
Compositional Model Checking Is Lively

Sander de Putter and Anton Wijs(B)

Eindhoven University of Technology, Eindhoven, Netherlands
{s.m.j.d.putter,a.j.wijs}@tue.nl

Abstract. Compositional model checking approaches attempt to limit
state space explosion by iteratively combining behaviour of some of the
components in the system and reducing the result modulo an appropri-
ate equivalence relation. For an equivalence relation to be applicable, it
should be a congruence for parallel composition where synchronisations
between the components may be introduced. An equivalence relation
preserving both safety and liveness properties is divergence-preserving
branching bisimulation (DPBB). It is generally assumed that DPBB is
a congruence for parallel composition, even in the context of synchroni-
sations between components. However, so far, no such results have been
published.

This work finally proves that this is the case. Furthermore, we discuss
how to safely decompose an existing LTS network in components such
that the re-composition is equivalent to the original LTS network. All
proofs have been mechanically verified using the Coq proof assistant.

Finally, to demonstrate the effectiveness of compositional model
checking with intermediate DPBB reductions, we discuss the results we
obtained after having conducted a number of experiments.

1 Introduction

Model checking [3,9] is one of the most successful approaches for the analy-
sis and verification of the behaviour of concurrent systems. However, a major
issue is the so-called state space explosion problem: the state space of a concur-
rent system tends to increase exponentially as the number of parallel processes
increases linearly. Often, it is difficult or infeasible to verify realistic large scale
concurrent systems. Over time, several methods have been proposed to tackle
the state space explosion problem. Prominent approaches are the application
of some form of on-the-fly reduction, such as Partial Order Reduction [30] or
Symmetry Reduction [7], and compositionally verifying the system, for instance
using Compositional Reasoning [8] or Partial Model Checking [1,2].

The key operations in compositional approaches are the composition and
decomposition of systems. First a system is decomposed into two or more com-
ponents. Then, one or more of these components is manipulated (e.g., reduced).
Finally, the components are re-composed. Comparison modulo an appropriate

This work is supported by ARTEMIS Joint Undertaking project EMC2 (grant nr.
621429).

c© Springer International Publishing AG 2017
J. Proença and M. Lumpe (Eds.): FACS 2017, LNCS 10487, pp. 117–136, 2017.
DOI: 10.1007/978-3-319-68034-7 7

118 S. de Putter and A. Wijs

equivalence relation is applied to ensure that the manipulations preserve prop-
erties of interest (for instance, expressed in the modal μ-calculus [19]). These
manipulations are sound if and only if the equivalence relation is a congruence
for the composition expression.

Two prominent equivalence relations are branching bisimulation and
divergence-preserving branching bisimulation (DPBB) [13,15].1 Branching
bisimulation preserves safety properties, while DPBB preserves both safety and
liveness properties.

In [14] it is proven that DPBB is the coarsest equivalence that is a congru-
ence for parallel composition. However, compositional reasoning requires equiva-
lences that are a congruence for parallel composition where new synchronisations
between parallel components may be introduced, which is not considered by the
authors. It is known that branching bisimulation is a congruence for parallel
composition of synchronising Labelled Transition Systems (LTSs), this follows
from the fact that parallel composition of synchronising LTSs can be expressed
as a WB cool language [6]. However, obtaining such results for DPBB requires
more work. To rigorously prove that DPBB is indeed a congruence for parallel
composition of synchronising LTSs, a proof assistant, such as Coq [5], is required.
So far, no results, obtained with or without the use of a proof assistant, have
been reported.

A popular toolbox that offers a selection of compositional approaches is
Cadp [12]. Cadp offers both property-independent approaches (e.g., com-
positional model generation, smart reduction, and compositional reasoning
via behavioural interfaces) and property-dependent approaches (e.g., property-
dependent reductions [25] and partial model checking [1]). The formal semantics
of concurrent systems are described using networks of LTSs [22], or LTS networks
for short. An LTS network consists of n LTSs representing the parallel processes.
A set of synchronisation laws is used to describe the possible communication,
i.e., synchronisation, between the process LTSs.

In this setting, this work considers parallel composition of synchronising LTS
networks. Given two LTS networks M and M′ of size n related via a DPBB
relation B, another LTS network N of size m, and a parallel composition oper-
ator ‖σ with a mapping σ that specifies synchronization between components,
we show there is a DPBB relation C such that

M B M′ =⇒ M ‖σ N C M′ ‖σ N

This result subsumes the composition of individual synchronising LTSs via com-
position of LTS networks of size one. Moreover, generalization to composition of
multiple LTS networks can be obtained via a reordering of the processes within
LTS networks.

1 It should be noted that a distinction can be made between divergence-sensitive
branching bisimulation [28] and branching bisimulation with explicit divergence,
also known as divergence-preserving branching bisimulation [13,15]. Contrary to the
former, the latter distinguishes deadlocks and livelocks, and the latter is the coarsest
congruence contained in the former.

Compositional Model Checking Is Lively 119

Contributions. In this work, we prove that divergence-preserving branching
bisimulation is a congruence for parallel composition of synchronising LTSs.
Furthermore, we present a method to safely decompose an LTS network in com-
ponents such that the composition of the components is equivalent to the original
LTS network. The proofs have been mechanically verified using the Coq proof
assistant and are available online.2

Finally, we discuss the effectiveness of compositionally constructing state
spaces with intermediate DPBB reductions in comparison with the classical,
non-compositional state space construction. The discussion is based on results
we obtained after having conducted a number of experiments using the Cadp
toolbox. The authors of [11] report on experiments comparing the run-time and
memory performance of three compositional verification techniques. As opposed
to these experiments, our experiments concern the comparison of compositional
and classical, non-compositional state space construction.

Structure of the paper. Related work is discussed in Sect. 2. In Sect. 3, we dis-
cuss the notions of LTS, LTS network, so-called LTS network admissibility, and
DPBB. Next, the formal composition of LTS networks is presented in Sect. 4. We
prove that DPBB is a congruence for the composition of LTS networks. Section 5
is on the decomposition of an LTS network. Decomposition allows the redefini-
tion of a system as a set of components. In Sect. 6 we apply the theoretical results
to a set of use cases comparing a compositional construction approach with non-
compositional state space construction. In Sect. 7 we present the conclusions and
directions for future work.

2 Related Work

Networks of LTSs are introduced in [21]. The authors mention that strong and
branching bisimulations are congruences for the operations supported by LTS
networks. Among these operations is the parallel composition with synchronisa-
tion on equivalent labels. A proof for branching bisimulation has been verified in
PVS and a textual proof was written, but both the textual proof and the PVS
proof have not been made public [23]. An axiomatisation for a rooted version
of divergence-preserving branching bisimulation has been performed in a Mas-
ter graduation project [33]. However, the considered language does not include
parallel composition. In this paper, we formally show that DPBB is also a con-
gruence for parallel composition with synchronisations between components. As
DPBB is a branching bisimulation relation with an extra case for explicit diver-
gence, the proof we present also formally shows that branching bisimulation is a
congruence for parallel composition with synchronisations between components.

Another approach supporting compositional verification is presented in [22].
Given an LTS network and a component selected from the network the approach
automatically generates an interface LTS from the remainder of the network.
2 http://www.win.tue.nl/mdse/composition/DPBB is a congruence for synchronizing

LTSs.zip.

http://www.win.tue.nl/mdse/composition/DPBB_is_a_congruence_for_synchronizing_LTSs.zip
http://www.win.tue.nl/mdse/composition/DPBB_is_a_congruence_for_synchronizing_LTSs.zip

120 S. de Putter and A. Wijs

This remainder of the network is called the environment. The interface LTS
represents the synchronisation possibilities that are offered by the environment.
This requires the construction and reduction of the system LTS of the environ-
ment. The advantage of this method is that transitions and states that do not
contribute to the system LTS can be removed. In our approach only the system
LTS of the considered component must be constructed. The environment is left
out of scope until the components are composed.

Many process algebras support parallel composition with synchronisation on
labels. Often a proof is given showing that some bisimulation is a congruence
for these operators [10,20,24,26]. However, to the best of our knowledge no such
proofs exist considering DPBB. Furthermore, if LTSs can be derived from their
semantics (such as is the case with Structural Operational Semantics) then the
fact that DPBB is a congruence for such a parallel composition can be directly
derived from our results.

To generalize the congruence proofs a series of meta-theories have been pro-
posed for algebras with parallel composition [6,34,35]. In [35] the panth format
is proposed. They show that strong bisimulation is a congruence for algebras
that adhere to the panth format. The focus of the work is on the expressiveness
of the format. The author of [6] proposes WB cool formats for four bisimula-
tions: weak bisimulation, rooted weak bisimulation, branching bisimulation, and
rooted branching bisimulation. It is shown that these bisimulations are congru-
ences for the corresponding formats. In [34] similar formats are proposed for
eager bisimulation and branching bisimulation. Eager bisimulation is a kind of
weak bisimulation wich is sensitive to divergence. The above mentioned formats
do not consider DPBB. In our work we have shown that DPBB is a congruence
for parallel composition of LTS networks and LTSs.

In earlier work, we presented decomposition for LTS transformation systems
of LTS networks [36]. The work aims to verify the transformation of a component
that may synchronise with other components. The paper proposes to calculate so
called detaching laws which are similar to our interface laws. The approach can be
modelled with our method. In fact, we show that the derivation of these detaching
laws does not amount to a desired decomposition, i.e., the re-composition of the
decomposition is not equivalent to the original system (see Example 3 discussed
in Sect. 5).

A projection of an LTS network given a set of indices is presented in [12].
Their projection operator is similar to the consistent decomposition of LTS net-
works that we proposed. In fact, with a suitable operator for the reordering of
LTS networks our decomposition operation is equivalent to their projection oper-
ator. The current paper contributes to these results that admissibility properties
of the LTS network are indeed preserved for such consistent decompositions.

3 Preliminaries

In this section, we introduce the notions of LTS, LTS network, and divergence-
preserving branching bisimulation of LTSs. The potential behaviour of processes

Compositional Model Checking Is Lively 121

is described by means of LTSs. The behaviour of a concurrent system is described
by a network of LTSs [22], or LTS network for short. From an LTS network,
a system LTS can be derived describing the global behaviour of the network.
To compare the behaviour of these systems the notion of divergence-preserving
branching bisimulation (DPBB) is used. DPBB is often used to reduce the state
space of system specifications while preserving safety and liveness properties, or
to compare the observable behaviour of two systems.

The semantics of a process, or a composition of several processes, can be
formally expressed by an LTS as presented in Definition 1.

Definition 1 (Labelled Transition System). An LTS G is a tuple (SG ,AG ,
TG , IG), with

– SG a finite set of states;
– AG a set of action labels;
– TG ⊆ SG × AG × SG a transition relation;
– IG ⊆ SG a (non-empty) set of initial states.

Action labels in AG are denoted by a, b, c, etc. Additionally, there is a special
action label τ that represents internal, or hidden, system steps. A transition
(s, a, s′) ∈ TG , or s

a−→G s′ for short, denotes that LTS G can move from state s

to state s′ by performing the a-action. The transitive reflexive closure of a−→G is
denoted as a−→∗

G , and the transitive closure is denoted as a−→+
G .

LTS Network. An LTS network, presented in Definition 2, describes a system
consisting of a finite number of concurrent process LTSs and a set of synchroni-
sation laws that define the possible interaction between the processes. We write
1..n for the set of integers ranging from 1 to n. A vector v̄ of size n contains n
elements indexed from 1 to n. For all i ∈ 1..n, v̄i represents the ith element of
vector v̄. The concatenation of two vectors v and w of size n and m respectively
is denoted by v ‖ w. In the context of composition of LTS networks, this con-
catenation of vectors corresponds to the parallel composition of the behaviour
of the two vectors.

Definition 2 (LTS network). An LTS network M of size n is a pair (Π,V),
where

– Π is a vector of n concurrent LTSs. For each i ∈ 1..n, we write Πi =
(Si,Ai, Ti, Ii).

– V is a finite set of synchronisation laws. A synchronisation law is a tuple
(v̄, a), where v̄ is a vector of size n, called the synchronisation vector, con-
taining synchronising action labels, and a is an action label representing the
result of successful synchronisation. We have ∀i ∈ 1..n. v̄i ∈ Ai ∪ {•}, where
• is a special symbol denoting that Πi performs no action. The set of result
actions of a set of synchronisation laws V is defined as AV = {a | (v̄, a) ∈ V}.

122 S. de Putter and A. Wijs

The explicit behaviour of an LTS network M is defined by its system LTS
GM which is obtained by combining the processes in Π according to the synchro-
nisation laws in V as specified by Definition 3. The LTS network model subsumes
most hiding, renaming, cutting, and parallel composition operators present in
process algebras. For instance, hiding can be applied by replacing the a compo-
nent in a law by τ .

Definition 3 (System LTS). Given an LTS network M = (Π,V), its system
LTS is defined by GM = (SM,AM, TM, IM), with

– IM = {〈s1, . . . , sn〉 | si ∈ Ii};
– TM and SM are the smallest relation and set, respectively, satisfying IM ⊆

SM and for all s̄ ∈ SM, a ∈ AV , we have s̄
a−→M s̄′ and s̄′ ∈ SM iff there

exists (v̄, a) ∈ V such that for all i ∈ 1..n:{
s̄i = s̄′

i if v̄i = •
s̄i

v̄i−→Πi
s̄′

i otherwise

– AM = {a | ∃s̄, s̄′ ∈ SM.s̄
a−→M s̄′}.

In Fig. 1, an example of an LTS network M = (〈Π1,Π2〉,V) with four syn-
chronisation laws is shown on the left, and the corresponding system TLS GM
is shown on the right. Initial states are coloured black. The states of the system
LTS GM are constructed by combining the states of Π1 and Π2. In this example,
we have 〈1, 3〉, 〈1, 4〉, 〈2, 3〉 ∈ SM, of which 〈1, 3〉 is the single initial state of GM.

1

Π1

3

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(〈c, c〉, c),
(〈d, d〉, d),
(〈a, •〉, a),
(〈•, b〉, b),
(〈a, e〉, f)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

a

1 3

1 4

GM

42 e

c d d b

Π2

2 3

c

d

b

c a

Fig. 1. An LTS network M = (Π,V)
(left) and its system LTS GM (right)

The transitions of the system LTS in
Fig. 1 are constructed by combining the
transitions of Π1 and Π2 according to
the set of synchronisation laws V. Law
(〈c, c〉, c) specifies that the process LTSs
can synchronise on their c-transitions,
resulting in c-transitions in the system
LTS. Similarly, the process LTSs can syn-
chronise on their d-transitions, result-
ing in a d-transition in GM. Further-
more, law (〈a, •〉, a) specifies that process
Π1 can perform an a-transition indepen-
dently resulting in an a-transition in GM.
Likewise, law (〈•, b〉, b) specifies that the
b-transition can be fired independently by
process Π2. Because Π1 does not partici-
pate in this law, it remains in state 〈1〉 in GM. The last law states that a- and
e-transitions can synchronise, resulting in f -transitions, however, in this exam-
ple the a- and e-transitions in Π1 and Π2 are never able to synchronise since
state 〈2, 4〉 is unreachable.

An LTS network is called admissible if the synchronisation laws of the net-
work do not synchronise, rename, or cut τ -transitions [22] as defined in Defini-
tion 4. The intuition behind this is that internal, i.e., hidden, behaviour should

Compositional Model Checking Is Lively 123

not be restricted by any operation. Partial model checking and compositional
construction rely on LTS networks being admissible [12]. Hence, in this paper,
we also restrict ourselves to admissible LTS networks when presenting our com-
position and decomposition methods.

Definition 4 (LTS network Admissibility). An LTS network M = (Π,V)
of length n is called admissible iff the following properties hold:

1. ∀(v̄, a) ∈ V, i ∈ 1..n. v̄i = τ =⇒ ¬∃j �= i. v̄j �= •; (no synchronisation of
τ ’s)

2. ∀(v̄, a) ∈ V, i ∈ 1..n. v̄i = τ =⇒ a = τ ; (no renaming of τ ’s)
3. ∀i ∈ 1..n. τ ∈ Ai =⇒ ∃(v̄, a) ∈ V. v̄i = τ . (no cutting of τ ’s)

Divergence-Preserving Branching Bisimulation. To compare LTSs, we use
DPBB, also called branching bisimulation with explicit divergence [13,15]. DPBB
supports abstraction from actions and preserves both safety and liveness prop-
erties. To simplify proofs we use DPBB with the weakest divergence condition
(D4) presented in [15] as presented in Definition 5. This definition is equivalent
to the standard definition of DPBB [15]. The smallest infinite ordinal is denoted
by ω.

Definition 5 (Divergence-Preserving Branching bisimulation). A binary
relation B between two LTSs G1 and G2 is a divergence-preserving branching bisim-
ulation iff for all s ∈ SG1 and t ∈ SG2 , s B t implies:

1. if s
a−→G1 s′ then

(a) either a = τ with s′ B t;
(b) or t

τ−→∗
G2

t̂
a−→G2 t′ with s B t̂ and s′ B t′.

2. symmetric to 1.
3. if there is an infinite sequence of states (sk)k∈ω such that s = s0, sk τ−→G1 sk+1

and sk B t for all k ∈ ω, then there exists a state t′ such that t
τ−→+

G2
t′ and

sk B t′ for some k ∈ ω.
4. symmetric to 3.

Two states s ∈ SG1 and t ∈ SG2 are divergence-preserving branching bisimilar,
denoted by s ↔Δ

b t, iff there is a DPBB relation B such that s B t. We say that
two LTSs G1 and G2 are divergence-preserving branching bisimilar, denoted by
G1 ↔Δ

b G2, iff ∀s1 ∈ IG1 .∃s2 ∈ IG2 . s1 ↔Δ
b s2 and vice versa.

4 Composition of LTS Networks

This section introduces the compositional construction of LTS networks. Compo-
sition of process LTSs results in a system LTS that tends to grow exponentially
when more processes are considered.

An LTS network can be seen as being composed of several components, each
of which consists of a number of individual processes in parallel composition,

124 S. de Putter and A. Wijs

with intra-component synchronisation laws describing how the processes inside
a component should synchronise with each other. Furthermore, inter-component
synchronisation laws define how the components as a whole should synchronise
with each other. Compositional construction of a minimal version of the final
system LTS may then be performed by first constructing the system LTSs of
the different components, then minimising these, and finally combining their
behaviour. Example 1 presents an example of a network with two components
and an inter-component synchronisation law.

Example 1 (Component). Consider an LTS network M = (Π,V) with processes
Π = 〈Π1,Π2,Π3〉 and synchronisation laws V = {(〈a, •, •〉, a), (〈•, b, b〉, b),
(〈c, c, c〉, c)}. We may split up the network in two components, say M1 =
(〈Π1〉,V1) and M{2,3} = (〈Π2,Π3〉,V{2,3}). Then, (〈c, c, c〉, c) is an inter-
component law describing synchronisation between M1 and M{2,3}. The compo-
nent M1 consists of process Π1, and the set of intra-component synchronisation
laws V1 = {(〈a, •, •〉, a)} operating solely on Π1. Similarly, component M{2,3}
consists of Π2 and Π3, and the set of intra-component synchronisation laws
V{2,3} = {(〈•, b, b〉, b)} operating solely on Π2 and Π3.

The challenge of compositional construction is to allow manipulation of the
components while guaranteeing that the observable behaviour of the system as
a whole remains equivalent modulo DPBB. Even though synchronisation laws
of a component may be changed, we must somehow preserve synchronisations
with the other components. Such a change of synchronisation laws occurs, for
instance, when reordering the processes in a component, or renaming actions
that are part of inter-component synchronisation laws.

In this paper, we limit ourselves to composition of two components: a left and
a right component. This simplifies notations and proofs. However, the approach
can be generalised to splitting networks given two sets of indices indicating which
processes are part of which component, i.e., a projection operator can be used
to project distinct parts of a network into components.

In the remainder of this section, first, we formalise LTS networks composition.
Then, we show that admissibility is preserved when two admissible networks are
composed. Finally, we prove that DPBB is a congruence for composition of LTS
networks.

Composing LTS networks. Before defining the composition of two networks,
we introduce a mapping indicating how the inter-component laws should be
constructed from the interfaces of the two networks. An inter-component law
can then be constructed by combining the interface vectors of the components
and adding a result action. This is achieved through a given interface mapping,
presented in Definition 6, mapping interface actions to result actions.

Definition 6 (Interface Mapping). Consider LTS networks MΠ = (Π,V)
and MP = (P,W) of size n and m, respectively. An interface mapping between
MΠ and MP is a mapping σ : AV \ {τ} × AW \ {τ} × Aσ describing how the
interface actions of MΠ should be combined with interface actions of MP, and

Compositional Model Checking Is Lively 125

what the action label should be resulting from successful synchronisation. The
set Aσ is the set of actions resulting from successful synchronisation between Π
and P. The actions mapped by σ are considered the interface actions.

An interface mapping implicitly defines how inter-component synchronisa-
tion laws should be represented in the separate components. These local rep-
resentatives are called the interface synchronisation laws. A mapping between
MΠ = (Π,V) and MP = (P,W) implies the following sets of interface synchro-
nisation laws:

Vσ = {(v̄, a) ∈ V | ∃b, c. (a, b, c) ∈ σ}
Wσ = {(w̄, b) ∈ W | ∃a, c. (a, b, c) ∈ σ}

An interface synchronisation law makes a component’s potential to synchro-
nise with other components explicit. An interface synchronisation law has a
synchronisation vector, called the interface vector, that may be part of inter-
component laws. The result action of an interface synchronisation law is called
an interface action. These notions are clarified further in Example 2.

Example 2 (Interface Vector and Interface Law). Let M = (〈Π1,Π2,Π3〉,V)
be a network with inter-component synchronisation law (〈a, a, b〉, c) ∈ V and
a component M{1,2} = (〈Π1,Π2〉,V{1,2}). Then, 〈a, a〉 is an interface vector
of M{1,2}, and given a corresponding interface action α, the interface law is
(〈a, a〉, α).

Together the interface laws and interface mapping describe the possible syn-
chronisations between two components, i.e., the interface laws and interface map-
ping describe inter-component synchronisation laws. Given two sets of laws V
and W and an interface mapping σ, the inter-component synchronisation laws
are defined as follows:

σ(V,W) = {(v̄ ‖ w̄, a) | (v̄, α) ∈ V ∧ (w̄, β) ∈ W ∧ (α, β, a) ∈ σ}

The mapping partitions both V and W into two sets of synchronisation laws:
the interface and non-interface synchronisation laws.

The application of the interface mapping, i.e., formal composition of two
LTS networks, is presented in Definition 7. We show that a component may be
exchanged with a divergence-preserving branching bisimilar component iff the
interface actions are not hidden. In other words, the interfacing with the remain-
der of the networks is respected when the interface actions remain observable.

Definition 7 (Composition of LTS networks). Consider LTS networks
MΠ = (Π,V) of size n and MP = (P,W) of size m. Let σ : AV \ {τ} ×
AW \ {τ} × A be an interface mapping describing the synchronisations between
MΠ and MP. The composition of MΠ and MP, denoted by MΠ ‖σ MP, is
defined as the LTS network (Π ‖ P, (V \ Vσ)• ∪ •(W \ Wσ) ∪ σ(V,W)), where
(V \ Vσ)• = {(v̄ ‖ •m, a) | (v̄, a) ∈ V \ Vσ} and •(W \ Wσ) = {(•n ‖ v̄, a) |
(v̄, a) ∈ W \ Wσ} are the sets of synchronisation laws V \ Vσ padded with m •’s
and W \ Wσ padded with n •’s, respectively.

126 S. de Putter and A. Wijs

As presented in Proposition 1, LTS networks that are composed (according
to Definition 7) from two admissible networks are admissible as well. Therefore,
composition of LTS networks is compatible with the compositional verification
approaches of [12].

Proposition 1. Let MΠ = (Π,V) and MP = (P,W) be admissible LTS net-
works of length n and m, respectively. Furthermore, let σ : AV\{τ}×AW\{τ}×A
be an interface mapping. Then, the network M = MΠ ‖σ MP, composed accord-
ing to Definition 7, is also admissible.

Proof. We show that M satisfies Definition 4:

– No synchronisation and renaming of τ ’s. Let (v̄, a) ∈ (V \Vσ)• ∪•(W \ Wσ)∪
σ(V,W) be a synchronisation law with v̄i = τ for some i ∈ 1..(n + m). We
distinguish two cases:

• (v̄, a) ∈ (V \ Vσ)• ∪ •(W \ Wσ). By construction of (V \ Vσ)• and
•(W \ Wσ), and admissibility of MΠ and MP, we have ∀j ∈ 1..n. v̄j �=
• =⇒ i = j, ∀j ∈ (n + 1)..(n + m). v̄j �= • =⇒ i = j and a = τ . Hence,
it holds that ∀j ∈ 1..(n + m). v̄j �= • =⇒ i = j (no synchronisation of
τ ’s) and a = τ (no renaming of τ ’s).

• (v̄, a) ∈ σ(V,W). By definition of σ(V,W), there are interface laws
(v̄′, α′) ∈ V and (v̄′′, α′′) ∈ W such that (α′, α′′, a) ∈ σ. Hence, either
1 ≤ i ≤ n with v̄′

i = τ or n < i ≤ n + m with v̄′′
i−n = τ . Since MΠ

and MP are admissible, we must have α′ = τ or α′′ = τ , respectively.
However, the interface mapping does not allow τ as interface actions,
therefore, the proof follows by contradiction.

It follows that M does not allow synchronisation and renaming of τ ’s.
– No cutting of τ ’s. Let (Π ‖ P)i be a process with τ ∈ A(Π‖P)i

for some
i ∈ 1..(n + m). We distinguish the two cases 1 ≤ i ≤ n and n < i < m.
It follows that τ ∈ AΠi

for the former case and τ ∈ APi−n
for the latter

case. Since both MΠ and MP are admissible and no actions are removed in
(V \ Vσ)• and •(W \ Wσ), in both cases there exists a (v̄, a) ∈ (V \ Vσ)• ∪
•(W \ Wσ) ∪ σ(V,W) such that v̄i = τ . Hence, the composite network M
does not allow cutting of τ ’s.

Since the three admissibility properties hold, the composed network M satisfies
Definition 4. �

DPBB is a congruence for LTS network composition. Proposition 2 shows that
DPBB is a congruence for the composition of LTS networks according to Def-
inition 7. It is worth noting that an interface mapping does not map τ ’s, i.e.,
synchronisation of τ -actions is not allowed. In particular, this means that inter-
face actions must not be hidden when applying verification techniques on a
component.

Note that Proposition 2 subsumes the composition of single LTSs, via com-
position of LTS networks of size one with trivial sets of intra-component syn-
chronisation laws.

Compositional Model Checking Is Lively 127

Proposition 2. Consider LTS networks MΠ = (Π,V), MΠ′ = (Π ′,V ′) of size
n, and MP = (P,W) of size m. Let σ be an interface mapping describing the
coupling between the interface actions in AV and AW . The following holds

MΠ ↔Δ
b MΠ′ =⇒ MΠ ‖σ MP ↔Δ

b MΠ′ ‖σ MP

Proof. Intuitively, we have MΠ ‖σ MP ↔Δ
b MΠ′ ‖σ MP because

MΠ ↔Δ
b MΠ′ and the interface with MP is respected. Since MΠ ↔Δ

b MΠ′ ,
whenever a transition labelled with an interface action α in MΠ is able to per-
form a transition together with MP, then MΠ′ is able to simulate the interface
α-transition and synchronise with MP. It follows that the branching structure
and divergence is preserved. For the sake of brevity we define the following
shorthand notations: M = MΠ ‖σ MP and M′ = MΠ′ ‖σ MP. We show
MΠ ↔Δ

b MΠ′ =⇒ M ↔Δ
b M′.

Let B be a DPBB relation between MΠ and MΠ′ , i.e., MΠ ↔Δ
b MΠ′ .

By definition, we have M ↔Δ
b M′ iff there exists a DPBB relation C with

IM ↔Δ
b IM′ . We define C as follows:

C = {(s̄ ‖ r̄, t̄ ‖ r̄) | s̄ B t̄ ∧ r̄ ∈ SMP}

The component that is subject to change is related via the relation B that
relates the states in Π and Π ′. The unchanged component of the network is
related via the shared state r̄, i.e., it relates the states of P to themselves.

To prove the proposition we have to show that C is a DPBB relation. This
requires proving that C relates the initial states of M and M′ and that C
satisfies Definition 5.
• C relates the initial states of M and M′, i.e., IM C IM′ . We show that
∀s̄ ∈ IM. ∃t̄ ∈ IM′ . s̄ C t̄, the other case is symmetrical. Take an initial state
s̄ ‖ r̄ ∈ IM. Since IMΠ

B IMΠ′ and s̄ ∈ IMΠ
, there exists a t̄ ∈ IMΠ′ such

that s̄ B t̄. Therefore, we have s̄ ‖ r̄ C t̄ ‖ r̄. Since s̄ ‖ r̄ is an arbitrary state
in IM the proof holds for all states in IM. Furthermore, since the other case is
symmetrical it follows that IM C IM′ .
• If s̄ C t̄ and s̄

a−→M s̄′ then either a = τ ∧ s̄′ C t̄, or t̄
τ−→ ∗

M′ ˆ̄t
a−→M′

t̄′∧s̄ C ˆ̄t∧s̄′ C t̄′. To better distinguish between the two parts of the networks, we
unfold C and reformulate the proof obligation as follows: If s̄ B t̄ and s̄ ‖ r̄

a−→M
s̄′ ‖ r̄′ then either a = τ ∧ s̄′ B t̄∧ r̄ = r̄′, or t̄ ‖ r̄

τ−→∗
M′ ˆ̄t ‖ r̄

a−→M′ t̄′ ‖ r̄′ ∧ s̄ B ˆ̄t∧
s̄′ B t̄′. Consider synchronisation law (v̄ ‖ w̄, a) ∈ (V\Vσ)•∪•(W \ Wσ)∪σ(V,W)
enabling the transition s̄ ‖ r̄

a−→M s̄′ ‖ r̄′. We distinguish three cases:

1. (v̄ ‖ ū, a) ∈ (V \ Vσ)•. It follows that w̄ = •m, and thus, subsystem MP does
not participate. Hence, we have r̄ = r̄′ and (v̄, a) ∈ V enables a transition
s̄

a−→MΠ
s̄′. Since s̄ B t̄, by Definition 5, we have:

– a = τ with s̄′ B t̄. Because s̄′ B t̄ and r̄ = r̄′, the proof trivially follows.
– t̄

τ−→∗
MΠ′

ˆ̄t a−→MΠ′ t̄′ with s̄ B ˆ̄t and s̄′ B t̄′. These transitions are enabled
by laws in V ′ \ V ′

σ. The set of derived laws are of the form (v̄′ ‖ •m, τ) ∈
(V ′ \ V ′

σ)• enabling a τ -path from t̄ ‖ r̄ to ˆ̄t ‖ r̄, and there is a law
(v̄′ ‖ •m, a) ∈ (V ′ \ V ′

σ)• enabling ˆ̄t ‖ r̄
a−→M′ t̄′ ‖ r̄. Take r̄′ := r̄ and the

proof obligation is satisfied.

128 S. de Putter and A. Wijs

2. (v̄ ‖ w̄, a) ∈ •(W \ Wσ). It follows that v̄ = •n, and thus, subsystems MΠ

and MΠ′ do not participate; we have s̄ = s̄′ and r̄
a−→MP r̄′. We take t̄′ := t̄.

Hence, we can conclude t̄ ‖ r̄
τ−→∗

M′ t̄ ‖ r̄
a−→M t̄′ ‖ r̄′, s̄ B t̄, and s̄′ B t̄′.

3. (v̄ ‖ w̄, a) ∈ σ(V,W). Both parts of the network participate in the transition
s̄ ‖ r̄

a−→M s̄′ ‖ r̄′. By definition of σ(V,W), there are (v̄, α) ∈ V, (w̄, β) ∈ W
and (α, β, a) ∈ σ such that (v̄, α) enables a transition s̄

α−→MΠ
s̄′ and (ū, β)

enables a transition r̄
β−→ r̄′. Since s̄ B t̄, by Definition 5, we have:

– α = τ with s̄′ B t̄. Since α ∈ AV \ {τ} we have a contradiction.
– t̄

τ−→∗
M′

Π′
ˆ̄t α−→M′

Π′ t̄′ with s̄ B ˆ̄t and s̄′ B t̄′. Since τ actions are not mapped
by the interface mapping we have a set of synchronisation laws of the form
(v̄′ ‖ •m, τ) ∈ (V ′ \ V ′

σ)• enabling a τ -path t̄ ‖ r̄
τ−→∗

M′ ˆ̄t ‖ r̄.
Let (v̄′, α) ∈ V ′ be the synchronisation law enabling the α-transition.
Since (α, β, a) ∈ σ, α is an interface action and does not occur in V ′ \ V ′

σ.
It follows that (v̄′, α) ∈ V ′

σ, and consequently (v̄′ ‖ w̄, a) ∈ σ(V ′,W). Law
(v̄′ ‖ w̄, a) enables the transition ˆ̄t ‖ r̄

a−→M′ t̄′ ‖ r̄′, and the proof follows.

• If s̄ C t̄ and t̄
a−→M′ t̄′ then either a = τ ∧ s̄′ C t̄, or s̄

τ−→ ∗
M ˆ̄s a−→M

s̄′ ∧ s̄ C ˆ̄t ∧ s̄′ C t̄′. This case is symmetric to the previous case.
• If s̄ C t̄ and there is an infinite sequence of states (s̄k)k∈ω such that s̄ = s̄0,
s̄k τ−→M s̄k+1 and s̄k C t̄ for all k ∈ ω, then there exists a state t̄′ such
that t̄

τ−→+
M′ t̄′ and s̄k C t̄′ for some k ∈ ω. Again we reformulate the proof

obligation to better distinguish between the two components: if s̄ ‖ r̄ C t̄ ‖ r̄ and
there is an infinite sequence of states (s̄k ‖ r̄k)k∈ω such that s̄ ‖ r̄ = s̄0 ‖ r̄0, s̄k ‖
r̄k τ−→M s̄k+1 ‖ r̄k+1 and s̄k B t̄ for all k ∈ ω, then there exists a state t̄′ such
that t̄ ‖ r̄

τ−→+
M′p′ ‖ r̄ and s̄k B t̄′for some k ∈ ω.

We distinguish two cases:

1. All steps in the τ -sequence are enabled in MΠ , i.e., ∀k ∈ ω. s̄k τ−→MΠ
s̄k+1.

Since s̄ B t̄, by condition 3 of Definition 5, it follows that there is a state t̄′

with t̄
τ−→+t̄′ and s̄k B t̄′ for some k ∈ ω. Since τ is not an interface action,

the synchronization laws enabling t̄
τ−→+t̄′ are also present in M′. Hence, we

have t̄ ‖ r̄
τ−→+t̄′ ‖ r̄ and s̄k B t̄′ for k ∈ ω.

2. There is a k ∈ ω with ¬s̄k τ−→MΠ
s̄k+1. We do have s̄k ‖ r̄k τ−→M s̄k+1 ‖

r̄k+1 with s̄k B t̄ (see antecedent at the start of the ‘divergence’ case). Since
the τ -transition is not enabled in MΠ the transition must be enabled by a
synchronisation law (v̄ ‖ w̄, τ) ∈ •(W \ Wσ) ∪ σ(V,W). We distinguish two
cases:

– (v̄ ‖ w̄, τ) ∈ •(W \ Wσ). The transition s̄k ‖ r̄k τ−→M s̄k+1 ‖ r̄k+1 is
enabled by (v̄ ‖ w̄, τ) ∈ •(W \ Wσ). Therefore, there is a transition
r̄k τ−→MP r̄k+1 enabled by (w̄, τ) ∈ W \ Wσ. Since this transition is part
of an infinite τ -sequence, there is a path s̄ ‖ r̄

τ−→∗
Ms̄k ‖ r̄k. Furthermore,

condition 1 of Definition 5 holds for C, hence, there is a state t̄′ ∈ SMΠ′

and a transition t̄ ‖ r̄
τ−→∗

MP
t̄′ ‖ r̄k with s̄k ‖ r̄k C t̄′ ‖ r̄k. Therefore, we

have t̄ ‖ r̄
τ−→+

M′ t̄′ ‖ r̄k+1. Finally, since s̄k ‖ r̄k C t̄′ ‖ r̄k, it follows that
s̄k B t̄′.

Compositional Model Checking Is Lively 129

– (v̄ ‖ w̄, τ) ∈ σ(V,W). By definition of σ(V,W), there are two laws
(v̄, α) ∈ V and (ū, β) ∈ W with (α, β, τ) ∈ σ. The laws enable transi-

tions s̄k α−→MΠ
s̄k+1 and r̄k β−→MP r̄k+1 respectively. Since s̄k B t̄ and

α �= τ , by Definition 5, there are states ˆ̄t, t̄′ ∈ SMΠ′ such that there is a
sequence t̄

τ−→∗
MΠ′

ˆ̄t α−→MΠ′ t̄′ with s̄ B ˆ̄t and s̄k+1 B t̄′. Let (v̄′, α) ∈ V ′ be
the law enabling the α-transition. Since (α, β, τ) ∈ σ, and consequently
(v̄′ ‖ w̄, τ) ∈ σ(X ′,Y). Furthermore, the τ -path from t̄ to ˆ̄t is enabled by
laws of the form (v̄′′, τ) ∈ V ′ \ V ′

σ. Hence, there is a series of transitions
t̄ ‖ r̄

τ−→∗
M′ ˆ̄t ‖ r̄k τ−→M′ t̄′ ‖ r̄k+1. Finally, recall that s̄k+1 B t̄′. Hence, also

in this case the proof obligation is satisfied.

• If s̄Ct̄ and there is an infinite sequence of states (t̄k)k∈ω such that t̄ = t̄0,
t̄k

τ−→G2 t̄k+1 and s̄Ct̄k for all k ∈ ω, then there exists a state s̄′ such that s̄
τ−→

+
G1

s̄′ and s̄′Ct̄k for some k ∈ ω. This case is symmetric to the previous case. �

5 Decomposition of LTS Networks

In Sect. 4, we discuss the composition of LTS networks, in which a system is con-
structed by combining components. However, for compositional model checking
approaches, it should also be possible to correctly decompose LTS networks. In
this case the inter-component laws are already known. Therefore, we can derive
a set of interface laws and an interface mapping specifying how the system is
decomposed into components.

To be able to apply Proposition 2 for compositional state space construction,
the composition of the decomposed networks must be equivalent to the original
system. If this holds we say a decomposition is consistent with respect to M.

Definition 8 (Consistent Decomposition). Consider a network M =
(Σ,X). Say network M is decomposed into components N = (Π,V) and
O = (P,W) with interface laws Vσ and Wσ, where σ is the implied interface
mapping. The decomposition of M in to components N and O is called consis-
tent with respect to M iff M = N ‖σ O, i.e., we must have Σ = Π ‖ P and
X = (V \ Vσ)• ∪ •(W \ Wσ) ∪ σ(V,W).

To show that a decomposition is consistent with the original system it is suffi-
cient to show that the set of inter-component laws of the original system is equiv-
alent to the set of inter-component laws generated by the interface-mapping:

Lemma 1. Consider a network M = (Π ‖ P,V• ∪ •W ∪ X), with X the set
of inter-component laws and disjoint sets V•, •W and X . A consistent decom-
position of M into components N = (Π,V ∪ Vσ) and O = (P,W ∪ Wσ), with
interface laws Vσ and Wσ disjoint from V and W , respectively, is guaranteed iff
X = σ(Vσ,Wσ).

130 S. de Putter and A. Wijs

Proof. The decomposition is consistent iff V•∪•W∪X = (V\Vσ)•∪ •(W\Wσ)∪
σ(V ∪Vσ,W ∪Wσ) and Π ‖ P = Π ‖ P. The latter is trivial. Furthermore, since
V ∩Vσ = ∅ (W ∩Wσ = ∅) and by definition of Vσ (Wσ), we have V• = (V \Vσ)•

(•W = •(W \ Wσ)). It follows from V ∩ Vσ = ∅, W ∩ Wσ = ∅, and Definition 7
that σ(V ∪ Vσ,W ∪ Wσ) = σ(Vσ,Wσ). Hence, the decomposition is consistent
iff X = σ(Vσ,Wσ). �

Indeed, it is possible to derive an inconsistent decomposition as shown in
Example 3.

Example 3 (Inconsistent Decomposition). Consider a set of inter-component
laws X = {(〈a, b〉, c), (〈b, a〉, c)}. Partitioning the laws results in the sets of
interface laws Vσ = {(〈a〉, γ), (〈b〉, γ)} and Wσ = {(〈b〉, γ), (〈a〉, γ)} derived
from some V and W, respectively. This system implies the interface map-
ping σ = {(γ, γ, c)}. The derived set of inter-component laws is σ(V,W) =
{(〈a, a〉, c), (〈a, b〉, c), (〈b, a〉, c), (〈b, b〉, c)} �= X . Hence, this decomposition is not
consistent with the original system.

However, a consistent composition can always be derived. In Proposition 3
we show how to construct two sets of interface laws Vσ and Wσ, and an interface
mapping σ for component MΠ = (Π,V ∪Vσ) and MP = (P,W ∪Wσ) such that
the decomposition is consistent. Consider a synchronisation law (v̄ ‖ w̄, a), the
idea is to encode this synchronisation law directly in the interface mapping, i.e.,
we create unique result actions αv̄ and αw̄ with (αv̄, αw̄, a) ∈ σ. This way it is
explicit which interface law corresponds to which inter-component law.

Proposition 3. Consider a network M = (Π ‖ P,V• ∪ •W ∪X). We define the
sets of interface laws as follows:

Vσ = {(v̄, αv̄) | (v̄ ‖ w̄, a) ∈ X},Wσ = {(w̄, αw̄) | (v̄ ‖ w̄, a) ∈ X}

where αv̄ and αw̄ are unique interface result actions identified by the corre-
sponding interface law, that is, ∀(v̄′, a) ∈ V ∪ Vσ. a = αv̄ =⇒ v̄′ = v̄ and
∀(w̄′, a) ∈ W ∪ Wσ. a = αw̄ =⇒ w̄′ = w̄.

Finally, the interface mapping is defined as σ = {(αv̄, αw̄, a) | (v̄ ‖ w̄, a) ∈
X}. The decomposition into MΠ = (Π,V ∪ Vσ) and MP = (P,W ∪ Wσ) is
consistent.

Proof. By Lemma 1, we have to show X = σ(Vσ,Wσ).

σ(Vσ,Wσ)
(1)
= {(v̄ ‖ w̄, a) | (v̄, αv̄) ∈ Vσ ∧ (w̄w̄, β) ∈ Wσ ∧ (αv̄, αw̄, a) ∈ σ}
(2)
= {(v̄ ‖ w̄, a) | (v̄ ‖ w̄, a) ∈ X} = X

where at (1) the definition of σ(Vσ,Wσ) is unfolded, and (2) follows from con-
struction of Vσ, Wσ, and σ. Hence, the decomposition is consistent with M. �

Compositional Model Checking Is Lively 131

Proposition 4 shows that LTS networks resulting from the consistent decom-
position of an admissible LTS network are also admissible. Hence, consistent
decomposition is compatible with the compositional verification approaches pre-
sented in [12].

Proposition 4. Consider an admissible LTS network M = (Π ‖ P,V• ∪ •W ∪
X) of length n + m. If the decomposition is consistent, then the decomposed
networks MΠ = (Π,V ∪ Vσ) and MP = (P,W ∪ Wσ) are also admissible.

Proof. We show that MΠ and MP satisfy Definition 4:
No synchronisation and renaming of τ ’s. Let (v̄, a) ∈ V ∪ Vσ be a synchro-

nisation law such that v̄i = τ for some i ∈ 1..n. We distinguish two cases:

– (v̄, a) ∈ Vσ. Since (v̄, a) is an interface law and the decomposition is consistent,
its result action a may not be τ . However, since M is admissible, no renaming
of τ ’s is allowed. By contradiction it follows that (v̄, a) �∈ Vσ completing this
case.

– (v̄, a) ∈ V•. By construction, there exists a law (v̄ ‖ •m, a) ∈ V•. Since
V• ⊆ V•∪•W∪X , by admissibility of M, we have ∀j ∈ 1..n. v̄j �= • =⇒ i = j
(no synchronisation of τ ’s) and a = τ (no renaming of τ ’s).

Hence, MΠ does not synchronize or rename τ ’s. The proof for MP is similar.
No cutting of Z τ ’s. Let Πi be a process with i ∈ 1..n such that τ ∈ AΠi

.
Since M is admissible there exists a law (v̄ ‖ w̄, a) ∈ V• ∪ •W ∪ X such that
(v̄ ‖ ū)i = τ . We distinguish three cases:

– (v̄ ‖ w̄, a) ∈ V•. Since (v̄ ‖ w̄)i = τ and i ≤ n it follows that v̄i = τ . By
construction of V•, there is a (v̄, a) ∈ V with v̄i = τ .

– (v̄ ‖ w̄, a) ∈ •W. In this case we must have i > n which contradicts our
assumption: i ∈ 1..n. The proof follows by contradiction.

– (v̄ ‖ w̄, a) ∈ X . Then, (v̄ ‖ w̄, a) is an inter-component law with at least one
participating process for each component. Hence, there exists a j ∈ (n+1)..m
such that (v̄ ‖ w̄)j �= •. Moreover, since M is admissible, no synchronisation
of τ ’s are allowed. Therefore, since (v̄ ‖ w̄)j �= •, we must have j = i. However,
this would mean j ∈ 1..n, contradicting j ∈ (n + 1)..m. By contradiction the
proof follows.

We conclude that MΠ does not cut τ ’s. The proof for MP is symmetrical.
All three admissibility properties hold for MΠ and MP. Hence, the networks

resulting from the decomposition satisfy Definition 4. �

6 Application

In order to compare compositional approaches with the classical, non-
compositional approach, we have employed Cadp to minimise a set of models
modulo DPBB.

132 S. de Putter and A. Wijs

Each model is minimised with respect to a given liveness property. To achieve
the best minimisation we applied maximal hiding [25] in all approaches. Intu-
itively, maximal hiding hides all actions except for the interface actions and
actions relevant for the given liveness-property.

As composition strategy we have used the smart reduction approach described
in [11]. In Cadp, the classical approach, where the full state space is constructed
at once and no intermediate minimisations are applied, is the root reduction
strategy. At the start, the individual components are minimised before they
are combined in parallel composition, hence the name. We have measured the
running time and maximum number of states generated by the two methods.

For compositional approaches, the running time and largest state space con-
sidered depends heavily on the composition order, i.e., the order in which the
components are combined. The smart reduction approach uses a heuristic to
determine the order in which to compose processes. In [11], it has been exper-
imentally established that this heuristic frequently works very well. After each
composition step the result is minimised.

Measurements. The results of our experiments are shown in Table 1. The Model
column indicates the test case model corresponding to the measurements.

The smart and root sub-columns denote the measurement for the smart
reduction and root reduction approaches, respectively.

In the Running time (sec.) column the running time until completion of the
experiment is shown in seconds. Indicated in bold are the shortest running times
comparing the smart and root sub-columns. The maximum running time of an
experiment was set to 80 hours, after which the experiment was discontinued
(indicated with −).

The columns Max. #states and Max. #transitions show the largest number
of states and transitions, respectively, generated during the experiment. Of both
methods the best result is indicated in bold.

Table 1. Experiments: smart reduction vs. root reduction

Model Running time (sec.) Max. #states Max. #transitions Reduced Reduced

Smart Root Smart Root Smart Root #states #transitions

1394 6.42 4.20 102,983 198,692 187,714 355,338 1 1

1394’ 34.92 427.10 2,832,074 36,855,184 5,578,078 96,553,318 1 1

ACS 29.75 5.36 1,854 4,764 4,760 14,760 29 61

Cache 8.59 3.25 616 616 4631 4631 1 1

DES 40.66 941.82 1,404 64,498,297 3,510 518,438,860 1 1

HAVi-LE 65.19 484.52 970,772 15,688,570 5,803,552 80,686,289 131,873 644,695

HAVi-LE’ 47.46 5,241.00 453,124 190,208,728 2,534,371 876,008,628 159,318 849,227

Le Lann 42.36 5,720.08 12,083 160,025,986 701,916 944,322,648 83,502 501,573

ODP 16.29 5.20 10,397 91,394 87,936 641,226 432 2,268

Peterson 30.81 − 9 − 139 − 9 22

Transit 11.86 56.26 22,928 3,763,192 132,712 39,925,524 636 3,188

Wafer stepper 48.62 52.90 962,122 3,772,753 4,537,240 16,977,692 905,955 4,095,389

Compositional Model Checking Is Lively 133

The number of states and transitions after minimisation are shown in the
Reduced #states and Reduced #transitions columns, respectively.

The experiments were run on the DAS-5 cluster [4] machines. They have an
Intel Haswell E5-2630-v3 2.4 GHz CPU, 64 GB memory, and run CentOS
Linux 7.2.

As test input we selected twelve case studies: four mCRL2 [10] models distrib-
uted with its toolset, seven Cadp models, and one from the Beem database [29].

Discussion. In terms of running time smart reduction performs best for eight
of the models, whereas root reduction performs best in four of the models. In
general, the smart reduction approach performs better for large models where
the state space can be reduced significantly before composition. This is best
seen in the HAVi-LE’, Le Lann, and Peterson use cases, where smart reduction
is several hours faster.

In this set of models, root reduction performs best in relatively small models;
1394, ACS, Cache, Lamport, and ODP. However, the difference in running times
is negligible. Smart reduction starts performing better in the moderately sized
models such as Transit and Wafer stepper. For smaller models the overhead
of the smart reduction heuristic is too high to obtain any benefits from the
nominated ordering.

In summary, compositional reduction is most efficient when it is expected
that components reduce significantly and highly interleaving components are
added last.

7 Conclusions

In this paper we have shown that DPBB is a congruence for parallel composition
of LTS networks where there is synchronisation on given label combinations.
Therefore, the DPBB equivalence may be used to reduce components in the
compositional verification of LTS networks. It had already been shown that
compositional verification of LTS networks is adequate for safety properties. As
DPBB preserves both safety and liveness properties, compositional verification
can be used to verify liveness properties as well.

Furthermore, we have discussed how to safely decompose an LTS network in
the case where verification has to start from the system as a whole. Both the com-
position and consistent decomposition of LTS networks preserve the admissibility
property of LTS networks. Hence, the composition operator remains compati-
ble with the compositional verification approaches for LTS networks described
by [12].

The proofs in this paper have been mechanically verified using the Coq proof
assistant3 and are available online (see footnote 2).

Although our work focuses on the composition of LTS networks, the results
are also applicable on composition of individual LTSs. Our parallel composition

3 https://coq.inria.fr.

https://coq.inria.fr

134 S. de Putter and A. Wijs

operator subsumes the usual parallel composition operators of standard process
algebra languages such as CCS [27], CSP [32], mCRL2 [10], and LOTOS [18].

Finally, we have run a set of experiments to compare compositional and tra-
ditional DPBB reduction. The compositional approach applies Cadp’s smart
reduction employing a heuristic to determine an efficient compositional reduc-
tion order. The traditional reduction generates the complete state space before
applying reduction. The compositional approach performed better in the medium
to large models where the intermediate state space can be kept small.

Future work. An interesting direction for future work is the integration of the
proof in a meta-theory for process algebra. This integration would give a straight-
forward extension of our results to parallel composition for process algebra for-
malisms.

This work has been inspired by an approach for the compositional verification
of transformations of LTS networks [31,36–39]. We would like to apply the results
of this paper to the improved transformation verification algorithm [31], thus
guaranteeing its correctness for the compositional verification of transformations
of LTS networks.

In future experiments, we would like to involve recent advancements in the
computation of branching bisimulation, and therefore also DPBB, both sequen-
tially [16,17] and in parallel on graphics processors [41]. It will be interesting to
measure the effect of applying these new algorithms to compositionally solve a
model checking problem.

Finally, by encoding timing in the LTSs, it is possible to reason about timed
system behaviour. Combining approaches such as [40,42] with our results would
allow to compositionally reason about timed behaviour. We plan to investigate
this further.

Acknowledgements. The authors would like to thank Frédéric Lang for his com-
ments that helped to improve this paper.

References

1. Andersen, H.: Partial model checking. In: LICS, pp. 398–407. IEEE Computer
Society Press (1995)

2. Andersen, H.: Partial model checking of modal equations: a survey. STTT 2(3),
242–259 (1999)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
4. Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Seinstra, F.,

Snoek, C., Wijshoff, H.: A medium-scale distributed system for computer science
research: infrastructure for the long term. IEEE Comput. 49(5), 54–63 (2016)

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development,
Coq’ Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer (2004)

6. Bloom, B.: Structural operational semantics for weak bisimulations. Theor. Com-
put. Sci. 146(1), 25–68 (1995)

Compositional Model Checking Is Lively 135

7. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158.
Springer, Heidelberg (1998). doi:10.1007/BFb0028741

8. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In:
LICS, pp. 353–362. IEEE Computer Society Press, June 1989

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge
(1999)

10. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P.,
Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 199–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 15

11. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19811-3 9

12. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Informatica 52(4–5), 337–392 (2015)

13. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

14. van Glabbeek, R., Luttik, S., Trc̆ka, N.: Computation tree logic with deadlock
detection. LMCS 5(4) (2009)

15. van Glabbeek, R., Luttik, S., Trčka, N.: Branching bisimilarity with explicit diver-
gence. Fundam. Inf. 93(4), 371–392 (2009)

16. Groote, J.F., Wijs, A.: An O(m log n) algorithm for stuttering equivalence
and branching bisimulation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 607–624. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 40

17. Groote, J., Jansen, D., Keiren, J., Wijs, A.: An O(m log n) algorithm for computing
stuttering equivalence and branching bisimulation. ACM Trans. Comput. Logic
18(2), 13:1–13:34 (2017)

18. ISO/IEC: LOTOS – A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization – Information Processing Systems – Open Sys-
tems Interconnection (1989)

19. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

20. Krimm, J.-P., Mounier, L.: Compositional state space generation from Lotos
programs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 239–258.
Springer, Heidelberg (1997). doi:10.1007/BFb0035392

21. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J., Smith, G., van de Pol, J. (eds.)
IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005). doi:10.1007/
11589976 6

22. Lang, F.: Refined interfaces for compositional verification. In: Najm, E.,
Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229,
pp. 159–174. Springer, Heidelberg (2006). doi:10.1007/11888116 13

23. Lang, F.: Unpublished textual and PVS proof that branching bisimulation is a
congruence for Networks of LTSs. This proof does not consider DPBB. Personal
Communication (2016)

24. Maraninchi, F.: Operational and compositional semantics of synchronous automa-
ton compositions. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp.
550–564. Springer, Heidelberg (1992). doi:10.1007/BFb0084815

http://dx.doi.org/10.1007/BFb0028741
http://dx.doi.org/10.1007/978-3-642-36742-7_15
http://dx.doi.org/10.1007/978-3-642-19811-3_9
http://dx.doi.org/10.1007/978-3-642-19811-3_9
http://dx.doi.org/10.1007/978-3-662-49674-9_40
http://dx.doi.org/10.1007/978-3-662-49674-9_40
http://dx.doi.org/10.1007/BFb0035392
http://dx.doi.org/10.1007/11589976_6
http://dx.doi.org/10.1007/11589976_6
http://dx.doi.org/10.1007/11888116_13
http://dx.doi.org/10.1007/BFb0084815

136 S. de Putter and A. Wijs

25. Mateescu, R., Wijs, A.: Property-dependent reductions adequate with divergence-
sensitive branching bisimilarity. Sci. Comput. Program. 96(3), 354–376 (2014)

26. Mazzara, M., Lanese, I.: Towards a unifying theory for web services composition.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 257–272. Springer, Heidelberg (2006). doi:10.1007/11841197 17

27. Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)
28. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-

tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). doi:10.1007/3-540-53479-2 17

29. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73370-6 17

30. Peled, D.: Ten years of partial order reduction. In: Hu, A.J., Vardi, M.Y. (eds.)
CAV 1998. LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998). doi:10.1007/
BFb0028727

31. de Putter, S., Wijs, A.: Verifying a verifier: on the formal correctness of an LTS
transformation verification technique. In: Stevens, P., W ↪asowski, A. (eds.) FASE
2016. LNCS, vol. 9633, pp. 383–400. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49665-7 23

32. Roscoe, A.: The Theory and Practice of Concurrency. Prentice-Hall (1998)
33. Spaninks, L.: An Axiomatisation for Rooted Branching Bisimulation with Explicit

Divergence. Master’s thesis, Eindhoven University of Technology (2013)
34. Ulidowski, I., Phillips, I.: Ordered SOS process languages for branching and eager

bisimulations. Inf. Comput. 178(1), 180–213 (2002)
35. Verhoef, C.: A congruence theorem for structured operational semantics with

predicates and negative premises. In: Jonsson, B., Parrow, J. (eds.) CONCUR
1994. LNCS, vol. 836, pp. 433–448. Springer, Heidelberg (1994). doi:10.1007/
978-3-540-48654-1 32

36. Wijs, A.: Define, verify, refine: correct composition and transformation of concur-
rent system semantics. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS,
vol. 8348, pp. 348–368. Springer, Cham (2014). doi:10.1007/978-3-319-07602-7 21

37. Wijs, A.J.: Confluence detection for transformations of labelled transition systems.
In: Proceedings of the 2nd Graphs as Models Workshop (GaM 2015). EPTCS, vol.
181, pp. 1–15. Open Publishing Association (2015)

38. Wijs, A., Engelen, L.: Efficient property preservation checking of model refine-
ments. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
565–579. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 41

39. Wijs, A., Engelen, L.: REFINER: towards formal verification of model transfor-
mations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
258–263. Springer, Cham (2014). doi:10.1007/978-3-319-06200-6 21

40. Wijs, A.: Achieving discrete relative timing with untimed process algebra. In: Pro-
ceedings of the 12th Conference on Engineering of Complex Computer Systems
(ICECCS 2007), pp. 35–44. IEEE Computer Society Press (2007)

41. Wijs, A.: GPU accelerated strong and branching bisimilarity checking. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 368–383. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 29

42. Wijs, A., Fokkink, W.: From χt to μCRL: combining performance and functional
analysis. In: Proceedings of the 10th Conference on Engineering of Complex Com-
puter Systems (ICECCS 2005), pp. 184–193. IEEE Computer Society Press (2005)

http://dx.doi.org/10.1007/11841197_17
http://dx.doi.org/10.1007/3-540-53479-2_17
http://dx.doi.org/10.1007/978-3-540-73370-6_17
http://dx.doi.org/10.1007/BFb0028727
http://dx.doi.org/10.1007/BFb0028727
http://dx.doi.org/10.1007/978-3-662-49665-7_23
http://dx.doi.org/10.1007/978-3-662-49665-7_23
http://dx.doi.org/10.1007/978-3-540-48654-1_32
http://dx.doi.org/10.1007/978-3-540-48654-1_32
http://dx.doi.org/10.1007/978-3-319-07602-7_21
http://dx.doi.org/10.1007/978-3-642-36742-7_41
http://dx.doi.org/10.1007/978-3-319-06200-6_21
http://dx.doi.org/10.1007/978-3-662-46681-0_29

	Compositional Model Checking Is Lively
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Composition of LTS Networks
	5 Decomposition of LTS Networks
	6 Application
	7 Conclusions
	References

