Extending Babbage's (Non-)Primality Tests

Jonathan Sondow

Abstract We recall Charles Babbage's 1819 criterion for primality, based on simultaneous congruences for binomial coefficients, and extend it to a least-prime-factor test. We also prove a partial converse of his non-primality test, based on a single congruence. Along the way we encounter Bachet, Bernoulli, Bézout, Euler, Fermat, Kummer, Lagrange, Lucas, Vandermonde, Waring, Wilson, Wolstenholme, and several contemporary mathematicians.

Keywords Charles Babbage · Primality test · Binomial coefficient · Congruence Wolstenholme prime · Lucas's theorem

1 Introduction

Charles Babbage was an English mathematician, philosopher, inventor, mechanical engineer, and "irascible genius" who pioneered computing machines [\[2,](#page-7-0) [4,](#page-7-1) [10,](#page-7-2) [21](#page-8-0)[–23\]](#page-8-1). Although he held the Lucasian Chair of Mathematics at Cambridge University from 1828 to 1839, during that period he never resided in Cambridge or delivered a lecture [\[5,](#page-7-3) [7](#page-7-4), p. 7].

In 1819, he published his only work on number theory, a short paper [\[1](#page-7-5)] that begins:

The singular theorem of Wilson respecting Prime Numbers, which was first published by Waring in his *Meditationes Analyticae* [\[31](#page-8-2), p. 218], and to which neither himself nor its author could supply the demonstration, excited the attention of the most celebrated analysts of the continent, and to the labors of Lagrange [\[14](#page-7-6)] and Euler we are indebted for several modes of proof

Babbage formulated **Wilson's theorem** as a criterion for primality: *an integer p* > 1 *is a prime if and only if* $(p - 1)! \equiv -1 \pmod{p}$. (For a modern proof, see Moll [\[20,](#page-8-3) p. 66].) He then introduced several such criteria, involving congruences for

J. Sondow (\boxtimes)

²⁰⁹ West 97th Street, 10025 New York, NY, USA e-mail: jsondow@alumni.princeton.edu

[©] Springer International Publishing AG 2017

M. B. Nathanson (ed.), *Combinatorial and Additive Number Theory II*, Springer Proceedings in Mathematics & Statistics 220,

https://doi.org/10.1007/978-3-319-68032-3_19

binomial coefficients (see Granville [\[11,](#page-7-7) Sections 1 and 4]). However, some of his claims were unproven or even wrong (as Dubbey points out in [\[7,](#page-7-4) pp. 139–141]). One of his valid results is a necessary and sufficient condition for primality, based on a number of simultaneous congruences. Henceforth, let *n* denote an integer.

Theorem 1 (Babbage's Primality Test) *An integer p* > 1 *is a prime if and only if*

$$
\binom{p+n}{n} \equiv 1 \pmod{p} \tag{1}
$$

for all n satisfying $0 \le n \le p - 1$.

This is of only theoretical interest, the test being slower than trial division.

The "only if" part is an immediate consequence of the beautiful **theorem of Lucas** [\[15\]](#page-8-4) (see [\[8,](#page-7-8) [11,](#page-7-7) [17,](#page-8-5) [19](#page-8-6)] and [\[20,](#page-8-3) p. 70]), which asserts that *if p is a prime and the nonnegative integers a* = $\alpha_0 + \alpha_1 p + \cdots + \alpha_r p^r$ *and* $b = \beta_0 + \beta_1 p + \cdots + \beta_r p^r$ *are written in base p* (*so that* $0 \leq \alpha_i, \beta_i \leq p - 1$ for all *i*), then

$$
\binom{a}{b} \equiv \prod_{i=0}^{r} \binom{\alpha_i}{\beta_i} \pmod{p}.
$$
 (2)

(Here the convention is that $\binom{\alpha}{\beta} = 0$ if $\alpha < \beta$.) The congruence [\(1\)](#page-1-0) follows if $0 \le$ $n \leq p-1$, for then all the binomial coefficients formed on the right-hand side of [\(2\)](#page-1-1) are of the form $\binom{\alpha}{\alpha} = 1$, except the last one, which is $\binom{1}{0} = 1$.

However, the theorem was not available to Babbage because when it was published in 1878 he had been dead for seven years.

Lucas's theorem implies more generally that *for p a prime and m a power of p*, the congruences

$$
\binom{m+n}{n} \equiv 1 \pmod{p} \qquad (0 \le n \le m-1)
$$
 (3)

hold. A converse was proven in 2013: **Meštrović's theorem** [\[19](#page-8-6)] states that $if m > 1$ *and p* > 1 *are integers such that* [\(3\)](#page-1-2) *holds, then p is a prime and m is a power of p*. To begin the proof, Meštrović noted that for $n = 1$, the hypothesis gives

$$
\binom{m+1}{1} = m+1 \equiv 1 \pmod{p} \implies p \mid m.
$$

The rest of the proof involves combinatorial congruences modulo prime powers.

As Meštrović pointed out, "the 'if' part of Theorem [1](#page-1-3) is an immediate consequence of [his theorem] (supposing a priori [that $m = p$]). Accordingly, [his theorem] may be considered as a generalization of Babbage's criterion for primality."

Here we offer another generalization of Babbage's primality test.

Theorem 2 (Least-Prime-Factor Test) *The least prime factor of an integer m* > 1 *is the smallest natural number satisfying*

$$
\binom{m+\ell}{\ell} \not\equiv 1 \pmod{m}.\tag{4}
$$

For that value of ℓ , the least non-negative residue of $\binom{m+\ell}{\ell}$ modulo m is $\frac{m}{\ell}+1$.

The proof is given in Sect. [2.](#page-4-0)

Babbage's primality test is an easy corollary of the least-prime-factor test. Indeed, Theorem [2](#page-1-4) implies a sharp version of Theorem [1](#page-1-3) noticed by Granville [\[11\]](#page-7-7) in 1995.

Corollary 1 (Sharp Babbage Primality Test) *Theorem [1](#page-1-3) remains true if the range for n is shortened to* $0 \le n \le \sqrt{p}$.

Proof An integer $m > 1$ is a prime if and only if its least prime factor ℓ exceeds \sqrt{m} . The corollary follows by setting $m = p$ in Theorem [2.](#page-1-4) \Box

To see that *Corollary* [1](#page-2-0) *is sharp in that the range for n cannot be further shortened to* 0 ≤ *n* ≤ \sqrt{p} − 1, let *q* be any prime and set *p* = q^2 . Then *p* is not a prime, but the least-prime-factor test with $m = p$ and $\ell = q$ implies [\(1\)](#page-1-0) when $0 \le n \le q - 1$.

Problem 1 Since the "if" part of Babbage's primality test is a consequence both of Meštrovi´c's theorem and of the least-prime-factor test, one may ask, *Is there a common generalization of Meštrovi´c's theorem and Theorem* [2?](#page-1-4) (Note, though, that the modulus in the former is *p*, while that in the latter is *m*.)

Actually, the incongruence [\(4\)](#page-2-1) holds more generally if the *least* prime factor $\ell \mid m$ is replaced with *any* prime factor $p \mid m$. The following extension of the least-primefactor test is proven in Sect. [2.](#page-4-0)

Theorem 3 (*i*) *Given a positive integer m and a prime factor p* | *m, we have*

$$
\binom{m+p}{p} \not\equiv 1 \pmod{m}.\tag{5}
$$

(*ii*) If in addition $p^r \mid m$ but $p^{r+1} \nmid m$, where $r \geq 1$, then

$$
\binom{m+p}{p} \equiv \frac{m}{p} + 1 \not\equiv 1 \pmod{p^r}.
$$
 (6)

Part (*i*) is clearly equivalent to the statement that *if d* > 1 *divides m and* $\binom{m+d}{d} \equiv 1$ (mod *m*), *then d is composite.* As an example, for $m = 260$ and $d = 10$, we have

$$
\binom{m+d}{d} = \binom{270}{10} = 479322759878148681 \equiv 1 \pmod{260}.
$$

The sequence of integers $m > 1$, for which some integer *d* (necessarily composite) satisfies

$$
d > 1, \qquad d \mid m, \qquad \binom{m+d}{d} \equiv 1 \pmod{m},
$$

begins [\[28](#page-8-7), Seq. A290040]

m = 260, 1056, 1060, 3460, 3905, 4428, 5000, 5060, 5512, 5860, 6372, 6596,...

and the sequence of smallest such divisors *d* is, respectively, [\[28,](#page-8-7) Seq. A290041]

$$
d = 10, 264, 10, 10, 55, 18, 20, 10, 52, 10, 18, 34, \dots
$$
 (7)

Problem 2 Does Theorem [3](#page-2-2) extend to prime power factors, i.e., does [\(5\)](#page-2-3) also hold when *p* is replaced with p^k , where $p^k \mid m$ and $k > 1$? In particular, in the sequence [\(7\)](#page-3-0), is any term *d* a prime power?

Babbage also claimed a necessary and sufficient condition for primality based on a *single* congruence. But he proved only necessity, so we call it a test for non-primality.

Theorem 4 (Babbage's Non-Primality Test) An integer $m \geq 3$ is composite if

$$
\binom{2m-1}{m-1} \not\equiv 1 \pmod{m^2}.
$$
 (8)

Our version of his proof is given in Sect. [3.](#page-6-0)

Not only did Babbage not prove the claimed converse, but in fact it is false. Indeed, *the numbers* $m_1 = p_1^2 = 283686649$ *and* $m_2 = p_2^2 = 4514260853041$ *are composite but do not satisfy* [\(8\)](#page-3-1), where $p_1 = 16843$ and $p_2 = 2124679$ are primes.

Here p_1 (indicated by Selfridge and Pollack in 1964) and p_2 (discovered by Crandall, Ernvall, and Metsänkylä in 1993) are *Wolstenholme primes*, so called by Mcintosh [\[16](#page-8-8)] because, while **Wolstenholme's theorem** [\[32](#page-8-9)] (see [\[11](#page-7-7), [18](#page-8-10), [29\]](#page-8-11) and [\[20,](#page-8-3) p. 73]) of 1862 guarantees that *every prime* $p \ge 5$ *satisfies*

$$
\binom{2p-1}{p-1} \equiv 1 \pmod{p^3},\tag{9}
$$

in fact p_1 and p_2 satisfy the congruence in [\(9\)](#page-3-2) modulo p^4 , not just p^3 (see Guy [\[12,](#page-7-9) p. 131] and Ribenboim [\[25](#page-8-12), p. 23]).

Note that [\(9\)](#page-3-2) strengthens Babbage's non-primality test, as Theorem [4](#page-3-3) is equivalent to the statement that *the congruence in* [\(9\)](#page-3-2) *holds modulo p*² *for any prime p* \geq 3.

In their solutions to a problem by Segal in the *Monthly*, Brinkmann [\[26\]](#page-8-13) and Johnson [\[27\]](#page-8-14) made Babbage's and Wolstenholme's theorems more precise by showing that *every prime* $p \geq 5$ *satisfies the congruences*

$$
\binom{2p-1}{p-1} \equiv 1 - \frac{2}{3}p^3 B_{p-3} \equiv \binom{2p^2-1}{p^2-1} \pmod{p^4},
$$

where B_k denotes the *k*th *Bernoulli number*, a rational number. (See also Gardiner [\[9\]](#page-7-10) and Mcintosh [\[16\]](#page-8-8).) Thus, *a prime p* \geq 5 *is a Wolstenholme prime if and only if* $B_{p-3} \equiv 0 \pmod{p}$. (The congruence means that *p* divides the numerator of B_{p-3} .) In that case, the square of that prime, say $m = p^2$, is composite but must satisfy

$$
\binom{2m-1}{m-1} \equiv 1 \pmod{m^2},
$$

thereby providing a counterexample to the converse of Babbage's non-primality test.

Johnson [\[27\]](#page-8-14) commented that "interest in [Wolstenholme primes] arises from the fact that in 1857, Kummer proved that the first case of [Fermat's Last Theorem] is true for all prime exponents *p* such that $p \nmid B_{p-3}$."

We have seen that the converse of Babbage's non-primality test is false. The converse of Wolstenholme's theorem is the statement that *if* $p \geq 5$ *is composite, then* [\(9\)](#page-3-2) *does not hold.* It is not known whether this is generally true. A proof that it is true for *even* positive integers was outlined by Trevisan and Weber [\[29\]](#page-8-11) in 2001. In Sect. [3,](#page-6-0) we fill in some details omitted from their argument and extend it to prove the following stronger result.

Theorem 5 (Converse of Babbage's Non-Primality Test for Even Numbers) *If a positive integer m is even, then*

$$
\binom{2m-1}{m-1} \not\equiv 1 \pmod{m^2}.
$$
 (10)

2 Proofs of the Least-Prime-Factor Test and Its Extension

We prove Theorems [2](#page-1-4) and [3.](#page-2-2) The arguments use only mathematics available in Babbage's time.

Proof (Theorem [2](#page-1-4)) As ℓ is the smallest prime factor of *m*, if $0 < k < \ell$ then *k*! and *m* are coprime. In that case, **Bézout's identity** (proven in 1624 by Bachet in a book with the charming title *Pleasant and Delectable Problems* [\[3](#page-7-11), p. 18, Proposition XVIII]— see [\[6,](#page-7-12) Section 4.3]) gives integers *a* and *b* with $ak! + bm = 1$. Multiplying Bézout's equation by the number $\binom{m}{k} = m(m-1)\cdots(m-k+1)/k!$ yields

$$
am(m-1)\cdots(m-k+1)+bm\binom{m}{k}=\binom{m}{k},
$$

so $\binom{m}{k} \equiv 0 \pmod{m}$ if $1 \le k \le \ell - 1$. Now, for $n = 0, 1, ..., \ell - 1$, **Vandermonde's convolution** [\[30\]](#page-8-15) (see [\[20,](#page-8-3) p. 164]) of 1772 gives

$$
\binom{m+n}{n} = \sum_{k=0}^{n} \binom{m}{k} \binom{n}{n-k} \equiv \binom{m}{0} \binom{n}{n} \pmod{m}.
$$

(To see the equality, equate the coefficients of x^n in the expansions of $(1 + x)^{m+n}$ and $(1 + x)^m (1 + x)^n$. Thus, we arrive at the congruences

$$
\binom{m+n}{n} \equiv 1 \pmod{m} \qquad (0 \le n \le \ell - 1). \tag{11}
$$

On the other hand, from the identity

$$
\binom{a}{b} = \frac{a}{b} \binom{a-1}{b-1} \tag{12}
$$

(to prove it, use factorials), the congruence [\(11\)](#page-5-0) for $n = \ell - 1$, the integrality of $\frac{e}{\ell} = \frac{m}{\ell} + 1$, and the inequality $\ell > 1$ (as ℓ is a prime), we deduce that

$$
\binom{m+\ell}{\ell} = \frac{m+\ell}{\ell} \binom{m+\ell-1}{\ell-1} \equiv \frac{m}{\ell} + 1 \not\equiv 1 \pmod{m}.
$$

Together with (11) , this implies the least-prime-factor test. \Box

Proof (Theorem [3](#page-2-2)*)* It suffices to prove (*ii*). Set

$$
g \stackrel{\text{def}}{=} \gcd((p-1)!, m)
$$
 and $m_p \stackrel{\text{def}}{=} \frac{m}{g}$.

Note that

$$
p \text{ prime} \implies p \nmid g \implies p^r \mid m_p,\tag{13}
$$

since $p^r \mid m$. Bézout's identity gives integers *a* and *b* with $a(p-1)! + bm = g$. When $0 < k < p$, multiplying Bézout's equation by $\binom{m}{k}$ yields

$$
am(m-1)\cdots(m-k+1)\frac{(p-1)!}{k!}+bm\binom{m}{k}=g\binom{m}{k}
$$

with $(p-1)!/k!$ an integer, so $g\binom{m}{k} \equiv 0 \pmod{m}$. Dividing by *g* gives

$$
\binom{m}{k} \equiv 0 \pmod{m_p} \quad (1 \le k \le p-1).
$$

Combining this with [\(12\)](#page-5-1) and Vandermonde's convolution, we get

$$
\binom{m+p}{p} = \frac{m+p}{p} \binom{m+p-1}{p-1} = \frac{m+p}{p} \sum_{k=0}^{p-1} \binom{m}{k} \binom{p-1}{p-1-k} \tag{14}
$$
\n
$$
\equiv \frac{m}{p} + 1 \pmod{m_p}.
$$

As $p^{r+1} \nmid m$, we have $p^r \nmid \frac{m}{p}$. Now, [\(13\)](#page-5-2) and [\(14\)](#page-5-3) imply [\(6\)](#page-2-4), as required. \square

3 Proofs of Babbage's Non-primality Test and Its Converse for Even Numbers

The following proof is close to the one Babbage gave.

Proof (Theorem [4](#page-3-3)) Suppose on the contrary that *m* is prime. If we have $1 \leq n$ $\leq m-1$, then *m* divides the numerator of $\binom{m}{n} = m!/n!(m-n)!$ but not the denominator, so $\binom{m}{n} \equiv 0 \pmod{m}$. Thus, by [\(12\)](#page-5-1) and a famous case of Vandermonde's convolution,

$$
2\binom{2m-1}{m-1} = \binom{2m}{m} = \sum_{n=0}^{m} \binom{m}{n}^2 \equiv 1^2 + 1^2 \equiv 2 \pmod{m^2}.
$$

But as $m > 3$ is odd, [\(3\)](#page-1-2) contradicts [\(8\)](#page-3-1). Therefore, *m* is composite.

Before giving the proof of Theorem [5,](#page-4-1) we establish two lemmas. For any positive integer *k*, let $2^{v(k)}$ denote the highest power of 2 that divides *k*.

Lemma 1 *If* $m \ge n \ge 1$ *are integers satisfying* $n \le 2^{\nu(m)}$, *then the formula* $v({\binom{m}{n}}) = v(m) - v(n)$ *holds.*

Proof Let $m = 2^r m'$ with m' odd. Note that $v(2^r m' - k) = v(k)$ if $0 < k < 2^r$. (*Proof.* Write $k = 2^t k'$, where $0 \le t = v(k) \le r - 1$ and k' is odd. Then $2^{r-t} m' - k'$ is also odd, so $v(2^r m' - k) = v(2^t (2^{r-t} m' - k')) = t = v(k)$.) The logarithmic formula $v(ab) = v(a) + v(b)$ then implies that when $1 \le n \le 2^r$, the exponent of the highest power of 2 that divides the product

$$
n!{m \choose n} = 2^r m'(2^r m' - 1)(2^r m' - 2) \cdots (2^r m' - (n - 1))
$$

is $v(n!) + v(\binom{m}{n}) = r + v(1 \cdot 2 \cdots (n-1))$, so $v(\binom{m}{n}) = r - v(n)$. As $r = v(m)$, this proves the desired formula.

Lemma [1](#page-6-1) is sharp in that the hypothesis $n \leq 2^{\nu(m)}$ cannot be replaced with the weaker hypothesis $v(n) \le v(m)$. For example, $v({\binom{10}{6}}) = v(210) = 1$, but $v(10)$ – $v(6) = 0.$

Lemma 2 *A binomial coefficient* $\binom{2m-1}{m-1}$ *is odd if and only if m* = 2^{*r*} *for some* $r \ge 0$.

Proof **Kummer's theorem** [\[13\]](#page-7-13) (see [\[20](#page-8-3), p. 78] or [\[24](#page-8-16)]) for the prime 2 states that $v(\binom{a+b}{a}$ equals the number of carries when adding *a* and *b* in base 2 arithmetic. Hence, $v(\binom{m+m}{m})$ is the number of ones in the binary expansion of *m*, and so $v(\binom{2m}{m}) = 1$ if and only if $m = 2^r$ for some $r \ge 0$. As $\binom{2m}{m} = 2\binom{2m-1}{m-1}$ by [\(12\)](#page-5-1), we are done.

We can now prove the converse of Babbage's non-primality test for even numbers.

Proof (Theorem [5](#page-4-1)) For $m \ge 2$ $m \ge 2$ not a power of 2, Lemma 2 implies that $\binom{2m-1}{m-1}$ is even, so $\binom{2m-1}{m-1}$ is congruent modulo 4 to either 0 or 2. For $m \ge 2$ a power of 2, say $m = 2^r$, the equalities in [\(3\)](#page-1-2) and the symmetry $\binom{m}{n} = \binom{m}{m-n}$ yield

$$
\binom{2m-1}{m-1} = 1 + \frac{1}{2} \binom{2^r}{2^{r-1}}^2 + \sum_{k=1}^{2^{r-1}-1} \binom{2^r}{k}^2,
$$

and Lemma [1](#page-6-1) implies that $\frac{1}{2} {2^{r-1} \choose 2^{r-1}}^2 \equiv 2 \pmod{4}$ and that ${2^{r} \choose k}^2 \equiv 0 \pmod{4}$ when $0 < k < 2^{r-1}$; thus, by addition $\binom{2m-1}{m-1} \equiv 3 \pmod{4}$. Hence for all $m \ge 2$, we have $\binom{2m-1}{m-1}$ ≢ 1 (mod 4). Now as 4 divides m^2 when *m* is even, [\(10\)](#page-4-2) holds a fortiori. This completes the proof. \Box

References

- 1. C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Phil. J. **1**, 46–49 (1819), <http://books.google.com/books?id=KrA-AAAAYAAJ&pg=PA46>
- 2. C. Babbage, *Passages from the Life of a Philosopher*, (Longman, Green, Longman, Roberts, & Green, London, 1864), [http://djm.cc/library/Passages_Life_of_a_Philosopher_Babbage_](http://djm.cc/library/Passages_Life_of_a_Philosopher_Babbage_edited.pdf) [edited.pdf](http://djm.cc/library/Passages_Life_of_a_Philosopher_Babbage_edited.pdf)
- 3. C.G. Bachet, *Problèmes plaisants et délectables, qui se font par les nombres*, 2nd edn. (Rigaud, Lyon, 1624), http://bsb3.bsb.lrz.de/~db/1008/bsb10081407/images/bsb10081407_00036
- 4. W.A. Beyer, Review of [7]. Am. Math. Mon. **86**, 66–67 (1979)
- 5. B.D. Blackwood, Charles Babbage. In: ed. by D.R. Franceschetti *Biographical Encyclopedia of Mathematicians*. (Cavendish, New York, 1998), pp. 33–36, [http://www.blackwood.org/](http://www.blackwood.org/Babbage.htm) [Babbage.htm](http://www.blackwood.org/Babbage.htm)
- 6. É. Barbin, J. Borowczyk, J.-L. Chabert, A. Djebbar, M. Guillemot, J.-C. Martzloff, A. Michel-Pajus, *A History of Algorithms: From the Pebble to the Microchip*. ed. by J.-L. Chabert. Trans. by C. Weeks (Springer, Berlin and Heidelberg, 2012)
- 7. J.M. Dubbey, *The Mathematical Work of Charles Babbage* (Cambridge University Press, Cambridge, 1978)
- 8. N.J. Fine, Binomial coefficients modulo a prime. Am. Math. Mon. **54**, 589–592 (1947)
- 9. A. Gardiner, Four problems on prime power divisibility. Am. Math. Mon. **95**, 926–931 (1988)
- 10. J. Grabiner, Review of From Newton to Hawking: A History of Cambridge University's Lucasian Professors of Mathematics by K.C. Knox, R. Noakes. Am. Math. Mon. **112**, 757–762 (2005)
- 11. A. Granville, Arithmetic properties of binomial coefficients I: binomial coefficients modulo prime powers. In: J. Borwein (ed), *Organic mathematics (Burnaby, BC, 1995)*. CMS Conference Proceeding Vol. 20 (American Mathematical Society, Providence, RI, 1997), pp. 253–275, <http://www.dms.umontreal.ca/~andrew/Binomial/>
- 12. R.K. Guy, *Unsolved Problems in Number Theory*, 3rd edn. (Springer, New York, 2004)
- 13. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math. **44**, 93–146 (1852)
- 14. J.L. Lagrange, Démonstration d'un théorème nouveau concernant les nombres premiers, Nouv. Mém. Acad. Roy. Sci. Belles-Letters, Berlin **2**, 125–137 (1771); available at [https://books.](https://books.google.com/books?id=_-U_AAAAYAAJ&pg=PA125) [google.com/books?id=_-U_AAAAYAAJ&pg=PA125](https://books.google.com/books?id=_-U_AAAAYAAJ&pg=PA125)
- 15. É. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France **6**, 49– 54 (1878), http://archive.numdam.org/ARCHIVE/BSMF/BSMF_1878__6_/BSMF_1878 [6__49_1/BSMF_1878__6__49_1.pdf](http://archive.numdam.org/ARCHIVE/BSMF/BSMF_1878__6_/BSMF_1878__6__49_1/BSMF_1878__6__49_1.pdf)
- 16. R.J. McIntosh, On the converse of Wolstenholme's theorem. Acta Arith. **71**, 381–389 (1995)
- 17. R. Meštrović, A note on the congruence $\begin{pmatrix} nd \\ md \end{pmatrix} \equiv \begin{pmatrix} n \\ m \end{pmatrix}$ *m* (mod *q*). Am. Math. Mon. **116**, 75–77 (2009)
- 18. R. Meštrović, Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862–2011), [arXiv:1111.3057](http://arxiv.org/abs/1111.3057) [math.NT] (2011)
- 19. R. Meštrovi´c, An extension of Babbage's criterion for primality, Math. Slovaca **63**, 1179–1182 (2013). <http://dx.doi.org/10.2478/s12175-013-0164-8>
- 20. V.H. Moll, *Numbers and Functions: From a Classical-Experimental Mathematician's Point of View*. Student Mathematical Library, Vol. 65 (American Mathematical Society, Providence, RI, 2012)
- 21. M. Moseley, *Irascible Genius: A Life of Charles Babbage, Inventor* (Hutchinson, London, 1964)
- 22. J.J. O'Connor, E.F. Robertson, *Charles Babbage, MacTutor History of Mathematics*, [http://](http://www-groups.dcs.st-and.ac.uk/history/Biographies/Babbage.html) www-groups.dcs.st-and.ac.uk/history/Biographies/Babbage.html
- 23. J.T. O'Donnell, Review of Charles Babbage: Pioneer of the Computer by A. Hymanl. Am. Math. Mon. **92**, 522–525 (1985)
- 24. C. Pomerance, Divisors of the middle binomial coefficient. Am. Math. Mon. **122**, 636–644 (2015)
- 25. P. Ribenboim, *The Little Book of Bigger Primes* (Springer, New York, 2004)
- 26. D. Segal, H.W. Brinkmann, E435, Am. Math. Mon. **48**, 269–271 (1941)
- 27. D. Segal, W. Johnson, E435. Am. Math. Mon. **83**, 813 (1976)
- 28. Sloane, N.J.A. *The On-Line Encyclopedia of Integer Sequences*. Published electronically at <http://oeis.org/> (2017)
- 29. V. Trevisan, K. Weber, Testing the converse of Wolstenholme's theorem. Mat. Contemp. **21**, 275–286 (2001)
- 30. A.-T. Vandermonde, Mémoire sur des irrationnelles de différens ordres, avec une application au cercle, Mém. Acad. Roy. Sci. Paris (1772), 489–498, [http://gallica.bnf.fr/ark:/12148/](http://gallica.bnf.fr/ark:/12148/bpt6k3570q/f79) [bpt6k3570q/f79](http://gallica.bnf.fr/ark:/12148/bpt6k3570q/f79)
- 31. E. Waring, *Meditationes Algebraicae* (Cambridge University Press, Cambridge, 1770)
- 32. J. Wolstenholme, On certain properties of prime numbers, Q. J. Pure Appl. Math. **5**, 35–39 (1862), <http://books.google.com/books?id=vL0KAAAAIAAJ&pg=PA35>