
Component-Based Modeling in Mediator

Yi Li and Meng Sun(B)

LMAM and Department of Informatics, School of Mathematical Sciences,
Peking University, Beijing, China

liyi math@pku.edu.cn, sunmeng@math.pku.edu.cn

Abstract. In this paper we propose a new language Mediator to formal-
ize component-based system models. Mediator supports a two-step mod-
eling approach. Automata, encapsulated with an interface of ports, are the
basic behavior units. Systems declare components or connectors through
automata, and glue them together. With the help of Mediator, components
and systems can be modeled separately and precisely. Through various
examples, we show that this language can be used in practical scenarios.

Keywords: Component-based modeling · Coordination · Formal
method

1 Introduction

Component-based software engineering has been prospering for decades. Through
proper encapsulations and clearly declared interfaces, components can be reused
by different applications without knowledge of their implementation details.

Currently, there are various tool supporting component-based modeling. NI
LabVIEW [14], MATLAB Simulink [8] and Ptolomy [10] provide powerful mod-
eling platforms and a large number of built-in component libraries to support
commonly-used platforms. However, due to the complexity of models, such tools
mainly focus on synthesis and simulation, instead of formal verification. There
is also a set of formal tools that prefer simple but verifiable model, e.g. Esterel
SCADE [2] and rCOS [12]. SCADE, based on a synchronous data flow language
LUSTRE, is equipped with a powerful tool-chain and widely used in develop-
ment of embedded systems. rCOS, on the other hand, is a refinement calculus
on object-oriented designs.

Existing work [15] has shown that, formal verification based on existing indus-
trial tools is hard to realize due to the complexity and non-open architecture of
these tools. Unfortunately, unfamiliarity of formal specifications is still the main
obstacle hampering programmers from using formal tools. For example, even
in the most famous formal modeling tools with perfect graphical user interfaces
(like PRISM [11] and UPPAAL [3]), sufficient knowledge about automata theory
is necessary to properly encode the models.

The channel-based coordination language Reo [4] provides a solution where
advantages of both formal languages and graphical representations can be inte-
grated in a natural way. As an exogenous coordination language, Reo doesn’t
c© Springer International Publishing AG 2017
J. Proença and M. Lumpe (Eds.): FACS 2017, LNCS 10487, pp. 1–19, 2017.
DOI: 10.1007/978-3-319-68034-7 1

2 Y. Li and M. Sun

care about the implementation details of components. Instead, it takes con-
nectors as the first-class citizens. Connectors are organized and encapsulated
through a compositional approach to capture complex interaction and commu-
nication behavior among components.

In this paper we introduce a new modeling language Mediator . Mediator
is a hierarchical modeling language that provides proper formalism for both
high-level system layouts and low-level automata-based behavior units. A rich-
featured type system describes complex data structures and powerful automata
in a formal way. Both components and connectors can be declared through
automata to compose a system. Moreover, automata and systems are encap-
sulated with a set of input or output ports (which we call an interface) and a set
of template parameters so that they can be easily reused in multiple applications.

The paper is structured as follows. In Sect. 2, we briefly present the syntax
of Mediator and formalizations of the language entities. Then in Sect. 3. We
introduce the formal semantics of Mediator. Section 4 provides a case study
where a commonly used coordination algorithm leader election is modeled in
Mediator. Section 5 concludes the paper and comes up with some future work
we are going to work on.

2 Syntax of Mediator

In this section, we introduce the syntax of Mediator, represented by a variant of
Extended Backus-Naur Form (known as EBNF) where:

– Terminal symbols are written in monospaced fonts.
– Non-terminal productions are encapsulated in 〈angle brackets〉 .
– We use “?” to denote “zero or one occurence”, “∗” to denote “zero or more

occurence” and “+” to denote “one or more occurence”.

A Mediator program is defined as follows:

〈program〉 : : = (〈typedef〉 | 〈function〉 | 〈automaton〉 | 〈system〉)
∗

Typedef s specify alias for given types. Functions define customized functions.
Systems declare hierarchical structures of components and connections between
them. Both components and connections are described by automata based on
local variables and transitions.

2.1 Type System

Mediator provides a rich-featured type system to support various data types that
are widely used in both formal modeling languages and programming languages.

Primitive Types. Table 1 shows the primitive types supported by Mediator,
including: integers and bounded integers, real numbers with arbitrary precision,
boolean values, single characters (ASCII only) and finite enumerations.

Component-Based Modeling in Mediator 3

Table 1. Primitive data types

Name Declaration Term example

Integer int −1,0,1

Bounded integer int lowerBound .. upperBound −1,0,1

Real real 0.1, 1E-3

Boolean bool true, false

Character char ‘a’, ‘b’

Enumeration enum item1, ..., itemn enumname.item

Table 2. Composite data types (T denotes an arbitrary data type)

Name Declaration

Tuple T1,...,Tn

Union T1|...|Tn
Array T [length]

List T []

Map map [Tkey] Tvalue

Struct struct { field1:T1,..., fieldn:Tn }
Initialized Tbase init term

Composite Types. Composite types can be used to construct complex data
types from simpler ones. Several composite patterns are introduced as follows
(Table 2):

– Tuple. The tuple operator ‘,’ can be used to construct a finite tuple type with
several base types.

– Union. The union operator ‘|’ is designed to combine different types as a
more complicated one.

– Array and List. An array T [n] is a finite ordered collection containing exactly
n elements of type T . Moreover, a list is an array of which the capacity is not
specified, i.e. a list is a dynamic array.

– Map. A map [Tkey] Tval is a dictionary that maps a key of type Tkey to a
value of type Tval.

– Struct. A struct {field1 : T1, · · · , fieldn : Tn} contains a finite number of
fields, each has a unique identifier fieldi and a particular type Ti.

– Initialized. An initialized type is used to specify default value of a type Tbase

with term.

Parameter Types. A generalizable automaton or system that includes a template
function or template component needs to be defined on many occasions. For
example, a binary operator that supports various operations (+,×, etc.), or an
encrypted communication system that supports different encryption algorithms.

4 Y. Li and M. Sun

Parameter types make it possible to take functions, automata or systems as
template parameters. Mediator supports two parameter types:

1. An Interface, denoted by interface (port1:T1,· · · , portn:Tn), defines a
parameter that could be any automaton or system with exactly the same
interface (i.e. number, types and directions of the ports are a perfect match).
Interfaces are only used in templates of systems.

2. A Function, denoted by func (arg1:T1,· · · , argn:Tn):T, defines a function
that has the argument types T1, · · · , Tn and result types T. Functions are
permitted to appear in templates of other functions, automata and systems.

For simplicity, we use Dom(T) to denote the value domain of type T , i.e. the
set of all possible value of T .

Example 1 (Types Used in a Queue). A queue is a well-known data structure
being used in various message-oriented middlewares. In this example, we intro-
duce some type declarations and local variables used in an automaton Queue
defining the queue structure. As shown in the following code fragment, we declare
a singleton enumeration NULL, which contains only one element null. The buffer
of a queue is in turn formalized as an array of T or NULL, indicating that the
elements in the queue can be either an assigned item or empty. The head and
tail pointers are defined as two bounded integers.
1 typedef enum {null} init null as NULL;
2 automaton <T:type,size:int> Queue(A:in T, B:out T) {
3 variables {
4 buf : ((T | NULL) init null) [size];
5 phead, ptail : int 0 .. (size - 1) init 0;
6 }
7 ...
8 }

2.2 Functions

Functions are used to encapsulate and reuse complex computation processes.
In Mediator, the notion of functions is a bit different from most existing pro-
gramming languages. Mediator functions include no control statements at all
but assignments, and have access only to its local variables and arguments. This
design makes functions’ behavior more predictable. In fact, the behavior of func-
tions in Mediator can be simplified into mathematical functions.

The abstract syntax tree of functions is as follows.

〈funcDecl〉 : : = function 〈template〉 ? 〈identifier〉 〈funcInterface〉 {
(variables { 〈varDecl〉 ∗ })

?

statements { 〈assignStmt〉 ∗ 〈returnStmt〉 }
〈funcInterface〉 : : = ((〈identifier〉 : 〈type〉)

∗
) : 〈type〉

〈assignStmt〉 : : = 〈term〉 (, 〈term〉)
∗
:= 〈term〉 (, 〈term〉)

∗

〈returnStmt〉 : : = return 〈term〉
〈varDecl〉 : : = 〈identifier〉 : 〈type〉 (init 〈term〉)

?

Component-Based Modeling in Mediator 5

Basically, a function definition includes the following parts.

Template. A function may contain an optional template with a set of parameters.
A parameter can be either a type parameter (decorated by type) or a value
parameter (decorated by its type). Values of the parameters should be clearly
specified during compilation. Once a parameter is declared, it can be referred
in all the following language elements, e.g. parameter declarations, arguments,
return types and statements.

Name. An identifier that indicates the name of this function.

Type. Type of a function is determined by the number and types of arguments,
together with the type of its return value.

Body. Body of a function includes an optional set of local variables and a list
of ordered (assignment or return) statements. In an assignment statement, local
variables, parameters and arguments can be referenced, but only local variables
are writable. The list of statements always ends up with a return statement.

Example 2 (Incline Operation on Queue Pointers). Incline operation of pointers
are widely used in a round-robin queue, where storage are reused circularly. The
next function shows how pointers in such queues (denoted by a bounded integer)
are inclined.
1 function <size:int> next(pcurr:int 0..(size-1)) : int 0..(size-1) {
2 statements { return (pcurr + 1)
3 }

2.3 Automaton: The Basic Behavioral Unit

Automata theory is widely used in formal verification, and its variations, finite-
state machines for example, are also accepted by modeling tools like NI Lab-
VIEW and Mathworks Simulink/Stateflow.

Here we introduce the notion of automaton as the basic behavior unit. Com-
pared with other variations, an automaton in Mediator contains local variables
and typed ports that support complicated behavior and powerful communica-
tion. The abstract syntax tree of automaton is as follows.

〈automaton〉 : : = automaton 〈template〉 ? 〈identifier〉 (〈port〉 ∗
) {

(variables { 〈varDecl〉 ∗ })
?

transitions { 〈transition〉 ∗ } }
〈port〉 : : = 〈identifier〉 : (in | out) 〈type〉

〈transition〉 : : = 〈guardedStmt〉 | group { 〈guardedStmt〉 ∗ }
〈guardedStmt〉 : : = 〈term〉 -> (〈stmt〉 | { 〈stmt〉 ∗ })

〈stmt〉 : : = 〈assignStmt〉 | sync 〈identifier〉 +

Template. Compared with templates in functions, templates in automata provide
support for parameters of function type.

6 Y. Li and M. Sun

Name. The identifier of an automaton.

Type. Type of an automaton is determined by the number and types of its ports.
Type of a port contains its direction (either in or out) and its data type. For
example, a port P that takes integer values as input is denoted by P:in int. To
ensure the well-definedness of automata, ports are required to have initialized
data types, e.g. int 0..1 init 0 instead of int 0..1.

Variables. Two classes of variables are used in an automaton definition. Local
variables are declared in the variables segment, which can be referenced only
in its owner automaton. Port variables, on the other hand, are shared variables
that describe the status and values of ports.

Port variables are denoted as fields of ports. An arbitrary port P has two
corresponding Boolean port variables P.reqRead and P.reqWrite indicating
whether there is any pending read or write requests on P , and a data field
P.value indicating the current value of P . When automata are combined, port
variables are shared between automata to perform communications. To avoid
data-conflict, we require that only reqRead and value fields of input ports, and
reqWrite fields of output ports are writable. Informally, an automaton only
requires data from its input port and writes data to its output port.

Transitions. In Mediator, behavior of an automaton is described by a list of
guarded transitions (groups). A transition (denoted by guard -> statements)
comprises two parts, a Boolean term guard that declares the activating condition
of this transition, and a (sequence of) statement(s) describing how variables are
updated when the transition is fired.

We have two types of statements supported in automata:

– Assignment Statement (var1,...,varn := term1,...,termn). Assignment state-
ments update variables with new values where only local variables and
writable port variables are assignable.

– Synchronizing Statement (sync port1,...,portn). Synchronizing statements
are used as synchronizing flags when joining multiple automata. In a syn-
chronizing statement, the order of ports being synchronized is arbitrary. For
further details, please refer to Sect. 3.3.

A transition is called external iff. It synchronizes with its environment
through certain ports or internal nodes with synchronizing statements. In such
transitions, we require that any assignment statements including reference to an
input(output) port should be placed after(before) its corresponding synchronizing
statement.

We use g → S to denote a transition, where g is the guard formula and
S = [s1, · · · , sn] is a sequence of statements.

Transitions in Mediator automata are literally ordered. Given a list of transi-
tions g1 → S1, · · · , gn → Sn where {gij}j=1,··· ,m is satisfied, only the transition
gmin{ij} → Smin{ij} will be fired. In other words, gi → Si is fired iff. gi is satisfied
and for all 0 < j < i, gj is unsatisfied.

Component-Based Modeling in Mediator 7

Example 3 (Transitions in Queue). For a queue, we use internal transitions to
capture the modifications corresponding to the changes of its environment. For
example, the automaton Queue tries to:

1. Read data from its input port A by setting A.reqRead to true when the buffer
isn’t full.

2. Write the earliest existing buffered data to its output port B when the buffer
is not empty.

External transitions, on the other hand, mainly show the implementation details
for the enqueue and dequeue operations.
1 // internal transitions
2 !A.reqRead && (buf[phead] == null) -> A.reqRead := true;
3 A.reqRead && (buf[phead] != null) -> A.reqRead := false;
4 !B.reqWrite && (buf[ptail] != null) -> B.reqWrite := true;
5 B.reqWrite && (buf[ptail] == null) -> B.reqWrite := false;
6
7 // enqueue operation (as an external transition)
8 (A.reqRead && A.reqWrite) -> {
9 sync A; // read data from input port A

10 buf[phead] := A.value; phead := next(phead);
11 }
12 // dequeue operation (as an external transition)
13 (B.reqRead && B.reqWrite) -> {
14 B.value := buf[ptail]; ptail := next(ptail);
15 sync B; // write data to output port B
16 }

If all transitions are organized with priority, the automata would be fully
deterministic. However, in some cases non-determinism is still more than nec-
essary. Consequently, we introduce the notion of transition group to capture
non-deterministic behavior. A transition group tG is formalized as a finite set of
guarded transitions tG = {t1, · · · , tn} where ti = gi → Si is a single transition
with guard gi and a sequence of statements Si.

Transitions encapsulated in a group are not ruled by priority. Instead, the
group itself is literally ordered w.r.t. other groups and single transitions (basi-
cally, we can take all single transitions as a singleton transition group).

Example 4 (Another Queue Implementation). In Example 3, when both enqueue
and dequeue operations are activated, enqueue will always be fired first. Such a
queue may get stuff up immediately when requests start accumulating, and in
turn lead to excessive memory usage. With the help of transition groups, here
we show another non-deterministic implementation which solves this problem.
1 group {
2 (A.reqRead && A.reqWrite) -> {
3 sync A; buf[phead] := A.value; phead := next(phead);
4 }
5 (B.reqRead && B.reqWrite) -> {
6 B.value := buf[ptail]; ptail := next(ptail); sync B;
7 }
8 }

In the above code fragment, the two external transitions are encapsulated
together as a transition group. Consequently, firing of the dequeue operation
doesn’t rely on deactivation of the enqueue operation.

8 Y. Li and M. Sun

We use a 3-tuple A = 〈Ports, V ars, TransG〉 to represent an automaton in
Mediator, where Ports is a set of ports, V ars is a set of local variables (the
set of port variables are denoted by Adj(A), which can be obtained from Ports
directly) and TransG = [tG1 , · · · , tGn

] is a sequence of transition groups, where
all single transitions are encapsulated as singleton transition groups.

2.4 System: The Composition Approach

Theoretically, automata and their product is capable to model various classical
applications. However, modeling complex systems through a mess of transitions
and tons of local variables could become a real disaster.

As mentioned before, Mediator is designed to help the programmers, even
nonprofessionals, to enjoy the convenience of formal tools, which is exactly the
reason why we introduce the notion of system as an encapsulation mechanism.
Basically, a system is the textual representation of a hierarchical diagram where
automata and smaller systems are organized as components or connections.

Example 5 (A Message-Oriented Middleware). A simple diagram of a message-
oriented middleware [5] is provided in Fig. 1, where a queue works as a connector
to coordinate the message producers and consumers.

Producer 1

Producer 2

Producer 3

Queue
Consumer 1

Consumer 2

Consumer 3

Fig. 1. A scenario where queue is used as message-oriented middleware

The abstract syntax tree of systems is as follows:

〈system〉 : : = system 〈template〉 ? 〈identifier〉 (〈port〉 ∗
) {

(internals 〈identifier〉 +
)
?

(components { 〈componentDecl〉 ∗ })
?

connections { 〈connectionDecl〉 ∗ } }
〈componentDecl〉 : : = 〈identifier〉 +

: 〈systemType〉
〈connectionDecl〉 : : = 〈systemType〉 〈params〉 (〈portName〉 +

)

Template. In templates of systems, all the parameter types being supported
include: (a) parameters of abstract type type, (b) parameters of primitive types
and composite types, and (c) interfaces and functions.

Name and Type. Exactly the same as name and type of an automaton.

Component-Based Modeling in Mediator 9

Components. In components segments, we can declare any entity of an interface
type as components, e.g. an automaton, a system, or a parameter of interface
type. Ports of a component can be referenced by identifier.portName once
declared.

Connections. Connections, e.g. the queue in Fig. 1, are used to connect (a) the
ports of the system itself, (b) the ports of its components, and (c) the internal
nodes. We declare the connections in connections segments. Both components
and connections are supposed to run as automata in parallel.

Internals. Sometimes we need to combine multiple connections to perform more
complex coordination behavior. Internal nodes, declared in internals segments,
are untyped identifiers which are capable to weld two ports with consistent data-
flow direction. For example, in Fig. 1 the two internal nodes (denoted by •) are
used to combine a replicator, a queue and a merger together to work as a multi-
in-multi-out queue.

A system is denoted by a 4-tuple S = 〈Ports, Entities, Internals, Links〉
where Ports is a set of ports, Entities is a set of automata or systems (including
both components and connections), Internals is a set of internal nodes and
Links is a set of pairs, where each element of such a pair is either a port or
an internal node. A link 〈p1, p2〉 suggests that p1 and p2 are linked together. A
well-defined system satisfies the following assumptions:

1. ∀〈p1, p2〉 ∈ Links, data transfers from p1 to p2. For example, if p1 ∈ Ports is
an input port, p2 could be

– an output port of the system (p2 ∈ Ports),
– an input port of some automaton Ai ∈ Automata (p2 ∈ Ai.Ports), or
– an internal node (p2 ∈ Internals).

2. ∀n ∈ Internals,∃!p1, p2, s.t. 〈p1, n〉, 〈n, p2〉 ∈ Links and p1, p2 have the same
data type.

Example 6 (Model of the System in Fig. 1). In Fig. 1, a simple scenario is pre-
sented where a queue is used as a message-oriented middleware. To model this
scenario, we need two automata Producer and Consumer (details are omitted
due to space limit, and can be found at [1]) that produce or consume messages
of type T.
1 automaton <T:type> Producer (OUT: out T) { ... }
2 automaton <T:type> Consumer (IN: in T) { ... }
3
4 system <T:type> middleware_in_use () {
5 components {
6 producer_1, producer_2, producer_3 : Producer<T>;
7 consumer_1, consumer_2, consumer_3 : Consumer<T>;
8 }
9 internals M1, M2 ;

10 connections {
11 Merger<T>(producer_1.OUT, producer_2.OUT, producer_3.OUT, M1);
12 Queue<T>(M1, M2);
13 Replicator<T>(M2, consumer_1.IN, consumer_2.IN, consumer_3.IN);
14 }
15 }

10 Y. Li and M. Sun

3 Semantics

In this section, we introduce the formal semantics of Mediator through the fol-
lowing steps. First we use the concept configuration to describe the state of
an automaton. Next we show what the canonical forms of the transitions and
automata are, and how to make them canonical. Finally, we define the formal
semantics of automata as labelled transition systems (LTS).

Instead of formalizing systems as LTS directly, we propose an algorithm that
flattens the hierarchical structure of a system and generates a corresponding
automaton.

3.1 Configurations

States of a Mediator automaton depend on the values of its local variables and
port variables. First we introduce the definition of evaluation on a set of variables.

Definition 1 (Evaluation). An evaluation of a set of variables V is defined
as a function v : V → D that satisfies ∀x ∈ V, v(x) ∈ Dom(type(x)). We denote
the set of all possible evaluations of V ars by EV (V ars).

Basically, an evaluation is a function that maps variables to one of its valid
values, where we use D to denote the set of all values of all supported types.
Now we can introduce configuration that snapshots an automaton.

Definition 2 (Configuration). A configuration of an automaton A = 〈Ports,
V ars, TransG〉 is defined as a tuple (vloc, vadj) where vloc ∈ EV (V ars) is an
evaluation on local variables, and vadj ∈ EV (Adj(A)) is an evaluation on port
variables. We use Conf(A) to denote the set of all configurations of A.

Now we can mathematically describe the language elements in an automaton:

– Guards of an automaton A are represented by boolean functions on its con-
figurations g : Conf(A) → Bool.

– Assignment Statements of A are represented by functions that map configu-
rations to their updated ones sa : Conf(A) → Conf(A).

3.2 Canonical Form of Transitions and Automata

Different statement combinations may have the same behavior. For exam-
ple, a := b; c := d and a, c := b, d. Such irregular forms may lead to
an extremely complicated and non-intuitive process when joining multiple
automata. To simplify this process, we introduce the canonical form of tran-
sitions and automata as follows.

Definition 3 (Canonical Transitions). A transition t = g → [s1, · · · , sn] is
canonical iff. [s1, · · · , sn] is a non-empty interleaving sequence of assignments
and synchronizing statements which starts and ends with assignments.

Component-Based Modeling in Mediator 11

Suppose g → [s1, · · · , sn] is a transition of automaton A, it can be made
canonical through the following steps.

S1. If we find a continuous subsequence si, · · · , sj (where sk is an assignment
statement for all k = i, i+1, · · · , j, and j > i), we merge them as a single one.
Since the assignment statements are formalized as functions Conf(A) →
Conf(A), the subsequence si, · · · , sj can be replaced by s′ = sj ◦ · · · ◦ si

1.
S2. Keep on going with S1 until there is no further subsequence to merge.
S3. Use identical assignments idConf(A) to fill the gap between any adjacent

synchronizing statements. Similarly, if the statements’ list starts or ends
with a synchronizing statement, we should also use idConf(A) to decorate
its head or tail.

It’s clear that once we found such a continuous subsequence, the merging
operation will reduce the number of statements. Otherwise it stops. It’s clear
that S is a finite set, and the algorithm always terminates within certain time.

Definition 4 (Canonical Automata). A = 〈Ports, V ars, TransG〉 is a cano-
nical automaton iff. (a) TransG includes only one transition group and (b) all
transitions in this group are canonical.

Now we show for an arbitrary automaton A = 〈Ports, V ars, TransG〉, how
TransG is reformed to make A canonical. Suppose TransG is a sequence of
transition groups tGi

, where the length of tGi
is denoted by li,

[tG1 = {g11 → S11, · · · , g1l1 → S1l1}, · · · , tGn
= {gn1 → Sn1, · · · , gnln → Snln}]

Informally speaking, once a transition in tGi
is activated, all the other transi-

tions in tGj
(j > i) are strictly prohibited from being fired. We use activated(tG) to

denote the condition where at least one transition in tG is enabled, formalized as

activated(tG = {g1 → S1, · · · , gn → Sn}) = g1 ∨ · · · ∨ gn.

To simplify the equations, we use activated(tG1 , · · · , tGn−1) to indicate that
at least one group in tG1 , · · · , tGn−1 is activated. It’s equivalent form is:

activated(tG1) ∨ · · · ∨ activated(tGn−1)

Then we can generate the new group of transitions with no dependency on
priority as followings.

Trans′
G = [g11 → S11, · · · , g1l1 → S1l1 ,

g21 ∧ ¬activated(tG1) → S21, · · · , g2l2 ∧ ¬activated(tG1) → S2l2 , · · ·
gn1 ∧ ¬activated(tG1 , · · · , tGn−1) → Sn1, · · · ,

gnln ∧ ¬activated(tG1 , · · · , tGn−1) → Snln]

1 The symbol ◦ denotes the composition operator on functions.

12 Y. Li and M. Sun

3.3 From System to Automaton

Mediator provides an approach to construct hierarchical system models from
automata. In this section, we present an algorithm that flattens such a hierar-
chical system into a typical automaton.

For a system S = 〈Ports, Entities, Internals, Links〉, Algorithm 1 flattens
it into an automaton AS = 〈Ports, V ars′, T rans′

G〉, where we assume that all
the entities are canonical automata (they will be flattened recursively first if
they are systems). The whole process is mainly divided into 2 steps:

1. Rebuild the structure of the flattened automaton, i.e. to integrate local vari-
ables and resolve the internal nodes.

2. Put the transitions together, including both internal transitions and external
transitions according to the connections.

First of all, we refactor all the variables in all entities (in Entities) to avoid
name conflicts, and add them to V ars′. Besides, all internal nodes are resolved
in the target automaton, and be represented as

{i field|i ∈ Internals, field ∈ {reqRead, reqWrite, value}} ⊆ V ars′

Once all local variables needed are well prepared, we can merge the transitions
for both internal and external ones.

– Internal transitions are easy to handle. Since they do not synchronize with
other transitions, we directly put all the internal transitions in all entities
into the flattened automaton, also as internal transitions.

– External transitions, on the other hand, have to synchronize with its corre-
sponding external transitions in other entities. For example, when an automa-
ton reads from an input port P1, there must be another automaton which is
writing to its output port P2, where P1 and P2 are welded in the system. An
example is presented as follows.

Example 7 (Synchronizing External Transitions). Consider two queues that
cooperate on a shared internal node: Queue(A,B) and Queue(B,C). Obviously
the dequeue operation of Queue(A,B) and enqueue operation of Queue(B,C)
should be synchronized and scheduled. During the synchronization, the basic
principle is to make sure that synchronizing statements on the same ports should
be aligned strictly.

Dequeue Operation:

(B.reqRead && B.reqWrite)-> {
B.value := buf[ptail];
ptail := next(ptail);
sync B; <---- sync with --

}

Enqueue Operation:

(B.reqRead && B.reqWrite)-> {

--> sync B; <--- and goes to
-

buf[phead] := B.value;
phead := next(phead);

}

After Scheduling:

(B_reqRead && B_reqWrite)-> {
B_value:=buf1[ptail1];
ptail1:=next(ptail1);

--> B_reqRead,B_reqWrite:=
false,false;

buf2[phead2]:=B_value;
phead2:=next(phead2);

}

Component-Based Modeling in Mediator 13

Algorithm 1. Flat a System into an Automaton
Require: A system S = 〈Ports, Entities, Internals, Links〉
Ensure: An automaton A

1: A ← an empty automaton
2: A.Ports ← S.Ports
3: Automata ← all the flattened automata of S.Entities
4: rename local variables in Automata = {A1, · · · , An} to avoid duplicated names
5: for l = 〈p1, p2〉 ∈ S.Links do
6: if p1 ∈ S.Ports then
7: replace all occurrance of p2 with p1
8: else
9: replace all occurrance of p1 with p2

10: end if
11: end for
12: ext trans ← {}
13: for i ← 1, 2, · · · , n do
14: add Ai.V ars to A.V ars
15: for internal ∈ Ai.Ports do
16: add {internal.reqRead, internal.reqWrite, internal.value} to A.V ars
17: end for
18: add all internal transitions in Ai.T ransG to A.TransG
19: add all external transitions in Ai.T ransG to ext trans
20: end for
21: for set trans ∈ P(ext trans) do
22: add Schedule(S, set trans) to A.TransG if it is not null
23: end for

During the synchronization, we refactor the local variables ptail, phead
and buf, and transfer internal node B to a set of local variables. Synchronizing
statement sync B is aligned between two transitions and in turn leads to the
final result, where scheduled synchronizing statements are replaced by its local
behavior – to reset its corresponding port variables.

We now formally present the flatting algorithms for systems. In the following
we use P(A) to denote the powerset of A.

In Mediator systems, only port variables are shared between automata. Dur-
ing synchronization, the most important principle is to make sure assignments to
port variables are performed before the port variables are referenced. Basically,
this is a topological sorting problem on dependency graphs. A detailed algorithm
is described in Algorithm 2. In this algorithm, we use

– ⊥ and to denote starting and ending of a transition’s execution,
– synchronizable(t1, · · · , tn) to denote that the transitions are synchronizable,

i.e. they come from different automaton and for each port being synchronized,
there are exactly 2 transitions in t1, · · · , tn that synchronize it, and

– reset stmt(p) to denote the corresponding statement that resets a port’s sta-
tus p.reqRead, p.reqWrite := false, false.

14 Y. Li and M. Sun

Algorithm 2. Schedule a Set of External Transitions
Require: A System S, a set of external canonical transitions t1, t2, · · · , tn
Ensure: A synchronized transition t

1: if not synchronizable(t1, · · · , tn) then return t ← null
2: t.g, t.S, G ← ∧i ti.g, [], an empty graph 〈V,E〉
3: for i ← 1, · · · , n do
4: add ⊥i,�i to G.V
5: syncs, ext syncs ← {⊥i}, {}
6: for j ← 1, 3, · · · , len(ti.S) do
7: add ti.Sj to G.V
8: if ext syncs 	= {} then add ‘sync ext syncs’ → ti.Sj to G.E
9: for p ∈ syncs do

10: add edge reset stmt(p) → ti.Sj to G.E
11: end for
12: syncs ← { all the synchronized ports in ti.Sj+1 } \S.Ports
13: ext syncs ← { all the synchronized ports in ti.Sj+1 } ∩ S.Ports
14: if j < len(ti.S) then
15: for p ∈ syncs do
16: add reset stmt(p) to G.V if is is not included yet
17: add edge ti.Sj → reset stmt(p) to G.E
18: end for
19: if ext syncs 	= {} then
20: add ‘sync ext syncs’ to G.V
21: add edge ti.Sj → ‘sync ext syncs’ to G.E
22: end if
23: else
24: add edge ti.Sj → �i to G.E
25: end if
26: end for
27: end for
28: if G comprises a ring then t ← null
29: else t.S ← [select all the statements in G.E using topological sort]

Algorithm 2 may not always produce a valid synchronized transition. When
the dependency graph has a ring, the algorithm fails due to circular dependen-
cies. For example, transition g1->{sync A;sync B;} and transition g2->{sync
B;sync A;} cannot be synchronized where both A,B need to be triggered first.

Topological sorting, as we all know, may generate different schedules for
the same dependency graph. The following theorem shows that all the existing
schedules are equivalent as transition statements.

Theorem 1 (Equivalence between Schedules). If two sequences of assign-
ment statements S1, S2 are generated from the same set of external transitions,
they have exactly the same behavior (i.e. S1 and S2 will lead to the same result
when they are executed under the same configuration).

Component-Based Modeling in Mediator 15

3.4 Automaton as Labelled Transition System

With all the language elements properly formalized, now we introduce the formal
semantics of automata based on labelled transition system.

Definition 5 (Labelled Transition System). A labelled transition system is
a tuple (S,Σ,→, s0) where S is a set of states with initial state s0 ∈ S, Σ is a
set of actions, and →⊆ S × Σ × S is a set of transitions. For simplicity, we use
s

a−→ s′ to denote (s, a, s′) ∈→.

Suppose A = 〈Ports, V ars, TransG〉 is an automaton, its semantics can be
captured by a LTS 〈SA, ΣA,→A, s0〉 where

– SA = Conf(A) is the set of all configurations of A.
– s0 ∈ SA is the initial configuration where all variables (except for reqReads

and reqWrites) are initialized with their default value, and all reqReads and
reqWrites are initialized as false.

– ΣA = {i} ∪ P(Ports) is the set of all actions, where i denotes the internal
action (i.e. no synchronization is performed).

– →A⊆ SA × ΣA × SA is a set of transitions obtained by the following rules.

p ∈ Pin

(vloc, vadj)
i−→A (vloc, vadj [p.reqWrite �→ ¬p.reqWrite])

R-InputStatus

p ∈ Pin, val ∈ Dom(Type(p.value))

(vloc, vadj)
i−→A (vloc, vadj [p.value �→ val])

R-InputValue

p ∈ Pout

(vloc, vadj)
i−→A (vloc, vadj [p.reqRead �→ ¬p.reqRead])

R-OutputStatus

{g → {s}} ∈ TransG is internal

(vloc, vadj)
i−→A s(vloc, vadj)

R-Internal

g → S ∈ TransG is external, [s1, · · · , sn] are assignments in S
p1, · · · , pm are the synchronized ports

(vloc, vadj)
{p1,··· ,pm}−−−−−−−→A sn ◦ · · · ◦ s1(vloc, vadj)

R-External

The first three rules describe the potential change of environment, i.e. the
port variables. R-InputStatus and R-OutputStatus show that the reading status
of an output port and writing status of an input port may be changed by the
environment randomly. And R-InputValue shows that the value of an input port
may also be updated by the environment.

16 Y. Li and M. Sun

The rule R-Internal specifies the internal transitions in TransG. As illus-
trated previously, an internal transition contains no synchronizing statement. So
its canonical form comprises only one assignment s. Firing such a transition will
simply apply s to the current configuration.

Meanwhile, the rule R-External specifies the external transitions, where the
automaton interact with its environment. Fortunately, since all the environment
changes are captured by the first three rules, we can simply regard the environ-
ment as another set of local variables. Consequently, the only difference between
an internal transition and an external transition is that the later one may contain
multiple assignments.

4 Case Study

In modern distributed computing frameworks (e.g. MPI [6] and ZooKeeper [9]),
leader election plays an important role to organize multiple servers efficiently
and consistently. This section shows how a classical leader election algorithm is
modeled and reused to coordinate other components in Mediator.

In [7] the authors proposed a classical algorithm for a typical leader election
scenario, as shown in Fig. 2. Distributed processes are organized as an asynchro-
nous unidirectional ring where communication takes place only between adjacent
processes and following certain direction (indicated by the arrows on edges in
Fig. 2(a)).

Fig. 2. (a) Topology of an asynchronous ring and (b) Structure of a process

The algorithm has the following steps. At first, each process sends a voting
message containing its own id to its successor. When receives a voting message,
the process will (a) forward the message to its successor if it contains a larger id
than the process itself, or (b) ignore the message if it contains a smaller id than
the process itself, or (c) take the process itself as a leader if it contains the same
id with itself, and send an acknowledgement message to this successor, which
will be spread over around the ring.

Here we formalize this algorithm through a more general approach. Leader
election is encapsulated as the election module. A computing module worker,
attached to the election module, is an implementation of the working process.

Component-Based Modeling in Mediator 17

Two types of messages, msgVote and msgLocal, are supported when formal-
izing this architecture. Voting messages msgVote are transferred between the
processes. A voting message carries two fields, vtype that declares the stage of
leader election (either it is still voting or some process has already been acknowl-
edged) and id is an identifier of the current leader (if it exists). On the other
hand, msgLocal is used when a process communicates with its corresponding
worker.

Example 8 (The Election Module). The following automaton shows how the elec-
tion algorithm is implemented in Mediator. Due to the space limit, we omit some
transitions here. A full version can be found at [1].
1 automaton <id:int> election_module (left : in msgVote, right : out msgVote,
2 query : out msgLocal
3) {
4 variables {
5 leaderStatus : enum { pending, acknowledged } init pending;
6 buffer : (voteMsg | NULL) init {vtype: vote, id:id};
7 leaderId : (int | NULL) init null;
8 }
9 transitions {

10 (buffer != null)&&(buffer.vtype == vote)&&(buffer.id < id) -> {buffer := null;}
11 (buffer != null)&&(buffer.vtype == vote)&&(buffer.id == id) -> {buffer.vtype :=

ack;}
12 (buffer != null)&&(buffer.vtype == ack)&&(buffer.id < id) -> {
13 // restart voting if the acknowledged leader has a smaller id
14 buffer := { vtype: vote, id: id };
15 }
16 (buffer != null)&&(buffer.vtype == ack)&&(buffer.id >= id) -> {
17 leaderStatus := acknowledged;
18 leaderId := buffer.id;
19 buffer := buffer.id == id ? null : buffer;
20 }
21 }
22 }

The following code fragment encodes a parallel program containing 3 workers
and 3 election modules to organize the workers. In this example, we do not focus
on the implementation details on workers, but hope that any component with a
proper interface could be embedded into this system instead.
1 system <worker: interface (query:in msgLocal)> parallel_instance() {
2 components {
3 E1 : election_module<1>;
4 E2 : election_module<2>;
5 E3 : election_module<3>;
6 C1, C2, C2 : worker;
7 }
8 connections {
9 Sync<msgVote>(E1.left, E2.right);

10 Sync<msgVote>(E2.right, E3.left);
11 Sync<msgVote>(E3.right, E1.left);
12
13 Sync<msgLocal>(C1,query, E1.query);
14 Sync<msgLocal>(C2,query, E2.query);
15 Sync<msgLocal>(C3,query, E3.query);
16 }
17 }

18 Y. Li and M. Sun

As we are modeling the leader election algorithm on a synchronous ring, only
synchronous communication channels Syncs are involved in this example. The
implementation details of Sync can be found in [1].

5 Conclusion and Future Work

A new modeling language Mediator is proposed in this paper to help with
component-based software engineering through a formal way. With the basic
behavior unit automata that captures the formal nature of components and con-
nections, and systems for hierarchical composition, the language is easy-to-use
for both formal method researchers and system designers.

This paper is a preface of a set of under-development tools. We plan to build
a model checker for Mediator, and extend it through symbolic approach. An
automatic code-generator is also being built to generate platform-specific codes
like Arduino [13].

Acknowledgements. The work was partially supported by the National Natural Sci-
ence Foundation of China under grant no. 61532019, 61202069 and 61272160.

References

1. A list of Mediator models. https://github.com/liyi-david/Mediator-Proposal
2. Abdulla, P.A., Deneux, J., St̊almarck, G., Ågren, H., Åkerlund, O.: Designing safe,

reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS,
vol. 4313, pp. 115–129. Springer, Heidelberg (2006). doi:10.1007/11925040 8

3. Amnell, T., Behrmann, G., Bengtsson, J., D’Argenio, P.R., David, A., Fehnker, A.,
Hune, T., Jeannet, B., Larsen, K.G., Möller, M.O., Pettersson, P., Weise, C., Yi,
W.: UPPAAL - now, next, and future. In: Cassez, F., Jard, C., Rozoy, B., Ryan,
M.D. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 99–124. Springer, Heidelberg
(2001). doi:10.1007/3-540-45510-8 4

4. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

5. Curry, E.: Message-oriented middleware. In: Mahmoud, Q. (ed.) Middleware for
Communications, pp. 1–28. Wiley (2004)

6. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-
Passing Interface. MIT Press, Cambridge (1999)

7. Hagit, A., Jennifer, W.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley, Hoboken (2004)

8. Hahn, B., Valentine, D.T.: SIMULINK toolbox. In: Essential MATLAB for Engi-
neers and Scientists, pp. 341–356. Academic Press (2016)

9. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: high-performance broadcast for
primary-backup systems. In: Proceedings of DSN 2011, pp. 245–256. IEEE Com-
pute Society (2011)

10. Kim, H., Lee, E.A., Broman, D.: A toolkit for construction of authorization service
infrastructure for the internet of things. In: Proceedings of IoTDI 2017, pp. 147–
158. ACM (2017)

https://github.com/liyi-david/Mediator-Proposal
http://dx.doi.org/10.1007/11925040_8
http://dx.doi.org/10.1007/3-540-45510-8_4

Component-Based Modeling in Mediator 19

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

12. Liu, Z., Morisset, C., Stolz, V.: rCOS: theory and tool for component-based model
driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961,
pp. 62–80. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11623-0 3

13. Margolis, M.: Arduino Cookbook. O’Reilly Media Inc., Sebastopol (2011)
14. National Instruments: Labview. http://www.ni.com/zh-cn/shop/labview.html
15. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying simulink diagrams via

a hybrid hoare logic prover. In: Proceedings of EMSOFT 2013, pp. 9:1–9:10. IEEE
(2013)

http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-11623-0_3
http://www.ni.com/zh-cn/shop/labview.html

	Component-Based Modeling in Mediator
	1 Introduction
	2 Syntax of Mediator
	2.1 Type System
	2.2 Functions
	2.3 Automaton: The Basic Behavioral Unit
	2.4 System: The Composition Approach

	3 Semantics
	3.1 Configurations
	3.2 Canonical Form of Transitions and Automata
	3.3 From System to Automaton
	3.4 Automaton as Labelled Transition System

	4 Case Study
	5 Conclusion and Future Work
	References

