Characteristic, Counting,
and Representation Functions
Characterized

Charles Helou

Abstract Given a set A of natural numbers, i.e., nonnegative integers, there are three
distinctive functions attached to it, each of which completely determines A. These
are the characteristic function x4 (rn) which is equal to 1 or 0 according as the natural
number n lies or does not lie in A, the counting function A (n) which gives the number
of elements a of A satisfying @ < n, and the representation function r4 (n) which
counts the ordered pairs (a, b) of elementsa, b € A suchthata 4+ b = n. We establish
direct relations between these three functions. In particular, we express each one of
them in terms of each other one. We also characterize the representation functions
by an intrinsic recursive relation which is a necessary and sufficient condition.
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1 Introduction

Let Abeasubsetof N=1{0,1,2,...}.
The characteristic function of A is defined by

1 ifneA,
XA(")_[O ifngA M

The counting function of A is defined by
Am) =1AN[0,nl[=H{a € A:a=n}. 2

The representation function of A is defined by
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ra(n) = |{(a,b) € Ax A:a+b=n)|. (3)

Here n € N. But the three functions chis(n), A(n), ra(n), can be extended to all
real numbers x € R, by simply replacing n by x in the above definitions.

Clearly, the functions x4 (rn) and A (n) completely determine A, since the condition
n € A is equivalent to either conditions: ya(n) = 1 or A(n) > A(n — 1).

It is not as obvious that the function r4(n) completely determines A too, but it
does, and several authors have written about this topic. In particular, the consequences
of the equality, or of the partial equality from some point on, of the representation
functions r4 (n) and rg(n) of two sets of natural numbers A and B have been studied
rather extensively [1, 2, 12-14, 17, 22, 23]. Other research has focused on studying
the properties of representation functions, trying to characterize the class of repre-
sentation functions and to determine which functions belong to this class. Also, many
outstanding open problems and conjectures have been made in this respect [3-11,
15, 16, 18-21]. In particular, Melvyn B. Nathanson highlights in one of his papers
[18] the following problem:

‘What functions are representation functions?

The purpose of the present paper is twofold, first to establish relations between
the three functions defined above, expressing each one of them in terms of each
other one; and second, and more particularly, to attempt an answer to Nathanson’s
question. We thus give an intrinsic characterization of representation functions by
proving that a function f : N — N is the representation function of a subset A of
N if and only if it satisfies the relation

1 n
= — 1 — —1 fQ2k) f(2(n—k)) ,
fn) > (Vl + kEZO( )

forall n € N.

2 Preliminaries and Generating Series

We first note the following obvious relations between the characteristic and the
counting functions of A:

A(m) =D xal), 4)
k=0
and
xa(n) = A(n) = A(n — 1), (5)

foralln € N.
We then introduce the generating series of the three functions.
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The generating series of x4(n) is

a0 =D xamXx" =" X, 6)

acA

also called the series associated with A.
The generating series of r4(n) is

oo (o] 2
9a(X) =D ramXx" =3 ( > 1) X=X = (Z X“) = f20* (7)
n=0

n=0 \a,beA:a+b=n a,beA acA

which is the square of the generating series fa(X) of x4 (n).
The generating series of A(n) is

n=0 =0

n=0 \k=0

3 Relations Between the Counting and Representation
Functions
Squaring the generating series of the counting function, we get

2
94(X) (mmy (”A n) “(” )n
- - mx") = AA@ — k) ) X", (9)
i-xr = \i-x) =\ 2|2

n=0 \k=0

On the other hand, as g4 (X) is the generating series of r4(n), and as

1 d ( ) n—1 < n
— = nX (n+1X", (10)
(1-X)?2 dx Z g(‘;

we also have

(fA_(f())z (Z + 1)xf) (Z m(k)X") =2 ( > G+ 1)rA(k>) X" =
k=0

n=0 \ j.keN:j+k=n

Z( (n—k+1)rA(k)>X”. (11)

=0

Thus,
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(19A_(XX_))2 - Z(Z A A(n — k)) X" = Z(Z(n —k+ 1)rA<’<>) X"

n=0 \k=0 n=0 \k=0
(12)

This yields the following result, which gives the first relation between A(n) and
A (l’l)

Proposition 1 For everyn € N, we have

D AKAM —k) =D (n—k+ Drak) =

k=0 k=0

=+ 1) D ratk) = D krak), (13)

k=0 k=0

ie.,

kZ:;(n — k4 Drak) = 2();" AR)VA(n — k) + xx (g) A (g)2 (14)
<k<3

Corollary 1 Forn € N, we have

) n—1
A =2 > AMAMR—K) + xn (g) A (g) > —k+ Dra®. (15)
0<k<3 k=0
Example 1 Applying the relation in the Corollary to n = 0, 1, 2, ... in increasing
order and back-substituting in terms of the A(n)’s alone, we get
ra(0) = A(0)?,
ra(l) = 2A(0)A(1) — 2A(0)%,
ra(2) = A(0)> —4A0)A(1) +2A0)A(2) + A(1)?,
ra(3) = 2A(0)A(1) —4A0)A(2) +2A(0)A(3) — 2A(1)* + 2A(1)A(2)

ra@) =2A0)AQ2) —4A0)AQB) + 2A0)A(4) + A(1)> —4A(1)AQQ) +
+24()AB) + A2)>.

Proposition 2 For any n € N, we have
ra(n) = ZA(k) (Aln—k) —2An—k—-1)+An —k -2)) =
k=0

=Z(A(j)—2A(j— D+ AG —2) A(n — j). (16)
j=0



Characteristic, Counting, and Representation Functions Characterized 143

Proof Using the generating series for r4 (n) and for A(n), we get
n fA (X) n

Zom(n)x = ga(X) = ( X) (1 2X + X2) (ZA(n)X ) ( X + xz)
= (Z (Z AU A — k))X") (1-2x+x?)

n=0 \k=0

Z( AK)A(n — k)) X" -2 Z(Z AK)A(n — k)) xntl

n=0 n=0 \k=0

( A)A(n — k)) x"+2
k=0

( (AK)A(N — k) —2A00)A(n — 1 —k) + A A(n — 2 — k))) X",
k=l

n
M@

Il
o

§'43

Il
=}

n

Hence, forall n € N,

ra(n) =D AK) - (A —k) —2A(n —k — 1) + A(n — k — 2))
k=0

= Z(A(j) —2A0 -D+AG —2) Al — ).
j=0

Corollary 2 For any n € N, we have

ratn) = D" c(j, A AK), A7)

J.keN:
Jjtk<n

where
I, ifj+k=norn-—2
a(,k)=1-2, ifj+k=n—1 : (18)
0, otherwise

Proof By Proposition 2,

ra(n)

D AKAM—k) —2D ARAGN —k— 1)+ D> AK)AR —k—2) =
=0 k=0 k=0

DADAK) =2 D ADAK) + D ADAK) =

Jj+k=n Jjt+k=n—1 jtk=n-2

= > &l A AK).

Jj+k<n
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Corollary 3 Foranyn € N, we have
ra(n) =D (xal) = xali = D) A(n — j) =

=0
= Z A(n —a) — Z A(n —b),

acA~(1+A) be(l+A)~A
the last two sums being obviously restrictedto a < n and b < n.

Proof For any k € N, we have
Ak)y = Ak — 1) + xa(k).

Hence, for any j € N,

C. Helou

19)

(20)

A()) =280 - D+A(G -2 =A()-AG-D—-AG-D—-A(G—-2) =

0,ifj—1,jeAorj—1,j¢ A
=xa()—xaG—D=qLifjeA j—1¢A
—lLifj¢gA j—1eA
This, in conjunction with Proposition 2, implies

n

ra(n) = Z(A(j) —2A(—-D+A(G=2) -An—j) =

j=0

=D () = xaG— D) A — j) =

j=0
= D> An-pH- D> Aw-)=
0<j=n: 0<j<n:
JEA, j—1¢A j—1€A, j¢A
= Z A(n —a) — Z A(n —b).
acA~(1+A) be(1+A)NA

Example 2 By Corollary 2, ra(5) = Y. ¢5(j, k)A(j)A(k), where
j.keN:
§+1<E§5
1, ifj+k=50r3
cs(j.k)=1-2, if j+k=4
0, otherwise

Hence,

2L
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ra(5) =2A0)A(3) —4A(0)A4) +2A(0)A(5) +2A(1)A(2) —4A(1)A(3)
+2A(1)A4) —2A(2)° +2A(Q)A(3).

Similarly,

ra(6) =2A(0)A4) —4A(0)A(5) +2A(0)A(6) +2A(1)A(3) — 4A(1)A(4)
+2A(DAG) + AQ)° —4AQ)AB) +2AQ)A®) + AB).

ra(7) =2A(0)A(5) —4A(0)A(6) +2A(0)A(7) +2A(1)A(4) —4A(1)A(S)
+2A(1)A(6) +2AR)A(B) —4A2)A4) +2A(2)A(5) — 2A(3)2 +2A3)A4).
Remark 1 Tt follows from Corollary 2 that, for n € N,
. 0,if n>1
2 c"(J’k)_ll,ifnZO. 22)
J,keN:

Jjt+k<n

Indeed, for n > 1, we have

DG =2 > b= D aGh+ D G+ D k=

jokeN: h=0 j+k=h jtk=n jtk=n—1 jtk=n—2
Jj+k<n
DD WETDS 1—21—22+zl—
Jjtk=n Jjt+k=n—1 Jjtk=n-2 j
=m+1)-2n+m—-1)=0.
For n = 0, the sum reduces to ¢o(0,0) = 1. U

Remark 2 Forn > 1, we have

An), if A
(1+A>(n)=A(n—1>=A(n)—xA(n)=[AEZ;_l L

So the last two sums in Corollary 3 have the same number of terms each ifn ¢ A,
while the first of the two sums has one more term than the second one if n € A.

Let I=AN(0+4+A),B=A~((+A)=A~NI, and C=(14+A) N A=
(1 4+ A) . I. Then,

Cn)=10+A)n)—I(n)=Am) —I(n) — xa(n) = B(n) — xa(n). (24)
Let B[n]=BN[0,n]l={by <by<---<b,_1 <by} and C[n]=CN[0,n] =

{fc1 <cp <+~ <cpoy <cp}, where ¢, = ¢ if n € A, and ¢ < ¢, if n ¢ A.
In view of Corollary 3,
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ra(m)= D An—b)— D An—o), (25)

beB[n] ceCln]
ie.,

h—1

h
ra(n) =D A —b)— D A —c) — (1= xa(m) A(n — ¢;) =
k=1 k=1
h

= Z (A(n = b)) — A(n — c)) + xa(m)A(n — cp). (26)
k=1

Note also that by < ¢ for 1 <k < h (and fork =h ifn ¢ A), since if A = {a; <
a <---<a,<---hthenl+A={a+1l<ay+1<---<a,+1<---},and
B (resp. C) is obtained from A (resp. 1 + A) by removing the same set /. It follows
that n — by > n — ¢, and therefore A(n — by) > A(n — ¢;) for 1 < k < h (and for
k=hifn ¢ A).

Remark 3 We have
1 a b
0 = 1— > ox— > x). (27)
aceAN(14+A) be(1+A)NA

Indeed, letting I = AN (1 4+ A),sothat AN (1+A)=A~Tand(1+A) N A=
(1 +A)~ I, we have

A= X)fa(X) = fa(X) = Xfa(X) =D X =D X =>"x— > Xx'=

acA acA acA bel+A

=D x4+ > x—[Dx+ > x| =

ael aeANI bel be(1+A)NT
= > x= > X
aceANI be(1+A)NT

4 Relations Between the Characteristic and the
Representation Functions

Just as the counting function A(n) determines A, the number of representations
function r4 (n) also determines A.
Indeed, as

D ramX" = ga(X) = f4(X)’,

n=0
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we have N
faX) =D xamX" = ga(x)'”,
n=0
where if
A={Cl1 < <---<a,< },
then

fa0) = XN 31X = X1+ Xu (X)),

n=1

o0
with the power series v(X) = > X% —a=1 g0 that
n=2

ga(X) = X* (1 + Xu(X)),

with a power series u(X), and therefore

fa(X) = XU (1 + Xu(X)'? = x> (1£2)X"u(X>’<
k=0

is well defined. Moreover, replacing A by —a; + A = {a, — a; : n > 1}, we may
assume that 0 € A, so that 4, (0) = 1, and

o0
ga(X) =D ramX" = 1+ Xu(X),
n=0
with
o0 o0
u(X) = ZrA(n)X"*1 = ZrA(n + X",
n=1 n=0
Then,
_ _ 12 _ 12 _ k k
fa(X) = ;XA(”)Xn =gAa(X)"" =+ Xu(X)) /" = ;( ' )X u(X)",
(28)
where (i) denotes the binomial coefficient, defined by
(x =x(x—1)(x—2)~~(x—k+1)’ (29)
k k!

for integers k > 1, while ()(;) =1.



148 C. Helou

Proposition 3 Assuming that 0 € A, we have, forn > 1,

= (1/2
xA(n>=Z(£) D ralu)erang) =

k=1 (n1,...,n) €(NHF:
ny+--+ng=n
n
1350 2k=3)
=> (=t ToF D ralm)rang).
k=1 ’ (1. €(NF)¥:
ny+-+ng=n

oo
Proof We have f4(X) =1+ > xa(n)X", and

n=1

9a(X) = fa(X)* = 14D ramX" =1 + Xu(X),

n=1

where u(X) is a power series with nonnegative integer coefficients. So

faX) = (1 + Xu(X)'? =1+ Z ( )Xkuook

=1+ i (122) (Z l’A(n)Xn)k .

k=1 n=1

Moreover, for a positive integer kK € N*, we have

[} k
(ZI‘A(I’Z)Xn) = Z rA(nl)...rA(nk)Xﬂ1+---+nk —

n=1 (1,...,nz) eN*K

=20 > @)X,

n=k k=1 (n,...n)eN**:
ny+-ng=n

Hence,

o k
faX) =1+ Zm(n)X" =1+ Z (1/2) (Z rA(n)X”) =

n=1 n=1

S (HEE S -

n=k k= 1(n] ..... nk)eN*k
ny+-tng=n

(30)

€Y

(32)

(33)
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Thus, forn > 1,

Furthermore, for k > 1,

(1/2) _ (1/2) (=1/2) (=3/2)---(1/2 =k + 1) _

(34)

Therefore, forn > 1,

" 1-3:5.....Q2k—=3
Xan) =D (=D S D ratn)-eram).
k=1 ¢

k12K
(i’ll ..... nk)E(N )]‘
ny+-tng=n
1
Example 3 y4(1) = EVA(I)v
1 1
xa(2) = %TA(Z) - §TA(1)2, 1
xa3) = ErA(3) - ZVA(l)rA(z) + 1_6”A(1)3»
4) ! “4) ! (Dra@3) ! 2)* + ’ (1)*ra(2) > (1
= —r - —r r - —r —r r - —r ,
XA ) A 2 A A 3 A 16 A A 128 A

5 ——11 5 ——11 1)r 4——11 2Dra3 + —r 121 3 + —r 1)r 22
XA() 2A() IA()A() IA()A() 15A() A() 15A()A()
— = 13) 2 + —7 15

Corollary 4 For a subset A of N containing 0, the counting function of A is given

by
A =S um=1+3 3 (12 raGu) -+ ra(n).  (35)
k
neN neNf k=1 (n1,...,nx)€(N*)K:
n=x n=x ny+--ng=n
forx > 0.

Example 4 Forn > 6,
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n—1

1 1
xa(n) = —rA<n)—§;rA<n1)rA(n—nl)+
n—n;—1

ZFA(VH) Z ra(ma)ra(n —ny —ny)

n11 np=1

n—3 n—ny—2 n—nj—ny—1
— 57 2. Talm) D rat) D ramz)ra(n —ny —ny —n3)
ni=1 ny=1 n3=1
+..
e 1-3.5..... 2n —3) Y
+ (="t ra(D". (36)

Remark 4 Conversely, rs(n) can be written in terms of y,(n). Indeed, using
Proposition 2 and the relations between the characteristic and the counting func-
tions, we get, forn € N,

ra(m) = > AK) (A —k) =240 —k — 1) + A(n — k —2)) =
k=0
n—k—1 n—k—2

n k
=2 1 2 me)—z Z xa() + Z xa(i) | =
k=0 \ j=0

n k
=D D x4 | tatn —k) = xaln —k — 1)),

k=0 \ j=0
i.e.,
n k
ra(n) =" (xan —k) = xatn —k — 1) D xa(j), (37)
k=0 =0
foralln € N.
Alternatively,

ram)={0=j<n:jn—jeAll={0=<j=n:xa(j) =xaln—j) =1}

=D xalxaln = j). (38)

j=0
So
A =D =N =2 > uu®+x(z) 69

j=0 0<j<k<n:
Jj+k=n
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5 Characterization of the Representation Function

Lemma 1 Foranyn € N, we have
ra(2n) = xa(n) (mod 2). (40)

Proof In view of (39),

ra(2n) =2 Z xa(Dxak) + xa(n) = xa(n) (mod 2).

0<j<k<n:
Jj+k=2n

Corollary 5 For anyn € N, we have
neA < ra2n)=1 (mod 2). 41)

Definition 1 For an integer a € Z, let res,(a) denote the least nonnegative residue
of a modulo 2, i.e.,
0, ifa=0 (mod2)

resy(a) = Il, ifa=1 (mod?2). “2)

Remark 5 1t is easy to verify that, for a, b € Z, we have

resy(a) = ﬂ (43)

2
resy(ab) = resy(a)res>(b), 44)
res,(a") =resy(a)" =resy(a), forn>1, (45)

resy(a + b) = resy(a) + (—1)resy(b) = res>(b) + (—1)’resy(a). (46)
resy(—a) =resy(a), resy(a—b) =resy(a+b), A7
Remark 6 Ttfollows from Lemma 1 and from Remark 5 that, for any n € N, we have

1 — (_l)rA(Zn)
xa(n) =resy(ra(2n)) = — s (48)

Hence,

oo 0]

; ]7(7])rA(2n) ; 1 1 0 rA @) v
)= xamX" =3 X" = S| sy — 2 DEXT ) (49)

n=0 n=0 n=0
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Moreover, for any n € N,

n n

- 1— (=@ - o
A =3 xak) =3 resn(ra@h) =3 ———— = |n+1-> D),
k=0

k=0 k=0 =
(50)
and
ram =2 xa®)xatn = k) = 3 ress(rak)resa(ran = k))
k=0 k=0
N " (—1)ra@RraQe—k)
= Zresz(rA(2k)rA(2(n —k)) = Z — 2
— k=0
_ %(n L1 Z(_l)rA(Zk)rA(Zn—Zk)). (28
k=0

Thus, the values of 74 (2n) (mod 2) completely determine A and therefore com-
pletely determine all values of 74 (n). In other words, the representation function r 4
of A is completely determined by the parity of its values at the even natural numbers.

Moreover, the relation (51) characterizes the representation function, as seen from
the following Theorem.

Theorem 1 Let f: N — N be a function from the set of nonnegative integers N
into itself, satisfying the relation

1 n
fn) == (n +1-— Z(—1)f<2k>f(2<"k>>), foralln € N. (52)
2
k=0
Then f = ra is the representation function of the subset A of N defined by
A={neN: f2n) =1 (mod?2)}. (53)

Proof For any n € N, we have

Zn:(_l)f@k)fﬂ(n—k)) — zl _ Zl =I|—|J|,
k=0

kel kelJ

where
I={keN 0<k<n:fRk)=0 (mod?2) or f2(n—k))=0 (mod 2)}

and
J={keN, 0<k=<n:fRk)=fQ2n—%k)=1 (mod?2)}.
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Now, by definition of A, we have

I={keN, 0<k<n:k¢Aorn—k¢A}

and
J={keN,0<k<n:keA and n —k € A}.
Clearly,
I1UJ=keN:0<k<n}, and INJ =40,
so that
I+ |J|=ITUJ|=lkeN: 0<k<n}=n+1
and

S COCEI) | J = n 1 -2)J).
k=0

It follows from this, and from the defining relation (52) of f, that
1 n
—— _ _1\/@hf2n-k) | —
f(n)_z(n+l k_EO( 1) )_|J|.

Moreover,
[JI={keN, 0<k<n:keA and n—k € A}| =

= > 1= xak)xaln — k) = ra(n),

keA and (n—k)eA k=0

in view of (38).
Thus,
fn) =ran),

forall n € N.

Corollary 6 A function f : N — N is the representation function of a subset A of
N if and only if it satisfies the relation

1 n
fm) =3 (n +1- Z(—l)f<2k>f<2<"k>>), foralln €N.

k=0

Proof This follows from (51) in Remark 6 and from Theorem 1.
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Remark 7 Corollary 6 provides a characterization of representation functions. It
is easier to characterize the characteristic and the counting functions. Indeed, any
function f : N — {0, 1} is the characteristic function of a unique subset A of N,
namely of A = f~'(1). Also, any increasing (not necessarily strictly increasing)
function f : N — N s the counting function of a unique subset A of N, namely of
A={neN: f(n) > f(n— 1)}, where we set, by definition, f(—1) = 0.
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