Pairs of Dot Products in Finite Fields and Rings

David Covert and Steven Senger

Abstract We obtain bounds on the number of triples that determine a given pair of dot products arising in a vector space over a finite field or a module over the set of integers modulo a power of a prime. More precisely, given $E \subset \mathbb{F}_q^d$ or \mathbb{Z}_q^d , we provide bounds on the size of the set

$$
\{(u, v, w) \in E \times E \times E : u \cdot v = \alpha, u \cdot w = \beta\}
$$

for units α and β .

Keywords Dot-product sets · Sum-product problem · Finite fields

1 Introduction

For a subset of a ring, $A \subset R$, the sumset and productset of A are defined as $A + A =$ ${a + a' : a, a' \in A}$ and $A \cdot A = {a \cdot a' : a, a' \in A}$, respectively. The sum-product conjecture asserts that when $A \subset \mathbb{Z}$, then either $A + A$ or $A \cdot A$ is of large cardinality. For example, if we take $A \subset \mathbb{Z}$ to be a finite arithmetic progression of length *n*, you achieve $|A + A| = 2n - 1$, whereas $|A \cdot A| \geq cn^2 / ((log n)^{\delta} \cdot (log log n)^{3/2})$ for some constant $c > 0$ and $\delta = 0.08607...$ [\[7\]](#page-9-0). When $A \subset \mathbb{Z}$ is a geometric progression of length *n*, we have $|A \cdot A| = 2n - 1$, and yet it is easy to show that $|A + A| = \binom{n+1}{2}$. For subsets of integers, the following conjecture was made in [\[6](#page-9-1)].

Conjecture 1 *Let* $A \subset \mathbb{Z}$ *with* $|A| = n$ *. For every* $\epsilon > 0$ *, there exists a constant* $C_{\epsilon} > 0$ *so that*

 $\max(|A + A|, |A \cdot A|) \ge C_{\epsilon} n^{2-\epsilon}.$

D. Covert (\boxtimes)

University of Missouri, Saint Louis, USA e-mail: covertdj@umsl.edu

S. Senger Missouri State University, Springfield, USA

© Springer International Publishing AG 2017

M. B. Nathanson (ed.), *Combinatorial and Additive Number Theory II*, Springer Proceedings in Mathematics & Statistics 220, https://doi.org/10.1007/978-3-319-68032-3_8

Much progress has been made on the sum-product problem. The best result to date belongs to Konyagin and Shkredov [\[11\]](#page-9-2), wherein they demonstrated that for a sufficiently large constant *C*, we have the bound

$$
\max(|A + A|, |A \cdot A|) \ge Cn^{4/3 + c}
$$

for any $c < \frac{5}{9813}$, whenever *A* is a set of real numbers with cardinality *n*. Work has also been done on analogues of the sum-product problem for general rings [\[12](#page-9-3)]. For example, the authors in [\[8\]](#page-9-4) showed that if $E \subset \mathbb{F}_q^d$ is of sufficiently large cardinality, then we have

$$
|\{(x, y) \in E \times E : x \cdot y = \alpha\}| = \frac{|E|^2}{q}(1 + \underline{o}(1)),
$$

for any $\alpha \in \mathbb{F}_q^*$. Here, \mathbb{F}_q is the finite field with *q* elements, \mathbb{F}_q^d is the *d*-dimensional vector space over \mathbb{F}_q , and $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$. As a corollary, they showed that $|dA^2| :=$ $|A \cdot A + \cdots + A \cdot A| \supset \mathbb{F}_q^*$, whenever $A \subset \mathbb{F}_q$ is such that $|A| \ge q^{\frac{1}{2} + \frac{1}{2d}}$. Much work has also been done to give such results when *E* has relatively small cardinality. See, for example, [\[10\]](#page-9-5) and the references contained therein.

In [\[3](#page-9-6)], the second listed author and Daniel Barker studied pairs of dot products determined by sets $P \subset \mathbb{R}^2$. In addition to the applications toward the sum-product problem above, the problem of pairs of dot products has applications in coding theory, graph theory, and frame theory, among others $[1, 2, 4]$ $[1, 2, 4]$ $[1, 2, 4]$ $[1, 2, 4]$ $[1, 2, 4]$. The main results from $[3]$ are as follows.

Theorem 1 *Suppose that* $P \subset \mathbb{R}^2$ *is a finite point set with cardinality* $|P| = n$ *. Then, the set*

$$
\Pi_{\alpha,\beta}(P) := \{(x, y, z) \in P \times P \times P : x \cdot y = \alpha, x \cdot z = \beta\}
$$

satisfies the upper bound $|\Pi_{\alpha,\beta}(P)| \lesssim n^2$ whenever α and β are fixed, nonzero real *numbers.*

Note 1 Here and throughout, we use the notation $X \leq Y$ to mean that $X \leq cY$ for some constant $c > 0$. Similarly, we use $X \gtrsim Y$ for $Y \lesssim X$, and we use $X \approx Y$ if both $X \lesssim Y$ and $X \gtrsim Y$. Finally, we write $X \gtrapprox Y$ if for all $\epsilon > 0$, there exists a constant $C_{\epsilon} > 0$ such that $X \gtrsim C_{\epsilon} q^{\epsilon} Y$.

Theorem [1](#page-1-0) is sharp, as shown in an explicit construction [\[3](#page-9-6)]. Additionally, they showed the following:

Theorem 2 *Suppose that* $P \subset [0, 1]^2$ *is a set of n points that obey the separation condition*

$$
\min(|p - q| : p, q \in P, p \neq q) \ge \epsilon.
$$

Then, for $\epsilon > 0$ *and fixed* α , $\beta \neq 0$, we have

$$
|\Pi_{\alpha,\beta}(P)| \lesssim n^{4/3} \epsilon^{-1} \log(\epsilon^{-1}).
$$

The purpose of this article is to study finite field and finite ring analogues of the results from [\[3](#page-9-6)]. Our main results are as follows.

Theorem 3 *Given a set,* $E \subset \mathbb{F}_q^2$ *or* \mathbb{Z}_q^d *,* $|E| = n$ *, and fixed units* α *,* β *, we have the bound*

$$
|\Pi_{\alpha,\beta}(E)|\lesssim n^2.
$$

In general, for a set of *n* points, $E \subset \mathbb{F}_q^2$, one cannot expect to get an upper bound better than Theorem [3,](#page-2-0) as we will show via an explicit construction in Proposition [1.](#page-3-0) This proof and construction are similar to their analogues in [\[3\]](#page-9-6). However, if we view the separation condition from Theorem [2](#page-1-1) as it relates to density (as is often the case for translating such results, such as in [\[9](#page-9-10)]), the previous proof techniques yield very little. It turns out that a discrepancy theoretic approach gives more information, as our second main result is for general subsets of \mathbb{F}_q^d , for $d \geq 2$, as opposed to just $d = 2$.

Theorem 4 *Let* $d \geq 2$, $E \subset \mathbb{F}_q^d$, and suppose that $\alpha, \beta \in \mathbb{F}_q$. Then, we have the *bound*

$$
| \Pi_{\alpha,\beta}(E) | = \frac{|E|^3}{q^2} (1 + \underline{o}(1)),
$$

for $|E| \gtrapprox q^{\frac{d+1}{2}}$ *when* $\alpha, \beta \in \mathbb{F}_q^*$ *, and for* $|E| \gtrapprox q^{\frac{d+2}{2}}$ *otherwise.*

Note that Theorem [4](#page-2-1) gives a quantitative version of Theorem [3](#page-2-0) at least for sets $E \subset \mathbb{F}_q^2$ in the range $|E| \gtrapprox q^{3/2}$.

The proof of Theorem [4](#page-2-1) relies on adapting the exponential sums found in the study of single dot products [\[8\]](#page-9-4). Since the results from [\[8](#page-9-4)] were extended to general rings \mathbb{Z}_q^d in [\[5\]](#page-9-11), Theorem [4](#page-2-1) also easily extends to rings. Here and throughout, \mathbb{Z}_q denotes the set of integers modulo q , \mathbb{Z}_q^{\times} is the set of units in \mathbb{Z}_q , and $\mathbb{Z}_q^d = \mathbb{Z}_q \times \cdots \times \mathbb{Z}_q$ is the *d*-rank free module over \mathbb{Z}_q . For $E \subset \mathbb{Z}_q^d$, we define $\Pi_{\alpha,\beta}(E)$ exactly as before.

Theorem 5 *Suppose that* $E \subset \mathbb{Z}_q^d$ *, where* $q = p^{\ell}$ *is the power of a prime* $p \geq 3$ *. Then for units* $\alpha, \beta \in \mathbb{Z}_q^{\times}$, we have

$$
|\Pi_{\alpha,\beta}(E)| = \frac{|E|^3}{q^2}(1 + \underline{o}(1))
$$

whenever $|E| \gtrapprox q^{\frac{d(2\ell-1)}{2\ell} + \frac{1}{2\ell}}$. In particular,

$$
|\Pi_{\alpha,\beta}(E)| \lesssim |E|^2
$$

for sets $E \subset \mathbb{Z}_q^2$ *of sufficiently large cardinality.*

Remark 1 Notice that the proofs of Theorems [4](#page-2-1) and [5](#page-2-2) provide both a lower and upper bounds on the cardinality of $\Pi_{\alpha,\beta}(E)$, though we could achieve the upper bound $| \prod_{\alpha,\beta}(E) | \lesssim q^{-2} |E|^3$ if we relaxed the condition $|E| \gtrapprox q^{\frac{d+1}{2}}$ to simply $|E| \gtrsim q^{\frac{d+1}{2}}$, for example.

2 Explicit Constructions

2.1 Sharpness of Theorem [3](#page-2-0)

We construct explicit sharpness examples for \mathbb{F}_q^2 . The same constructions can be modified to yield sharpness in \mathbb{Z}_q^2 as well.

Proposition 1 *Given a natural number* $n \leq q$ *and elements* $\alpha, \beta \in \mathbb{F}_q^*$ *, there is a set,* $E \subset \mathbb{F}_q^2$ *for which* $|E| = n$ *and*

$$
|\Pi_{\alpha,\beta}(E)| \approx n^2.
$$

Proof Let *u* be the point with coordinates (1, 1). Now, distribute up to $\left\lceil \frac{n-1}{2} \right\rceil$ points along the line $y = \alpha - x$, and distribute the remaining up to $\left\lfloor \frac{n-1}{2} \right\rfloor$ points along the line $y = \beta - x$. If there are any points left over, put them anywhere not yet occupied.^{[1](#page-3-1)} Clearly, there are at least $|E|^2$ pairs of points (b, c) , where *q* is chosen from the first line and *r* is chosen from the second. Notice that *u* contributes a triple to $\Pi_{\alpha,\beta}(E)$ for each such pair, giving us

$$
|\Pi_{\alpha,\beta}(E)| \approx n^2.
$$

2.2 The Special Case $\alpha = \beta = 0, D = 2$

Proposition 2 *There exists a set* $E \subset \mathbb{F}_q^2$ *of cardinality* $|E| = n < 2q$ *for which*

$$
| \Pi_{0,0}(P) | \approx n^3.
$$

Proof Select $\lceil \frac{n}{2} \rceil$ points with zero *x*-coordinate, and $\lfloor \frac{n}{2} \rfloor$ points with zero *y*coordinate. Now, for each of the points with zero *x*-coordinate, there are about $\left(\frac{n}{2}\right)\left(\frac{n}{2}\right)$ pairs of points with zero y-coordinate. Notice that any point chosen with zero *x*-coordinate will have dot product zero with each point from the pair chosen with zero *y*-coordinate. Therefore, each of these $\frac{1}{8}n^3$ triples will contribute to $\Pi_{0.0}(E)$.

We can get just as many triples that contribute to $\Pi_{0,0}(E)$ by taking single points with zero y-coordinate and pairs of points with zero *x*-coordinate. In total, we get

$$
| \Pi_{0,0}(P) | \approx \frac{1}{8} n^3 + \frac{1}{8} n^3 \approx n^3.
$$

¹This is just in the case that (1, 1) is on one of the lines or $\alpha = \beta$.

3 Proofs of Main Results

3.1 Proof of Theorem [3](#page-2-0)

This proof is a modified version of the proof of Theorem 1 in [\[3](#page-9-6)], to which we refer to the reader for a more detailed exposition.

Proof We will simultaneously prove this for $E \subset \mathbb{F}_q^2$ and $E \subset \mathbb{Z}_q^2$. Here, we will use R_q to denote either \mathbb{F}_q or \mathbb{Z}_q , and we will be more specific when necessary.

Our basic idea is to consider pairs of points $(v, w) \in E \times E$ and obtain a bound on the number of possible candidates for u to contribute a triple of the form (u, v, w) to $\Pi_{\alpha,\beta}(E)$. Consider $a = (a_x, a_y) \in R_q^2$, and notice that for a point $v \in E$, the set of points $L_{\alpha}(v)$ that determine the dot product α with v forms a line.

$$
L_{\alpha}(v) = \{(x, y) \in R_q^2 : xv_x + yv_y = \alpha\}.
$$
 (1)

Also, v lies on a unique line containing the origin. We similarly define $L_\beta(v)$. Now, consider a second point $w \in E$. It is easy to see that if $|L_{\alpha}(v) \cap L_{\beta}(w)| > 1$, then v and w lie on the same line through the origin which implies that if v and w are on different lines through the origin, then $|L_{\alpha}(v) \cap L_{\beta}(w)| \leq 1$. We will use this dichotomy to decompose $E \times E$ into two sets:

$$
A = \{(v, w) \in E \times E : |L_{\alpha}(v) \cap L_{\beta}(w)| \le 1, |L_{\alpha}(w) \cap L_{\beta}(v)| \le 1\}
$$

$$
B = (E \times E) \setminus A.
$$

Given $(v, w) \in A$, the pair can only be the last pair of at most one triple in $\Pi(E)$. This is of course only if $L_{\alpha}(v) \cap L_{\beta}(w)$ is a point in *E*. As there are no more than $|E|^2$ choices for pairs $(v, w) \in A$, the contribution to $\Pi(E)$ by point pairs in *A* is at most $|E|^2$

The analysis on the set of pairs in *B* is a bit more delicate. Consider an arbitrary pair, $(v, w) \in B$. Without loss of generality (possibly exchanging v with w or α with β) suppose $|L_α(v) ∩ L_β(w)| > 1$. Then, we get that

$$
|L_{\alpha}(v) \cap L_{\beta}(w)| > 1
$$

$$
|\{(x, y) \in R_q^2 : xv_x + yv_y = \alpha\} \cap \{(x, y) \in R_q^2 : xw_x + yw_y = \beta\}| > 1
$$

$$
|\{(x, y) \in R_q^2 : xv_x + yv_y = \alpha \text{ and } xw_x + yw_y = \beta\}| > 1.
$$

Namely, there will be more than one point with coordinates $(x, y) \in R_q^2$ satisfying

$$
xv_x + yv_y = \alpha \left(\frac{xw_x + yw_y}{\beta}\right) = \frac{\alpha}{\beta}(xw_x + yw_y).
$$
 (2)

Note that β is a unit, and hence the quantity α/β is well defined. This restriction tells us that if $|L_{\alpha}(v) \cap L_{\beta}(w)| > 1$, then $|L_{\alpha}(v) \cap L_{\beta}(w')| = 0$, for any $w' \neq w$. This should not be surprising for if $\alpha = \beta$, then $L_{\alpha}(v) = L_{\beta}(w)$ forces $v = w$.

We pause for a moment to introduce an equivalence relation, say \sim , on the set of lines. Two lines $L_0(v)$ and $L_0(w)$ are equivalent under \sim if one can be translated to become a (possibly improper) subset of the other. It is clear that if $|L_{\alpha}(v) \cap L_{\beta}(w)| >$ 1, then $L_{\alpha}(v) \sim L_{\beta}(w)$. The equivalence classes of \sim keep track of the different "directions" that lines can have. So we can easily see that $L_0(v) \sim L_0(v)$. Take note that if $R_q = \mathbb{Z}_q$, it is possible for two distinct lines to intersect in more than one point.

If $|L_\alpha(v) \cap L_\beta(w)| > 1$, then the pair (v, w) have no more than min $\{|L_\alpha(v)|$, $|L_\beta(w)|$ possible choices for *u* to contribute a triple of the form (u, v, w) to $\Pi_{\alpha,\beta}(E)$. Now, we see that any other pair of points, say (v', w') , with $|L_\alpha(v') \cap L_\beta(w')| > 1$ and with $L_{\alpha}(v) \sim L_{\alpha}(v')$, will have $L_{\alpha}(v) \cap L_{\alpha}(v') = \emptyset$, and $L_{\beta}(w) \sim L_{\beta}(w')$, will have $L_{\beta}(w) \cap L_{\beta}(w') = \emptyset$. So any point *u* that contributes to a triple of the form $(u, v, w) \in \Pi_{\alpha, \beta}(E)$ can only contribute to a triple with a single pair (v, w) when $L_{\alpha}(v) \sim L_{\beta}(w)$.

Therefore, given any single equivalence class of ∼, there can be no more than |*E*| choices for *u* to contribute a triple of the form (u, v, w) to $\Pi_{\alpha, \beta}(E)$ with $(v, w) \in B$. As there are no more than |*E*| possible choices for equivalence classes of $L_0(v)$ (as each point has only one associated equivalence class of ∼), there are no more than $|E|^2$ triples of the form $(u, v, w) \in \Pi_{\alpha, \beta}(E)$ with $(v, w) \in B$.

3.2 Proof of Theorem [4](#page-2-1)

Proof Let χ denote the canonical additive character of \mathbb{F}_q . By orthogonality, we have

$$
| \Pi_{\alpha,\beta}(E) | = | \{ (x, y, z) \in E \times E \times E : x \cdot y = \alpha, x \cdot z = \beta \}
$$

= $q^{-2} \sum_{s,t \in \mathbb{F}_q} \sum_{x,y,z \in E} \chi(s(x \cdot y - \alpha)) \chi(t(\beta - x \cdot z))$
= $q^{-2} \sum_{s,t \in \mathbb{F}_q} \sum_{x,y,z \in E} \chi(s\alpha) \chi(-t\beta) \chi(x \cdot (sy - tz))$
:= $I + II + III$,

where *I* is the term with $s = t = 0$, *II* is the term with exactly one of *s* or *t* equal to zero, and *III* is the term with *s* and *t* both nonzero. Clearly

$$
I = q^{-2} \sum_{s=t=0} \sum_{x,y,z \in E} \chi(s\alpha) \chi(-t\beta) \chi(x \cdot (sy - tz)) = |E|^3 q^{-2}.
$$

For the second and third sums, we need the following known results.

Lemma 1 [\[8\]](#page-9-4) *For any set* $E \subset \mathbb{F}_q^d$ *, we have the bound*

$$
\sum_{s \neq 0} \sum_{x, y \in E} \chi(s(x \cdot y - \gamma)) \leq |E| q^{\frac{d+1}{2}} \lambda(\gamma), \tag{3}
$$

where $\lambda(\gamma) = 1$ *for* $\gamma \in \mathbb{F}_q^*$ *and* $\lambda(0) = \sqrt{q}$ *. Furthermore, we have*

$$
\sum_{s,s'\neq 0} \sum_{\substack{y,y'\in E\\sy=s'y'}} \chi(\alpha(s'-s)) \leq |E|q\lambda(\gamma). \tag{4}
$$

Note that the quantities in the above Lemma can be shown to be real numbers, so there is no need for absolute values. Now, separating the *I I* term into two sums, each with exactly one of *s* or *t* zero,

$$
II = q^{-2} |E| \left(\sum_{s \neq 0} \sum_{x,y \in E} \chi(s(x \cdot y - \alpha)) + \sum_{t \neq 0} \sum_{x,z \in E} \chi(t(x \cdot z - \beta)) \right)
$$

From [\(3\)](#page-6-0), it follows that $|II| \leq |E|^2 q^{\frac{d-3}{2}} (\lambda(\alpha) + \lambda(\beta))$. Finally, by the triangleinequality, dominating a nonnegative sum over $x \in E$ by the same nonnegative sum over $x \in \mathbb{F}_q^d$, and applying Cauchy–Schwarz, we have

$$
|III| \leq q^{-2} \sum_{x \in E} \left| \sum_{s \neq 0} \sum_{y \in E} \chi(s(x \cdot y - \alpha)) \right| \left| \sum_{t \neq 0} \sum_{z \in E} \chi(t(x \cdot z - \beta)) \right|
$$

\n
$$
\leq q^{-2} \sum_{x \in \mathbb{F}_q^d} \left| \sum_{s \neq 0} \sum_{y \in E} \chi(s(x \cdot y - \alpha)) \right| \left| \sum_{t \neq 0} \sum_{z \in E} \chi(t(x \cdot z - \beta)) \right|
$$

\n
$$
\leq q^{-2} \left(\sum_{x \in \mathbb{F}_q^d} \left| \sum_{s \neq 0} \sum_{y \in E} \chi(s(x \cdot y - \alpha)) \right|^2 \right)^{1/2}
$$

\n
$$
\cdot \left(\sum_{x \in \mathbb{F}_q^d} \left| \sum_{t \neq 0} \sum_{z \in E} \chi(t(x \cdot z - \beta)) \right|^2 \right)^{1/2}
$$

\n
$$
=: q^{-2} II_{\alpha} \cdot III_{\beta}.
$$

Now,

$$
III_{\alpha}^{2} = \sum_{x \in \mathbb{F}_{q}^{d}} \left| \sum_{s \neq 0} \sum_{y \in E} \chi(s(x \cdot y - \alpha)) \right|^{2}
$$

=
$$
\sum_{x} \sum_{s, s' \neq 0} \sum_{y, y' \in E} \chi(s(x \cdot y - \alpha)) \chi(-s'(x \cdot y' - \alpha))
$$

=
$$
\sum_{x} \sum_{s, s' \neq 0} \sum_{y, y' \in E} \chi(\alpha(s' - s)) \chi(x \cdot (sy - s'y'))
$$

=
$$
q^{d} \sum_{s, s' \neq 0} \sum_{\substack{y, y' \in E \\ sy = s'y' \\ sy = s'y'}} \chi(\alpha(s' - s))
$$

\$\leq q^{d+1} |E|\lambda(\alpha)^{2},

by [\(4\)](#page-6-1). Similarly, we have $III_\beta \le \sqrt{q^{d+1}|E| \lambda(\beta)}$. Combining these estimates yields

$$
|III| \le q^{d-1} |E| \lambda(\alpha) \lambda(\beta).
$$

This completes the proof as we have

$$
|\Pi_{\alpha,\beta}(E)| = \frac{|E|^3}{q^2} + R_{\alpha,\beta},
$$

where

$$
|R_{\alpha,\beta}| \leq |E|^2 q^{\frac{d-3}{2}} (\lambda(\alpha) + \lambda(\beta)) + q^{d-1} |E|\lambda(\alpha)\lambda(\beta).
$$

3.3 Proof of Theorem [5](#page-2-2)

The proof will imitate that of Theorem [4,](#page-2-1) so we omit some of the details. Let $\chi(\sigma)$ = $\exp(2\pi i \sigma / q)$ be the canonical additive character of \mathbb{Z}_q , and identify *E* with its characteristic function. We use the following known bounds for dot-product sets in \mathbb{Z}_q^d .

Lemma 2 [\[5\]](#page-9-11) *Suppose that* $E \subset \mathbb{Z}_q^d$, where $q = p^{\ell}$ *is the power of an odd prime. Suppose that* $\gamma \in \mathbb{F}_q^{\times}$ *is a unit. Then, we have the following upper bounds.*

$$
\sum_{j \in \mathbb{Z}_q \setminus \{0\}} \sum_{x, y \in E} \chi(j(x \cdot y - \gamma)) \le 2|E| q^{\left(\frac{d-1}{2}\right)\left(2 - \frac{1}{\ell}\right) + 1} \tag{5}
$$

and

$$
\sum_{s,s'\in\mathbb{Z}_q\backslash\{0\}}\sum_{\substack{y,y'\in E\\sy=s'y'}}\chi(\gamma(s'-s)) \le 2|E|q^{\frac{\ell d - d +1}{\ell}}\tag{6}
$$

Note 2 The authors in [\[5](#page-9-11)] actually gave a slightly different bound than those in Lemma [2.](#page-7-0) For example in [\(5\)](#page-7-1), they showed

$$
\sum_{j\in\mathbb{Z}_q\setminus\{0\}}\sum_{x,y\in E}\chi(j(x\cdot y-\gamma))\leq \sum_{i=0}^{\ell-1}|E|q^{\left(\frac{d-1}{2}\right)(1+\frac{i}{\ell})}\leq \ell|E|q^{\left(\frac{d-1}{2}\right)(2-\frac{1}{\ell})+1}.
$$

However, summing the geometric series removes the factor of ℓ in the estimate. Likewise, a factor of ℓ can be removed from the estimate in [\(6\)](#page-7-2).

We proceed as before. Write

$$
|\Pi_{\alpha,\beta}| = \frac{|E|^3}{q^2} + II + III,
$$

where

$$
II := |E|q^{-2} \left(\sum_{s \neq 0} \sum_{x,y \in E} \chi(s \cdot (x \cdot y - \alpha)) + \sum_{t \neq 0} \sum_{x,z \in E} \chi(s \cdot (x \cdot z - \beta)) \right)
$$

and

$$
III := q^{-2} \sum_{x \in E} \left(\sum_{s \neq 0} \sum_{y \in E} \chi(-s\alpha) \chi(s(x \cdot y)) \right) \left(\sum_{t \neq 0} \sum_{z \in E} \chi(-t\beta) \chi(t(x \cdot z)) \right).
$$

Applying Lemma [2,](#page-7-0) we see that

$$
|II| \le 4|E|^2 q^{-2} q^{\frac{d(2\ell-1)+1}{2\ell}},
$$

while

$$
|III| \leq q^{-2} \left(\sum_{x \in \mathbb{F}_q^d} \left| \sum_{s \neq 0} \sum_{y \in E} \chi(-s\alpha) \chi(s(x \cdot y)) \right|^2 \right)^{1/2}
$$

$$
\cdot \left(\sum_{x \in \mathbb{F}_q^d} \left| \sum_{t \neq 0} \sum_{z \in E} \chi(-t\beta) \chi(t(x \cdot z)) \right|^2 \right)^{1/2}
$$

$$
\leq 2|E|q^{-2}q^{\frac{\ell d - d + 1}{\ell}} \leq 2|E|q^{-2}q^{\frac{d(2\ell - 1)}{\ell} + \frac{1}{\ell}},
$$

where in the last line, we reason as in the proof of Theorem [4,](#page-2-1) except with Lemma [2](#page-7-0) in place of Lemma [1.](#page-5-0) This completes the proof.

References

- 1. J.A. Alvarez-Bermejo, J.A. Lopez-Ramos, J. Rosenthal, D. Schipani, Managing key multicasting through orthogonal systems. J. Discrete Math. Sci. Cryptogr
- 2. P. Bahls, Channel assignment on Cayley graphs. J. Graph Theory **67**, 169–177 (2011), [https://](https://doi.org/10.1002/jgt.20523) doi.org/10.1002/jgt.20523
- 3. D. Barker, S. Senger, Upper bounds on pairs of dot products. J. Comb. Math. Comb. Comput
- 4. J.J. Benedetto, M. Fickus, Finite normalized tight frames. Adv. Comput. Math. **18**, 357–385 (2003)
- 5. D. Covert, A. Iosevich, J. Pakianathan, Geometric configurations in the ring of integers modulo *p*. Indiana Univ. Math. J. **61**, 1949–1969 (2012)
- 6. P. Erd ˝os, E. Szemerédi, in *On Sums and Products of Integers*. Studies in Pure Mathematics (Birkhäuser, Basel, 1983), pp. 213–218
- 7. K. Ford, Integers with a divisor in an interval. Ann. Math. **168**(2), 367–433 (2008)
- 8. D. Hart, A. Iosevich, D. Koh, M. Rudnev, Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture. Trans. Am. Math. Soc. **363**(6), 3255–3275 (2011)
- 9. A. Iosevich, S. Senger, Orthogonal systems in vector spaces over finite fields. Electron. J. Comb. **15** (2008)
- 10. N.H. Katz, C.Y. Shen, A slight improvement to Garaev's sum product estimate. Proc. Am. Math. Soc. **136**(137), 2499–2504 (2008)
- 11. S.V. Konyagin, I.D. Shkredov, New results on sums and products in R. Proc. Steklov Inst. Math. **294**, 78 (2016), <https://doi.org/10.1134/S0081543816060055>
- 12. T. Tao, The sum-product phenomenon in arbitrary rings. Contrib. Discrete Math. **4**(2), 59–82 (2009)