
Cryptographic Hash Functions and Some
Applications to Information Security

Lisa Bromberg

Abstract We explore hashing with matrices over SL2(Fp), outlining known results
of Tillich and Zémor.We then summarize the bounds on the girth of the Cayley graph
of the subgroup of SL2(Fp) for specific generators A, B, work done by the author,
Shpilrain, andVdovina.We demonstrate that evenwithout optimization, these hashes
have comparable performance to hashes in the SHA family.

Keywords Information security · Cryptography · Group theory

1 Introduction

The aim of cryptography is to protect information from being stolen or modified by
an adversary. In modern cryptography, specific security goals are achieved with the
design of algorithms and also using the known computational hardness of certain
mathematical problems.

There are currently two main classes of cryptographic primitives: public-key
(asymmetric) and symmetric-key. Symmetric-key algorithms are older and in fact
can be traced back to at least the time of Julius Caesar. In symmetric-key ciphers,
knowledge of the encryption key is usually equivalent (or equal) to knowledge of
the decryption key. Because of this, participating parties need to agree on a shared
secret key before communicating through an open channel.

Public-key cryptography is a relatively young area of mathematics, but it has
been a very active area of research since its inception in 1976, with a seminal paper
of Diffie and Hellman [4]. In public-key algorithms, there are two separate keys: a
public-key that is published and a private-key which each user keeps secret. Knowl-
edge of the public-key does not imply knowledge of the private-key with any effi-
cient computation. In fact, the public-key is generated from the private-key using
a one-way function, with a trapdoor, which is a function that is easy (i.e., poly-
nomial time with respect to the complexity of an input) to compute, but hard (no

L. Bromberg (B)
United States Military Academy, West Point, NY, USA
e-mail: lisa.bromberg@usma.edu

© Springer International Publishing AG 2017
M. B. Nathanson (ed.), Combinatorial and Additive Number Theory II,
Springer Proceedings in Mathematics & Statistics 220,
https://doi.org/10.1007/978-3-319-68032-3_6

85

86 L. Bromberg

visible (probabilistic) polynomial-time algorithm on “most” inputs) to invert the im-
age of a random input without special information; the special information is the
above-mentioned “trapdoor.” A well-known example of public-key encryption is the
RSA cryptosystem, whose one-way function is the product of two large primes p, q.
If p and q are known, then it is easy to compute their product, but it is hard to factor
a large number into its prime factors.

Since public-key cryptosystems are more computationally costly than symmetric
algorithms, some modern cryptosystems rely on an asymmetric cipher to produce a
session key and then proceed with symmetric encryption for the remainder of the
session.

1.1 Hash Functions

A very important cryptographic primitive is the hash function. Cryptographic hash
functions havemany applications to information security, including digital signatures
and methods of authentication. They can also be used as ordinary hash functions,
to index data in a hash table, fingerprinting (a procedure which maps an arbitrary
large data item to a shorter bit string, or fingerprint which uniquely identifies the
original data for all practical purposes), to detect duplicate data, and as checksums
to detect (accidental) data corruption. In fact, in the context of information security,
cryptographic hash values are often referred to as fingerprints, checksums, or just
hash values.

We will first define the hash function and explain some properties we require a
hash function to possess. Then, we introduce Cayley hash functions, which are a
family of hash functions based on nonabelian groups. We then explore hashing with
matrices and outline results of the authors, Shpilrain and Vdovina [1] using matrices
over SL(2,Fp) of a particular form which generate the group.

Definition 1 Let n ∈ N and let H : {0, 1}∗ → {0, 1}n such that m �→ h = H(m).
We require a hash function to satisfy the following:

(1) Preimage resistance:Givenoutput y, it is hard tofind input x such that H(x) = y;
(2) Second preimage resistance: Given input x1, it is hard to find another input

x2 �= x1 such that H(x1) = H(x2);
(3) Collision resistance: It is hard to find inputs x1 �= x2 such that H(x1) = H(x2).

Note that since hash functions are not injective, this “uniqueness” that we desire
is purely computational. From a practical perspective, this means that no big cluster
of computers can find the input based only on the output of a hash function.

There exist old hash function constructions whose collision resistance follows
from the hardness of number-theoretic or group-theoretic problems. However, these
hash functions canonly be used in applicationswhich require only collision resistance
and are often too slow for practical purposes. Standardized hash functions, such as
the SHA family, follow the block cipher design: Their use is not restricted to collision

Cryptographic Hash Functions and Some Applications … 87

resistance, but their collision resistance is heuristic and not established by any precise
mathematical problem. In fact, recent attacks against the SHA-1 algorithm have led
to a competition for a new Standard Hash Algorithm [11].

Another direction, more relevant to our exposition, is the expander hash function,
dating back to 1991 when Zémor proposed building a hash function based on the
special linear group. This first attempt was quickly broken, but Tillich and Zémor
quickly proposed a second function which was resistant to the attack on the first;
see [16]. However, this newer hash function is also vulnerable to attack; see [17].
The Tillich–Zémor hash function is a type of expander hash called a Cayley hash
function and is different from functions in the SHA family in that it is not a block
hash function, but rather each bit is hashed individually. We discuss this particular
hash function in further detail in Sect. 2.

The expander hash design is fundamentally different from classical hash designs
in that it allows for relating important properties of hash functions such as collision
resistance, preimage resistance (see Definition 1), and their output distribution to
the graph-theoretical notions of cycle, girth, and expanding constants. When the
graphs used are Cayley graphs, the design additionally provides efficient parallel
computation and group-theoretical interpretations of the hash properties.

The expander hash design, though not so new anymore, is still little understood by
the cryptographic community. The Tillich–Zémor hash function is often considered
broken because of existing trapdoor attacks and attacks against specific parameters.
In fact, relations between hash, graph, and group-theoretic properties have been
sketched but no precise statements on these problems exist. Since the mathematical
problems which underly the security of expander hashes do not belong to classical
problems, it appears as though they have not been investigated. Hence, their actual
hardness is unknown. Efficiency aspects have also only been sketched.

Cayley hash functions are based on the idea of using a pair of (semi)group el-
ements, A and B, to hash the “0” and “1” bit, respectively, and then to hash an
arbitrary bit string by using multiplication of elements in the (semi)group. We focus
on hashing with 2 × 2 matrices over Fp. Since there are many known pairs of 2 × 2
matrices overZwhich generate a free monoid, this yields numerous pairs of matrices
over Fp (for p sufficiently large) that are candidates for collision-resistant hashing.
However, this trick can backfire and allow for a lifting of matrix elements to Z to
find a collision. This “lifting attack” was used by Tillich and Zémor [16] in the case
where two matrices A and B generate (as a monoid) all of SL(2,Z+). With other,
“similar” pairs of matrices from SL(2,Z), the situation is different, and while the
same “lifting attack” can (in some cases) produce collision in the group generated
by A and B, it says nothing about the monoid generated by A and B; see [1]. Since
only positive powers are used for hashing, this is all that is needed, and so, for these
pairs of matrices, there are no known attacks at this time that would affect the security
of the corresponding hash functions.

Additionally, we recall lower bounds on the length of collisions for hash functions
corresponding to some particular pairs of matrices from SL(2,Fp); again, see [1].

88 L. Bromberg

1.2 Cayley Hash Functions

Classical hash functions mix pieces of the message repeatedly so the result appears
sufficiently random [13]. For this reason, they may be unappealing outside the area
of cryptography. On the other hand, a particular type of expander hash function, the
Cayley hash function, has a more straightforward design.

Given a group G and a subset S = {s1, . . . , sk} of G, their Cayley graph G is a
k-regular graph that has a vertex vg associated with each element of G and an edge
between vertices vg1 and vg2 if there exists si ∈ S such that g2 = g1si .

To build a hash function from the Cayley graph, let σ : {1, . . . , k} → S be an
ordering, fix an initial value g0, and write the message m as a string m1m2 · · ·mN ,
where mi ∈ {1, . . . , k}. Then, the hash value is H(m) := g0σ(m1) · · · σ(mN). This
is represented on the Cayley graph as a (nonbacktracking) walk; the endpoint of the
walk is the hash value.

Two texts yielding the same hash value correspond to two pathswith the same start
and endpoints. We would like those two paths to differ necessarily by a “minimum
amount.” Such a vague notion can be guaranteed if there are no short cycles in the
Cayley graph. More precisely, we want the Cayley graph to have a large girth:

Definition 2 The directed girth of a Cayley graph G is the largest integer ∂ such
that, given any two vertices u and v, any pair of distinct paths which joins u to v will
be such that one of those paths has length (i.e., number of edges) ∂ or more.

The idea is that the girth of the Cayley graph is a relevant parameter to hashing.
More precisely, if a Cayley graph has a large girth ∂, then the corresponding hash
function will have the property that small modifications of the text will modify the
hash value [16].

One of themain advantages of Cayley hash functions over classical hash functions
is their ability to be parallelized. Namely, if messages x and y are concatenated, then
the hashed value of xy is H(xy) = H(x)H(y). Associativity of the group means we
can break down a large message into more manageable pieces, hash each piece, and
then recover the final result from the partial products.

Finally, a desirable feature of any hash function is the equidistribution of the
hashed values. This property can be guaranteed if the associated Cayley graph satis-
fies the following property.

Proposition 1 [17, Proposition 2.3] If the Cayley graph of a group G is such that the
greatest common divisor of its cycle lengths equals 1, then for the corresponding hash
function, the distribution of hashed values of texts of length n tends to equidistribution
when n tends to infinity.

This proposition is proved using classical graph-theoretic techniques, by studying
successive powers An of the adjacency matrix of the graph. Equidistribution can be
achieved with graphs that have a high expansion coefficient; see [18].

The collision, second preimage, and preimage resistance of classical hash func-
tions easily translate to group-theoretic problems.

Cryptographic Hash Functions and Some Applications … 89

Definition 3 Let G be a group and let S = {s1, . . . , sk} ⊂ G be a generating set. Let
L ∈ Z be “small.”

(1) Balance problem Find an “efficient” algorithm that returns two words m =
m1 · · ·m� andm ′ = m ′

1 · · ·m ′
�′ with �, �′ < L ,mi ,m ′

i ∈ {1, . . . , k} and∏
smi =∏

sm ′
i
.

(2) Representation problem Find an “efficient” algorithm that returns a word
m1 · · ·m� with � < L , mi ∈ {1, . . . , k} and ∏

smi = 1.
(3) Factorization problem Find an “efficient” algorithm that, given any element

g ∈ G, returns a word m1 · · ·m� with � < L , mi ∈ {1, . . . , k} and ∏
smi = g.

Note that since the group is finite, the length restriction is required, since for every
w ∈ G, w|G| = 1. Note also that Lubotzky described the factorization problem as a
noncommutative analog of the discrete logarithm problem [8]. In fact, if we omit
trivial solutions, then the representation and factorization problems are equivalent to
the discrete logarithm problem in abelian groups.

In general, the factorization problem is at least as hard as the representation
problem, which is itself at least as hard as the balance problem.

It is apparent that a Cayley hash function is collision resistant if and only if the
balance problem is hard, second preimage resistant if and only if the representation
problem is hard, and preimage resistant if and only if the factorization problem is
hard.

Among all Cayley hash proposals, the Tillich–Zémor hash function is the only
remaining current candidate. In general, the security of Cayley hashes depends on the
hardness in general of the factorization problem, which remains a big open problem.

The efficiency of Cayley hashes depends on specific parameters: The Tillich–
Zémor hash function is the most efficient expander hash, but it is still 10–20 times
slower than the standard classical hash SHA. Computation in Cayley hashes can be
easily parallelized, which could be a major benefit in applications. We outline a hash
function based on the Tillich–Zémor hash function [1] which is resistant to known
methods of attack and which is efficient in computation.

1.3 Possible Attacks

The mathematical structure of Cayley hash functions leaves them vulnerable to at-
tacks which exploit this structure.

An important category of attack is the subgroup attack. A probabilistic attack
was devised by Camion [2], based on the search for text whose hashcode falls into
a subgroup.

A second important category of attack is the lifting attack. Let us illustrate how a
lifting attack works with an example. LetG = SL(2,Fp). There is a natural map, the
reduction modulo p map, from SL(2,Z) to SL(2,Fp). A lifting attack for SL(2,Fp)

will “lift” the generators of SL(2,Z) and then try to “lift” the element to be factored
on the subgroup of SL(2,Z) generated by the lifts of the generators. Generally, if

90 L. Bromberg

a factorization exists, it is easier to find over Z rather than over Fp, since properly
chosen generators of an infinite group will give us unique factorization. Once a fac-
torization overZ has been obtained, reducing modulo p provides a factorization over
Fp. The most difficult part of the lifting attack is the lifting itself. For a specific ex-
ample of how the lifting attack works in the case of the Tillich–Zémor hash function,
see [16].

2 Hashing with Matrices

Hashing with matrices refers to the idea of using a pair of matrices, A and B (over
a finite ring) to hash the “0” bit and the “1” bit, respectively. Then, an arbitrary bit
string is hashed by using multiplication of matrices. So, the bit string 1001101 is
hashed to the matrix BA2B2AB.

Oneway to help ensure the requirements ofDefinition 1 is to use a pair of elements,
A and B, of a semigroup S such that the Cayley graph of the semigroup generated
by A and B is an expander graph. The most popular implementation of this idea is
the Tillich–Zémor hash function [17].

The use of the special linear group SL(2,Fp) of 2 × 2matrices with determinant 1
over a finite field Fp is a promising choice for devising hash functions. To begin with,
we can choose simple matrices as generators, which yield a fast hash: Multiplication
by such a matrix amounts to a few additions in Fp. Cayley graphs over SL(2,Fp)

also have good expanding properties; see Sarnak [15], Lafferty and Rockmore [7],
and Margulis [9, 10].

3 Hashing with G = SL(2,F p)

Another idea is to use A and B over Zwhich generate a free monoid and then reduce
the entries modulo a large prime p to get matrices over Fp. Here, we have a lower
bound on the length of bit string where a collision may occur, since there cannot be
an equality of positive products of A and B unless at least one of the entries in at
least one of the products is at least p. The bound is on the order of log p.

We investigate the Cayley graphs of SL(2,Fp) generated by

A(n) =
(
1 n
0 1

)

, B(n) =
(
1 0
n 1

)

,

where n = 2, 3, respectively, and p is a large prime. Particularly, we show their
application to hashing.

The main difference is the difference between the group generated by A(n) and
B(n) and the monoid generated by A(n) and B(n).

Cryptographic Hash Functions and Some Applications … 91

3.1 The Base Case

A pair of matrices over Z which generate a free monoid is

A(1) =
(
1 1
1 0

)

, B(1) =
(
1 0
1 1

)

.

Note that these matrices as generators of the group SL(2,Fp) have a Cayley graph
which forms an expander, so they are good candidates for the basis of a hash function.
Note also that these matrices are invertible and thus actually generate the group
SL(2,Z). This group is not free, but the monoid generated by A(1) and B(1) is free.
Since only positive powers are used in hashing, this is all we need.

However, since A(1) and B(1) generate all of SL(2,Z), we can use a lifting
attack on the corresponding hash function: A collision is found using the Euclidean
algorithm on the entries of a matrix; see [16]. In short, it is readily seen that a
short factorization of the identity over SL(2,Fp) produces collisions. To find such a
factorization, the strategy is to reduce the problem to factoring in an infinite group:
in this case, the group SL(2,Z). Find a matrixU in SL(2,Z) which reduces modulo
p to the identity and which can be expressed as a product of A(1)s and B(1)s. In
this case, that means that we only require U to have nonnegative coefficients. Then,
we use the Euclidean algorithm, which is an efficient way to obtain the factorization
of U .

For this attack to be effective, there must be a way of finding such a matrix
U . Tillich and Zémor [16] describe a probabilistic algorithm which does this. It is
based on the fact that the set of matrices of SL(2,Z) with nonnegative coefficients
is “dense.”

To protect against such attacks, one should choose a set of generators that generate
a sufficiently sparse submonoid of the infinite group associated with SL(2,Fp).
Tillich and Zémor proposed using the matrices

A =
(

α 1
1 0

)

, B =
(

α α + 1
1 1

)

,

where computations are made in the quotient field F2n = F2/〈p(x)〉, where p(x) has
degree n and α is a root of p. See [17] for details on the implementation of this hash.

Tillich and Zémor use matrices A, B from the group SL(2, R), where R is a
commutative ring defined by R = F2[x]/(p(x)). They took p(x) to be the irreducible
polynomial x131 + x7 + x6 + x5 + x4 + x + 1 over F2[x]. Thus, R is isomorphic to
F2n , where n is the degree of the irreducible polynomial p(x). Then, the matrices A
and B are

A =
(
1 1
1 0

)

, B =
(
1 0
1 1

)

.

92 L. Bromberg

This hash function was published in 1994 [17], but there have been several recent
attacks. In 2010, Petit and Quisquater [12] describe a preimage attack; in 2011,
Grassl, Ilic, Magliveras and Steinwandt [6] describe a collision attack.

3.2 Hashing with A(2) and B(2)

In this section, we outline circuits in the Cayley graph of SL(2,Fp) with generating
set A(2), B(2), as presented in [1]. Note that these matrices also correspond to a
Cayley graph which forms an expander graph.

We begin by noting that the lifting attack on the hash function depending on A(1)
and B(1) described above is the only published attack on that hash function. This
particular attack does not work with A(2), B(2). In particular, this gives evidence of
the security of using these matrices for hashing over Fp for a large prime p.

First, we need to justify why these matrices are better candidates than A(1) and
B(1). Recall that when considered as matrices over Z, A(1) and B(1) generate (as a
monoid) the entire monoid of 2 × 2matrices overZwith positive entries, SL(2,Z+).

However, this is not the case with A(2) and B(2).

Theorem 1 Sanov [14]

(1) The group generated by

A(2) =
(
1 2
0 1

)

, B(2) =
(
1 0
2 1

)

,

is a free group.
(2) The subgroup of SL(2,Z) generated by A(2) and B(2) consists of all invertible

matrices of the form (
1 + 4m1 2m2

2m3 1 + 4m4

)

, (*)

where the mi are integers.

This does not say much about themonoid generated by these matrices, though. In
fact, a generic matrix of the form above would not belong to this monoid. This is true
for two reasons: First, by another result of Sanov [14], the matrices A(2) and B(2)
generate a free group. Second, the number of matrices in the above form which are
representable by positive words is negligible. In fact, the number of distinct elements
represented by all freely reducible words in A(2) and B(2) of length n ≥ 2 is 4 · 3n−1,
while the number of distinct elements represented by positive words of length n ≥ 2
is 2n .

Tillich and Zémor’s lifting attack can still give an efficient algorithm which finds
relations of length O(log p) in the group generated by A(2) and B(2) considered as
matrices over Fp. Note that it does not affect the security of the hash function based

Cryptographic Hash Functions and Some Applications … 93

on A(2) and B(2) since only positive powers of A(2) and B(2) are used, and the
group relations produced by the algorithm will involve both negative and positive
powers with overwhelming probability.

Theorem 2 (Bromberg, Shpilrain and Vdovina [1, Theorem 1]) There is an efficient
heuristic algorithm that finds particular relations of the form w(A(2), B(2)) = 1,
where w is a group word of length O(log p), and the matrices A(2) and B(2) are
considered over Fp.

3.3 Girth of the Cayley Graph Generated by A(k) and B(k)

For hashing, we use only positive powers, so we need only to consider products of
positive powers of A(k) and B(k). We note that entries in a matrix of a length n
product of positive powers of A(k) and B(k) grow faster (as functions of n) in the
alternating product of A(k) and B(k). This is formalized below.

Proposition 2 ([1, Proposition 1]) Let wn(a, b) be an arbitrary positive word of
even length n, and let Wn = wn(A(k), B(k)) with k ≥ 2. Let Cn = (A(k) · B(k))n/2.
Then:

(1) The sum of entries in any row of Cn is at least as large as the sum of entries in
any row of Wn.

(2) The largest entry of Cn is at least as large as the sum of entries of Wn.

Lemma 1 ([1, Lemma 1]) Let (x, y) be a pair of positive integers, x �= y, and let
k ≥ 2. One can apply transformations of the following two kinds: Transformation R
takes (x, y) to (x, y + kx); transformation L takes (x, y) to (x + ky, y). Among all
sequences of these transformations of the same length, the sequence where R and L
alternate results in:

(1) The largest sum of elements in the final pair;
(2) The largest maximum element in the final pair.

Thus, we consider powers of the matrix

C(k) := A(k)B(k) (1)

to get to entries larger than p “as quickly as possible.”

3.3.1 Powers of C(2)

As seen in the work of the authors, Shpilrain and Vdovina [1], there are no collisions
of the form

u(A(2), B(2)) = v(A(2), B(2))

94 L. Bromberg

if positive words u and v are of length less than log√
3+√

8
p. In particular, the girth

of the Cayley graph of the semigroup generated by A(2) and B(2) (considered as
matrices over Fp) is at least log√3+√

8
p.

The base of the logarithm here is
√
3 + √

8 ≈ 2.4. Thus, for example, if p is on the
order of 2256, then there are no collisions of the form u(A(2), B(2)) = v(A(2), B(2))
if positive words u and v are of length less than 203.

3.3.2 Powers of C(3)

If we consider the matrices A(3) and B(3) as generators of SL(2,Fp), there are no
collisions of the form

u(A(3), B(3)) = v(A(3), B(3))

if positive words u and v are of length less than 2 log 11+√
117

2
p = log√

11+√
117

2

p. In

particular, the girth of the Cayley graph of the semigroup generated by A(3) and
B(3) (considered as matrices over Fp) is at least log√

11+√
117

2

p.

The base of the logarithm here is
√

11+√
117

2 ≈ 3.3. For example, if p is on the

order of 2256, then there are no collisions of the form u(A(2), B(2)) = v(A(2), B(2))
if positive words u and v are of length less than 149.

3.4 Conclusions

First, the lifting attack by Tillich and Zémor [16] which produces explicit relations of
lengthO(log p) in themonoid generated by A(1) and B(1) can be used in conjunction
with Sanov’s result [14] and some results from [5] to efficiently produce relations of
length O(log p) in the group generated by A(2) and B(2). Generically, the relations
produced by this method will involve both positive and negative powers of A(2) and
B(2). Therefore, this method does not produce collision for the corresponding hash
function, since the hash function only uses positive powers of A(2) and B(2).

Since there is no known analog of Sanov’s result for A(3) and B(3), at this time
there is no known efficient algorithm for even producing relations of length O(log p)
in the group generated by A(3) and B(3), let alone in the monoid. We note that by
the pigeonhole principle, such relations do in fact exist.

We have computed an explicit lower bound of logb p for the length of relations in
the monoid generated by A(2) and B(2), where b ≈ 2.4. For the monoid generated
by A(3) and B(3), we have a similar lower bound with base b ≈ 3.3.

We conclude that at this time, there are no known attacks on hash functions
corresponding to the pair A(2) and B(2) nor on the pair A(3) and B(3). Therefore,
there is no visible threat to their security.

Cryptographic Hash Functions and Some Applications … 95

3.5 Problems for Future Research

We list here some problems for future research on these Cayley hash functions.

1. Find a description, similar to Sanov’s, formatrices in themonoid generated by A(2)
and B(2) over Z.

2. Find an analog of “Sanov’s form” for the subgroup of SL(2,Z) generated by
A(3), B(3).

3. Determine which words in the matrices A(1), B(2) will have the fastest growth of
their entries, i.e., find analogs to Proposition 2 and Lemma 1.

This problem is of interest because if we can show the alternating product again
has fastest growth, then a similar calculation as was done for A(2), B(2) and for
A(3), B(3) would show a lower bound with a smaller base. This means that the base
of the logarithm is

√
2 + √

3,which is about 1.93. So thiswouldmean that for p on the
order of 2256, there will be no collisions of the form u(A(1), B(2)) = v(A(1), B(2))
if positive words u and v are of length less than 269 = log√

2+√
3
(p). This is a

stronger bound than for either the A(2), B(2) case or the A(3), B(3) case.

4 Computations and Efficiency

In this section, we include results of some experiments done to test the efficiency of
the hashes proposed in [1]. We hash with 2 × 2 matrices over Fp for a large prime
p.

We conducted several tests, performed on a computer with an Intel Core i7 quad-
core 4.0GHz processor and 16 GB of RAM, running Linux Mint version 17.1 with
Python version 3.4.1 and NumPy version 1.9.1.

Working with 2 × 2 matrices over a large field Fp for large prime p, we note
that multiplication of the matrices themselves is quite fast (can be done in 7 mul-
tiplications), but reduction modulo p takes more work. To test the efficiency with
multiplication in SL2(Fp), we conducted two experiments, both with p = 2127 − 1.
In the first, we chose a random number between 1 and 1,000,000, found a matrix M
as a word in A(2) and B(2) of that length, and then computed that it took approxi-
mately 80 ms to compute M10,000. In the second experiment, we determined that it
took approximately 30 milliseconds to compute a matrix as a word of length 10,000
in A(2) and B(2) over F2127−1.

For comparison, see [3] for performance results of various cryptographic func-
tions. In particular, SHA-512 hashes approximately 99 MiB/second (MiB stands

96 L. Bromberg

for mebibyte, and 1 MiB = 220 bytes) and so this is roughly 108 bytes per second.
Our proposed hash (the second experiment) also hashes approximately 108 bytes per
second. Moreover, SHA-512 has been optimized; our hash performs at this speed
without any optimization. For instance, our computations involve performing the
reduction modulo p at each step.

Also, our computation can be parallelized, whereas SHA-512 (and others in the
SHA family) cannot. This is because our bit strings can be broken up into smaller
parts, hashed, and then “put back together”: For instance, if H denotes the hash func-
tion, and the message M = ABC , then H(M) = H(ABC) = H(A)H(B)H(C).
This is not true with SHA hashes.

References

1. L. Bromberg, V. Shpilrain, A. Vdovina, Navigating the cayley graph of SL2(Fp) and applica-
tions to hashing. Semigroup Forum 94, 314–324 (2017)

2. P. Camion, Can a fast signature scheme without secret key be secure?, in Applied Algebra,
Algorithmics and Error-Correcting Codes (Toulouse, 1984), volume 228 of Lecture Notes in
Computer Science (Springer, Berlin, 1986), pp. 215–241

3. W. Dai, Crypto++ 5.6.0 benchmarks
4. W.Diffie andM. E.Hellman.Newdirections in cryptography. IEEETrans. Information Theory,

IT-22(6):644–654, 1976
5. D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, W.P. Thurston, Word

Processing in Groups (Jones and Bartlett Publishers, Boston, MA, 1992)
6. M. Grassl, I. Ilić, S. Magliveras, R. Steinwandt, Cryptanalysis of the Tillich-Zémor hash func-

tion. J. Cryptol. 24(1), 148–156 (2011)
7. J. Lafferty, D.Rockmore,Numerical investigation of the spectrum for certain families ofCayley

graphs, in Expanding Graphs (Princeton, NJ, 1992), volume 10 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science (AmericanMathematical Society, Providence,
RI, 1993), pp. 63–73

8. A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, volume 125 of
Progress in Mathematics (Birkhäuser Verlag, Basel, 1994). With an appendix by Jonathan D.
Rogawski

9. G.A. Margulis, Explicit constructions of graphs without short cycles and low density codes.
Combinatorica 2(1), 71–78 (1982)

10. G.A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their ap-
plications in the construction of expanders and concentrators. Problemy Peredachi Informatsii
24(1), 51–60 (1988)

11. C. Petit, Cryptographic hash functions from expander graphs. Ph.D. thesis (University College
London, 2009)

12. C. Petit, J.-J. Quisquater, Preimages for the Tillich-Zémor hash function, in Selected Areas
in Cryptography, volume 6544 of Lecture Notes in Computer Science (Springer, 2011), pp.
282–301

13. C. Petit, J.-J. Quisquater, Rubik’s for cryptographers. Not. Am. Math. Soc. 60(6), 733–740
(2013)

14. I.N. Sanov, A property of a representation of a free group. Doklady Akad. Nauk SSSR (N. S.)
57, 657–659 (1947)

15. P. Sarnak, Some Applications of Modular Forms. Cambridge Tracts in Mathematics, vol. 99
(Cambridge University Press, Cambridge, 1990)

Cryptographic Hash Functions and Some Applications … 97

16. J.-P. Tillich, G. Zémor, Group-theoretic hash functions, in Algebraic Coding (Paris, 1993),
volume 781 of Lecture Notes in Computer Science (Springer, Berlin, 1994), pp. 90–110

17. J.-P. Tillich, G. Zémor, Hashing with SL2, in Advances in Cryptology—CRYPTO ’94, volume
839 of Lecture Notes in Computer Science (Springer, Berlin, 1994), pp. 40–49

18. G. Zémor, Hash functions and Cayley graphs. Des. Codes Cryptogr. 4(4), 381–394 (1994)

	Cryptographic Hash Functions and Some Applications to Information Security
	1 Introduction
	1.1 Hash Functions
	1.2 Cayley Hash Functions
	1.3 Possible Attacks

	2 Hashing with Matrices
	3 Hashing with G=SL(2,mathbbFp)
	3.1 The Base Case
	3.2 Hashing with A(2) and B(2)
	3.3 Girth of the Cayley Graph Generated by A(k) and B(k)
	3.4 Conclusions
	3.5 Problems for Future Research

	4 Computations and Efficiency
	References

