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Abstract. The paper describes the practical use of a model checking
technique to contribute to the risk analysis of a new paediatric dialysis
machine. The formal analysis focuses on one component of the system,
namely the table-driven software controller which drives the dialysis cycle
and deals with error management. The analysis provided evidence of the
verification of risk control measures relating to the software component.
The paper describes the productive dialogue between the developers of
the device, who had no experience or knowledge of formal methods, and
an analyst who had experience of using the formal analysis tools. There
were two aspects to this dialogue. The first concerned the translation of
safety requirements so that they preserved the meaning of the require-
ment. The second involved understanding the relationship between the
software component under analysis and the broader concern of the sys-
tem as a whole. The paper focuses on the process, highlighting how the
team recognised the advantages over a more traditional testing approach.

Keywords: Risk analysis · Formal methods · Model checking · Medical
devices · Haemodialysis

1 Introduction

The risk analysis required to satisfy regulatory requirements (for example [4,16])
includes an assessment of the hazards associated with a medical device. These
hazards include possible hardware and software failures. Examples of hardware
failure include, for example, faulty connections or pump failure. Risk analysis,
as part of a submission for certification by a regulator, is an onerous task typi-
cally requiring substantial amounts of test data. Developing such a submission
is essential when dealing with life-critical medical systems. Medical device stan-
dards (see for example [4]) require that measures have been taken to ensure
that risks associated with use of the device are as low as reasonably practical.
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The required measures include careful identification of hazards and demonstra-
tion that risks associated with these hazards have been mitigated. One part of
demonstrating that hazards have been mitigated is to establish requirements of
the system that demonstrate that there are barriers between a hazard and its
consequence. Processes that are recommended to achieve such confidence include
team based scrutiny of the use of documented processes as well as testing that
requirements have been satisfied.

This paper describes part of a safety analysis process. It describes how model
checking analyses were used to demonstrate that a particular software component
within the system satisfied requirements described in a risk log. The focus of the
paper is to look at the process and to discuss how the team used the model
checking analysis to consider the broader safety requirements of the system. The
formal analysis that was generated as a result of the process described in the
paper was submitted as evidence to the regulator.

2 The NIDUS Device

Dialysis and ultrafiltration (removal of excess water) are extremely difficult pro-
cedures in small children with failing kidneys because the total volume of blood
in the child’s circulation is very small. The Newcastle experimental Infant Dialy-
sis and Ultrafiltration System (NIDUS) has been used at Newcastle-upon-Tyne’s
Royal Victoria Infirmary (RVI) for some time. It does not use a traditional dialy-
sis circuit, and the circuit volume of about 10 mL is suitable for treating infants
with a total blood volume less than 100 mL. Before the device could be used
more widely, it was necessary to identify and assess the risks of using it before
the device could achieve regulatory approval.

The device is implemented using several software components. These include
device drivers (for example, the motors that control the infusion pumps), com-
ponents that enable the device to recognise and manage system failures (for
example, the presence of bubbles in tubing) and components that provide the
interface to allow the operator of the device to be aware of its status and to
control the system. The component under consideration manages the drivers.
Its logic of operation is organised as a control table. The table describes two
aspects of the controller. It describes the attributes of the state of the device
that control the dialysis process and it describes how the state of the device
changes in response to events. Hence in Fig. 1, RST InitS1 (identified in the left
hand column) is a state that has attributes Power , Motor1 , Motor2 etc. (top
row) with values ALLOW12V , M1FWDMAX , M2SAFE etc. (as described in
the row labelled RST InitS1 ). At the same time the right hand side of the table
describes transitions. Hence, for example an M1Stall event (as identified in the
top row) causes a transition from the RST InitS1 state to the RST InitS2 state.

The controller involves 93 states and 30 events and the spreadsheet has been
generated directly from the data structure that drives it. Each state attribute
describes an attribute of the behaviour of the hardware system, for example:
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– Attributes Motor1 , Motor2 and Hep describe the proximal, distal and heparin
syringes respectively. Values of the attributes include whether the syringe
pump is driving forward or backward, and whether “fast” or “slow”.

– Valve and Bubble describe the valve assembly and the bubble detectors. The
valve may, for example, be safe or open to the baby.

– Flash and Alarm describe features of the user interface. For example Flash
shows, amongst other displays, that a clip is open or closed, and the Alarm
can warn or notify or be quiet.

3 Verification Approach

The risk assessment for the device requires a multiplicity of evidence. These
sources include clinical trials, software and hardware test results and documen-
tation of the development process. The problem with trials and test results is
that they do not guarantee the absence of problems. Our goal was to use for-
mal analysis as one source of evidence that all risks have been assessed. This
was made easier in the present case because the spreadsheet was an encoding
of the data structure used to drive the controller. The analysis of the controller
involved the following steps.

1. The developers created a risk log which described informal system safety
requirements designed to mitigate hazards (Sect. 4). These covered the whole
range of hardware and software hazards.

2. The state transition table was translated into a behavioural model that could
be analysed using a model checker (Sect. 5).

3. Requirements, derived from the risk log, were then considered and those that
related to the controller were expressed in a formal logic (Sect. 6).

4. These risk related properties were checked against the model that had been
derived from the transition table. Where they failed, further discussion with
the developers indicated either a flaw in the controller, or a situation which
was considered either not to be hazardous, or to be a failure in the formu-
lation of the property. The process of checking the properties, based on the
requirements, often resulted in refinement of the properties or modifications
to the control table or the controller mechanism. The results of this process
were documented in the risk log (Sect. 7).

The process of property formulation and discussion was a significant element in
the risk analysis of the controller.

4 Translating the Risk Log into Requirements

The risk log (see Fig. 2) formed the basis for the risk assessment. It described the
requirements that were considered to mitigate risks and linked the requirements
to the evidence that they were satisfied. It was this document that provided
material relating to the software controller component that was the source of
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the dialogue between developers and the formal analyst. Regulatory authorities
typically require that risk control measures are included as requirements (see BS
EN 62304:2006 [4] for example). Each control measure should be verified and
the verification documented. As already stated, verification is typically taken to
mean that some form of systematic testing has taken place. The BS EN 62304
standard requires a risk analysis path: “from hazardous situation to the software
item; from the software item to the software cause; from the software cause to
the risk control measure; to the verification of the risk control measure”. The
process of proving regulatory requirements has been discussed in more detail
in [14].

Some of the requirements in the risk log were either completely or partially
relevant to the software controller and these provided the basis for the analy-
sis. Converting a software controller requirement into a property of the model
involved discussion between the developers and the analyst. When a formulated
property failed, examples of the failure were presented to the development team.
In Fig. 2 MAL.GENERROR is highlighted in red because the property that
describes this requirement, at the particular stage of the risk assessment process
at which the log was current, was false. As will be illustrated, this property
was further refined and the red highlighting removed. Note that the spreadsheet
in Fig. 1 shows similar highlighting indicating changes to the control table that
arose and thus required an iteration of the analysis.

Fig. 2. Risk Log in development (Colour figure online)

In this way requirements were refined iteratively, involving the whole team.
Our aim was to formulate a requirement of the controller as a property of the
model and if the property failed explain why it failed. Failure of a property
could mean that: (i) the model did not capture the functionality of the device;
(ii) the property was not correctly formulated; (iii) there was an issue in the
design that could either be dealt with in another way, for example hardware
or through some mitigating process. An additional mitigating factor might be,
for example, a requirement on the clinician to strictly adhere to an operating
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procedure. This analysis process was documented to provide evidence that all
reasonable measures had been taken to ensure the safety of the device. This
encouraged the developers to be confident that the device was safe as well as
indicating small design changes to improve safety. When treating premature and
sick infants, proper in vivo testing is almost impossible and the consequences of
failure can be very serious. This formal process has proved invaluable. An exam-
ple of a requirement in the risk log described in Fig. 2, and used as illustration
in Sect. 6, is:

“During DIALYSIS, when the digital syringe is moving forwards then the
proximal syringe is necessarily moving backwards.”

The developer produced a partial translation of this in discussion with the ana-
lyst. The formulation indicates the logic without noting the temporal dimension
of the property or the precise nature of the sets {M2Fwd} and {M1Bck}.

If M2 in {M2Fwd} → M1 in {M1Bck}

5 Translating the State Transition Table into a Formal
Model

5.1 The Specification Language

The simple state transition table used to drive the controller readily lends itself
to a mechanical process. We used the IVY tool [5] because it was readily available
to us. It provides a front end to the NuSMV model checker [6]. IVY supports
an action orientated logic language MAL (Modal Action Logic) that provides a
textual structure similar to the diagrammatic structure of tools such as SRC [10].
A reason for using this particular toolset was that we were interested in the
possibility of producing a tool that would be more easily understandable to an
interdisciplinary team. Our goal is that IVY be used eventually without formal
methods expertise. The intention was that the tool should provide a key element
in communication within the team while at the same time providing the evidence
that a requirement under analysis was satisfied.

MAL enables the easy description of state machines such as the table that
drives the dialysis machine. Attributes are used to capture the information
present in the state of the device and actions transform these states. MAL
describes a logic of actions and is used to write production rules that describe the
effect of actions on the state of the device. This style of specification was found
easy to use by software engineers [15]. For this reason MAL was preferred to the
notation which is used by the NuSMV model checker. The language also enables
the expression of deontic operations, in particular permissions were used in our
analysis. Non-determinism is possible when more than one action is allowed
in the same state of the described model. MAL rules are a convenient way to
describe the behaviour of the state table that drives the dialyser. The logic
provides:
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– a modal operator [ ] : [ac]expr is the value of expr after the occurrence of
action ac — the modal operator is used to define the effect of actions;

– a special reference event []: []expr is the value of expr in the initial state(s)
— the reference event is used to define the initial state(s);

– a deontic operator per : per(ac) meaning action ac is permitted to happen
next — to control when actions might happen;

– a deontic operator obl : obl(ac) meaning action ac is obliged to happen some
time in the future. Note that obl was not used in this analysis.

The notation also supports the usual propositional operators. As an illustration,
the following example declares two boolean attributes that describe whether
the device is on (poweredon), whether it is dialysing (dialysingstate) and two
actions (start and pause). It describes the effect of the action pause as setting the
attribute dialysingstate to false and leaving the attribute poweredon unchanged.
Priming is used to identify the value of the attribute after the action takes
place. A permission predicate restricts the pause action to only happen when the
system is dialysing and powered on. The keep function preserves the value of the
attribute poweredon in the next state. If an attribute is not modified explicitly
or is not in the keep list, then its value in the next state is left unconstrained.

interactor dialyser
attributes

poweredon, dialysingstate : boolean
actions

start pause
axioms

[pause] !dialysingstate ′ & keep(poweredon)
per(pause) → dialysingstate & poweredon

5.2 The Translation

The spreadsheet was translated systematically into MAL. During the analysis
an automatic translator was developed based on translation patterns (explained
further below) identified during the manual process. The automatic translator
takes the CSV file representing the state transition model and produces its cor-
responding MAL representation following a translation strategy described in [8].
This ensures that the MAL model represents the finite state model, as described
by the spreadsheet, accurately.

As an illustration of the translation consider the situation when an event
occurs and the controller software changes the state. We consider the transition
involving M1Stall in state RST InitS1 highlighted in Fig. 1. Events are described
in MAL as actions. These actions transition to different states depending on the
current state. The controller software assumes that a pipeline of events exists,
each tick of the system process causes the next event to be taken from the
pipeline. If the pipeline is empty then a specified default transition is taken. The
model includes no specification of a pipeline of events, rather it assumes that at
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any stage of the process the pipeline may become empty and as a consequence
the “default” event / action is taken. When several actions are possible because
the guard for each of them is satisfied then one of the actions is taken non-
deterministically. There are some circumstances where it is necessary to prove
properties that assume that the pipeline is never empty. For these situations we
added an additional meta-attribute that becomes false if a default action occurs
in a path (dfltchk).

The MAL description of the effect of M1Stall , when the event occurs in state
RST InitS1 , is as follows:

statedist = sdRSTInitS1 → [acM1Stall ] trRSTInitS2

This MAL rule describes a transformation. When the state is RSTInitS1 the
action acM1Stall leads to the state RSTInitS2 . The attribute statedist indicates
the current state. If RSTInitS1 is the current state then statedist takes the value
sdRSTInitS1 . The model defines a set of transformations that change current
state to specified new states. Hence trRSTInitS2 specifies a transformation to
the state RSTInitS2 as is described below.

trRSTInitS2 = Power ′ = ALLOW12V & Motor1 ′ = M1STOP &
Motor2 ′ = M2FWDMAX & Hep′ = HEPSAFE &
Peri ′ = PERISAFE & Valve ′ = FLUSH&
Alarm ′ = ACTIVE & WashTimer ′ = ZERO &
DialysisTimer ′ = HOLD & Flash ′ = ENABLE &
Mode ′ = RESET & statedist ′ = sdRSTInitS2

This transformation specifies new values for each of the attributes, for exam-
ple the value of the attribute Motor1 becomes M1STOP etc. This state transi-
tion is further augmented in the model to include attributes that do not appear
explicitly in the state transition table as follows:

seclr ′ = GREEN & !audiblealert ′ & fkey1 ′ = F1BLANK &
fkey2 ′ = F2BLANK & fstop′ = F3STOP

These additional attributes deal with features of the controller that are only
listed as comments in the spreadsheet, and have the following meaning, and are
not currently supported by the translator.

statedist marks the current state, designed to ease the model’s identifica-
tion of the current state.

seclr describes the colour of the state pane on the display.
audiblealert whether the alert if any is audible.

fkey1 the function display for key1 .
fkey2 the function display for key2 .
fstop the function display for stop.
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6 Requirements Expressed in Formal Logic

6.1 Refining a Sketch Requirement as a CTL Property

As discussed in Sect. 4, the risk log contains a list of requirements developed in
response to known hazards. The example to be considered in more detail was
initially sketched by developers as:

If M2 in {M2Fwd} → M1 in {M1Bck}
This semi-formal representation indicates that it should always be the case that
if the state of the motor M2 is “moving forward” then the motor M1 should be
“moving backward”. Further discussion with the developers produced refinement
of this sketch requirement. The two sets M2FWD and M1BCK were described
as “enumerations” in MAL using the following syntax:

M2FWD = { M2FWDMAX, M2FWDUNUF }
M1BCK = { M1BCKMAX, M1BCKUF, M1WITHDRAW }
All these states involved forward and backward motion in the two motors. Having
defined the relevant state attributes as specified in the spreadsheet model, the
next step was to formulate a precise version of the property as a basis for the
analysis. The notation used was that supported by the NuSMV model checking
tool.

The property notation CTL [7] is widely used and provides two kinds of tem-
poral operator: operators over paths and operators over states. Paths represent
the possible future behaviours of the system. When p is a property expressed
over paths, A(p) expresses the property that p holds for all paths and E (p) that
p holds for at least one path. Operators are also provided over states. When q
and s are properties over states, G(q) expresses the property that q holds for
all the states of the examined path; F (q) that q holds for some states over the
examined path; X (q) expresses the property that q holds for the next state of
the examined path; while [qUs] means that q holds until s holds in the path.

CTL contains a subset of the possible formulae that arise from the combina-
tion of these operators. AG(q) means that q holds for all the states of all the
paths; AF (q) means that q holds for at least one state in all the paths; EF (q)
means that q holds in at least one state in at least one path; EG(q) means that
q holds for all states in at least one path; AX (q) means that q holds in the next
state of all paths; EX (q) means that there is at least one path for which q holds
in the next state; A[qUs] means that q holds until some other property s holds
in all paths; E [qUs] means there exists at least one path in which q holds until
some property s.

6.2 Categories of Requirements

The discussion of all the elements of the risk log led to a consideration of require-
ments that fall into the following categories:
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P1: specified states are inaccessible in dangerous circumstances. The property
described in Sect. 6.1 is an example of such a property. Another example
is that: “it should not be possible to dialyse an infant with heparin in the
blood circuit”.

P2: when the dialysis machine is error free it always generates a correct dialysis
sequence. This sequence includes wash and dialysis stages.

P3: when an error event occurs then the device is taken to an appropriate error
state.

P4: states can only be reached if combinations of states have happened in the
past. An example of such a property is that relevant reminders are always
displayed to “close a clamp before the next phase of the cycle can com-
mence”.

7 Risk Related Properties Checked of the Model

The particular requirements that fall into these categories will be considered
in detail in this section. An important part of the description is the discussion
within the team that triggered the refinement of initial versions of properties.

P1: Unsafe Combinations of states cannot occur

The requirement (of Sect. 6.1) was formulated in CTL (using the MAL notation
“in” for membership of an enumerated set) as:

AG(Motor2 in M2FWD → Motor1 in M1BCK) (1)

This property specifies that it is always the case, for all states, that when Motor2
is in a forward state then Motor1 is in a backward state. This property is not
true of the model (as was revealed during an analysis meeting) producing a
counter-example that indicates one set of circumstances in which the property
fails. Figure 3 describes the sequence starting from the initial state (column 1),
ending at a state where the property fails to be true (column 6). Columns indi-
cate values held by attributes. These are named in the left hand column (i.e.,
column 0). For example, the attribute Power has value ALLOW12V in col-
umn 4. The colour yellow is used to indicate that a state attribute has changed
value between successive states. The path indicates (as shown in the row marked
main.action) that from the initial state the device defaults (that is it takes the
action acDefault) because there are no events in the queue. This action is followed
by Key2 , followed by 12voff , 12von and M1stall which leads to the state where
the property fails. Discussion during the risk meeting explored the implications
of the sequence and came to the conclusion that this exception was acceptably
safe and could therefore be excluded. A process then continued of excluding
states before formulating a property that excluded all discovered exceptions:

AG(Motor2 in M2FWD → (Motor1 in M1BCK |
statedist in {sdRSTInitS2 , sdWAS2Empty ,

sdWAFlushRlx , sdWAS2Flush})
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The risk analysis team considered each of these exceptions and noted that the
common property of these counter-examples was that they occurred when the
device was not in dialysis mode, hence the following property was constructed:

AG((Motor2 in M2FWD &
Mode in {DIALYSE ,DIALYSING})

→ Motor1 in M1BCK )

The property formulated as a result of this observation is true for the model.
It could be argued that visual inspection of the spreadsheet would have been
sufficient to indicate the problem in this particular case. However this systematic
approach to finding paths to potentially hazardous states provides an exhaustive
approach.

Fig. 3. Counter-example to Property 1

P2: Staying in the dialysis cycle

The requirement described in the risk log is expressed as follows:

MAL.DIALCYCLE: Unless there are errors or user actions, the system
stays in the ‘dialysis cycle’

The requirement aims to ensure that, barring error events or user interven-
tions, the transition table will always cause the device to complete the same
haemodialysis process. To check the requirement it is first assumed that no such
cycle exists. This property should fail and give, as an example of failure, one
cycle that is of the appropriate form. Once the cycle is discovered, and it is the
correct ‘dialysis cycle’, the next stage is to show that it is the only possible cycle
that can be generated using the relevant actions.

The first step in demonstrating this requirement is to find a cycle, show it is
the only cycle and check that is the required cycle. The cycle must begin with the
action M1out in the state DIA Wdraw . The approach therefore is to show that,
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once reached, this state is reached again. However it is necessary to be more pre-
cise than this. The cycle must be achieved with a subset of actions, excluding for
example error actions or user interventions. Only specific actions are recognised
are valid “drivers” of the cycle. A “meta”-attribute motorsandwaits is therefore
introduced that is set true by the first action and preserved by operations : M1in,
M2in and Wait1second . All other actions set the motorsandwaits attribute to
false. A counter-example to the CTL property:

AG(statedist = sdDIAWdraw →
AX(AG(!(motorsandwaits &
statedist = sdDIAWdraw))))

(2)

should then generate the cycle. This is illustrated in the trace fragment in
Fig. 4. The sequence fragment starts with the state DIAWdraw (bottom row,
column 23) when motorsandwaits is false and ends with the state DIAWdrawRlx
(column 29). The sequence of actions that make up the cycle are shown in a row
at the top of the table (acM1out etc.). This sequence is indeed the “dialysis
cycle” as acknowledged by the domain experts during a meeting. The other
rows show the values of the state attributes relating to each state as represented
by a column of the table. The value of motorsandwaits is shown in the penul-
timate row and remains true throughout. This, however, is only part of the
analysis because it identifies one cycle only. It does not exclude the possibility
that there are others. It is further necessary to check that no other sequences
can be produced using this subset of actions, i.e., the discovered cycle is unique.
This can be achieved by using properties that require that at each step of the
cycle any valid action will result in the next step of the cycle as discovered in
the counter-example.

So for each state a property, demonstrating uniqueness is proved, for example:

AG(statedist = sdDIAWdraw →
AX (motorsandwaits → statedist = sdDIAWdrawRlx ))

Fig. 4. Proving the ‘dialysis cycle’
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Each state in the discovered cycle is considered and it is demonstrated that the
only successor in each state, using the subset of events, is the next state found
in the original cycle.

P3: Errors lead to error states

An important issue in the risk log was to ensure that error events would always
lead to error states. This was expressed in the risk log as:

MAL-GENERROR: For all error conditions and all system states, the next
state will be an error state.

It was also required that the device would remain in an error state if further
error events occur. To formulate the property a set of actions that represent the
error events is first defined using MAL notation.

ErrorEventSet = acHardFault | acOverpressure |
acBubble | acPeriStall

The set ErrorStateSet is defined in the model as an enumerated set that includes
all the states that are determined to be error states. The required property was
then agreed to be:

AG(AX (ErrorEventSet → statedist in ErrorStateSet))

During the meeting this property was checked and found to be false. The reason
for this failure, as determined by the counter-example, was that the Alarm can
be inhibited and when this happens the property fails to be true. The property
was therefore refined to include Alarm ! = INHIBIT .

AG(Alarm ! = INHIBIT →
AX (ErrorEventSet → statedist in ErrorStateSet))

This property is also false. The state that offends in this case had not been
counted as an error state and should have been. The set ErrorStateSet was there-
fore further augmented. The final refinement of the property further restricts to
those states for which Mode is not RESET .

AG(Alarm ! = INHIBIT & Mode ! = RESET → (3)
AX(ErrorEventSet → statedist in ErrorStateSet))

Finally STWarmStart must also be excluded. This state is not considered
to be problematic. Its occurrence is clear and will not cause confusion. These
successive refinements have weakened the property and therefore a justification
is required at each stage that the refined property is adequate mitigation for the
possibility of an unrealised error. Discussion with the developers confirmed that
this weakened formulation of the property was sufficient mitigation for possible
risks and an explanation is provided in the risk log.
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P4: States can only be reached if combinations of states have
happened in the past

As was noted in the case of property P2, additional “meta-attributes” were intro-
duced to the model so that it was possible to enrich the properties that could
be proved using the model checker. In the case of P2, motorsandwaits was intro-
duced to enable consideration of sequences of a subset of non error actions. Other
requirements in the risk log could not be formalised as CTL properties using the
original attributes of the model. In particular those properties that related to
combinations of states that had happened in the past required such formulation.
An example of a requirement of this kind is concerned with whether information
is provided by the user interface to indicate to the user of the machine that a
specific action should be carried out. Flash is a state attribute in the model that
specifies the content of an information display. For example:

“MAL.HEPCLIP: The user is instructed to close clip before changing
syringe, and re-open afterwards.”

Several Flash messages, specified by the attribute Flash, indicate dialyser warn-
ing displays. For example, Flash = HEPCLOSE indicates that “close the heparin
clip” has been transmitted. The attribute hepclipopen was included in the model
specification and is set to true and continues to be true after a flash message
that indicates that the heparin clip is open: Flash = HEPOPEN . It is made
false by Flash taking values HEPCLOSE or HEPSYRINGE . The following frag-
ment involving the Hepin specifies a transition to the state HEPClip. This state
includes a change to the Flash attribute Flash ′ = HEPCLOSE and therefore
hepclipopen is set to false.

statedist in {sdDIAReady} → [acHepin]
trHEPClip & !motorsandwaits ′ & keep(. . . ) & !hepclipopen ′

We then check the property:

AG(Mode = DIALYSING → hepclipopen)

The property asserts that you can only reach a dialysing state if a message to
open the clip was the most recent flash relating to the clip and that the message
had previously occurred. This property checked to be false. The state HEPPrime
is also a clear indication to open the clip but does not involve the relevant flash.
The model was changed therefore so that the meta-attribute was also set to true
when visiting HEPPrime. The property then becomes true.

8 Discussion and Related Work

The contribution of this paper is a practical demonstration of the use of formal
techniques to analyse a component of a safety critical system. The approach was
not novel. Similar techniques were being described and applied in the 1990s.
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For example, a mature set of tools have been developed by Heitmeyer’s team
using SRC [10]. Their approach uses a tabular notation to describe requirements
which makes the technique relatively acceptable to developers. Atlee and Gan-
non described a similar approach in [2]. In some domains, other than medical
domains, formal mathematically based methods have been effective in analysing
and assessing risks systematically (see for example, [3,13]). Despite the success
of these techniques there is a continuing perception that formal methods are not
easy to use and that they cannot be scaled to substantial systems. These barri-
ers to their use have limited their uptake in medical domains. Recent research
with the cooperation of the US Food and Drugs Administration (FDA) have
led to increased possibilities for their potential use [12,14]. The novelty here has
been to apply this technique in a medical team where typically small teams with
limited resources are involved.

The translation of the table into MAL, including meta-attributes, involved
682 lines, including 119 lines of state definitions and 152 lines of type and con-
stant definitions. The development of the first model, by hand, took about seven
hours. It was possible to make most changes to the model and show the results
interactively during meetings with the development team without disturbing
the flow of the meeting. Hence the refinement of requirements and the careful
analysis of the hazards were facilitated by the process. The analysis involved
23 properties. On the rare occasions when it was not possible to refine a prop-
erty during the meeting, for example when meta-attributes were required, this
could be achieved within an hour outside the meeting. Verifying all the prop-
erties together on a MacBook Pro with Intel Core i5 clocked at 2.9 GHz, with
8 GB RAM and SSD memory, took 1.7 s. The exercise shows that, with appropri-
ate expertise and using available artefacts (the table, safety requirements), the
use of formal methods required little additional effort and supported effective
discussion of the risks between the developers.

There are several ways in which it can be demonstrated that a device satisfies
safety requirements using formal techniques. One way of doing this is to develop
the device formally by refining the model as supported by tools such as Event
B [1]. An initial model is first developed that specifies the device characteristics
and incorporates the safety requirements. This initial model is gradually refined
using details about how specific functionalities are implemented. This was not a
realistic approach in the present case because, when the analysis was to be done,
the device had already been developed. Indeed such techniques are not feasible
given the typical resources available to medical device developers. Alternatively
a model could be generated from the program code of an existing device, using
a set of transformation rules that guarantee correctness, as discussed in [11].
This approach could have been used for other software aspects of the device,
however it is unclear how well such techniques scale. Proving that the model
of this component of the software is correct with respect to the device was
not a problem for the particular example because the software was driven by a
table and the table was translated directly into the model. The analysis does
not attempt to prove that the software drivers themselves were implemented
correctly.



152 M.D. Harrison et al.

9 Conclusion

The risk analysis process described in the paper succeeded because the controller
is table driven and it was relatively easy to generate a model from the table.
It also succeeded because a mixed disciplinary team was involved. This team
included one person who was able to use the formal tools and provide an expla-
nation of the requirements and model formulations. It is standard practice to use
a table to drive software that controls a multi-step process as in this case. How-
ever there are cases where this does not happen and moreover, as in this case,
the software covered by the controller is only part of the software. The dialysis
machine also includes user interface features, for example capacity to enter new
values for thresholds relevant to the dialysis process. These are involved in the
initial set-up of the machine. Other analyses, involving several of the authors,
have focussed on existing IV infusion pumps [9]. In these cases such a table
driven process, with the capacity to be automated, has not been possible. The
analysis described in this paper therefore raises questions about the potential for
extending this approach to a broader class of medical systems. The challenges
raised by this analysis in the context of small-scale developments, such as this
one, are:

Systematic Modelling: While formal approaches to the development of software
that refine safety requirements exist (see [17]), these are not yet feasible to use
given the available tools and skills of existing small development teams. In this
case the formal methods expertise was recruited short-term for the purpose.

Mixed Disciplinary Teams: There was substantial benefit in recognising and
using expertise from sources outside the development team. A mixed discipline
approach is already in practice in the case of small companies or innovative pre-
commercial developments. It would make sense therefore to add these analytical
skills to the toolkit available to the device developers.

Mixed Styles of Analysis: As in this case a well defined and yet important soft-
ware component may be analysed formally. The formal analysis of the controller
table can also improve the testing coverage of the device drivers themselves
although this was not done in this case. It is also good practice to have multiple
independent arguments to demonstrate the safety of the system. Hence it makes
sound sense to use formal techniques to improve confidence in the risk analysis.

This paper illustrates how formal techniques may be used successfully as part
of the risk analysis process associated with the development of a medical device.
This is part of the submission that has gone forward for regulation. The safety
requirements that were formulated and proved, and improvements in the light of
requirements failure, illustrate how the analysis led to improvement in the safety
of the design while providing a concise basis for evidence that part of the system
is safe. The technique is readily repeatable. Tools that have been developed
allow the automated development of models from control tables. The analysis
approach complements testing techniques and provides a systematic solution to
the safety assessment of critical devices.
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