
Correct Composition of Dephased
Behavioural Models

Juliana Bowles and Marco B. Caminati(B)

School of Computer Science, University of St Andrews,
KY16 9SX St Andrews, St Andrews, UK

{jkfb,mbc8}@st-andrews.ac.uk

Abstract. Scenarios of execution are commonly used to specify partial
behaviour and interactions between different objects and components in
a system. To avoid overall inconsistency in specifications, various auto-
mated methods have emerged in the literature to compose (behavioural)
models. In recent work, we have shown how the theorem prover Isabelle
can be combined with the constraint solver Z3 to efficiently detect incon-
sistencies in two or more behavioural models and, in their absence, gener-
ate the composition. Here, we extend our approach further and show how
to generate the correct composition (as a set of valid traces) of dephased
models. This work has been inspired by a problem from a medical domain
where different care pathways (for chronic conditions) may be applied to
the same patient with different starting points.

1 Introduction

To cope with the complexity of modern systems, design approaches combine a
variety of languages and notation to capture different aspects of a system, and
separate structural from behavioural models. In itself behavioural modelling is
also difficult, and rather than attempt to model the complete behaviour of a
(sub)system [22], it is easier to focus on several possible scenarios of execution
separately. Scenarios give a partial understanding of a component and include
interactions with other system components. In industry, individual scenarios are
often captured using UML’s sequence diagrams [19]. Given a set of scenarios,
we then need to check whether these are correct and consistent, and to do so
we first need to obtain the combined overall behaviour. The same ideas apply if
we model (partial) business processes within an organisation, for instance using
BPMN [18]. In either case, we need a means to compose models (scenarios or
processes), and when this cannot be done, detect and resolve inconsistencies.

Composing systems manually can only be done for small systems. As a
result, in recent years, various methods for automated model composition have
been introduced [1,3,4,6,7,12,15,20,21,23,24,26]. Most of these methods involve
introducing algorithms to produce a composite model from simpler models origi-
nating from partial specifications and assume a formal underlying semantics [12].

This research is supported by EPSRC grant EP/M014290/1.

c© Springer International Publishing AG 2017
J. Proença and M. Lumpe (Eds.): FACS 2017, LNCS 10487, pp. 233–250, 2017.
DOI: 10.1007/978-3-319-68034-7 14

http://orcid.org/0000-0002-5918-9114
http://orcid.org/0000-0002-4529-5442

234 J. Bowles and M.B. Caminati

In our recent work [3,4,7], we have used constraint solvers for automatically con-
structing the composed model. This involves generating all constraints associated
to the models, and using an automated solver to find a solution (the composed
model) for the conjunction of all constraints. We used Alloy [11] in [3,4] and Z3
[16] in [7]. We conducted several experiments in [7], showing that Z3 performs
much better than Alloy for large systems. Using Alloy for model composition,
mostly in the context of structural models, is an active area of research [21,26],
but the use of Z3 is a novelty of [7]. Even though we used Z3 in [7], we did
not explore Z3’s arithmetic capabilities, nor did we deal with incompatible con-
straints. We have addressed both points more recently in [8].

As in our earlier work, our approach in [8] used event structures [25] as an
underlying semantics for sequence diagrams in accordance to [5,14], and explored
how the theorem prover Isabelle [17] and constraint solver Z3 [16] could be com-
bined to detect and solve partial specifications and inconsistencies over event
structures. In this paper, we go one step further in improving the process of
automatically generating correct composition models (through a set of valid
traces) for behavioural models that may contain inconsistencies. We introduce
a notion of dephased models prior to composition, to make it possible to com-
bine models which do not start execution simultaneously, and where the pace
of execution or a notion of priority in each model may be different as well.
The effect is a reduction of detected inconsistencies (if any), and the automated
generation of what are valid context-specific traces of execution. This work has
been inspired by a problem from a medical domain where different care path-
ways (for chronic conditions) may be applied to the same patient with different
starting points (diagnosis). As an additional contribution, we present in Sect. 4
an original, general method to provide formal correctness proof for SMT code.

This paper is structured as follows. The motivation and contribution of the
work presented here are discussed in Sect. 2, while in Sect. 3 we recall our formal
model (labelled event structures). Section 4 describes how Isabelle and Z3 are
combined to compute valid traces of execution in specific settings. We describe
the role that Isabelle plays in our work in Sect. 5. We conclude the paper with a
description of related work in Sect. 6, and a discussion of future work in Sect. 7.

2 Context and Contribution

Continuing the work started in [8], we exploit the interface between Isabelle and
Z3 to obtain a versatile tool for the specification, analysis and computation of the
behaviour of complex distributed concurrent systems. By specifying our partial
behavioural models in Isabelle we can check automatically their correctness,
obtain their composition (if it exists) and fill any gaps, while being able to prove
at any point that the models are valid [8]. If our model contains inconsistent
behaviours, we are able to locate the conflicting events. However, we argue in
this paper, that we may be overlooking valid behaviour in some cases, and we
explore an approach to fine-tune the detection of inconsistent behaviour further.
In order to do so we allow models to be dephased, that is, different scenarios

Correct Composition of Dephased Behavioural Models 235

(or similarly for processes) may start execution at different times and continue
execution at a different pace. We also consider a notion of priority of (locations
in) a model. We develop a technique to find valid traces by defining exactly how
the different scenarios come together (i.e., how they are dephased) and which
traces are closer to satisfying assumed model priorities.

The problem we are addressing has been inspired by a problem from a med-
ical domain where different care pathways (essentially processes or behavioural
models) for chronic conditions are being applied to the same patient, such that:

– different pathway steps are executed at a different pace. For instance, for one
condition we may need observations to be carried out every month, whereas
for others every three months is sufficient.

– one of the conditions may be prevalent, in other words, has higher priority.
– some of the possible medications prescribed at a given step in the pathway

may have higher priority due to better treatment effectiveness. For instance,
the use of metformin in the treatment of type2 diabetes.

– the diagnosis of different conditions for a patient are likely to have occurred
at different times. For instance, the diagnosis of chronic kidney disease often
follows (and may be a consequence of) an earlier diagnosis of type 2 diabetes.
This leads to the corresponding care pathways starting execution at different
times, in other words, their execution is dephased.

In particular, having an automated technique that allows us to find valid
combined traces taking into account priorities is useful as it gives us a flexi-
ble mechanism to identify different solutions in similar but different cases. For
instance, patients with the same conditions overall but with different orders of
diagnosis or prevalent condition. To keep the presentation of this paper more
focused, we omit the medical details and instead show how the approach works
for an abstract example. Consider the following example using UML sequence
diagrams [19].

pro2

pro1

d1:D p:PAsd

ma1
alt

ma3

ma2
mb1

Bsd

mb2

par

p:Pd2:D

x>20

x>9

Csd

mc1
alt

mc2

d3:D p:P

Fig. 1. Three scenarios involving the same object instances.

Figure 1 shows three scenarios involving the same instance p and different
instances of the same class D, that is, d1, d2, d3. The scenarios use interaction
fragments for alternative behaviour (indicated by an alt on the top-left cor-
ner) and parallel behaviour (indicated by a par on the top-left corner). Other
fragment operators exist but are not used in this paper (cf. [19] for details).

236 J. Bowles and M.B. Caminati

Interaction fragments contain one or more operands, which in the case of an
alternative may be preceded by a constraint or guard. The alternative fragment
in sdA uses two constraints for the operands, namely pro1 and pro2, and we
note that they are not necessarily mutually exclusive. We may want to associate
a priority to pro1, to indicate for instance that if it holds we will want the cor-
responding operand to execute (instead of the second operand and regardless of
whether pro2 holds or not). UML does not have direct notation to indicate this,
but we can assume the existence of a priority tag (not shown) and we will add a
priority notion to our formal model. For the messages shown (for instance, ma1,
mb1, mc1, and so on), we assume that when they are received, they imply an
occurrence for instance p. The marked points along the lifelines and next to the
conditions are what we call locations, borrowing terminology from Live Sequence
Charts (LSCs) [10]. They do not serve a purpose at the design level but make it
easier to understand the formal semantics (cf. [14] for details).

Assume that we know that the occurrence of ma1 conflicts with mc1, and ma2
conflicts with mb2. This is not encoded directly in the scenarios above, but is
domain knowledge contained elsewhere. For instance, in a medical context it is
known that certain combinations of drugs when given together cause adverse
reactions and should hence not be given to a patient at the same time.

We now want to obtain the composition of these three diagrams in such a
way that the known underlying conflicts are taken into account. To the best
of our knowledge the only automated approach that can detect the conflicts in
the scenarios above given such additional constraints is our work in [8]. We now
extend our approach to find valid paths in a composed model that avoids these
conflicts.

Clearly, to avoid the conflicts the easiest thing to do is to take the second
alternative in sdA assuming that pro2 holds. No conflict is present in that case.
However, it may be the case that pro1 holds as well and it has an associated
higher priority (preference) leading to the execution of ma1 followed by ma2. The
question is whether we can still obtain a valid trace that includes this preference
and avoids the known message conflicts. Our approach developed here gives an
answer to this question under the assumption that simultaneous occurrence of
conflicting messages is avoided. Notions of current state, pace and occurrence
priority are used as parameters to find valid traces in a composed model. We
describe how these are treated formally in the next sections. In this paper, we
focus on the formal semantics, the composition and valid traces defined at that
level, and the formal methods used to detect them. We do not come back to a
design level, but we assume the underlying formal models used here have been
generated from scenarios or process descriptions. See our earlier work for an
idea of the transformation defined at the metamodel level [3,4,7]. See [13] for a
description of the medical problem of treating patients with multimorbidities.

3 Formal Model

The model we use to capture the semantics of a sequence diagram is a labelled
(prime) event structure [25], or event structure for short. The advantages of

Correct Composition of Dephased Behavioural Models 237

an event structure are the underlying simplicity of the model and how it nat-
urally describes fundamental notions present in behavioural models including
sequential, parallel and iterative behaviour (or the unfoldings thereof) as well as
nondeterminism (cf. [5,14]).

In an event structure, we have a set of event occurrences together with binary
relations for expressing causal dependency (called causality) and nondetermin-
ism (called conflict). The causality relation implies a (partial) order among event
occurrences, while the conflict relation expresses how the occurrence of certain
events excludes the occurrence of others (e.g., an event occurring in one operand
of an alternative fragment excludes events in another operand). From the two
relations defined on the set of events, a further relation is derived, namely the
concurrency relation co. Two events are concurrent if and only if they are com-
pletely unrelated, i.e., neither related by causality nor by conflict. As a derived
notion we thus obtain a way to model events associated to locations from dif-
ferent operands in a parallel fragment. The formal definition, as provided for
instance in [14], is as follows.

Definition 1. An event structure is a triple E = (Ev,→∗,#) where Ev is a
set of events and →∗,# ⊆ Ev × Ev are binary relations called causality and
conflict, respectively. Causality →∗ is a partial order. Conflict # is symmetric
and irreflexive, and propagates over causality, i.e., e#e

′ ∧ e′ →∗ e
′′ ⇒ e#e

′′

for all e, e
′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev are concurrent, e co e

′
iff ¬(e →∗

e
′ ∨ e

′ →∗ e ∨ e#e
′
). C ⊆ Ev is a configuration iff (1) C is conflict-free:

∀e, e′ ∈ C¬(e#e′) and (2) downward-closed: e ∈ C and e′ →∗ e implies e′ ∈ C.

We assume discrete event structures. Discreteness imposes a finiteness con-
straint on the model, i.e., there are always only a finite number of causally
related predecessors to an event, known as the local configuration of the event
(written ↓e). A further motivation for this constraint is given by the fact that
every execution has a starting point or configuration. A trace of execution in an
event structure is a maximal configuration. An event e may have an immediate
successor e′ according to the order →∗: in this case, we will usually write e → e′.
The relation given by → is called immediate causality.

Event structures are enriched with a labelling function μ : Ev → 2L that
maps each event onto a subset of elements of L. This labelling function is nec-
essary to establish a connection between the semantic model (event structure)
and the syntactic model it is describing. The set L of labels in our case either
denote formulas (constraints over integer variables, e.g., x > 9 or y = 5), logical
propositions (e.g., pro1) or actions (e.g., ma1). If for an event e ∈ Ev, μ(e)
contains an action α, then e denotes the occurrence of that action α. If μ(e)
contains a formula or logical proposition ϕ then ϕ must hold when e occurs.

We consider an additional labelling function ν : Ev → N × N to associate
to each event its priority and duration. For an event e with ν(e) = (p,), the
highest the value of p the higher the priority associated to the event. The second
component of ν(e) = (, d) gives d, the time units spent at event e. The labelling
function ν is used later when fine-tuning the composition with respect to label
conflicts.

238 J. Bowles and M.B. Caminati

A labelled event structure over a set of labels L is a triple M = (Ev, μ, ν).
Let M1, . . . , Mn with Mi = (Ei, μi, νi) a finite set of labelled event structures
over sets of labels Li with 1 ≤ i ≤ n. Let L =

⋃n
i=1 Li. A finite set of label

constraints defined over L is given by Γ ⊆ Li × Lj where i �= j characterising
label conflicts.

We do not show how to generate an event structure from a sequence diagram,
just the general idea. The locations along the lifelines of sequence diagrams are
associated to one or more events. Locations within different operands of an
alternative fragment correspond to events in conflict, whereas locations within
operands of a parallel fragment correspond to concurrent events. The events
associated to the locations along a lifeline are related by causality (partial order).
For more details see for instance [14].

Recall the example of Fig. 1 introduced in the previous section. The loca-
tions along the lifeline of instance p have been marked in Fig. 1. The locations
associated to the conditions/guards of the alternative fragments belong to the
instances of class D, but that distinction is irrelevant for our purposes. The label
conflicts are given by Γ = {(ma1,mc1), (ma2,mb2)}. The behaviour of p in the
individual diagrams of Fig. 1 is shown in the three event structures MA, MB

and MC of Fig. 2, where the events are associated to the marked locations of
the corresponding sequence diagram as expected. The defined labels are as fol-
lows: μA(e2) = {pro1,ma1}, μA(e3) = {pro2,ma3}, and μA(e4) = {ma2} for
the event structure associated to sdA; μB(g2) = {mb1} and μB(g3) = {mb2}
associated to sdB; and μC(f2) = {x > 9,mc1} and μC(f3) = {x > 20,mc3}
associated to sdC.

Fig. 2. Corresponding event structures for instance p.

The labels of some of the events above are inconsistent/conflicting according
to Γ , namely events e2 and f2, and events e4 and g3. When obtaining the com-
position of the models above we need to make sure the label inconsistencies are
detected and avoided. A composed model that avoids the labels could reduce the
composition to the trace of execution τ1 = {e0, e1, e3, g0, g1, g2, g3, g4, f0, f1, f3}
or τ2 (identical to τ1 except that it contains f2 instead of f3). However, these
traces may not be the best traces of execution. The labels on events are only
inconsistent if they occur simultaneously, and if we know where instance p is
within each of the scenarios we may be able to avoid it. The labelling function
ν gives us that information.

Correct Composition of Dephased Behavioural Models 239

Assume the following ν labels for some of the events in our example: ν(e0) =
ν(g0) = ν(f0) = (1, 1), ν(e1) = ν(g1) = ν(f1) = (1, 1), ν(e2) = (5, 3), ν(e3) =
(1, 3), ν(e4) = (5, 2), ν(g2) = (1, 2), ν(g3) = (1, 1), ν(f1) = (1, 1), ν(f2) = (3, 3)
and ν(f3) = (1, 2). Consider the possible traces of execution shown in Fig. 3 with
time evolving from the left to the right, and considering the events in sdA with
highest priority (here assumed to have value 5).

Fig. 3. Possible traces of execution with and without inconsistencies.

The traces illustrate how the event duration and the (dephased) order in
which execution is done for the different scenarios may or may not contain
inconsistencies. The first two example traces contain inconsistencies, because
events with label conflicts occur at the same time. A resolution for trace1 could
replace the occurrence of f2 with f3 (compromising on the effectiveness of f2 but
guaranteeing the higher priority of e2), and for trace2 could change the order of
occurrence of g2 and g3. Note that when having a conflict between two events
with an assigned priority we always try to satisfy the event with the highest
priority first. Here e2 has priority 5 and f2 has priority 3, so we favour e2. If
both events had the same priority the resolution would pick one of the events at
random. In trace3 no inconsistencies are present and all events have the highest
priority. In the next section we show how we can generate automatically the
valid traces for a set of labelled event structures given a set of label conflicts and
the degree that each structure is being dephased.

4 Isabelle and Z3 Combined

We combine two formal techniques to calculate automatically the outcome of the
composition of two or more behavioural models as a set of allowed traces and
to determine that the result is correct : the theorem prover Isabelle [17] and the
SMT solver Z3 [16].

Isabelle is a theorem prover or proof assistant which provides a framework
to accommodate logical systems (deductive rules, axioms), and compute the
validity of logical deductions according to a given system. In this paper, we use
Isabelle’s library based on higher-order logic (HOL). In HOL, the basic notions
are type specification, function application, lambda abstraction, and equality.
In addition to be able to check logical inference over logical systems, theorem
provers such as Isabelle also contain automated deduction tools, and interfaces
to external tools such as SMT solvers and automated theorem provers. We use
the theorem prover to guarantee the correctness of our models, the composition
result and traces.

240 J. Bowles and M.B. Caminati

A satisfiability modulo theories (SMT) solver is a computer program designed
to check the satisfiability of a set of formulas (known as assertions) expressed
in first-order logic, where for instance arithmetic operations and comparison
are understood, and additional relations and functions can be given a semantic
meaning in order to make the problem satisfiable. Within proof assistants, SMT
solvers are used to find proofs by adding already proved theorems to the list of
assertions, and by negating the statement to be proved to reach a contradiction.
If a SMT solver returns unsat, then a proof can be reconstructed from the given
assertions. The integration between Isabelle and SMT solvers such as Z3 provides
users an additional powerful combination to be able to produce more proofs
automatically. We use the SMT solver to identify label inconsistencies, which
may require the use of arithmetic operations and comparison, and to find a
solution which avoids the inconsistencies and considers the additional labelling
information given by ν.

Let M1, . . . , Mn, with Mi = ((Evi,→∗
i ,#i), μi, νi) and 1 ≤ i ≤ n over a set

of labels Li, be a list of finite event structures. Let Γ ⊆ Li×Lj with i �= j denote
the set of label conflicts. We assume that the corresponding sets of events are
pairwise disjoint. In what follows we denote the immediate causality →i by Gi,
and set

G :=
⋃

i=1,...,n

Gi,

:=
⋃

i=1,...,n

#i.

Given a relation R over a set Y and a set X ⊆ Y , we introduce the notation
R→ (X) to denote the image of X through R.

We will now proceed in steps: first, we show how to compute traces, then we
show how to use ν to obtain the preferred one, depending on the duration and
priority assigned to single events. In doing so, we will write formulas close to the
first-order logic language used by SMT solvers; for the sake of readability, how-
ever, we will employ some simplifications. In particular, we adopt infix notation
instead of prefix notation, we use set-theoretical styling instead of predicates
(e.g., writing (j, k) ∈ Gi in lieu of Gi j k), and we omit type specifications.

4.1 Trace Calculation

To represent an execution trace, we need to express which events are part of it,
and in which order. The first piece of information will be given by a boolean
function over all the events, namely isSelected.

We can compute isSelected using an SMT solver as follows. Let us illus-
trate the procedure for a fixed event structure Evi. The conditions of isSelected
being conflict-free and downward-closed (see Definition 1) are straightforward
to express:

∀j, k ∈ Evi. isSelected (j) ∧ isSelected (k) → ¬ (j#k)

Correct Composition of Dephased Behavioural Models 241

∀j ∈ Range (Gi) . isSelected (j) →
∧

k∈(G−1
i)→{j}

isSelected (k)

The two formulas above capture the notion of configuration (see Definition 1)
in a way amenable to SMT solvers. To compute traces of execution (Sect. 3), we
have to capture the notion of a maximal configuration. This notion implies quan-
tifying over configurations, which is not allowed in the first-order logic universe
of SMT solvers: sets in general are not first-class objects. However, the notion
of maximality can be reformulated in the case of configurations of finite event
structures as follows:

∀z ∈ Evi. ∃y ∈ Evi. ((y#z ∧ isSelected (y)) ∨
((y, z) ∈ Gi ∧ ¬ isSelected (y))). (1)

The formulas above can be used to compute traces via an SMT solver; more
precisely, the events for which isSelected is true represent the event set of a
trace, and the event set of any legal trace satisfies the assertions above. We will
formally prove the correctness of this statement in Sect. 5.

To add an order to this set, we proceed as follows. First, taken a single
Gi, we need to obtain the corresponding partial order Pi (effectively obtaining
the original causality relation →∗

i), which can be derived from the following
assertions:

∀j, k. (j, k) ∈ Gi → (j, k) ∈ Pi,

∀j, k, l. (j, k) ∈ Pi ∧ (k, l) ∈ Pi → (j, l) ∈ Pi,

∀j ∈ Evi. (j, j) ∈ Pi,

∀j, k. (j, k) ∈ Pi ∧ (k, j) ∈ Pi → j = k.

We now use Pi to obtain a sorting of all the selected events of Evi. This can
be done by introducing an injective function si : Evi → N, and then imposing
that it is order-preserving (between the partial order Pi and the canonical order
relation for natural numbers), surjective over the integer interval [1, . . . , |Evi|],
and such that si (j) < si (k) whenever j is selected and k is not:

∀j, k. (j, k) ∈ Pi → si (j) ≤ sj (k) ,

∀j, k ∈ Evi.j �= k → si (j) �= si (k) ,

∀j ∈ Evi.si (j) ≥ 1
∀j ∈ Evi.si (j) ≤ |Evi|

∀j, k ∈ Evi. isSelected (j) ∧ ¬ isSelected (k) → si (j) < si (k) .

4.2 Using ν for Trace Selection

As done in the example of Fig. 3, we want to be able to determine whether events
from distinct event structures overlap, in order to decide whether the conflict
they might have is triggered or not. We associate a clock function to each event,

242 J. Bowles and M.B. Caminati

expressing the time when the event starts. To calculate it, we use the sorting
functions si obtained in the previous section, together with the duration of each
event provided by ν. This can be done by requiring that an event following
another (according to si) starts exactly when the latter ends:

∀j, k ∈ Evi.

(isSelected j ∧ isSelected k ∧ si (j) ≤ |Evi| ∧ si (k) ≤ |Evi| ∧ si (k) − si (j) = 1)
→ clock (k) = clock (j) + ν2 (j) ,

where ν2 is the second component of ν, yielding the duration.
The formula above leaves the clocks of the roots undetermined, hence we

need to set them separately. This allows us to introduce dephasing between
different models, by specifying different clocks for the roots of different models,
which means starting each model at dephased times. Finally, the concept of clock
allows us to avoid inconsistencies due to events mutually in conflict, but whose
occurrence is not simultaneous.

To attain this goal, we assign a priority (which we also refer to as score) to
each event and to each pair of events from distinct models, through the func-
tion priority and Score, respectively, both yielding integer values. Score (j, k)
will take into account both the absolute conflict between events j and k, and
their clock, in order to decide whether they are in conflict given a trace (recall,
from the definition above and the definition of si in previous section, that each
trace determines clock values for each event). Formally, this is obtained by the
following requirement, repeated for all m �= n, m,n ∈ {1, . . . , n}:

∀j ∈ Evm, k ∈ Evn. isSelected (j) ∧ isSelected (k) → Score (j, k) =
f (clock (j) , clock (k) , ν2 (j) ,D (μ (j) , μ (k))) ,

where D calculates the absolute conflict (a negative number) between events
based on their label, and is passed to f . Further, f combines that with the
distance of the event occurrences to obtain the effective result, as follows:

f (x1, x2, y, z) :=

{
z, if x2 − x1 ∈ [0, y]
0, otherwise.

Besides conflicts between events in distinct models, the other criterion when
picking a trace is the absolute priority of each event. Therefore, we also require

∀j. isSelected (j) → priority (j) = ν1 (j)
∀j.¬ isSelected (j) → priority (j) = 0,

where ν1 is the first component of ν, yielding the priority.
To obtain the final trace, we sum over all the Score (j, k) and over all the

values priority (j), and pick the trace maximising such sum. To do so, we need
to exploit the optimizing part of the SMT solver Z3, νZ [2].

Correct Composition of Dephased Behavioural Models 243

4.3 Example

We test the output of our approach with respect to the simple example of Fig. 3.
In the first case (trace1 of Fig. 3), all the models start executing together, and the
SMT solver yields the optimal trace on the left of Table 1. The incompatibility
between g3 and e4 does not pose problems, since those two events cannot overlap.
However, the solver has been forced to choose between the branch starting at
e2 and f2. Given that the e2 branch has the highest priority overall, it has been
picked. But event f2 also has a high priority, which leads to his choice over
f3, as soon as dephasing allows that. We now test that this is indeed the case.
The right-hand side of Table 1 displays the output resulting from running the
same experiment, but with f0 happening at time 4 and g0 happening at time 1
(corresponding to trace3 in Fig. 3):

Table 1. Outputs corresponding to trace1 (left) and trace3 (right)

clock event order priority duration

0 e0 1 1 1

0 f0 1 1 1

0 g0 1 1 1

1 e1 2 1 1

1 f1 2 1 1

1 g1 2 1 1

2 e2 3 5 3

2 f3 3 1 2

2 g2 3 1 2

4 g3 4 1 1

5 e4 4 5 2

5 g4 5 1 4

clock event order priority duration

0 e0 1 1 1

1 e1 2 1 1

1 g0 1 1 1

2 e2 3 5 3

2 g1 2 1 1

3 g3 3 1 1

4 f0 1 1 1

4 g2 4 1 2

5 e4 4 5 2

5 f1 2 1 1

6 f2 3 3 3

6 g4 5 1 4

Now, the incompatibility between e2 and f2 can be avoided by dephasing,
and indeed both events are part of the new trace. We also note that the incom-
patibility between e4 and g3 has also been avoided by swapping the execution of
g2 and g3, as expected.

5 Verification

The first-order language used in SMT solvers often requires laborious and error-
prone translation from higher-level mathematical abstractions. Let us take the
notion of event structure as an example: the concepts of partial order, and rela-
tion in general are expressed typically through sets of ordered pairs. However,
the notion of set is not directly available in SMT-LIB, and one is forced to
choose a lower-level representation of it. For example, by representing relations

244 J. Bowles and M.B. Caminati

as boolean predicates taking two arguments; this, in turn, typically makes higher-
level operations (such as composition, image, taking the domain, injectivity, etc.)
more complicated.

A way of tackling the complexity arising from this translation, and to make
sure that it correctly represents the involved objects, is to write the wanted orig-
inal definitions in a higher-order language (for example higher-order logic, HOL)
which allows to express them easily. In the same language, we can of course also
write definitions closer to the ones required for SMT solvers. The crucial point
is that Isabelle provides an SMT-LIB generator which can generate, from the
latter definitions, SMT assertion directly executable by SMT solvers. And, at
the same time, we can prove, inside Isabelle, the equivalence between the stan-
dard definitions and those closer to the SMT language. Since the latter directly
generate the SMT code used for our computations, the formal equivalence proof
is also a proof of correctness for our generated SMT code.

Hence, we write in Isabelle a definition of event structure which is close to
Definition 1:

abbreviation ”isLes causality conflict ==
propagation conflict causality & sym conflict &
irrefl conflict & trans causality &
antisym causality & reflex causality ” .

Above isLes causality conflict returns true exactly when causality
and conflict constitute a valid event structure. In the definition above, causal-
ity and conflicts are sets of pairs, which permits to use the standard property of
symmetry (sym), transitivity (trans) already present in the Isabelle libraries. We
only needed to introduce propagation as a direct translation of the propagation
condition occurring in Definition 1, which we omit here.

On the other hand, an equivalent definition is also introduced in Isabelle:

abbreviation ”IsLes Causality Conflict ==
Propagation Conflict Causality & Sym Conflict &
Irrefl Conflict & Trans Causality &
Antisym Causality & Reflex Causality ” ,

which is similar to the previous one, but where Causality and Conflict are no
longer sets, but predicates.

This allows us to use the definition of IsLes for producing SMT code directly
through Isabelle’s SMT generator. Since this generator is originally provided for
theorem proving, and not for direct SMT computations as we are interested here,
we have to trick Isabelle into proving a lemma:

lemma assumes ”IsLes Causality Conflict” shows False

sledgehammer run [provers=z3 , minimize=false ,
overlord=true , timeout=1] (assms)

The lemma above makes some assumptions (hypotheses) written after the
keyword assumes. The assumptions include that the two relations described
constitute a valid event structure. The keyword shows introduces the thesis
(here False) and sledgehammer is Isabelle’s command for referencing outside

Correct Composition of Dephased Behavioural Models 245

Fig. 4. Overview of the formal verification of the SMT code.

tools (ATPs, SMT solvers), used here to run Z3. We note that the argument
assms is used to instruct sledgehammer to ignore any other theorems in the
Isabelle library and consider only the stated assumptions.

In the lines above, Isabelle will pass to Z3 a file which contains one dec-
laration for each of the relations Causality and Conflict, and assertions for
each of the stated hypotheses. In the present case, we only have one hypothesis,
which will result in an SMT definition of event structure, directly usable for our
computations.

The last step to certify the correctness of this SMT generated code is to prove
the equivalence of isLes and IsLes, which is attained through the following
theorem:

theorem ”IsLes causality conflict ↔
(isLes (pred2set Causality) (pred2set Conflict)) ” ,

where pred2set converts from relations represented as predicates into relations
represented as sets.

The idea of using Isabelle as an interface to SMT code becomes even more
fruitful in cases where the SMT code used for computing a given object departs
substantially from the original or standard mathematical definition of that
object. This usually happens, e.g., because the original definition is not directly
expressible as a finite number of formula in first-order logic (the language of
SMT solvers), or because, even if it is, it is inefficient. In such cases, we can
express both the original definition and the definition used for SMT comput-
ing in Isabelle, which we can then use both to generate the SMT code for the
latter and to formally prove the equivalence of the two definitions, as from the
diagram in Fig. 4. As an example, let us take the trace computation seen at the
beginning of Sect. 4.1: there we had to resort to an alternative, less intelligi-
ble definition of maximality of configuration (1), because the original definition
implied quantifying over all configurations.

In Isabelle, we can easily render the pen-and-paper definitions of event struc-
ture (which we have seen earlier), of configuration and of trace. We start by writ-
ing the condition specifying that our candidate configuration C is conflict-free:

definition ”isConflictFree Cf C = ((C × C) ∩ Cf = {})” ,

246 J. Bowles and M.B. Caminati

and the condition about C being downward closed:

definition ”isDownwardClosed Ca C =
(C ⊆ events Ca &
(∀ e f . e ∈ C & (f , e) ∈ Ca → f ∈ C)) ” .

This allows the immediate definition of configuration:

definition ”isConfiguration Ca Cf C =
isConflictFree Cf C & isDownwardClosed Ca C” ,

and that of being a trace:

definition ”isTrace Ca Cf C =
isConfiguration Ca Cf C &
(∀ Y . Y ⊃ C → ¬ (isConfiguration Ca Cf Y)) ” ,

where the last line expresses the maximality of the configuration C. We write the
same line (i.e., maximality) in the way seen in Sect. 4.1:

abbreviation ”isMaximalConfSmt Ca Cf C ==
(∀ z ∈ events Ca − C .

z ∈ Cf ‘ ‘ C ∨ (immediatePredecessors Ca {z})−C
= {})” ,

where immediatePredecessors Ca {z} returns all the events e satisfying e → z
(we recall that → is the immediate causality obtained from →∗). Finally, the
following Isabelle theorem states that (1) is equivalent, for a configuration of a
finite event structure, to the original trace definition:

theorem correctness : assumes ”finite Ca” ”isLes Ca Cf”
”isConfiguration Ca Cf C” shows

”(isTrace Ca Cf C) ↔ isMaximalConfSmt Ca Cf C”

We note that the theorem assumes that C is a configuration: this is not
a problem because, as seen in Sect. 4.1, the notion of configuration admits a
straightforward formulation in SMT, while the problematic one is that of max-
imality for a configuration. We also note that isMaximalConfSmt builds on
immediatePredecessors Ca, rather than directly on Ca. This is also not a prob-
lem, since the SMT computations we introduced in Sect. 4.1 take as input the
immediate causality relations Gi, i = 1, . . . , n, and use them to calculate via
SMT the causalities →∗

i .
The Isabelle definition isMaximalConfSmt can be used to automatically gen-

erate SMT code through sledgehammer, as we did with IsLes. This corresponds
to the vertical arrow on the left in Diagram 4. In this case, however, the obtained
SMT code is not as efficient as the one we manually wrote in Sect. 4.1: it is a general
fact that the efficiency of SMT code can depend dramatically on formal details,
such as eliminating quantifiers by explicit enumeration, rewriting the assertions
in normal forms, etc. . . We want to keep both the efficiency of the manually-
written SMT code and the correctness of the Isabelle-generated SMT code. Our
solution is to take both, and prove their equivalence using the SMT solver itself.
This corresponds to the horizontal arrow at the bottom of Diagram 4, and can
be implemented as follows. We introduce an SMT boolean function maximality

Correct Composition of Dephased Behavioural Models 247

which is true exactly when (1), repeated for each i = 1, . . . , n, is true. We also
introduce another boolean function maximalityIsabelle, defined by using the
SMT code generated by Isabelle using isMaximalConfSmt. If maximality and
maximalityIsabelle were not equivalent, there would be some isSelected satis-
fying one but not the other. Therefore, we challenged the SMT solver as follows:

(assert (or (and maximality (not maximalityIsabelle))
(and (not maximality) maximalityIsabelle))) ,

obtaining the answer (unsat), which guarantees that the SMT code we use for
trace maximality calculation is correct. Correctness, as usually, means that if we
trust the SMT solver, Isabelle, and the environment in which they run, then we
can trust that the result of our computation is indeed a trace. Not only: we can
rest assured that any trace will satisfy the SMT formula (i.e., Formula 1) passed
to the solver for the computation. To increase our confidence in the results, we
could also prove the correctness of the remaining computations, i.e., the trace
selection (Sect. 4.1). The general mechanism represented in Fig. 4 could again be
applied: we would need to write an Isabelle formal specification of the desired
property guiding the trace selection, write an Isabelle definition to generate SMT
code, and an Isabelle theorem proving that the latter obeys the former. Finally,
we would use the SMT solver to prove that the Isabelle-generated SMT code
and the manually written SMT code are equivalent. Again, this would imply
correctness as soon as we trust the solver and Isabelle; additionally, in this case
we would also need to trust νZ (see end of Sect. 4.2), which is not used in trace
computation but only in trace selection.

6 Related Work

Systems are usually designed through a combination of several models, some
to capture structural aspects and some to describe more complex aspects of
behaviour. As argued in [10], modelling the complete behaviour of a component
or subsystem is difficult and error prone. Instead, it is easier to formulate partial
behaviour as scenarios in Live Sequence Charts (LSCs), UML sequence diagrams
or similar. One of the problems that arises from partial modelling is potentially
inconsistent or incomplete behaviour.

When looking at the integration of several model views or diagrams, Widl
et al. [24] deal with composing concurrently evolved sequence diagrams in accor-
dance to the overall behaviour given in state machines. They make direct use of
SAT-solvers for the composition. Liang et al. [15] present a method of integrat-
ing sequence diagrams based on the formalisation of sequence diagrams as typed
graphs. Both these papers focus on less complex structures. For example, they do
not deal with combined fragments, which can potentially cause substantial com-
plexity. Bowles and Bordbar [6] present a method of mapping a design consisting
of class diagrams, OCL constraints and sequence diagrams into a mathemati-
cal model for detecting and analysing inconsistencies. It uses the same under-
lying categorical construction as done in [5] but it has not been automated.

248 J. Bowles and M.B. Caminati

On the other hand, Zhang et al. [26] and Rubin et al. [21] use Alloy for the
composition of class diagrams. They transform UML class diagrams into Alloy
and compose them automatically. They focus on composing static models and
the composition code is produced manually.

We used Alloy to automatically compose sequence diagrams in [3,4]. Our
experience with Alloy has shown that it has limitations which have a direct
impact on the scalability of the approach [7]. There is an exponential growth in
time when trying to compose diagrams with an increasing number of elements,
which becomes unusable in practice. The Alloy analyzer is SAT solver-based and
SAT- solving time may increase enormously, depending on factors such as the
number of variables and the average length of the clause [9]. Z3 [16] performs
much better and we have used it in more recent work [7,8,13]. We do not know
of other approaches using Z3 for model composition.

We are addressing inconsistent combination of behavioural models in this
paper. A SAT-based approach, such as Alloy, would allow us to detect inconsis-
tencies and highlight them, as a result of not being able to generate a solution
for the composition. When two or more scenarios combined have inconsistencies,
a designer benefits not only from knowing which inconsistencies there are, but
what traces of execution can bypass the inconsistencies. In practice, it is unlikely
that inconsistencies can be removed altogether, and instead we want to find the
traces that are valid, avoid the inconsistencies, and may satisfy additional crite-
ria such as priorities. SAT solvers cannot be used in this case whereas we have
shown that SMT solvers can in another context [13]. The present paper makes
a novel contribution by showing how SMT solvers such as Z3 can be used to
find the best solution to a generally unsolvable problem of composing models
with known inconsistencies. Finally, the typical combination of SMT solvers and
proof assistants is done to help finding proofs, and we bring this combination into
a completely different setting for detecting and resolving problems in complex
behaviour.

7 Conclusions

Inspired by a problem from the medical domain, we have explored a novel app-
roach to compose scenarios and their underlying, possibly dephased, traces of
execution. Our approach allows us to detect and avoid inconsistencies (if pos-
sible) to generate a valid set of traces of execution for a composed model. The
traces can be fine-tuned to take into account additional requirements on the
degree of priority that one model or certain steps in a process (events in our
approach) have over other models or alternatives. Moreover, our approach is
able to find the best trace of execution with respect to these constraints. Key
to our approach is the use of SMT solvers to search for the best solution. Our
approach uses a novel combination of the theorem prover Isabelle and the con-
straint solver Z3, where the theorem prover is fundamental to guarantee the
correctness of the approach and to facilitate the interaction with Z3 through
the provided SMT-LIB generator. This is important because, on one hand,

Correct Composition of Dephased Behavioural Models 249

writing SMT code directly is time-consuming and error-prone while, on the other
hand, the existing interfaces of SMT solvers with higher-level languages (e.g.,
APIs) are not currently, to the best of our knowledge, formally verified.

This paper focused on the semantics of the underlying behavioural models.
Separately we are developing mechanisms to visualise the solutions obtained
back to the designer. We have used Graphviz in our earlier work in [3,4] to show
the composition solution obtained with Alloy. In future work we want to explore
visualisations that work directly on the modelling approaches used by designers,
and in particular in the case of inconsistencies, can show them more effectively;
thus we also aim at achieving an increased adoption of our approach by designers,
which in turn is needed to test and validate our techniques on realistic application
problems. Work is in progress to generalize the time representation to allow the
duration of an event to be a range, rather than a specific amount of time units.
A further direction for future work is to make the scheme presented here to deal
with incompatibilities and priorities even more flexible by using soft constraints:
currently, the trace selection is performed by expressing a maximisation problem
with hard constraints only; however, soft constraints can be implemented, e.g.,
via the SMT-LIB command check-sat-assuming. Finally, future work will also
tackle the issue of finding a way to accommodate indefinite loops and non-
terminating behaviours, possibly present in given models, in our approach.

References

1. Araújo, J., Whittle, J., Kim, D.: Modeling and composing scenario-based require-
ments with aspects. In: RE 2004, pp. 58–67. IEEE Computer Society Press (2004)

2. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νz - An Optimizing SMT Solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 14

3. Bowles, J., Alwanain, M., Bordbar, B., Chen, Y.: Matching and Merging Scenarios
Automatically with Alloy. In: Hammoudi, S., Pires, L.F., Filipe, J., das Neves,
R.C. (eds.) MODELSWARD 2014. CCIS, vol. 506, pp. 100–116. Springer, Cham
(2015). doi:10.1007/978-3-319-25156-1 7

4. Bowles, J.K.F., Bordbar, B., Alwanain, M.: A Logical Approach for Behavioural
Composition of Scenario-Based Models. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 252–269. Springer, Cham (2015). doi:10.1007/
978-3-319-25423-4 16

5. Bowles, J.K.F.: Decomposing Interactions. In: Johnson, M., Vene, V. (eds.)
AMAST 2006. LNCS, vol. 4019, pp. 189–203. Springer, Heidelberg (2006). doi:10.
1007/11784180 16

6. Bowles, J., Bordbar, B.: A formal model for integrating multiple views. In: ACSD
2007, pp. 71–79. IEEE Computer Society Press (2007)

7. Bowles, J., Bordbar, B., Alwanain, M.: Weaving true-concurrent aspects using
constraint solvers. In: Application of Concurrency to System Design (ACSD 2016).
IEEE Computer Society Press, June 2016

8. Bowles, J.K.F., Caminati, M.B.: Mind the gap: addressing behavioural inconsisten-
cies with formal methods. In: 23rd Asia-Pacific Software Engineering Conference
(APSEC). IEEE Computer Society (2016)

http://dx.doi.org/10.1007/978-3-662-46681-0_14
http://dx.doi.org/10.1007/978-3-319-25156-1_7
http://dx.doi.org/10.1007/978-3-319-25423-4_16
http://dx.doi.org/10.1007/978-3-319-25423-4_16
http://dx.doi.org/10.1007/11784180_16
http://dx.doi.org/10.1007/11784180_16

250 J. Bowles and M.B. Caminati

9. D’Ippolito, N., Frias, M.F., Galeotti, J.P., Lanzarotti, E., Mera, S.: Alloy+HotCore:
A Fast Approximation to Unsat Core. In: Frappier, M., Glässer, U., Khurshid, S.,
Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 160–173. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11811-1 13

10. Harel, D., Marelly, R.: Come, Let’s Play. Scenario-based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

11. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2006)

12. Klein, J., Hélouët, L., Jézéquel, J.: Semantic-based weaving of scenarios. In: AOSD
2006, pp. 27–38. ACM (2006)

13. Kovalov, A., Bowles, J.K.F.: Avoiding Medication Conflicts for Patients with Mul-
timorbidities. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681,
pp. 376–390. Springer, Cham (2016). doi:10.1007/978-3-319-33693-0 24

14. Küster-Filipe, J.: Modelling concurrent interactions. Theoret. Comput. Sci. 351,
203–220 (2006)

15. Liang, H., Diskin, Z., Dingel, J., Posse, E.: A General Approach for Scenario Inte-
gration. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MOD-
ELS 2008. LNCS, vol. 5301, pp. 204–218. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87875-9 15

16. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

17. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL–A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

18. OMG: Business Process Model and Notation. Version 2.0. OMG, documentid:
formal/2011-01-03 (2011). http://www.omg.org

19. OMG: UML: Superstructure. Version 2.4.1. OMG, documentid: formal/2011-08-06
(2011). http://www.omg.org

20. Reddy, R., Solberg, A., France, R., Ghosh, S.: Composing sequence models using
tags. In: Proceedings of MoDELS Workshop on Aspect Oriented Modeling (2006)

21. Rubin, J., Chechik, M., Easterbrook, S.: Declarative approach for model composi-
tion. In: MiSE 2008, pp. 7–14. ACM (2008)

22. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans. Software Eng. 35(3), 384–406 (2009)

23. Whittle, J., Araújo, J., Moreira, A.: Composing aspect models with graph trans-
formations. In: Proceedings of the 2006 International Workshop on Early Aspects
at ICSE, pp. 59–65. ACM (2006)

24. Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M., Tompits,
H.: Guided Merging of Sequence Diagrams. In: Czarnecki, K., Hedin, G. (eds.) SLE
2012. LNCS, vol. 7745, pp. 164–183. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36089-3 10

25. Winskel, G., Nielsen, M.: Models for Concurrency. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of Logic in Computer Science: Semantic Modelling,
vol. 4, pp. 1–148. Oxford Science Publications, Oxford (1995)

26. Zhang, D., Li, S., Liu, X.: An approach for model composition and verification. In:
NCM 2009, pp. 1102–1107. IEEE Computer Society Press (2009)

http://dx.doi.org/10.1007/978-3-642-11811-1_13
http://dx.doi.org/10.1007/978-3-319-33693-0_24
http://dx.doi.org/10.1007/978-3-540-87875-9_15
http://dx.doi.org/10.1007/978-3-540-87875-9_15
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://www.omg.org
http://www.omg.org
http://dx.doi.org/10.1007/978-3-642-36089-3_10
http://dx.doi.org/10.1007/978-3-642-36089-3_10

	Correct Composition of Dephased Behavioural Models
	1 Introduction
	2 Context and Contribution
	3 Formal Model
	4 Isabelle and Z3 Combined
	4.1 Trace Calculation
	4.2 Using for Trace Selection
	4.3 Example

	5 Verification
	6 Related Work
	7 Conclusions
	References

