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Abstract An additive system for the nonnegative integers is a family (Ai )i∈I of sets
of nonnegative integers with 0 ∈ Ai for all i ∈ I such that every nonnegative integer
can be written uniquely in the form

∑
i∈I ai with ai ∈ Ai for all i and ai �= 0 for only

finitely many i . In 1956, de Bruijn proved that every additive system is constructed
from an infinite sequence (gi )i∈N of integers with gi ≥ 2 for all i or is a contraction
of such a system. This paper discusses limits and the stability of additive systems
and also describes the “uncontractable” or “indecomposable” additive systems.
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1 Additive Systems and de Bruijn’s Theorem

Let N0 and N denote the sets of nonnegative integers and positive integers, respec-
tively. For real numbers a and b, we define the interval of integers [a, b) = {x ∈ Z :
a ≤ x < b} and [a, b] = {x ∈ Z : a ≤ x ≤ b}.

Let I be a nonempty finite or infinite set, and let A = (Ai )i∈I be a family of sets
of integers with 0 ∈ Ai and |Ai | ≥ 2 for all i ∈ I . Each set Ai can be finite or infinite.
The sumset S = ∑

i∈I Ai is the set of all integers n that can be represented in the
form n = ∑

i∈I ai , where ai ∈ Ai for all i ∈ I and ai �= 0 for only finitely many
i ∈ I . If every element of S has a unique representation in the form n = ∑

i∈I ai ,
then we call A a unique representation system for S, and we write S = ⊕

i∈I Ai .
In a unique representation system A for S, we have Ai ∩ A j = {0} for all i �= j .

The condition |Ai | ≥ 2 for all i ∈ I implies that Ai = S for some i ∈ I if and only
if |I | = 1. Moreover, if I � ⊆ I and S = ∑

i∈I � Ai , then S = ⊕
i∈I � Ai and I = I �.
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The family A = (Ai )i∈I is an additive system if A is a unique representation
system for the set of nonnegative integers, that is, if N0 = ⊕

i∈I Ai . The following
lemma follows immediately from the definition of an additive system.

Lemma 1 Let B = (Bj ) j∈J be an additive system. If {Ji }i∈I is a partition of J into
pairwise disjoint nonempty sets, and if

Ai =
∑

j∈Ji

B j

then A = (Ai )i∈I is an additive system.

The additive system A obtained from the additive system B by the partition
procedure described in Lemma 1 is called a contraction of B. (In [1], de Bruijn
called A a degeneration of B.) If I = J and if σ is a permutation of J such that
Ji = {σ(i)} for all i ∈ J , then A and B contain exactly the same sets. Thus, every
additive system is a contraction of itself. An additive systemA is a proper contraction
of B if at least one set Ai ∈ A is the sum of at least two sets in B.

Let X be a set of integers, and let g be an integer. The dilation of X by g is the
set g ∗ X = {gx : x ∈ X}.
Lemma 2 Let B = (Bj ) j∈J be an additive system and let I = {i0} ∪ J , where i0 /∈
J . If

Ai0 = [0, g)

and
A j = g ∗ Bj for all j ∈ J

then A = (Ai )i∈I is an additive system.

The additive system A obtained from the additive system B by the procedure
described in Lemma 2 is called the dilation of B by g.

There are certain additive systems that de Bruijn called British number systems.
A British number system is an additive system constructed from an infinite sequence
of integers according to the algorithm in Theorem 1 below. de Bruijn [1] proved that
British number systems are essentially the only additive systems.

Theorem 1 Let (gi )i∈N be an infinite sequence of integers such that gi ≥ 2 for all
i ≥ 1. Let G0 = 1 and, for i ∈ N, let Gi = ∏i

j=1 g j and

Ai = {0,Gi−1, 2Gi−1, . . . , (gi − 1)Gi−1} = Gi−1 ∗ [0, gi ).

Then A = (Ai )i∈N is an additive system.

Theorem 2 Every additive system is aBritish number systemor aproper contraction
of a British number system.
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The proof of Theorem 2 depends on the following fundamental lemma.

Lemma 3 Let A = (Ai )i∈I be an additive system with |I | ≥ 2, and let i1 be the
unique element of I such that 1 ∈ Ii1 . There exist an integer g ≥ 2 and a family of
sets B = (Bi )i∈I such that

Ai1 = [0, g) ⊕ g ∗ Bi1

and, for all i ∈ I \ {i1},
Ai = g ∗ Bi .

If Bi1 = {0}, then B = (Bi )i∈I\{i1} is an additive system, and A is the dilation of
the additive system B by the integer g. If Bi1 �= {0}, then B = (Bi )i∈I is an additive
system and A is a contraction of the additive system B dilated by g.

For proofs of Lemmas 1, 2, and 3 and Theorems 1 and 2, see Nathanson [4].
This paper gives a refinement of de Bruijn’s theorem. Every additive system is

a contraction of a British number system, but even a British number system can be
a proper contraction of another British number system. An additive system that is
not a proper contraction of another number system will be called indecomposable.
In Sect. 3, we describe all indecomposable British number systems. Unsurprisingly,
there is a one-to-one correspondence between indecomposable British number sys-
tems and infinite sequences of prime numbers.

In Sect. 4, we define the limit of a sequence of additive systems and discuss the
stability of British number systems.

Maltenfort [2] and Munagi [3] have also studied de Bruijn’s additive systems.

2 Decomposable and Indecomposable Sets

The set A of integers is a proper sumset if there exist sets B and C of integers
such that |B| ≥ 2, |C | ≥ 2, and A = B + C . For example, if u and v are integers
and v − u ≥ 3, then the interval [u, v) is a proper sumset:

[u, v) = [0, i) + [u, v + 1 − i)

for every i ∈ [2, v − u).
The set A of integers is decomposable if there exist sets B andC such that (B,C)

is a unique representation system for A, that is, if |B| ≥ 2, |C | ≥ 2, and A = B ⊕ C .
A decomposition A = B ⊕ C is also called a tiling of A by B. For example,

[0, 12) = {0, 3} ⊕ {0, 1, 2, 6, 7, 8}.

If A = B ⊕ C is a decomposition, then |A| = |B| |C | and so the integer |A| is
composite.
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Let n ≥ 2 and consider the interval of integers A = [0, n). A proper divisor of n
is a divisor d of n such that 1 < d < n. Associated to every proper divisor d of n is
the decomposition

[0, n) = [0, d) ⊕ d ∗ [0, n/d). (1)

This is simply the division algorithm for integers. The number of decompositions of
type (1) is the number of proper divisors d of n. There is exactly one such decom-
position if and only if the integer n has a unique proper divisor if and only if n is the
square of a prime number.

Lemma 4 Let n ≥ 2. The interval [0, n) is indecomposable if and only if n is prime.

Proof If n is prime then [0, n) is indecomposable, and if n is composite, then [0, n)

is decomposable.

If A = B ⊕ C and g is a nonzero integer, then g ∗ A = g ∗ B ⊕ g ∗ C , and so
every dilation of a decomposable set is decomposable.

The translate of the set A by an integer t is the set

A + t = {a + t : a ∈ A}.

Let t1, t2 ∈ Z with t = t1 + t2. If A = B + C , then

A + t = (B + t1) + (C + t2).

In particular, A + t = (B + t) + C . If A = B ⊕ C , then A + t = (B + t) ⊕ C , and
so every translate of a decomposable set is decomposable. Similarly, if A = B ⊕ C ,
then A = (B − t) ⊕ (C + t) for every integer t .

Let A be a set of nonnegative integers with 0 ∈ A, and let B and C be sets of
integers with A = B ⊕ C . Let t = min(B). Defining B ′ = B − t and C ′ = C + t ,
we obtain A = B ′ ⊕ C ′. Because min(B ′) = 0, we obtain

0 = min(A) = min(B ′) + min(C ′) = 0 + min(C ′) = min(C ′)

and so B ′ and C ′ are sets of nonnegative integers with 0 ∈ B ′ ∩ C ′.
Not every setwith a composite number of elements is decomposable. For example,

the n-element set {0, 1, 2, 22, . . . , 2n−2} is indecomposable for every n ≥ 2. This is
a special case of the following result.

Lemma 5 Let m ≥ 2. Let A be a set of integers that contains integers a0 and a1
such that a0 �≡ a1 (mod m), and a ≡ a0 (mod m) for all a ∈ A \ {a1}. The set A is
indecomposable.

Proof The distinct congruence classes a0 (mod m) and a1 (mod m) contain ele-
ments of A. Let B and C be sets of integers such that A = B + C with |B|, |C | ≥ 2.
If B is contained in the congruence class r (mod m) and C is contained in the con-
gruence class s (mod m), then B + C is contained in the congruence class r + s
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(mod m), and so A �= B + C (because A intersects two congruence classes). There-
fore, at least one of the sets B andC must contain elements from distinct congruence
classes modulo m. Let b1, b2 ∈ B with b1 �≡ b2 (mod m), and let c1, c2 ∈ C with
c1 �= c2. We have bi + c1 ∈ B + C for i = 1, 2 and b1 + c1 �≡ b2 + c1 (mod m).
Because A intersects only two congruence classes modulo m, and because the inter-
section with the congruence class a1 (mod m) contains only the integer a1, we must
have bi + c1 = a1 for some i ∈ {1, 2}.

Similarly, b j + c2 ∈ B + C for j = 1, 2 with b1 + c2 �≡ b2 + c2 (mod m), and
so b j + c2 = a1 for some j ∈ {1, 2}. The equation bi + c1 = b j + c2 implies that
A �= B ⊕ C . This completes the proof.

The following examples show that, in Lemma 5, the condition that the set A
contains exactly one element of the congruence class a1 (mod m) is necessary.

Let m ≥ 2, and let R ⊆ [0,m) with |R| ≥ 2. For every set J of integers with
|J | ≥ 2, we have

A = { jm + r : j ∈ J and r ∈ R} = B ⊕ C

where
B = { jm : j ∈ J } and C = R.

Let k, �, and m be integers with k ≥ 2, � ≥ 2, and m ≥ 2, and let u and v be
integers such that u �≡ v (mod m). Consider the set

A = {im + u : i ∈ [0, �)} ∪ { jm + v : j ∈ [0, k�)}.

The sets
B = {u} ∪ {q�m + v : q ∈ [0, k)}

and
C = {im : i ∈ [0, �)}

satisfy |B| = 1 + k� ≥ 2, |C | = � ≥ 2 and

A = B ⊕ C.

3 Decomposition of Additive Systems

Contraction and dilation are two methods to construct new additive systems from
old ones. Decomposition is a third method to produce new additive systems.

An additive systemA = (Ai )i∈I is called decomposable if the set Ai0 is decom-
posable for some i0 ∈ I and indecomposable if Ai is indecomposable for all i ∈ I .
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Equivalently, an indecomposable additive system is an additive system that is not a
proper contraction of another additive system.

Theorem 3 Let A = (Ai )i∈I be a decomposable additive system, and let Ai0 be
a decomposable set in A. Choose sets B and C of nonnegative integers such that
0 ∈ B ∩ C, |B| ≥ 2, |C | ≥ 2, and Ai0 = B ⊕ C. Let

I ′ = { j1, j2} ∪ I \ {i0}.

The family of sets A′ = (A′
i )i∈I ′ defined by

A′
i =

⎧
⎪⎨

⎪⎩

Ai if i ∈ I \ {i0}
B if i = j1
C if i = j2

is an additive system.

Proof This follows immediately from the definitions of additive system and inde-
composable set.

We call A′ a decomposition of the additive system A.

Lemma 6 Let a and b be positive integers, and let X be a set of integers. Then

[0, ab) = [0, a) ⊕ X (2)

if and only if
X = a ∗ [0, b).

Proof The division algorithm implies that [0, ab) = [0, a) ⊕ a ∗ [0, b), and so X =
a ∗ [0, b) is a solution of the additive set equation (2).

Conversely, let X be any solution of (2). Let I = {1, 2, 3} and let A1 = [0, a),
A2 = X , and A3 = ab ∗ N0. By the division algorithm, A = (Ai )i∈I is an additive
system. Applying Lemma 3 to A, we obtain an integer g ≥ 2 and sets B1, B2, and
B3 such that

[0, a) = [0, g) ⊕ g ∗ B1

X = g ∗ B2

ab ∗ N0 = g ∗ B3.

It follows that g = a, B1 = {0}, B3 = b ∗ N0, and

N0 = B2 ⊕ B3 = B2 ⊕ b ∗ N0.

This implies that B2 = [0, b) and X = a ∗ [0, b).
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There is also a nice polynomial proof of Lemma 6. Let

f (t) =
∑

i∈[0,ab)
t i

g(t) =
∑

j∈[0,a)

t j

h(t) =
∑

k∈[0,b)
tak

hX (t) =
∑

x∈X
t x .

The set equation [0, ab) = [0, a) ⊕ a ∗ [0, b) implies that

f (t) = g(t)h(t).

If [0, ab) = [0, a) ⊕ X , then

f (t) = g(t)hX (t)

and so
g(t)(h(t) − hX (t)) = 0.

Because g(t) �= 0, it follows that h(t) = hX (t) or, equivalently, a ∗ [0, b) = X .
By Theorem 2, every additive system is a British number system or a proper

contraction of a British number system. However, a British number system can also
be a proper contraction of another British number system. Consider, for example, the
British number systems A2 and A4 generated by the sequences (2)i∈N and (4)i∈N,
respectively:

A2 = ({0, 2i−1})i∈N = (2i−1 ∗ [0, 2))i∈N

= ({0, 1}, {0, 2}, {0, 4}, {0, 8}, . . .)

and

A4 = ({0, 4i−1, 2 · 4i−1, 3 · 4i−1})i∈N = (4i−1 ∗ [0, 4))i∈N

= ({0, 1, 2, 3}, {0, 4, 8, 12}, {0, 16, 32, 48}, {0, 64, 128, 192, 256}, . . .) .

Because

4i−1 ∗ [0, 4) = {0, 22i−2} + {0, 22i−1} = 22i−2 ∗ [0, 2) + 22i−1 ∗ [0, 2)

we see that A4 is a contraction of A2.
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de Bruijn [1] asserted the following necessary and sufficient condition for one
British number system to be a contraction of another British number system.

Theorem 4 Let B = (Bj ) j∈N be the British number system constructed from the
integer sequence (h j ) j∈N, and let A = (Ai )i∈N be the contraction of B constructed
from a partition (Ji )i∈N of N into nonempty finite sets. Then, A is a British number
system if and only if Ji is a finite interval of integers for all i ∈ N.

Proof Let (Ji )i∈N be a partition of N into nonempty finite intervals of integers. After
re-indexing, there is a strictly increasing sequence (ui )i∈N0 of integers with u0 = 0
such that Ji = [ui−1 + 1, ui ] for all i ∈ N.

If B = (Bj ) j∈N is the British number system constructed from the integer
sequence (h j ) j∈N, then Bj = Hj−1 ∗ [0, h j ), where H0 = 1 and Hj = ∏ j

k=1 hk . Let
G0 = 1. For i ∈ N we define

gi = Hui

Hui−1

and

Gi =
i∏

j=1

g j =
i∏

j=1

Hu j

Hu j−1

= Hui .

We have

Ai =
⊕

j∈Ji

B j =
ui⊕

j=ui−1+1

Hj−1 ∗ [0, h j )

= Hui−1 ∗
ui⊕

j=ui−1+1

Hj−1

Hui−1

∗ [0, h j )

= Hui−1 ∗ ([0, hui−1+1) + hui−1+1 ∗ [0, hui−1+2)

+ hui−1+1hui−1+2 ∗ [0, hui−1+3) + · · ·
+ hui−1+1 · · · hui−1 ∗ [0, hui )

)

= Hui−1 ∗
[

0,
Hui

Hui−1

)

= Gi−1 ∗ [0, gi )

and so A = (Ai )i∈N is the British number system constructed from the integer
sequence (gi )i∈N.

Conversely, let A = (Ai )i∈N be a contraction of B constructed from a partition
(Ji )i∈N of N in which some set Ji0 is a not a finite interval of integers. Let u =
min

(
Ji0

)
andw = max

(
Ji0

)
. Because Ji0 is not an interval, there is a smallest integer

v such that
u < v < w
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and [u, v − 1] ⊆ Ji0 , but v /∈ I j0 . Because

[u, v − 1] ∪ {w} ⊆ Ji0 ⊆ [u, v − 1] ∪ [v + 1, w]

and
Ai0 =

∑

j∈Ji0

Hj−1 ∗ [0, h j )

we have

Hu−1 ∗ [0, hu) ∪ Hw−1 ∗ [0, hw) ⊆ Ai0

⊆
∑

j∈[u,v−1]
Hj−1 ∗ [0, h j ) +

∑

j∈[v+1,w]
Hj−1 ∗ [0, h j )

⊆ Hu−1 ∗
[

0,
Hv−1

Hu−1

)

+ Hv ∗
[

0,
Hw

Hv

)

Because hu ≥ 2 and hv ≥ 2, it follows that

Hu−1 ∈ Ai0

and

Hw−1 = Hu−1

(
Hw−1

Hu−1

)

∈ Ai0 .

The largestmultiple of Hu−1 in Hu−1 ∗ [
0, Hv−1/Hu−1) is Hu−1(Hv−1/Hu−1 − 1).

The smallest positivemultiple of Hu−1 in Hv ∗ [0, Hw/Hv) is Hv = Hu−1(Hv/Hu−1).
The inequality

1 ≤ Hv−1

Hu−1
− 1 <

Hv−1

Hu−1
<

Hv

Hu−1
≤ Hw−1

Hu−1

implies that the set Ai0 does not contain the integer Hu−1(Hv−1/Hu−1). In a British
number system, every set consists of consecutive multiples of its smallest positive
element. Because the set Ai0 lacks this property, it follows that A is not a British
number system. This completes the proof.

Theorem 5 There is a one-to-one correspondence between sequences (pi )i∈N of
prime numbers and indecomposable British number systems. Moreover, every addi-
tive system is either indecomposable or a contraction of an indecomposable system.

Proof Let A be a British number system generated by the sequence (gi )i∈N, so that

A = (Gi−1 ∗ [0, gi ))i∈N .

Suppose that gk is composite for some k ∈ N. Then gk = rs, where r ≥ 2 and s ≥ 2
are integers. Construct the sequence (g′

i )i∈N as follows:
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g′
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi if i ≤ k − 1

r if i = k

s if i = k + 1

gi−1 if i ≥ k + 2.

Then,

G ′
i =

i∏

j=1

g′
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gi if i ≤ k − 1

rGk−1 if i = k

Gk if i = k + 1

Gi−1 if i ≥ k + 2

and
A′ = (

G ′
i−1 ∗ [0, g′

i )
)
i∈N

is the British number system generated by the sequence (g′
i )i∈N. We have

Gi−1 ∗ [0, gi ) =
{
G ′

i−1 ∗ [0, g′
i ) if i ≤ k − 1

G ′
i ∗ [0, g′

i+1) if i ≥ k + 1.

The identity

[0, gk) = [0, rs) = [0, r) ⊕ r ∗ [0, s) = [0, g′
k) + G ′

k

Gk−1
∗ [0, g′

k+1)

implies that

Gk−1 ∗ [0, gk) = G ′
k−1 ∗ [0, g′

k) + G ′
k ∗ [0, g′

k+1) =
∑

i∈{k,k+1}
G ′

i−1 ∗ [0, g′
i )

and so the British number system A is a contraction of the British number system
A′.

Conversely, if A is a contraction of a British number system A′ =(
G ′

i−1 ∗ [0, g′
i )

)
i∈N, then there are a positive integer k and a set Ik of positive integers

with |Ik | ≥ 2 such that

Gk−1 ∗ [0, gk) =
∑

i∈Ik
G ′

i−1 ∗ [0, g′
i ).

Therefore,

gk = |Gk−1 ∗ [0, gk)| =
∣
∣
∣
∣
∣
∣

∑

i∈Ik
G ′

i−1 ∗ [0, g′
i )

∣
∣
∣
∣
∣
∣
=

∏

i∈Ik
g′
i .
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Because |Ik | ≥ 2 and |g′
i | ≥ 2 for all i ∈ N, it follows that the integer gk is composite.

Thus, the British number system generated by (gi )i∈N is decomposable if and only
if gi is composite for at least one i ∈ N. Equivalently, the British number system
generated by (gi )i∈N is indecomposable if and only if (gi )i∈N is a sequence of prime
numbers. This completes the proof.

Theorem 5 has also been observed by Munagi [3].

4 Limits of Additive Systems

Let A = (Ai )i∈N0 be an additive system, and let (gi )i∈[1,n] be a finite sequence of
integers with gi ≥ 2 for all i ∈ [1, n]. The dilation of A by the sequence (gi )i∈[1,n]
is the additive system defined inductively by

(gi )i∈[1,n] ∗ A = g1 ∗ (
(gi )i∈[2,n] ∗ A)

.

For n = 1, we have

A(1) = (gi )i∈[1,1] ∗ A = g1 ∗ A
= [0, g1) ∪ (g1 ∗ Ai )i∈N0

=
(
A(1)
i

)

i∈N0

where
A(1)
1 = [0, g1)

and
A(1)
i = g1 ∗ Ai−1 fori ≥ 2.

For n = 2, we have

A(2) = (gi )i∈[1,2] ∗ A = g1 ∗ (g2 ∗ A)

= g1 ∗ ([0, g2) ∪ (g2 ∗ Ai )i∈N0

)

= [0, g1) ∪ (g1 ∗ [0, g2)) ∪ (g1g2 ∗ Ai )i∈N0

=
(
A(2)
i

)

i∈N0

where

A(2)
1 = [0, g1)

A(2)
2 = g1 ∗ [0, g2)
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and
A(2)
i = g1g2 ∗ Ai−2 for i ≥ 3.

For n = 3, we have

g3 ∗ A = [0, g3) ∪ (g3 ∗ Ai )i∈N0

g2 ∗ (g3 ∗ A) = [0, g2) ∪ g2 ∗ [0, g3) ∪ (g2g3 ∗ Ai )i∈N0

and

A(3) = (gi )i∈[1,3] ∗ A = g1 ∗ (g2 ∗ (g3 ∗ A))

= [0, g1) ∪ (g1 ∗ [0, g2)) ∪ (g1g2 ∗ [0, g3)) ∪ (g1g2g3 ∗ Ai )i∈N0

=
(
A(3)
i

)

i∈N0

where

A(3)
1 = [0, g1)

A(3)
2 = g1 ∗ [0, g2)

A(3)
3 = g1g2 ∗ [0, g3)

A(3)
i = g1g2g3Ai−3 for i ≥ 4.

Lemma 7 Let (gi )ni=1 be a sequence of integers such that gi ≥ 2 for all i . For every
additive system A = (Ai )i∈N,

A(n) = (gi )
n
i=1 ∗ A =

(
A(n)
i

)

i∈N

where
A(n)
i = g1g2 · · · gi−1 ∗ [0, gi ) for i = 1, . . . , n

and
A(n)
i = g1g2 · · · gn ∗ Ai−n−1 for i ≥ n + 1.

Proof Induction on n.

Let (A(n))n∈N be a sequence of additive systems. The additive system A is the
limit of the sequence (A(n))n∈N if it satisfies the following condition: The set S
belongs to A if and only if S belongs to A(n) for all sufficiently large n. We write

lim
n→∞A(n) = A

ifA is the limit of the sequence (A(n))n∈N. The following result indicates the remark-
able stability of a British number system.
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Theorem 6 Let (gi )i∈N be a sequence of integers such that gi ≥ 2 for all i ∈ N, and
let G be the British number system generated by (gi )i∈N. LetA be an additive system
and let A(n) = (gi )i∈[1,n] ∗ A. Then,

lim
n→∞A(n) = G.

Proof If S is a set inG, then S = g1g2 · · · gi−1 ∗ [0, gi ) for some i ∈ N. By Lemma 7,
S is a set in A(n) for all n ≥ i , and so S ∈ limn→∞ A(n).

Conversely, let S be a set that is in A(n) for all sufficiently large n. If S is finite,
then max(S) < g1g2 · · · gk for some integer k. If n ≥ k and i ≥ n + 1, then

max
(
A(n)
i

)
≥ g1 . . . gn ≥ g1 . . . gk

and so S �= A(n)
i . Therefore, S = A(n)

i for some i ≤ n, and so S = g1g2 · · · gi−1 ∗
[0, gi ) for some i ≤ n.

If T is an infinite set in A(n), then T = g1g2 · · · gn ∗ Ai−n−1 for some i ≥ n + 1,
and so min(T \ {0}) ≥ g1g2 · · · gn ≥ 2n . If T ∈ A(n) for all n ≥ N , then min(T \
{0}) ≥ 2n for all n ≥ N , which is absurd. It follows that the set S is in A(n) for all
sufficiently large n if and only if S is finite and S is a set in the British number system
generated by (gi )i∈N. This completes the proof.

Corollary 8 Let (gi )i∈N be a sequence of integers such that gi ≥ 2 for all i ∈ N,
and let G be the British number system generated by (gi )i∈N. If Gn = (gi )i∈[1,n] ∗ N0,
then

lim
n→∞Gn = G.
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