Limits and Decomposition of de Bruijn's Additive Systems

Melvyn B. Nathanson

Abstract An *additive system* for the nonnegative integers is a family $(A_i)_{i \in I}$ of sets of nonnegative integers with $0 \in A_i$ for all $i \in I$ such that every nonnegative integer can be written uniquely in the form $\sum_{i \in I} a_i$ with $a_i \in A_i$ for all *i* and $a_i \neq 0$ for only finitely many *i*. In 1956, de Bruijn proved that every additive system is constructed from an infinite sequence $(g_i)_{i \in \mathbb{N}}$ of integers with $g_i \geq 2$ for all *i* or is a contraction of such a system. This paper discusses limits and the stability of additive systems and also describes the "uncontractable" or "indecomposable" additive systems.

Keywords Additive system · Additive basis · British number system

2010 Mathematics Subject Classification: 11A05 · 11B75

1 Additive Systems and de Bruijn's Theorem

Let N_0 and N denote the sets of nonnegative integers and positive integers, respectively. For real numbers *a* and *b*, we define the interval of integers $[a, b) = \{x \in \mathbb{Z} :$ $a \leq x < b$ and $[a, b] = \{x \in \mathbb{Z} : a \leq x \leq b\}.$

Let *I* be a nonempty finite or infinite set, and let $A = (A_i)_{i \in I}$ be a family of sets of integers with $0 \in A_i$ and $|A_i| \geq 2$ for all $i \in I$. Each set A_i can be finite or infinite. The *sumset* $S = \sum_{i \in I} A_i$ is the set of all integers *n* that can be represented in the form $n = \sum_{i \in I} a_i$, where $a_i \in A_i$ for all $i \in I$ and $a_i \neq 0$ for only finitely many *i* ∈ *I*. If every element of *S* has a *unique* representation in the form $n = \sum_{i \in I} a_i$, then we call *A* a *unique representation system for S*, and we write $S = \bigoplus_{i \in I} A_i$.

In a unique representation system *A* for *S*, we have $A_i \cap A_j = \{0\}$ for all $i \neq j$. The condition $|A_i| \geq 2$ for all $i \in I$ implies that $A_i = S$ for some $i \in I$ if and only if $|I| = 1$. Moreover, if $I^{\circ} \subseteq I$ and $S = \sum_{i \in I^{\circ}} A_i$, then $S = \bigoplus_{i \in I^{\circ}} A_i$ and $I = I^{\circ}$.

M. B. Nathanson (\boxtimes)

Department of Mathematics, Lehman College (CUNY), Bronx, NY 10468, USA e-mail: melvyn.nathanson@lehman.cuny.edu

© Springer International Publishing AG 2017

https://doi.org/10.1007/978-3-319-68032-3_18

255

M. B. Nathanson (ed.), *Combinatorial and Additive Number Theory II*, Springer Proceedings in Mathematics & Statistics 220,

The family $A = (A_i)_{i \in I}$ is an *additive system* if A is a unique representation system for the set of nonnegative integers, that is, if $N_0 = \bigoplus_{i \in I} A_i$. The following lemma follows immediately from the definition of an additive system.

Lemma 1 *Let* $\mathcal{B} = (B_j)_{j \in J}$ *be an additive system. If* $\{J_i\}_{i \in I}$ *is a partition of J into pairwise disjoint nonempty sets, and if*

$$
A_i = \sum_{j \in J_i} B_j
$$

then $\mathcal{A} = (A_i)_{i \in I}$ *is an additive system.*

The additive system $\mathcal A$ obtained from the additive system $\mathcal B$ by the partition procedure described in Lemma [1](#page-1-0) is called a *contraction* of *B*. (In [\[1](#page-12-0)], de Bruijn called *A* a *degeneration* of *B*.) If $I = J$ and if σ is a permutation of *J* such that $J_i = \{\sigma(i)\}\$ for all $i \in J$, then *A* and *B* contain exactly the same sets. Thus, every additive system is a contraction of itself. An additive system *A* is a *proper contraction* of *B* if at least one set $A_i \in \mathcal{A}$ is the sum of at least two sets in *B*.

Let *X* be a set of integers, and let *g* be an integer. The *dilation* of *X* by *g* is the set *g* $* X = {gx : x ∈ X}.$

Lemma 2 *Let* $\mathcal{B} = (B_i)_{i \in J}$ *be an additive system and let* $I = \{i_0\} \cup J$ *, where* $i_0 \notin$ *J. If*

$$
A_{i_0}=[0,g)
$$

and

$$
A_j = g * B_j \quad \text{for all } j \in J
$$

then $\mathcal{A} = (A_i)_{i \in I}$ *is an additive system.*

The additive system *A* obtained from the additive system *B* by the procedure described in Lemma [2](#page-1-1) is called the *dilation* of *B* by *g*.

There are certain additive systems that de Bruijn called *British number systems*. A British number system is an additive system constructed from an infinite sequence of integers according to the algorithm in Theorem [1](#page-1-2) below. de Bruijn [\[1](#page-12-0)] proved that British number systems are essentially the only additive systems.

Theorem 1 Let $(g_i)_{i \in \mathbb{N}}$ be an infinite sequence of integers such that $g_i \geq 2$ for all *i* ≥ 1*. Let* $G_0 = 1$ *and, for i* ∈ **N***, let* $G_i = \prod_{j=1}^{i} g_j$ *and*

$$
A_i = \{0, G_{i-1}, 2G_{i-1}, \ldots, (g_i - 1)G_{i-1}\} = G_{i-1} * [0, g_i).
$$

Then $A = (A_i)_{i \in \mathbb{N}}$ *is an additive system.*

Theorem 2 *Every additive system is a British number system or a proper contraction of a British number system.*

The proof of Theorem [2](#page-1-3) depends on the following fundamental lemma.

Lemma 3 Let $\mathcal{A} = (A_i)_{i \in I}$ be an additive system with $|I| \geq 2$, and let i_1 be the *unique element of I such that* $1 \in I_i$. *There exist an integer g* ≥ 2 *and a family of sets* $B = (B_i)_{i \in I}$ *such that*

$$
A_{i_1}=[0,g)\oplus g*B_{i_1}
$$

and, for all i \in *I* \setminus {*i*₁}*,*

$$
A_i = g * B_i.
$$

If $B_i = \{0\}$, then $B = (B_i)_{i \in I \setminus \{i_1\}}$ *is an additive system, and A is the dilation of the additive system B by the integer g. If* $B_i \neq \{0\}$ *, then* $B = (B_i)_{i \in I}$ *is an additive system and A is a contraction of the additive system B dilated by g.*

For proofs of Lemmas [1,](#page-1-0) [2,](#page-1-1) and [3](#page-2-0) and Theorems [1](#page-1-2) and [2,](#page-1-3) see Nathanson [\[4\]](#page-12-1).

This paper gives a refinement of de Bruijn's theorem. Every additive system is a contraction of a British number system, but even a British number system can be a proper contraction of another British number system. An additive system that is not a proper contraction of another number system will be called *indecomposable*. In Sect. [3,](#page-4-0) we describe all indecomposable British number systems. Unsurprisingly, there is a one-to-one correspondence between indecomposable British number systems and infinite sequences of prime numbers.

In Sect. [4,](#page-10-0) we define the limit of a sequence of additive systems and discuss the stability of British number systems.

Maltenfort [\[2\]](#page-12-2) and Munagi [\[3](#page-12-3)] have also studied de Bruijn's additive systems.

2 Decomposable and Indecomposable Sets

The set *A* of integers is a *proper sumset* if there exist sets *B* and *C* of integers such that $|B| \ge 2$, $|C| \ge 2$, and $A = B + C$. For example, if *u* and *v* are integers and $v - u \geq 3$, then the interval [*u*, *v*) is a proper sumset:

$$
[u, v) = [0, i) + [u, v + 1 - i)
$$

for every $i \in [2, v - u)$.

The set *A* of integers is *decomposable* if there exist sets *B* and *C* such that (*B*,*C*) is a unique representation system for *A*, that is, if $|B| > 2$, $|C| > 2$, and $A = B \oplus C$. A decomposition $A = B \oplus C$ is also called a *tiling* of A by B. For example,

$$
[0, 12) = \{0, 3\} \oplus \{0, 1, 2, 6, 7, 8\}.
$$

If $A = B \oplus C$ is a decomposition, then $|A| = |B| |C|$ and so the integer $|A|$ is composite.

Let $n \geq 2$ and consider the interval of integers $A = [0, n)$. A *proper divisor* of *n* is a divisor *d* of *n* such that $1 < d < n$. Associated to every proper divisor *d* of *n* is the decomposition

$$
[0, n) = [0, d) \oplus d * [0, n/d). \tag{1}
$$

This is simply the division algorithm for integers. The number of decompositions of type [\(1\)](#page-3-0) is the number of proper divisors *d* of *n*. There is exactly one such decomposition if and only if the integer *n* has a unique proper divisor if and only if *n* is the square of a prime number.

Lemma 4 *Let* $n > 2$ *. The interval* $[0, n)$ *is indecomposable if and only if n is prime.*

Proof If *n* is prime then [0, *n*) is indecomposable, and if *n* is composite, then [0, *n*) is decomposable.

If $A = B \oplus C$ and *g* is a nonzero integer, then $g * A = g * B \oplus g * C$, and so every dilation of a decomposable set is decomposable.

The *translate* of the set *A* by an integer *t* is the set

$$
A + t = \{a + t : a \in A\}.
$$

Let *t*₁, *t*₂ ∈ **Z** with *t* = *t*₁ + *t*₂. If *A* = *B* + *C*, then

$$
A + t = (B + t_1) + (C + t_2).
$$

In particular, $A + t = (B + t) + C$. If $A = B \oplus C$, then $A + t = (B + t) \oplus C$, and so every translate of a decomposable set is decomposable. Similarly, if $A = B \oplus C$, then $A = (B - t) \oplus (C + t)$ for every integer *t*.

Let *A* be a set of nonnegative integers with $0 \in A$, and let *B* and *C* be sets of integers with $A = B \oplus C$. Let $t = \min(B)$. Defining $B' = B - t$ and $C' = C + t$, we obtain $A = B' \oplus C'$. Because min $(B') = 0$, we obtain

$$
0 = \min(A) = \min(B') + \min(C') = 0 + \min(C') = \min(C')
$$

and so *B'* and *C'* are sets of nonnegative integers with $0 \in B' \cap C'$.

Not every set with a composite number of elements is decomposable. For example, the *n*-element set $\{0, 1, 2, 2^2, \ldots, 2^{n-2}\}\$ is indecomposable for every $n \ge 2$. This is a special case of the following result.

Lemma 5 Let $m \geq 2$. Let A be a set of integers that contains integers a_0 and a_1 *such that* $a_0 \neq a_1 \pmod{m}$ *, and* $a \equiv a_0 \pmod{m}$ *<i>for all* $a \in A \setminus \{a_1\}$ *. The set A is indecomposable.*

Proof The distinct congruence classes $a_0 \pmod{m}$ and $a_1 \pmod{m}$ contain elements of *A*. Let *B* and *C* be sets of integers such that $A = B + C$ with $|B|, |C| > 2$. If *B* is contained in the congruence class *r* (mod *m*) and *C* is contained in the congruence class *s* (mod *m*), then $B + C$ is contained in the congruence class $r + s$

(mod *m*), and so $A \neq B + C$ (because *A* intersects two congruence classes). Therefore, at least one of the sets *B* and *C* must contain elements from distinct congruence classes modulo *m*. Let $b_1, b_2 \in B$ with $b_1 \not\equiv b_2 \pmod{m}$, and let $c_1, c_2 \in C$ with $c_1 \neq c_2$. We have $b_i + c_1 \in B + C$ for $i = 1, 2$ and $b_1 + c_1 \neq b_2 + c_1 \pmod{m}$. Because *A* intersects only two congruence classes modulo *m*, and because the intersection with the congruence class $a_1 \pmod{m}$ contains only the integer a_1 , we must have *b_i* + *c*₁ = *a*₁ for some *i* ∈ {1, 2}.

Similarly, $b_j + c_2 \in B + C$ for $j = 1, 2$ with $b_1 + c_2 \not\equiv b_2 + c_2 \pmod{m}$, and so $b_j + c_2 = a_1$ for some $j \in \{1, 2\}$. The equation $b_i + c_1 = b_j + c_2$ implies that $A \neq B \oplus C$. This completes the proof.

The following examples show that, in Lemma [5,](#page-3-1) the condition that the set *A* contains exactly one element of the congruence class $a_1 \pmod{m}$ is necessary.

Let $m \geq 2$, and let $R \subseteq [0, m)$ with $|R| \geq 2$. For every set *J* of integers with $|J| > 2$, we have

$$
A = \{ jm + r : j \in J \text{ and } r \in R \} = B \oplus C
$$

where

$$
B = \{ jm : j \in J \} \qquad \text{and} \qquad C = R.
$$

Let *k*, ℓ , and *m* be integers with $k \ge 2$, $\ell \ge 2$, and $m \ge 2$, and let *u* and *v* be integers such that $u \neq v \pmod{m}$. Consider the set

$$
A = \{ im + u : i \in [0, \ell) \} \cup \{ jm + v : j \in [0, k\ell) \}.
$$

The sets

$$
B = \{u\} \cup \{q\ell m + v : q \in [0, k)\}
$$

and

$$
C = \{ im : i \in [0, \ell) \}
$$

satisfy $|B| = 1 + k\ell \geq 2$, $|C| = \ell \geq 2$ and

 $A = B \oplus C$.

3 Decomposition of Additive Systems

Contraction and dilation are two methods to construct new additive systems from old ones. Decomposition is a third method to produce new additive systems.

An additive system $A = (A_i)_{i \in I}$ is called *decomposable* if the set A_{i_0} is decomposable for some $i_0 \in I$ and *indecomposable* if A_i is indecomposable for all $i \in I$. Equivalently, an indecomposable additive system is an additive system that is not a proper contraction of another additive system.

Theorem 3 *Let* $A = (A_i)_{i \in I}$ *be a decomposable additive system, and let* A_i *be a decomposable set in A. Choose sets B and C of nonnegative integers such that* 0 ∈ *B* ∩ *C*, $|B|$ ≥ 2, $|C|$ ≥ 2*, and* $A_{i_0} = B \oplus C$ *. Let*

$$
I'=\{j_1,\,j_2\}\cup I\setminus\{i_0\}.
$$

The family of sets $A' = (A'_i)_{i \in I'}$ *defined by*

$$
A'_{i} = \begin{cases} A_{i} & \text{if } i \in I \setminus \{i_{0}\} \\ B & \text{if } i = j_{1} \\ C & \text{if } i = j_{2} \end{cases}
$$

is an additive system.

Proof This follows immediately from the definitions of additive system and indecomposable set.

We call A' a *decomposition* of the additive system A .

Lemma 6 *Let a and b be positive integers, and let X be a set of integers. Then*

$$
[0, ab) = [0, a) \oplus X \tag{2}
$$

if and only if

$$
X = a * [0, b).
$$

Proof The division algorithm implies that $[0, ab) = [0, a) \oplus a * [0, b)$, and so $X =$ $a * [0, b)$ is a solution of the additive set equation [\(2\)](#page-5-0).

Conversely, let *X* be any solution of [\(2\)](#page-5-0). Let $I = \{1, 2, 3\}$ and let $A_1 = [0, a)$, $A_2 = X$, and $A_3 = ab * N_0$. By the division algorithm, $A = (A_i)_{i \in I}$ is an additive system. Applying Lemma [3](#page-2-0) to A, we obtain an integer $g \ge 2$ and sets B_1 , B_2 , and *B*³ such that

$$
[0, a) = [0, g) \oplus g * B_1
$$

$$
X = g * B_2
$$

$$
ab * \mathbf{N}_0 = g * B_3.
$$

It follows that $g = a$, $B_1 = \{0\}$, $B_3 = b * N_0$, and

$$
\mathbf{N}_0=B_2\oplus B_3=B_2\oplus b*\mathbf{N}_0.
$$

This implies that $B_2 = [0, b)$ and $X = a * [0, b)$.

There is also a nice polynomial proof of Lemma [6.](#page-5-1) Let

$$
f(t) = \sum_{i \in [0, ab)} t^i
$$

$$
g(t) = \sum_{j \in [0, a)} t^j
$$

$$
h(t) = \sum_{k \in [0, b)} t^{ak}
$$

$$
h_X(t) = \sum_{x \in X} t^x.
$$

The set equation $[0, ab) = [0, a) \oplus a * [0, b)$ implies that

$$
f(t) = g(t)h(t).
$$

If $[0, ab) = [0, a) \oplus X$, then

$$
f(t) = g(t)h_X(t)
$$

and so

$$
g(t)(h(t) - h_X(t)) = 0.
$$

Because $g(t) \neq 0$, it follows that $h(t) = h_X(t)$ or, equivalently, $a * [0, b) = X$.

By Theorem [2,](#page-1-3) every additive system is a British number system or a proper contraction of a British number system. However, a British number system can also be a proper contraction of another British number system. Consider, for example, the British number systems A_2 and A_4 generated by the sequences $(2)_{i \in \mathbb{N}}$ and $(4)_{i \in \mathbb{N}}$, respectively:

$$
\mathcal{A}_2 = (\{0, 2^{i-1}\})_{i \in \mathbb{N}} = (2^{i-1} * [0, 2))_{i \in \mathbb{N}}
$$

= (\{0, 1\}, \{0, 2\}, \{0, 4\}, \{0, 8\}, \ldots)

and

$$
\mathcal{A}_4 = (\{0, 4^{i-1}, 2 \cdot 4^{i-1}, 3 \cdot 4^{i-1}\})_{i \in \mathbb{N}} = (4^{i-1} * [0, 4))_{i \in \mathbb{N}}
$$

= (\{0, 1, 2, 3\}, \{0, 4, 8, 12\}, \{0, 16, 32, 48\}, \{0, 64, 128, 192, 256\}, \dots).

Because

$$
4^{i-1} * [0, 4) = \{0, 2^{2i-2}\} + \{0, 2^{2i-1}\} = 2^{2i-2} * [0, 2) + 2^{2i-1} * [0, 2)
$$

we see that A_4 is a contraction of A_2 .

de Bruijn [\[1](#page-12-0)] asserted the following necessary and sufficient condition for one British number system to be a contraction of another British number system.

Theorem 4 *Let* $B = (B_i)_{i \in \mathbb{N}}$ *be the British number system constructed from the integer sequence* $(h_i)_{i \in \mathbb{N}}$ *, and let* $\mathcal{A} = (A_i)_{i \in \mathbb{N}}$ *be the contraction of B constructed from a partition* $(J_i)_{i \in \mathbb{N}}$ *of* N *into nonempty finite sets. Then, A is a British number system if and only if* J_i *is a finite interval of integers for all i* $\in \mathbb{N}$ *.*

Proof Let $(J_i)_{i \in \mathbb{N}}$ be a partition of **N** into nonempty finite intervals of integers. After re-indexing, there is a strictly increasing sequence $(u_i)_{i \in \mathbb{N}_0}$ of integers with $u_0 = 0$ such that $J_i = [u_{i-1} + 1, u_i]$ for all $i \in \mathbb{N}$.

If $\mathcal{B} = (B_i)_{i \in \mathbb{N}}$ is the British number system constructed from the integer sequence $(h_j)_{j \in \mathbb{N}}$, then $B_j = H_{j-1} * [0, h_j)$, where $H_0 = 1$ and $H_j = \prod_{k=1}^j h_k$. Let $G_0 = 1$. For $i \in \mathbb{N}$ we define

$$
g_i = \frac{H_{u_i}}{H_{u_{i-1}}}
$$

and

$$
G_i = \prod_{j=1}^i g_j = \prod_{j=1}^i \frac{H_{u_j}}{H_{u_{j-1}}} = H_{u_i}.
$$

We have

$$
A_{i} = \bigoplus_{j \in J_{i}} B_{j} = \bigoplus_{j=u_{i-1}+1}^{u_{i}} H_{j-1} * [0, h_{j})
$$

\n
$$
= H_{u_{i-1}} * \bigoplus_{j=u_{i-1}+1}^{u_{i}} H_{j-1} * [0, h_{j})
$$

\n
$$
= H_{u_{i-1}} * ([0, h_{u_{i-1}+1}) + h_{u_{i-1}+1} * [0, h_{u_{i-1}+2})
$$

\n
$$
+ h_{u_{i-1}+1} h_{u_{i-1}+2} * [0, h_{u_{i-1}+3}) + \cdots
$$

\n
$$
+ h_{u_{i-1}+1} \cdots h_{u_{i-1}} * [0, h_{u_{i}})
$$

\n
$$
= H_{u_{i-1}} * [0, \frac{H_{u_{i}}}{H_{u_{i-1}}})
$$

\n
$$
= G_{i-1} * [0, g_{i})
$$

and so $A = (A_i)_{i \in \mathbb{N}}$ is the British number system constructed from the integer sequence $(g_i)_{i \in \mathbb{N}}$.

Conversely, let $A = (A_i)_{i \in \mathbb{N}}$ be a contraction of *B* constructed from a partition $(J_i)_{i \in \mathbb{N}}$ of N in which some set J_{i_0} is a not a finite interval of integers. Let $u =$ $\min (J_{i_0})$ and $w = \max (J_{i_0})$. Because J_{i_0} is not an interval, there is a smallest integer v such that

$$
u < v < w
$$

and $[u, v - 1] \subseteq J_{i_0}$, but $v \notin I_{i_0}$. Because

$$
[u, v-1] \cup \{w\} \subseteq J_{i_0} \subseteq [u, v-1] \cup [v+1, w]
$$

and

$$
A_{i_0} = \sum_{j \in J_{i_0}} H_{j-1} * [0, h_j)
$$

we have

$$
H_{u-1} * [0, h_u) \cup H_{w-1} * [0, h_w) \subseteq A_{i_0}
$$

\n
$$
\subseteq \sum_{j \in [u, v-1]} H_{j-1} * [0, h_j) + \sum_{j \in [v+1, w]} H_{j-1} * [0, h_j)
$$

\n
$$
\subseteq H_{u-1} * \left[0, \frac{H_{v-1}}{H_{u-1}}\right) + H_v * \left[0, \frac{H_w}{H_v}\right)
$$

Because $h_u \geq 2$ and $h_v \geq 2$, it follows that

$$
H_{u-1}\in A_{i_0}
$$

and

$$
H_{w-1} = H_{u-1}\left(\frac{H_{w-1}}{H_{u-1}}\right) \in A_{i_0}.
$$

The largest multiple of H_{u-1} in $H_{u-1} * [0, H_{v-1}/H_{u-1})$ is $H_{u-1}(H_{v-1}/H_{u-1} - 1)$. The smallest positive multiple of H_{u-1} in $H_v * [0, H_w/H_v)$ is $H_v = H_{u-1}(H_v/H_{u-1})$. The inequality

$$
1 \le \frac{H_{v-1}}{H_{u-1}} - 1 < \frac{H_{v-1}}{H_{u-1}} < \frac{H_v}{H_{u-1}} \le \frac{H_{w-1}}{H_{u-1}}
$$

implies that the set A_{i_0} does not contain the integer $H_{u-1}(H_{v-1}/H_{u-1})$. In a British number system, every set consists of consecutive multiples of its smallest positive element. Because the set A_{i_0} lacks this property, it follows that A is not a British number system. This completes the proof.

Theorem 5 *There is a one-to-one correspondence between sequences* $(p_i)_{i \in \mathbb{N}}$ *of prime numbers and indecomposable British number systems. Moreover, every additive system is either indecomposable or a contraction of an indecomposable system.*

Proof Let *A* be a British number system generated by the sequence $(g_i)_{i \in \mathbb{N}}$, so that

$$
\mathcal{A} = (G_{i-1} * [0, g_i))_{i \in \mathbf{N}}.
$$

Suppose that g_k is composite for some $k \in \mathbb{N}$. Then $g_k = rs$, where $r \geq 2$ and $s \geq 2$ are integers. Construct the sequence $(g_i')_{i \in \mathbb{N}}$ as follows:

$$
g'_{i} = \begin{cases} g_{i} & \text{if } i \leq k - 1 \\ r & \text{if } i = k \\ s & \text{if } i = k + 1 \\ g_{i-1} & \text{if } i \geq k + 2. \end{cases}
$$

Then,

$$
G'_{i} = \prod_{j=1}^{i} g'_{j} = \begin{cases} G_{i} & \text{if } i \leq k-1 \\ rG_{k-1} & \text{if } i = k \\ G_{k} & \text{if } i = k+1 \\ G_{i-1} & \text{if } i \geq k+2 \end{cases}
$$

and

$$
\mathcal{A}' = (G'_{i-1} * [0, g'_i))_{i \in \mathbb{N}}
$$

is the British number system generated by the sequence $(g_i')_{i \in \mathbb{N}}$. We have

$$
G_{i-1} * [0, g_i) = \begin{cases} G'_{i-1} * [0, g'_i) & \text{if } i \leq k - 1 \\ G'_i * [0, g'_{i+1}) & \text{if } i \geq k + 1. \end{cases}
$$

The identity

$$
[0, g_k) = [0, rs) = [0, r) \oplus r * [0, s) = [0, g'_k) + \frac{G'_k}{G_{k-1}} * [0, g'_{k+1})
$$

implies that

$$
G_{k-1} * [0, g_k) = G'_{k-1} * [0, g'_k) + G'_k * [0, g'_{k+1}) = \sum_{i \in \{k, k+1\}} G'_{i-1} * [0, g'_i)
$$

and so the British number system *A* is a contraction of the British number system *A* .

Conversely, if A is a contraction of a British number system $A' = (G'_{i-1} * [0, g'_i))_{i \in \mathbb{N}}$, then there are a positive integer k and a set I_k of positive integers with $|I_k| \geq 2$ such that

$$
G_{k-1} * [0, g_k) = \sum_{i \in I_k} G'_{i-1} * [0, g'_i).
$$

Therefore,

$$
g_k = |G_{k-1} * [0, g_k)| = \left| \sum_{i \in I_k} G'_{i-1} * [0, g'_i) \right| = \prod_{i \in I_k} g'_i.
$$

Because $|I_k| \ge 2$ and $|g'_i| \ge 2$ for all $i \in \mathbb{N}$, it follows that the integer g_k is composite. Thus, the British number system generated by $(g_i)_{i \in \mathbb{N}}$ is decomposable if and only if g_i is composite for at least one i ∈ **N**. Equivalently, the British number system generated by $(g_i)_{i \in \mathbb{N}}$ is indecomposable if and only if $(g_i)_{i \in \mathbb{N}}$ is a sequence of prime numbers. This completes the proof.

Theorem [5](#page-8-0) has also been observed by Munagi [\[3\]](#page-12-3).

4 Limits of Additive Systems

Let $A = (A_i)_{i \in \mathbb{N}_0}$ be an additive system, and let $(g_i)_{i \in \{1,n\}}$ be a finite sequence of integers with $g_i \geq 2$ for all $i \in [1, n]$. The *dilation* of *A* by the sequence $(g_i)_{i \in [1, n]}$ is the additive system defined inductively by

$$
(g_i)_{i \in [1,n]} * \mathcal{A} = g_1 * ((g_i)_{i \in [2,n]} * \mathcal{A}).
$$

For $n = 1$, we have

$$
\mathcal{A}^{(1)} = (g_i)_{i \in [1,1]} * \mathcal{A} = g_1 * \mathcal{A}
$$

= [0, g_1) \cup (g_1 * A_i)_{i \in \mathbb{N}_0}
= (A_i^{(1)})_{i \in \mathbb{N}_0}

where

$$
A_1^{(1)} = [0, g_1)
$$

and

$$
A_i^{(1)} = g_1 * A_{i-1} \text{ for } i \ge 2.
$$

For $n = 2$, we have

$$
\mathcal{A}^{(2)} = (g_i)_{i \in [1,2]} * \mathcal{A} = g_1 * (g_2 * \mathcal{A})
$$

= $g_1 * ([0, g_2) \cup (g_2 * A_i)_{i \in \mathbb{N}_0}$)
= $[0, g_1) \cup (g_1 * [0, g_2)) \cup (g_1 g_2 * A_i)_{i \in \mathbb{N}_0}$
= $(A_i^{(2)})_{i \in \mathbb{N}_0}$

where

$$
A_1^{(2)} = [0, g_1)
$$

\n
$$
A_2^{(2)} = g_1 * [0, g_2)
$$

and

$$
A_i^{(2)} = g_1 g_2 * A_{i-2} \text{ for } i \ge 3.
$$

For $n = 3$, we have

$$
g_3 * \mathcal{A} = [0, g_3) \cup (g_3 * A_i)_{i \in \mathbb{N}_0}
$$

$$
g_2 * (g_3 * \mathcal{A}) = [0, g_2) \cup g_2 * [0, g_3) \cup (g_2 g_3 * A_i)_{i \in \mathbb{N}_0}
$$

and

$$
\mathcal{A}^{(3)} = (g_i)_{i \in [1,3]} * \mathcal{A} = g_1 * (g_2 * (g_3 * \mathcal{A}))
$$

= [0, g_1) \cup (g_1 * [0, g_2)) \cup (g_1 g_2 * [0, g_3)) \cup (g_1 g_2 g_3 * A_i)_{i \in \mathbb{N}_0}
=
$$
(A_i^{(3)})_{i \in \mathbb{N}_0}
$$

where

$$
A_1^{(3)} = [0, g_1)
$$

\n
$$
A_2^{(3)} = g_1 * [0, g_2)
$$

\n
$$
A_3^{(3)} = g_1 g_2 * [0, g_3)
$$

\n
$$
A_i^{(3)} = g_1 g_2 g_3 A_{i-3} \quad \text{for } i \ge 4.
$$

Lemma 7 *Let* $(g_i)_{i=1}^n$ *be a sequence of integers such that* $g_i \geq 2$ *for all i. For every additive system* $A = (A_i)_{i \in \mathbb{N}}$ *,*

$$
\mathcal{A}^{(n)} = (g_i)_{i=1}^n * \mathcal{A} = (A_i^{(n)})_{i \in \mathbb{N}}
$$

where

$$
A_i^{(n)} = g_1 g_2 \cdots g_{i-1} * [0, g_i) \quad \text{for } i = 1, \ldots, n
$$

and

$$
A_i^{(n)} = g_1 g_2 \cdots g_n * A_{i-n-1} \quad \text{for } i \ge n+1.
$$

Proof Induction on *n*.

A(*n*)

Let $(A^{(n)})_{n\in\mathbb{N}}$ be a sequence of additive systems. The additive system *A* is the *limit* of the sequence $(A^{(n)})_{n\in\mathbb{N}}$ if it satisfies the following condition: The set *S* belongs to *A* if and only if *S* belongs to $A^{(n)}$ for all sufficiently large *n*. We write

$$
\lim_{n\to\infty} \mathcal{A}^{(n)} = \mathcal{A}
$$

if *A* is the limit of the sequence $(A^{(n)})_{n \in \mathbb{N}}$. The following result indicates the remarkable stability of a British number system.

Theorem 6 *Let* $(g_i)_{i \in \mathbb{N}}$ *be a sequence of integers such that* $g_i \geq 2$ *for all i* $\in \mathbb{N}$ *, and let G be the British number system generated by* (*gi*)*ⁱ*∈**^N***. Let A be an additive system and let* $A^{(n)} = (g_i)_{i \in [1,n]} * A$ *. Then,*

$$
\lim_{n\to\infty} \mathcal{A}^{(n)} = \mathcal{G}.
$$

Proof If *S* is a set in *G*, then $S = g_1 g_2 \cdots g_{i-1} * [0, g_i)$ for some $i \in \mathbb{N}$. By Lemma [7,](#page-11-0) *S* is a set in $\mathcal{A}^{(n)}$ for all $n \geq i$, and so $S \in \lim_{n \to \infty} \mathcal{A}^{(n)}$.

Conversely, let *S* be a set that is in $A^{(n)}$ for all sufficiently large *n*. If *S* is finite, then max(*S*) < $g_1 g_2 \cdots g_k$ for some integer *k*. If $n \geq k$ and $i \geq n + 1$, then

$$
\max\left(A_i^{(n)}\right) \geq g_1 \dots g_n \geq g_1 \dots g_k
$$

and so $S \neq A_i^{(n)}$. Therefore, $S = A_i^{(n)}$ for some $i \leq n$, and so $S = g_1 g_2 \cdots g_{i-1}$ * $[0, g_i)$ for some $i \leq n$.

If *T* is an infinite set in $\mathcal{A}^{(n)}$, then $T = g_1 g_2 \cdots g_n * A_{i-n-1}$ for some $i \ge n+1$, and so $\min(T \setminus \{0\}) \ge g_1 g_2 \cdots g_n \ge 2^n$. If $T \in \mathcal{A}^{(n)}$ for all $n \ge N$, then $\min(T \setminus$ $\{0\}$) $\geq 2^n$ for all $n \geq N$, which is absurd. It follows that the set *S* is in $\mathcal{A}^{(n)}$ for all sufficiently large *n* if and only if *S* is finite and *S* is a set in the British number system generated by $(g_i)_{i \in \mathbb{N}}$. This completes the proof.

Corollary 8 *Let* $(g_i)_{i \in \mathbb{N}}$ *be a sequence of integers such that* $g_i \geq 2$ *for all* $i \in \mathbb{N}$ *, and let G be the British number system generated by* $(g_i)_{i \in \mathbb{N}}$ *. If* $\mathcal{G}_n = (g_i)_{i \in \{1,n\}} * \mathbb{N}_0$ *, then*

$$
\lim_{n\to\infty}\mathcal{G}_n=\mathcal{G}.
$$

Acknowledgements Supported in part by a grant from the PSC-CUNY Research Award Program.

References

- 1. N.G. de Bruijn, On number systems. Nieuw Arch. Wisk. **4**(3), 15–17 (1956)
- 2. M. Maltenfort, Characterizing additive systems. Am. Math. Monthly **124**, 132–148 (2017)
- 3. A.O. Munagi, *k*-complementing subsets of nonnegative integers. Int. J. Math. Math. Sci. 215– 224 (2005)
- 4. M.B. Nathanson, Additive systems and a theorem of de Bruijn. [arXiv:1301.6208](http://arxiv.org/abs/1301.6208) (2013)