated model-based testing of mobile apps. IEEE Softw. 32(5), 53–59
(2015)

2. Barboni, E., Ladry, J.-F., Navarre, D., Palanque, P., Winckler, M.: Beyond mod-
elling: an integrated environment supporting co-execution of tasks and systems
models. In: Proceedings of EICS 2010, pp. 165–174. ACM (2010)

3. Barbosa, A., Paiva, A.C., Campos, J.C.: Test case generation from mutated task
models. In: Proceedings of EICS 2011, pp. 175–184. ACM (2011)

4. Campos, J.C., Harrison, M.D.: Interaction engineering using the IVY tool. In:
Proceedings of EICS 2009, pp. 35–44. ACM, New York (2009)

5. Campos, J.C., Fayollas, C., Martinie, C., Navarre, D., Palanque, P., Pinto, M.:
Systematic automation of scenario-based testing of user interfaces. In: Proceedings
of EICS 2016, pp. 138–148. ACM (2016)

6. Gimblett, A., Thimbleby, H.: User interface model discovery: towards a generic
approach. In: Proceedings of EICS 2010, pp. 145–154. ACM (2010)



TOM: A Model-Based GUI Testing Framework 161

7. International Organization for Standardization: ISO 9241–11: ergonomic require-
ments for office work with visual display terminals (VDTs) - part 11: guidance on
usability. International Organization for Standardization 1998(2), 28 (1998)

8. Jackson, D., Abstractions, S.: Logic, Language, and Analysis. The MIT Press,
Cambridge (2006)

9. Lelli, V., Blouin, A., Baudry, B., Coulon, F.: On model-based testing advanced
GUIs. In: Proceedings of 2015 IEEE 8th International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), 11th Workshop on Advances
in Model Based Testing (A-MOST). IEEE (2015)

10. Masci, P., Oladimeji, P., Zhang, Y., Jones, P., Curzon, P., Thimbleby, H.:
PVSio-web 2.0: joining PVS to HCI. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9206, pp. 470–478. Springer, Cham (2015). doi:10.1007/
978-3-319-21690-4 30

11. Memon, A.M.: A comprehensive framework for testing graphical user interfaces.
Ph.D. thesis, University of Pittsburgh (2001)

12. Moreira, R., Paiva, A.C.: PBGT Tool: an integrated modeling and testing envi-
ronment for pattern-based GUI testing. In: Proceedings of ASE 2014, pp. 863–866.
ACM (2014)

13. Morgado, I.C., Paiva, A.C.: The iMPAcT tool: testing ui patterns on mobile appli-
cations. In: Proceedings of ASE 2015, pp. 876–881 (2015)

14. Nguyen, B., Robbins, B., Banerjee, I., Memon, A.: GUITAR: an innovative tool
for automated testing of GUI-driven software. Autom. Softw. Eng. 21(1), 65–105
(2014)

15. Paiva, A.C.: Automated specification-based testing of graphical user interfaces.
Ph.D. thesis, Engineering Faculty of Porto University, Department of Electrical
and Computer Engineering (2007)

16. Reason, J.: Human Error. Cambridge University Press, New York (1990)
17. Silva, J.L., Campos, J.C., Paiva, A.C.: Model-based user interface testing with

Spec Explorer and ConcurTaskTrees. Electron. Notes Theoret. Comput. Sci. 208,
77–93 (2008)

18. Utting, M., Legeard, B., Testing, P.M.-B.: A Tools Approach. Morgan Kaufmann
Publishers Inc., Burlington (2007)

19. W3C: State Chart XML (SCXML): State Machine Notation for Control Abstrac-
tion. W3C Recommendation, September 2015

http://dx.doi.org/10.1007/978-3-319-21690-4_30
http://dx.doi.org/10.1007/978-3-319-21690-4_30

	TOM: A Model-Based GUI Testing Framework
	1 Introduction
	2 The TOM Framework
	3 Demonstrative Example
	4 Conclusion
	References


