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Abstract We obtain bounds on the number of triples that determine a given pair of
dot products arising in a vector space over a finite field or a module over the set of
integers modulo a power of a prime.More precisely, given E ⊂ F

d
q orZ

d
q , we provide

bounds on the size of the set

{(u, v, w) ∈ E × E × E : u · v = α, u · w = β}

for units α and β.
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1 Introduction

For a subset of a ring, A ⊂ R, the sumset and productset of A are defined as A + A =
{a + a′ : a, a′ ∈ A} and A · A = {a · a′ : a, a′ ∈ A}, respectively. The sum-product
conjecture asserts that when A ⊂ Z, then either A + A or A · A is of large cardinal-
ity. For example, if we take A ⊂ Z to be a finite arithmetic progression of length
n, you achieve |A + A| = 2n − 1, whereas |A · A| ≥ cn2/((log n)δ · (log log n)3/2)

for some constant c > 0 and δ = 0.08607 . . . [7]. When A ⊂ Z is a geometric pro-
gression of length n, we have |A · A| = 2n − 1, and yet it is easy to show that
|A + A| = (n+1

2

)
. For subsets of integers, the following conjecture was made in [6].

Conjecture 1 Let A ⊂ Z with |A| = n. For every ε > 0, there exists a constant
Cε > 0 so that

max(|A + A|, |A · A|) ≥ Cεn
2−ε.
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Much progress has been made on the sum-product problem. The best result to date
belongs to Konyagin and Shkredov [11], wherein they demonstrated that for a suffi-
ciently large constant C , we have the bound

max(|A + A|, |A · A|) ≥ Cn4/3+c

for any c < 5
9813 , whenever A is a set of real numbers with cardinality n. Work has

also been done on analogues of the sum-product problem for general rings [12]. For
example, the authors in [8] showed that if E ⊂ F

d
q is of sufficiently large cardinality,

then we have

|{(x, y) ∈ E × E : x · y = α}| = |E |2
q

(1 + o(1)),

for any α ∈ F
∗
q . Here, Fq is the finite field with q elements, Fd

q is the d-dimensional
vector space over Fq , and F

∗
q = Fq \ {0}. As a corollary, they showed that |d A2| :=

|A · A + · · · + A · A| ⊃ F
∗
q , whenever A ⊂ Fq is such that |A| ≥ q

1
2 + 1

2d . Muchwork
has also been done to give such results when E has relatively small cardinality. See,
for example, [10] and the references contained therein.

In [3], the second listed author and Daniel Barker studied pairs of dot products
determined by sets P ⊂ R

2. In addition to the applications toward the sum-product
problem above, the problemof pairs of dot products has applications in coding theory,
graph theory, and frame theory, among others [1, 2, 4]. The main results from [3]
are as follows.

Theorem 1 Suppose that P ⊂ R
2 is a finite point set with cardinality |P| = n. Then,

the set
Πα,β(P) := {(x, y, z) ∈ P × P × P : x · y = α, x · z = β}

satisfies the upper bound |Πα,β(P)| � n2 whenever α and β are fixed, nonzero real
numbers.

Note 1 Here and throughout, we use the notation X � Y to mean that X ≤ cY for
some constant c > 0. Similarly, we use X � Y for Y � X , and we use X ≈ Y if both
X � Y and X � Y . Finally, we write X � Y if for all ε > 0, there exists a constant
Cε > 0 such that X � CεqεY .

Theorem 1 is sharp, as shown in an explicit construction [3]. Additionally, they
showed the following:

Theorem 2 Suppose that P ⊂ [0, 1]2 is a set of n points that obey the separation
condition

min(|p − q| : p, q ∈ P, p 
= q) ≥ ε.

Then, for ε > 0 and fixed α,β 
= 0, we have

|Πα,β(P)| � n4/3ε−1 log
(
ε−1

)
.
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The purpose of this article is to study finite field and finite ring analogues of the
results from [3]. Our main results are as follows.

Theorem 3 Given a set, E ⊂ F
2
q or Zd

q , |E | = n, and fixed units α,β, we have the
bound

|Πα,β(E)| � n2.

In general, for a set of n points, E ⊂ F
2
q , one cannot expect to get an upper bound

better than Theorem 3, as we will show via an explicit construction in Proposition
1. This proof and construction are similar to their analogues in [3]. However, if we
view the separation condition from Theorem 2 as it relates to density (as is often the
case for translating such results, such as in [9]), the previous proof techniques yield
very little. It turns out that a discrepancy theoretic approach gives more information,
as our second main result is for general subsets of Fd

q , for d ≥ 2, as opposed to just
d = 2.

Theorem 4 Let d ≥ 2, E ⊂ F
d
q , and suppose that α,β ∈ Fq . Then, we have the

bound

|Πα,β(E)| = |E |3
q2

(1 + o(1)),

for |E | � q
d+1
2 when α,β ∈ F

∗
q , and for |E | � q

d+2
2 otherwise.

Note that Theorem 4 gives a quantitative version of Theorem 3 at least for sets
E ⊂ F

2
q in the range |E | � q3/2.

The proof of Theorem 4 relies on adapting the exponential sums found in the study
of single dot products [8]. Since the results from [8] were extended to general rings
Z
d
q in [5], Theorem 4 also easily extends to rings. Here and throughout, Zq denotes

the set of integers modulo q, Z×
q is the set of units in Zq , and Zd

q = Zq × · · · × Zq is
the d-rank free module over Zq . For E ⊂ Z

d
q , we define Πα,β(E) exactly as before.

Theorem 5 Suppose that E ⊂ Z
d
q , where q = p� is the power of a prime p ≥ 3.

Then for units α,β ∈ Z
×
q , we have

|Πα,β(E)| = |E |3
q2

(1 + o(1))

whenever |E | � q
d(2�−1)

2� + 1
2� . In particular,

|Πα,β(E)| � |E |2

for sets E ⊂ Z
2
q of sufficiently large cardinality.

Remark 1 Notice that the proofs of Theorems 4 and 5 provide both a lower and upper
bounds on the cardinality of Πα,β(E), though we could achieve the upper bound
|Πα,β(E)| � q−2|E |3 if we relaxed the condition |E | � q

d+1
2 to simply |E | � q

d+1
2 ,

for example.
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2 Explicit Constructions

2.1 Sharpness of Theorem 3

We construct explicit sharpness examples for F2
q . The same constructions can be

modified to yield sharpness in Z
2
q as well.

Proposition 1 Given a natural number n � q and elements α,β ∈ F
∗
q , there is a

set, E ⊂ F
2
q for which |E | = n and

|Πα,β(E)| ≈ n2.

Proof Let u be the point with coordinates (1, 1). Now, distribute up to
⌈
n−1
2

⌉
points

along the line y = α − x , and distribute the remaining up to
⌊
n−1
2

⌋
points along the

line y = β − x . If there are any points left over, put them anywhere not yet occupied.1

Clearly, there are at least |E |2 pairs of points (b, c), where q is chosen from the first
line and r is chosen from the second. Notice that u contributes a triple to Πα,β(E)

for each such pair, giving us
|Πα,β(E)| ≈ n2.

2.2 The Special Case α = β = 0, D = 2

Proposition 2 There exists a set E ⊂ F
2
q of cardinality |E | = n < 2q for which

|Π0,0(P)| ≈ n3.

Proof Select
⌈
n
2

⌉
points with zero x-coordinate, and

⌊
n
2

⌋
points with zero y-

coordinate. Now, for each of the points with zero x-coordinate, there are about(
n
2

) (
n
2

)
pairs of points with zero y-coordinate. Notice that any point chosen with

zero x-coordinate will have dot product zero with each point from the pair cho-
sen with zero y-coordinate. Therefore, each of these 1

8n
3 triples will contribute to

Π0,0(E).
We can get just as many triples that contribute to Π0,0(E) by taking single points

with zero y-coordinate and pairs of points with zero x-coordinate. In total, we get

|Π0,0(P)| ≈ 1

8
n3 + 1

8
n3 ≈ n3.

1This is just in the case that (1, 1) is on one of the lines or α = β.
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3 Proofs of Main Results

3.1 Proof of Theorem 3

This proof is a modified version of the proof of Theorem 1 in [3], to which we refer
to the reader for a more detailed exposition.

Proof Wewill simultaneously prove this for E ⊂ F
2
q and E ⊂ Z

2
q .Here, we will use

Rq to denote either Fq or Zq , and we will be more specific when necessary.
Our basic idea is to consider pairs of points (v,w) ∈ E × E and obtain a bound

on the number of possible candidates for u to contribute a triple of the form (u, v, w)

to Πα,β(E). Consider a = (ax , ay) ∈ R2
q , and notice that for a point v ∈ E , the set

of points Lα(v) that determine the dot product α with v forms a line.

Lα(v) = {
(x, y) ∈ R2

q : xvx + yvy = α
}
. (1)

Also, v lies on a unique line containing the origin. We similarly define Lβ(v). Now,
consider a second point w ∈ E . It is easy to see that if |Lα(v) ∩ Lβ(w)| > 1, then
v and w lie on the same line through the origin which implies that if v and w are
on different lines through the origin, then |Lα(v) ∩ Lβ(w)| ≤ 1. We will use this
dichotomy to decompose E × E into two sets:

A = {(v,w) ∈ E × E : |Lα(v) ∩ Lβ(w)| ≤ 1, |Lα(w) ∩ Lβ(v)| ≤ 1}
B = (E × E) \ A.

Given (v,w) ∈ A, the pair can only be the last pair of at most one triple in Π(E).
This is of course only if Lα(v) ∩ Lβ(w) is a point in E . As there are no more than
|E |2 choices for pairs (v,w) ∈ A, the contribution to Π(E) by point pairs in A is at
most |E |2

The analysis on the set of pairs in B is a bit more delicate. Consider an arbitrary
pair, (v,w) ∈ B. Without loss of generality (possibly exchanging v withw or αwith
β) suppose |Lα(v) ∩ Lβ(w)| > 1. Then, we get that

|Lα(v) ∩ Lβ(w)| > 1
∣∣{(x, y) ∈ R2

q : xvx + yvy = α
} ∩ {

(x, y) ∈ R2
q : xwx + ywy = β

}∣∣ > 1
∣∣{(x, y) ∈ R2

q : xvx + yvy = α and xwx + ywy = β
}∣∣ > 1.

Namely, there will be more than one point with coordinates (x, y) ∈ R2
q satisfying

xvx + yvy = α

(
xwx + ywy

β

)
= α

β
(xwx + ywy). (2)
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Note that β is a unit, and hence the quantity α/β is well defined. This restriction tells
us that if |Lα(v) ∩ Lβ(w)| > 1, then |Lα(v) ∩ Lβ(w′)| = 0, for any w′ 
= w. This
should not be surprising for if α = β, then Lα(v) = Lβ(w) forces v = w.

We pause for a moment to introduce an equivalence relation, say ∼, on the set of
lines. Two lines Lα(v) and Lβ(w) are equivalent under ∼ if one can be translated to
become a (possibly improper) subset of the other. It is clear that if |Lα(v) ∩ Lβ(w)| >

1, then Lα(v) ∼ Lβ(w). The equivalence classes of ∼ keep track of the different
“directions” that lines can have. So we can easily see that Lα(v) ∼ Lβ(v). Take note
that if Rq = Zq , it is possible for two distinct lines to intersect in more than one
point.

If |Lα(v) ∩ Lβ(w)| > 1, then the pair (v,w) have no more than min{|Lα(v)|,
|Lβ(w)|} possible choices for u to contribute a triple of the form (u, v, w) toΠα,β(E).
Now, we see that any other pair of points, say (v′, w′), with |Lα(v′) ∩ Lβ(w′)| > 1
andwith Lα(v) ∼ Lα(v′), will have Lα(v) ∩ Lα(v′) = ∅, and Lβ(w) ∼ Lβ(w′), will
have Lβ(w) ∩ Lβ(w′) = ∅. So any point u that contributes to a triple of the form
(u, v, w) ∈ Πα,β(E) can only contribute to a triple with a single pair (v,w) when
Lα(v) ∼ Lβ(w).

Therefore, given any single equivalence class of ∼, there can be no more than |E |
choices for u to contribute a triple of the form (u, v, w) toΠα,β(E)with (v,w) ∈ B.

As there are no more than |E | possible choices for equivalence classes of Lα(v) (as
each point has only one associated equivalence class of ∼), there are no more than
|E |2 triples of the form (u, v, w) ∈ Πα,β(E) with (v,w) ∈ B.

3.2 Proof of Theorem 4

Proof Letχ denote the canonical additive character ofFq . By orthogonality, we have

|Πα,β(E)| = |{(x, y, z) ∈ E × E × E : x · y = α, x · z = β}
= q−2

∑

s,t∈Fq

∑

x,y,z∈E
χ(s(x · y − α))χ(t (β − x · z))

= q−2
∑

s,t∈Fq

∑

x,y,z∈E
χ(sα)χ(−tβ)χ(x · (sy − t z))

:= I + I I + I I I,

where I is the term with s = t = 0, I I is the term with exactly one of s or t equal to
zero, and I I I is the term with s and t both nonzero. Clearly

I = q−2
∑

s=t=0

∑

x,y,z∈E
χ(sα)χ(−tβ)χ(x · (sy − t z)) = |E |3q−2.

For the second and third sums, we need the following known results.
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Lemma 1 [8] For any set E ⊂ F
d
q , we have the bound

∑

s 
=0

∑

x,y∈E
χ(s(x · y − γ)) ≤ |E |q d+1

2 λ(γ), (3)

where λ(γ) = 1 for γ ∈ F
∗
q and λ(0) = √

q. Furthermore, we have

∑

s,s ′ 
=0

∑

y,y′∈E
sy=s ′y′

χ(α(s ′ − s)) ≤ |E |qλ(γ). (4)

Note that the quantities in the above Lemma can be shown to be real numbers, so
there is no need for absolute values. Now, separating the I I term into two sums, each
with exactly one of s or t zero,

I I = q−2|E |
⎛

⎝
∑

s 
=0

∑

x,y∈E
χ(s(x · y − α)) +

∑

t 
=0

∑

x,z∈E
χ(t (x · z − β))

⎞

⎠

From (3), it follows that |I I | ≤ |E |2q d−3
2 (λ(α) + λ(β)). Finally, by the triangle-

inequality, dominating a nonnegative sum over x ∈ E by the same nonnegative sum
over x ∈ F

d
q , and applying Cauchy–Schwarz, we have

|I I I | ≤ q−2
∑

x∈E

∣
∣∣∣∣∣

∑

s 
=0

∑

y∈E
χ(s(x · y − α))

∣
∣∣∣∣∣

∣
∣∣∣∣∣

∑

t 
=0

∑

z∈E
χ(t (x · z − β))

∣
∣∣∣∣∣

≤ q−2
∑

x∈Fd
q

∣∣
∣∣∣∣

∑

s 
=0

∑

y∈E
χ(s(x · y − α))

∣∣
∣∣∣∣

∣∣
∣∣∣∣

∑

t 
=0

∑

z∈E
χ(t (x · z − β))

∣∣
∣∣∣∣

≤ q−2

⎛

⎝
∑

x∈Fd
q

∣∣∣∣∣
∣

∑

s 
=0

∑

y∈E
χ(s(x · y − α))

∣∣∣∣∣
∣

2⎞

⎠

1/2

·
⎛

⎝
∑

x∈Fd
q

∣∣∣
∣∣∣

∑

t 
=0

∑

z∈E
χ(t (x · z − β))

∣∣∣
∣∣∣

2⎞

⎠

1/2

=: q−2 I I Iα · I I Iβ .
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Now,

I I I 2α =
∑

x∈Fd
q

∣∣∣
∣∣∣

∑

s 
=0

∑

y∈E
χ(s(x · y − α))

∣∣∣
∣∣∣

2

=
∑

x

∑

s,s ′ 
=0

∑

y,y′∈E
χ(s(x · y − α))χ(−s ′(x · y′ − α))

=
∑

x

∑

s,s ′ 
=0

∑

y,y′∈E
χ(α(s ′ − s))χ(x · (sy − s ′y′))

= qd
∑

s,s ′ 
=0

∑

y,y′∈E
sy=s ′y′

χ(α(s ′ − s))

≤ qd+1|E |λ(α)2,

by (4). Similarly, we have I I Iβ ≤ √
qd+1|E |λ(β). Combining these estimates yields

|I I I | ≤ qd−1|E |λ(α)λ(β).

This completes the proof as we have

|Πα,β(E)| = |E |3
q2

+ Rα,β,

where
|Rα,β | ≤ |E |2q d−3

2 (λ(α) + λ(β)) + qd−1|E |λ(α)λ(β).

3.3 Proof of Theorem 5

The proof will imitate that of Theorem 4, so we omit some of the details. Let χ(σ) =
exp(2πiσ/q) be the canonical additive character of Zq , and identify E with its
characteristic function. We use the following known bounds for dot-product sets in
Z
d
q .

Lemma 2 [5] Suppose that E ⊂ Z
d
q , where q = p� is the power of an odd prime.

Suppose that γ ∈ F
×
q is a unit. Then, we have the following upper bounds.

∑

j∈Zq\{0}

∑

x,y∈E
χ( j (x · y − γ)) ≤ 2|E |q( d−1

2 )(2− 1
� )+1 (5)

and ∑

s,s ′∈Zq\{0}

∑

y,y′∈E
sy=s ′y′

χ(γ(s ′ − s)) ≤ 2|E |q �d−d+1
� (6)
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Note 2 The authors in [5] actually gave a slightly different bound than those in
Lemma 2. For example in (5), they showed

∑

j∈Zq\{0}

∑

x,y∈E
χ( j (x · y − γ)) ≤

�−1∑

i=0

|E |q( d−1
2 )(1+ i

� ) ≤ �|E |q( d−1
2 )(2− 1

� )+1.

However, summing the geometric series removes the factor of � in the estimate.
Likewise, a factor of � can be removed from the estimate in (6).

We proceed as before. Write

|Πα,β | = |E |3
q2

+ I I + I I I,

where

I I := |E |q−2

⎛

⎝
∑

s 
=0

∑

x,y∈E
χ(s · (x · y − α)) +

∑

t 
=0

∑

x,z∈E
χ(s · (x · z − β))

⎞

⎠

and

I I I := q−2
∑

x∈E

⎛

⎝
∑

s 
=0

∑

y∈E
χ(−sα)χ(s(x · y))

⎞

⎠

⎛

⎝
∑

t 
=0

∑

z∈E
χ(−tβ)χ(t (x · z))

⎞

⎠ .

Applying Lemma 2, we see that

|I I | ≤ 4|E |2q−2q
d(2�−1)+1

2� ,

while

|I I I | ≤ q−2

⎛

⎝
∑

x∈Fd
q

∣∣∣∣
∣∣

∑

s 
=0

∑

y∈E
χ(−sα)χ(s(x · y))

∣∣∣∣
∣∣

2⎞

⎠

1/2

·
⎛

⎝
∑

x∈Fd
q

∣∣
∣∣∣∣

∑

t 
=0

∑

z∈E
χ(−tβ)χ(t (x · z))

∣∣
∣∣∣∣

2⎞

⎠

1/2

≤ 2|E |q−2q
�d−d+1

� ≤ 2|E |q−2q
d(2�−1)

�
+ 1

� ,

where in the last line, we reason as in the proof of Theorem 4, except with Lemma
2 in place of Lemma 1. This completes the proof.
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