
Sumsets Contained in Sets of Upper Banach
Density 1

Melvyn B. Nathanson

Abstract Every set A of positive integers with upper Banach density 1 contains an
infinite sequence of pairwise disjoint subsets (Bi )

∞
i=1 such that Bi has upper Banach

density 1 for all i ∈ N and
∑

i∈I Bi ⊆ A for every nonempty finite set I of positive
integers.

Keywords Sumsets · Banach density · Additive number theory · Ramsay theory

2010 Mathematics Subject Classification: 11A05 · 11B05 · 11B13 · 11B75

1 Upper Banach Density

Let N, N0, and Z denote, respectively, the sets of positive integers, nonnegative
integers, and integers. Let |S| denote the cardinality of the set S. We define the
interval of integers

[x, y] = {n ∈ N : x ≤ n ≤ y}.

Let A be a set of positive integers. Let n ∈ N. For all u ∈ N0, we have

|A ∩ [u, u + n − 1]| ∈ [0, n]

and so
f A(n) = max

u∈N0

|A ∩ [u, u + n − 1]|

exists. The upper Banach density of A is
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δ(A) = lim sup
n→∞

f A(n)

n
.

Let n1, n2 ∈ N. There exists u∗
1 ∈ N0 such that, with u∗

2 = u∗
1 + n1,

f A(n1 + n2) = ∣
∣A ∩ [u∗

1, u
∗
1 + n1 + n2 − 1]∣∣

= ∣
∣A ∩ [u∗

1, u
∗
1 + n1 − 1]∣∣ + ∣

∣A ∩ [u∗
1 + n1, u

∗
1 + n1 + n2 − 1]∣∣

= ∣
∣A ∩ [u∗

1, u
∗
1 + n1 − 1]∣∣ + ∣

∣A ∩ [u∗
2, u

∗
2 + n2 − 1]∣∣

≤ f A(n1) + f A(n2).

It is well known, and proved in the Appendix, that this inequality implies that

δ(A) = lim
n→∞

f A(n)

n
= inf

n∈N
f A(n)

n
.

2 An Erdős Sumset Conjecture

About 40 years ago, Erdős conjectured that if A is a set of positive integers of positive
upper Banach density, then there exist infinite sets B and C of positive integers such
that B + C ⊆ A. This conjecture has not yet been verified or disproved.

The translation of the set X by t is the set

X + t = {x + t : x ∈ X}.

Let B and C be sets of integers. For every integer t , if B ′ = B + t and C ′ = C − t ,
then

B ′ + C ′ = (B + t) + (C − t) = B + C.

In particular, if C is bounded below and t = min(C), then 0 = min(C ′) and B ′ ⊆
B ′ + C ′. It follows that if B and C are infinite sets such that B + C ⊆ A, then, by
translation, there exist infinite sets B ′ and C ′ such that B ′ ⊆ A and B ′ + C ′ ⊆ A.

However, a set A with positive upper Banach density does not necessarily contain
infinite subsets B and C with B + C ⊆ A. For example, let A be any set of odd
numbers. For all sets B and C of odd numbers, the sumset B + C is a set of even
numbers, and so A ∩ (B + C) = ∅. Of course, in this example, we have B + C ⊆
A + 1.

In this note, we prove that if A is a set of positive integers with upper Banach den-
sity δ(A) = 1, then for every h ≥ 2 there exist pairwise disjoint subsets B1, . . . , Bh

of A such that δ(Bi ) = 1 for all i = 1, . . . , h and

B1 + · · · + Bh ⊆ A.
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Indeed, Theorem 2 states an even stronger result.
There are sets A of upper Banach density 1 for which no infinite subset B of A

satisfies 2B ⊆ A + t for any integer t . A simple example is

A =
∞⋃

i=1

[
4i , 4i + i − 1

]
.

The set A is the union of the infinite sequence of pairwise disjoint intervals

Ai = [
4i , 4i + i − 1

]
.

Let t ∈ N0. There exists i0(t) such that 4i − i > t for all i ≥ i0(t). If bi ∈ Ai for
some i ≥ i0(t), then

4i + i + t < 2 · 4i ≤ 2bi < 2 · 4i + 2i < 4i+1 − 2t ≤ 4i+1 − t

and so 2bi /∈ 2A ± t . If B is an infinite subset of A, then for infinitely many i , there
exist integers bi ∈ B ∩ Ai , and so 2B � A + t for all t ∈ Z.

There are very few results about the Erdős conjecture. In 1980, Nathanson [9]
proved that if δ(A) > 0, then for every n there is a finite set C with |C | = n and
a subset B of A with δ(B) > 0 such that B + C ⊆ A. In 2015, Di Nasso et al. [3]
used nonstandard analysis to prove that the Erdős conjecture is true for sets A with
upper Banach density δ(A) > 1/2. They also proved that if δ(A) > 0, then there
exist infinite sets B and C and an integer t such that

B + C ⊆ A ∪ (A + t).

It would be of interest to have purely combinatorial proofs of the results of Di Nasso
et al.

For related work, see Di Nasso [1, 2], Gromov [4], Hegyvári [5, 6], Hindman [7],
and Jin [8].

3 Results

The following result is well known.

Lemma 1 A set of positive integers has upper Banach density 1 if and only if,
for every d, it contains infinitely many pairwise disjoint intervals of d consecutive
integers.
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Proof Let A be a set of positive integers. If, for every positive integer d, the set A
contains an interval of d consecutive integers, then

max
u∈N0

( |A ∩ [u, u + d − 1]|
d

)

= 1

and so

δ(A) = lim
d→∞max

u∈N0

( |A ∩ [u, u + d − 1]|
d

)

= 1.

Suppose that, for some integer d ≥ 2, the set A contains no interval of d consec-
utive integers. For every u ∈ N0, we consider the interval Iu,n = [u, u + n − 1]. By
the division algorithm, there are integers q and r with 0 ≤ r < d such that

|Iu,n| = n = qd + r

and
q = n − r

d
>

n

d
− 1.

For j = 1, . . . , q, the intervals of integers

I ( j)
u,n = [u + ( j − 1)d, u + jd − 1]

and
I (q+1)
u,n = [u + qd, u + n − 1]

are pairwise disjoint subsets of Iu,n such that

Iu,n =
q+1⋃

j=1

I ( j)
u,n .

We have

A ∩ Iu,n =
q+1⋃

j=1

(A ∩ I ( j)
u,n)

If A contains no interval of d consecutive integers, then, for all j ∈ [1, q], at least
one element of the interval I ( j)

u,n is not an element of A, and so

|A ∩ I ( j)
u,n | ≤ |I ( j)

u,n | − 1.
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It follows that

|A ∩ Iu,n| =
q+1∑

j=1

∣
∣A ∩ I ( j)

u,n

∣
∣ ≤

q∑

j=1

(∣
∣I ( j)

u,n

∣
∣ − 1

) + ∣
∣I (q+1)

u,n

∣
∣

=
q+1∑

j=1

∣
∣I ( j)

u,n

∣
∣ − q = |Iu,n| − q = n − q

< n − n

d
+ 1 =

(

1 − 1

d

)

n + 1.

Dividing by n = |Iu,n|, we obtain

max
u∈N0

|A ∩ Iu,n|
n

≤ 1 − 1

d
+ 1

n
.

and so

δ(A) = lim
n→∞max

u∈N0

|A ∩ Iu,n|
n

≤ 1 − 1

d
< 1

which is absurd. Therefore, A contains an interval of d consecutive integers for every
d ∈ N.

To prove that A contains infinitely many intervals of size d, it suffices to prove
that if [u, u + d − 1] ⊆ A, then [v, v + d − 1] ⊆ A for some v ≥ u + d. Let d ′ =
u + 2d. There exists u′ ∈ N such that

[u′, u′ + d ′ − 1] = [u′, u′ + u + 2d − 1] ⊆ A.

Choosing v = u′ + u + d, we have v ≥ u + d and

[v, v + d − 1] ⊆ [u′, u′ + u + 2d − 1] ⊆ A.

This completes the proof.

Let F(S) denote the set of all finite subsets of the set S, and let F∗(S) denote the
set of all nonempty finite subsets of S. We have the fundamental binomial identity

F∗([1, n + 1]) = F∗([1, n]) ∪ {{n + 1} ∪ J : J ∈ F([1, n])} . (1)

Theorem 1 Let A be a set of positive integers that has upper Banach density 1.
For every sequence (� j )

∞
j=1 of positive integers, there exists a sequence (b j )

∞
j=1 of

positive integers such that
b j+1 ≥ b j + � j
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for all j ∈ N, and ∑

j∈J

[b j , b j + � j − 1] ⊆ A

for all J ∈ F∗(N).

Proof We shall construct the sequence (b j )
∞
j=1 by induction. For n = 1, choose

b1 ∈ A such that [b1, b1 + �1 − 1] ⊆ A.
Suppose that (b j )

n
j=1 is a finite sequence of positive integers such that b j+1 ≥

b j + � j for j ∈ [1, n − 1] and
∑

j∈J

[b j , b j + � j − 1] ⊆ A (2)

for all J ∈ F∗([1, n]). By Lemma 1, there exists bn+1 ∈ A such that

bn+1 ≥ bn + �n

and ⎡

⎣bn+1,

n+1∑

j=1

(b j + � j ) − 1

⎤

⎦ ⊆ A.

It follows that [
bn+1, bn+1 + �n+1 − 1

] ⊆ A.

Let J ∈ F([1, n]). If

a ∈
∑

j∈{n+1}∪J

[b j , b j + � j − 1]

= [
bn+1, bn+1 + �n+1 − 1

] +
∑

j∈J

[b j , b j + � j − 1]

then

bn+1 ≤ a ≤ (bn+1 + �n+1 − 1) +
∑

j∈J

(
b j + � j − 1

)

≤
n+1∑

j=1

(b j + � j ) − 1
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and so a ∈ A and

∑

j∈{n+1}∪J

[b j , b j + � j − 1] ⊆
⎡

⎣bn+1,

n+1∑

j=1

(b j + � j ) − 1

⎤

⎦ ⊆ A. (3)

Relations (1), (2), and (3) imply that

∑

j∈J

[b j , b j + � j − 1] ⊆ A

for all J ∈ F∗([1, n + 1]). This completes the induction.

Theorem 2 Every set A of positive integers that has upperBanach density 1 contains
an infinite sequence of pairwise disjoint subsets (Bi )

∞
i=1 such that Bi has upper

Banach density 1 for all i ∈ N and

∑

i∈I
Bi ⊆ A

for all I ∈ F∗(N).

Proof Let (� j )
∞
j=1 be a sequence of positive integers such that lim j→∞ � j = ∞, and

let (b j )
∞
j=1 be a sequence of positive integers that satisfies Theorem 1. (For simplicity,

we can let � j = j for all j .) Let (Xi )
∞
i=1 be a sequence of infinite sets of positive

integers that are pairwise disjoint. For i ∈ N, let

Bi =
⋃

j∈Xi

[b j , b j + � j − 1].

The set Bi contains intervals of � j consecutive integers for infinitely many � j , and
so Bi has upper Banach density 1.

Let I ∈ F∗(N). If
a ∈

∑

i∈I
Bi ⊆ A

then for each i ∈ I there exists ai ∈ Bi such that a = ∑
i∈I ai . If ai ∈ Bi , then there

exists ji ∈ Xi such that
xi ∈ [

b ji , b ji + � ji − 1
]
.

We have J = { ji : i ∈ I } ∈ F∗(N) and

a ∈
∑

ji∈J

[
b ji , b ji + � ji − 1

] ⊆ A.

This completes the proof.
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Theorem 3 Let A be a set of integers that contains arbitrarily long finite arithmetic
progressions with bounded differences. There exist positive integers m and r, and
an infinite sequence of pairwise disjoint sets (Bi )

∞
i=1 such that Bi has upper Banach

density 1 for all i ∈ N and
m ∗

∑

i∈I
Bi + r ⊆ A

for all I ∈ F∗(N).

Proof If the differences in the infinite set of finite arithmetic progressions contained
in A are bounded by m0, then there exists a difference m ≤ m0 that occurs infinitely
often. It follows that there are arbitrarily long finite arithmetic progressions with
difference m. Because there are only finitely many congruence classes modulo m,
there exists a congruence class r (mod m) such that A contains arbitrarily long
sequences of consecutive integers in the congruence class r (mod m). Thus, there
exists an infinite set A′ such that

m ∗ A′ + r ⊆ A

and A′ contains arbitrarily long sequences of consecutive integers. Equivalently, A′
has Banach density 1. By Theorem 2, the sequence A′ contains an infinite sequence
of pairwise disjoint subsets (Bi )

∞
i=1 such that Bi has upper Banach density 1 for all

i ∈ N and ∑

i∈I
Bi ⊆ A′

for all I ∈ F∗(N). It follows that

m ∗
∑

i∈I
Bi + r ⊆ m ∗ A′ + r ⊆ A

for all I ∈ F∗(N). This completes the proof.

Appendix: Subadditivity and Limits

A real-valued arithmetic function f is subadditive if

f (n1 + n2) ≤ f (n1) + f (n2) (4)

for all n1, n2 ∈ N.
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The following result is sometimes called Fekete’s lemma.

Lemma 2 If f is a subadditive arithmetic function, then limn→∞ f (n)/n exists, and

lim
n→∞

f (n)

n
= inf

n∈N
f (n)

n
.

Proof It follows by induction from inequality (4) that

f (n1 + · · · + nq) ≤ f (n1) + · · · + f (nq)

for all n1, . . . , nq ∈ N. Let f (0) = 0. Fix a positive integer d. For all q, r ∈ N0, we
have

f (qd + r) ≤ q f (d) + f (r).

By the division algorithm, every nonnegative integer n can be represented uniquely
in the form n = qd + r , where q ∈ N0 and r ∈ [0, d − 1]. Therefore,

f (n)

n
= f (qd + r)

n
≤ q f (d)

qd
+ f (r)

n
= f (d)

d
+ f (r)

n
.

Because the set { f (r) : r ∈ [0, d − 1]} is bounded, it follows that

lim sup
n→∞

f (n)

n
≤ lim sup

n→∞

(
f (d)

d
+ f (r)

n

)

= f (d)

d

for all d ∈ N, and so

lim sup
n→∞

f (n)

n
≤ inf

d∈N
f (d)

d
≤ lim inf

d→∞
f (d)

d
= lim inf

n→∞
f (n)

n
.

This completes the proof.
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