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Abstract We recall Charles Babbage’s 1819 criterion for primality, based on simul-
taneous congruences for binomial coefficients, and extend it to a least-prime-factor
test. We also prove a partial converse of his non-primality test, based on a single
congruence. Along the way we encounter Bachet, Bernoulli, Bézout, Euler, Fer-
mat, Kummer, Lagrange, Lucas, Vandermonde, Waring, Wilson, Wolstenholme, and
several contemporary mathematicians.
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1 Introduction

Charles Babbage was an English mathematician, philosopher, inventor, mechan-
ical engineer, and “irascible genius” who pioneered computing machines
[2, 4, 10, 21–23]. Although he held the Lucasian Chair ofMathematics at Cambridge
University from 1828 to 1839, during that period he never resided in Cambridge or
delivered a lecture [5, 7, p. 7].

In 1819, he published his only work on number theory, a short paper [1] that
begins:

The singular theorem of Wilson respecting Prime Numbers, which was first published by
Waring in his Meditationes Analyticae [31, p. 218], and to which neither himself nor its
author could supply the demonstration, excited the attention of the most celebrated analysts
of the continent, and to the labors of Lagrange [14] and Euler we are indebted for several
modes of proof . . . .

Babbage formulatedWilson’s theorem as a criterion for primality: an integer p > 1
is a prime if and only if (p − 1)! ≡ −1 (mod p). (For a modern proof, see Moll
[20, p. 66].) He then introduced several such criteria, involving congruences for
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binomial coefficients (see Granville [11, Sections1 and 4]). However, some of his
claims were unproven or even wrong (as Dubbey points out in [7, pp. 139–141]).
One of his valid results is a necessary and sufficient condition for primality, based
on a number of simultaneous congruences. Henceforth, let n denote an integer.

Theorem 1 (Babbage’s Primality Test) An integer p > 1 is a prime if and only if(
p + n

n

)
≡ 1 (mod p) (1)

for all n satisfying 0 ≤ n ≤ p − 1.

This is of only theoretical interest, the test being slower than trial division.
The “only if” part is an immediate consequence of the beautiful theoremofLucas

[15] (see [8, 11, 17, 19] and [20, p. 70]), which asserts that if p is a prime and the non-
negative integers a = α0 + α1 p + · · · + αr pr and b = β0 + β1 p + · · · + βr pr are
written in base p (so that 0 ≤ αi , βi ≤ p − 1 for all i), then

(
a

b

)
≡

r∏
i=0

(
αi

βi

)
(mod p). (2)

(Here the convention is that
(
α

β

) = 0 if α < β.) The congruence (1) follows if 0 ≤
n ≤ p − 1, for then all the binomial coefficients formed on the right-hand side of
(2) are of the form

(
α

α

) = 1, except the last one, which is
(1
0

) = 1.
However, the theoremwas not available toBabbage becausewhen itwas published

in 1878 he had been dead for seven years.
Lucas’s theorem implies more generally that for p a prime and m a power of p,

the congruences

(
m + n

n

)
≡ 1 (mod p) (0 ≤ n ≤ m − 1) (3)

hold. A converse was proven in 2013:Meštrović’s theorem [19] states that if m > 1
and p > 1 are integers such that (3) holds, then p is a prime and m is a power of p.

To begin the proof, Meštrović noted that for n = 1, the hypothesis gives

(
m + 1

1

)
= m + 1 ≡ 1 (mod p) =⇒ p | m.

The rest of the proof involves combinatorial congruences modulo prime powers.
AsMeštrović pointed out, “the ‘if’ part of Theorem1 is an immediate consequence

of [his theorem] (supposing a priori [that m = p]). Accordingly, [his theorem] may
be considered as a generalization of Babbage’s criterion for primality.”

Here we offer another generalization of Babbage’s primality test.

Theorem 2 (Least-Prime-Factor Test) The least prime factor of an integer m > 1
is the smallest natural number � satisfying



Extending Babbage’s (Non-)Primality Tests 271

(
m + �

�

)
�≡ 1 (mod m). (4)

For that value of �, the least non-negative residue of
(m+�

�

)
modulo m is m

�
+ 1.

The proof is given in Sect. 2.
Babbage’s primality test is an easy corollary of the least-prime-factor test. Indeed,

Theorem 2 implies a sharp version of Theorem 1 noticed by Granville [11] in 1995.

Corollary 1 (Sharp Babbage Primality Test) Theorem 1 remains true if the range
for n is shortened to 0 ≤ n ≤ √

p.

Proof An integer m > 1 is a prime if and only if its least prime factor � exceeds
√

m.

The corollary follows by setting m = p in Theorem 2. �

To see thatCorollary 1 is sharp in that the range for n cannot be further shortened
to 0 ≤ n ≤ √

p − 1, let q be any prime and set p = q2. Then p is not a prime, but
the least-prime-factor test with m = p and � = q implies (1) when 0 ≤ n ≤ q − 1.

Problem 1 Since the “if” part of Babbage’s primality test is a consequence both
of Meštrović’s theorem and of the least-prime-factor test, one may ask, Is there a
common generalization of Meštrović’s theorem and Theorem 2? (Note, though, that
the modulus in the former is p, while that in the latter is m.)

Actually, the incongruence (4) holds more generally if the least prime factor � | m
is replaced with any prime factor p | m. The following extension of the least-prime-
factor test is proven in Sect. 2.

Theorem 3 (i) Given a positive integer m and a prime factor p | m, we have

(
m + p

p

)
�≡ 1 (mod m). (5)

(i i) If in addition pr | m but pr+1 � m, where r ≥ 1, then

(
m + p

p

)
≡ m

p
+ 1 �≡ 1 (mod pr ). (6)

Part (i) is clearly equivalent to the statement that if d > 1 divides m and
(m+d

d

) ≡ 1
(mod m), then d is composite. As an example, for m = 260 and d = 10, we have

(
m + d

d

)
=

(
270

10

)
= 479322759878148681 ≡ 1 (mod 260).

The sequence of integers m > 1, for which some integer d (necessarily composite)
satisfies
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d > 1, d | m,

(
m + d

d

)
≡ 1 (mod m),

begins [28, Seq. A290040]

m = 260, 1056, 1060, 3460, 3905, 4428, 5000, 5060, 5512, 5860, 6372, 6596, . . .

and the sequence of smallest such divisors d is, respectively, [28, Seq. A290041]

d = 10, 264, 10, 10, 55, 18, 20, 10, 52, 10, 18, 34, . . . . (7)

Problem 2 Does Theorem 3 extend to prime power factors, i.e., does (5) also hold
when p is replaced with pk , where pk | m and k > 1? In particular, in the sequence
(7), is any term d a prime power?

Babbage also claimed a necessary and sufficient condition for primality based on a
single congruence. But he proved only necessity, so we call it a test for non-primality.

Theorem 4 (Babbage’s Non-Primality Test) An integer m ≥ 3 is composite if

(
2m − 1

m − 1

)
�≡ 1 (mod m2). (8)

Our version of his proof is given in Sect. 3.
Not only did Babbage not prove the claimed converse, but in fact it is false. Indeed,

the numbers m1 = p2
1 = 283686649 and m2 = p2

2 = 4514260853041 are composite
but do not satisfy (8), where p1 = 16843 and p2 = 2124679 are primes.

Here p1 (indicated by Selfridge and Pollack in 1964) and p2 (discovered by
Crandall, Ernvall, and Metsänkylä in 1993) are Wolstenholme primes, so called by
Mcintosh [16] because, while Wolstenholme’s theorem [32] (see [11, 18, 29] and
[20, p. 73]) of 1862 guarantees that every prime p ≥ 5 satisfies

(
2p − 1

p − 1

)
≡ 1 (mod p3), (9)

in fact p1 and p2 satisfy the congruence in (9) modulo p4, not just p3 (see Guy [12,
p. 131] and Ribenboim [25, p. 23]).

Note that (9) strengthens Babbage’s non-primality test, as Theorem 4 is equivalent
to the statement that the congruence in (9) holds modulo p2 for any prime p ≥ 3.

In their solutions to a problem by Segal in the Monthly, Brinkmann [26] and John-
son [27] made Babbage’s and Wolstenholme’s theorems more precise by showing
that every prime p ≥ 5 satisfies the congruences

(
2p − 1

p − 1

)
≡ 1 − 2

3
p3Bp−3 ≡

(
2p2 − 1

p2 − 1

)
(mod p4),
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where Bk denotes the kth Bernoulli number, a rational number. (See also Gardiner
[9] and Mcintosh [16].) Thus, a prime p ≥ 5 is a Wolstenholme prime if and only if
Bp−3 ≡ 0 (mod p). (The congruence means that p divides the numerator of Bp−3.)
In that case, the square of that prime, say m = p2, is composite but must satisfy

(
2m − 1

m − 1

)
≡ 1 (mod m2),

thereby providing a counterexample to the converse of Babbage’s non-primality test.
Johnson [27] commented that “interest in [Wolstenholme primes] arises from the

fact that in 1857, Kummer proved that the first case of [Fermat’s Last Theorem] is
true for all prime exponents p such that p � Bp−3.”

We have seen that the converse of Babbage’s non-primality test is false. The
converse ofWolstenholme’s theorem is the statement that if p ≥ 5 is composite, then
(9) does not hold. It is not known whether this is generally true. A proof that it is
true for even positive integers was outlined by Trevisan and Weber [29] in 2001. In
Sect. 3, we fill in some details omitted from their argument and extend it to prove the
following stronger result.

Theorem 5 (Converse of Babbage’s Non-Primality Test for Even Numbers) If a
positive integer m is even, then

(
2m − 1

m − 1

)
�≡ 1 (mod m2). (10)

2 Proofs of the Least-Prime-Factor Test and Its Extension

We prove Theorems 2 and 3. The arguments use only mathematics available in
Babbage’s time.

Proof (Theorem 2) As � is the smallest prime factor of m, if 0 < k < � then k! and m
are coprime. In that case,Bézout’s identity (proven in 1624 by Bachet in a bookwith
the charming title Pleasant and Delectable Problems [3, p. 18, Proposition XVIII]—
see [6, Section4.3]) gives integers a and b with ak! + bm = 1. Multiplying Bézout’s
equation by the number

(m
k

) = m(m − 1) · · · (m − k + 1)/k! yields

am(m − 1) · · · (m − k + 1) + bm

(
m

k

)
=

(
m

k

)
,

so
(m

k

) ≡ 0 (mod m) if 1 ≤ k ≤ � − 1. Now, for n = 0, 1, . . . , � − 1,
Vandermonde’s convolution [30] (see [20, p. 164]) of 1772 gives

(
m + n

n

)
=

n∑
k=0

(
m

k

)(
n

n − k

)
≡

(
m

0

)(
n

n

)
(mod m).
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(To see the equality, equate the coefficients of xn in the expansions of (1 + x)m+n

and (1 + x)m(1 + x)n). Thus, we arrive at the congruences(
m + n

n

)
≡ 1 (mod m) (0 ≤ n ≤ � − 1). (11)

On the other hand, from the identity(
a

b

)
= a

b

(
a − 1

b − 1

)
(12)

(to prove it, use factorials), the congruence (11) for n = � − 1, the integrality of
m+�

�
= m

�
+ 1, and the inequality � > 1 (as � is a prime), we deduce that

(
m + �

�

)
= m + �

�

(
m + � − 1

� − 1

)
≡ m

�
+ 1 �≡ 1 (mod m).

Together with (11), this implies the least-prime-factor test. �

Proof (Theorem 3) It suffices to prove (i i). Set

g
def= gcd((p − 1)!, m) and m p

def= m

g
.

Note that
p prime =⇒ p � g =⇒ pr | m p, (13)

since pr | m. Bézout’s identity gives integers a and b with a(p − 1)! + bm = g.
When 0 < k < p, multiplying Bézout’s equation by

(m
k

)
yields

am(m − 1) · · · (m − k + 1)
(p − 1)!

k! + bm

(
m

k

)
= g

(
m

k

)

with (p − 1)!/k! an integer, so g
(m

k

) ≡ 0 (mod m). Dividing by g gives

(
m

k

)
≡ 0 (mod m p) (1 ≤ k ≤ p − 1).

Combining this with (12) and Vandermonde’s convolution, we get

(
m + p

p

)
= m + p

p

(
m + p − 1

p − 1

)
= m + p

p

p−1∑
k=0

(
m

k

)(
p − 1

p − 1 − k

)

≡ m

p
+ 1 (mod m p).

(14)

As pr+1 � m, we have pr � m
p . Now, (13) and (14) imply (6), as required. �
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3 Proofs of Babbage’s Non-primality Test and Its Converse
for Even Numbers

The following proof is close to the one Babbage gave.

Proof (Theorem 4) Suppose on the contrary that m is prime. If we have 1 ≤ n
≤ m − 1, then m divides the numerator of

(m
n

) = m!/n!(m − n)! but not the denom-
inator, so

(m
n

) ≡ 0 (mod m). Thus, by (12) and a famous case of Vandermonde’s
convolution,

2

(
2m − 1

m − 1

)
=

(
2m

m

)
=

m∑
n=0

(
m

n

)2

≡ 12 + 12 ≡ 2 (mod m2).

But as m ≥ 3 is odd, (3) contradicts (8). Therefore, m is composite. �

Before giving the proof of Theorem 5, we establish two lemmas. For any positive
integer k, let 2v(k) denote the highest power of 2 that divides k.

Lemma 1 If m ≥ n ≥ 1 are integers satisfying n ≤ 2v(m), then the formula
v(

(m
n

)
) = v(m) − v(n) holds.

Proof Let m = 2r m ′ with m ′ odd. Note that v(2r m ′ − k) = v(k) if 0 < k < 2r .
(Proof. Write k = 2t k ′,where 0 ≤ t = v(k) ≤ r − 1 and k ′ is odd. Then 2r−t m ′ − k ′
is also odd, so v(2r m ′ − k) = v(2t (2r−t m ′ − k ′)) = t = v(k).) The logarithmic for-
mula v(ab) = v(a) + v(b) then implies that when 1 ≤ n ≤ 2r , the exponent of the
highest power of 2 that divides the product

n!
(

m

n

)
= 2r m ′(2r m ′ − 1)(2r m ′ − 2) · · · (2r m ′ − (n − 1))

is v(n!) + v(
(m

n

)
) = r + v(1 · 2 · · · (n − 1)), so v(

(m
n

)
) = r − v(n). As r = v(m),

this proves the desired formula. �

Lemma 1 is sharp in that the hypothesis n ≤ 2v(m) cannot be replaced with the
weaker hypothesis v(n) ≤ v(m). For example, v(

(10
6

)
) = v(210) = 1, but v(10) −

v(6) = 0.

Lemma 2 A binomial coefficient
(2m−1

m−1

)
is odd if and only if m = 2r for some r ≥ 0.

Proof Kummer’s theorem [13] (see [20, p. 78] or [24]) for the prime 2 states
that v(

(a+b
a

)
) equals the number of carries when adding a and b in base 2 arith-

metic. Hence, v(
(m+m

m

)
) is the number of ones in the binary expansion of m, and

so v(
(2m

m

)
) = 1 if and only if m = 2r for some r ≥ 0. As

(2m
m

) = 2
(2m−1

m−1

)
by (12),

we are done. �



276 J. Sondow

We can now prove the converse of Babbage’s non-primality test for even numbers.

Proof (Theorem 5) For m ≥ 2 not a power of 2, Lemma 2 implies that
(2m−1

m−1

)
is

even, so
(2m−1

m−1

)
is congruent modulo 4 to either 0 or 2. For m ≥ 2 a power of 2, say

m = 2r , the equalities in (3) and the symmetry
(m

n

) = ( m
m−n

)
yield

(
2m − 1

m − 1

)
= 1 + 1

2

(
2r

2r−1

)2

+
2r−1−1∑

k=1

(
2r

k

)2

,

and Lemma 1 implies that 1
2

( 2r

2r−1

)2 ≡ 2 (mod 4) and that
(2r

k

)2 ≡ 0 (mod 4) when
0 < k < 2r−1; thus, by addition

(2m−1
m−1

) ≡ 3(mod 4). Hence for all m ≥ 2, we have(2m−1
m−1

) �≡ 1(mod 4). Now as 4 divides m2 when m is even, (10) holds a fortiori. This
completes the proof. �
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18. R. Meštrović, Wolstenholme’s theorem: its generalizations and extensions in the last hundred

and fifty years (1862–2011), arXiv:1111.3057 [math.NT] (2011)
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