
White’s Theorem

An Exposition of White’s Characterization of Empty
Lattice Tetrahedra

Mizan R. Khan and Karen M. Rogers

Abstract We give an exposition of White’s characterization of empty lattice tetra-
hedra. In particular, we describe the second author’s proof of White’s theorem that
appeared in her doctoral thesis (Rogers in Doctoral dissertation 1993) [7].
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1 Introduction

The motivating example is the lattice tetrahedron with vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), and (1, 1, c) with c being an arbitrary positive integer. We denote this
tetrahedron as T1,1,c. Regardless of the size of c (and consequently the volume of
T1,1,c), T1,1,c does not contain any lattice points other than its vertices. This is in
surprising contrast to the situation inR2 where a lattice triangle does not contain any
lattice points, other than its vertices, if and only if it has area 1/2. (To see this we
invoke Pick’s theorem.)

Reeve [4] posed the problem of characterizing such tetrahedra. Some years later,
White [10] solved this problem. Over the years, different authors have given proofs
of White’s theorem (see [1, 3, 5, 6, 8]). The second author gave a proof of White’s
theorem in her doctoral dissertation [7]. In this article, we give a detailed exposition
of this proof.

Before stating the relevant theorems, we establish some notation and definitions.
Let a, b, c ∈ Z with 0 ≤ a, b < c. We will use d to denote the integer

d = (1 − a − b) mod c, 0 ≤ d < c.
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Furthermore, Ta,b,c will denote the lattice tetrahedronwith vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), and (a, b, c).

Definition 1 Following Reznick [6], we call a lattice polyhedron that does not con-
tain any lattice points other than its vertices an empty lattice polyhedron. Such a
polyhedron belongs to a larger set of lattice polyhedra that do not contain any lattice
points on their boundary other than the vertices. We call such polyhedra clean lattice
polyhedra.

We insert a warning about the the terminology, particularly in the case of tetrahe-
dra. Other names in the literature for empty tetrahedra are fundamental, primitive,
Reeve.

Definition 2 An affine unimodular map is an affine map

L : R3 → R
3of the formL(x) = Mx + u,

where M ∈ GL3(Z), det(M) = ±1 and u ∈ Z
3.

We now state the two theorems that we will prove.

Theorem 1 Let T be an empty lattice tetrahedron. Then there is an affine unimodu-
lar map L such that L(T ) = Ta,b,c, with 0 ≤ a, b < c and gcd(a, c) = gcd(b, c) =
gcd(d, c) = 1.

Theorem 2 (White) The lattice tetrahedron Ta,b,c is empty if and only if gcd(a, c) =
gcd(b, c) = gcd(d, c) = 1 and at least one of the following hold:

a = 1, b = 1, c = 1, d = 1.

We now state definitions and background results that will be used to prove the
two theorems.

Definition 3 A set of lattice points {v1, . . . , vk} in Z
n is said to be primitive if it

is a basis for the sublattice Zn ∩ (Rv1 ⊕ · · · ⊕ Rvk). Geometrically, this means that
{v1, . . . , vk} is primitive if and only if the parallelepiped spanned by v1, . . . , vk is
empty.

The following is a list of standard resultswewill use. The proofs can be found in [9,
LecturesV,VIII].However,we have rephrased someof the statements. Consequently,
the reader who consults [9] may need to read the relevant material carefully.

Theorem 3 Every lattice has an integral basis.

Theorem 4 The property of being a lattice basis is preserved under the action
of any unimodular transformation, that is, if v1, v2, . . . , vn is a basis for Zn and
T : Rn → R

n is an unimodular transformation, then T (v1) , T (v2) , . . . , T (vn) is
also a basis of Zn. Furthermore, given two lattice bases, there is an unimodular
transformation that maps one basis into the other.
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Theorem 5 Let {v1, . . . , vn} be a linearly independent set of elements of Zn, and
let H = Zv1 ⊕ . . . ⊕ Zvn. Then the order of the quotient group Z

n/H equals

#(Zn/H) = | det(v1, . . . , vn)|.

Theorem 6 Let {v1, . . . , vr } be a primitive set of Zn. Then {v1, . . . , vr } can be
extended to a basis of Zn.

We mention an interesting fact that emerges in the course of proving White’s
theorem. From Theorem 5, it follows that if Ta,b,c is empty, then the parallelepiped
spanned by (1, 0, 0), (0, 1, 0), (a, b, c) contains (c − 1) lattice points in its interior.
In the course of proving Theorem 2, wewill find that all of these points are coplanar!
More precisely, we have the following.

Corollary 1 Let Pa,b,c denote the parallelepiped spanned by (1, 0, 0), (0, 1, 0), and
(a, b, c). If Ta,b,c is empty, then Pa,b,c contains (c − 1) lattice points in its interior.
If a = 1, then all of these lattice points lie on the plane x = 1; if b = 1, then all of
these lattice points lie on the plane y = 1; if d = 1, then all of these lattice points
lie on the plane x + y − z = 1.

Warning: The co-planarity of these lattice points was mentioned in an article of the
first author [2, Theorem 3.2]. Unfortunately, the description of the planes in [2] is
completely incorrect! The author should have done his homework and not just relied
on his faulty visualization skills!!

2 Proofs

We begin with some notation. Let u = (u1, u2, u3) ∈ Z
3. We will denote the integer

gcd(u1, u2, u3) by gcd(u). Occasionally, we will use e1, e2, and e3 to denote the
vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Proposition 1 Let u, v be two linearly independent elements in Z
3. The following

statements are equivalent.

1. P, the parallelogram spanned by u and v is an empty parallelogram.
2. T, the triangle spanned by u and v is an empty triangle.
3. gcd(u × v) = 1.

Proof Clearly (1) ⇒ (2). We prove the contrapositive to demonstrate that (2) ⇒ (1).
We assume that P contains a lattice point x that is not a vertex of P . Then either x or
(u + v − x) lies in T . Since neither lattice point can be a vertex of T , we conclude
that T is not an empty triangle.

We now turn to proving that (1) and (3) are equivalent.
(3) ⇒ (1): Since gcd(u × v) = 1, there exists, by the Extended Euclidean algo-

rithm, w ∈ Z
3 such that (u × v) · w = 1 = det(u, v,w). By Theorem 5, u, v,w is a
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basis of Z3, and consequently they span an empty parallelepiped. We conclude that
P is an empty parallelogram.

(1) ⇒ (3): Since P is an empty parallelogram, {u, v} is a primitive set of Z3,
and consequently by Theorem 6 there is a lattice point w such that u, v,w is a
basis of Z3. Consequently, | det(u, v,w)| = 1. Since det(u, v,w) = (u × v) · w, we
conclude that gcd(u × v) = 1.

Corollary 2 The tetrahedron Ta,b,c is clean if and only if gcd(a, c) = gcd(b, c) =
gcd(d, c) = 1.

Proof Let�1,�2,�3,�4 denote the faces of Ta,b,c where�1 is the triangle spanned
by e1 and e2;�2 is the triangle spanned by e1 and (a, b, c);�3 is the triangle spanned
by e2 and (a, b, c); and �4 is the triangle spanned by (e2 − e1) and ((a, b, c) − e1).
Ta,b,c is a clean tetrahedron if and only if �1,�2,�3, and �4 are all empty lattice
triangles. Clearly�1 is an empty triangle. By Proposition 1, the triangles�2,�3,�4

are empty if and only if

gcd(e1 × (a, b, c)) = gcd(e2 × (a, b, c)) = gcd((e2 − e1) × ((a, b, c) − e1)) = 1,

that is, gcd(b, c) = gcd(a, c) = gcd(d, c) = 1.

Proof (Proof of Theorem 1) Let T be an empty lattice tetrahedron in R
3. Without

loss of generality we may assume that the origin is one of the vertices and the other 3
vertices are u, v andw. Since the triangle spanned by u and v is empty, by Proposition
1, the same holds for the parallelogram spanned by u and v. Therefore, {u, v} is a
primitive set of Z3, and by Theorem 6 can be extended to a basis of Z3, u, v, x.
Now by Theorem 4, we have a unimodular transformation L1 such that L1(u) = e1,
L2(v) = e2, and L3(x) = e3. Under this transformation, we see that the tetrahedron
T is equivalent to the tetrahedron T1 with vertices 0, e1, e2 and (A, B, c) where
A, B, c ∈ Z and vol(T ) = |c/6|. If c < 0, we can compose L1 with the unimodular
transformation

L2((x, y, z)) = (x, y,−z).

Consequently, we can assume that c > 0. We now use the division algorithm to
express

A = q1c + a and B = q2c + b, 0 ≤ a, b < c.

By acting on T1 by the unimodular transformation

L3((x, y, z)) = (x − q1z, y − q2z, z)

we get that T is equivalent to the tetrahedron T2 with vertices 0, e1, e2 and (a, b, c).
Since T2 is a clean tetrahedron, we invoke Corollary 2 to conclude that gcd(a, c) =
gcd(b, c) = gcd(d, c) = 1.

We now turn to the proof of White’s theorem. Our proof is arranged in four parts.
These are as follows:
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Part 1: We prove that the tetrahedron Ta,b,c is empty if and only if a system of
equations involving a, b, d hold.

Part 2: This system of equations give an immediate proof of the (⇐) direction of
White’s theorem.

Part 3: The proof of the (⇒) direction of White’s theorem is considerably more
involved. We first develop a slight modification of the system of equations.
This then leads us to define a finite set of arithmetic functions fn . We then
state and prove certain properties of these functions.

Part 4: We use the properties of fn to complete the proof.

We will invoke the following identity in several places

Lemma 1 Let x ∈ R. If x /∈ Z, then

〈−x〉 = 1 − 〈x〉. (1)

We will typically invoke this identity in the following form:

〈
kl

c

〉
+

〈
k(c − l)

c

〉
= 1 (2)

for 0 < l < c, gcd(l, c) = 1, and k = 1, . . . , c − 1.

Proposition 2 Let c ∈ Z with c > 1 and let Ta,b,c be a clean lattice tetrahedron.
Then, Ta,b,c is empty if and only if

〈
ka

c

〉
+

〈
kb

c

〉
+

〈
kd

c

〉
− k

c
= 1 (3)

holds for k = 1, . . . , c − 1.

Proof (Proof of Part 1) Let P denote the parallelepiped spanned by e1, e2 and
(a, b, c). Since volume(P) = c and the faces of P are empty lattice parallelograms,
we infer that P contains (c − 1) lattice points in its interior. These lattice points are

〈
k(c − a)

c

〉
(1, 0, 0) +

〈
k(c − b)

c

〉
(0, 1, 0) + k

c
(a, b, c) (4)

with k = 1, . . . , c − 1.
Ta,b,c is empty if and only if

1 <

〈
k(c − a)

c

〉
+

〈
k(c − b)

c

〉
+ k

c
< 2,

for k = 1, . . . , c − 1. Some algebraic manipulation in conjunction with identity (1)
gives the system of inequalities
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0 <

〈
ka

c

〉
+

〈
kb

c

〉
− k

c
< 1,

for k = 1, . . . , c − 1.We now observe that

〈
ka

c

〉
+

〈
kb

c

〉
− k

c
≡

〈
k(a + b − 1)

c

〉
(mod Z), (5)

for k = 1, . . . , c − 1. Since both sides of the congruence are between 0 and 1, we
conclude that we have a system of equalities

〈
ka

c

〉
+

〈
kb

c

〉
− k

c
=

〈
k(a + b − 1)

c

〉
,

for k = 1, . . . , c − 1. After a little more algebraic manipulation, we conclude that
Ta,b,c is empty if and only if

〈
ka

c

〉
+

〈
kb

c

〉
+

〈
kd

c

〉
− k

c
= 1

for k = 1, . . . , c − 1.

We can now easily prove (⇐) direction of White’s theorem. The system of equa-
tions (3) in conjunction with the system of identities (2) allow us to conclude that
the following tetrahedra are empty.

Corollary 3 Let gcd(a, c) = 1. Then the tetrahedra T1,a,c and Ta,c−a,c are empty.

To prove the (⇒) direction of White’s theorem, we will work with a modification
of (3). Define a set of arithmetic functions fn for n ∈ Z

+, n < c and gcd(n, c) = 1,

fn : {1, . . . , c − 2} → {0, 1}

via

fn(k) =
〈
kn

c

〉
−

〈
(k + 1)n

c

〉
+ n

c
=

[
(k + 1)n

c

]
−

[
kn

c

]
. (6)

From (3), we obtain the system of equations

fa(k) + fb(k) + fd(k) + 1

c
= a + b + d

c
, (7)

for k = 1, . . . , c − 2. We now look at the case of k = 1 in (3) which shows that

a + b + d

c
= 1 + 1

c
.

Thus, we can rewrite (7) as the system of equations
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fa(k) + fb(k) + fd(k) = 1, (8)

for k = 1, . . . , c − 2. We will work with this system (8) in conjunction with the
properties of fn to arrive at a proof of White’s theorem.

Proposition 3 The function fn has the following properties.

(i) f −1
1 ({1}) = ∅.

(ii) For n > 1,
f −1
n ({1}) = { [kc/n] : k = 1, . . . , n − 1} .

(iii) fc−n = 1 − fn.

Proof For k = 1, . . . , c − 2,

f1(k) =
[
k + 1

c

]
−

[
k

c

]
= 0 − 0 = 0,

which proves (i).
We now prove statement (ii). If l ∈ f −1

n ({1}) then there exists k ∈ Z
+ such that

ln

c
< k <

(l + 1)n

c
.

It follows that l = [kc/n]. Conversely, if l = [kc/n] for some integer k, with 1 ≤
k ≤ n − 1, then we have that

l <
kc

n
< l + 1.

We now obtain that
ln

c
< k <

(l + 1)n

c

and consequently l ∈ f −1
n ({1}).

Statement (iii) is a consequence of identity (2).

fc−n(k) =
〈
k(c − n)

c

〉
−

〈
(k + 1)(c − n)

c

〉
+ c − n

c

= 1 −
〈
kn

c

〉
− 1 +

〈
(k + 1)n

c

〉
+ 1 − n

c
= 1 − fn(k).

We now complete the proof of White’s theorem.

Proof (Proof of Part 3) Let Ta,b,c be an empty tetrahedron with c ≥ 2. We want to
prove that either a = 1 or b = 1 or d = 1. We will argue by contradiction. So we
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assume that a, b, d ≥ 2. Consequently none of the sets f −1
a ({1}), f −1

b ({1}), f −1
d ({1})

are empty. Since
fa + fb + fd = 1,

can infer that a, b and d are distinct integers, and the sets

f −1
a ({1}), f −1

b ({1}), f −1
d ({1})

are pairwise disjoint. (Spoiler alert: Our argument hinges crucially on the fact that
f −1
b ({1}) ∩ f −1

d ({1}) = ∅.) Without loss of generality, we can assume that a > b >

d. It follows that 1 ∈ f −1
a ({1}), and consequently 1 /∈ (

f −1
b ({1}) ∪ f −1

d ({1})). We
now have that

fb + fd = fc−a

and consequently (
f −1
b ({1}) ∪ f −1

d ({1})) = f −1
c−a({1}),

that is,
{ [kc/b] : k = 1, . . . , b − 1} ∪ { [kc/d] : k = 1, . . . , d − 1}

= { [kc/(c − a)] : k = 1, . . . , (c − a − 1)} .

We now compare the smallest and largest elements in each of the 3 sets. Since
b > d ≥ 2 and 1 /∈ f −1

c−a({1}), we have that

2 ≤
[

c

c − a

]
=

[ c
b

]
<

[ c
d

]
≤

[
(d − 1)c

d

]
<

[
(b − 1)c

b

]
=

[
(c − a − 1)c

c − a

]
.

We remark that the strict inequalities occur since

f −1
b ({1}) ∩ f −1

d ({1}) = ∅.

Let s be the positive integer such that

[ c
d

]
=

[
sc

c − a

]
.

We now obtain that
[
(s − 1)c

c − a

]
=

[
(s − 1)c

b

]
and

[
(s + 1)c

c − a

]
≤

[ sc
b

]
.

Combining these two observations, we get
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[
(s + 1)c

c − a

]
−

[
(s − 1)c

c − a

]
≤

[ sc
b

]
−

[
(s − 1)c

b

]
,

which implies the inequality

2

[
c

c − a

]
≤

[ c
b

]
+ 1.

This leads to the contradiction that
[

c

c − a

]
≤ 1,

and consequently our assumption that a, b, d ≥ 2 is false.

Proof (Proof of Corollary 1) Let Ta,b,c be empty, with c > 1. By Theorem 2, we
have that either a = 1 or b = 1 or b = c − a. If a = 1, then by replacing a by 1
in (4), we see that the x co-ordinate of each lattice point inside P1,b,c equals 1. The
same argument works if b = 1. The only case that needs a little more work is, if
b = c − a. In this case, (4) becomes

〈
k(c − a)

c

〉
(1, 0, 0) +

〈
ka

c

〉
(0, 1, 0) + k

c
(a, c − a, c). (9)

If we now add the x and y co-ordinates and subtract the z co-ordinate, we get

〈
k(c − a)

c

〉
+

〈
ka

c

〉
+ ka

c
+ k(c − a)

c
− k =

〈
k(c − a)

c

〉
+

〈
ka

c

〉
.

We now invoke the identities (2) to conclude that the RHS equals 1.
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