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Preface

The CUNY Graduate Center Workshops on Combinatorial and Additive Number
Theory (CANT) have been organized every year, beginning in 2003, by the New
York Number Theory Seminar. The seminar was started in 1981 by David and
Gregory Chudnovsky, Harvey Cohn, and Mel Nathanson, and for 36 years has been
meeting every Thursday afternoon during the academic year, and also in the
summer.

The four-day CANT conferences are held in May at the CUNY Graduate Center
in Manhattan, usually from Tuesday to Friday of the week immediately preceding
Memorial Day. They have become a fixed point in the number theory calendar.

This collection derives from talks at the CANT 2015 and CANT 2016 work-
shops. There are 20 papers on important topics in number theory and related parts
of mathematics. These topics include sumsets, partitions, convex polytopes and
discrete geometry, Ramsey theory, primality testing, and cryptography.

I am grateful to Springer and its mathematics editor, Marc Strauss, for publishing
the proceedings of these meetings. A previous volume is [1].

Bronx, NY, USA Melvyn B. Nathanson
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On a Conjecture of Fox and Kleitman
on the Degree of Regularity of a Certain
Linear Equation

Sukumar Das Adhikari and Shalom Eliahou

Abstract Fox and Kleitman proved in 2006 that for any positive integer b, the 2n-
variable equation x1 + · · · + xn − xn+1 − · · · − x2n = b is not 2n-regular. More-
over, they conjectured the existence of an integer bn ≥ 1 such that for b = bn , this
equation is (2n − 1)-regular. In this note, we settle the first nontrivial case of the
conjecture, namely for n = 2, and we propose a slight refinement of it.

Keywords Partition regularity · Diophantine equation · Finite coloring
Monochromatic solution

1 Introduction

Here, Z denotes the set of integers and N+ the set of positive integers. For given
integers α1, . . . ,αk and c, consider the linear Diophantine equation L:

k∑

i=1

αi xi = c.

Following Rado [5], given n ∈ N+, equation L is said to be n-regular if, for every
n-coloring of N+, there exists a monochromatic solution x ∈ N

k+ to L .
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2 S. Das Adhikari and S. Eliahou

The degree of regularity of L is the largest integer n ≥ 0, if any, such that L is
n-regular. This (possibly infinite) number is denoted by dor(L). If dor(L) = ∞,
then L is said to be regular.

A conjecture of Rado [5] states that there is a function r : N+ → N+ such that
given any n ∈ N+ and any equationα1x1 + · · · + αnxn = 0with integer coefficients,
if this equation is not regular over N+, then it already fails to be r(n)-regular. Even
though there is a more general version, we state it here for a single homogeneous
equation, as it has been proved by Rado that if the conjecture is true for a single
equation, then it is true for a system of finitely many linear equations [5], and as
Fox and Kleitman have shown that if the conjecture is true for a linear homogeneous
equation, then it is true for any linear equation [3]. This conjecture is known asRado’s
Boundedness Conjecture. The first nontrivial case of the conjecture has been proved
by Fox and Kleitman [3]; more precisely, they established the bound r(3) ≤ 24. In
the same paper, the authors made the following conjecture for a very specific linear
Diophantine equation [3].

Conjecture 1 Let n ≥ 1. There exists an integer bn ≥ 1 such that the degree of
regularity of the 2n-variable equation

x1 + · · · + xn − xn+1 − · · · − x2n = bn

is exactly 2n − 1.

If true, that would be best possible, since they proved in the same paper that for
any bn ∈ N+, the above equation is not 2n-regular.

In this note,we settle the first nontrivial case of the conjecture, namely the casen =
2. Indeed, we shall show that if b2 is any positivemultiple of 6, then the corresponding
equation has degree of regularity exactly 3.

Moregenerally,we shall determine thedegreeof regularity overN+ of the equation

x1 + x2 − x3 − x4 = b

for all b ∈ N+. See Theorem 1 for the exact statement.
A related conjecture of Rado [5], stating that for every positive integer n, there

exists a linear homogeneous equationwith degree of regularity equal to n, was proved
by Alexeev and Tsimerman [1]. Before that paper, Fox and Radoićic̆ [2] had shown
that for n ≥ 2, the equation

x1 + 2x2 + · · · + 2n−2xn−1 − 2n−1xn = 0 (1)

is not n-regular and had conjectured that it is (n − 1)-regular; Golowich [4] proved
their conjecture, thus providing another proof of the above-mentioned conjecture of
Rado.
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2 Main Result

Here is the main result of this note, which solves the case n = 2 of the conjecture of
Fox and Kleitman.

Theorem 1 For any b ∈ N+, let Lb be the equation

x1 + x2 − x3 − x4 = b.

The degree of regularity dor(Lb) over N+ only depends on the class of b mod 6, as
follows:

dor(Lb) =
⎧
⎨

⎩

1 if b ≡ 1, 3, 5 mod 6,
2 if b ≡ 2, 4 mod 6,
3 if b ≡ 0 mod 6.

Proof There are several steps.
Step 0. For any b ∈ N+, we have

1 ≤ dor(Lb) ≤ 3.

Indeed, equation Lb is obviously 1-regular since it is solvable in N+. Moreover, as
mentioned above, it is not 4-regular [3].

Step 1. Assume first that b is odd. Consider the 2-coloring mod2 of N+ given by the
class mod 2. Let (λ1,λ2,λ3,λ4) be a mod2-monochromatic vector in N4+. Then the
λi s all have the same parity, whence

λ1 + λ2 − λ3 − λ4 ≡ 0 mod 2.

Since b �≡ 0 mod 2, it follows that Lb admits no mod2-monochromatic solution in
N

4+. Therefore, dor(Lb) < 2, implying dor(Lb) = 1 by Step 0 above. This covers the
cases b ≡ 1, 3, 5 mod 6.

Step 2. Assume now that b is even. Let us show then that Lb is 2-regular. Indeed,
letting h = b/2 with h ∈ N+, the following three vectors in N4+ are solutions to Lb:

(b + 1, 1, 1, 1),

(h + 1, h + 1, 1, 1),

(b + 1, b + 1, h + 1, h + 1).

For any given 2-coloring of N+, at least two elements in the set {b + 1, h + 1, 1}
must have the same color. Therefore, at least one of the above three solutions must
be monochromatic. This shows that dor(Lb) ≥ 2, as asserted.

Step 3. Assume that b �≡ 0 mod 3. Let us show then that dor(Lb) ≤ 2 in that case,
i.e., that Lb is not 3-regular. Consider the 3-coloring mod3 of N+ given by the class
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mod 3. Let (λ1,λ2,λ3,λ4) be a mod3-monochromatic vector in N
4+. Then the λi s

all have the same class mod 3, whence

λ1 + λ2 − λ3 − λ4 ≡ 0 mod 3.

Since b �≡ 0 mod 3, it follows that Lb admits no mod3-monochromatic solution,
whence dor(Lb) ≤ 2 as claimed. In particular, when b is even, this covers the cases
b ≡ 2, 4 mod 6.

Step 4. In the remaining case b ≡ 0 mod 6,we claim that the equation Lb is 3-regular.
To that end, let us show here that it suffices to treat the case b = 6.

Indeed, assume that L6 is 3-regular, and let b = 6k with k ≥ 2. Let c be a 3-
coloring of N+. Let c′ be the new 3-coloring of N+ defined by the formula

c′(n) = c(nk)

for all n ∈ N+. Since L6 is 3-regular, there is a vector (λ1,λ2,λ3,λ4) ∈ N
4+ satisfying

L6, i.e., such that
λ1 + λ2 − λ3 − λ4 = 6,

and which is monochromatic under c′. Therefore, the vector (λ1k,λ2k,λ3k,λ4k)
satisfies L6k , i.e.,

λ1k + λ2k − λ3k − λ4k = 6k,

and is monochromatic under c by construction. This shows that if L6 is 3-regular,
then L6k also is 3-regular for all k ≥ 2.

Step 5. We now complete the proof of the theorem by establishing the 3-regularity
of L6.

Let c : N+ → {0, 1, 2} be an arbitrary 3-coloring of N+. We need to show that at
least one solution x ∈ N

4+ of equation L6, i.e., of

x1 + x2 − x3 − x4 = 6,

is monochromatic under c.
Here are five families of special solutions to L6 with only two or three distinct

entries, parametrized by a ∈ N+:

{a + 6, a, a, a},
{a + 5, a + 1, a, a},
{a + 4, a + 2, a, a},
{a + 3, a + 3, a, a},
{a + 8, a, a + 1, a + 1}.

Consider now the family of underlying sets of these special solutions:
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E = {{a, a + 3}, {a, a + 6}, {a, a + 2, a + 4}, {a, a + 1, a + 5}, {a, a + 1, a + 8}},

where a ranges through N+.
If any element in E happens to be a monochromatic set, we are done. So, from

now on, we may and will make the following assumption:

(H) All elements in E are multichromatic sets under c,

wheremultichromaticmeans nonmonochromatic here. We now proceed to show that
this hypothesis leads to a contradiction, thereby completing the proof of the theorem.

First observe that

{c(a), c(a + 3), c(a + 6)} = {0, 1, 2} (2)

for all a ∈ N+. Indeed, by (H), the colors of a, a + 3, a + 6 are pairwise distinct
since a + 6 = (a + 3) + 3. This implies the following.

Claim 1 For all a ∈ N+, we have

c(a) = c(a + 9). (3)

Indeed, by (2) we have

{c(a), c(a + 3), c(a + 6)} = {0, 1, 2} = {c(a + 3), c(a + 6), c(a + 9)}.

Since the sets on the left and on the right are equal and have

I = {c(a + 3), c(a + 6)}

in common, they remain equal when removing I . This implies c(a) = c(a + 9), as
claimed.

Consequently, our 3-coloring c induces a well-defined 3-coloring on Z/9Z that
we still denote by c,

c : Z/9Z → Z/3Z.

For simplicity, let us denote the elements ofZ/9Z by 0, 1, . . . , 8 and their respec-
tive colors under c by c0, c1, . . . , c8. Moreover, let us depict the distribution of these
colors in the following table C (Table 1):

Claim 2 For all i ∈ Z/9Z, we have

Table 1 Color table C c0 c1 c2
c3 c4 c5
c6 c7 c8
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Table 2 Color table C
revisited

0 c1 c2
1 c4 c5
2 c7 c8

∣∣{ci , ci+2, ci+4}
∣∣ ≥ 2, (4)∣∣{ci , ci+1, ci+5}
∣∣ ≥ 2, (5)∣∣{ci , ci+1, ci+2}
∣∣ ≥ 2. (6)

Indeed, this follows from the fact that the sets {a, a + 2, a + 4}, {a, a + 1, a + 5},
and {a, a + 1, a + 8} belong to E for all a ∈ N+ and hence by (H) are assumed to
be multichromatic under c.

Now, by (2), (3) and up to symmetry, we may assume that the first column
(c0, c3, c6) of C is equal to (0, 1, 2), as depicted in Table2.

Moreover, it follows from (2) again that the second and third columns of C are
both permutations of its first column. Now, there are nine possible pairs holding the
remaining two 0s in C , namely

(c1, c2), (c1, c5), (c1, c8);
(c4, c2), (c4, c5), (c4, c8);
(c7, c2), (c7, c5), (c7, c8).

But each one in turn is excluded by an appropriate argument, recalling that c0 = 0:

∣∣{c0, c1, c2}
∣∣ ≥ 2 by (6),

∣∣{c0, c1, c5}
∣∣ ≥ 2 by (5),

∣∣{c8, c0, c1}
∣∣ ≥ 2 by (6);∣∣{c0, c2, c4}

∣∣ ≥ 2 by (4),
∣∣{c4, c5, c0}

∣∣ ≥ 2 by (5),
∣∣{c8, c0, c4}

∣∣ ≥ 2 by (5);∣∣{c7, c0, c2}
∣∣ ≥ 2 by (4),

∣∣{c5, c7, c0}
∣∣ ≥ 2 by (4),

∣∣{c7, c8, c0}
∣∣ ≥ 2 by (6).

This contradiction shows that (H) is absurd and concludes the proof of the theo-
rem. �

Slight changes in the above proof actually give a somewhat stronger result.

Proposition 1 For every integer interval A = [r, r + 17] ⊆ N+ of cardinality 18,
and for every 3-coloring of A, the equation

x1 + x2 − x3 − x4 = 6

admits a monochromatic solution x ∈ A4.

Proof (Sketch) Indeed, one observes that the whole proof of Theorem 1 goes through
by considering colorings on [r, r + 17] only.

In Step 5, one argues with an arbitrary 3-coloring c′ : [r, r + 17] → {0, 1, 2}, and
the family of underlying sets of special solutions:
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E ′ = {{a, a + 3}, {a, a + 6}, {a, a + 2, a + 4}, {a, a + 1, a + 5}, {a, a + 1, a + 8}},

where a ranges through [r, r + 8]. This restricted range for a is the only difference
between E ′ and the family E considered in the proof of Theorem 1. Thus here, any
set of special solutions is contained in the interval [r, r + 17].

One then considers the map

c′ : (Z ∩ [r, r + 17])/9Z → Z/3Z

induced by the 3-coloring, and the rest of the argument is the same. �

We now consider the equation

x1 + · · · + xn − xn+1 − · · · − x2n = 6

for n ≥ 3 by means of the following remark.

Lemma 1 Let α1, . . . ,αk,β1, . . . ,βl ∈ Z. Assume that the k-variable equation∑k
i=1 αi xi = 0 is r-regular and that

∑l
j=1 β j = 0. Then, the (k + l)-variable equa-

tion
∑k

i=1 αi xi + ∑l
j=1 β j xk+ j = 0 is also r-regular.

Proof Let c be any r -coloring of N+. By assumption, there is a monochromatic
solution (u1, . . . , uk) ∈ N

k+ to the first equation, namely satisfying
∑k

i=1 αi ui = 0.
Since (

∑l
j=1 β j )uk = 0, it follows that (u1, . . . , uk, uk, . . . , uk) ∈ N

k+l
+ is a mono-

chromatic solution to the extended equation. �

This yields the following extension of Theorem 1.

Corollary 1 For every integer n ≥ 2, the 2n-variable equation

x1 + · · · + xn − xn+1 − · · · − x2n = 6

is 3-regular.

Proof The case n = 2 is settled in Theorem 1. For n ≥ 3, note that the given 2n-
variable equation is extended from the corresponding 2(n − 1)-variable one by
adding the zero coefficient sum term xn − x2n . Therefore, Lemma 1 applies, and
a repeated application of it from the case n = 2 yields the claimed statement. �

3 A Refined Conjecture

We conclude this note with a slight refinement of the conjecture of Fox andKleitman.
Consider again the 2n-variable equation

x1 + · · · + xn − xn+1 − · · · − x2n = b (7)
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with b ∈ N+. As recalled in the Introduction, Fox and Kleitman proved that this
equation is never 2n-regular [3].

Conjecture 2 The degree of regularity of Eq. (7) only depends on the class of b
mod (2n − 1)!. Moreover, Eq. (7) is (2n − 1)-regular exactly when b is a multiple of
(2n − 1)!.

Note that Theorem 1 settles the case n = 2 of this refined conjecture. As for n = 3,
for instance, the conjecture states that the equation

x1 + x2 + x3 − x4 − x5 − x6 = 120k

should be 5-regular for all k ≥ 1. As in Step 4 of the proof of Theorem 1, it would
suffice to show it for k = 1.

Let now N (n) be the lowest common multiple of all integers from 1 to 2n − 1.
For instance, N (3) = 60. If the above right-hand side 120k is replaced by any b �≡
0 mod 60, the resulting equation fails to be 5-regular; this follows from the following
more general statement, a tiny step toward Conjecture 2.

Proposition 2 If b �≡ 0 mod N (n), then Eq. (7) is not (2n − 1)-regular.

Proof By assumption on b, there exists 1 ≤ k ≤ 2n − 1 such that b �≡ 0 mod k. Con-
sider then the k-coloring modk of N+ given by the class mod k. Let (u1, . . . , u2n) ∈
N

2n+ be any monochromatic vector under modk , i.e., satisfying ui ≡ a mod k for
some a ∈ N and for all 1 ≤ i ≤ 2n. Then

u1 + · · · + un − un+1 − · · · − u2n ≡ 0 mod k.

Since b �≡ 0 mod k, it follows that Eq. (7) admits nomonochromatic solution for this
specific k-coloring. Therefore, Eq. (7) is not k-regular, whence it is not (2n − 1)-
regular either since 2n − 1 ≥ k. �

In view of the above result, one might wonder whether Conjecture 2 might hold
with (2n − 1)! replaced by its factor N (n). The answer is no. As it happens, the
equation x1 + x2 + x3 − x4 − x5 − x6 = 60 is not 5-regular. In fact, it is not even
4-regular, as will be shown in a subsequent paper.
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Open Problems About Sumsets in Finite
Abelian Groups: Minimum Sizes and Critical
Numbers

Béla Bajnok

Abstract For a positive integer h and a subset A of a givenfinite abelian group,we let
hA, hˆA, and h±A denote the h-fold sumset, restricted sumset, and signed sumset of
A, respectively. Here we review some of what is known and not yet known about the
minimum sizes of these three types of sumsets, as well as their corresponding critical
numbers. In particular, we discuss several new open direct and inverse problems.

Keywords Additive combinatorics · Finite abelian group · Sumset
Critical number

1 Introduction and Notations

Throughout this paper, G denotes a finite abelian group of order n ≥ 2, written in
additive notation. If G is cyclic, we identify it with Zn = Z/nZ. We say that G has
type (n1, . . . , nr ) if

G ∼= Zn1 × · · · × Znr

for integers 2 ≤ n1|n2| · · · |nr ; here r is the rank, and nr is the exponent of G. For an
m-subset A = {a1, . . . , am} of G and for a nonnegative integer h, we consider three
types of sumsets:

• the h-fold sumset:

hA = {
�m

i=1λi ai | λ1, · · · , λm ∈ N0, �m
i=1λi = h

}
,

• the h-fold restricted sumset:

hˆA = {
�m

i=1λi ai | λ1, · · · , λm ∈ {0, 1}, �m
i=1λi = h

}
,

• the h-fold signed sumset:
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h±A = {
�m

i=1λi ai | λ1, · · · , λm ∈ Z, �m
i=1|λi | = h

}
.

We denote the set formed by the inverses of the elements of A by −A; we say that A
is symmetric if A = −A and that A is asymmetric if A and −A are disjoint. For an
element b ∈ Z, we write b · A for the b-fold dilation {b · a1, . . . , b · am} of A. The
subgroup of G generated by A is denoted by 〈A〉.

It is a central question in additive combinatorics to evaluate minimum sumset
sizes, in particular, for given G, h, and 1 ≤ m ≤ n the quantities

ρ(G,m, h) = min{|hA| | A ⊆ G, |A| = m},

ρˆ(G,m, h) = min{|hˆA| | A ⊆ G, |A| = m},

ρ±(G,m, h) = min{|h±A| | A ⊆ G, |A| = m}.

Trivially, each value is 1 whenever h = 0, and each value equalsm whenever h = 1.
(To see that ρ±(G,m, 1) = m, note that every group has a symmetric subset of any
size m ≤ n.) Below we assume that h ≥ 2; in the case of restricted sums, we may
and will also assume that h ≤ m − 2.

The study of ρ(G,m, h) goes back two hundred years to the work of Cauchy
[14] who determined it for groups of prime order and h = 2 and is now known
for all parameters—see Sect. 2. However, only partial results have been found for
ρˆ(G,m, h) and ρ±(G,m, h)—we discuss these in Sects. 3 and 4.

We also consider minimum sumset sizes without restrictions on the number of
terms added:

ρ(G,m,N0) = min{| ∪∞
h=0 hA| | A ⊆ G, |A| = m},

ρˆ(G,m,N0) = min{| ∪∞
h=0 hˆA| | A ⊆ G, |A| = m},

ρ±(G,m,N0) = min{| ∪∞
h=0 h±A| | A ⊆ G, |A| = m}.

Since ∪∞
h=0hA and ∪∞

h=0h±A both equal 〈A〉, we have

ρ(G,m,N0) = ρ±(G,m,N0) = min{d ∈ D(n) | d ≥ m},

where D(n) is the set of positive divisors of n. The set ∪∞
h=0hˆA, also denoted by

�A, is less understood; we discuss ρˆ(G,m,N0) in Sect. 5.
Related to each function, we study the corresponding critical number: the mini-

mum value of m, if it exists, for which the corresponding sumset of any m-subset of
G is G itself. The study of critical numbers originated with the 1964 paper [21] of
Erdős and Heilbronn; in Sect. 6, we review what is known and not yet known about
them.
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Furthermore, we also examine the so-called inverse problems corresponding to
some of these quantities, that is, we look for subsets of the group that achieve the
extremal values of our functions.

The open problemsmentioned here are just some of themany intriguing questions
about sumsets.

2 Minimum Size of h-fold Sumsets

Given G, m, and h, which m-subsets of G have the smallest h-fold sumsets? Two
ideas come to mind: Place the elements into a coset of some subgroup, or have the
elements form an arithmetic progression. We may also combine these two ideas;
for example, in the cyclic group Zn , we take an arithmetic progression of cosets, as
follows.

For any divisor d of n, we take the subgroup H = ∪d−1
j=0{ j · n/d}, then set

Ad(n,m) = ∪c−1
i=0 (i + H)

⋃
∪k−1

j=0{c + j · n/d},

where m = cd + k and 1 ≤ k ≤ d. An easy computation shows that

|hAd(n,m)| = min{n, (hc + 1)d, hm − h + 1};

letting
fd(m, h) = (hc + 1)d = (h�m/d� − h + 1)d,

and noting that fn(m, h) = n and f1(m, h) = hm − h + 1, allows us to write

|hAd(n,m)| = min{ fn(m, h), fd(m, h), f1(m, h)}.

Therefore, with
u(n,m, h) = min{ fd(m, h) | d ∈ D(n)}

we get ρ(Zn,m, h) ≤ u(n,m, h). It turns out that a similar construction works in
any group and that we cannot do better:

Theorem 1 (Plagne [38]) For every G,m, and h, we haveρ(G,m, h) = u(n,m, h).

(Here u(n,m, h) is a relative of the Hopf–Stiefel function used also in topology and
bilinear algebra; see, for example, [20], [30], [37], and [40].)

With ρ(G,m, h) thus determined, let us turn to the inverse problem of classifying
all m-subsets A of G for which hA has minimum size ρ(G,m, h). The general
question seems complicated. For example, while one can show that for a 6-subset
A of Z15 to have a twofold sumset of size ρ(Z15, 6, 2) = 9, A must be the union of
two cosets of the order 3 subgroup of Z15; there are three different possibilities for
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ρ(Z15, 7, 2) = 13: A can be the union of two cosets of the order 3 subgroup plus
one additional element, or a coset of the order 5 subgroup together with two more
elements, or an arithmetic progression of length 7.

We are able to say more for m values that are not more than the smallest prime
divisor p of n. Note that, as a special case of Theorem 1, when m ≤ p, we get

ρ(G,m, h) = min{p, hm − h + 1}. (2.1)

The case when p is greater than hm − h + 1 easily follows from [31]:

Theorem 2 (Kemperman [31]) Let p be the smallest prime divisor of n, and assume
that h ≥ 2 and p > hm − h + 1. Then for an m-subset A of G, we have |hA| =
ρ(G,m, h) = hm − h + 1 if, and only if, A is an arithmetic progression in G.

For the case when p is less than hm − h + 1, we propose:

Conjecture 3 Let p be the smallest prime divisor of n, and assume that m ≤ p <

hm − h + 1. Then for an m-subset A of G, we have |hA| = ρ(G,m, h) = p if, and
only if, A is contained in a coset of some subgroup H of G with |H | = p.

This leaves the case when p = hm − h + 1, where arithmetic progressions of length
m and m-subsets in a coset of a subgroup of order p are two of several possibilities.
It may be an interesting problem to classify all such subsets.

3 Minimum Size of h-fold Restricted Sumsets

While the value of ρˆ(G,m, h) is not even known for cyclic groups in general, as
it turns out, we get an extremely close approximation for it by considering the sets
Ad(n,m) ⊆ Zn of Sect. 2 above. A somewhat tedious computation shows that we
get

|hˆAd(n,m)| =
⎧
⎨

⎩

min{n, (hc + 1)d, hm − h2 + 1} if h ≤ min{k, d − 1};

min{n, hm − h2 + 1 + δd} otherwise,

where δd is an explicitly computed correction term (see [4] for details). Letting

uˆ(n,m, h) = min{|hˆAd(n,m)| | d ∈ D(n)},

we thus get ρˆ(Zn,m, h) ≤ uˆ(n,m, h). Since |hˆAd(n,m)| equals min{n, hm −
h2 + 1} for both d = 1 and d = n, we always have

ρˆ(Zn,m, h) ≤ min{n, hm − h2 + 1}.



Open Problems About Sumsets in Finite Abelian Groups … 13

As is well known, equality holds for prime n:

Theorem 4 (Dias Da Silva, Hamidoune [16]; Alon et al. [1, 2]) For a prime p, we
have

ρˆ(Zp,m, h) = min{p, hm − h2 + 1}.

The lower bound uˆ(n,m, h) is surprisingly accurate for cyclic groups of com-
posite order as well: For all (n,m, h)with n ≤ 40, we find that equality holds in over
99.9% of cases, and when it does not, then ρˆ(Zn,m, h) and uˆ(n,m, h) differ only
by 1. All the exceptions that are known come from the construction that we explain
next.

Recall that the m elements in Ad(n,m) are within c + 1 = �m/d� cosets of the
order d subgroup H ofZn , and at most one of these cosets is not contained entirely in
Ad(n,m). We now consider the variation when the m elements are still within c + 1
cosets of H , but exactly two of the cosets do not lie entirely in our set. In order to
do so, we write

m = k1 + (c − 1)d + k2

with positive integers k1 and k2; we assume that k1 < d, k2 < d, but k1 + k2 > d.
We then set

Bd(n,m) = ∪k1−1
j=0 { j · n/d}

⋃
∪c−1
i=1 (i · g + H)

⋃
∪k2−1

j=0 {c · g + ( j0 + j) · n/d},

where 0 ≤ j0 ≤ d − 1 and g ∈ Zn . As it turns out, |hˆBd(n,m)| is less than
|hˆAd(n,m)| in just three specific cases: When h = 2, n is divisible by 2m − 2,
and m − 1 is not a power of 2; when h = 3, m = 6, and n is divisible by 10; and
when h is odd, n is divisible by hm − h2, and m + 2 is divisible by h + 2 (see [4]).
Moreover, every known instance when ρˆ(Zn,mh) is less than uˆ(n,m, h) arises as
one of these three cases. Letting

wˆ(n,m, h) = min{|hˆBd(n,m)| | d ∈ D(n)},

we see that ρˆ(Zn,m, h) is at mostmin{uˆ(n,m, h),wˆ(n,m, h)}, but we also believe
that equality holds:

Conjecture 5 For all n, m, and h, we have

ρˆ(Zn,m, h) = min{uˆ(n,m, h),wˆ(n,m, h)}.

Let us highlight the case h = 2. First, note that Conjecture 5 then becomes:

ρˆ(Zn,m, 2) =

⎧
⎪⎪⎨

⎪⎪⎩

min{ρ(Zn,m, 2), 2m − 4} if 2|n and 2|m,

or (2m − 2)|n and log2(m − 1) /∈ N;

min{ρ(Zn,m, 2), 2m − 3} otherwise.
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Some general inequalities are known: Plagne [39] proved that the upper bound

ρˆ(G,m, 2) ≤ min{ρ(G,m, 2), 2m − 2}

holds for all groups, and Eliahou and Kervaire [19] proved that the lower bound

ρˆ(G,m, 2) ≥ min{ρ(G,m, 2), 2m − 3}

holds for all elementary abelian p-groups for odd p. Furthermore, Lev [32] conjec-
tured the lower bound

ρˆ(G,m, 2) ≥ min{ρ(G,m, 2), 2m − 3 − |Ord(G, 2)|},

where Ord(G, 2) is the set of elements of G that have order 2, and Plagne [39]
conjectured that ρˆ(G,m, 2) and ρ(G,m, 2) can differ by at most 2. (We should
add that no such statement is possible for higher h values: As was proven in [4],
when h ≥ 3, for any C ∈ N, one can find a group G and a positive integer m so that
ρˆ(G,m, h) and ρ(G,m, h) differ by C or more.)

As in Sect. 2, we are able to say more when m ≤ p with p being the smallest
prime divisor of n. We believe that the following analogue of (2.1) holds:

Conjecture 6 If p is the smallest prime divisor of n and h < m ≤ p, then

ρˆ(G,m, h) = min{p, hm − h2 + 1}.

Note that Conjecture 6 is a generalization of Theorem 4.
Turning to inverse problems: our analogues for Theorem 2 and Conjecture 3 are:

Conjecture 7 Let p be the smallest prime divisor of n, and assume that 2 ≤ h ≤
m − 2 and p > hm − h2 + 1. Then for an m-subset A of G, we have |hˆA| = hm −
h2 + 1 if, and only if, h = 2, m = 4, and A = {a, a + g1, a + g2, a + g1 + g2} for
some a, g1, g2 ∈ G, or A is an arithmetic progression in G.

Conjecture 8 Let p be the smallest prime divisor of n, and assume that m ≤ p <

hm − h2 + 1. Then for an m-subset A of G, we have |hˆA| = p if, and only if, A is
contained in a coset of some subgroup H of G with |H | = p.

Károlyi proved Conjectures 6 and 7 for h = 2 [28, 29].

4 Minimum Size of h-fold Signed Sumsets

Studying the function ρ±(G,m, h) provides us with several surprises. First, we real-
ize that, unlike it is the case for ρ(G,m, h), the value of ρ±(G,m, h) depends on
the structure of G and not just on the order n of G. Second, while the size of the
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signed sumset of a subset is usually much greater than the size of its sumset, the value
of ρ±(G,m, h) equals ρ(G,m, h) surprisingly often; in fact, there is only one case
with n ≤ 24 where the two are not equal: ρ±(Z2

3, 4, 2) = 8 while ρ(Z2
3, 4, 2) = 7.

Furthermore, one might think that symmetric sets provide the smallest minimum
size, but sometimes asymmetric sets or even near-symmetric sets—sets that become
symmetric by the removal of one element—are better; we are able to prove, though,
that one of these three types always provides the minimum size.

For our treatment below, we use the functions fd(m, h) and u(n,m, h) defined in
Sect. 2. For cyclic groups, we have the following result:

Theorem 9 (Bajnok and Matzke [9]) For cyclic groups G, m, and h, we have
ρ±(G,m, h) = ρ(G,m, h).

The proof of Theorem 9 follows from the fact that for each d ∈ D(n) one can find a
symmetric subset R of G of size at least (but not necessarily equal to) m for which
|hR| ≤ fd(n,m).

More generally, for a group of type (n1, . . . , nr ) one can prove that

ρ±(G,m, h) ≤ min{�r
i=1ρ±(Zni ,mi , h) | mi ≤ ni ,�

r
i=1mi ≥ m},

so by Theorems 1 and 9,

ρ±(G,m, h) ≤ min{�r
i=1u(ni ,mi , h) | mi ≤ ni ,�

r
i=1mi ≥ m}.

Furthermore, in [9] we proved that

min{�r
i=1u(ni ,mi , h) | mi ≤ ni ,�

r
i=1mi ≥ m} = min{ fd(m, h) | d ∈ D(G,m)},

where D(G,m) consists of all d ∈ D(n) that can be written as d = �r
i=1di with di ∈

D(ni ) and dnr ≥ drm. (We may observe that for cyclic groups D(G,m) = D(n).)
Letting

u±(G,m, h) = min{ fd(m, h) | d ∈ D(G,m)}

thus results in the upper bound ρ±(G,m, h) ≤ u±(G,m, h). Of course, we also have
ρ±(G,m, h) ≥ u(n,m, h), so to get lower and upper bounds for ρ±(G,m, h), one
can minimize the values of fd(m, h) for all d ∈ D(n) and for all d ∈ D(G,m),
respectively. In fact, with one specific exception, that we are about to explain, we
believe that ρ±(G,m, h) = u±(G,m, h) holds for all G, m, and h.

We can observe that if A is asymmetric, then 0 /∈ 2±A. Consequently, if d is an odd
divisor of n and d ≥ 2m + 1, then we can choose an m-subset of G whose twofold
signed sumset has size less than d, and thus ρ±(G,m, 2) ≤ d − 1. We believe that
this is the only possibility for ρ±(G,m, h) to be less than u±(G,m, h):

Conjecture 10 (Bajnok and Matzke [9]) For all G, m, and h ≥ 3, we have
ρ±(G,m, h) = u±(G,m, h).
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Furthermore, with Do(n) denoting the set of odd divisors of n that are greater
than 2m, we have

ρ±(G,m, 2) =
⎧
⎨

⎩

u±(G,m, 2) if Do(n) = ∅,

min{u±(G,m, 2), dm − 1} if dm = min Do(n).

We can say more about elementary abelian groups. Clearly, ρ±(Zr
2,m, h) =

ρ(Zr
2,m, h), so consider Zr

p where p is an odd prime. When p ≤ h, one can prove
that ρ±(Zr

p,m, h) = ρ(Zr
p,m, h) [10]. The case when h is less than p is more deli-

cate; we need the following notations. First, set k equal to the largest integer forwhich
pk + δ ≤ hm − h + 1, where δ = 0 if p − 1 is divisible by h and δ = 1 otherwise.
Second, set q equal to the largest integer for which (hq + 1)pk + δ ≤ hm − h + 1.
With these notations, we have the following result:

Theorem 11 (Bajnok andMatzke [10]) Suppose that either p ≤ h or that h < p and
m ≤ (q + 1)pk with k and q defined as above. Then ρ±(Zr

p,m, h) = ρ(Zr
p,m, h).

We believe that ρ±(Zr
p,m, h) is greater than ρ(Zr

p,m, h) in the remaining case:

Conjecture 12 (Bajnok and Matzke [10]) If h < p and m > (q + 1)pk with k and
q defined as above, then ρ±(Zr

p,m, h) > ρ(Zr
p,m, h).

Using Vosper’s Theorem [41, 42] and (Lev’s improvement [34] of) Kemperman’s
results on so-called critical pairs [31], in [10] we were able to prove Conjecture 12
for the case when r = 2 and h = 2; therefore, we have a complete account for all m
for which ρ±(Z2

p,m, 2) = ρ(Z2
p,m, 2). In particular, we found that there are exactly

(p − 1)2/4 values of m where equality does not hold. We have not been able to find
any groups where this proportion is higher than 1/4 and believe that there are none:

Conjecture 13 For any abelian group of order n, ρ±(G,m, 2) and ρ(G,m, 2) dis-
agree for fewer than n/4 values of m.

Let us turnnow to the inverse problemof classifying allm-subsets A ofG forwhich
|h±A| = ρ±(G,m, h). Letting Sym(G,m), Nsym(G,m), and Asym(G,m) denote
the collection of m-subsets of G that are, respectively, symmetric, near-symmetric
(that is, become symmetric after removing one element), and asymmetric, in [9] we
proved that

ρ±(G,m, h) = min{|h±A| | A ∈ Sym(G,m) ∪ Nsym(G,m) ∪ Asym(G,m)}.

(None of the three types are superfluous.) This does not completely solve the inverse
problem: We may have other subsets with |h±A| = ρ±(G,m, h). Furthermore, it
would be interesting to know exactly when each of the three types of sets just
described yields a signed sumset of minimum size.
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5 Minimum Size of Restricted Sumsets with an Arbitrary
Number of Terms

In this section, we attempt to find theminimum size ρˆ(G,m,N0) of�A = ∪∞
h=0hˆA

among all m-subsets of G. We restrict our attention to cyclic groups.
As before, we choose a divisor d of n and consider an arithmetic progression

of cosets of the subgroup H of order d in Zn . We again write m = cd + k with
1 ≤ k ≤ d and construct a set Cd(n,m) that lies in exactly c + 1 = �m/d� cosets of
H , as follows.

Assume first that c is even. In this case, we let Cd(n,m) consist of the collection
of c cosets

{i + H | −c/2 ≤ i ≤ c/2 − 1},

together with k elements of the coset c/2 + H . (It makes no difference which k
elements we choose.) It is easy to see then that

�Cd(n,m) = {i + H | −(c2 + 2c)/8 · d ≤ i ≤ (c2 − 2c)/8 · d + c/2 · k},

and thus

|�Cd(n,m)| = min
{
n, (c2/4 · d + c/2 · k + 1) · d}

= min
{
n, (c/2 · m − c2/4 · d + 1) · d}

.

Similarly, when c is odd, we set Cd(n,m) equal to the collection

{i + H | −(c − 1)/2 ≤ i ≤ (c − 1)/2},

together with k elements of the coset (c + 1)/2 + H ; this time we find that

|�Cd(n,m)| = min
{
n,

(
(c + 1)/2 · m − (c + 1)2/4 · d + 1

) · d}
.

Therefore, letting

Fd(m) = (�c/2� · m − �c/2�2 · d + 1
) · d

= (�(m/d − 1)/2� · m − �(m/d − 1)/2�2 · d + 1
) · d,

and noting that Fn(m) = n, we may write |�Cd(n,m)| = min{Fn(m), Fd(m)}. Set-
ting

u(n,m,N0) = min{Fd(m) | d ∈ D(n)},

we get:

Theorem 14 For all positive integers n and m ≤ n, we have ρˆ(Zn,m,N0) ≤
u(n,m,N0).
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After some numerical experimentation, we believe that equality holds:

Conjecture 15 For all positive integers n and m ≤ n, we have ρˆ(Zn,m,N0) =
u(n,m,N0).

Note that, since F1(m) = �m2/4�2 + 1, Theorem 14 implies that

ρˆ(Zn,m,N0) ≤ min
{
n, �m2/4� + 1

}
(5.1)

holds for all n and m ≤ n.
Next, we examine groups of prime order. Let p be a positive prime. Trivially,

for any subset A and any positive integer h, the h-fold restricted sumset of A is
contained in�A and, therefore,ρˆ(Zp,m,N0) cannot be less thanρˆ(Zp,m, �m/2�).
By Theorem 4,

ρˆ(Zp,m, �m/2�) = min
{
p, �m/2� · m − �m/2�2 + 1

} = min
{
p, �m2/4� + 1

} ;

together with our upper bound (5.1), we arrive at:

Theorem 16 Conjecture 15 holds for groups of prime order; in particular,

ρˆ(Zp,m,N0) = min
{
p, �m2/4� + 1

}

for all primes p and m ≤ p.

There have been some studies of several variations of ρˆ(G,m,N0) provided by
various restrictions on the subsets A of G. We mention only one pair of such results.
Recall that Asym(G,m) denotes the collection of asymmetricalm-subsets ofG; also
set �∗A = ∪∞

h=1hˆA. Furthermore, let

ρAˆ(G,m,N0) = min{|�A| | A ∈ Asym(G,m)},

ρAˆ(G,m,N) = min{|�∗A| | A ∈ Asym(G,m)}.

With these notations:

Theorem 17 (Balandraud [11–13]) For every odd prime p and every m ≤ (p −
1)/2, we have

ρAˆ(Zp,m,N0) = min{p, (m2 + m)/2 + 1},

ρAˆ(Zp,m,N) = min{p, (m2 + m)/2}.

The fact that the values are upper bounds is provided by the set {1, 2, . . . ,m}.
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6 Critical Numbers

Given G and h, we define the h-critical number χ(G, h) as the least integer m for
which hA = G holds for all m-subsets A of G; we define χˆ(G, h) and χ±(G, h)

analogously. We also define the critical number χ(G,N0) as the smallest value of
m for which ∪∞

h=0hA = G holds for all m-subsets A of G; we define χˆ(G,N0) and
χ±(G,N0) analogously.

The study of critical numbers originated with the 1964 paper [21] of Erdős and
Heilbronn: They studied the variation (in groups of prime order) where only m-
subsets of G \ {0} were considered. (As we now know, the restriction to subsets that
do not contain 0 does not change the critical numbers when the number of terms is
a fixed value of h but reduces them by 1 when the number of terms is arbitrary; for
example, the least integer m for which hA = G holds for all m-subsets A of G \ {0}
equals χ(G, h), but the least integer m for which �A = G holds for all m-subsets
A of G \ {0} equals χˆ(G,N0) − 1; see [5–8].)

Two of these six quantities are obvious: Since ∪∞
h=0hA and ∪∞

h=0h±A are both
equal to 〈A〉, we have

χ(G,N0) = χ±(G,N0) = n/p + 1,

where p is the smallest prime divisor of n. Furthermore, χ(G, h) and χˆ(G,N0) have
now been determined, but the remaining two quantities are not known in general.
Let us review what we know.

To state the result for χ(G, h), we need to introduce the—perhaps already
familiar—function

vg(n, h) = max {(�(d − 1 − gcd(d, g)) /h� + 1) · n/d : d ∈ D(n)}

(n, g, h ∈ N). We should note that this function has appeared elsewhere in additive
combinatorics already. For example, according to the classical result of Diananda
and Yap [15], the maximum size of a sum-free set (that is, a set A that is disjoint
from 2A) in the cyclic group Zn is given by

v1(n, 3) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 + 1/p) · n/3 if n has prime divisors p ≡ 2mod 3
and p is the smallest,

�n/3� otherwise.

Similarly, we proved in [3] that the maximum size of a (3, 1)-sum-free set in Zn

(where A is disjoint from3A) equals v2(n, 4).More generally, vk−l(n, k + l) provides
a lower bound for themaximumsize of (k, l)-sum-free sets inZn (where k A ∩ l A = ∅
for positive integers k > l) (see [3]); equality holds in the case when k − l and n are
relatively prime (see the paper [27] of Hamidoune and Plagne). We can now state
our result for χ(G, h):
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Theorem 18 (Bajnok [5]) For all G and h, we have χ(G, h) = v1(n, h) + 1.

Let us now see what we can say about χˆ(G, h). First, we can prove that χˆ(G, h)

is well defined, except when h ∈ {2, n − 2} and G is isomorphic to an elementary
abelian 2-group. Furthermore, for all G with exponent at least 3, we have

χˆ(G, 2) = (n + |Ord(G, 2)| + 1)/2 + 1

and, as a consequence, when h ≥ (n + |Ord(G, 2)| − 1)/2, we have χˆ(G, h) =
h + 2 [5]. Regarding other values of h, few exact results are known; in particular, for
3 ≤ h ≤ �n/2� − 1, we only know the value of χˆ(Zn, h) when n is prime or even.

Indeed, for prime values of p, Theorem 4 allows us to derive that

χˆ(Zp, h) = �(p − 2)/h� + h + 1.

The case of even n and h = 3 was established by Gallardo, Grekos, et al. in [24];
we generalized this in [5] (see also [7]) to prove that that for any h and even n ≥ 12,
we have

χˆ(Zn, h) =
⎧
⎨

⎩

n/2 + 1 if 3 ≤ h ≤ n/2 − 2;

n/2 + 2 if h = n/2 − 1.

Let us take a closer look at the case of h = 3. In [5], we proved that if n ≥ 16 and
has prime divisors congruent to 2 mod 3 and p is the smallest such divisor, then

χˆ(Zn, 3) ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 + 1/p) · n/3 + 3 if n = p,

(1 + 1/p) · n/3 + 2 if n = 3p,

(1 + 1/p) · n/3 + 1 otherwise;

and if n has no prime divisors congruent to 2 mod 3, then

χˆ(Zn, 3) ≥
⎧
⎨

⎩

�n/3� + 4 if n is divisible by 9,

�n/3� + 3 otherwise.

We also believe that, actually, equality holds above for all n—this is certainly the
case if n is even or prime; we have verified this (by computer) for all n ≤ 50. Our
conjecture is a generalization of the one made by Gallardo, Grekos, et al. in [24] that
was proved (for large n) by Lev in [33].

The study of χˆ(G,N0) posed considerable amount of challenges, but after sev-
eral decades of attempts, due to the combined results of Diderrich and Mann [18],
Diderrich [17], Mann and Wou [35], Dias Da Silva and Hamidoune [16], Gao and
Hamidoune [25], Griggs [26], and Freeze et al. [22, 23], we have the value for every
group:
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Theorem 19 (The combined results of authors above)
Suppose that n ≥ 10, and let p be the smallest prime divisor of n. Then1

χˆ(G,N0) =

⎧
⎪⎪⎨

⎪⎪⎩

�2√n − 2� + 1 if G is cyclic of order n=p or n=pq where
q is prime and 3 ≤ p ≤ q ≤ p + �2√p − 2� + 1,

(see footnote 1)
n/p + p − 1 otherwise.

In closing, we state an intriguing question for the inverse problem regarding
χˆ(Zp,N0), that is, the attempt to classify all subsets A of size χˆ(Zp,N0) − 1 =
�2√p − 2� in the cyclic group Zp of odd prime order p for which �A �= Zp. First,
some notations and an observation. Following standard techniques, we identify the
elements of Zp with integers between −(p − 1)/2 and (p − 1)/2 (inclusive); there-
fore, we can write A = A1 ∪ A2 where A1 consists of the nonnegative elements of
A, and A2 consists of its negative elements. We define the norm of A ⊆ Zp, denoted
by ||A||, as the sum of the absolute values of its elements, thus

||A|| = �a∈A1a − �a∈A2a.

We note that if ||A|| ≤ p − 2, then

1 + �a∈A1a /∈ �A;

in particular,�A �= Zp. Consequently, if ||A|| ≤ p − 2, then�(b · A) �= Zp for any
b ∈ Zp. We believe that this simple condition answers our inverse problem for all
large enough primes; namely: There is a positive integer p0 so that if p > p0 is prime
and A ⊆ Zp has size χˆ(Zp,N0) − 1 = �2√p − 2�, then �A �= Zp if, and only if,
there is a nonzero element b ∈ Zp for which ||b · A|| ≤ p − 2. (We verified that all
primes under 40, with the exception of p = 17, satisfy this condition.) We mention
the following related result:

Theorem 20 (Nguyen et al. [36]) Let p be an odd prime, and let A ⊆ Zp have
size |A| ≥ 1.99

√
p. If �A �= Zp, then there is a nonzero element b ∈ Zp for which

||b · A|| ≤ p + O(
√
p).
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Benford Behavior of Generalized Zeckendorf
Decompositions

Andrew Best, Patrick Dynes, Xixi Edelsbrunner, Brian McDonald,
Steven J. Miller, Kimsy Tor, Caroline Turnage-Butterbaugh
and Madeleine Weinstein

Abstract Weprove connections betweenZeckendorf decompositions andBenford’s
law. Recall that if we define the Fibonacci numbers by F1 = 1, F2 = 2, and Fn+1 =
Fn + Fn−1, every positive integer can be written uniquely as a sum of nonadjacent
elements of this sequence; this is called the Zeckendorf decomposition, and similar
unique decompositions exist for sequences arising from recurrence relations of the
form Gn+1 = c1Gn + · · · + cLGn+1−L with ci positive and some other restrictions.
Additionally, a set S ⊂ Z is said to satisfy Benford’s law base 10 if the density of the
elements in S with leading digit d is log10 (1 + 1

d ); in other words, smaller leading
digits are more likely to occur. We prove that as n → ∞ for a randomly selected
integer m in [0,Gn+1) the distribution of the leading digits of the summands in its

A. Best
Department of Mathematics, The Ohio State University, Columbus, OH, USA
e-mail: andrewbest312@gmail.com

P. Dynes
Department of Mathematical Sciences, Clemson University, Clemson, SC, USA
e-mail: pdynes@clemson.edu

X. Edelsbrunner · S. J. Miller (B)
Department of Mathematics and Statistics, Williams College, Williamstown, MA, USA
e-mail: sjm1@williams.edu; Steven.Miller.MC.96@aya.yale.edu

X. Edelsbrunner
e-mail: xe1@williams.edu

B. McDonald
Department of Mathematics, University of Chicago, Chicago, IL, USA
e-mail: bdmcdonald@uchicago.edu

K. Tor
Department of Mathematics, Pierre and Marie Curie University–Paris 6, Paris, France
e-mail: kimsy.tor@gmail.com

C. Turnage-Butterbaugh
Department of Mathematics, Duke University, Durham, NC, USA
e-mail: cturnagebutterbaugh@gmail.com

M. Weinstein
Department of Mathematics, University of California Berkeley, Berkeley, CA, USA
e-mail: maddie@math.berkeley.edu

© Springer International Publishing AG 2017
M. B. Nathanson (ed.), Combinatorial and Additive Number Theory II,
Springer Proceedings in Mathematics & Statistics 220,
https://doi.org/10.1007/978-3-319-68032-3_3

25



26 A. Best et al.

generalized Zeckendorf decomposition converges to Benford’s law almost surely.
Our results hold more generally: One obtains similar theorems to those regarding the
distribution of leading digits when considering how often values in sets with density
are attained in the summands in the decompositions.

Keywords Zeckendorf decompositions · Fibonacci numbers
Positive linear recurrence relations · Benford’s law
MSC 2010: 11B39 · 11B05 · 60F05 (primary)11K06 · 65Q30 · 62E20 (secondary)

1 Introduction

Zeckendorf’s theorem states that every positive integerm can bewritten uniquely as a
sum of nonconsecutive Fibonacci numbers, where the Fibonacci numbers are defined
by Fn+1 = Fn + Fn−1 with F1 = 1 and F2 = 2 (we must re-index the Fibonaccis,
as if we included 0 or had two 1s we clearly could not have uniqueness). Such a
sum is called the Zeckendorf decomposition of m, and each number in the sum
is called a summand. Zeckendorf decompositions have been generalized to many
other sequences, specifically those arising from positive linear recurrences. More
generally, we can consider a positive linear recurrence sequence given by

Gn+1 = c1Gn + · · · + cLGn+1−L , (1)

with ci nonnegative, L , c1, and cL positive, as well as rules to specify the first L terms
of the sequence and a generalization of the nonadjacency constraint to what is a legal
decomposition. Unique decompositions exist both here and for other sequences; see
[1, 9–16, 19–21, 24, 25, 28, 29, 31] for a sample of the vast literature on this topic.

Our purpose is to connect generalized Zeckendorf decompositions and Benford’s
law. In fact, what we show is more general, and the connection with Benford’s law
follows as a corollary. Still, Benford’s law was the motivation for our investigation,
so we discuss its history. First discovered by Simon Newcomb [26] in the 1880s, it
was rediscovered by Benford [3] approximately fifty years later, who noticed that the
distributions of the leading digits of numbers in many data sets were not uniform. In
fact, there was a strong bias toward lower values. For example, the leading digit 1
appeared about 30%of the time and the leading digit 9 under 5%of the time.Data sets
with such leading digit distributions are said to followBenford’s law.More precisely,
the probability of a first digit base B of d is logB(1 + 1/d), or more generally
the probability that the significand1 is at most s is logB(s). Benford’s law appears
in astoundingly many data sets, from physical constants to census information to
financial and behavioral data and has a variety of applications (two of the most

1If x > 0 and B > 1 we may uniquely write x as SB(x) · BkB (x), where SB(x) ∈ [1, B) is the
significand of x and kB(x) is an integer.
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interesting being its use to detect accounting or voting fraud). This digit bias is in
fact quite natural once one realizes that a data set will follow Benford’s law if its
logarithms modulo 1 are equidistributed.2 See [4, 17, 18, 23, 27] for more on the
theory of Benford’s law, as well as the edited volume [22] for a compilation of articles
on its theory and applications.

Before exploring whether or not the summands in Zeckendorf decompositions
obey Benford’s law, it’s natural to ask the question about the sequence of Fibonacci
numbers themselves. The answer is yes and follows almost immediately fromBinet’s
formula,

Fn = 5 + √
5

10

(
1 + √

5

2

)n

+ 5 − √
5

10

(
1 − √

5

2

)n

(2)

(note this is slightly different than the standard expression for Binet’s formula as
we have re-indexed our sequence so that the Fibonaccis begin 1, 2, 3, 5). The proof
is completed by showing the logarithms modulo 1 are equidistributed, which is
immediate from the irrationality of log10(

1+√
5

2 ) and Kronecker’s theorem (if α is
irrational, then nα is equidistributed modulo 1) and simple book-keeping to bound
the error of the secondary piece; see [12, 23, 30] for details.

Instead of studying Benfordness of summands in Zeckendorf decompositions, we
could instead look at other properties of the summands, such as how often we have
an even number or how often they are a square modulo B for some fixed B. So long
as our sequence has a positive density, our arguments will be applicable.3 We quickly
review this notion. Given a set of positive integers G = {Gn}∞n=1 and a subset S ⊂ G ,
we let q(S, n) be the fraction of elements of G with index at most n that are in S:

q(S, n) := #{Gi ∈ S : 1 ≤ i ≤ n}
n

. (3)

When limn→∞ q(S, n) exists, we define the asymptotic density q(S) as

q(S) := lim
n→∞ q(S, n), (4)

and for brevity often say the sequence S has density q(S).
In an earlier work, we proved that if a set S has a positive density q(S) in the

Fibonaccis, then so too do its summands in the Zeckendorf decompositions, and in
particular Zeckendorf decompositions using Fibonacci numbers follow Benford’s
law [5]. Our main result below is generalizing these results to the case of a positive
linear recurrence sequence, which is a sequence of positive integers {Gn}∞n=1 and

2Given a data set {xn}, let yn = log10 xn mod 1. If {yn} is equidistributed modulo 1 then in the
limit the percentage of the time it is in [α, β] ⊂ [0, 1] is just β − α. For example, to restrict to
significands of d take α = log10 d and β = log10(d + 1).
3For example, in the limit one-third of the Fibonacci numbers are even. To see this we look at the
sequence modulo 2 and find it is 1, 0, 1, 1, 0, 1, 1, 0, 1, . . . ; it is thus periodic with period 3 and
one-third of the numbers are even.
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a set of nonnegative coefficients c1, . . . , cL with L , c1, cL > 0,

Gn+1 = c1Gn + c1Gn−1 + · · · + cLGn+1−L , (5)

and prescribed positive initial terms G1,G2, . . . ,GL .

Theorem 1.1 Fix a positive linear recurrence sequence {Gn}. Let S ⊆ {Gn}∞n=1 be
a set with positive density q(S), and fix an ε > 0. As n → ∞, for an integer m
selected uniformly at random from [0,Gn+1) the proportion of the summands in m’s
Zeckendorf decomposition which belongs to S is within ε of q(S) with probability
1 + o(1).

The Benfordness of the summands follows immediately from Theorem 1.1. Let S
be the set of numbers in {Gn}∞n=1 that start with a given digit. Since Gn is a positive
linear recurrence sequence, the density of S in {Gn}∞n=1 will follow Benford’s law in
base B, provided that logB λ is irrational, where λ is the characteristic polynomial
of {Gn}∞. If we have a Zeckendorf decomposition with summands from {Gn}∞n=1,
the proportion of those summands which are in S will also follow Benford’s law. We
can state this more precisely as follows.

Corollary 1.1 Fix a positive linear recurrence sequence {Gn}. Let Sd ⊆ {Gn}∞n=1
be a set of numbers with a given first digit d. Then S has Benford density (base
B) q(Sd) = logB(1 + 1

d ). Fix an ε > 0. As n → ∞, for an integer m selected uni-
formly at random from [0,Gn+1) the proportion of the summands in m’s Zeckendorf
decomposition which belong to Sd is within ε of q(Sd) with probability 1 + o(1).

We define some concepts needed to prove Theorem 1.1 in Sect. 2, in particular the
notion of a super-legal decomposition. We derive some needed properties of these
decompositions, and then prove our main result in Sect. 3 by showing related random
variables (the number of summands, and the number of summands in our set with
positive density in our recurrence sequence) are strongly concentrated.

2 Legal and Super-Legal Decompositions

For the rest of the paper any positive linear recurrence sequence {Gn}∞n=1 satisfies
(5) with ci ≥ 0 and L , c1, cL ≥ 1.

Let {Gn}∞n=1 be a positive linear recurrence sequence. Its characteristic polynomial
is

f (λ) = c0 + c1λ + · · · + cL−1λ
L−1 + cLλ

L , (6)

with roots λ1, . . . , λL . By the Generalized Binet Formula, (for a proof see, for exam-
ple, Appendix A of [2]) we have λ1 is the unique positive root, λ1 > |λ2| ≥ · · · ≥
|λL |, and there exists an A > 0 such that
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Gn = Aλn
1 + O(nL−2λn

2). (7)

We introduce a few important terms needed to state our results.

Definition 2.1 Let {Gn} be a positive linear recurrence sequence. Given nonnegative
integers a1, . . . , an , the sum

∑n
i=1 aiGn+1−i is a legal Zeckendorf decomposition if

one of the following conditions holds.

1. We have n < L and ai = ci for 1 ≤ i ≤ n.
2. There exists an s ∈ {1, . . . , L} such that

a1 = c1, a2 = c2, · · · , as−1 = cs−1, and as < cs, (8)

as+1, . . . , as+� = 0 for some � ≥ 0, and {bi }n−s−�
i=1 with bi = as+�+i is either legal

or empty.

Definition 2.2 Let {Gn} be a positive linear recurrence sequence. Given nonnegative
integers a1, . . . , an , the sum

∑n
i=1 aiGn+1−i is a super-legal Zeckendorf decompo-

sition if there exists an s ∈ {1, . . . , L} such that

a1 = c1, a2 = c2, · · · , as−1 = cs−1, and as < cs, (9)

as+1, . . . , as+� = 0 for some � ≥ 0, and {bi }n−s−�
i=1 with bi = as+�+i is either super-

legal or empty.

In other words, a decomposition is super-legal if it satisfies condition (2) of Def-
inition 2.1.

Definition 2.3 Let {Gn} be a positive linear recurrence sequence and assume that
the sum

∑n
i=1 aiGn+1−i is a legal Zeckendorf decomposition. We call each string

described by one of the conditions of Definition 2.1 (not counting the additional 0s)
a block and call the number of terms in each block its length.

We note that every super-legal Zeckendorf decomposition is legal and that a
concatenation of super-legal Zeckendorf decompositions makes a super-legal Zeck-
endorf decomposition.

Example 2.1 The recurrenceGn+1 = Gn + 2Gn−1 + 3Gn−2 withG1 = 1, G2 = 2,
G3 = 5 produces the sequence 1, 2, 5, 12, 28, 67, 159, 377, . . . . The decomposition
of 858 is

858 = 377 + 2(159) + 2(67) + 28 + 1 = G8 + 2G7 + 2G6 + G5 + G1. (10)

This example gives coefficients (1, 2, 2, 1, 0, 0, 0, 1), so the blocks of 858 are
(1, 2, 2), (1, 0), and (1), with lengths 3, 2, and 1, respectively. Note that even though
the definition of a block excludes the additional 0s (i.e., the as+1 = as+2 = · · · =
as+� = 0 from the Definition 2.1), it is still permissible for a block to end with a
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0. The decomposition for 858 is legal but not super-legal, since the final block (1)
satisfies condition (1) but not condition (2) from Definition 2.1.

Example 2.2 An example of a super-legal decomposition using the recurrence from
Example 2.1 is

860 = 377 + 2(159) + 2(67) + 28 + 2 + 1 = G8 + 2G7 + 2G6 + G5 + G2 + G1,

(11)
which gives coefficients (1, 2, 2, 1, 0, 0, 1, 1). In this case, the final block is (1, 1),
which satisfies the condition of Definition 2.2.

Given two legal decompositions,wedonot necessarily obtain anew legal sequence
by concatenating the coefficients. However, if we require that the leading block be
super-legal, we do obtain a new legal decomposition by concatenation. With the help
of a few lemmas which help us count the number of super-legal decompositions, we
can circumvent this obstruction.

Lemma 2.1 Let {Gn} be a positive linear recurrence sequencewith relation given by
(5), and let Hn be the number of super-legal decompositions using only G1,G2, . . . ,

Gn. We have

Hn+1 = c1Hn + c2Hn−1 + · · · + cL Hn+1−L . (12)

Proof Note that Hn+1 − Hn is the number of super-legal decompositions with largest
element Gn+1. We count how many such decompositions there are by summing over
the possible lengths of the leading block. Say the leading block is of length j with
1 < j ≤ L . Then the leading block is (c1, c2, . . . , c j−1, a j ), where a j is chosen
from {0, 1, . . . , c j − 1}. Therefore, there are c j ways of choosing this leading block.
Because we require Gn+1 to be included in the decomposition, if j = 1 there are
c1 − 1 ways of choosing this leading block, since the leading coefficient must be
nonzero. For any choice of leading block of length j , there are Hn+1− j ways of
choosing the remaining coefficients. Therefore, we find that

Hn+1 − Hn =
L∑
j=1

c j Hn+1− j − Hn, (13)

completing the proof.

Lemma 2.2 Let {Gn} be a positive linear recurrence sequence, and let Hn be the
numberof super-legal decompositions usingonlyG1,G2, . . . ,Gn.Then limn→∞ Hn/Gn

exists and is positive.

Proof Since Hn is generated by the same recursion as Gn , it has the same charac-
teristic polynomial, which then has the same roots. Therefore, for some B ≥ 0, we
have
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Hn = Bλn
1 + O(nL−2λn

2). (14)

Thus, limn→∞ Hn/Gn = B/A and it suffices to show that B > 0.Note thatwe always
have Hj > 0, so we must have

α := min
1≤ j≤L

Hj

G j
> 0. (15)

It follows by induction on n that Hn ≥ αGn for all n. Thus, we conclude that B > 0,
as desired.

3 Density Theorem

To prove the main result as stated in Theorem 1.1, we compute expected values and
variances of the relevant random variables. An essential part of the ensuing analysis
is the following estimate on the probability that a j = k for a fixed k, and showing
that it has little dependence on j . We prove the theorem via casework based on the
structure of the blocks in the decomposition of m. Namely, in the case that a j is in
the r th position of a block of length �, the two subcases are r = � (that is, a j is the
last element in the block) or r < � (that is, a j is not the last element in the block).
This is why the notion of a super-legal decomposition is useful; if we want to know
whether the legal decomposition (a1, a2, . . . , an) has a block that terminates at ar ,
this is equivalent to whether (a1, a2, . . . , ar ) forms a super-legal decomposition. So,
we first prove some useful lemmas and then collect our results to prove Theorem 1.1.

Lemma 3.1 Let {Gn} be a positive linear recurrence sequence, and choose an inte-
ger m uniformly at random from [0,Gn+1), with legal decomposition

m =
n∑
j=1

a jGn+1− j . (16)

Note that this defines random variables A1, . . . , An taking on values a1, . . . , an.
Let p j,k(n) := Prob

(
A j = k

)
. Then, for log n < j < n − log n, we have

p j,k(n) = pk(n)(1 + o(1)), (17)

where pk(n) is computable and does not depend on j .

Proof We divide the argument into cases based on the length of the block containing
a j , as well as the position a j takes in this block. Suppose that a j is in the r th place in
a block of length �. In order to have a j = k, we must either have r < � and k = cr ,
or r = � and k < cr .
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In the former case, there are c� ways to choose the terms in the block containing
a j , due to the c� choices there are for the final term, and everything else is fixed.
There are Hj−r ways to choose the coefficients for the terms greater than those in
the block containing a j , and Gn− j−�+r+1 ways to choose the smaller terms.

We now consider the latter case, where r = � and k < cr . There is now only one
possibility for the coefficients in the block containing a j , but the rest of the argument
remains the same as in the previous case. Therefore, by Lemma 2.2 we find that

N j,k,�,r (n) := #{m ∈ Z ∩ [0,Gn+1) : a j = k, a j in r th position in block of length �}

=
⎧⎨
⎩
c�Gn− j−�+r+1Hj−r if r < �, k = cr ,
Gn− j−�+r+1Hj−r if r = �, k < cr ,
0 otherwise

= Nk,�,r (n)(1 + o(1)), (18)

where

Nk,�,r (n) :=
⎧⎨
⎩
c�ABλn−�+1

1 if r < �, k = cr ,
ABλn−�+1

1 if r = �, k < cr ,
0 otherwise,

(19)

and Nk,�,r (n) does not depend on j ; these formulas follow from applications of the
Generalized Binet Formula to the sequences for the Gn’s and Hn’s. We conclude the
proof by noting that

p j,k(n) = 1

Gn+1

L∑
�=1

�∑
r=1

N j,k,�,r (n) =
(

1

Gn+1

L∑
�=1

�∑
r=1

Nk,�,r (n)

)
· (1 + o(1)) ,

(20)

where we used (18) to replace N j,k,�,r (n). The claim now follows by defining

pk(n) := 1

Gn+1

L∑
�=1

�∑
r=1

Nk,�,r (n) (21)

and noting that its size is independent of j . More is true, as the Generalized Binet
Formula again gives us that Gn+1 is a constant times λn+1

1 (up to lower order terms),
and similarly the sum for pk(n) is a multiple of λn+1

1 plus lower order terms.

We also use the following result, which follows immediately from Theorems 1.2
and 1.3 in [24] (see also [25] for a survey on the subject).

Lemma 3.2 Let {Gn} be a positive linear recurrence sequence, with s(m) the num-
ber of summands in the decomposition of m. That is, for m = ∑n

j=1 a jGn+1− j , let
s(m) := ∑n

j=1 a j . Let Xn(m) be the random variable defined by Xn(m) = s(m),
where m is chosen uniformly at random from [0,Gn+1). Then
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E[Xn(m)] = nC + o(n) and Var[Xn(m)] = o(n2). (22)

We define another random variable similarly.

Lemma 3.3 Let {Gn} be a positive linear recurrence sequence, and let S ⊆ {Gn}
be a set with positive density q(S) in {Gn}. For m chosen uniformly at random in
[0,Gn+1), let

Yn(m) :=
∑
j∈Tn

a j , (23)

where Tn = { j ≤ n|Gn+1− j ∈ S}.
Then, for some constant C > 0, we have

E[Yn(m)] = dnC + o(n), Var[Yn(m)] = o(n2). (24)

Proof We first compute the expected value. We have

E[Yn(m)] = E

⎡
⎣∑

j∈Tn
a j

⎤
⎦ =

∑
j∈Tn

E[a j ] =
∑
j∈Tn

∞∑
k=1

kp j,k(n)

= O(log n) +
∑
j∈Tn

∞∑
k=1

kpk(n)(1 + o(1)).

= O(log n) + dn(1 + o(1))
∞∑
k=1

kpk(n)

= O(log n) + d(1 + o(1))
n∑
j=1

∞∑
k=1

kpk(n)

= O(log n) + d(1 + o(1))
n∑
j=1

∞∑
k=1

kp j,k(n)

= O(log n) + d(1 + o(1))
n∑
j=1

E[a j ]

= O(log n) + E[Xn(m)]d(1 + o(1))

= dnC + o(n). (25)

Note that the above sums are actually finite, since p j,k = pk = 0 for sufficiently
large k. The log n term appears since Lemma 3.1 only allows us to say p j,k = pk(1 +
o(1)) when log n < j < n − log n.

We now must consider the variance. First note that if i + log n < j , then letting

qi,r (n) := Prob (the block containing ai ends at ai+r |ai = k) , (26)
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we have

Prob
(
a j = �|ai = k

) =
L−1∑
r=1

qi,r (n)p j−i−r,�(n)

= (1 + o(1))p�(n)

L−1∑
r=1

qi,r (n)

= p�(n)(1 + o(1)). (27)

Thus, we compute

E[Yn(m)2] = E

⎡
⎣ ∑
i, j∈Tn

ai a j

⎤
⎦ =

∑
i, j∈Tn

E[aia j ]

=
∑

i, j∈Tn

∞∑
k,�=1

k�pi,k(n)Prob
(
a j = �|ai = k

)

= O(n log n) + 2
∑

i, j∈Tn
2 log n<i+log n< j<n−log n

∞∑
k,�=1

k�pi,k(n)Prob
(
a j = �|ai = k

)

≤ O(n log n) + 2
∑

i, j∈Tn
2 log n<i+log n< j<n−log n

∞∑
k,�=1

k�pk(n)p�(n)(1 + o(1))

= O(n log n) + (1 + o(1))d2n2
∞∑

k,�=1

k�pk(n)p�(n)

= O(n log n) + (1 + o(1))d2n2
( ∞∑
k=1

kpk(n)

)2

= O(n log n) + d2n2C2(1 + o(1)) = d2n2C2 + o(n2). (28)

Therefore,

Var[Yn(m)] = E[Yn(m)2] − E[Yn(m)]2 = o(n2), (29)

completing the proof.

We are now ready to prove our main result. The idea of the proof is that the results
above strongly concentrate Yn(m) and Xn(m).

Proof (Proof of Theorem 1.1). Note that the proportion of the summands in m’s
Zeckendorf decomposition which belong to S is Yn(m)

Xn(m)
, where Xn(m),Yn(m) are

defined as in the previous lemmas. Therefore, it suffices to show that for any ε > 0,
with probability 1 + o(1) we have
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Xn(m)
− d

∣∣∣∣ < ε. (30)

By Chebyshev’s inequality, letting g(n) = n1/2Var[Xn(m)]−1/4, we obtain

Prob

(
|Xn(m) − E[Xn(m)]| >

E[Xn(m)]
g(n)

)
≤ Var[Xn(m)]g(n)2

E[Xn(m)]2 = o(1). (31)

Letting

e1(n) := 1

nC

(
E[Xn(m)]

g(n)
+ |E[Xn(m)] − nC |

)
, (32)

we have with probability 1 + o(1) that

nC(1 − e1(n)) ≤ Xn(m) ≤ Cn(1 + e1(n)). (33)

Note that e1(n) = o(1). A similar argument for Yn(m) shows that there exists some
e2(n) = o(1) such that with probability 1 + o(1) we have

dnC(1 − e2(n)) ≤ Yn(m) ≤ dnC(1 + e2(n)). (34)

Therefore, we have that

Yn(m)

Xn(m)
≤ dnC(1 + e2(n))

nC(1 − e1(n))
< d + ε, (35)

with probability 1 + o(1), and we can similarly obtain

Yn(m)

Xn(m)
> d − ε. (36)

Thus, we conclude that with probability 1 + o(1)

∣∣∣∣ Yn(m)

Xn(m)
− d

∣∣∣∣ < ε, (37)

completing the proof.
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4 Conclusion and Future Work

We were able to handle the behavior of Zeckendorf decompositions in fairly general
settings by cleverly separating any decomposition into manageable blocks. The key
step was the notion of a super-legal decomposition, which simplified the combi-
natorial analysis of the generalized Zeckendorf decompositions significantly. This
allowed us to prove not just Benford behavior for the leading digits, but also similar
results for other sequences with positive density.

We obtained results for a large class of linear recurrences by considering only
the main term of Binet’s formula for each linear recurrence. In future work, we
plan on revisiting these problems for other sequences. Obvious candidates include
far-difference representations [1, 11], f -decompositions [10], and recurrences with
leading term zero (some of which do not have unique decompositions) [7, 8].
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Ramsey Theory Problems over the Integers:
Avoiding Generalized Progressions

Andrew Best, Karen Huan, Nathan McNew, Steven J. Miller,
Jasmine Powell, Kimsy Tor and Madeleine Weinstein

Abstract Two well-studied Ramsey-theoretic problems consider subsets of the nat-
ural numbers which either contain no three elements in arithmetic progression or
in geometric progression. We study generalizations of this problem by varying the
kinds of progressions to be avoided and the metrics used to evaluate the density of
the resulting subsets. One can view a 3-term arithmetic progression as a sequence
x, fn(x), fn( fn(x)), where fn(x) = x + n, n a nonzero integer. Thus, avoiding 3-
term arithmetic progressions are equivalent to containing no three elements of the
form x, fn(x), fn( fn(x)) with fn ∈ Ft , the set of integer translations. One can simi-
larly construct related progressions using different families of functions. We investi-
gate several such families, including geometric progressions ( fn(x) = nx with n > 1
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a natural number) and exponential progressions ( fn(x) = xn). Progression-free sets
are often constructed “greedily,” including every number so long as it is not in
progression with any of the previous elements. Rankin characterized the greedy
geometric-progression-free set in terms of the greedy arithmetic set. We character-
ize the greedy exponential set and prove that it has asymptotic density 1 and then
discuss how the optimality of the greedy set depends on the family of functions used
to define progressions. Traditionally, the size of a progression-free set is measured
using the (upper) asymptotic density; however, we consider several different notions
of density, including the uniform and exponential densities.

Keywords Ramsey theory · Progressions

1 Background

A classic Ramsey-theoretic problem is to consider how large a set of integers can
be without containing three terms in the set that are in arithmetic progression. In
other words, no three integers in the set are of the form a, a + n, a + 2n. An anal-
ogous problem involves looking at sets avoiding 3-term geometric progressions of
the form a, na, n2a. This question was first introduced by Rankin in 1961. More
recently, Nathanson and O’Bryant [13] and the third-named author [12] have made
further progress toward characterizing such sets and finding bounds on their maximal
densities.

Progression-free sets are often constructed “greedily”: Starting with an initial
included integer, every successive number is included so long as doing so does
not create a progression involving any of the previously included elements. We
consider two possible generalizations of the greedy arithmetic and geometric-
progression-free sets. Let A∗

3 = {0, 1, 3, 4, 9, 10, . . . } be the greedy set of non-
negative integers free of arithmetic progressions. Note that A∗

3 consists of exactly
those nonnegative integers with no digit 2 in their ternary expansions. Let G∗

3 =
{1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, . . . } be the greedy set of
positive integers free of geometric progressions. In 1961, Rankin [15] characterized
this set as the set of those integers where all of the exponents in their prime factor-
ization are contained in A∗

3. We will use this characterization below to compute the
size of Rankin’s set with respect to various densities.

One can view arithmetic and geometric progressions as part of a larger class of
functional progressions consisting of three terms of the form x, fn(x), fn( fn(x)).
From this perspective, a natural generalization of arithmetic and geometric progres-
sions would be to let fn(x) = xn and so consider exponential-progression-free sets.
We characterize the greedy set in this case, which we call E∗

3 . We show that its
uniform density is 1 (Theorem 3), and the exponential density of the set of integers
excluded from the greedy set E∗

3 is 1/4 (Proposition 2).
Additionally, we consider the relationship between G∗

3 and A∗
3, namely that the

geometric-progression-free set is constructed by taking those numbers with prime
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exponents in the arithmetic-progression-free set. This leads us to consider iterating
this idea so that in each step the permissible set of exponents comes from the prior
iteration. We show that the asymptotic densities of the sets are produced in each
iteration of this construction approach 1 (Theorem 4) but that each has a lower
uniform density of 0 (Theorem 5).

2 Comparing Asymptotic and Uniform Densities

2.1 Definitions

The density most frequently encountered is the asymptotic density, d(A). When the
asymptotic density does not exist, the upper asymptotic density d(A), and the lower
asymptotic density, d(A) can be used instead. Their definitions are as follows.

Definition 1 The asymptotic density of a set A ⊆ N, if it exists, is defined to be

d(A) = lim
N→∞

|A ∩ {1, . . . , N }|
N

. (1)

The upper asymptotic density of a set A ⊆ N is defined to be

d(A) = lim sup
N→∞

|A ∩ {1, . . . , N }|
N

, (2)

and the lower asymptotic density of a set A ⊆ N is defined to be

d(A) = lim inf
N→∞

|A ∩ {1, . . . , N }|
N

. (3)

Using Rankin’s characterization of G∗
3 in Sect. 1, its asymptotic density can be

computed as follows:

d(G∗
3) =

∏

p

(
p − 1

p

) ∑

i∈A∗
3

1

pi
=

∏

p

(
1 − 1

p

) ∞∏

i=0

(
1 + 1

p3i

)

=
∏

p

(
1 − 1

p2

) ∞∏

i=1

(
1 + 1

p3i

)

=
∏

p

(
1 − 1

p2

) ∞∏

i=1

1 − 1
p2·3i

1 − 1
p3i

= 1

ζ(2)

∞∏

i=1

ζ(3i )

ζ(2 · 3i ) ≈ 0.71974. (4)
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Though the asymptotic density is usually the preferred notion of size of a
progression-free set when it exists, other types of density can be computed that
reveal different information about the size of a set and the spacing of its elements
or that are more sensitive in the case of very small or large sets. Another way to
measure the “size” of a set is the uniform density, also known as Banach density, first
described in [2].

Definition 2 The upper uniform density of a set A ⊆ N, if it exists, is defined to be

u(A) = lim
s→∞max

n≥0

∑

a∈A,n<a≤n+s

1

s
, (5)

and the lower uniform density of a set A ⊆ N, if it exists, is defined to be

u(A) = lim
s→∞min

n≥0

∑

a∈A,n<a≤n+s

1

s
. (6)

The uniform density exists if the upper and lower uniform densities are the same,
in which case u(A) = u(A) = u(A). Intuitively, the uniform density measures how
sparse or dense a set can be locally. Notice that uniform density is more sensitive
than asymptotic density, specifically to local densities in any interval past the initial
interval. This is particularly helpful to us because our sets tend to have increasing gaps
between elements. For more information and background on the uniform density see
[3, 6, 8]. For any set A of natural numbers, we have (see [8])

0 ≤ u(A) ≤ d(A) ≤ d(A) ≤ u(A) ≤ 1. (7)

Furthermore, notice that if both the uniform and the asymptotic densities exist,
then they are equal. These values can differ substantially, however. It is shown in [11]
that for any 0 ≤ α ≤ β ≤ γ ≤ δ ≤ 1 there exists a set of integers, A, with u(A) = α,
d(A) = β, d(A) = γ , and u(A) = δ.

2.2 Sets Free of Geometric Progressions

In [12], a set S is constructed to have high upper asymptotic density as follows. For
any fixed N , let

SN =
(
N

48
,
N

45

] ⋃(
N

40
,
N

36

] ⋃(
N

32
,
N

27

] ⋃ (
N

24
,
N

12

] ⋃(
N

9
,
N

8

] ⋃(
N

4
, N

]
.

(8)
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Now, fix N1 = N , let

Ni = 482N 2
i−1

N1
, (9)

and let S be the union of all such SNi . This set is free of geometric progressions with
integral ratios and has upper asymptotic density approximately 0.815509. However,
its lower asymptotic density, and therefore its lower uniform density, is 0, and it is
readily seen that its upper uniform density is 1, because S contains arbitrarily long
stretches of included numbers.

An open problem, stated by Beiglböck et al. [1], asks whether it is possible to find
a set of integers free of geometric progressions such that the number of consecutive
excluded terms is bounded. (Such a set is sometimes called syndetic).Using aChinese
remainder theorem-type argument, one find that Rankin’s greedy set does not have
this property. To see this, let pn denote the n-th prime number and consider the
congruences

a ≡ p21 (mod p31)

a + 1 ≡ p22 (mod p32)
...

a + n − 1 ≡ p2n (mod p3n). (10)

By the Chinese remainder theorem, there exists an integer a that satisfies these
congruences, so that the n consecutive integers a, . . . , a + n − 1 are all excluded
from Rankin’s greedy set.

The problem above is equivalent to asking whether there exists a set of integers
with positive lower uniform density which avoid geometric progressions, which
leads us to consider the uniform density of similar sets. This problem has also been
considered recently by [10].

2.3 Upper Uniform Density of Rankin’s Set

Weknow the asymptotic density of Rankin’s set,G∗
3, as well as its lower uniform den-

sity by the argument above. We now consider the upper uniform density of Rankin’s
set starting with a simple upper bound.

Theorem 1 An upper bound on the upper uniform density of G∗
3 is 7/8.

Proof Note that all integers that are exactly divisible by 22 are excluded from
Rankin’s set. That is, all integers that are congruent to 4 mod 8 are excluded. We
know that u({x : x �≡ 4 mod 8}) = 7/8, and therefore we have that u(G∗

3) ≤ 7/8.
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By extending this kind of argument to primes other than 2 and powers greater than
2 which must also be excluded, we are able to determine the exact upper uniform
density of this set. Enumerate the primes by {p j }∞j=1 and recall that for any prime p,
if any n in our set is exactly divisible by pk for some k in A∗

3 then n is excluded from
Rankin’s set.

Theorem 2 The upper uniform density of G∗
3 equals its asymptotic density: u(G∗

3) =
d(G∗

3).

Proof By (7), we know that d(G∗
3) ≤ u(G∗

3). Thus, to prove our result, it is sufficient
to show that u(G∗

3) ≤ d(G∗
3).

Let

Ti := {k : pbj | k ⇒ pb+1
j | k holds for all j ≤ i and b ≤ i, b /∈ A∗

3} (11)

be the set of integers not exactly divisible by any of the first i primes raised to a
power (at most i) that is not in A∗

3.
Then, as a first step, notice that the proportion of integers not exactly divisible by

p2j in any interval of length p3j is
(
1 − 1

p2j
+ 1

p3j

)
. Generalizing this, the proportion

of integers not exactly divisible by pbj for any b ≤ i , that is not in A∗
3 in any interval

of length pi+1
j is

1 −
∑

0≤b≤i
b/∈A∗

3

(
1

pbj
− 1

pb+1
j

)
. (12)

Thus, by the Chinese remainder theorem, the proportion of integers contained in Ti
in any interval of length

∏i
j=1 p

i+1
j is

i∏

j=1

⎛

⎜⎜⎝1 −
∑

0≤b≤i
b/∈A∗

3

(
1

pbj
− 1

pb+1
j

)
⎞

⎟⎟⎠ , (13)

so (13) gives the uniform density of Ti , and thus the upper uniform density as well.
Because G∗

3 ⊂ Ti for each i , we have u(G∗
3) ≤ u(Ti ) for each i . Using the expres-

sion (13) for u(Ti ), and letting i go to infinity,
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u(G∗
3) ≤ limi→∞u(Ti ) = lim

i→∞

i∏

j=1

⎛

⎜⎜⎝1 −
∑

0≤b≤i
b/∈A∗

3

(
1

pbj
− 1

pb+1
j

)
⎞

⎟⎟⎠

=
∞∏

j=1

⎛

⎝1 −
(
1 − 1

p j

) ∑

b∈N\A∗
3

1

pbj

⎞

⎠

=
∞∏

j=1

(
1 − 1

p j

) ⎡

⎣
∞∑

b=0

1

pbj
−

∑

b∈N\A∗
3

1

pbj

⎤

⎦

=
∞∏

j=1

(
1 − 1

p j

) ∑

a∈A∗
3

1

paj
= d(G∗

3). (14)

3 Greedy Set Avoiding Exponential Progressions

Wecan viewboth a 3-term arithmetic progression and a 3-termgeometric progression
as a sequence x, fn(x), fn( fn(x)),where fn(x) = x + n or fn(x) = nx , respectively.
We can similarly construct other sequences in terms of different families of functions.
We consider first exponential progressions with f (x) = xn .

3.1 Characterization and Density

Let E∗
3 = {1, 2, 3, . . . , 14, 15, 17, . . . , 79, 80, 82, . . . } be the greedy set of inte-

gers free of exponential progressions, that is, E∗
3 avoids progressions of the form

x, xn, xn
2
, where x, n are natural numbers greater than 1.

Proposition 1 An integer k = pa11 pa22 · · · pann is included in E∗
3 if and only if g =

gcd(a1, a2, . . . , an) is included in G∗
3.

Proof We proceed by induction on k. Clearly, 1 ∈ E∗
3 . Assume that for all integers

less than k, our inductive hypothesis holds, and that k = pa11 pa22 · · · pann , with g =
gcd(a1, a2, . . . , an).

Suppose first that g /∈ G∗
3. Since g is excluded from G∗

3, it must be the last term
of a geometric progression. Thus, there exists a natural number r > 1 such that
g/r2, g/r, g is a geometric progression with g/r2 and g/r both in G∗

3. Setting bi =
ai/r , it is clear that gcd(bi ) = g/r , and by the inductive hypothesis, the number k1 =
pb11 pb22 · · · pbnn is in E∗

3 . Similarly, if we set ci = ai/r2, it is clear that gcd(ci ) = g/r2,
and by the inductive hypothesis, it follows again that the number k0 = pc11 pc22 · · · pcnn
is in E∗

3 . Then, since k
r
0 = k1 and kr1 = k, it follows that k0, k1, k is an exponential

progression, so that k is not in E∗
3 .
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Now suppose that k /∈ E∗
3 . Since k is excluded from E∗

3 , it must be the last term
of an exponential progression; thus, there exists a natural number m > 1 such that
m2√
k, m

√
k, k is an exponential progressionwith the first two terms in E∗

3 . In particular,
since

m2√
k = p

a1
m2

1 p
a2
m2

2 · · · p
an
m2
n ∈ E∗

3 ,

we have by the inductive hypothesis that the number

g/m2 = gcd
( a1
m2

,
a2
m2

, . . . ,
an
m2

)

is inG∗
3. Similarly, g/m ∈ G∗

3. Then, since g/m
2, g/m, g is a geometric progression,

it follows that g is not in G∗
3.

Throughout the subsequent sections, we will refer to the set of squareful numbers.

Definition 3 An integer n is squareful if, for any prime p dividing n, p2 also divides
n.

Unlike the cases of arithmetic progressions and geometric progressions, where
the greedy sets are not necessarily optimal, we find that it is not really possible to do
better than E∗

3 while avoiding exponential progressions. We see first that E∗
3 already

has uniform (and asymptotic) density 1.

Theorem 3 We have u(E∗
3 ) = d(E∗

3 ) = 1.

Proof With Eq. (7) in mind, we prove that the uniform density of E∗
3 is 1 by showing

that the lower uniform density is 1. Equivalently, we show that the upper uniform
density ofN \ E∗

3 is 0. SinceN \ E∗
3 is a subset of the squareful numbers, it is sufficient

to show that the upper uniform density of the squareful numbers is 0, which we do
by considering yet another superset, namely, the set of numbers not exactly divisible
by the first power of any small primes.

Let
Ri := {k : p j | k ⇒ p2j | k holds for all j ≤ i} (1)

be the set of integers not exactly divisible by any of the first i primes to the first power.
Notice that the proportion of integers not exactly divisible by p j in any interval of

length p2j is
(
1 − 1

p j
+ 1

p2j

)
. Thus, by the Chinese remainder theorem, the proportion

of integers contained in Ri in any interval of length
∏i

j=1 p
2
j is

i∏

j=1

(
1 − 1

p j
+ 1

p2j

)
, (2)

so (2) gives the uniform density of Ri , and thus the upper uniform density as well.
Because N \ E∗

3 ⊂ Ri for each i , we have u(N \ E∗
3 ) ≤ u(Ri ) for each i . Using

the expression (2) for u(Ri ), and letting i go to infinity,
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u(N \ E∗
3 ) ≤ lim

i→∞ u(Ri ) =
∞∏

j=1

(
1 − 1

p j
+ 1

p2j

)
= 0 (3)

Thus, we must have that u(E∗
3 ) = 1 − u(N \ E∗

3 ) = 1, and so both the uniform
and asymptotic densities of E∗

3 are 1.

Because E∗
3 has density 1, we focus now on the excluded set of integers, N \

E∗
3 , which has density 0, and ask whether it is possible to do better, creating a set

which avoids exponential progressions while excluding fewer integers. Using the
exponential density, which can be used to further analyze sets with density zero, we
will see that E∗

3 is essentially best possible.

Definition 4 The upper exponential density of a set A ⊆ N is defined to be

e(A) := lim sup
n→∞

1

log(n)
log

(
∑

a∈A,a≤n

1

)
. (4)

The lower exponential density e and the exponential density e are defined similarly
in the usual way.

Note that the exponential density is defined such that the kth-powers have density
1/k and that any set with positive lower asymptotic density will have exponential
density 1.

Proposition 2 The exponential density of the set of integers excluded from the greedy
exponential-progression-free set is e(N \ E∗

3 ) = 1/4.

Proof Wefirst consider exponential progressions, x, xn, xn
2
, in the case when n = 2,

the smallest nontrivial case. We will see that numbers excluded from this sort of
progression form the bulk of the numbers that are excluded.

In the interval [1, N ], a first approximation for the number of integers that are
excluded from E∗

3 is N
1/4. If m ≤ N 1/4, then m4 ≤ N , and there is a progression of

the form m,m2,m4. However, not every fourth power is thus excluded. Specifically,
if m or m2 is already excluded from E∗

3 then m4 will not be. For example, 44 = 28

would not be excluded even though it is a fourth power, since 24 is already excluded.
Because this situation only occurs when the initial term, m, of an exponential

progression is already part of a smaller progression, and thus a number, we account
for this sort of integer with an error term counting all the squareful numbers less than
N 1/4. The count of the squareful numbers up to M is O

(
M1/2

)
, see for example [7],

so the number of squareful numbers up to N 1/4 is O
(
N 1/8

)
. Thus, simply looking

at the exponential progressions where n = 2, we exclude 4
√
N + O(

8
√
N ) elements

from the interval [1, N ].
Moreover, for each n > 2, we see that the number of excluded terms due to

progressions x, xn, xn
2
is O

(
N 1/n2

)
which is smaller than the error term in the

expression above.
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Finally, we use this to compute the exponential density of N \ E∗
3 ,

e(N \ E∗
3 ) = lim

N→∞
log( 4

√
N + O(

8
√
N ))

log N

= lim
N→∞

log( 4
√
N (1 + O(N−1/8)))

log N
= 1

4
. (5)

Note that, any set that avoids exponential progressions will have to exclude on
the order of 4

√
N terms to account for fourth powers, producing a set of excluded

integers with exponential density at least 1/4. So we see that in this sense, E∗
3 is the

optimal set containing no exponential progressions.

4 Excluded Exponent Sets

Another possible way to generalize the sets A∗
3 and G∗

3 is to iterate the method used
to construct G∗

3 by taking those numbers whose prime exponents are contained in
A∗
3. We can construct a third set of numbers where the admissible prime exponents

are the integers in G∗
3. By repeating this pattern, we construct a family of sets.

4.1 Characterization and Density

We obtain the nth set by taking all of the numbers whose primes are raised only to
the powers in the (n − 1)th set. Let Sn be the nth set so constructed, where S1 = A∗

3
and S2 = G∗

3.

4.2 Density of Iterated Construction

We consider the asymptotic densities of sets with this construction, and then we
consider the lower uniform densities. First, we define a generalization of the square-
free numbers and prove two results useful for our discussion.

Definition 5 Let x > 0 be an integer with factorization pa11 pa22 · · · pann . We say x is
k-free, if ai < k for each 1 ≤ i ≤ n.

Lemma 1 For each k ≥ 2, let Qk be the set of k-free numbers. Then
limk→∞ d(Qk) = 1.
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Proof From, for example, Pappalardi [17], we know that

Sk(x) := #{n ≤ x | n is k-free} = x

ζ(k)
+ O(x

1
k ), (1)

where ζ is the Riemann zeta function. Thus, we have

lim
k→∞ d(Qk) = lim

k→∞
1

ζ(k)
= 1. (2)

Lemma 2 Let Bm be the set of positive integers whose prime factorizations have at
least one prime raised to the mth power. Then, d(Bm) > 0 for each m ≥ 2.

Proof To compute the density, we rewrite Bm as Qm+1 \ Qm . Then, since Qm ⊂
Qm+1, we have

d(Bm) = d(Qm+1) − d(Qm) = 1

ζ(m + 1)
− 1

ζ(m)
> 0, (3)

for each m ≥ 2, as desired.

Theorem 4 The asymptotic density of Sn approaches 1 as n goes to infinity, but
there is no n for which the density of Sn equals 1.

Proof By the definition of Sn for n > 1, we have

d(Sn) =
∏

p

(
p − 1

p

) ∑

i∈Sn−1

1

pi
. (4)

Sn contains as a subset the k-free numbers for some k. As n → ∞, k → ∞ as
well. By Lemma 1, we know that as k → ∞, the density of the k-free numbers
approaches 1. Thus, we get that d(Sn) → ∞ as n → ∞.

However, in each set, there exists some m such that no numbers whose factoriza-
tions have a prime raised to the mth power are included. The set of numbers with at
least one prime raised to the mth power has positive density by Lemma 2. Thus, no
set in this family has density 1.

Nevertheless, the sets Sn increase in size very quickly. For example, in the fourth

iteration of this family, thefirst element that is excluded is 22
22 = 65536.Thedensities

of Sn for the first few values of n are given in Table1.
Despite the high densities of these sets, they all stillmiss arbitrarily long sequences

of consecutive integers.

Theorem 5 For each n, Sn has lower uniform density 0.

Proof Fix n > 1, and consider the set Sn . Using the Chinese remainder theorem as
in 10, we can construct an arbitrarily long sequence of consecutive numbers all of
which are excluded from Sn .
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Table 1 Densities of the sets
Sn

n d(Sn)

1 0

2 0.719745

3 0.957964

4 0.999992

Let m be a number excluded from Sn−1. Then any number with a prime raised to
the mth power in its prime factorization is excluded from Sn . We construct a list of l
numbers each of which is exactly divisible by some prime raised to the mth power.
Take the first l primes, p1, . . . , pl and consider the system of congruences

a ≡ pm1 (mod pm+1
1 )

a + 1 ≡ pm2 (mod pm+1
2 )

...

a + l − 1 ≡ pml (mod pm+1
l ). (5)

By the Chinese remainder theorem, there exists an a that solves this system of
congruences, and so the integers a, a + 1, . . . a + l − 1 are all excluded from Sn .

Note that an argument analogous to that of the proof of Theorem 2 would show
that the upper uniform density of Sn is equal to its asymptotic density.

5 Conclusion and Future Work

In addition to calculating the upper uniform density of Rankin’s set, we have char-
acterized the greedy set of integers avoiding 3-term exponential progressions and
analyzed it using the asymptotic, uniform, and exponential densities. We have also
generalized the construction of the set G∗

3 and analyzed the densities of the resulting
sets.

We end with some additional topics we hope to pursue in later work.

Question 1 What other functions fn(x) could we use to define interesting
progression-free sets? How does the resulting progression-free set depend on the
function?

Question 2 Can the sets Sn be characterized as being free of some form of progres-
sion or pattern?

Question 3 What other notions of density reveal meaningful information about the
size of a progression-free set? The multiplicative density, defined by Davenport and
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Erdős [5], might be particularly interesting to consider. How does the use of different
measures of density affect the structure of an optimal progression-free set?

Question 4 One might consider a family of sets where the set after E∗
3 extends from

E∗
3 analogously to how E∗

3 extends from G∗
3, that is, an integer k = pa11 pa22 · · · pann

is included in the nth set if and only if g = gcd(a1, a2, . . . , an) is included in the
(n − 1)th set. Can the sets after the first three in this family be characterized as
avoiding some meaningful kind of progression?

Question 5 What about exponential-progression-free sets over Gaussian integers?
Or other number fields? In particular, what can be said about the densities of the
sets of ideals which avoid exponential progressions?
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Recurrence Identities of b-ary Partitions

Dakota Blair

Abstract Solving the b-ary partition problem, counting the number pb(n) of par-
titions of n into powers of b, is a pursuit which dates back to Euler. The function
pb(n) satisfies a recurrence, and this note examines a family of identities which can
be deduced by iterating the recurrence in a suitable way. These identities can then
be used to calculate pb(n) for large values of n. Further, these identities correspond
to generating function identities involving a sequence of polynomials which have
suggestive connections to Eulerian polynomials.

Keywords Integer partitions · Partition functions · Recurrence · Congruences
Generating functions · Eulerian polynomials

1 History

A partition of a nonnegative integer n is an expression consisting of a sum of positive
integers whose value is n. A b-ary partition of n is a partition of n where each
term in the sum is a power of a base b. Denote the number of partitions of n as
p(n) and the number of b-ary partitions1 as pb(n). For example, the partitions of 4
are 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 , and therefore p(4) = 5 and
p2(4) = 4. The problem of calculating pb(n) dates to Euler [1] who first studied
p2(n) in his celebrated 1748 paper De partitione numerorum. In 1918, Tanturri [2]
examined the p2(n) problem, stating its recurrence and proving several identities. In
that same year, Hardy and Ramanujan [3] published their asymptotic formula for the
general partition function p(n). To achieve this, they pioneered the circle method,
noting that for the generating function for p(n):
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1See Table1 for values of pb(bn) for small values of b and n. The expression pb(bn) is chosen
because by Theorem 3.1 the value of pb(n) is constant on runs of b.
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Table 1 Values of pb(n) for 2 ≤ b ≤ 9 and 1 ≤ n ≤ 32

n p2(2n) p3(3n) p4(4n) p5(5n) p6(6n) p7(7n) p8(8n) p9(9n)

1 2 2 2 2 2 2 2 2

2 4 3 3 3 3 3 3 3

3 6 5 4 4 4 4 4 4

4 10 7 6 5 5 5 5 5

5 14 9 8 7 6 6 6 6

6 20 12 10 9 8 7 7 7

7 26 15 12 11 10 9 8 8

8 36 18 15 13 12 11 10 9

9 46 23 18 15 14 13 12 11

10 60 28 21 18 16 15 14 13

11 74 33 24 21 18 17 16 15

12 94 40 28 24 21 19 18 17

13 114 47 32 27 24 21 20 19

14 140 54 36 30 27 24 22 21

15 166 63 40 34 30 27 24 23

16 202 72 46 38 33 30 27 25

17 238 81 52 42 36 33 30 27

18 284 93 58 46 40 36 33 30

19 330 105 64 50 44 39 36 33

20 390 117 72 55 48 42 39 36

21 450 132 80 60 52 46 42 39

22 524 147 88 65 56 50 45 42

23 598 162 96 70 60 54 48 45

24 692 180 106 75 65 58 52 48

25 786 198 116 82 70 62 56 51

26 900 216 126 89 75 66 60 54

27 1014 239 136 96 80 70 64 58

28 1154 262 148 103 85 75 68 62

29 1294 285 160 110 90 80 72 66

30 1460 313 172 119 96 85 76 70

31 1626 341 184 128 102 90 80 74

32 1828 369 199 137 108 95 85 78

Every point of the circle is an essential singularity of the function, and no part of the contour
of integration can be deformed in such a manner as to make its contribution obviously
negligible. Every element of the contour requires special study; there is no obvious method
of writing down a “dominant term.”
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In a 1940 paper, Mahler [4] established an oft-cited estimate which implies that
pb(n) has intermediate growth, namely

log pb(n) ∼ (log n)2

2 log b
.

Later, in 1948, de Bruijn [5] made use of residue calculations to refineMahler’s work
on the asymptotics of pb(n). Subsequently in 1966, Knuth [6] refined the asymptotic
estimates of p2(n). Churchhouse [7] in 1969 proved theorems regarding congruences
of p2(n) by iterating the recurrence. He also posited a conjecture related to these
congruences. Then, Rødseth [8] in 1970 proved Churchhouse’s conjecture as well as
congruences in the cases where b is a prime. Many later authors adapted Rødseth’s
method, about which he says:

The method we use below in proving the above results goes back to Ramanujan, and has
been exploited since then by many writers, notably Watson. We use the technique of Atkin
and O’Brien.

Building on Rødseth’s work, Andrews [9] used generating function algebra to gen-
eralize Churchhouse’s conjecture to all bases. This year also saw an independent
proof of Churchhouse’s conjecture by Gupta [10]. Then, in 1972, Gupta [11] proved
Churchhouse’s result in a simpler way by making use of Kemmer’s identity. In 1975,
Hirschhorn and Loxton [12] proved several congruences for p2(n) for n along certain
arithmetic progressions. Dirdal [13, 14] also proved congruences for pb(n) realizing
these as limits of congruences of pb,d(n), the number of partitions of n into powers
of b repeating each power at most d times. Gupta and Pleasants [15] used Kemmer’s
identity and matrix methods in 1979 to prove properties of pb(n) based on the base
b expansion of n. Then, in 1990, Reznick [16] proved properties of p2,d(n) while
relating them to p2(n). His terrific bibliography in that paper is an excellent resource
on the history of this subject. In a 2011 paper, Rødseth and Sellers [17] gave the prob-
lem a fresh look and proved congruences for pb(n) along the lines of Hirschhorn and
Loxton.

2 Notation

Denote the set of integers by Z and the nonnegative integers by N. Let pb(n) be the
number of b-ary partitions of n, that is, the number of partitions of n whose parts are
powers of b with no restriction on how often each power is used. Let Bb(m, q) be
the generating function of pb(bmn), that is,

Bb(m, q) =
∑

n∈Z
pb(b

mn)qn .
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Consider a sequence (ai )i∈I . Denote the length of the sequence as |I |, and note
that a sequence can be interpreted as a 1 × |I | matrix. Given a matrix M , denote its
transposition as MT .

The subsequent notations follow those of Graham et al. [18]. If S is any statement,
then let [[S]] denote the Iverson bracket:

[[S]] =
{
1 if S is true;
0 if S is false.

Denote the nth falling power of x as xn = x(x − 1)(x − 2) · · · (x − n + 1). Let
[n
k

]

and
{n
k

}
be Stirling numbers of the first and second kind, respectively. In particular,

define [
n

0

]
=

{
n

0

}
= [[n = 0]] and

[
n

k

]
=

{
n

k

}
= [[k = 0]]

and
{
n

k

}
= k

{
n − 1

k

}
+

{
n − 1

k − 1

}

[
n

k

]
= (n − 1)

{
n − 1

k

}
+

{
n − 1

k − 1

}
.

Further, let
〈 n
k

〉
denote the Eulerian numbers, that is,

〈n
k

〉
=

k∑

j=0

(−1) j
(
n + 1

j

)
(k + 1 − j)n.

3 The Recurrence

This section concerns itself with proving basic identities for pb(n).

Theorem 3.1 The b-ary partition function satisfies the following recurrence:

pb(n) = 0 for n < 0

pb(n) = 1 for 0 ≤ n < b

pb(bn + i) = pb(bn) for 0 ≤ i < b (RI)

pb(bn) = pb(bn − 1) + pb(n) (RII)

Proof Let 0 ≤ i < b. Consider a b-ary partition of bn + i . Such a partition must
contain at least i copies of 1. Let f be a map which removes i ones from a b-ary
partition of bn + i , and similarly let g be a map which adds i ones to a b-ary partition
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of bn. These operations are inverses since removing i ones from a b-ary partition of
bn + i , and then adding i ones to the result produces the initial b-ary partition, that
is, f g is the identity map and therefore f is a bijection. Thus, pb(bn) = pb(bn + i)
which proves RI.

To see RII, partition the set of b-ary partitions of bn into two sets: those involving
ones and those not. For those involving ones, removing a single one will result in
a b-ary partition of bn − 1, and vice versa. Note that there are pb(bn − 1) such
partitions. For those not, each part is a positive power of b, from which b may be
factored out, and the resulting sum will be a b-ary partition of n. Similarly for any
b-ary partition of n, multiplying each part by b will result in a b-ary partition of bn.
As before, this defines a bijection from b-ary partitions of bn without ones to the
b-ary partitions of n. Therefore, the number of b-ary partitions of bn without ones
is pb(n). Consequently, pb(bn) = pb(bn − 1) + pb(n).

The following corollary is the primary way the recurrence for pb(n) will be used
in what is to follow.

Corollary 3.2 The b-ary partition counting function pb(n) satisfies the following
identity:

pb(bn) = pb(bn − b) + pb(n). (RIII)

Proof Combining RI and RII reveals

pb(bn) = pb(bn − 1) + pb(n) byRII

= pb(b(n − 1) + b − 1) + pb(n) byRI

= pb(b(n − 1)) + pb(n)

and hence the corollary.

4 Generalizations of Tanturri and Churchhouse

The following lemma is a generalization of an identity which goes back to Tanturri.

Lemma 4.1 The b-ary partition counting function pb(n) satisfies the following iden-
tity:

pb(bn) =
n∑

k=0

pb(n − k)

Proof By RIII, pb(n) = pb(bn) − pb(b(n − 1)), so

n∑

k=0

pb(b(n − k)) − pb(b(n − 1 − k)) =
n∑

k=0

pb(n − k)
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where the left-hand side is a telescoping sum, leaving

pb(bn) − pb(−b) =
n∑

k=0

pb(n − k)

hence

pb(bn) =
n∑

k=0

pb(n − k)

as desired.

Churchhouse extended this for b = 2 to calculate p2(2mn). This may be further
extended to all b.

Theorem 4.2 There exist positive integers Cb,m(k) such that

pb(b
mn) =

n∑

k=0

Cb,m(k)pb(n − k). (IH(m))

Proof The proof proceeds by induction onm, with the casem = 1 being provided by
Lemma4.1. The assertion IH(m + 1) can be shownby assuming IH(m), applying this
to pb(bm(bn)), separating the first term, reindexing the remaining terms by setting
k = bj − i , and using RI:

pb(b
m+1n) = pb(b

m(bn))

=
bn∑

k=0

Cb,m(k)pb(bn − k)

= Cb,m(0)pb(bn) +
bn∑

k=1

Cb,m(k)pb(bn − k)

= Cb,m(0)pb(bn) +
n∑

j=1

b−1∑

i=0

Cb,m(bj − i)pb(bn − bj + i)

= Cb,m(0)pb(bn) +
n∑

j=1

b−1∑

i=0

Cb,m(bj − i)pb(bn − bj).

Now, applying Lemma 4.1 and reindexing by setting h = n − j − � reveals



Recurrence Identities of b-ary Partitions 59

pb(bn − bj) = pb(b(n − j))

=
n− j∑

�=0

pb(n − j − �)

=
n− j∑

h=0

pb(h)

and therefore this yields

pb(b
m+1n) = Cb,m(0)pb(bn) +

n∑

j=1

b−1∑

i=0

Cb,m(bj − i)pb(bn − bj)

= Cb,m(0)pb(bn) +
n∑

j=1

b−1∑

i=0

Cb,m(bj − i)
n− j∑

h=0

pb(h).

This sum may be reordered by factoring out the sum indexed by h, extending the
range of the sum indexed by h, making the substitution s = n − h, interchanging the
sums indexed by j and s, limiting the range of the sum indexed by j , and recalling
that k = bj − i , that is,

n∑

j=1

b−1∑

i=0

Cb,m(bj − i)
n− j∑

h=0

pb(h) =
n∑

j=1

n− j∑

h=0

pb(h)

b−1∑

i=0

Cb,m(bj − i)

=
n∑

j=1

n∑

h=0

[[h ≤ n − j]]pb(h)

b−1∑

i=0

Cb,m(bj − i)

=
n∑

j=1

n∑

s=0

[[n−s ≤ n− j]]pb(n − s)
b−1∑

i=0

Cb,m(bj − i)

=
n∑

j=1

n∑

s=0

[[ j ≤ s]]pb(n − s)
b−1∑

i=0

Cb,m(bj − i)

=
n∑

s=0

pb(n − s)
n∑

j=1

[[ j ≤ s]]
b−1∑

i=0

Cb,m(bj − i)

=
n∑

s=0

pb(n − s)
s∑

j=1

b−1∑

i=0

Cb,m(bj − i)

=
n∑

s=0

pb(n − s)
sb∑

k=1

Cb,m(k).

Finally, the first term may be combined with this sum using Lemma 4.1:
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pb(b
m+1n) = Cb,m(0)pb(bn) +

n∑

s=0

pb(n − s)
sb∑

k=1

Cb,m(k)

= Cb,m(0)
n∑

s=0

pb(n − s) +
n∑

s=0

pb(n − s)
sb∑

k=1

Cb,m(k)

=
n∑

s=0

pb(n − s)
sb∑

k=0

Cb,m(k)

=
n∑

s=0

bs∑

k=0

Cb,m(k)pb(n − s)

Thus,

pb(b
m+1n) =

n∑

s=0

Cb,m+1(s)pb(n − s)

where

Cb,m+1(s) =
bs∑

k=0

Cb,m(k)

proving IH(m + 1) and hence the theorem.

The coefficients Cb,m(k) are, in fact, more than simply coefficients, and they are
indeed polynomials of degree m − 1.

Theorem 4.3 The valuesCb,m(k)are polynomials of degree atmostm − 1 evaluated
at k.

Proof Note that Cb,1 = 1, a degree 0 polynomial in k. By the inductive hypothesis
Cb,m(k) = ∑m−1

i=0 αm,i ki , therefore2

Cb,m+1(k) =
bk∑

j=0

Cb,m( j)

=
bk∑

j=0

m−1∑

i=0

αm−1,i j
i

=
m−1∑

i=0

αm,i

bk∑

j=0

j i

=
m−1∑

i=0

αm,i

bk∑

j=0

i∑

l=0

{
i

l

}
j l

2 Note that the Stirling numbers
[n
k

]
and

{n
k

}
are defined on page 56.
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by an identity in [18, p. 264] which gives powers as a sum of falling powers. Then,
by interchanging the order of summation and using the power rule for falling powers
(Ibid., p. 50 (2.50)):

Cb,m+1(k) =
m−1∑

i=0

αm,i

i∑

l=0

{
i

l

} bk∑

j=0

j l

=
m−1∑

i=0

αm,i

i∑

l=0

{
i

l

}
(bk)l+1

l + 1
.

Now, using an identity writing falling powers as a sum of powers (Ibid., p. 264),
noting that l + 1 ≤ m and interchanging the order of summation reveals:

Cb,m+1(k) =
m−1∑

i=0

αm,i

i∑

l=0

1

l + 1

{
i

l

} l+1∑

j=0

[
l + 1

j

]
(−1)l+1− j (bk) j

=
m−1∑

i=0

αm,i

i∑

l=0

1

l + 1

{
i

l

} l+1∑

j=0

k jb j

[
l + 1

j

]
(−1)l+1− j

=
m∑

j=0

k jb j
m−1∑

i=0

αm,i

i∑

l=0

1

l + 1

{
i

l

}[
l + 1

j

]
(−1)l+1− j

Thus, Cb,m+1(k) is a polynomial in k of degree at most m with coefficients

αm+1, j = b j
m−1∑

i=0

αm,i

i∑

l=0

1

l + 1

{
i

l

}[
l + 1

j

]
(−1)l+1− j

concluding the proof.

Recall that the generating function for pb(bmn) is Bb(m, q) = ∑
n∈Z pb(bmn)qn .

Lemma 4.4 The generating function for pb(bn) satisfies the identity:

(1 − q)Bb(1, q) = Bb(0, q)

Proof By RIII, pb(bn) = pb(b(n − 1)) + pb(n) and therefore pb(n) = pb(bn) −
pb(b(n − 1)), so multiplying by qn on both sides and summing over all integers n
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∑

n∈Z
pb(n)qn =

∑

n∈Z
pb(bn)qn −

∑

n∈Z
pb(b(n − 1))qn

=
∑

n∈Z
pb(bn)qn − q

∑

n∈Z
pb(bn)qn

= (1 − q)
∑

n∈Z
pb(bn)qn

Bb(0, q) = (1 − q)Bb(1, q)

establishing the claim.

5 A Family of Generating Function Identities

This section contains a proof of themain theoremwhich reveals a family of generating
function identities. These identities correspond to a sequence of polynomials which
have suggestive connections to Eulerian polynomials.

First, this lemma shows the recurrence may be iterated to express any value of
pb(n) as the sum of multiples of pb(bm) for suitable m.

Lemma 5.1 For all n,m ≥ 1, and 1 ≤ k < bm,

pb(b
mn + ub) = pb(b

mn) +
u∑

k=1

pb(b
m−1n + k).

Proof Let k = ub + v with 0 ≤ v < b. It may be assumed that v = 0 because if
v > 0, then by RI

pb(b
mn + k) = pb(b

mn + ub + v) = pb(b
mn + ub).

Therefore, applying RIII once, twice, and finally a total of u times iteratively to the
leading term, it may be seen that

pb(b
mn + ub) = pb(b

mn + (u − 1)b) + pb(b
m−1n + u)

= pb(b
mn + (u − 2)b) + pb(b

m−1n + u−1)+pb(b
m−1n + u)

= pb(b
mn + (u − 2)b) +

1∑

j=0

pb(b
m−1n + u − j)

pb(b
mn + ub) = pb(b

mn) +
u−1∑

j=0

pb(b
m−1n + u − j).
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Letting � = u − j then reveals

pb(b
mn + ub) = pb(b

mn) +
u∑

�=1

pb(b
m−1n + �)

concluding the proof.

Lemma 5.2 For all n and m ≥ 2,

pb(b
mn) = pb(b

m(n − 1)) + pb(b
m−1n) + (b − 1)pb(b

m−1(n − 1))

+ [[m > 2]]b
bm−2−1∑

u=1

pb(b
m−1(n − 1) + ub)

Proof First apply RIII to pb(bmn) to obtain

pb(b
mn) = pb(b

mn − b) + pb(b
m−1n)

= pb(b
m(n − 1) + bm − b) + pb(b

m−1n).

Then, Lemma 5.1 may be applied to the first term resulting in

pb(b
m(n − 1) + (bm−1 − 1)b) = pb(b

m(n − 1)) +
bm−1−1∑

k=1

pb(b
m−1(n − 1) + k)

which can then be substituted into the previous expression. Then, note that the first
(b − 1) terms in the sumare identical byRI.Whenm = 2 these are the only terms, but
if m > 2 there are more terms in the sum which is indicated by the factor [[m > 2]]
below.

pb(b
mn) = pb(b

m(n − 1) + bm − b) + pb(b
m−1n)

= pb(b
m(n − 1)) + pb(b

m−1n) +
bm−1−1∑

k=1

pb(b
m−1(n − 1) + k)

= pb(b
m(n − 1)) + pb(b

m−1n) + (b − 1)pb(b
m−1n)

+ [[m > 2]]
bm−1−1∑

k=b

pb(b
m−1(n − 1) + k)

When m > 2, the summation stratifies by RI:
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bm−1−1∑

k=b

pb(b
m−1(n − 1) + k) =

bm−2−1∑

u=1

b−1∑

v=0

pb(b
m−1(n − 1) + ub + v)

= b
bm−2−1∑

u=1

pb(b
m−1(n − 1) + ub)

Therefore, in the general case, the expression becomes

pb(b
mn) = pb(b

m(n − 1)) + pb(b
m−1n) + (b − 1)pb(b

m−1(n − 1))

+ [[m > 2]]b
bm−2−1∑

u=1

pb(b
m−1(n − 1) + ub)

as claimed.

Corollary 5.3 The generating function for pb(b2n) satisfies the identity:

(1 − q)2Bb(2, q) = (1 + (b − 1)q)Bb(0, q)

Proof When m = 2, Lemma 5.2 becomes

pb(b
2n) = pb(b

2(n − 1)) + pb(bn) + (b − 1)pb(b(n − 1))

that is,
pb(b

2n) − pb(b
2(n − 1)) = pb(bn) + (b − 1)pb(b(n − 1)).

By passing to generating functions, the result is achieved.

∑

n∈Z
pb(b

2n)qn −
∑

n∈Z
pb(b

2(n − 1))qn =
∑

n∈Z
pb(bn)qn +

∑

n∈Z
(b − 1)pb(b(n − 1))qn

Bb(2, q) − qBb(2, q) = Bb(1, q) + (b − 1)qBb(1, q)

(1 − q)Bb(2, q) = (1 + (b − 1)q)Bb(1, q)

(1 − q)Bb(2, q) = (1 + (b − 1)q)(1 − q)−1Bb(0, q)

Therefore,
(1 + (b − 1)q)Bb(0, q) = (1 − q)2Bb(2, q)

as stated.

Lemma 5.4 For all n,m ≥ 1, and 1 ≤ k < bm, there exist polynomials gm,k, j (x) =
g j (x) of degree j with integer coefficients for 0 ≤ j ≤ m − 1 such that

pb(b
mn + k) = pb(b

mn) +
m−1∑

j=1

g j (b)pb(b
jn). (IH(m))
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Proof The proof proceeds by induction on m. For m = 1, the induction hypothesis
says pb(n + k) = pb(n) for 1 ≤ k < b which is true by RI. Assume that IH(m ′) is
true for all m ′ < m. From Lemma 5.1,

pb(b
mn + ub) = pb(b

mn) +
u∑

k=1

pb(b
m−1n + k).

Then, by the induction hypothesis at m − 1,

pb(b
m−1 + k) = pb(b

m−1n) +
m−2∑

l=1

gm,k,l(b)pb(b
ln).

Therefore,

pb(b
mn + ub) = pb(b

mn) +
u∑

k=1

(
pb(b

m−1n) +
m−2∑

l=1

gm,k,l(b)pb(b
ln)

)

= pb(b
mn) + upb(b

m−1n) +
u∑

k=1

m−2∑

l=1

gm,k,l(b)pb(b
ln).

Finally, switching the order of summation reveals

pb(b
mn + ub) = pb(b

mn) + upb(b
m−1n) +

m−2∑

l=1

(
u∑

k=1

gm,k,l(b)

)
pb(b

ln).

Letw = bm−1 − u, gm−1(x) = xm−1 − w and g j (x) =
(∑u−1

k=0 gk, j (x)
)
for 1 ≤ j ≤

m − 2. Then, u = bm−1 − w and gm−1(b) = bm−1 − w = u, and therefore

pb(b
mn + ub + v) = pb(b

mn) +
m−1∑

j=1

g j (b)pb(b
jn)

as stated.

With this preparation, themain theoremmay be proven. This allows the generating
function Bb(m, q) to be written in terms of Bb(0, q).

Theorem 5.5 For all m, there exists a polynomial fm(x, q) of degree m − 1 in q
and degree

(m
2

)
in x such that

fm(b, q)Bb(0, q) = (1 − q)m Bb(m, q).

Proof The proof proceeds by induction on m. The base case m = 0 is trivial, that
is, f0(x, q) = 1. Assume that the theorem holds for all m ′ < m. Applying RIII to
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pb(bmn) yields the following:

pb(b
mn) = pb(b

mn − b) + pb(b
m−1n)

= pb(b
m(n − 1) + bm − b) + pb(b

m−1n).

By Lemma 5.4,

pb(b
m(n − 1) + bm − b) = pb(b

m(n − 1)) +
m−1∑

j=1

g j (b)pb(b
j (n − 1))

and therefore

pb(b
mn) = pb(b

m(n − 1)) +
⎛

⎝
m−1∑

j=1

g j (b)pb(b
j (n − 1))

⎞

⎠ + pb(b
m−1n)

Then, multiplying by qn on both sides and summing:

Bb(m, q) =
∑

n∈Z
pb(b

mn)qn

=
∑

n∈Z
pb(b

m(n − 1))qn +
∑

n∈Z
pb(b

m−1n)qn

+
∑

n∈Z

m−1∑

j=1

g j (b)pb(b
j (n − 1))qn

and by reindexing in sums involving n − 1 and combining the bm−1 terms,

Bb(m, q) = q
∑

n∈Z
pb(b

mn)qn +
∑

n∈Z
pb(b

m−1n)qn + q
∑

n∈Z

m−1∑

j=1

g j (b)pb(b
jn)qn

= qBb(m, q) + (1 + gm−1(b)q)
∑

n∈Z
pb(b

m−1n)qn

+ q
m−2∑

j=1

g j (b)
∑

n∈Z
pb(b

jn)qn

= qBb(m, q) + (1 + gm−1(b)q)Bb(m − 1, q) + q
m−2∑

j=1

g j (b)Bb( j, q)

Therefore,
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(1 − q)Bb(m, q) = (1 + gm−1(b)q)Bb(m − 1, q) + q
m−2∑

j=1

g j (b)Bb( j, q).

The induction hypothesis provides

(1 − q) j Bb( j, q) = Bb(0, q) f j (q).

that is,

Bb( j, q) = (1 − q)m− j−1 f j (q)

(1 − q)m−1
Bb(0, q).

Hence, substituting this into the previous sum andmultiplying by (1 − q)m−1 reveals

(1 − q)m Bb(m, q) = (1 + gm−1(b)q) fm−1(q)Bb(0, q)

+ q
m−2∑

j=1

g j (b)(1 − q)m− j−1 f j (q)Bb(0, q)

=
⎛

⎝(1 + gm−1(b)q) fm−1(q)

+ q
m−2∑

j=1

g j (b)(1 − q)m− j−1 f j (q)

⎞

⎠ Bb(0, q).

Consequently,

fm(x, q) =
⎛

⎝(1 + gm−1(x)q) fm−1(x, q) + q
m−2∑

j=1

g j (x)(1 − q)m− j−1 f j (x, q)

⎞

⎠

which is a polynomial of degree m − 1 in q and degree
(m
2

)
in x , and therefore

fm(b, q)Bb(0, q) = (1 − q)m Bb(m, q)

which proves the theorem.

6 The Polynomial Data

The polynomials in Theorem 5.5 provide a bridge between large values of pb(n) and
its generating function identities. Lacking further theorems, evaluating these large
values quickly exceeds the computational power of pencil and paper, but computers
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Table 2 Polynomials fm(b, q) for 2 ≤ m ≤ 4 and 2 ≤ b ≤ (m
2

) + 2

b f2(b, q)

2 1+q

3 1+2q

b f3(b, q)

2 1+6q + q2

3 1+19q + 7q2

4 1+42q + 21q2

5 1+78q + 46q2

b f4(b, q)

2 1+31q + 31q2 + q3

3 1+234q + 447q2 + 47q3

4 1+1081q + 2635q2 + 379q3

5 1+3702q + 10218q2 + 1704q3

6 1+10335q + 30735q2 + 5585q3

7 1+24896q + 77801q2 + 14951q3

8 1+53669q + 173747q2 + 34727q3

Table 3 Polynomials f5(b, q) for 2 ≤ b ≤ 12

b f5(b, q)

2 1+196q + 630q2 + 196q3 + q4

3 1+5822q + 33504q2 + 19040q3 + 682q4

4 1+79320q + 561714q2 + 387600q3 + 19941q4

5 1+642451q + 5055891q2 + 3835861q3 + 231421q4

6 1+3649340q + 30621390q2 + 24573740q3 + 1621705q4

7 1+16077981q + 140871555q2 + 117324441q3 + 8201271q4

8 1+58573732q + 529473294q2 + 452753140q3 + 32941657q4

9 1+184174970q + 1704597594q2 + 1486613030q3 + 111398806q4

10 1+515009556q + 4855552326q2 + 4299866676q3 + 329571441q4

11 1+1308822280q + 12524820930q2 + 11227696630q3 + 876084760q4

12 1+3072329216q + 29763241530q2 + 26948358536q3 + 2133434941q4

are ideally suited to calculating these large values. Each fm(b, q) provides an identity
which provides a new way to calculate values of the form pb(bmn). Theorem 4.2
provides an alternate way of computing these numbers. The tools used for this work
were primarily Python and Sage with double-checking provided by Mathematica.
TheCityUniversity ofNewYorkHighPerformanceComputingCenter at theCollege
of Staten Island helpfully provided hardware for long-running computations, but
with the optimizations provided by Theorems 4.2 and 5.5 retail consumer hardware is
capable of calculating fm(b, q) for high values ofm. Tables2 and 3 contain identities
of the form

fm(q)Bb(0, q) = (1 − q)m
∑

n∈Z
pb(b

mn)qn

for various specific m and b.
Since fm(b, q) is a polynomial of degree

(m
2

)
in b, then so is each coefficient

in q. Therefore, for a given m, by calculating fm(b, q) for
(m
2

) + 1 values of b,
it is possible to determine a polynomial in b for each coefficient of q. This data
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Table 4 Polynomials fm(b, q) for 1 ≤ m ≤ 4.

m fm(b, q)

1 1

2 bq − q + 1

3 1
2b

3q2 + 1
2b

3q − 1
2b

2q2 + 1
2b

2q − bq2 + bq + q2 − 2q + 1

4 1
6b

6q3 + 2
3b

6q2 − 1
4b

5q3 + 1
6b

6q − 1
6b

4q3 + 1
4b

5q − 1
6b

4q2 − 1
4b

3q3 + 1
3b

4q − 1
2b

3q2

+ 1
2b

2q3 + 3
4b

3q − b2q2 + bq3 + 1
2b

2q − 2bq2 − q3 + bq + 3q2 − 3q + 1

Table 5 Coefficients of f5(b, q)

q0 q1 q2 q3 q4

b0 1 −4 6 −4 1

b1 0 1 −3 3 −1

b2 0 1
2 − 3

2
3
2 − 1

2

b3 0 3
4 − 5

4
1
4

1
4

b4 0 11
24 − 7

8
3
8

1
24

b5 0 11
24 − 5

8 − 1
8

7
24

b6 0 3
8

5
24 − 13

24 − 1
24

b7 0 5
24

1
8 − 3

8
1
24

b8 0 1
8

5
24 − 7

24 − 1
24

b9 0 1
12

1
4 − 1

4 − 1
12

b10 0 1
24

11
24

11
24

1
24

determines fm(b, q) for a given m and all b. An alternate way of calculating this
polynomial is to continue to iterate the recurrence. This method is demonstrated for
m = 3 in Theorem 10.1. For the case m = 4, this approach works, but the argument
is significantly longer than the m = 3 case.

Table4 shows fm(b, q) for 1 ≤ m ≤ 4, written out brutally as polynomials. This
representation does not, at first glance, appear particularly illuminating, but it may be
the case something may be learned from it. Along these lines, tables of coefficients
for the monomials in fm(b, q) for 5 ≤ m ≤ 8 are presented in Tables5, 6, 7, and 8.
These tables may also be thought of as matrices Mm so that

fm(b, q) = QmMmBm

where Qm = ((qi )m−1
i=0 )T and Bm = (bi )(

m
2)

i=0. Perhaps, this representation will suggest
a combinatorial interpretation of these coefficients.

The polynomials fm(b, q)maybe seen froman alternate viewpoint as polynomials
in bwhere each coefficient of b is a polynomial in q. This viewpoint (see Tables9, 10,
11, and 12) proves its usefulness in revealing certain repeating structures. These poly-
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Table 6 Coefficients of f6(b, q)

q0 q1 q2 q3 q4 q5

b0 1 −5 10 −10 5 −1

b1 0 1 −4 6 −4 1

b2 0 1
2 −2 3 −2 1

2

b3 0 3
4 −2 3

2 0 − 1
4

b4 0 11
24 − 4

3
5
4 − 1

3 − 1
24

b5 0 25
48 − 4

3
7
8

1
6 − 11

48

b6 0 1
2 − 13

24 − 3
8

3
8

1
24

b7 0 13
36 − 35

72 − 5
24

31
72 − 7

72

b8 0 7
24 − 1

8 − 5
8

11
24 0

b9 0 11
48

1
12 − 19

24
5
12

1
16

b10 0 1
6

1
2 − 1

2 − 1
6 0

b11 0 23
240

17
60 − 41

120 − 1
20

1
80

b12 0 1
16

7
24 − 1

4 − 1
8

1
48

b13 0 5
144

17
72 − 1

12 − 13
72 − 1

144

b14 0 1
48

5
24 0 − 5

24 − 1
48

b15 0 1
120

13
60

11
20

13
60

1
120

nomials have been calculated for values ofm up to 23, and unfortunately these pages
are unable to contain them. Or, with apologies to Fermat, “Hanc paginis exiguitas
non caperet.” Fortunately, this data is available for download at the following URL:
http://dakota.tensen.net/2015/rp/

The form of these polynomials suggests a conjecture containing an unexpected
appearance of Eulerian numbers:

Conjecture 6.1 The polynomial fm(b, q) has the form

fm(b, q) =
(m2)∑

i=0

(1 − q)m−y(i)gm,i (q)bi

where y(n) =
⌊√

8n+1
2

⌋
and gm,i (q) are polynomials. Further, with

〈 n
k

〉
denoting the

Eulerian numbers3:

gm,(m2)
(q) = q

(m − 1)!
m−2∑

i=0

〈
m − 1

i

〉
qi

3 Note that the Eulerian numbers
〈 n
k

〉
are defined on page 56.

http://dakota.tensen.net/2015/rp/
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Table 7 Coefficients of f7(b, q)

q0 q1 q2 q3 q4 q5 q6

b0 1 −6 15 −20 15 −6 1

b1 0 1 −5 10 −10 5 −1

b2 0 1
2 − 5

2 5 −5 5
2 − 1

2

b3 0 3
4 − 11

4
7
2 − 3

2 − 1
4

1
4

b4 0 11
24 − 43

24
31
12 − 19

12
7
24

1
24

b5 0 25
48 − 89

48
53
24 − 17

24 − 19
48

11
48

b6 0 17
32 − 115

96
23
48

7
16 − 17

96 − 7
96

b7 0 125
288 − 331

288
109
144

41
144 − 119

288
25
288

b8 0 19
48 − 13

16
1
24

19
24 − 7

16
1
48

b9 0 17
48 − 71

144 − 11
18

5
4 − 67

144 − 5
144

b10 0 7
24

1
16 − 23

24
7
12 0 1

48

b11 0 313
1440

1
32 − 127

144
113
144 − 13

96 − 23
1440

b12 0 31
180

35
144 − 71

72
19
36

5
72 − 19

720

b13 0 61
480

151
480 − 69

80
21
80

27
160 − 1

96

b14 0 67
720

7
18 − 53

72 − 1
18

43
144

1
90

b15 0 91
1440

43
96 − 19

144 − 49
144 − 1

32 − 11
1440

b16 0 7
180

11
36 − 11

72 − 19
72

5
72

1
360

b17 0 7
288

343
1440 − 7

240 − 181
720

23
1440

1
480

b18 0 7
480

19
96

1
16 − 13

48 − 1
96

1
160

b19 0 11
1440

13
96

19
144 − 29

144 − 7
96 − 1

1440

b20 0 1
240

5
48

1
6 − 1

6 − 5
48 − 1

240

b21 0 1
720

19
240

151
360

151
360

19
240

1
720

Another conjecture also suggests itself:

Conjecture 6.2 Let hi (q) be defined by qhi (q) = gi+1,i (q). Then,

fm(b, q) = (1 − q)m−1

+ q
m−1∑

i=0

(1 − q)m−y(i)hi (q)bi

+
(m2)−1∑

i=m

(1 − q)m−y(i)gm,i (q)bi

+ qb(
m
2)

(m − 1)!
m−2∑

i=0

〈
m − 1

i

〉
qi .
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Table 8 Coefficients of f8(b, q)

q0 q1 q2 q3 q4 q5 q6 q7

b0 1 −7 21 −35 35 −21 7 −1

b1 0 1 −6 15 −20 15 −6 1

b2 0 1
2 −3 15

2 −10 15
2 −3 1

2

b3 0 3
4 − 7

2
25
4 −5 5

4
1
2 − 1

4

b4 0 11
24 − 9

4
35
8 − 25

6
15
8 − 1

4 − 1
24

b5 0 25
48 − 19

8
65
16 − 35

12
5
16

5
8 − 11

48

b6 0 17
32 − 83

48
161
96 − 1

24 − 59
96

5
48

7
96

b7 0 259
576 − 161

96
137
64 − 113

144 − 89
192

13
32 − 41

576

b8 0 7
16 − 137

96
127
96

11
48 − 11

12
35
96 − 1

96

b9 0 27
64 − 85

72
307
576

89
72 − 823

576
7
18

17
576

b10 0 329
864 − 43

72 − 131
288

127
108 − 155

288
5
72 − 31

864

b11 0 911
2880 − 389

720 − 289
576

19
12 − 623

576
161
720

1
2880

b12 0 1189
4320 − 323

1440 − 13
12

787
432 − 245

288
19
480

47
2160

b13 0 329
1440 − 1

240 − 125
96

59
36 − 47

96 − 19
240

11
1440

b14 0 325
1728

293
1440 − 859

576
595
432 − 23

576 − 67
288 − 43

8640

b15 0 427
2880

281
720 − 641

576
1
2

29
576

7
720

41
2880

b16 0 61
540

521
1440 − 1607

1440
1177
2160

179
720 − 223

1440
11

4320

b17 0 31
360

289
720 − 127

144
1
8

13
36 − 67

720
1

720

b18 0 23
360

587
1440 − 199

288 − 25
144

67
144 − 97

1440 − 7
1440

b19 0 131
2880

109
288 − 247

576 − 7
16

241
576

37
1440 − 1

576

b20 0 277
8640

11
32 − 679

2880 − 1283
2160

347
960

131
1440

13
8640

b21 0 61
2880

5
16

13
64 − 4

9 − 5
64 − 1

80 − 1
576

b22 0 269
20160

107
504

401
4032 − 187

504
107
4032

13
630 − 5

4032

b23 0 1
120

1
6

1
6 − 1

3 − 1
24

1
30 0

b24 0 43
8640

43
360

521
2880 − 61

270 − 269
2880

1
72

1
8640

b25 0 1
360

4
45

29
144 − 1

6 − 5
36

1
90

1
720

b26 0 1
720

1
18

13
72 − 1

18 − 23
144 − 1

45 0

b27 0 1
1440

7
180

49
288 0 − 49

288 − 7
180 − 1

1440

b28 0 1
5040

1
42

397
1680

151
315

397
1680

1
42

1
5040
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Table 9 Polynomial f4(b, q) as a polynomial in b

f4(b, q) = (1−q)3

+ q (1−q)2 b

+ (2)−1 q (1−q)2 b2

+ (4)−1 q (1−q) (3 + q) b3

+ (6)−1 q (1−q) (2 + q) b4

+ (4)−1 q (1−q) (1 + q) b5

+ (6)−1 q · (1 + 4q + q2) b6

Table 10 Polynomial f5(b, q) as a polynomial in b

f5(b, q) = (1−q)4

+ q (1−q)3 b

+ (2)−1 q (1−q)3 b2

+ (4)−1 q (1−q)2 (3 + q) b3

+ (24)−1 q (1−q)2 (11 + q) b4

+ (24)−1 q (1−q)2 (11 + 7q) b5

+ (24)−1 q (1−q) (9 + 14q + q2) b6

+ (24)−1 q (1−q) (5 + 8q − q2) b7

+ (24)−1 q (1−q) (3 + 8q + q2) b8

+ (12)−1 q (1−q) (1 + 4q + q2) b9

+ (24)−1 q · (1 + 11q + 11q2 + q3) b10

Assuming these conjectures indicates that the polynomials fb(m, q) are com-

pletely determined by the polynomials (gm,i )
(m2)−1
i=m . The data so far obeys this con-

jecture, so these polynomials are given for 8 ≤ m ≤ 10 (in Tables13, 14, 15, 16, 17,
18) from which, by using the form above, one may construct fm(b, q).

7 A New Congruence

The conjectured form of fm(b, q) suggests several conjectures, including some
regarding congruences of pb(n). For instance, fm(b, q) ≡ (1 − q)m−1 (mod b)
seems likely, and therefore Theorem 5.5 suggests

(1 − q)m Bb(m, q) ≡ (1 − q)m−1Bb(0, q) (mod b)

and hence
(1 − q)Bb(m, q) ≡ Bb(0, q) (mod b)
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Table 11 Polynomial f6(b, q) as a polynomial in b

f6(b, q) = (1−q)5

+ q (1−q)4 b

+ (2)−1 q (1−q)4 b2

+ (4)−1 q (1−q)3 (3 + q) b3

+ (24)−1 q (1−q)3 (11 + q) b4

+ (48)−1 q (1−q)3 (25 + 11q) b5

+ (24)−1 q (1−q)2 (12 + 11q + q2) b6

+ (72)−1 q (1−q)2 (26 + 17q − 7q2) b7

+ (24)−1 q (1−q)2 (7 + 11q) b8

+ (48)−1 q (1−q)2 (11 + 26q + 3q2) b9

+ (6)−1 q (1−q) (1 + 4q + q2) b10

+ (240)−1 q (1−q) (23 + 91q + 9q2 − 3q3) b11

+ (48)−1 q (1−q) (3 + 17q + 5q2 − q3) b12

+ (144)−1 q (1−q) (5 + 39q + 27q2 + q3) b13

+ (48)−1 q (1−q) (1 + 11q + 11q2 + q3) b14

+ (120)−1 q · (1 + 26q + 66q2 + 26q3 + q4) b15

Fortunately, this can be proven independently of the conjectured form of fm(b, q)

and this statement appears below as Theorem 7.2. Reducing Lemma 5.2 modulo b
reveals the following corollary:

Corollary 7.1 The partition counting function pb(n) satisfies the congruence:

pb(b
mn) ≡ pb(b

m(n − 1)) + pb(b
m−1n) + (b − 1)pb(b

m−1(n − 1)) (mod b)

This corollary can then be used to prove the following theorem.

Theorem 7.2 The partition counting function pb(n) satisfies the congruence:

pb(b
mn) − pb(b

m(n − 1)) ≡ pb(n) (mod b)

Proof Beginning with the statement Corollary 7.1,

pb(b
mn) ≡ pb(b

m(n − 1)) + pb(b
m−1n) + (b − 1)pb(b

m−1(n − 1)) (mod b),

and applying Corollary 7.1 to the middle term pb(bm−1n) reveals:

pb(b
mn) ≡ pb(b

m(n−1)) + pb(b
m−1(n−1)) + pb(b

m−2n) + (b−1)pb(b
m−2(n−1))

+ (b − 1)pb(b
m−1(n − 1)) (mod b)

≡ pb(b
m(n − 1)) + pb(b

m−2n) + (b − 1)pb(b
m−2(n − 1)) (mod b)
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Table 12 Polynomial f7(b, q) as a polynomial in b

f7(b, q) = (1−q)6

+ q (1−q)5 b

+ (2)−1 q (1−q)5 b2

+ (4)−1 q (1−q)4 (3 + q) b3

+ (24)−1 q (1−q)4 (11 + q) b4

+ (48)−1 q (1−q)4 (25 + 11q) b5

+ (96)−1 q (1−q)3 (51 + 38q + 7q2) b6

+ (288)−1 q (1−q)3 (125 + 44q − 25q2) b7

+ (48)−1 q (1−q)3 (19 + 18q − q2) b8

+ (144)−1 q (1−q)3 (51 + 82q + 5q2) b9

+ (48)−1 q (1−q)2 (14 + 31q + 2q2 + q3) b10

+ (1440)−1 q (1−q)2 (313 + 671q − 241q2 − 23q3) b11

+ (720)−1 q (1−q)2 (124 + 423q + 12q2 − 19q3) b12

+ (480)−1 q (1−q)2 (61 + 273q + 71q2 − 5q3) b13

+ (720)−1 q (1−q)2 (67 + 414q + 231q2 + 8q3) b14

+ (1440)−1 q (1−q) (91 + 736q + 546q2 + 56q3 + 11q4) b15

+ (360)−1 q (1−q) (14 + 124q + 69q2 − 26q3 − q4) b16

+ (1440)−1 q (1−q) (35 + 378q + 336q2 − 26q3 − 3q4) b17

+ (480)−1 q (1−q) (7 + 102q + 132q2 + 2q3 − 3q4) b18

+ (1440)−1 q (1−q) (11 + 206q + 396q2 + 106q3 + q4) b19

+ (240)−1 q (1−q) (1 + 26q + 66q2 + 26q3 + q4) b20

+ (720)−1 q · (1 + 57q + 302q2 + 302q3 + 57q4 + q5) b21

Subsequently applying the Corollary to the middle termm − 3 more times produces

pb(b
mn) ≡ pb(b

m(n − 1)) + pb(bn) + (b − 1)pb(b(n − 1)) (mod b)

and finally applying RIII to pb(bn) yields

pb(b
mn) ≡ pb(b

m(n−1)) + pb(b(n−1)) + pb(n) + (b−1)pb(b(n−1)) (mod b)

≡ pb(b
m(n − 1)) + pb(n) (mod b)

that is,
pb(b

mn) − pb(b
m(n − 1)) ≡ pb(n) (mod b)

as stated.
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Table 13 Polynomials g8,i for 8 ≤ i ≤ 27

m i gm,i (q)

8 8 (96)−1 (42 + 31q − q2)

8 9 (576)−1 (243 + 292q + 17q2)

8 10 (864)−1 (329 + 471q + 33q2 + 31q3)

8 11 (2880)−1 (911 + 1177q − 647q2 − q3)

8 12 (4320)−1 (1189 + 2598q − 453q2 − 94q3)

8 13 (1440)−1 (329 + 981q + 81q2 − 11q3)

8 14 (8640)−1 (1625 + 6633q + 2139q2 + 43q3)

8 15 (2880)−1 (427 + 1978q + 324q2 + 110q3 + 41q4)

8 16 (4320)−1 (488 + 2539q − 231q2 − 647q3 + 11q4)

8 17 (720)−1 (62 + 413q + 129q2 − 65q3 + q4)

8 18 (1440)−1 (92 + 771q + 455q2 − 111q3 − 7q4)

8 19 (2880)−1 (131 + 1352q + 1338q2 + 64q3 − 5q4)

8 20 (8640)−1 (277 + 3524q + 4734q2 + 812q3 + 13q4)

8 21 (2880)−1 (61 + 961q + 1546q2 + 266q3 + 41q4 + 5q5)

8 22 (20160)−1 (269 + 4549q + 6554q2 − 926q3 − 391q4 + 25q5)

8 23 (120)−1 (1 + 21q + 41q2 + q3 − 4q4)

8 24 (8640)−1 (43 + 1075q + 2638q2 + 686q3 − 121q4 − q5)

8 25 (720)−1 (2 + 66q + 211q2 + 91q3 − 9q4 − q5)

8 26 (720)−1 (1 + 41q + 171q2 + 131q3 + 16q4)

8 27 (1440)−1 (1 + 57q + 302q2 + 302q3 + 57q4 + q5)

8 Sellers’ Question

In a Spring 2014 talk at the New York Number Theory Seminar, Sellers presented
the following identities:

∑

n∈Z
p3(81n + 42)qn = 27(8q2 + 17q + 2)

(1 − q)4
B3(0, q)

∑

n∈Z
p3(81n + 78)qn = 27(2q2 + 17q + 8)

(1 − q)4
B3(0, q)

and asked, “Why do the polynomial factors in the numerator come in such natural
pairs as ‘reciprocal polynomials’?” Given that 8q2 + 17q + 2 appears, why should
its reciprocal polynomial, the polynomial with its coefficients reversed, that is, 2q2 +
17q + 8, appear?
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Table 14 Polynomials g9,i for 9 ≤ i ≤ 24

m i gm,i (q)

9 9 (1152)−1 (513 + 548q + 43q2)

9 10 (3456)−1 (1463 + 1587q + 285q2 + 121q3)

9 11 (17280)−1 (6521 + 5607q − 3597q2 + 109q3)

9 12 (8640)−1 (3018 + 4631q − 1066q2 − 103q3)

9 13 (1920)−1 (597 + 1263q − 17q2 − 3q3)

9 14 (8640)−1 (2369 + 6981q + 1551q2 + 79q3)

9 15 (8640)−1 (2024 + 6103q − 513q2 + 901q3 + 125q4)

9 16 (17280)−1 (3379 + 11660q − 4458q2 − 2020q3 + 79q4)

9 17 (17280)−1 (2827 + 12542q − 732q2 − 1750q3 + 73q4)

9 18 (17280)−1 (2325 + 13126q + 2988q2 − 1854q3 − 25q4)

9 19 (17280)−1 (1867 + 12770q + 6684q2 − 466q3 + 25q4)

9 20 (8640)−1 (743 + 6185q + 4971q2 + 319q3 + 22q4)

9 21 (5760)−1 (383 + 3533q + 1974q2 − 470q3 + 331q4 + 9q5)

9 22 (60480)−1 (3054 + 31679q + 15070q2 − 18864q3 − 788q4 + 89q5)

9 23 (120960)−1 (4589 + 57611q + 54038q2 − 21950q3 − 3683q4 + 115q5)

9 24 (120960)−1 (3371 + 49719q + 63010q2 − 11342q3 − 4077q4 + 119q5)

Table 15 Polynomials g9,i for 25 ≤ i ≤ 35

m i gm,i (q)

9 25 (120960)−1 (2417 + 42599q + 74486q2 + 5818q3 − 4295q4 − 65q5)

9 26 (120960)−1 (1689 + 34745q + 75466q2 + 20322q3 − 1187q4 + 5q5)

9 27 (120960)−1 (1157 + 28445q + 79022q2 + 39334q3 + 3181q4 + 61q5)

9 28 (120960)−1 (761 + 21712q + 64153q2 + 27480q3 + 4667q4 + 2168q5 + 19q6)

9 29 (120960)−1 (481 + 15384q + 47073q2 + 8608q3 − 10677q4 − 408q5 + 19q6)

9 30 (120960)−1 (301 + 11232q + 40293q2 + 15328q3 − 6417q4 − 288q5 + 31q6)

9 31 (10080)−1 (15 + 680q + 3011q2 + 1856q3 − 419q4 − 104q5 + q6)

9 32 (120960)−1 (103 + 5528q + 28775q2 + 25632q3 + 1069q4 − 632q5 + 5q6)

9 33 (20160)−1 (9 + 632q + 4097q2 + 4832q3 + 667q4 − 152q5 − 5q6)

9 34 (60480)−1 (13 + 1112q + 8861q2 + 14496q3 + 5431q4 + 328q5 − q6)

9 35 (10080)−1 (1 + 120q + 1191q2 + 2416q3 + 1191q4 + 120q5 + q6)
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Table 16 Polynomials g10,i for 10 ≤ i ≤ 24

m i gm,i (q)

10 10 (3456)−1 (1508 + 1479q + 366q2 + 103q3)

10 11 (17280)−1 (6971 + 4662q − 3057q2 + 64q3)

10 12 (17280)−1 (6736 + 8167q − 1772q2 − 171q3)

10 13 (25920)−1 (9437 + 15513q − 207q2 + 97q3)

10 14 (17280)−1 (5828 + 13307q + 2582q2 + 243q3)

10 15 (103680)−1 (31513 + 66086q − 10716q2 + 15722q3 + 1075q4)

10 16 (34560)−1 (9287 + 22450q − 12300q2 − 2258q3 + 101q4)

10 17 (17280)−1 (4103 + 12979q − 3099q2 − 1091q3 + 68q4)

10 18 (34560)−1 (7159 + 28984q + 210q2 − 3208q3 − 25q4)

10 19 (51840)−1 (9217 + 45515q + 12507q2 − 1507q3 + 148q4)

10 20 (17280)−1 (2619 + 15673q + 7953q2 + 315q3 + 80q4)

10 21 (32400)−1 (4111 + 25660q + 1585q2 − 1870q3 + 2915q4 − q5)

10 22 (120960)−1 (12709 + 90224q − 1458q2 − 43888q3 + 2869q4 + 24q5)

10 23 (362880)−1 (31337 + 267179q + 92282q2 − 116054q3 − 2579q4 − 5q5)

10 24 (120960)−1 (8470 + 84599q + 53646q2 − 29488q3 − 1388q4 + 81q5)

Table 17 Polynomials g10,i for 25 ≤ i ≤ 34

m i gm,i (q)

10 25 (241920)−1 (13535 + 158685q + 157158q2 − 30134q3 − 6837q4 − 87q5)

10 26 (120960)−1 (5334 + 71929q + 93434q2 + 1956q3 − 1360q4 + 67q5)

10 27 (362880)−1 (12460 + 195325q + 332566q2 + 75308q3 + 3926q4 + 335q5)

10 28 (241920)−1 (6355 + 108566q + 147413q2 − 43284q3 + 14869q4 + 8062q5 − 61q6)

10 29 (362880)−1 (7178 + 138609q + 210603q2 − 121954q3 − 55980q4 + 3057q5 − 73q6)

10 30 (120960)−1 (1781 + 39601q + 78646q2 − 15078q3 − 15247q4 + 1013q5 + 4q6)

10 31 (725760)−1 (7807 + 200214q + 493533q2 + 11980q3 − 106623q4 − 2178q5 + 67q6)

10 32 (80640)−1 (623 + 18268q + 54323q2 + 15184q3 − 7435q4 − 332q5 + 9q6)

10 33 (362880)−1 (1970 + 66843q + 237309q2 + 114242q3 − 23184q4 − 4029q5 − 31q6)

10 34 (60480)−1 (226 + 8760q + 36747q2 + 27718q3 + 2274q4 − 126q5 + q6)

Why should one expect that these sorts of identities exist in the first place? Some
combinatorial insight is desired, but failing that Lemma 5.4 and Theorem 5.5 guar-
antee that some relationship exists, although they fall short of explaining why such
reciprocal polynomials appear.

By Lemma 5.4, applying RI and RIII to an expression like pb(bmn + k) will
produce identities between its generating function and Bb(0, q). Consider the results
when Lemma 5.4 applied to Sellers’ example:
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Table 18 Polynomials g10,i for 35 ≤ i ≤ 44

m i gm,i (q)

10 35 (725760)−1 (1831 + 82308q + 403011q2 + 395512q3 + 80853q4 + 4068q5 + 97q6)

10 36 (241920)−1

(399 + 20449q + 106983q2 + 95433q3 + 10453q4 + 6939q5 + 1269q6 − 5q7)

10 37 (725760)−1

(763 + 43703q + 236763q2 + 167071q3 − 72007q4 − 15363q5 + 1969q6 − 19q7)

10 38 (120960)−1 (79 + 5281q + 33561q2 + 33127q3 − 6983q4 − 4617q5 + 31q6 + q7)

10 39 (362880)−1 (143 + 11137q + 80253q2 + 99011q3 + q4 − 9297q5 + 179q6 + 13q7)

10 40 (241920)−1 (55 + 5137q + 43875q2 + 69397q3 + 10597q4 − 7533q5

−575q6 + 7q7)

10 41 (1209600)−1 (151 + 16753q + 163431q2 + 316465q3 + 117805q4 − 8181q5

−1643q6 + 19q7)

10 42 (80640)−1 (5 + 723q + 8577q2 + 20519q3 + 10719q4 + 9q5 − 229q6 − 3q7)

10 43 (241920)−1 (7 + 1217q + 17163q2 + 51757q3 + 41957q4 + 8595q5 + 265q6 − q7)

10 44 (80640)−1 (1 + 247q + 4293q2 + 15619q3 + 15619q4 + 4293q5 + 247q6 + q7)

p3(81n + 42) = p3(81n) + 14p3(27n) + 30p3(9n) + 9p3(3n)

p3(81n + 78) = p3(81n) + 26p3(27n) + 108p3(9n) + 81p3(3n)

Then, upon passing to generating functions

∑

n∈Z
p3(81n + 42)qn = B3(4, q) + 14B3(3, q) + 30B3(2, q) + 9B3(1, q)

=
(

f4(3, q)

(1 − q)4
+ 14

f3(3, q)

(1 − q)3
+ 30

f2(3, q)

(1 − q)2
+ 9

f1(3, q)

1 − q

)
B3(0, q)

= 27(8q2 + 17q + 2)

(1 − q)4
B3(0, q)

and

∑

n∈Z
p3(81n + 78)qn=B3(4, q) + 26B3(3, q) + 108B3(2, q) + 81B3(1, q)

=
(

f4(3, q)

(1 − q)4
+26

f3(3, q)

(1 − q)3
+108

f2(3, q)

(1 − q)2
+81

f1(3, q)

1 − q

)
B3(0, q)

=27(2q2 + 17q + 8)

(1 − q)4
B3(0, q).

Afull understandingof identities like these seems to require a thoroughunderstanding
of the polynomials fm(b, q) as well as the polynomials gm,k, j (b) from Lemma 5.4.
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9 Some Computations

Doing this work without computing pb(n) for large values of n would be a waste, so
here are the values for a few choice n and their prime factorization.

p2(2
10) = 2320518948

= 22 · 3 · 11 · 197 · 89237
See also [7]

p2(2
30) = 152522352166261265248257304227087906224486377215330\

73750917936559981852209306569743385680542179470233380

= 22 · 5 · 19 · 31 · 79 · 1217 · 46553987 · 719224073
· 88243965275199121 · 1201364132790744647
· 3793933910711600253501418262383058570580931

p3(3
27) = 350364423551707258416807382080740574025054741900008\

668600126882878615683202075701898785282388145497481\
04181920303840123935669522277987798995852

= 22 · 87591105887926814604201845520185143506263685475002\
16715003172071965392080051892547469632059703637437\
026045480075960030983917380569496949748963

10 Proving the Case m = 3

This section gives an iterative construction of the polynomial f3(b, q). The methods
used here can be used to prove them = 4 case, but the argument becomes significantly
longer. It is likely that this method can be used to construct fm(b, q) for any fixed
m, but the length of the argument becomes unwieldy.

Theorem 10.1 The generating function for pb(b3n) satisfies the identity:

f3(b, q)Bb(q) = (1 − q)3Bb(3, q)

where

f3(b, q) = (1 − q)2 + q(1 − q)b − 1
2q(1 − q)b2 + 1

2q(q + 1)b3
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Proof Begin as before, by iterating the recurrence via Lemma 5.2:

pb(b
3n) = pb(b

3(n − 1)) + pb(b
2n) + (b − 1)pb(b

2(n − 1))

+ b
b−1∑

u=1

pb(b
2(n − 1) + ub)

The sum in the final term can be simplified further via Lemma 5.1:

b−1∑

u=1

pb(b
2(n − 1) + ub) =

b−1∑

u=1

pb(b
2(n − 1)) +

u∑

k=1

pb(b(n − 1) + k)

= (b − 1)pb(b
2(n − 1)) +

b−1∑

u=1

u∑

k=1

pb(b(n − 1) + k)

Now, 1 ≤ k ≤ b − 1 so by RI

b−1∑

u=1

u∑

k=1

pb(b(n − 1) + k) =
b−1∑

u=1

u∑

k=1

pb(b(n − 1))

= pb(b(n − 1))
b−1∑

u=1

u∑

k=1

1

= pb(b(n − 1))
b−1∑

u=1

u

=
(
b

2

)
pb(b(n − 1))

Finally, the original expression becomes

pb(b
3n) = pb(b

3(n − 1)) + pb(b
2n) + (b − 1)pb(b

2(n − 1))

+ b(b − 1)pb(b
2(n − 1)) + b

(
b

2

)
pb(b(n − 1))

Passing to generating functions by multiplying this identity by qn and summing over
all n yields
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∑

n∈Z
pb(b

3n)qn =
∑

n∈Z
pb(b

3(n − 1)) +
∑

n∈Z
pb(b

2n) +
∑

n∈Z
(b − 1)pb(b

2(n − 1))

+
∑

n∈Z
b(b − 1)pb(b

2(n − 1)) +
∑

n∈Z
b

(
b

2

)
pb(b(n − 1))

Bb(3, q) = qBb(3, q) + Bb(2, q) + (b − 1)qBb(2, q)

+ b(b − 1)qBb(2, q) + b

(
b

2

)
qBb(1, q)

After moving terms of Bb(3, q) to the right-hand side, the above equation becomes

(1 − q)Bb(3, q) = (1 + (b − 1)q + b(b − 1)q) Bb(2, q) + b

(
b

2

)
qBb(1, q)

= (1 + (b2 − 1)q)Bb(2, q) + b

(
b

2

)
qBb(1, q)

Substituting in the results for Bb(2, q) and Bb(1, q) in Lemma 4.4, Corollary 5.3,
and multiplying by (1 − q)2 yields

(1 − q)3Bb(3, q) = (1+(b2−1)q) ((1+(b−1)q)Bb(0, q)) + b

(
b

2

)
q(1−q)Bb(0, q)

=
(

(1+(b2−1)q)

(
(1+(b−1)q) + b

(
b

2

)
q(1−q)

))
Bb(0, q)

= (
1 + 1

2 (b − 1)
(
(b2 + 2b + 4)q + (b2 − 2)q2

))
Bb(0, q)

Therefore,

(1 − q)3Bb(3, q) = (
(1 − q)2 + q(1 − q)b − 1

2q(1 − q)b2 + 1
2q(q + 1)b3

)
Bb(0, q)

as desired.
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Cryptographic Hash Functions and Some
Applications to Information Security

Lisa Bromberg

Abstract We explore hashing with matrices over SL2(Fp), outlining known results
of Tillich and Zémor.We then summarize the bounds on the girth of the Cayley graph
of the subgroup of SL2(Fp) for specific generators A, B, work done by the author,
Shpilrain, andVdovina.We demonstrate that evenwithout optimization, these hashes
have comparable performance to hashes in the SHA family.

Keywords Information security · Cryptography · Group theory

1 Introduction

The aim of cryptography is to protect information from being stolen or modified by
an adversary. In modern cryptography, specific security goals are achieved with the
design of algorithms and also using the known computational hardness of certain
mathematical problems.

There are currently two main classes of cryptographic primitives: public-key
(asymmetric) and symmetric-key. Symmetric-key algorithms are older and in fact
can be traced back to at least the time of Julius Caesar. In symmetric-key ciphers,
knowledge of the encryption key is usually equivalent (or equal) to knowledge of
the decryption key. Because of this, participating parties need to agree on a shared
secret key before communicating through an open channel.

Public-key cryptography is a relatively young area of mathematics, but it has
been a very active area of research since its inception in 1976, with a seminal paper
of Diffie and Hellman [4]. In public-key algorithms, there are two separate keys: a
public-key that is published and a private-key which each user keeps secret. Knowl-
edge of the public-key does not imply knowledge of the private-key with any effi-
cient computation. In fact, the public-key is generated from the private-key using
a one-way function, with a trapdoor, which is a function that is easy (i.e., poly-
nomial time with respect to the complexity of an input) to compute, but hard (no
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visible (probabilistic) polynomial-time algorithm on “most” inputs) to invert the im-
age of a random input without special information; the special information is the
above-mentioned “trapdoor.” A well-known example of public-key encryption is the
RSA cryptosystem, whose one-way function is the product of two large primes p, q.
If p and q are known, then it is easy to compute their product, but it is hard to factor
a large number into its prime factors.

Since public-key cryptosystems are more computationally costly than symmetric
algorithms, some modern cryptosystems rely on an asymmetric cipher to produce a
session key and then proceed with symmetric encryption for the remainder of the
session.

1.1 Hash Functions

A very important cryptographic primitive is the hash function. Cryptographic hash
functions havemany applications to information security, including digital signatures
and methods of authentication. They can also be used as ordinary hash functions,
to index data in a hash table, fingerprinting (a procedure which maps an arbitrary
large data item to a shorter bit string, or fingerprint which uniquely identifies the
original data for all practical purposes), to detect duplicate data, and as checksums
to detect (accidental) data corruption. In fact, in the context of information security,
cryptographic hash values are often referred to as fingerprints, checksums, or just
hash values.

We will first define the hash function and explain some properties we require a
hash function to possess. Then, we introduce Cayley hash functions, which are a
family of hash functions based on nonabelian groups. We then explore hashing with
matrices and outline results of the authors, Shpilrain and Vdovina [1] using matrices
over SL(2,Fp) of a particular form which generate the group.

Definition 1 Let n ∈ N and let H : {0, 1}∗ → {0, 1}n such that m �→ h = H(m).
We require a hash function to satisfy the following:

(1) Preimage resistance:Givenoutput y, it is hard tofind input x such that H(x) = y;
(2) Second preimage resistance: Given input x1, it is hard to find another input

x2 �= x1 such that H(x1) = H(x2);
(3) Collision resistance: It is hard to find inputs x1 �= x2 such that H(x1) = H(x2).

Note that since hash functions are not injective, this “uniqueness” that we desire
is purely computational. From a practical perspective, this means that no big cluster
of computers can find the input based only on the output of a hash function.

There exist old hash function constructions whose collision resistance follows
from the hardness of number-theoretic or group-theoretic problems. However, these
hash functions canonly be used in applicationswhich require only collision resistance
and are often too slow for practical purposes. Standardized hash functions, such as
the SHA family, follow the block cipher design: Their use is not restricted to collision
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resistance, but their collision resistance is heuristic and not established by any precise
mathematical problem. In fact, recent attacks against the SHA-1 algorithm have led
to a competition for a new Standard Hash Algorithm [11].

Another direction, more relevant to our exposition, is the expander hash function,
dating back to 1991 when Zémor proposed building a hash function based on the
special linear group. This first attempt was quickly broken, but Tillich and Zémor
quickly proposed a second function which was resistant to the attack on the first;
see [16]. However, this newer hash function is also vulnerable to attack; see [17].
The Tillich–Zémor hash function is a type of expander hash called a Cayley hash
function and is different from functions in the SHA family in that it is not a block
hash function, but rather each bit is hashed individually. We discuss this particular
hash function in further detail in Sect. 2.

The expander hash design is fundamentally different from classical hash designs
in that it allows for relating important properties of hash functions such as collision
resistance, preimage resistance (see Definition 1), and their output distribution to
the graph-theoretical notions of cycle, girth, and expanding constants. When the
graphs used are Cayley graphs, the design additionally provides efficient parallel
computation and group-theoretical interpretations of the hash properties.

The expander hash design, though not so new anymore, is still little understood by
the cryptographic community. The Tillich–Zémor hash function is often considered
broken because of existing trapdoor attacks and attacks against specific parameters.
In fact, relations between hash, graph, and group-theoretic properties have been
sketched but no precise statements on these problems exist. Since the mathematical
problems which underly the security of expander hashes do not belong to classical
problems, it appears as though they have not been investigated. Hence, their actual
hardness is unknown. Efficiency aspects have also only been sketched.

Cayley hash functions are based on the idea of using a pair of (semi)group el-
ements, A and B, to hash the “0” and “1” bit, respectively, and then to hash an
arbitrary bit string by using multiplication of elements in the (semi)group. We focus
on hashing with 2 × 2 matrices over Fp. Since there are many known pairs of 2 × 2
matrices overZwhich generate a free monoid, this yields numerous pairs of matrices
over Fp (for p sufficiently large) that are candidates for collision-resistant hashing.
However, this trick can backfire and allow for a lifting of matrix elements to Z to
find a collision. This “lifting attack” was used by Tillich and Zémor [16] in the case
where two matrices A and B generate (as a monoid) all of SL(2,Z+). With other,
“similar” pairs of matrices from SL(2,Z), the situation is different, and while the
same “lifting attack” can (in some cases) produce collision in the group generated
by A and B, it says nothing about the monoid generated by A and B; see [1]. Since
only positive powers are used for hashing, this is all that is needed, and so, for these
pairs of matrices, there are no known attacks at this time that would affect the security
of the corresponding hash functions.

Additionally, we recall lower bounds on the length of collisions for hash functions
corresponding to some particular pairs of matrices from SL(2,Fp); again, see [1].
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1.2 Cayley Hash Functions

Classical hash functions mix pieces of the message repeatedly so the result appears
sufficiently random [13]. For this reason, they may be unappealing outside the area
of cryptography. On the other hand, a particular type of expander hash function, the
Cayley hash function, has a more straightforward design.

Given a group G and a subset S = {s1, . . . , sk} of G, their Cayley graph G is a
k-regular graph that has a vertex vg associated with each element of G and an edge
between vertices vg1 and vg2 if there exists si ∈ S such that g2 = g1si .

To build a hash function from the Cayley graph, let σ : {1, . . . , k} → S be an
ordering, fix an initial value g0, and write the message m as a string m1m2 · · ·mN ,
where mi ∈ {1, . . . , k}. Then, the hash value is H(m) := g0σ(m1) · · · σ(mN ). This
is represented on the Cayley graph as a (nonbacktracking) walk; the endpoint of the
walk is the hash value.

Two texts yielding the same hash value correspond to two pathswith the same start
and endpoints. We would like those two paths to differ necessarily by a “minimum
amount.” Such a vague notion can be guaranteed if there are no short cycles in the
Cayley graph. More precisely, we want the Cayley graph to have a large girth:

Definition 2 The directed girth of a Cayley graph G is the largest integer ∂ such
that, given any two vertices u and v, any pair of distinct paths which joins u to v will
be such that one of those paths has length (i.e., number of edges) ∂ or more.

The idea is that the girth of the Cayley graph is a relevant parameter to hashing.
More precisely, if a Cayley graph has a large girth ∂, then the corresponding hash
function will have the property that small modifications of the text will modify the
hash value [16].

One of themain advantages of Cayley hash functions over classical hash functions
is their ability to be parallelized. Namely, if messages x and y are concatenated, then
the hashed value of xy is H(xy) = H(x)H(y). Associativity of the group means we
can break down a large message into more manageable pieces, hash each piece, and
then recover the final result from the partial products.

Finally, a desirable feature of any hash function is the equidistribution of the
hashed values. This property can be guaranteed if the associated Cayley graph satis-
fies the following property.

Proposition 1 [17, Proposition 2.3] If the Cayley graph of a group G is such that the
greatest common divisor of its cycle lengths equals 1, then for the corresponding hash
function, the distribution of hashed values of texts of length n tends to equidistribution
when n tends to infinity.

This proposition is proved using classical graph-theoretic techniques, by studying
successive powers An of the adjacency matrix of the graph. Equidistribution can be
achieved with graphs that have a high expansion coefficient; see [18].

The collision, second preimage, and preimage resistance of classical hash func-
tions easily translate to group-theoretic problems.
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Definition 3 Let G be a group and let S = {s1, . . . , sk} ⊂ G be a generating set. Let
L ∈ Z be “small.”

(1) Balance problem Find an “efficient” algorithm that returns two words m =
m1 · · ·m� andm ′ = m ′

1 · · ·m ′
�′ with �, �′ < L ,mi ,m ′

i ∈ {1, . . . , k} and∏
smi =∏

sm ′
i
.

(2) Representation problem Find an “efficient” algorithm that returns a word
m1 · · ·m� with � < L , mi ∈ {1, . . . , k} and ∏

smi = 1.
(3) Factorization problem Find an “efficient” algorithm that, given any element

g ∈ G, returns a word m1 · · ·m� with � < L , mi ∈ {1, . . . , k} and ∏
smi = g.

Note that since the group is finite, the length restriction is required, since for every
w ∈ G, w|G| = 1. Note also that Lubotzky described the factorization problem as a
noncommutative analog of the discrete logarithm problem [8]. In fact, if we omit
trivial solutions, then the representation and factorization problems are equivalent to
the discrete logarithm problem in abelian groups.

In general, the factorization problem is at least as hard as the representation
problem, which is itself at least as hard as the balance problem.

It is apparent that a Cayley hash function is collision resistant if and only if the
balance problem is hard, second preimage resistant if and only if the representation
problem is hard, and preimage resistant if and only if the factorization problem is
hard.

Among all Cayley hash proposals, the Tillich–Zémor hash function is the only
remaining current candidate. In general, the security of Cayley hashes depends on the
hardness in general of the factorization problem, which remains a big open problem.

The efficiency of Cayley hashes depends on specific parameters: The Tillich–
Zémor hash function is the most efficient expander hash, but it is still 10–20 times
slower than the standard classical hash SHA. Computation in Cayley hashes can be
easily parallelized, which could be a major benefit in applications. We outline a hash
function based on the Tillich–Zémor hash function [1] which is resistant to known
methods of attack and which is efficient in computation.

1.3 Possible Attacks

The mathematical structure of Cayley hash functions leaves them vulnerable to at-
tacks which exploit this structure.

An important category of attack is the subgroup attack. A probabilistic attack
was devised by Camion [2], based on the search for text whose hashcode falls into
a subgroup.

A second important category of attack is the lifting attack. Let us illustrate how a
lifting attack works with an example. LetG = SL(2,Fp). There is a natural map, the
reduction modulo p map, from SL(2,Z) to SL(2,Fp). A lifting attack for SL(2,Fp)

will “lift” the generators of SL(2,Z) and then try to “lift” the element to be factored
on the subgroup of SL(2,Z) generated by the lifts of the generators. Generally, if
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a factorization exists, it is easier to find over Z rather than over Fp, since properly
chosen generators of an infinite group will give us unique factorization. Once a fac-
torization overZ has been obtained, reducing modulo p provides a factorization over
Fp. The most difficult part of the lifting attack is the lifting itself. For a specific ex-
ample of how the lifting attack works in the case of the Tillich–Zémor hash function,
see [16].

2 Hashing with Matrices

Hashing with matrices refers to the idea of using a pair of matrices, A and B (over
a finite ring) to hash the “0” bit and the “1” bit, respectively. Then, an arbitrary bit
string is hashed by using multiplication of matrices. So, the bit string 1001101 is
hashed to the matrix BA2B2AB.

Oneway to help ensure the requirements ofDefinition 1 is to use a pair of elements,
A and B, of a semigroup S such that the Cayley graph of the semigroup generated
by A and B is an expander graph. The most popular implementation of this idea is
the Tillich–Zémor hash function [17].

The use of the special linear group SL(2,Fp) of 2 × 2matrices with determinant 1
over a finite field Fp is a promising choice for devising hash functions. To begin with,
we can choose simple matrices as generators, which yield a fast hash: Multiplication
by such a matrix amounts to a few additions in Fp. Cayley graphs over SL(2,Fp)

also have good expanding properties; see Sarnak [15], Lafferty and Rockmore [7],
and Margulis [9, 10].

3 Hashing with G = SL(2,F p)

Another idea is to use A and B over Zwhich generate a free monoid and then reduce
the entries modulo a large prime p to get matrices over Fp. Here, we have a lower
bound on the length of bit string where a collision may occur, since there cannot be
an equality of positive products of A and B unless at least one of the entries in at
least one of the products is at least p. The bound is on the order of log p.

We investigate the Cayley graphs of SL(2,Fp) generated by

A(n) =
(
1 n
0 1

)

, B(n) =
(
1 0
n 1

)

,

where n = 2, 3, respectively, and p is a large prime. Particularly, we show their
application to hashing.

The main difference is the difference between the group generated by A(n) and
B(n) and the monoid generated by A(n) and B(n).
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3.1 The Base Case

A pair of matrices over Z which generate a free monoid is

A(1) =
(
1 1
1 0

)

, B(1) =
(
1 0
1 1

)

.

Note that these matrices as generators of the group SL(2,Fp) have a Cayley graph
which forms an expander, so they are good candidates for the basis of a hash function.
Note also that these matrices are invertible and thus actually generate the group
SL(2,Z). This group is not free, but the monoid generated by A(1) and B(1) is free.
Since only positive powers are used in hashing, this is all we need.

However, since A(1) and B(1) generate all of SL(2,Z), we can use a lifting
attack on the corresponding hash function: A collision is found using the Euclidean
algorithm on the entries of a matrix; see [16]. In short, it is readily seen that a
short factorization of the identity over SL(2,Fp) produces collisions. To find such a
factorization, the strategy is to reduce the problem to factoring in an infinite group:
in this case, the group SL(2,Z). Find a matrixU in SL(2,Z) which reduces modulo
p to the identity and which can be expressed as a product of A(1)s and B(1)s. In
this case, that means that we only require U to have nonnegative coefficients. Then,
we use the Euclidean algorithm, which is an efficient way to obtain the factorization
of U .

For this attack to be effective, there must be a way of finding such a matrix
U . Tillich and Zémor [16] describe a probabilistic algorithm which does this. It is
based on the fact that the set of matrices of SL(2,Z) with nonnegative coefficients
is “dense.”

To protect against such attacks, one should choose a set of generators that generate
a sufficiently sparse submonoid of the infinite group associated with SL(2,Fp).
Tillich and Zémor proposed using the matrices

A =
(

α 1
1 0

)

, B =
(

α α + 1
1 1

)

,

where computations are made in the quotient field F2n = F2/〈p(x)〉, where p(x) has
degree n and α is a root of p. See [17] for details on the implementation of this hash.

Tillich and Zémor use matrices A, B from the group SL(2, R), where R is a
commutative ring defined by R = F2[x]/(p(x)). They took p(x) to be the irreducible
polynomial x131 + x7 + x6 + x5 + x4 + x + 1 over F2[x]. Thus, R is isomorphic to
F2n , where n is the degree of the irreducible polynomial p(x). Then, the matrices A
and B are

A =
(
1 1
1 0

)

, B =
(
1 0
1 1

)

.
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This hash function was published in 1994 [17], but there have been several recent
attacks. In 2010, Petit and Quisquater [12] describe a preimage attack; in 2011,
Grassl, Ilic, Magliveras and Steinwandt [6] describe a collision attack.

3.2 Hashing with A(2) and B(2)

In this section, we outline circuits in the Cayley graph of SL(2,Fp) with generating
set A(2), B(2), as presented in [1]. Note that these matrices also correspond to a
Cayley graph which forms an expander graph.

We begin by noting that the lifting attack on the hash function depending on A(1)
and B(1) described above is the only published attack on that hash function. This
particular attack does not work with A(2), B(2). In particular, this gives evidence of
the security of using these matrices for hashing over Fp for a large prime p.

First, we need to justify why these matrices are better candidates than A(1) and
B(1). Recall that when considered as matrices over Z, A(1) and B(1) generate (as a
monoid) the entire monoid of 2 × 2matrices overZwith positive entries, SL(2,Z+).

However, this is not the case with A(2) and B(2).

Theorem 1 Sanov [14]

(1) The group generated by

A(2) =
(
1 2
0 1

)

, B(2) =
(
1 0
2 1

)

,

is a free group.
(2) The subgroup of SL(2,Z) generated by A(2) and B(2) consists of all invertible

matrices of the form (
1 + 4m1 2m2

2m3 1 + 4m4

)

, (*)

where the mi are integers.

This does not say much about themonoid generated by these matrices, though. In
fact, a generic matrix of the form above would not belong to this monoid. This is true
for two reasons: First, by another result of Sanov [14], the matrices A(2) and B(2)
generate a free group. Second, the number of matrices in the above form which are
representable by positive words is negligible. In fact, the number of distinct elements
represented by all freely reducible words in A(2) and B(2) of length n ≥ 2 is 4 · 3n−1,
while the number of distinct elements represented by positive words of length n ≥ 2
is 2n .

Tillich and Zémor’s lifting attack can still give an efficient algorithm which finds
relations of length O(log p) in the group generated by A(2) and B(2) considered as
matrices over Fp. Note that it does not affect the security of the hash function based
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on A(2) and B(2) since only positive powers of A(2) and B(2) are used, and the
group relations produced by the algorithm will involve both negative and positive
powers with overwhelming probability.

Theorem 2 (Bromberg, Shpilrain and Vdovina [1, Theorem 1]) There is an efficient
heuristic algorithm that finds particular relations of the form w(A(2), B(2)) = 1,
where w is a group word of length O(log p), and the matrices A(2) and B(2) are
considered over Fp.

3.3 Girth of the Cayley Graph Generated by A(k) and B(k)

For hashing, we use only positive powers, so we need only to consider products of
positive powers of A(k) and B(k). We note that entries in a matrix of a length n
product of positive powers of A(k) and B(k) grow faster (as functions of n) in the
alternating product of A(k) and B(k). This is formalized below.

Proposition 2 ([1, Proposition 1]) Let wn(a, b) be an arbitrary positive word of
even length n, and let Wn = wn(A(k), B(k)) with k ≥ 2. Let Cn = (A(k) · B(k))n/2.
Then:

(1) The sum of entries in any row of Cn is at least as large as the sum of entries in
any row of Wn.

(2) The largest entry of Cn is at least as large as the sum of entries of Wn.

Lemma 1 ([1, Lemma 1]) Let (x, y) be a pair of positive integers, x �= y, and let
k ≥ 2. One can apply transformations of the following two kinds: Transformation R
takes (x, y) to (x, y + kx); transformation L takes (x, y) to (x + ky, y). Among all
sequences of these transformations of the same length, the sequence where R and L
alternate results in:

(1) The largest sum of elements in the final pair;
(2) The largest maximum element in the final pair.

Thus, we consider powers of the matrix

C(k) := A(k)B(k) (1)

to get to entries larger than p “as quickly as possible.”

3.3.1 Powers of C(2)

As seen in the work of the authors, Shpilrain and Vdovina [1], there are no collisions
of the form

u(A(2), B(2)) = v(A(2), B(2))
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if positive words u and v are of length less than log√
3+√

8
p. In particular, the girth

of the Cayley graph of the semigroup generated by A(2) and B(2) (considered as
matrices over Fp) is at least log√3+√

8
p.

The base of the logarithm here is
√
3 + √

8 ≈ 2.4. Thus, for example, if p is on the
order of 2256, then there are no collisions of the form u(A(2), B(2)) = v(A(2), B(2))
if positive words u and v are of length less than 203.

3.3.2 Powers of C(3)

If we consider the matrices A(3) and B(3) as generators of SL(2,Fp), there are no
collisions of the form

u(A(3), B(3)) = v(A(3), B(3))

if positive words u and v are of length less than 2 log 11+√
117

2
p = log√

11+√
117

2

p. In

particular, the girth of the Cayley graph of the semigroup generated by A(3) and
B(3) (considered as matrices over Fp) is at least log√

11+√
117

2

p.

The base of the logarithm here is
√

11+√
117

2 ≈ 3.3. For example, if p is on the

order of 2256, then there are no collisions of the form u(A(2), B(2)) = v(A(2), B(2))
if positive words u and v are of length less than 149.

3.4 Conclusions

First, the lifting attack by Tillich and Zémor [16] which produces explicit relations of
lengthO(log p) in themonoid generated by A(1) and B(1) can be used in conjunction
with Sanov’s result [14] and some results from [5] to efficiently produce relations of
length O(log p) in the group generated by A(2) and B(2). Generically, the relations
produced by this method will involve both positive and negative powers of A(2) and
B(2). Therefore, this method does not produce collision for the corresponding hash
function, since the hash function only uses positive powers of A(2) and B(2).

Since there is no known analog of Sanov’s result for A(3) and B(3), at this time
there is no known efficient algorithm for even producing relations of length O(log p)
in the group generated by A(3) and B(3), let alone in the monoid. We note that by
the pigeonhole principle, such relations do in fact exist.

We have computed an explicit lower bound of logb p for the length of relations in
the monoid generated by A(2) and B(2), where b ≈ 2.4. For the monoid generated
by A(3) and B(3), we have a similar lower bound with base b ≈ 3.3.

We conclude that at this time, there are no known attacks on hash functions
corresponding to the pair A(2) and B(2) nor on the pair A(3) and B(3). Therefore,
there is no visible threat to their security.
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3.5 Problems for Future Research

We list here some problems for future research on these Cayley hash functions.

1. Find a description, similar to Sanov’s, formatrices in themonoid generated by A(2)
and B(2) over Z.

2. Find an analog of “Sanov’s form” for the subgroup of SL(2,Z) generated by
A(3), B(3).

3. Determine which words in the matrices A(1), B(2) will have the fastest growth of
their entries, i.e., find analogs to Proposition 2 and Lemma 1.

This problem is of interest because if we can show the alternating product again
has fastest growth, then a similar calculation as was done for A(2), B(2) and for
A(3), B(3) would show a lower bound with a smaller base. This means that the base
of the logarithm is

√
2 + √

3,which is about 1.93. So thiswouldmean that for p on the
order of 2256, there will be no collisions of the form u(A(1), B(2)) = v(A(1), B(2))
if positive words u and v are of length less than 269 = log√

2+√
3
(p). This is a

stronger bound than for either the A(2), B(2) case or the A(3), B(3) case.

4 Computations and Efficiency

In this section, we include results of some experiments done to test the efficiency of
the hashes proposed in [1]. We hash with 2 × 2 matrices over Fp for a large prime
p.

We conducted several tests, performed on a computer with an Intel Core i7 quad-
core 4.0GHz processor and 16 GB of RAM, running Linux Mint version 17.1 with
Python version 3.4.1 and NumPy version 1.9.1.

Working with 2 × 2 matrices over a large field Fp for large prime p, we note
that multiplication of the matrices themselves is quite fast (can be done in 7 mul-
tiplications), but reduction modulo p takes more work. To test the efficiency with
multiplication in SL2(Fp), we conducted two experiments, both with p = 2127 − 1.
In the first, we chose a random number between 1 and 1,000,000, found a matrix M
as a word in A(2) and B(2) of that length, and then computed that it took approxi-
mately 80 ms to compute M10,000. In the second experiment, we determined that it
took approximately 30 milliseconds to compute a matrix as a word of length 10,000
in A(2) and B(2) over F2127−1.

For comparison, see [3] for performance results of various cryptographic func-
tions. In particular, SHA-512 hashes approximately 99 MiB/second (MiB stands
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for mebibyte, and 1 MiB = 220 bytes) and so this is roughly 108 bytes per second.
Our proposed hash (the second experiment) also hashes approximately 108 bytes per
second. Moreover, SHA-512 has been optimized; our hash performs at this speed
without any optimization. For instance, our computations involve performing the
reduction modulo p at each step.

Also, our computation can be parallelized, whereas SHA-512 (and others in the
SHA family) cannot. This is because our bit strings can be broken up into smaller
parts, hashed, and then “put back together”: For instance, if H denotes the hash func-
tion, and the message M = ABC , then H(M) = H(ABC) = H(A)H(B)H(C).
This is not true with SHA hashes.
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Numerical Sets, Core Partitions, and Integer
Points in Polytopes
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Abstract We study a correspondence between numerical sets and integer partitions
that leads to a bijection between simultaneous core partitions and the integer points of
a certain polytope. We use this correspondence to prove combinatorial results about
core partitions. For small values of a, we give formulas for the number of (a, b)-
core partitions corresponding to numerical semigroups. We also study the number
of partitions with a given hook set.

Keywords Numerical semigroups · Numerical sets · Core partitions
Simultaneous core partitions · Hook sets of partitions

1 Introduction

A large number of recent papers have studied statistical questions about sizes of
simultaneous core partitions [1, 2, 5, 11, 14, 19, 25, 26, 28–31]. One of the larger
successes in this area is Johnson’s proof of Armstrong’s conjecture, which we state
as Theorem 3 below [19]. Broadly, these problems address questions of the following
type: Given a finite set of partitions, for example, the set of simultaneous (a, b)-core
partitions, what can we say about statistical properties of their sizes? We use a cor-
respondence between numerical sets and partitions to study these types of questions
for partitions coming from families of numerical semigroups and for partitions with
a fixed hook set.
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Fig. 1 Young diagram and hook lengths of the partition (4, 2, 2). This partition is both a 4-core
and a 7-core

We first briefly introduce some notation necessary to explain our main results. A
partition λ of n is a sequence of positive integers λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 whose
sum is n. We refer to the λi as the parts of the partition λ. We represent a partition
by its Young diagram, a series of left aligned rows of boxes in which there λi boxes
in row i . For any box of the Young diagram, its hook length is the number of boxes
directly to the right of it, plus the number of boxes directly below it, plus one for the
box itself. We denote by H(λ) and H(λ) the hook set and hook multiset of λ—the
set and multiset of hook lengths, respectively (Fig. 1)

Hook lengths play an important role in the representation theory of the symmetric
group. For example, the Frame-Robinson-Thrall hook-length formula [15] expresses
the dimension of the irreducible representation πλ of Sn corresponding to a partition
λ of n:

dim πλ = n!
∏

h∈H(λ) h
.

A partition λ of n with no hook lengths divisible by a is called an a-core partition
or more simply, an a-core. When a is prime the corresponding irreducible represen-
tations have maximal a-adic valuation and play a role in the modular representation
theory of Sn [17].

There has been an explosion of recent papers studying enumerative questions
about special classes of a-core partitions. The set of a-cores is clearly infinite but the
number of partitions that are both a-cores and b-cores, simultaneous (a, b)-cores,
is finite. Similarly, an (a1, a2, . . . , ak)-core partition is an ai -core for all i ∈ [1, k].
Anderson gives a nice formula for the number of simultaneous (a, b)-core partitions
by establishing a bijection with a certain set of Dyck paths.

Theorem 1 [3, Theorem 1]For coprime a and b, the number of simultaneous (a, b)-
core partitions is 1

a+b

(a+b
a

)
.

It is natural to ask about the sizes of the partitions making up this finite set. A
formula for the size of the largest simultaneous (a, b)-core partition was first given
by Olsson and Stanton.

Theorem 2 [24, Theorem 4.1] For relatively prime positive integers a and b, the
largest (a, b)-core has size (a2 − 1)(b2 − 1)/24. Moreover, there is a unique (a, b)-
core of this size.

Different proofs have been given by Tripathi [27] and Johnson [19].
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In 2011, Armstrong conjectured that the average size of an (a, b)-core partition
has a simple relation to the maximum size [5]. This conjecture was proven in the
special case where b = a + 1 by Stanley and Zanello [25] and more generally when
b ≡ 1 (mod a) byAggarwal [1]. The conjugate of a partitionλ = (λ1, . . . ,λk) is the
partition λ̃ = (λ′

1, . . . ,λ
′
�) where λ′

j is the number of parts of λ ≥ j . This partition
comes from exchanging the rows and columns of the Young diagram of λ. A partition
is self-conjugate if it is equal to its conjugate. Armstrong’s conjecture was proven
for self-conjugate (a, b)-cores by Chen, Huang, and Wang [11]. After these partial
results, the full conjecture was proven by Johnson [19]. Another proof was given by
Wang [28].

Theorem 3 [19, Theorem 1.7] For relatively prime positive integers a and b, the
average size of an (a, b)-core partition is (a + b + 1)(a − 1)(b − 1)/24.

Johnson’s work [19] is of special interest to us because he proves Theorem 3 by
studying a bijection of a-core partitions with the lattice

Aa−1 =
{

(x1, . . . , xa) ∈ Z
a :

a∑

i=1

xi = 0

}

under which the simultaneous (a, b)-cores correspond to the integer points of a
rational simplex. This bijection is given by the “signed abacus construction.” Under
this bijection, the size of a partition is given by a certain quadratic function [19].
Johnson’s works also gives the ability to compute higher moments of the distribution
of the sizes of simultaneous (a, b)-cores, a problem also addressed in [14]. Thiel
and Williams also consider these higher moments and extend this approach to affine
Weyl groups [26].

Our approach is similar to Johnson’s in that we study a correspondence between
simultaneous (a, b)-core partitions and the integer points of a rational polytope;
however, we do not use the abacus construction. Instead, we study a bijection ϕ
between partitions and numerical sets, subsets of N = {0, 1, 2, . . .} that contain 0
and have finite complement. A numerical set that is closed under addition is called a
numerical semigroup. The bijection is given by considering the profileof a partitionλ,
the sequence of southmost and eastmost edges of its Young diagram. These steps are
labeled by elements ofN starting with the lower left corner of the Young diagram and
moving to the upper right where the vertical steps exactly correspond to the elements
of the complement of the associated numerical set. This bijection is explained in
detail in [21] and is related to the Dyck path construction in [10]. The number of
parts in the partition is equal to the size of the complement of the numerical set, and
the hook set can be easily calculated from the numerical set. Moreover, Keith and
Nath use this bijection and basic facts about numerical sets to show the following.

Theorem 4 [21, Theorem 1] Let a1, . . . , ak be distinct positive integers. The number
of simultaneous (a1, . . . , ak)-cores is finite if and only if gcd{a1, . . . , ak} = 1.

Another proof of this result is given in [29]. In Sect. 4, we show something
stronger that when gcd{a1, . . . , ak} = 1 the bijection ϕ takes the set of simulta-
neous (a1, . . . , ak)-cores to the lattice points of a rational polytope whose defining
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half-spaces we explicitly describe. In general, it is still an open problem to give for-
mulas for the number of such points in terms of a1, . . . , ak . The particular cases of
(s, s + 1, s + 2)-cores and (s, s + 1, . . . , s + k)-cores have been addressed in [31]
and [2], respectively.

We use results of Marzuola and Miller about the atom monoid associated to a
numerical set [23] along with the Kunz coordinate vector of a numerical semigroup,
described by Blanco and Puerto in [8], to give further bijections involving a-cores.
The atom monoid of a numerical set T is defined by

A(T ) = {n ∈ N : n + T ⊆ T }.

Note that A(T ) ⊆ T since 0 ∈ T , and A(T ) = T if and only if T is a numerical
semigroup. The atom monoid is always closed under addition, so in some sense
A(T ) is the underlying numerical semigroup of T . For a numerical semigroup S
containing a, the associated Apéry tuple is Ap(S) = (x1, . . . , xa−1) ∈ N

a−1, where
axi + i is the smallest element of the numerical semigroup congruent to i mod a. The
Apéry set of S is {0, ax1 + 1, . . . , axa−1 + a − 1}. The definition of Ap(S) depends
on a, but the specific value of a we choose will always be clear from context. We can
directly extend this definition to numerical sets T with a ∈ A(T ). We summarize
our bijections as a proposition that we prove in Sect. 3.

Proposition 1 The map ϕ described above gives a bijection between the set of a-
core partitions and the set of numerical sets T with a ∈ A(T ). The map taking a
numerical set T with a ∈ A(T ) to its Apéry tuple gives a bijection between these
numerical sets and N

a−1.

We then use these correspondences to answer enumerative questions about hook
sets of partitions. For example, we give another proof of the following result of Berg
and Vazirani.

Proposition 2 [7, Proposition 3.1.4] The number of a-cores with g parts is equal
to the number of (a − 1)-cores with less than or equal to g parts.

Both Johnson and Chen, Huang, and Wang give proofs that the self-conjugate
(a, b)-core partitions have the same average size as the set of all (a, b)-core partitions
[11, 19]. It is natural to ask whether sizes of other subfamilies of (a, b)-cores have
similar statistical properties. We focus on two particular cases; (a, b)-cores that
correspond to numerical semigroups under the map ϕ, and the set of all partitions
with a given hook set. Computational evidence suggests that the average size of an
(a, b)-core corresponding to a numerical semigroup is not equal to the average size
of all (a, b)-cores.

In this setting, we do not even have an analoge of Anderson’s theorem on the
number of these partitions. This is equivalent to asking for the number of semi-
groups containing a and b. For a set of nonnegative integers n1, . . . , nt , we define
the numerical semigroup generated by them to be
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〈n1, . . . , nt 〉 =
{

t∑

i=1

aini | ai ∈ N

}

.

Note that any semigroup containing a and b also contains 〈a, b〉. A semigroup T
containing a numerical semigroup S is called an oversemigroup of S. Let O(S)

denote the number of oversemigroups of S. Using a characterization due to Branco,
García-García, García-Sanchez, and Rosales for when an Apéry tuple corresponds
to a numerical semigroup we show that O(〈a, b〉) is equal to the number of lattice
points in a certain rational polytope [9]. Hellus and Waldi have also studied this
problem, giving formulas for small a and bounds for the general case [18]. We state
their main result as Theorem 8.

We give our own calculations for a ≤ 4 using using different methods.

Theorem 5 If S = 〈3, 6k + �〉 with � ∈ {1, 2, 4, 5}, then

O(S) = (3k + �)(k + 1).

Theorem 6 Suppose that S = 〈4, 12k + �〉 with � ∈ {1, 3, 5, 7, 9, 11}. Then O(S)

is given by the following chart:

� O(S)

1 24k3 + 30k2 + 11k + 1
3 24k3 + 42k2 + 23k + 4
5 24k3 + 54k2 + 39k + 9
7 24k3 + 66k2 + 59k + 17
9 24k3 + 78k2 + 83k + 29
11 24k3 + 90k2 + 111k + 45

It is not difficult using the bijection ϕ to show that the hook set of a partition is
always the complement of a numerical semigroup. LetN � S denote the complement
of some numerical semigroup S. If a and b are not in N � S then any partition with
this hook set is a simultaneous (a, b)-core. In order to study statistical questions
about sizes of partitions with a given hook set, we would first like to understand
how many partitions have this hook set. We call this number P(S). We investigate
how the properties of S affect the behavior of this function, giving some results
and suggesting questions for future work. The Frobenius number of a numerical set
T is the largest element of its complement and is denoted F(T ). The size of the
complement is called the genus of T , and the elements of the complement are called
the gaps of T . These concepts play important roles in our analysis of this problem.

The study of the set of partitions with a given hook set fits in nicely with previous
work of Chung and Herman [12], and of Craven [13], on partitions with equal hook
multisets. In [12], the authors show that a partition is uniquely determined up to
reflection by its extended hook multiset, in which hook lengths can take negative
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values. However, they also show that arbitrarily many distinct partitions can have the
same hook multiset. This result has been vastly generalized by Craven.

Theorem 7 [13, Theorem1.4]Let k and �be natural numbers. The for all sufficiently
large n, there are k disjoint sets of � partitions of n, such that all of the � partitions in
each set have the same multiset of hook numbers, and distinct sets contain partitions
with different hook numbers, and moreover different products of hook numbers.

Craven proves this result by defining certain classes of partitions called enveloping
partitions that have the same hook multiset as many other partitions. It is natural to
ask what are the properties of the numerical semigroups giving the underlying hook
sets of these partitions that make them suitable for this construction. We focus on the
opposite extreme. A numerical set T is called symmetric if for every i ∈ [0, F(T )]
exactly one of i, F(T ) − i is in T . We prove that there is a unique partition with
a given hook set if and only if that hook set is the complement of a symmetric
numerical semigroup.We also investigate the relationship between the function P(S)

and the number of missing pairs of S, that is, the number of pairs i, F(S) − i in the
complement of S with i ∈ [0, F(S)/2].

We conclude the paper by discussing some asymptotic questions and conjectures
based on computational evidence.

2 The Correspondence Between Numerical Sets
and Partitions

We first explain the bijectionϕ introduced in the previous section connecting numer-
ical sets to partitions and use it to find the relationship between atom monoids and
hook sets. We begin with an example.

Example 1 Let T = {0, 1, 4, 5, 7,→}, where “→” means that T contains every
integer greater than 7, as in the conventions of [16]. Clearly T is a numerical set with
F(T ) = 6, g(T ) = 3, and A(T ) = {0, 4, 5, 7,→}.

Given a numerical set T , we construct a partition ϕ(T ) such that the map ϕ is a
bijection from numerical sets to partitions. We constructϕ(T ) by defining the profile
of its Young diagram. We can think of this path as lying in Z

2 with the bottom left
corner of the Young diagram at the origin. Starting with n = 0:

• if n ∈ T draw a line of unit length to the right,
• if n /∈ T draw a line of unit length up,
• repeat for n + 1.

For any n greater than the Frobenius number of T we draw a line to the right. As
T is a numerical set this process ends with an infinite set of steps to the right. We
disregard this section, forming the Young diagram with this profile walk, the line
x = 0, and this horizontal line. The construction is understood most clearly with an
example.



Numerical Sets, Core Partitions, and Integer Points in Polytopes 105

Example 2 If T = {0, 1, 4, 5, 7,→}, then ϕ(T ) = (4, 2, 2):

0 1

4 5

7 8

0 1

4 5

6 5 2 1

3 2

2 1
0 1

4 5

Seeing that ϕ is a bijection is simple: to find the inverse image of a partition λ
label the profile of the Young diagram as above, starting with 0. The complement of
the numerical set ϕ−1(λ) consists of the positive integers labeling the vertical steps
of the profile.

We give some basic properties of ϕ here, some of which might be evident from
the example. These results are clear from [21], but we include them with proofs for
completeness.

Proposition 3 Given a numerical set T , the hook multiset of ϕ(T ) is

H(ϕ(T )) = {n − t : n /∈ T, t ∈ T, n > t}.

Proof Consider a box B in the Young diagram of ϕ(T ) such that B is in the same
column as the horizontal step on the profile associated to t ∈ T in the construction
of ϕ(T ), and the same row the vertical step associated to n /∈ T .

Recall that the hook of B is the set of boxes to the right (the “arm”), the set of
boxes below (the “leg”), and B itself. Counting steps along the profile shows that
n − t is the hook length of B. ��
Proposition 4 Given a numerical set T , the hook set of ϕ(T ) is the complement of
its atom monoid: H(ϕ(T )) = N � A(T ).

Proof By Proposition 3, this amounts to proving that N � A(T ) = D, where D =
{n − t : n /∈ T, t ∈ T, n > t}.

Suppose x ∈ N � A(T ), so x + t /∈ T for some t ∈ T . This implies (x + t) − t =
x ∈ D. Conversely, if x ∈ D then x = n − t for some n /∈ T and t ∈ T . This implies
x + t = n /∈ T , so x ∈ N � A(T ). ��
Remark 1 In particular, since ϕ is bijective, Proposition 4 shows that the hook set
of any partition is the complement of a numerical semigroup. This implies that a
partition is an a-core if and only if a is not in its hook set, a simpler condition than
having no hook lengths divisible by a.

3 The Correspondence of a-Cores and N
a−1

In this section, we use the bijection between a-core partitions and N
a−1 to prove

several combinatorial results. This correspondence comes from taking the Apéry
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tuple of the numerical set associated to an a-core partition via the map ϕ. By
Proposition 4, a partition λ is an a-core if and only if the atom monoid of ϕ−1(λ)

contains a. For a ∈ A(T ), we have n + a ∈ T for any n ∈ T , which means that if
xi ∈ Ap(T ), xi + ka ∈ T for any k ∈ N. This shows that the Apéry set and Apéry
tuple uniquely determine a numerical set whose atom monoid contains a.

Consider (x1, . . . , xa−1) ∈ N
a−1 and the associated numerical set T = {axi + i +

ma : m ∈ N, 1 ≤ i ≤ a − 1}. We see that a ∈ A(T ) and Ap(T ) = (x1, . . . , xa−1).
Hence N

a−1 is in bijection with numerical sets whose atom monoid contains a.
In summary, we have the following one-to-one correspondences:

{
a-core

partitions

}

←→
⎧
⎨

⎩

numerical sets
whose atom monoid

contains a

⎫
⎬

⎭
←→

{
the tuples
ofN

a−1

}

,

completing the proof of Proposition 1. Note that the origin of N
a−1 corresponds with

the numerical set T = N, which corresponds with the empty partition, an a-core for
any a.

Recall that the Frobenius number F(T ) of the numerical set T is the maximum
element of its complement. Note that F(T ) /∈ A(T ) but n ∈ A(T ) for any n > F(T ).
By Proposition 4, the maximum hook length of ϕ(T ) is F(T ). Also, if a ∈ A(T )

and Ap(T ) = (x1, . . . , xa−1), then F(T ) = max{axi + i − a}. The above bijection
allows us to easily compute the number of a-core partitions by maximum hook
length.

Proposition 5 For 1 ≤ � ≤ a − 1, the number of a-core partitions with maximum
hook length ak + � is (k + 2)�−1(k + 1)a−�−1.

Proof The a-core partitions with maximum hook length ak + � are those for which
max{axi + i − a} = ax� + � − a where x� = k + 1. This implies x� > xi for any
i > �, and x� ≥ xi for any i < �. Therefore, such partitions are in bijection with
choices for the xi satisfying xi ∈ [0, k] for any i ∈ [� + 1, a − 1] and xi ∈ [0, k + 1]
for any i ∈ [1, � − 1]. ��
Proposition 6 For any k ∈ N, the number of a-core partitions with maximum hook
length less than ak is (k + 1)a−1.

Proof An a-core partition λ has maximum hook length less than ak if and only if
max{axi + i − a} < ak, where (x1, . . . , xa−1) is the Apéry tuple of the correspond-
ing numerical set. This holds if and only if xi ≤ k for each i . Therefore, the a-core
partitions with maximum hook length less than ak are those which correspond with
the lattice points of [0, k]a−1 ⊂ N

a−1. ��
We can similarly find the number of a-cores with a fixed number of parts. The

construction of ϕ(T ) from T shows that the number of parts is equal to the size of
N � T . So the number of parts of ϕ(T ) is equal to g(T ).



Numerical Sets, Core Partitions, and Integer Points in Polytopes 107

Proposition 7 The number of a-core partitions with g parts is
(
g+a−2
a−2

)
.

Proof Suppose a ∈ A(T ) andAp(T ) = (x1, . . . , xa−1). If n ≡ i (mod a) then n ∈ T
if and only if n ≥ axi + i . Therefore, the genus of T is x1 + · · · + xa−1, and the
number of a-cores with g parts is equal to the number of points of the simplex
(x1, . . . , xa−1) ∈ N

a−1 such that x1 + · · · + xa−1 = g. It is well known that there are(
g+a−2
a−2

)
such points. ��

Proposition 8 The number of a-core partitions with less than or equal to g parts is(
g+a−1
a−1

)
.

Proof The number of numerical sets T with a ∈ A(T ) and genus less than or
equal to g is the number of points (x1, . . . , xa−1) ∈ N

a−1 such that x1 + · · · +
xa−1 ≤ g. Counting these points is the same as counting the number of points
(x1, . . . , xa−1, y) ∈ N

a such that x1 + . . . + xa−1 + y = g. Therefore, there are(
g+a−1
a−1

)
such points. ��

These two results together give another proof Berg and Vazirani’s Proposition 2
stated in the introduction [7].

Since the conjugate of an a-core partition is also an a-core, the number of a-cores
with g parts is equal to the number of a-cores with largest part g. Hence, Propositions
2, 7, and 8, may be restated with “largest part g” in place of “g parts.”

We close this section by giving another interpretation of [19, Theorem 1.9] where
Johnson relates the size of a partition corresponding to a quadratic function evaluated
at the associated lattice point. Since our correspondence between core partitions and
lattice points is different we get a different function, but the ideas are similar.

Proposition 9 Let T beanumerical setwitha ∈ A(T )andAp(T ) = (x1, . . . , xa−1).
Then the size of the partition ϕ(T ) is

Fa(x1, . . . , xa−1) = a

2

a−1∑

i=1

xi (xi − 1) +
a−1∑

i=1

i xi − 1

2

(
a−1∑

i=1

xi

)(

−1 +
a−1∑

i=1

xi

)

= a − 1

2

a−1∑

i=1

x2i +
a−1∑

i=1

(

i − a − 1

2

)

xi −
∑

1≤i< j≤a−1

xi x j .

Proof In the proof of Proposition 8, we noted that the genus of a numerical set
T is the sum of the elements of the corresponding Apéry tuple. As noted above,
the number of parts of ϕ(T ), which is equal to the number of rows of its Young
diagram, is given by the genus of T . By Proposition 3, the hooks in the first column
of the Young diagram are exactly the elements of N � A(T ). By the definition of a
hook, the sum of these hook lengths is almost the size of ϕ(T ), except that we have
overcounted the i th box from the top i − 1 times. This means we have overcounted
(g(T ) − 1)g(T )/2 boxes in the Young diagram and the size of ϕ(T ) is the sum of
the gaps of T minus (g(T ) − 1)g(T )/2.
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If axi + i is the smallest element of T congruent to i (mod a), then the sum of
gaps congruent to i is

xi−1∑

n=0

an + i = axi (xi − 1)

2
+ i xi .

Summing over all i ∈ [1, a − 1] and using g(T ) = ∑a−1
i=1 xi completes the proof. ��

4 The (a, b)-Core Polytope

In this section, we use the bijections of Proposition 1 to prove Theorem 4 and the
stronger result that simultaneous (a, b1, . . . , bm)-core are in bijection with lattice
points of a polytope that we define below. For now, we do not necessarily assume
that gcd(a, b) = 1 but we do assume that a � b. Suppose that b = ak + � where
� ∈ [1, a − 1] and that T is a numerical set such that ϕ(T ) is an a-core partition
with Apéry tuple Ap(T ) = (x1, . . . , xa−1). By the remark following Proposition 4,
ϕ(T ) is a b-core partition if and only if b ∈ A(T ), which is true if and only if
axi + i + b ∈ T for all i ∈ [1, a − 1].

If i + � < a then axi + i + b ∈ T if and only if axi + i + b ≥ axi+� + (i + �).
Similarly, if i + � > a then axi + i + b ∈ T if and only if axi + i + b ≥ axi+�−a +
(i + � − a). Therefore,ϕ(T ) is a b-core if and only if Ap(T ) satisfies the inequalities

x� ≤ k,

xi+� ≤ k + xi , if i + � < a,

xi+�−a ≤ k + xi + 1, if i + � > a,

xi ≥ 0.

Let Pa,b ⊆ R
a−1 be the region defined by the intersection of these half-spaces. This

is a rational polyhedral cone and is a rational polytope if and only if it is bounded,
which is true if and only if gcd(a, b) = 1. We now state and prove a more general
result.

Proposition 10 Suppose gcd(a, b1, . . . , bm) = 1 where we write b j = ak j + � j for
each j ∈ [1,m] with � j ∈ [1, a − 1]. There is a bijection between (a, b1, . . . , bm)-
core partitions and the integer points of the polytope defined by the following inequal-
ities:

x� j ≤ k j , (1)

xi+� j ≤ k j + xi , if i + � j < a, (2)

xi+� j−a ≤ k j + xi + 1, if i + � j > a, (3)

xi ≥ 0 for i ∈ [1, a − 1], (4)

where we have one set of inequalities (1), (2), and (3) for each j ∈ [1,m].
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Proof Let Q be the intersection of the half-spaces defined by these inequalities
and note that Q = ⋂m

j=1 Pa,b j . The lattice points of this region are in bijection
with (a, b1, . . . , bm)-cores, so we need only show that Q is bounded. Suppose
(x1, . . . , xa−1) ∈ Q with each xi a nonnegative integer. We give an upper bound
on each xi that depends only on a, b1, . . . , bm , which completes the proof.

Since (x1, . . . , xa−1) satisfies (1) for each j ∈ [1,m], we see x� j ≤ k j . After rein-
dexing, (2) implies xi ≤ k j + xi−� j if i > � j , and (3) implies xi ≤ k j + 1 + xi−� j+a

if i < � j . Hence
xi ≤ k j + 1 + xi−� j (mod a)

, for each j ∈ [1,m]where we write xi (mod a) as shorthand for xi ′ where i ′ ∈ [1, a −
1] and i ′ ≡ i (mod a). Therefore

x� j1+� j2 (mod a) ≤ k j1 + 1 + x� j2
≤ k j1 + k j2 + 2.

Proceeding by induction, if s = ∑m
j=1 y j� j for some y1, . . . , ym ∈ N then

xs (mod a) ≤
m∑

j=1

y j (k j + 1).

Since gcd(a, b1, . . . , bm) = 1, for each i ∈ [1, a − 1] there exist nonnegative inte-
gers y1, . . . , ym such that

∑m
i=1 y j� j ≡ i (mod a). This gives an upper bound on

each xi depending only on a, b1, . . . , bm . ��
In particular, this proves Theorem 4. A formula for the number of integer points

of the polytopeQ is equivalent to a formula for the number of (a, b1, . . . , bm)-cores.
For example, giving such a formula in the m = 1 case is equivalent to Theorem 1
of Anderson. We note that several results in this area can be phrased in terms of
counting integer points in special polytopes [2, 29, 31].

In general, it is difficult to give a formula for the number of integer points of a
polytope in terms of the defining half-spaces but there are some circumstances in
which the polytopes are particularly nice. For example, we can use this method to
give another proof of Proposition 6.

Proof (Second proof of Proposition 6) The set of a-core partitions with maximum
hook length less than ak is exactly the set of (a, ak + 1, . . . , ak + (a − 1))-core
partitions, since an (a, b)-core is also an (a + b)-core by Proposition 4. This set
correspondswith the lattice points of the polytopeQ = ⋂a−1

i=1 Pa, ak+i . By (1)we have
Q ⊆ [0, k]a−1, and by (2) and (3) we have [0, k]a−1 ⊆ Pa,ak+i for each i . Therefore
Q = [0, k]a−1, which contains (k + 1)a−1 integer points, so there are (k + 1)a−1

a-core partitions with maximum hook length less than ak. ��
We close this section with a suggestion for future research. Formulas for the

number of integer points in families of rational polytopes can be be quite subtle,
particularly when the polytope has vertices with large denominators. The volume
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of a polytope is often a good approximation for its number of integer points and is
usually easier to find.

Problem 1 Give an approximation for the volume of the (a, b1, . . . , bm)-core poly-
tope in terms of the integers a, b1, . . . , bm .

5 Counting (a, b)-Cores from Semigroups

In this section, we further investigate the correspondence between numerical sets
with atommonoid containing a and a-core partitions. We focus on a natural subclass
of these numerical sets, those that are actually numerical semigroups. Recall that
a numerical set is a numerical semigroup if and only if it is closed under addition,
or equivalently, it is equal to its atom monoid. We see that the bijection ϕ takes a
numerical semigroup S to ana-core partition if andonly ifa ∈ S.Ourmaingoal in this
section is to describe the set ofa-core partitions that come fromnumerical semigroups
and to count the set of simultaneous (a, b)-cores that come from semigroups for
certain pairs (a, b).

Recall from Theorem 1 that for positive integers a, b ≥ 2 with gcd(a, b) = 1 the
total number of (a, b)-cores is

C(a, b) = 1

a + b

(
a + b

a

)

.

We are interested in finding the proportion of these partitions that come from semi-
groups via the map ϕ. To do this, we first show that these partitions are in bijection
with the lattice points of a polytope contained in the (a, b)-core polytope of the
previous section.

A direct consequence of Proposition 4 is that for a numerical semigroup S the
partition ϕ(S) is an (a, b)-core if and only if a, b ∈ S. Since S is a semigroup it must
also contain 〈a, b〉. Our goal is to give formulas for O(〈a, b〉) in terms of a and b
and to investigate the ratio O(〈a, b〉)/C(a, b).

Hellus and Waldi have studied exactly this problem in [18]. They show that the
set of oversemigroups of 〈a, b〉 are naturally in bijection with the set of integer
points in a rational polytope. For a fixed and b increasing they show that computing
O(〈a, b〉) is equivalent to counting lattice points in dilates of this polytope and
that they can therefore use techniques from Ehrhart theory to study the behavior of
O(〈a, b〉). This is notable because Ehrhart theory is also a major input of Johnson’s
proof of Armstrong’s conjecture [19]. In particular, they prove the following result.
A quasipolynomial of degree d is a function f : N

d → C of the form

f (n) = cd(n)nd + cd−1(n)nd−1 + · · · + c0(n)

with periodic functions ci having integer periods, cd �= 0.
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Theorem 8 [18, Theorem 1.1] Let a ∈ N, a > 1.

1. There is a quasipolynomial of degree a − 1 taking the value O(〈a, b〉) at each
b ∈ N relatively prime to a.

2. The leading coefficient ca−1(n) of this quasipolynomial is constant and satisfies

1

(a − 1)! · a! ≤ ca−1(n) ≤ 1

(a − 1) · a! .

3. The function O(〈a, b〉) is increasing in both variables.

Hellus and Waldi note that the upper and lower bounds of the second part of the
statement coincide for a = 2, 3, that the upper bound is correct for a = 4, and that
for a = 5, 6, 7 the correct value lies strictly between the upper and lower bound [22].
With the above theorem, finding the quasipolynomial O(a, b) for fixed a can be done
with a finite amount of computation.We also note that the idea of usingEhrhart theory
to give quasipolynomial formulas for quantities associated to numerical semigroups
also appears in [20].

We give our own calculations for a ≤ 4, showing how to derive formulas of
this type without prior knowledge that the answer is given by a quasipolynomial.
We explicitly describe the a − 1 dimensional polytope whose integer points are in
bijection with the oversemigroups of 〈a, b〉 and then divide it into a − 2 dimensional
slices via parallel hyperplanes. We find exact formulas for the number of integer
points in each slice.

Our first goal is to give defining inequalities for the polytope whose integer points
are in bijectionwith oversemigroups of 〈a, b〉. This is equivalent to determiningwhen
an Apéry tuple (x1, . . . , xa−1) of a numerical set containing a actually corresponds
to a numerical semigroup containing a. The following result of Branco, García-
García, García-Sánchez, and Rosales, a slight variation of [9, Theorem 11], gives
this characterization.

Theorem 9 [9, Theorem 11] Themap from a numerical semigroup to its Apéry tuple
gives a one-to-one correspondence taking semigroups T containing a to solutions
(�1, . . . , �a−1) of the system of inequalities

xi ∈ N for all i ∈ {1, . . . , a − 1} (5)

xi + x j ≥ xi+ j for all 1 ≤ i ≤ j ≤ a − 1, i + j ≤ a − 1 (6)

xi + x j + 1 ≥ xi+ j−a for all 1 ≤ i ≤ j ≤ a − 1, i + j > a. (7)

Also, notice that T ⊇ S if and only if

�i ≤ ki for all i, (8)

where (k1, ..., k{a−1}) is the Apéry tuple of S. Therefore, the set of inequalities (6)–(8)
gives necessary and sufficient conditions for T to be an oversemigroup of S.
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These inequalities define an a − 1 dimensional polytope inwhich the lattice points
correspond exactly with the oversemigroups of S. In order to count the number of
oversemigroups of S, we only need to count these lattice points. This polytope is of
course contained in Pa,b. Hellus and Waldi study a similar polytope, but phrase their
results in terms of counting lattice paths and do not make a connection to general
(a, b)-core partitions or numerical sets [18].

Example 3 Consider S = 〈3, 8〉. The inequalities (6)–(8) reduce to

2x ≥ y

2y + 1 ≥ x

x ≤ 5

y ≤ 2

which define the polytope:

x

y

Each lattice point (x, y) in this polytope uniquely corresponds to an oversemigroup
of S, and thus with a (3, 8)-core partition. There are 10 integer points in this polytope,
so O(〈3, 8〉) = 10 and there are 10 simultaneous (3, 8)-core partitions associated to
numerical semigroups.

It seems difficult to give a general formula for O(〈a, b〉) so we begin by analyzing
the cases a = 2, 3, 4, finding explicit formulas for each. When a = 2, it is clear
that O(〈2, 2k + 1〉) = k + 1 since any oversemigroup of 〈2, 2k + 1〉 is determined
uniquely by its smallest odd element. Our next goal is to prove Theorems 5 and 6
that were stated in the introduction. We note that both results express O(〈a, b〉) as a
quasipolynomial in b of degree a − 1, and agree with the calculations in [18].

In order to prove Theorem 5, we divide up the set of oversemigroups of S =
〈3, 6k + �〉 by genus. It is easy to show that the genus of 〈a, b〉 is (a − 1)(b − 1)/2
[16]. For each integer n ∈ [0, 6k + � − 1], the genus of S we compute the number
On(S) of oversemigroups of S with genus n.

Lemma 1 If S = 〈3, 6k + �〉 with � ∈ {1, 2, 4, 5} then

On(S) =
{

� n
3 � + 1 0 ≤ n ≤ 3k + �

2 − 1
⌊
6k+�−1−n

3

⌋ + 1 3k + �
2 − 1 < n ≤ 6k + � − 1

.
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Assuming Lemma 1 we prove Theorem 5.

Proof (of Theorem 5) For 3k ≤ n < 3k + � Lemma 1 implies On(S) = k + 1, so we
can rewrite the expression for On(S) as

On(S) =

⎧
⎪⎨

⎪⎩

� n
3 � + 1 0 ≤ n < 3k

k + 1 3k ≤ n < 3k + �
⌊
6k+�−1−n

3

⌋ + 1 3k + � ≤ n ≤ 6k + � − 1

.

Now we find O(S) by summing over n:

O(S) =
6k+�−1∑

n=0

On(S) = 2 · 3 · k(k + 1)

2
+ �(k + 1) = (3k + �)(k + 1).

��
We now prove the lemma through a careful consideration of Apéry tuples.

Proof (of Lemma 1) Fix n, and suppose T ⊇ S with g(T ) = n. Write � = 3i + j
where i ∈ {0, 1} and j ∈ {1, 2}. Let m = 6k + � − 1 − n. Since m = g(T ) − g(S)

and T ⊇ S, T is the union of S together with m gaps of S. Let 6k + � − 3p be the
smallest element of T that is congruent to � modulo 3. We see that p ≥ 0 because
6k + � ∈ S ⊆ T . Since T is closed under addition it includes the elements 6k + � −
3p + 3t for all t ≥ 0, so T includes at least p gaps of S.

Since we know the smallest element of T congruent to � modulo 3, the remaining
m − p elements of T � S are all congruent to 2� modulo 3. The smallest element
of S congruent to 2� modulo 3 is 12k + 2�, and hence the smallest element of T
congruent to 2� must be 12k + 2� − 3(m − p) to account for the correct number of
gaps. Therefore, the Apéry set of T is {0, 6k + � − 3p, 12k + 2� − 3(m − p)}.

Such a numerical set T is a numerical semigroup if and only if it satisfies the
inequalities (6) - (7), which reduce to

2(6k + � − 3p) ≥ 12k + 2� − 3(m − p)

2(12k + 2� − 3(m − p)) ≥ 6k + � − 3p

which in turn give

m ≥ 3p (9)

6k + � + 3p ≥ 2m. (10)

For fixed n each value of p gives a different numerical set T , and so On(S) is equal
to the number of values of p satisfying both (9) and (10).

For 0 ≤ n ≤ 3k + �
2 − 1 we have 3k + �

2 ≤ m ≤ 6k + � − 1. Since m = 6k +
� − 1 − n, the above inequalities can be rewritten
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6k + � − 1 − n ≥ 3p

6k + 3p + � ≥ 12k + 2� − 2 − 2n

which determine the interval

6k + � − 2 − 2n

3
≤ p ≤ 6k + � − 1 − n

3
. (11)

Since n ≤ 3k + �
2 − 1, the lower bound for p is greater than or equal to 0. The

distance between the bounds of p given in (11) is n+1
3 . Considering each case of n

modulo 3 shows that there are always � n
3 � + 1 integers in this interval. Therefore, in

this case On(S) = � n
3 � + 1.

For 3k + �
2 − 1 < n ≤ 6k + � − 1 we have 0 ≤ m < 3k + �

2 . Because 2m <

6k + � ≤ 6k + � + 3p for any p, (10) holds for any p ≥ 0. So we need only count
integer solutions to (9). There are exactly �m/3� + 1 integers p that satisfy (9), so
in this case On(S) = �m

3 � + 1 = ⌊
6k+�−1−n

3

⌋ + 1. ��
Theorem 1 shows that for large k there are about 6k2 simultaneous (3, 6k +

�)-cores. From Theorem 5, we know that about 3k2 of them are associated with
semigroups. Therefore, as b approaches infinity, half of all (3, b)-cores correspond
with numerical semigroups. We give another interpretation of this result in Theorem
10 in the next section.

The case of a = 4, stated as Theorem 6 in the introduction, is more complex but
can be approached similarly. We give a proof of only the case � = 1 here since the
other cases are very similar.

A first approach to prove this might be to count oversemigroup by genus as we
did for a = 3. However, that approach does not work so nicely here; for example, the
function that counts oversemigroups of S = 〈4, 12k + 1〉 by genus is not unimodal.
Instead, we count oversemigroups with Apéry tuple (x, n, y), where n is fixed. Let

O ′
n(S) = #{T ⊇ S : T is a semigroup, Ap(T ) = (x, n, y)}.

Lemma 2 If S = 〈4, 12k + 1〉 then

O ′
n(S) =

{
(n + 1)(6k − 3n

2 + 1) 0 ≤ n ≤ 2k

(n + 1)(3k − � n
2 � + 1) + 1

2 (3k − � n
2 �)(3k − � n

2 � + 1) 2k < n ≤ 6k
.

Using this lemma, we prove the � = 1 case of Theorem 6.

Proof (of Theorem 6 for � = 1) Suppose T is an oversemigroup of S with Ap(T ) =
(x, n, y). Since 6k · 4 + 2 ∈ Sweknow n ≤ 6k, whichmeans O(S) = ∑6k

n=0 O
′
n(S).

By Lemma 2, we have
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2k∑

n=0

O ′
n(S) =

2k∑

n=0

(n + 1)

(

6k − 3

2
n + 1

)

= 8k3 + 14k2 + 7k + 1,

by a standard induction argument.
We also have

6k∑

n=2k+1

O ′
n(S) =

6k∑

n=2k+1

(n + 1)(3k + 1) − (n + 1)
⌈n

2

⌉

+ 1

2

(
3k −

⌊n

2

⌋ ) (
3k −

⌊n

2

⌋
+ 1

)

= (3k + 1)(4k) +
(6k(6k + 1)

2
− 2k(2k + 1)

2

)
(3k + 1)

− (9k2 + 3k − k2 − k)

− 1

6
[3k(3k + 1)(24k + 1) − k(k + 1)(8k + 1)]

+ 1

2

[
(9k2 + 3k)(4k) − (9k2 − k2) − 6k(9k2 − k2)

+ 1

3
(3k(18k2 + 1) − k(2k2 + 1))

]

= 16k3 + 16k2 + 4k, (12)

by a slightly more complicated induction argument.
Adding (5) and (12) gives O(S) = 24k3 + 30k2 + 11k + 1. ��
We finish the argument by proving Lemma 2.

Proof (of Lemma 2) Suppose T ⊇ S with Ap(T ) = (x, n, y). This Apéry tuple must
satisfy the inequalities (6)–(8),whichmeans that the following inequalitiesmust hold:

2x ≥ n (13)

2y + 1 ≥ n (14)

x + n ≥ y (15)

y + n + 1 ≥ x (16)

x ≤ 3k (17)

n ≤ 6k (18)

y ≤ 9k. (19)

First, consider the case where 0 ≤ n ≤ 2k. If x ≤ y then x = y − c for some
c ∈ {0, 1, . . . , n}. For any x that satisfies � n

2 � ≤ x ≤ 3k, the inequalities (13)–(16)
are satisfied, so for each value of c there are 3k − � n

2 � + 1 oversemigroups in this
case.
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If x > y then x = y + c for some c ∈ {1, . . . , n + 1}. The above inequalities are
satisfied if and only if � n

2 � + c ≤ x ≤ 3k. Therefore, for each c there are 3k − c −
� n
2 � + 1 oversemigroups in this case.
Summing over all values of c for both x ≤ y and x > y, we see that

O ′
n(S) = (n + 1)(3k − � n

2 � + 1) + (n + 1)(3k − � n
2 � + 1) − (n+1)(n+2)

2

= (n + 1)(6k − 3n
2 + 1).

Now consider the case where 2k < n ≤ 6k. If x ≤ y then x = y − c for some
c ∈ {0, 1, . . . , n}. As in the previous case, (x, n, y) is a valid Apéry tuple if and only
if � n

2 � ≤ x ≤ 3k, so for each c there are 3k − � n
2 � + 1 oversemigroups in this case.

If x > y then x = y + c for some c ∈ {1, 2, . . . , 3k − � n
2 �}. Again, (13)–(16) are

satisfied if and only if � n
2 � + c ≤ x ≤ 3k. Therefore, for each value of c there are

3k − c − � n
2 � + 1 oversemigroups in this case.

Summing over all values of c for both x ≤ y and x > y, we obtain

O ′
n(S) = (n + 1)(3k − � n

2 � + 1) + (3k − � n
2 �)(3k − � n

2 � + 1)

− (3k − � n
2 � + 1)(3k − � n

2 � + 1)/2

= (n + 1)(3k − � n
2 � + 1) + (3k − � n

2 �)(3k − � n
2 � + 1)/2. ��

Comparing Theorem 6 with Theorem 1, we see that for large k there are approx-
imately 72k3 simultaneous (4, 12k + �)-cores, of which about 24k3 are associated
with semigroups. Thus, as b approaches infinity, one-third of all (4, b)-cores corre-
spond with numerical semigroups.

We compare the behavior of C(a, b)—the total number of (a, b)-cores—with
O(〈a, b〉) for large values of b:

a limb→∞ O(〈a, b〉)/C(a, b)
2 1
3 1/2
4 1/3

.

We can ask for the behavior of this ratio for larger values of a. As a degree a − 1
polynomial in b, the leading coefficient of C(a, b) is 1

a! . Theorem 8 of Hellus and
Waldi shows that this ratio is between 1

(a−1)! and
1

a−1 . Therefore,

lim
a→∞ lim

b→∞
O(〈a, b〉)
C(a, b)

≤ lim
a→∞

1

a − 1
= 0.

These results can be interpreted as special cases of Problem 1 since the leading
coefficient of these quasipolynomials are closely related to the volumes of the (a, b)-
core polytopes of the previous section.
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6 Conjugate Partitions and Symmetric Numerical Sets

Recall that a numerical set T with Frobenius number F is symmetric if and only if for
each i ∈ [0, F] exactly one of i, F − i is in T and that the conjugate of a partition λ
is the partition λ̃ that we get from interchanging the rows and columns of the Young
diagram of λ. Our first goal is to relate these two concepts. We then focus on the
particular case of 3-core partitions and their conjugates.

Proposition 11 Anumerical set T is symmetric if and only ifϕ(T ) is a self-conjugate
partition.

In order to prove this proposition, we give a characterization of the numerical set
associated to λ̃ under the bijection ϕ. The dual of a numerical set T with Frobenius
number F is the numerical set T ∗ = {u ∈ Z : F − u /∈ T }. A numerical set and its
dual have the same atom monoid, and it is clear that a numerical set is symmetric if
and only if it is equal to its dual. For additional background on this concept, see [4,
Section1]. By considering pairs i, F − i and whether or not they are elements of T
we get the following characterization of T ∗:

T ∗ = {F − u : u ∈ Z � T }.

Proposition 12 Suppose T is a numerical set with Frobenius number F andϕ(T ) =
λ. The numerical set associated with λ̃ is T ∗.

Proof It is easy to see from the definition of hook length that H(λ) = H (̃λ) and
F
(
ϕ−1(̃λ)

) = F
(
ϕ−1(λ)

)
. We now label the profile of λ in reverse order, starting

with F and counting down. The up-steps of this labeling are of the form F − u for
u /∈ T and are exactly the right steps of λ̃. ��

We use this characterization to prove Proposition 11. This is both a slight gen-
eralization of [16, Proposition 4.4] and a slight reframing of [23, Proposition 1],
since it is now clear that a partition is self-conjugate if and only if the corresponding
numerical set is equal to its dual.

Proof (of Proposition 11) Let F be the Frobenius number of T . We need only show
that T is symmetric if and only if T = {F − u : u ∈ Z � T }.

First suppose T is symmetric and u ∈ Z � T . Then F − u ∈ T by definition. If
F − u ∈ T , then F − (F − u) = u /∈ T .

Conversely, suppose T = {F − u : u /∈ T }. If x ∈ T , then x = F − u for some
u /∈ T . Now u = F − x and we see that T is symmetric. ��

We give an example to illustrate this process.
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0 1

2

3 4 5

6

λ

6 5

4

3 2 1

0

0

1

2 3 4

5

6

λ̃

The conjugate of an a-core partition λ is also an a-core and we have seen how
Apéry tuples map such partitions to N

a−1 so it is natural to ask how conjugation acts
on N

a−1. In other words, we wish to find the Apéry tuple of ϕ−1(̃λ) given the Apéry
tuple of ϕ−1(λ).

Proposition 13 Suppose that λ is a partition with corresponding numerical set
T = ϕ−1(λ) with Frobenius number F such that the Apéry tuple of T is Ap(T ) =
(x1, . . . , xa−1) and F ≡ � (mod a). Then the Apéry tuple of T ∗ = ϕ−1(̃λ) is
Ap(T ∗) = (x ′

1, . . . , x
′
a−1) where

x ′
i =

⎧
⎪⎨

⎪⎩

x� − x�−i i < �

x� i = �

x� − xa+�−i − 1 i > �

.

Proof Recall from Proposition 12 that S = {F − u : u ∈ Z � T }. Thus

ax ′
i + i = min{F − u : u /∈ S, F − u ≡ i (mod a)}

= F − max{u /∈ S : u ≡ � − i (mod a)}.

By the definition of the Apéry tuple,

max {u /∈ S : u ≡ � − i (mod a)} =

⎧
⎪⎨

⎪⎩

a(x�−i − 1) + (� − i) i < �

−a i = �

axa+�−i + (� − i) i > �

.

Noting F = a(x� − 1) + � completes the proof. ��
Proposition 13 allows us to prove a theorem unique to 3-core partitions that relates

them to numerical semigroups.

Theorem 10 Given a 3-core partition λ, either ϕ−1(λ) or ϕ−1(̃λ) is a numerical
semigroup.

Proof Let T = ϕ−1(λ) and S = ϕ−1(̃λ). Suppose that Ap(T ) = (x1, x2). Recall that
T is a numerical semigroup if and only if it satisfies the inequalities (6)–(7), which
here reduce to
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2x1 ≥ x2 (20)

2x2 + 1 ≥ x1. (21)

Notice that at least one of these must be true.
If (20) fails, then x1 < x2, and so by Proposition 13,Ap(S) = (x2 − x1, x2). Using

the fact that 2x1 < x2 and 2x2 + 1 ≥ x1, we see that (6) and (7) are both satisfied for
S, and hence S is a numerical semigroup.

If instead (21) fails, then x1 > x2, so by Proposition 13, Ap(S) = (x1, x1 − x2 −
1). As before, we use the fact that 2x1 ≥ x2 and 2x2 + 1 < x1 to show that (6) and
(7) are satisfied for S. So S is again a numerical semigroup. ��

From Theorem 5, we know the number of numerical semigroups containing
〈3, 6k + �〉, so using Theorem 10 we can determine the number of these semigroups
that are symmetric. A symmetric numerical semigroup is sent to a self-conjugate
partition under ϕ, so this number is also equal to the number of self-conjugate
(3, 6k + �)-core partitions associated to numerical semigroups.

Corollary 1 Thenumber of symmetric numerical semigroups containing 〈3, 6k + �〉
is

3k + 3�

2
− �2

6
− 1

3
.

Proof By Theorem 10, for any (3, 6k + �)-core partition λ, either ϕ−1(λ) or ϕ−1(̃λ)

is a semigroup. Therefore, if we double count the number oversemigroups of S we
will have counted every non-self-conjugate (3, 6k + �)-core exactly once, and we
will have counted the number of self-conjugate (3, 6k + �)-cores twice. Therefore,
the number of self-conjugate (3, 6k + �)-core partitions, which is the same as the
number of symmetric oversemigroups of S by Theorem 10, is

2 · O(〈3, 6k + �〉) − C(3, 6k + �) = 3k + 3�

2
− �2

6
− 1

3
. ��

7 Counting Partitions with a Given Hook Set

In much of this paper, we have studied statistical questions about distribution of
sizes of the finite set of simultaneous (a, b1, . . . , bm)-core partitions. In this section,
we turn toward another finite collection of partitions, those which have the same
hook set. By Proposition 4, the hook set of any partition is the complement of some
numerical semigroup S. Our goal is to understand the set of partitions sharing a given
hook set and what properties of the underlying semigroup influence the size of this
set. Therefore, we rephrase this question as: Given a numerical semigroup S, for how
many partitions λ is H(λ) = N � S? We call this number P(S). By our discussion
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of the bijection ϕ in Sect. 2, this is equivalent to counting the number of numerical
sets with atom monoid S.

This problem has been considered byMarzuola andMiller in [23] where they call
it the Anti-Atom Problem. They give constraints on numerical sets sharing the same
atom monoid S in terms of the dual numerical set S∗.

Proposition 14 [23, Proposition 1] Suppose that S is a numerical semigroup and
that T is a numerical set with A(T ) = S. Then S ⊆ T ⊆ S∗.

We note that the description of T ∗ given directly above Proposition 12 also gives a
way to prove this fact in terms of partitions with a given hook set.

In cases where the gap between S and S∗ is well-understood this result gives
a strong characterization of the numerical sets with atom monoid S. A numerical
semigroup S is pseudosymmetric if F(S) is even and for every i ∈ [0, F(S)/2)
exactly one of i, F(S) − i is in S.

Corollary 2 [23, Corollary 2] A numerical monoid S with Frobenius number F is
symmetric if and only if there is just one numerical set (which must be S itself) whose
atom monoid is S. Equivalently, P(S) = 1 if and only if S is symmetric.

If S is a pseudosymmetric numerical semigroup then there are precisely two
numerical sets (which must be S and S∗) whose atom monoid is S. Equivalently, if S
is pseudosymmetric then P(S) = 2.

The first part of the corollary is equivalent to Proposition 11. We will see below
that the converse of the second statement does not hold. It seems difficult to give a
complete classification of numerical semigroups S with P(S) = 2.

We give a bound for P(S) in terms of how far away S is from being symmetric.
A missing pair of S is a pair of elements i, F(S) − i with i ≤ F(S) − i such that
neither element is in S. Note that when F(S) is even we have the degenerate missing
pair consisting of the single element F(S)/2. Let M(S) denote the union of the set
of missing pairs of S.

Lemma 3 For a numerical semigroup S we have S∗ = S ∪ M(S).

Proof Let F be the Frobenius number of S, which is also the Frobenius number of
S∗. We need only consider elements less than F . We first recall that

S∗ = {F − u : u ∈ Z � S}.

If n, F − n is a missing pair of S then F − n ∈ S∗ since n /∈ S, and n = F −
(F − n) ∈ S∗ as F − n /∈ S. Therefore M(S) ⊂ S∗.

For the reverse inclusion, suppose that n = F − u ∈ S∗, where u ∈ N � S. If
n /∈ S then u, n ∈ M(S). If n ∈ S then u = F − n /∈ S∗. We conclude that S∗ =
S ∪ M(S). ��

We could replace every instance of M(S) with S∗
� S, but we choose to keep the

notation of missing pairs since it is more descriptive.



Numerical Sets, Core Partitions, and Integer Points in Polytopes 121

Corollary 3 For a numerical semigroup S, P(S) ≤ 2|M(S)|.

Proof A numerical semigroup T with hook set N � S is the union of S with some
subset of M(S). ��
Since M(S) is empty for a symmetric semigroup and consists of a single element for
a pseudosymmetric semigroup, this gives another proof of Corollary 2.

Now that we understand semigroups for which |M(S)| ≤ 1, we consider those
for which |M(S)| = 2.

Proposition 15 For a numerical semigroup S with |M(S)| = 2, P(S) ∈ {2, 3}.
Proof Let F be the Frobenius number of S and a, F − a be the missing pair
of S where a < F/2. Since S is not symmetric, P(S) ≥ 2. By Corollary 3, we
need only show that P(S) �= 4. By the lemma above we need only show that
A (S ∪ {F − a}) �= S.

We argue by contradiction. Suppose A (S ∪ {F − a}) = S. Since F − a /∈ A(S ∪
{F − a}) there is some n ∈ S ∪ {F − a} such that n + F − a /∈ S. Since F − a >

F/2 we cannot have n = F − a. So n ∈ S and n /∈ A (S ∪ {F − a}), which is a
contradiction. ��
We note that both cases P(S) = 2 and P(S) = 3 are possible. For example, S =
{0, 4,→} has A(S ∪ {1}) = A(S ∪ {1, 2}) = S and P(S) = 3, and S = {0, 3, 6,→}
has M(S) = {1, 4} and P(S) = 2.

Corollary 3 shows that if |M(S)| is small then P(S) is small. We give a family of
semigroups showing that the converse does not necessarily hold.

Proposition 16 For odd N ∈ N with N ≥ 11, let RN be the numerical semigroup

RN = {0, N+1
2 } ∪ EN ∪ {N + 1, N + 2, . . .}.

where EN is the set of even numbers in
(
N+1
2 , N − 1

)
. We have that P(RN ) = 2 but

|M(RN )| = 2
⌈
N−1
4

⌉
.

Proof The statement aboutM(RN ) follows easily from the fact that F(RN ) = N and
the observation that every missing pair except {1, N − 1} is uniquely determined by
an odd number in

(
N+1
2 , N − 1

)
.

Since RN is not symmetric we see that RN � R∗
N and A(R∗

N ) = RN . Suppose
T �= RN is a numerical set with A(T ) = RN . By Proposition 14, we have T ⊆ R∗

N .
We show that P(RN ) = 2 by showing that

R∗
N = {N − u : u ∈ Z � RN } ⊆ T .

Notice N � RN = {1, . . . , N−1
2 } ∪ ON ∪ {N − 1}, where ON is the set of odd

numbers in [ N+3
2 , N ). Thus, R∗

N = {N − u : u /∈ RN } is the set of even numbers in
[0, N−3

2 ] together with {1, N+1
2 , . . . , N − 1} and {N + 1, N + 2, . . .}.
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Since T �= RN there exists some t ∈ (
R∗
N � RN

) ∩ T . Either 1 ∈ T, T contains
an even number in (0, N−3

2 ], T contains N − 1, or T contains an odd number in
( N+1

2 , N − 1). In each case we will show that T = R∗
N .

If 1 ∈ T then A(T ) = RN implies that { N+1
2 , . . . , N − 2} ⊂ T since RN contains

the even numbers in this range. However, the odd numbers in this range are not in
A(T ),meaning that for each N − 2k there is some sk ∈ T such that N − 2k + sk /∈ T .
The only possibility is that N − 2k + sk = N , so sk = 2k, meaning T must contain
the even numbers in [0, N−3

2 ] and T = R∗
N .

Suppose T contains an even number t ∈ (0, N−3
2 ]. Since A(T ) contains all even

numbers in ( N+1
2 , N − 1), we see that N − 1 − t ∈ A(T ). Since t + (N − 1 − t) =

N − 1, we have N − 1 ∈ T . However, N − 1 /∈ A(T ), so there must exist u ∈ T
with N − 1 + u /∈ T . The only possibility is u = 1, which by the argument of the
previous paragraph shows T = R∗

N .
Now suppose that N − 1 ∈ T . As in the previous paragraph, since N − 1 /∈ A(T )

we see that 1 ∈ T and T = R∗
N .

Finally, suppose T contains an odd number t ∈ ( N+1
2 , N − 1). Since t /∈ A(T )

there exists u ∈ T such that t + u /∈ T . Since RN contains all even numbers in
( N+1

2 , N − 1), we either have t + u equal to an odd number in ( N+1
2 , N − 1) or

equal to N − 1. In the first case u is an even number in (0, N−3
2 ], putting us in the

situation described above, and we conclude T = R∗
N . If t + u = N − 1 then u is an

odd number in (0, N−3
2 ). Since u ∈ R∗

N we have u = 1, putting us in the situation
above. We conclude that T = R∗

N . ��
We now use a main result of Marzuola and Miller [23] to study the opposite

extreme, semigroups S for which M(S) is as large as possible given the genus.

Proposition 17 Let SN = {0, N + 1, N + 2, · · · }be thenumerical semigroupwhere
H(ϕ(S)) = {1, 2, · · · , N }. Then P(SN ) ∼ c · 2N , where c is a constant approxi-
mately equal to 0.2422.

Proof Let γN be the ratio of the number of numerical sets with atom monoid SN to
the number of numerical sets with Frobenius number N . One of the main results of
[23] is that the sequence {γN } is decreasing and converges to a number γ ≈ 0.4844
with accuracy to within 0.0050. Numerical sets with Frobenius number N are in
bijection with subsets of {1, . . . , N − 1}, so there are 2N−1 of them. Therefore,
P(SN ) = γN · 2N−1, completing the proof. ��

We end this section by giving a link between partitions with a given hook set and
partitions that come from numerical semigroups under ϕ.

Proposition 18 Let S(N ) be the number of partitions with maximum hook length
N corresponding via ϕ to numerical semigroups and let T (N ) be the number of
partitions with maximum hook length N. Then,

lim
n→∞

S(N )

T (N )
= 0.
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We use a bound due to Backelin on the number of numerical semigroups with
given Frobenius number.

Theorem 11 [6, Theorem 1.1] The number of numerical semigroups S with Frobe-
nius number N is at most 4 · 2�(N−1)/2�.

Proof (of Proposition 18) Partitions with maximum hook length N are in bijection
with numerical sets with Frobenius number N , so T (N ) = 2N−1. Similarly, S(N )

is the number of numerical semigroups with Frobenius number N . By Backelin’s
theorem,

S(N )

T (N )
≤ 4 · 2�(N−1)/2�−(N−1) ≤ 4 · 2−(N−1)/2,

and therefore

lim
n→∞

S(N )

T (N )
= 0.

��

8 Further Questions

Webeginby returning toProblem1.The simultaneous (a, b1, . . . , bm)-core partitions
are in bijection with integer points in a certain polytope. We would like to be able
to give formulas for the number of lattice points in this polytope and also for its
volume.Understanding these questions gives one approach to determining the correct
leading coefficient of the quasipolynomial given in the second part of Theorem 8
of Hellus and Waldi [18]. The size of a partition corresponding to a lattice point
comes from evaluating the quadratic function Fa(x1, . . . , xa−1) of Sect. 3. Under
what circumstances can we give a nice description of the lattice point of this polytope
onwhich this function takes its maximum value?When canwe give a nice expression
for the average value of this function taken over all of these lattice points or give
even more detailed statistical information about this set of values? We would like to
have a better understanding of how tools from Ehrhart theory can be used to study
these problems.

It seems likely that most partitions are not associated to numerical semigroups
by the bijection ϕ, as most numerical sets are not closed under addition. A subtle
difficulty in addressing these types of questions comes from the fact that making
statements about “most” partitions or “most” numerical sets requires an ordering.
The most natural ordering on partitions, in our opinion, is by size. Proposition 18
shows that if we instead order partitions by the size of their maximum hook length
our intuition is correct.

Conjecture 1 Let P(n) be the number of partitions of size at most n and let S′(n)

be the number of these that are associated to numerical semigroups under ϕ. Then
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lim
n→∞

S′(n)

P(n)
= 0.

We ask a similar question for a-cores.

Problem 2 Let a ≥ 2 be a positive integer, Pa(n) be the number of a-core partitions
of size at most n, and S′

a(n) be the number of these partitions associated to numerical
semigroups under ϕ. Determine

lim
n→∞

S′
a(n)

Pa(n)

as a function of a.

An easier subproblem would be to show that as a goes to infinity, this limit goes
to zero. Consider the rational polyhedral cone giving the condition that an a-core
comes from a semigroup and intersect it with the region where the quadratic function
Fa(x1, . . . , xa−1) ≤ 1. It seems likely that techniques from Ehrhart theory combined
with the volume of this set can be used to solve this problem.

We would also like to better understand how to use techniques from the first part
of this paper to study P(S). Suppose that S is a numerical semigroup containing a.
Then every partition with hook set S corresponds to a point in N

a−1 by taking the
Apéry tuple of the corresponding numerical set. Can we say anything meaningful
about the geometry of this finite set of points?Wewould also like to know the largest,
smallest, and average size of a partition with hook set S.

We would also like to better understand the properties of S that control the size of
P(S). We have started to explore the link between the size of the set of missing pairs,
M(S), and the number of partitions with this hook set. We include some data related
to this question. The semigroup tree allows us to visualize easily the relationship
between numerical semigroups via their effective generators, the minimal generators
greater than the Frobenius number. The tree is constructed as follows: the vertices of
the tree are numerical semigroups, with the root as N; for each vertex S in the tree,
the children of this semigroup are the semigroups obtained from S by removing an
effective generator. Each semigroup appears in the tree exactly once, and the distance
between S and the root is exactly the genus of S. For more information about the
semigroup tree, see [10].

Figure2 shows the first 6 layers of the semigroup tree, in which each semigroup
S is labeled with |M(S)| and P(S). Every semigroup generated by two elements
is symmetric, so we see that these all satisfy |M(S)| = 0 and P(S) = 1. We also
see that the semigroups 〈g + 1, g + 2, . . . , 2g + 1〉 are those which have the largest
values of P(S) at a given genus.

Lastly, throughout this paper we have explored the properties of hook sets of
partitions, but have not really commented on hook multisets. We would like to better
understand what properties of a multiset make it occur as the hook multiset of many
different partitions. A good starting place might be a careful examination of the
constructions given by Chung and Herman [12], and by Craven [13].



Numerical Sets, Core Partitions, and Integer Points in Polytopes 125

〈1〉
|M(S)| = 0
P (S) = 1

〈2, 3〉
|M(S)| = 0
P (S) = 1

〈2, 5〉
|M(S)| = 0
P (S) = 1

〈3, 4, 5〉
|M(S)| = 1
P (S) = 2

〈2, 7〉
|M(S)| = 0
P (S) = 1

〈3, 4〉
|M(S)| = 0
P (S) = 1

〈3, 5, 7〉
|M(S)| = 1
P (S) = 2

〈4, 5, 6, 7〉
|M(S)| = 2
P (S) = 3

〈2, 9〉
|M(S)| = 0
P (S) = 1

〈3, 5〉
|M(S)| = 0
P (S) = 1

〈3, 7, 8〉
|M(S)| = 2
P (S) = 2

〈4, 5, 6〉
|M(S)| = 0
P (S) = 1

〈4, 5, 7〉
|M(S)| = 1
P (S) = 2

〈4, 6, 7, 9〉
|M(S)| = 2
P (S) = 2

〈5, 6, 7, 8, 9〉
|M(S)| = 4
P (S) = 6

〈2, 11〉
|M(S)| = 0
P (S) = 1

〈3, 7, 11〉
|M(S)| = 1
P (S) = 2

〈3, 8, 10〉
|M(S)| = 2
P (S) = 2

〈4, 5, 11〉
|M(S)| = 2
P (S) = 2

〈4, 6, 7〉
|M(S)| = 0
P (S) = 1

〈4, 6, 9, 11〉
|M(S)| = 2
P (S) = 2

〈4, 7, 9, 10〉
|M(S)| = 3
P (S) = 4

〈5, 6, 7, 8〉
|M(S)| = 0
P (S) = 1

〈5, 6, 7, 9〉
|M(S)| = 1
P (S) = 2

〈5, 6, 8, 9〉
|M(S)| = 2
P (S) = 2

〈5, 7, 8, 9, 11〉
|M(S)| = 3
P (S) = 6

〈6, 7, 8, 9, 10, 11〉
|M(S)| = 4
P (S) = 10

Fig. 2 The semigroup tree, with the rootN on the left. Semigroups with a common genus are found
in the same column, and each semigroup S is labeled with |M(S)| and P(S)
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Pairs of Dot Products in Finite Fields
and Rings

David Covert and Steven Senger

Abstract We obtain bounds on the number of triples that determine a given pair of
dot products arising in a vector space over a finite field or a module over the set of
integers modulo a power of a prime.More precisely, given E ⊂ F

d
q orZ

d
q , we provide

bounds on the size of the set

{(u, v, w) ∈ E × E × E : u · v = α, u · w = β}

for units α and β.

Keywords Dot-product sets · Sum-product problem · Finite fields

1 Introduction

For a subset of a ring, A ⊂ R, the sumset and productset of A are defined as A + A =
{a + a′ : a, a′ ∈ A} and A · A = {a · a′ : a, a′ ∈ A}, respectively. The sum-product
conjecture asserts that when A ⊂ Z, then either A + A or A · A is of large cardinal-
ity. For example, if we take A ⊂ Z to be a finite arithmetic progression of length
n, you achieve |A + A| = 2n − 1, whereas |A · A| ≥ cn2/((log n)δ · (log log n)3/2)

for some constant c > 0 and δ = 0.08607 . . . [7]. When A ⊂ Z is a geometric pro-
gression of length n, we have |A · A| = 2n − 1, and yet it is easy to show that
|A + A| = (n+1

2

)
. For subsets of integers, the following conjecture was made in [6].

Conjecture 1 Let A ⊂ Z with |A| = n. For every ε > 0, there exists a constant
Cε > 0 so that

max(|A + A|, |A · A|) ≥ Cεn
2−ε.
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Much progress has been made on the sum-product problem. The best result to date
belongs to Konyagin and Shkredov [11], wherein they demonstrated that for a suffi-
ciently large constant C , we have the bound

max(|A + A|, |A · A|) ≥ Cn4/3+c

for any c < 5
9813 , whenever A is a set of real numbers with cardinality n. Work has

also been done on analogues of the sum-product problem for general rings [12]. For
example, the authors in [8] showed that if E ⊂ F

d
q is of sufficiently large cardinality,

then we have

|{(x, y) ∈ E × E : x · y = α}| = |E |2
q

(1 + o(1)),

for any α ∈ F
∗
q . Here, Fq is the finite field with q elements, Fd

q is the d-dimensional
vector space over Fq , and F

∗
q = Fq \ {0}. As a corollary, they showed that |d A2| :=

|A · A + · · · + A · A| ⊃ F
∗
q , whenever A ⊂ Fq is such that |A| ≥ q

1
2 + 1

2d . Muchwork
has also been done to give such results when E has relatively small cardinality. See,
for example, [10] and the references contained therein.

In [3], the second listed author and Daniel Barker studied pairs of dot products
determined by sets P ⊂ R

2. In addition to the applications toward the sum-product
problem above, the problemof pairs of dot products has applications in coding theory,
graph theory, and frame theory, among others [1, 2, 4]. The main results from [3]
are as follows.

Theorem 1 Suppose that P ⊂ R
2 is a finite point set with cardinality |P| = n. Then,

the set
Πα,β(P) := {(x, y, z) ∈ P × P × P : x · y = α, x · z = β}

satisfies the upper bound |Πα,β(P)| � n2 whenever α and β are fixed, nonzero real
numbers.

Note 1 Here and throughout, we use the notation X � Y to mean that X ≤ cY for
some constant c > 0. Similarly, we use X � Y for Y � X , and we use X ≈ Y if both
X � Y and X � Y . Finally, we write X � Y if for all ε > 0, there exists a constant
Cε > 0 such that X � CεqεY .

Theorem 1 is sharp, as shown in an explicit construction [3]. Additionally, they
showed the following:

Theorem 2 Suppose that P ⊂ [0, 1]2 is a set of n points that obey the separation
condition

min(|p − q| : p, q ∈ P, p 
= q) ≥ ε.

Then, for ε > 0 and fixed α,β 
= 0, we have

|Πα,β(P)| � n4/3ε−1 log
(
ε−1

)
.
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The purpose of this article is to study finite field and finite ring analogues of the
results from [3]. Our main results are as follows.

Theorem 3 Given a set, E ⊂ F
2
q or Zd

q , |E | = n, and fixed units α,β, we have the
bound

|Πα,β(E)| � n2.

In general, for a set of n points, E ⊂ F
2
q , one cannot expect to get an upper bound

better than Theorem 3, as we will show via an explicit construction in Proposition
1. This proof and construction are similar to their analogues in [3]. However, if we
view the separation condition from Theorem 2 as it relates to density (as is often the
case for translating such results, such as in [9]), the previous proof techniques yield
very little. It turns out that a discrepancy theoretic approach gives more information,
as our second main result is for general subsets of Fd

q , for d ≥ 2, as opposed to just
d = 2.

Theorem 4 Let d ≥ 2, E ⊂ F
d
q , and suppose that α,β ∈ Fq . Then, we have the

bound

|Πα,β(E)| = |E |3
q2

(1 + o(1)),

for |E | � q
d+1
2 when α,β ∈ F

∗
q , and for |E | � q

d+2
2 otherwise.

Note that Theorem 4 gives a quantitative version of Theorem 3 at least for sets
E ⊂ F

2
q in the range |E | � q3/2.

The proof of Theorem 4 relies on adapting the exponential sums found in the study
of single dot products [8]. Since the results from [8] were extended to general rings
Z
d
q in [5], Theorem 4 also easily extends to rings. Here and throughout, Zq denotes

the set of integers modulo q, Z×
q is the set of units in Zq , and Zd

q = Zq × · · · × Zq is
the d-rank free module over Zq . For E ⊂ Z

d
q , we define Πα,β(E) exactly as before.

Theorem 5 Suppose that E ⊂ Z
d
q , where q = p� is the power of a prime p ≥ 3.

Then for units α,β ∈ Z
×
q , we have

|Πα,β(E)| = |E |3
q2

(1 + o(1))

whenever |E | � q
d(2�−1)

2� + 1
2� . In particular,

|Πα,β(E)| � |E |2

for sets E ⊂ Z
2
q of sufficiently large cardinality.

Remark 1 Notice that the proofs of Theorems 4 and 5 provide both a lower and upper
bounds on the cardinality of Πα,β(E), though we could achieve the upper bound
|Πα,β(E)| � q−2|E |3 if we relaxed the condition |E | � q

d+1
2 to simply |E | � q

d+1
2 ,

for example.
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2 Explicit Constructions

2.1 Sharpness of Theorem 3

We construct explicit sharpness examples for F2
q . The same constructions can be

modified to yield sharpness in Z
2
q as well.

Proposition 1 Given a natural number n � q and elements α,β ∈ F
∗
q , there is a

set, E ⊂ F
2
q for which |E | = n and

|Πα,β(E)| ≈ n2.

Proof Let u be the point with coordinates (1, 1). Now, distribute up to
⌈
n−1
2

⌉
points

along the line y = α − x , and distribute the remaining up to
⌊
n−1
2

⌋
points along the

line y = β − x . If there are any points left over, put them anywhere not yet occupied.1

Clearly, there are at least |E |2 pairs of points (b, c), where q is chosen from the first
line and r is chosen from the second. Notice that u contributes a triple to Πα,β(E)

for each such pair, giving us
|Πα,β(E)| ≈ n2.

2.2 The Special Case α = β = 0, D = 2

Proposition 2 There exists a set E ⊂ F
2
q of cardinality |E | = n < 2q for which

|Π0,0(P)| ≈ n3.

Proof Select
⌈
n
2

⌉
points with zero x-coordinate, and

⌊
n
2

⌋
points with zero y-

coordinate. Now, for each of the points with zero x-coordinate, there are about(
n
2

) (
n
2

)
pairs of points with zero y-coordinate. Notice that any point chosen with

zero x-coordinate will have dot product zero with each point from the pair cho-
sen with zero y-coordinate. Therefore, each of these 1

8n
3 triples will contribute to

Π0,0(E).
We can get just as many triples that contribute to Π0,0(E) by taking single points

with zero y-coordinate and pairs of points with zero x-coordinate. In total, we get

|Π0,0(P)| ≈ 1

8
n3 + 1

8
n3 ≈ n3.

1This is just in the case that (1, 1) is on one of the lines or α = β.
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3 Proofs of Main Results

3.1 Proof of Theorem 3

This proof is a modified version of the proof of Theorem 1 in [3], to which we refer
to the reader for a more detailed exposition.

Proof Wewill simultaneously prove this for E ⊂ F
2
q and E ⊂ Z

2
q .Here, we will use

Rq to denote either Fq or Zq , and we will be more specific when necessary.
Our basic idea is to consider pairs of points (v,w) ∈ E × E and obtain a bound

on the number of possible candidates for u to contribute a triple of the form (u, v, w)

to Πα,β(E). Consider a = (ax , ay) ∈ R2
q , and notice that for a point v ∈ E , the set

of points Lα(v) that determine the dot product α with v forms a line.

Lα(v) = {
(x, y) ∈ R2

q : xvx + yvy = α
}
. (1)

Also, v lies on a unique line containing the origin. We similarly define Lβ(v). Now,
consider a second point w ∈ E . It is easy to see that if |Lα(v) ∩ Lβ(w)| > 1, then
v and w lie on the same line through the origin which implies that if v and w are
on different lines through the origin, then |Lα(v) ∩ Lβ(w)| ≤ 1. We will use this
dichotomy to decompose E × E into two sets:

A = {(v,w) ∈ E × E : |Lα(v) ∩ Lβ(w)| ≤ 1, |Lα(w) ∩ Lβ(v)| ≤ 1}
B = (E × E) \ A.

Given (v,w) ∈ A, the pair can only be the last pair of at most one triple in Π(E).
This is of course only if Lα(v) ∩ Lβ(w) is a point in E . As there are no more than
|E |2 choices for pairs (v,w) ∈ A, the contribution to Π(E) by point pairs in A is at
most |E |2

The analysis on the set of pairs in B is a bit more delicate. Consider an arbitrary
pair, (v,w) ∈ B. Without loss of generality (possibly exchanging v withw or αwith
β) suppose |Lα(v) ∩ Lβ(w)| > 1. Then, we get that

|Lα(v) ∩ Lβ(w)| > 1
∣∣{(x, y) ∈ R2

q : xvx + yvy = α
} ∩ {

(x, y) ∈ R2
q : xwx + ywy = β

}∣∣ > 1
∣∣{(x, y) ∈ R2

q : xvx + yvy = α and xwx + ywy = β
}∣∣ > 1.

Namely, there will be more than one point with coordinates (x, y) ∈ R2
q satisfying

xvx + yvy = α

(
xwx + ywy

β

)
= α

β
(xwx + ywy). (2)
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Note that β is a unit, and hence the quantity α/β is well defined. This restriction tells
us that if |Lα(v) ∩ Lβ(w)| > 1, then |Lα(v) ∩ Lβ(w′)| = 0, for any w′ 
= w. This
should not be surprising for if α = β, then Lα(v) = Lβ(w) forces v = w.

We pause for a moment to introduce an equivalence relation, say ∼, on the set of
lines. Two lines Lα(v) and Lβ(w) are equivalent under ∼ if one can be translated to
become a (possibly improper) subset of the other. It is clear that if |Lα(v) ∩ Lβ(w)| >

1, then Lα(v) ∼ Lβ(w). The equivalence classes of ∼ keep track of the different
“directions” that lines can have. So we can easily see that Lα(v) ∼ Lβ(v). Take note
that if Rq = Zq , it is possible for two distinct lines to intersect in more than one
point.

If |Lα(v) ∩ Lβ(w)| > 1, then the pair (v,w) have no more than min{|Lα(v)|,
|Lβ(w)|} possible choices for u to contribute a triple of the form (u, v, w) toΠα,β(E).
Now, we see that any other pair of points, say (v′, w′), with |Lα(v′) ∩ Lβ(w′)| > 1
andwith Lα(v) ∼ Lα(v′), will have Lα(v) ∩ Lα(v′) = ∅, and Lβ(w) ∼ Lβ(w′), will
have Lβ(w) ∩ Lβ(w′) = ∅. So any point u that contributes to a triple of the form
(u, v, w) ∈ Πα,β(E) can only contribute to a triple with a single pair (v,w) when
Lα(v) ∼ Lβ(w).

Therefore, given any single equivalence class of ∼, there can be no more than |E |
choices for u to contribute a triple of the form (u, v, w) toΠα,β(E)with (v,w) ∈ B.

As there are no more than |E | possible choices for equivalence classes of Lα(v) (as
each point has only one associated equivalence class of ∼), there are no more than
|E |2 triples of the form (u, v, w) ∈ Πα,β(E) with (v,w) ∈ B.

3.2 Proof of Theorem 4

Proof Letχ denote the canonical additive character ofFq . By orthogonality, we have

|Πα,β(E)| = |{(x, y, z) ∈ E × E × E : x · y = α, x · z = β}
= q−2

∑

s,t∈Fq

∑

x,y,z∈E
χ(s(x · y − α))χ(t (β − x · z))

= q−2
∑

s,t∈Fq

∑

x,y,z∈E
χ(sα)χ(−tβ)χ(x · (sy − t z))

:= I + I I + I I I,

where I is the term with s = t = 0, I I is the term with exactly one of s or t equal to
zero, and I I I is the term with s and t both nonzero. Clearly

I = q−2
∑

s=t=0

∑

x,y,z∈E
χ(sα)χ(−tβ)χ(x · (sy − t z)) = |E |3q−2.

For the second and third sums, we need the following known results.
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Lemma 1 [8] For any set E ⊂ F
d
q , we have the bound

∑

s 
=0

∑

x,y∈E
χ(s(x · y − γ)) ≤ |E |q d+1

2 λ(γ), (3)

where λ(γ) = 1 for γ ∈ F
∗
q and λ(0) = √

q. Furthermore, we have

∑

s,s ′ 
=0

∑

y,y′∈E
sy=s ′y′

χ(α(s ′ − s)) ≤ |E |qλ(γ). (4)

Note that the quantities in the above Lemma can be shown to be real numbers, so
there is no need for absolute values. Now, separating the I I term into two sums, each
with exactly one of s or t zero,

I I = q−2|E |
⎛

⎝
∑

s 
=0

∑

x,y∈E
χ(s(x · y − α)) +

∑

t 
=0

∑

x,z∈E
χ(t (x · z − β))

⎞

⎠

From (3), it follows that |I I | ≤ |E |2q d−3
2 (λ(α) + λ(β)). Finally, by the triangle-

inequality, dominating a nonnegative sum over x ∈ E by the same nonnegative sum
over x ∈ F

d
q , and applying Cauchy–Schwarz, we have

|I I I | ≤ q−2
∑

x∈E

∣
∣∣∣∣∣

∑

s 
=0

∑

y∈E
χ(s(x · y − α))

∣
∣∣∣∣∣

∣
∣∣∣∣∣

∑

t 
=0

∑

z∈E
χ(t (x · z − β))

∣
∣∣∣∣∣

≤ q−2
∑

x∈Fd
q

∣∣
∣∣∣∣

∑

s 
=0

∑

y∈E
χ(s(x · y − α))

∣∣
∣∣∣∣

∣∣
∣∣∣∣

∑

t 
=0

∑

z∈E
χ(t (x · z − β))

∣∣
∣∣∣∣

≤ q−2

⎛

⎝
∑

x∈Fd
q

∣∣∣∣∣
∣

∑

s 
=0

∑

y∈E
χ(s(x · y − α))

∣∣∣∣∣
∣

2⎞

⎠

1/2

·
⎛

⎝
∑

x∈Fd
q

∣∣∣
∣∣∣

∑

t 
=0

∑

z∈E
χ(t (x · z − β))

∣∣∣
∣∣∣

2⎞

⎠

1/2

=: q−2 I I Iα · I I Iβ .
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Now,

I I I 2α =
∑

x∈Fd
q

∣∣∣
∣∣∣

∑

s 
=0

∑

y∈E
χ(s(x · y − α))

∣∣∣
∣∣∣

2

=
∑

x

∑

s,s ′ 
=0

∑

y,y′∈E
χ(s(x · y − α))χ(−s ′(x · y′ − α))

=
∑

x

∑

s,s ′ 
=0

∑

y,y′∈E
χ(α(s ′ − s))χ(x · (sy − s ′y′))

= qd
∑

s,s ′ 
=0

∑

y,y′∈E
sy=s ′y′

χ(α(s ′ − s))

≤ qd+1|E |λ(α)2,

by (4). Similarly, we have I I Iβ ≤ √
qd+1|E |λ(β). Combining these estimates yields

|I I I | ≤ qd−1|E |λ(α)λ(β).

This completes the proof as we have

|Πα,β(E)| = |E |3
q2

+ Rα,β,

where
|Rα,β | ≤ |E |2q d−3

2 (λ(α) + λ(β)) + qd−1|E |λ(α)λ(β).

3.3 Proof of Theorem 5

The proof will imitate that of Theorem 4, so we omit some of the details. Let χ(σ) =
exp(2πiσ/q) be the canonical additive character of Zq , and identify E with its
characteristic function. We use the following known bounds for dot-product sets in
Z
d
q .

Lemma 2 [5] Suppose that E ⊂ Z
d
q , where q = p� is the power of an odd prime.

Suppose that γ ∈ F
×
q is a unit. Then, we have the following upper bounds.

∑

j∈Zq\{0}

∑

x,y∈E
χ( j (x · y − γ)) ≤ 2|E |q( d−1

2 )(2− 1
� )+1 (5)

and ∑

s,s ′∈Zq\{0}

∑

y,y′∈E
sy=s ′y′

χ(γ(s ′ − s)) ≤ 2|E |q �d−d+1
� (6)
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Note 2 The authors in [5] actually gave a slightly different bound than those in
Lemma 2. For example in (5), they showed

∑

j∈Zq\{0}

∑

x,y∈E
χ( j (x · y − γ)) ≤

�−1∑

i=0

|E |q( d−1
2 )(1+ i

� ) ≤ �|E |q( d−1
2 )(2− 1

� )+1.

However, summing the geometric series removes the factor of � in the estimate.
Likewise, a factor of � can be removed from the estimate in (6).

We proceed as before. Write

|Πα,β | = |E |3
q2

+ I I + I I I,

where

I I := |E |q−2

⎛

⎝
∑

s 
=0

∑

x,y∈E
χ(s · (x · y − α)) +

∑

t 
=0

∑

x,z∈E
χ(s · (x · z − β))

⎞

⎠

and

I I I := q−2
∑

x∈E

⎛

⎝
∑

s 
=0

∑

y∈E
χ(−sα)χ(s(x · y))

⎞

⎠

⎛

⎝
∑

t 
=0

∑

z∈E
χ(−tβ)χ(t (x · z))

⎞

⎠ .

Applying Lemma 2, we see that

|I I | ≤ 4|E |2q−2q
d(2�−1)+1

2� ,

while

|I I I | ≤ q−2

⎛

⎝
∑

x∈Fd
q

∣∣∣∣
∣∣

∑

s 
=0

∑

y∈E
χ(−sα)χ(s(x · y))

∣∣∣∣
∣∣

2⎞

⎠

1/2

·
⎛

⎝
∑

x∈Fd
q

∣∣
∣∣∣∣

∑

t 
=0

∑

z∈E
χ(−tβ)χ(t (x · z))

∣∣
∣∣∣∣

2⎞

⎠

1/2

≤ 2|E |q−2q
�d−d+1

� ≤ 2|E |q−2q
d(2�−1)

�
+ 1

� ,

where in the last line, we reason as in the proof of Theorem 4, except with Lemma
2 in place of Lemma 1. This completes the proof.
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Characteristic, Counting,
and Representation Functions
Characterized

Charles Helou

Abstract Given a set A of natural numbers, i.e., nonnegative integers, there are three
distinctive functions attached to it, each of which completely determines A. These
are the characteristic function χA(n)which is equal to 1 or 0 according as the natural
number n lies or does not lie in A, the counting function A(n)which gives the number
of elements a of A satisfying a ≤ n, and the representation function rA(n) which
counts the orderedpairs (a, b)of elementsa, b ∈ A such thata + b = n.Weestablish
direct relations between these three functions. In particular, we express each one of
them in terms of each other one. We also characterize the representation functions
by an intrinsic recursive relation which is a necessary and sufficient condition.

Keywords Representation function · Counting and characteristic functions

AMS Classification Numbers: 11B34 · 11B13 · 11B75

1 Introduction

Let A be a subset of N = {0, 1, 2, . . .}.
The characteristic function of A is defined by

χA(n) =
{
1 if n ∈ A,

0 if n /∈ A.
(1)

The counting function of A is defined by

A(n) = |A ∩ [0, n]| = |{a ∈ A : a ≤ n}| . (2)

The representation function of A is defined by
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rA(n) = |{(a, b) ∈ A × A : a + b = n}|. (3)

Here n ∈ N. But the three functions chiA(n), A(n), rA(n), can be extended to all
real numbers x ∈ R, by simply replacing n by x in the above definitions.

Clearly, the functionsχA(n) and A(n) completely determine A, since the condition
n ∈ A is equivalent to either conditions: χA(n) = 1 or A(n) > A(n − 1).

It is not as obvious that the function rA(n) completely determines A too, but it
does, and several authors havewritten about this topic. In particular, the consequences
of the equality, or of the partial equality from some point on, of the representation
functions rA(n) and rB(n) of two sets of natural numbers A and B have been studied
rather extensively [1, 2, 12–14, 17, 22, 23]. Other research has focused on studying
the properties of representation functions, trying to characterize the class of repre-
sentation functions and to determinewhich functions belong to this class. Also, many
outstanding open problems and conjectures have been made in this respect [3–11,
15, 16, 18–21]. In particular, Melvyn B. Nathanson highlights in one of his papers
[18] the following problem:

What functions are representation functions?

The purpose of the present paper is twofold, first to establish relations between
the three functions defined above, expressing each one of them in terms of each
other one; and second, and more particularly, to attempt an answer to Nathanson’s
question. We thus give an intrinsic characterization of representation functions by
proving that a function f : N −→ N is the representation function of a subset A of
N if and only if it satisfies the relation

f (n) = 1

2

(
n + 1 −

n∑
k=0

(−1) f (2k) f (2(n−k))

)
,

for all n ∈ N.

2 Preliminaries and Generating Series

We first note the following obvious relations between the characteristic and the
counting functions of A:

A(n) =
n∑

k=0

χA(k), (4)

and
χA(n) = A(n) − A(n − 1), (5)

for all n ∈ N.
We then introduce the generating series of the three functions.
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The generating series of χA(n) is

f A(X) =
∞∑
n=0

χA(n)Xn =
∑
a∈A

Xa, (6)

also called the series associated with A.
The generating series of rA(n) is

gA(X) =
∞∑
n=0

rA(n)Xn =
∞∑
n=0

⎛
⎝ ∑

a,b∈A:a+b=n

1

⎞
⎠ Xn =

∑
a,b∈A

Xa+b =
(∑
a∈A

Xa

)2

= f A(X)2 (7)

which is the square of the generating series f A(X) of χA(n).
The generating series of A(n) is

hA(X) =
∞∑
n=0

A(n)Xn =
∞∑
n=0

(
n∑

k=0

χA(k)

)
Xn =

( ∞∑
n=0

Xn

) ( ∞∑
n=0

χA(n)Xn

)
= f A(X)

1 − X
. (8)

3 Relations Between the Counting and Representation
Functions

Squaring the generating series of the counting function, we get

gA(X)

(1 − X)2
=

(
f A(X)

1 − X

)2

=
( ∞∑

n=0

A(n)Xn

)2

=
∞∑
n=0

(
n∑

k=0

A(k)A(n − k)

)
Xn. (9)

On the other hand, as gA(X) is the generating series of rA(n), and as

1

(1 − X)2
= d

dX

(
1

1 − X

)
=

∞∑
n=1

nXn−1 =
∞∑
n=0

(n + 1)Xn, (10)

we also have

gA(X)

(1 − X)2
=

⎛
⎝ ∞∑

j=0

( j + 1)X j

⎞
⎠ ( ∞∑

k=0

rA(k)Xk

)
=

∞∑
n=0

⎛
⎝ ∑

j,k∈N: j+k=n

( j + 1)rA(k)

⎞
⎠ Xn =

=
∞∑
n=0

(
n∑

k=0

(n − k + 1)rA(k)

)
Xn . (11)

Thus,
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gA(X)

(1 − X)2
=

∞∑
n=0

(
n∑

k=0

A(k)A(n − k)

)
Xn =

∞∑
n=0

(
n∑

k=0

(n − k + 1)rA(k)

)
Xn .

(12)
This yields the following result, which gives the first relation between A(n) and

rA(n).

Proposition 1 For every n ∈ N, we have

n∑
k=0

A(k)A(n − k) =
n∑

k=0

(n − k + 1)rA(k) =

= (n + 1)
n∑

k=0

rA(k) −
n∑

k=0

krA(k), (13)

i.e.,

n∑
k=0

(n − k + 1)rA(k) = 2
∑

0≤k<
n
2

A(k)A(n − k) + χN

(n
2

)
A

(n
2

)2
. (14)

Corollary 1 For n ∈ N, we have

rA(n) = 2
∑

0≤k<
n
2

A(k)A(n − k) + χN

(n
2

)
A

(n
2

)2 −
n−1∑
k=0

(n − k + 1)rA(k). (15)

Example 1 Applying the relation in the Corollary to n = 0, 1, 2, . . . in increasing
order and back-substituting in terms of the A(n)’s alone, we get

rA(0) = A(0)2,
rA(1) = 2A(0)A(1) − 2A(0)2,
rA(2) = A(0)2 − 4A(0)A(1) + 2A(0)A(2) + A(1)2,
rA(3) = 2A(0)A(1) − 4A(0)A(2) + 2A(0)A(3) − 2A(1)2 + 2A(1)A(2)

rA(4) = 2A(0)A(2) − 4A(0)A(3) + 2A(0)A(4) + A(1)2 − 4A(1)A(2)+
+ 2A(1)A(3) + A(2)2.

Proposition 2 For any n ∈ N, we have

rA(n) =
n∑

k=0

A(k) (A(n − k) − 2A(n − k − 1) + A(n − k − 2)) =

=
n∑
j=0

(A( j) − 2A( j − 1) + A( j − 2)) A(n − j). (16)
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Proof Using the generating series for rA(n) and for A(n), we get

∞∑
n=0

rA(n)Xn = gA(X) =
(

f A(X)

1 − X

)2 (
1 − 2X + X2

)
=

( ∞∑
n=0

A(n)Xn

)2 (
1 − 2X + X2

)

=
( ∞∑
n=0

(
n∑

k=0

A(k)A(n − k)

)
Xn

) (
1 − 2X + X2

)

=
∞∑
n=0

(
n∑

k=0

A(k)A(n − k)

)
Xn − 2

∞∑
n=0

(
n∑

k=0

A(k)A(n − k)

)
Xn+1

+
∞∑
n=0

(
n∑

k=0

A(k)A(n − k)

)
Xn+2

=
∞∑
n=0

(
n∑

k=0

(A(k)A(n − k) − 2A(k)A(n − 1 − k) + A(k)A(n − 2 − k))

)
Xn .

Hence, for all n ∈ N,

rA(n) =
n∑

k=0

A(k) · (A(n − k) − 2A(n − k − 1) + A(n − k − 2))

=
n∑
j=0

(A( j) − 2A( j − 1) + A( j − 2)) · A(n − j).

Corollary 2 For any n ∈ N, we have

rA(n) =
∑
j,k∈N:
j+k≤n

cn( j, k)A( j)A(k), (17)

where

cn( j, k) =

⎧⎪⎨
⎪⎩
1, if j + k = n or n − 2

−2, if j + k = n − 1

0, otherwise

. (18)

Proof By Proposition 2,

rA(n) =
n∑

k=0

A(k)A(n − k) − 2
n∑

k=0

A(k)A(n − k − 1) +
n∑

k=0

A(k)A(n − k − 2) =

=
∑
j+k=n

A( j)A(k) − 2
∑

j+k=n−1

A( j)A(k) +
∑

j+k=n−2

A( j)A(k) =

=
∑
j+k≤n

cn( j, k)A( j)A(k).
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Corollary 3 For any n ∈ N, we have

rA(n) =
n∑
j=0

(χA( j) − χA( j − 1)) A(n − j) =

=
∑

a∈A�(1+A)

A(n − a) −
∑

b∈(1+A)�A

A(n − b), (19)

the last two sums being obviously restricted to a ≤ n and b ≤ n.

Proof For any k ∈ N, we have

A(k) = A(k − 1) + χA(k). (20)

Hence, for any j ∈ N,

A( j) − 2A( j − 1) + A( j − 2) = A( j) − A( j − 1) − (A( j − 1) − A( j − 2)) =

= χA( j) − χA( j − 1) =

⎧⎪⎨
⎪⎩
0, if j − 1, j ∈ A or j − 1, j /∈ A

1, if j ∈ A, j − 1 /∈ A

−1, if j /∈ A, j − 1 ∈ A

. (21)

This, in conjunction with Proposition 2, implies

rA(n) =
n∑
j=0

(A( j) − 2A( j − 1) + A( j − 2)) · A(n − j) =

=
n∑
j=0

(χA( j) − χA( j − 1)) A(n − j) =

=
∑

0≤ j≤n:
j∈A, j−1/∈A

A(n − j) −
∑

0≤ j≤n:
j−1∈A, j /∈A

A(n − j) =

=
∑

a∈A�(1+A)

A(n − a) −
∑

b∈(1+A)�A

A(n − b).

Example 2 By Corollary 2, rA(5) = ∑
j,k∈N:
j+k≤5

c5( j, k)A( j)A(k), where

c5( j, k) =

⎧⎪⎨
⎪⎩
1, if j + k = 5 or 3

−2, if j + k = 4

0, otherwise

.

Hence,
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rA(5) = 2A(0)A(3) − 4A(0)A(4) + 2A(0)A(5) + 2A(1)A(2) − 4A(1)A(3)

+ 2A(1)A(4) − 2A(2)2 + 2A(2)A(3).

Similarly,

rA(6) = 2A(0)A(4) − 4A(0)A(5) + 2A(0)A(6) + 2A(1)A(3) − 4A(1)A(4)

+ 2A(1)A(5) + A(2)2 − 4A(2)A(3) + 2A(2)A(4) + A(3)2.

rA(7) = 2A(0)A(5) − 4A(0)A(6) + 2A(0)A(7) + 2A(1)A(4) − 4A(1)A(5)

+ 2A(1)A(6) + 2A(2)A(3) − 4A(2)A(4) + 2A(2)A(5) − 2A(3)2 + 2A(3)A(4).

Remark 1 It follows from Corollary 2 that, for n ∈ N,

∑
j,k∈N:
j+k≤n

cn( j, k) =
{
0, if n ≥ 1
1, if n = 0.

(22)

Indeed, for n ≥ 1, we have

∑
j,k∈N:
j+k≤n

cn( j, k) =
n∑

h=0

∑
j+k=h

cn( j, k) =
∑
j+k=n

cn( j, k) +
∑

j+k=n−1

cn( j, k) +
∑

j+k=n−2

cn( j, k) =

=
∑
j+k=n

1 +
∑

j+k=n−1

(−2) +
∑

j+k=n−2

1 =
n∑
j=0

1 −
n−1∑
j=0

2 +
n−2∑
j=0

1 =

= (n + 1) − 2n + (n − 1) = 0.

For n = 0, the sum reduces to c0(0, 0) = 1. �

Remark 2 For n ≥ 1, we have

(1 + A)(n) = A(n − 1) = A(n) − χA(n) =
{
A(n), if n /∈ A

A(n) − 1, if n ∈ A.
(23)

So the last two sums in Corollary 3 have the same number of terms each if n /∈ A,

while the first of the two sums has one more term than the second one if n ∈ A.

Let I = A ∩ (1 + A), B = A � (1 + A) = A � I , and C = (1 + A) � A =
(1 + A) � I . Then,

C(n) = (1 + A)(n) − I (n) = A(n) − I (n) − χA(n) = B(n) − χA(n). (24)

Let B[n] = B ∩ [0, n] = {b1 < b2 < · · · < bh−1 < bh} and C[n] = C ∩ [0, n] =
{c1 < c2 < · · · < ch−1 ≤ ch}, where ch = ch−1 if n ∈ A, and ch−1 < ch if n /∈ A.
In view of Corollary 3,



146 C. Helou

rA(n) =
∑

b∈B[n]
A(n − b) −

∑
c∈C[n]

A(n − c), (25)

i.e.,

rA(n) =
h∑

k=1

A(n − bk) −
h−1∑
k=1

A(n − ck) − (1 − χA(n)) A(n − ch) =

=
h∑

k=1

(A(n − bk) − A(n − ck)) + χA(n)A(n − ch). (26)

Note also that bk < ck for 1 ≤ k < h (and for k = h if n /∈ A), since if A = {a1 <

a2 < · · · < an < · · · }, then 1 + A = {a1 + 1 < a2 + 1 < · · · < an + 1 < · · · }, and
B (resp. C) is obtained from A (resp. 1 + A) by removing the same set I . It follows
that n − bk > n − ck and therefore A(n − bk) ≥ A(n − ck) for 1 ≤ k < h (and for
k = h if n /∈ A).

Remark 3 We have

f A(X) = 1

1 − X

⎛
⎝ ∑

a∈A�(1+A)

Xa −
∑

b∈(1+A)�A

Xb

⎞
⎠ . (27)

Indeed, letting I = A ∩ (1 + A), so that A � (1 + A) = A � I and (1 + A) � A =
(1 + A) � I , we have

(1 − X) f A(X) = f A(X) − X fA(X) =
∑
a∈A

Xa −
∑
a∈A

Xa+1 =
∑
a∈A

Xa −
∑

b∈1+A

Xb =

=
∑
a∈I

Xa +
∑

a∈A�I

Xa −
⎛
⎝∑

b∈I
Xb +

∑
b∈(1+A)�I

Xb

⎞
⎠ =

=
∑

a∈A�I

Xa −
∑

b∈(1+A)�I

Xb.

4 Relations Between the Characteristic and the
Representation Functions

Just as the counting function A(n) determines A, the number of representations
function rA(n) also determines A.

Indeed, as
∞∑
n=0

rA(n)Xn = gA(X) = f A(X)2,
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we have

f A(X) =
∞∑
n=0

χA(n)Xn = gA(X)1/2,

where if
A = {a1 < a2 < · · · < an < · · · },

then

f A(X) = Xa1
∞∑
n=1

Xan−a1 = Xa1(1 + Xv(X)),

with the power series v(X) =
∞∑
n=2

Xan−a1−1, so that

gA(X) = X2a1(1 + Xu(X)),

with a power series u(X), and therefore

f A(X) = Xa1(1 + Xu(X))1/2 = Xa1
∞∑
k=0

(
1/2

k

)
Xku(X)k

is well defined. Moreover, replacing A by −a1 + A = {an − a1 : n ≥ 1}, we may
assume that 0 ∈ A, so that rA(0) = 1, and

gA(X) =
∞∑
n=0

rA(n)Xn = 1 + Xu(X),

with

u(X) =
∞∑
n=1

rA(n)Xn−1 =
∞∑
n=0

rA(n + 1)Xn.

Then,

f A(X) =
∞∑
n=0

χA(n)Xn = gA(X)1/2 = (1 + Xu(X))1/2 =
∞∑
k=0

(
1/2

k

)
Xku(X)k,

(28)

where

(
x

k

)
denotes the binomial coefficient, defined by

(
x

k

)
= x(x − 1)(x − 2) · · · (x − k + 1)

k! , (29)

for integers k ≥ 1, while

(
x

0

)
= 1.
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Proposition 3 Assuming that 0 ∈ A, we have, for n ≥ 1,

χA(n) =
n∑

k=1

(
1/2

k

) ∑
(n1,...,nk )∈(N∗)k :
n1+···+nk=n

rA(n1) · · · rA(nk) =

=
n∑

k=1

(−1)k−1 1 · 3 · 5 · · · · · (2k − 3)

k!2k
∑

(n1,...,nk )∈(N∗)k :
n1+···+nk=n

rA(n1) · · · rA(nk). (30)

Proof We have f A(X) = 1 +
∞∑
n=1

χA(n)Xn , and

gA(X) = f A(X)2 = 1 +
∞∑
n=1

rA(n)Xn = 1 + Xu(X),

where u(X) is a power series with nonnegative integer coefficients. So

f A(X) = (1 + Xu(X))1/2 = 1 +
∞∑
k=1

(
1/2

k

)
Xku(X)k

= 1 +
∞∑
k=1

(
1/2

k

) ( ∞∑
n=1

rA(n)Xn

)k

. (31)

Moreover, for a positive integer k ∈ N
∗, we have( ∞∑

n=1

rA(n)Xn

)k

=
∑

(n1,...,nk )∈N
∗k
rA(n1) · · · rA(nk)Xn1+···+nk =

=
∞∑
n=k

(

n∑
k=1

∑
(n1,...,nk )∈N

∗k :
n1+···+nk=n

rA(n1) · · · rA(nk))Xn. (32)

Hence,

f A(X) = 1 +
∞∑
n=1

χA(n)Xn = 1 +
∞∑
k=1

(
1/2

k

) ( ∞∑
n=1

rA(n)Xn

)k

=

= 1 +
∞∑
k=1

(
1/2

k

) ∞∑
n=k

(

n∑
k=1

∑
(n1,...,nk )∈N

∗k :
n1+···+nk=n

rA(n1) · · · rA(nk))Xn =

= 1 +
∞∑
n=1

(

n∑
k=1

(
1/2

k

) ∑
(n1,...,nk )∈N

∗k :
n1+···+nk=n

rA(n1) · · · rA(nk))Xn. (33)
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Thus, for n ≥ 1,

χA(n) =
n∑

k=1

(
1/2

k

) ∑
(n1,...,nk )∈N

∗k :
n1+···+nk=n

rA(n1) · · · rA(nk).

Furthermore, for k ≥ 1,(
1/2

k

)
= (1/2) (−1/2) (−3/2) · · · (1/2 − k + 1)

k! =

= (−1)k−1 1 · 3 · 5 · · · · · (2k − 3)

k!2k . (34)

Therefore, for n ≥ 1,

χA(n) =
n∑

k=1

(−1)k−1 1 · 3 · 5 · · · · · (2k − 3)

k!2k
∑

(n1,...,nk )∈(N∗)k :
n1+···+nk=n

rA(n1) · · · rA(nk).

Example 3 χA(1) = 1

2
rA(1),

χA(2) = 1

2
rA(2) − 1

8
rA(1)2,

χA(3) = 1

2
rA(3) − 1

4
rA(1)rA(2) + 1

16
rA(1)3,

χA(4) = 1

2
rA(4) − 1

4
rA(1)rA(3) − 1

8
rA(2)2 + 3

16
rA(1)2rA(2) − 5

128
rA(1)4,

χA(5) =1

2
rA(5)−1

4
rA(1)rA(4)−1

4
rA(2)rA(3) + 3

16
rA(1)

2rA(3) + 3

16
rA(1)rA(2)

2

− 5

32
rA(1)

3rA(2) + 7

256
rA(1)

5.

Corollary 4 For a subset A of N containing 0, the counting function of A is given
by

A(x) =
∑
n∈N
n≤x

χA(n) = 1 +
∑
n∈N

∗
n≤x

n∑
k=1

(
1/2

k

) ∑
(n1,...,nk )∈(N∗)k :
n1+···+nk=n

rA(n1) · · · rA(nk), (35)

for x ≥ 0.

Example 4 For n ≥ 6,
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χA(n) = 1

2
rA(n) − 1

8

n−1∑
n1=1

rA(n1)rA(n − n1)+

+ 1

16

n−2∑
n1=1

rA(n1)
n−n1−1∑
n2=1

rA(n2)rA(n − n1 − n2)

− 5

27

n−3∑
n1=1

rA(n1)
n−n1−2∑
n2=1

rA(n2)
n−n1−n2−1∑

n3=1

rA(n3)rA(n − n1 − n2 − n3)

+ · · ·
+ (−1)n−1 1 · 3 · 5 · · · · · (2n − 3)

n!2n rA(1)
n. (36)

Remark 4 Conversely, rA(n) can be written in terms of χA(n). Indeed, using
Proposition 2 and the relations between the characteristic and the counting func-
tions, we get, for n ∈ N,

rA(n) =
n∑

k=0

A(k) (A(n − k) − 2A(n − k − 1) + A(n − k − 2)) =

=
n∑

k=0

⎛
⎝ k∑

j=0

χA( j)

⎞
⎠

⎛
⎝n−k∑

j=0

χA( j) − 2
n−k−1∑
j=0

χA( j) +
n−k−2∑
j=0

χA( j)

⎞
⎠ =

=
n∑

k=0

⎛
⎝ k∑

j=0

χA( j)

⎞
⎠ (χA(n − k) − χA(n − k − 1)) ,

i.e.,

rA(n) =
n∑

k=0

(χA(n − k) − χA(n − k − 1))
k∑
j=0

χA( j), (37)

for all n ∈ N.
Alternatively,

rA(n) = |{0 ≤ j ≤ n : j, n − j ∈ A}| = |{0 ≤ j ≤ n : χA( j) = χA(n − j) = 1}|

=
n∑
j=0

χA( j)χA(n − j). (38)

So

rA(n) =
n∑
j=0

χA( j)χA(n − j) = 2
∑

0≤ j<k≤n:
j+k=n

χA( j)χA(k) + χA

(n
2

)
. (39)
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5 Characterization of the Representation Function

Lemma 1 For any n ∈ N, we have

rA(2n) ≡ χA(n) (mod 2). (40)

Proof In view of (39),

rA(2n) = 2
∑

0≤ j<k≤n:
j+k=2n

χA( j)χA(k) + χA(n) ≡ χA(n) (mod 2).

Corollary 5 For any n ∈ N, we have

n ∈ A ⇐⇒ rA(2n) ≡ 1 (mod 2). (41)

Definition 1 For an integer a ∈ Z, let res2(a) denote the least nonnegative residue
of a modulo 2, i.e.,

res2(a) =
{
0, if a ≡ 0 (mod 2)

1, if a ≡ 1 (mod 2).
(42)

Remark 5 It is easy to verify that, for a, b ∈ Z, we have

res2(a) = 1 − (−1)a

2
, (43)

res2(ab) = res2(a)res2(b), (44)

res2(a
n) = res2(a)n = res2(a), for n ≥ 1, (45)

res2(a + b) = res2(a) + (−1)ares2(b) = res2(b) + (−1)bres2(a). (46)

res2(−a) = res2(a), res2(a − b) = res2(a + b), (47)

Remark 6 It follows from Lemma 1 and fromRemark 5 that, for any n ∈ N, we have

χA(n) = res2(rA(2n)) = 1 − (−1)rA(2n)

2
. (48)

Hence,

f A(X) =
∞∑
n=0

χA(n)Xn =
∞∑
n=0

1 − (−1)rA(2n)

2
Xn = 1

2

(
1

1 − X
−

∞∑
n=0

(−1)rA(2n)Xn

)
. (49)
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Moreover, for any n ∈ N,

A(n) =
n∑

k=0

χA(k) =
n∑

k=0

res2(rA(2k)) =
n∑

k=0

1 − (−1)rA(2k)

2
= 1

2

(
n + 1 −

n∑
k=0

(−1)rA(2k)

)
,

(50)
and

rA(n) =
n∑

k=0

χA(k)χA(n − k) =
n∑

k=0

res2(rA(2k))res2(rA(2(n − k)))

=
n∑

k=0

res2(rA(2k)rA(2(n − k))) =
n∑

k=0

1 − (−1)rA(2k)rA(2(n−k))

2

= 1

2

(
n + 1 −

n∑
k=0

(−1)rA(2k)rA(2n−2k)

)
. (51)

Thus, the values of rA(2n) (mod 2) completely determine A and therefore com-
pletely determine all values of rA(n). In other words, the representation function rA
of A is completely determined by the parity of its values at the even natural numbers.

Moreover, the relation (51) characterizes the representation function, as seen from
the following Theorem.

Theorem 1 Let f : N −→ N be a function from the set of nonnegative integers N

into itself, satisfying the relation

f (n) = 1

2

(
n + 1 −

n∑
k=0

(−1) f (2k) f (2(n−k))

)
, for all n ∈ N. (52)

Then f = rA is the representation function of the subset A of N defined by

A = {n ∈ N : f (2n) ≡ 1 (mod 2)}. (53)

Proof For any n ∈ N, we have

n∑
k=0

(−1) f (2k) f (2(n−k)) =
∑
k∈I

1 −
∑
k∈J

1 = |I | − |J |,

where

I = {k ∈ N, 0 ≤ k ≤ n : f (2k) ≡ 0 (mod 2) or f (2(n − k)) ≡ 0 (mod 2)}

and
J = {k ∈ N, 0 ≤ k ≤ n : f (2k) ≡ f (2(n − k)) ≡ 1 (mod 2)}.
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Now, by definition of A, we have

I = {k ∈ N, 0 ≤ k ≤ n : k /∈ A or n − k /∈ A}

and
J = {k ∈ N, 0 ≤ k ≤ n : k ∈ A and n − k ∈ A}.

Clearly,
I ∪ J = {k ∈ N : 0 ≤ k ≤ n}, and I ∩ J = ∅,

so that
|I | + |J | = |I ∪ J | = |{k ∈ N : 0 ≤ k ≤ n}| = n + 1

and
n∑

k=0

(−1) f (2k) f (2(n−k)) = |I | − |J | = n + 1 − 2|J |.

It follows from this, and from the defining relation (52) of f , that

f (n) = 1

2

(
n + 1 −

n∑
k=0

(−1) f (2k) f (2(n−k))

)
= |J |.

Moreover,

|J | = |{k ∈ N, 0 ≤ k ≤ n : k ∈ A and n − k ∈ A}| =

=
∑

k∈A and (n−k)∈A

1 =
n∑

k=0

χA(k)χA(n − k) = rA(n),

in view of (38).
Thus,

f (n) = rA(n),

for all n ∈ N.

Corollary 6 A function f : N −→ N is the representation function of a subset A of
N if and only if it satisfies the relation

f (n) = 1

2

(
n + 1 −

n∑
k=0

(−1) f (2k) f (2(n−k))

)
, for all n ∈ N.

Proof This follows from (51) in Remark 6 and from Theorem 1.
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Remark 7 Corollary 6 provides a characterization of representation functions. It
is easier to characterize the characteristic and the counting functions. Indeed, any
function f : N −→ {0, 1} is the characteristic function of a unique subset A of N,
namely of A = f −1(1). Also, any increasing (not necessarily strictly increasing)
function f : N −→ N is the counting function of a unique subset A of N, namely of
A = {n ∈ N : f (n) > f (n − 1)}, where we set, by definition, f (−1) = 0.
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Partitions into Parts Simultaneously Regular,
Distinct, And/or Flat

William J. Keith

Abstract We explore partitions that lie in the intersection of several sets of classical
interest: partitions with parts indivisible by m, appearing fewer than m times, or
differing by less than m. We find results on their behavior and generating functions:
more results for those simultaneously regular and distinct, fewest for those distinct
and flat. We offer some conjectures in the area.

Keywords Partitions

1 Introduction

Apartition of n is a nonincreasing sequence of positive integers, which sums to n, i.e.,
λ � n if λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and λ1 + · · · + λk = n. Their study was initiated
by Euler, who proved the usual first result seen by a student of the area, namely

Theorem 1 The number of partitions of n in which all parts are odd equals the
number of partitions of n in which parts are distinct.

The theorem was proved by a hands-on combinatorial mapping found by J. J.
Sylvester and then generalized to all moduli by a more general mapping given by his
student Glaisher:

Theorem 2 The number of partitions of n in which no part is divisible by m equals
the number of partitions of n in which parts appear fewer than m times.

ThemapofGlaisher’s proof can be extended to a generalmapping on all partitions:
if, given j not divisible by m, the part jmk appears

∑∞
�=0 ak,�m

� times in λ, written
in the base m expansion, then in φ(λ), write the part jm� appearing ak,�mk times for
each nonzero ak,�. If no part in λ is divisible bym (ak,� = 0 for k > 0), then in φ(λ),
no part will appear m or more times, and vice versa.
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The fixed points of the map are precisely those partitions in which parts are not
divisible by m (called m-regular partitions) and in which no part appears m or more
times (a partition with the latter property we will call m-distinct).

The fixed points of an interesting map ought to be of interest, but a search of
the literature suggests that little work has been done with these partitions, with the
strong exception of the m = 2 case, partitions into distinct odd parts. Denoting the
number of such partitions of n by p2,2(n), we have that p2,2(n) ≡ p(n) (mod 2),
and since the parity of p(n) is a long-standing question of great interest, p2,2(n) has
been much studied, often for its parity properties.

Equal in number with these subsets of partitions of n is the set of those in which
the differences between consecutive parts are less thanm, and the smallest part is less
thanm. The proof is by conjugation, which is defined in terms of theFerrers diagram
of a partition; a set of unit squares justified to the origin in the fourth quadrant, in
which the i th row below the x-axis has λi squares. The conjugate of λ, λ′ is the
partition with Ferrers diagram given by the reflection of the diagram of λ across the
diagonal. An example is:

λ = (4, 4, 3, 1, 1, 1) � 14, λ′ = (6, 3, 3, 2)

Now it is easy to see that partitions with parts appearing fewer then m times
conjugate to partitions with differences less than m and smallest part less than m.
For the remainder of this paper, we will call the latter m-flat partitions, after [1].

Remark 1 : A direct map between m-flat and m-regular partitions was developed in
[1], translated from the German in an appendix to [2]. (Rather, several involutions on
all partitions were constructed, some of which restrict to a map between these sets.)
The fixed points are, again, those that simultaneously satisfy both conditions.

Conjugation does not fix those partitions simultaneously m-flat and m-distinct,
but it does fix the class. In fact, the fixed points of conjugation are in bijection with
partitions into distinct odd parts (read vertical-to-horizontal hook lengths). It might
be of interest to develop an involution on partitions which does fix this class; given
the utility of conjugation as a theorem-proving tool, its other properties might be of
great use. (If the involution fixes all m-flat, m-distinct partitions, it will necessarily
have at least some other fixed points, as the parity of this subset does not necessarily
match that of the number of partitions of n.)

In the remainder of the paper, we explore those partitions that simultaneously
satisfy two of these three conditions, generalizing the question to moduli not neces-
sarily equal for the two conditions. In Sect. 2, we discuss partitions simultaneously
s-regular and t-distinct; we can say the most about these. In Sect. 3, we discuss
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s-regular, t-flat partitions; we can say a few things about these, mostly when s|t . In
Sect. 4, we discuss s-distinct, t-flat partitions; about these we can say little, despite
the fact that they have the simplest diagrammatic interpretation. In the last section,
we close with some comments and possible lines of future investigation.

2 Regular and Distinct

The generating function for partitions which are s-regular and t-distinct is easy to
write down: it is

Theorem 3

P (s,t)
R,D (q) =

∞∑

n=0

p(s,t)
R,D(n)qn =

∞∏

k=1

(1 − qsk)(1 − qtk)

(1 − qk)(1 − qstk)
.

P (s,t)
R,D (q) is an η-quotient, i.e., (up to a factor of a power of q) a quotient of functions

of the form η(z) = q1/24 ∏∞
n=1(1 − qn), q = e2πi z . By work of Stephanie Treneer

[3], it is known that all such functions are weakly holomorphic modular forms, and
so it is likely that they will exhibit many congruences. Numerical experimentation
quickly finds many. For instance,

Theorem 4 For n ≥ 0,

p(2,2)
R,D (125n + 99) ≡ 0 (mod 5) (Rødseth) (1)

p(3,3)
R,D (4n + 2) ≡ 0 (mod 2) (2)

p(2,5)
R,D (4n + 3) ≡ 0 (mod 2) and (3)

∞∑

n=0

p(2,5)
R,D (4n + 1)qn ≡ f5 (mod 2). (4)

Here and in the remainder of the paper, we employ the shorthand notation fk for

fk =
∞∏

n=1

(1 − qnk) = q−k/24η(kz) = (qk; qk)∞.

Furthermore, when we state for two power series f (q) = ∑∞
n=n0

a(n)qn and g(q) =∑∞
n=n1

b(n)qn that f (q) ≡p g(q), we mean that a(n) ≡ b(n) (mod p) for all n.

Proof As noted, the first clause of Theorem 4 was proved by Øystein Rødseth [4],
who was studying the properties of p2,2(n).
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Toprove the other clauses,weuse several identities that dissect variousη-products.
All of the ones we use here can be found in [5]. In addition, it is useful to note that
f p
k ≡p fkp for p any prime.
For clause (2), we will need:

f3
3

f1
= f 34 f 26

f 22 f12
+ q

f 312
f4

(5)

1

f1 f3
= f 28 f 512

f 22 f4 f 46 f 224
+ q

f 54 f 224
f 42 f 26 f 28 f12

. (6)

Now observe that

P(3,3)
R,D (q) = f 23

f1 f9
= f 33

f1
· 1

f3 f9
=

(
f 34 f 26
f 22 f12

+ q
f 312
f4

) (
f 224 f

5
36

f 26 f12 f 418 f
2
72

+ q3
f 512 f

2
72

f 46 f 218 f
2
24 f36

)

.

Expanding out the multiplication and reducing modulo 2 where possible, we find

P (3,3)
R,D (q) ≡2

f 34 f 224 f
5
36

f 22 f 212 f
4
18 f

2
72

+ q (. . . ) + q3 (. . . ) + q4 f 812 f
2
72

f4 f 46 f 218 f
2
24 f36

.

The elided terms are all of the form q2n+1 and so are irrelevant to the theorem.
Furthermore, neither of the other summands contains powers of the form q4n+2 with
odd coefficients, since all factors of f2, f4, and f18 are raised to even powers, and we
may invoke f 22 ≡2 f4. Hence only powers q4n in these summands may have noneven
coefficients, and hence any coefficient p(3,3)

R,D (4n + 2) ≡ 0 (mod 2).
For clauses (3) and (4), we additionally require the identity

f5
f1

= f8 f 220
f 22 f40

+ q
f 34 f10 f40
f 32 f8 f20

.

Thus,

P (2,5)
R,D (q) = f2 f5

f1 f10
= f8 f 220

f2 f10 f40
+ q

f 34 f40
f 22 f8 f20

.

Again, since f 22 ≡2 f4, no term in the latter summand has a noneven coefficient
on a power q4n+3, and so claim (3) holds. Further using this identity to reduce the
summand, we find that

P (2,5)
R,D (q) ≡2 · · · + q f20,

where the elided terms are even powers. Extracting terms of the form q4n+1 and
making the substitution q4 → q, we obtain clause (4), and the theorem holds.

Many other such congruences can easily be found and proved through similar
methods.
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2.1 Symmetry

Another observation of interest is the symmetry of the generating function, which
yields the immediate result

Theorem 5 The number of partitions of n which are s-regular and t-distinct equals
the number of partitions of n which are t-regular and s-distinct.

It is then reasonable to ask for a map that realizes this equality; as it turns out, if s
and t are coprime, a double use of Glaisher’s bijection does the job. Denote by φm

Glaisher’s involution with modulus m. Then we have the following.

Theorem 6 If s and t are coprime, then φsφt maps s-regular, t-distinct partitions
to t-regular, s-distinct partitions.

Although this could have been observed earlier, we will see in the midst of this proof
that

Corollary 1 If s and t are coprime, the number of s-regular, t-distinct partitions
are equal to the number of partitions simultaneously s-regular and t-regular.

However, the s-distinct, t-distinct partitions are merely the s-distinct partitions
assuming s is the smaller of the two values.

Proof If s and t are coprime, then let λ be an s-regular, t-distinct partition. The
first step φt replaces parts of sizes j t k with appearances of the part j ; since j t k

was not divisible by s, neither is j , and so the result is also an s-regular, t-regular
partition; all such partitions can arise this way (φs or φt reverses the map in the
desired direction) and so the corollary follows. At this point, applying φs produces
an s-distinct partition which is still t-regular, since j is not divisible by t and jsk is
also not divisible by t , as these are coprime.

Example Consider λ = (4, 2, 1) as a 7-regular, 2-distinct partition. Then
φ2(4, 2, 1) = (1, 1, 1, 1, 1, 1, 1), which is both 7-regular and 2-regular. Then
φ7(1, 1, 1, 1, 1, 1, 1) = (7), which is 2-regular and 7-distinct.

If s and t are not coprime, then, during a visit toMichigan Tech, it was conjectured
by Bridget Tenner of DePaul University that

Conjecture 1 Iteration of the previous map suffices to produce a bijection. That
is, there exists �, varying with λ, such that (φsφt )

� maps an s-regular, t-distinct
partition λ to a unique s-distinct, t-regular partition, with no intervening (φsφt )

k

being s-regular and t-distinct.

Since φs and φt are involutions and the set of partitions of n is finite, the se-
quence of images (φsφt )

�(λ) eventually cycles for any λ; the claim then becomes
that such a sequence starting at an s-regular, t-distinct partition will encounter a t-
regular, s-distinct partition before encountering another s-regular, t-distinct partition.
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(The author must retract a claim made during the presentation at CANT 2016 that
the proof of this conjecture is nontrivial but straightforward. For an indication of the
curious behavior that such a sequence can display, the reader might examine the be-
havior of (50, 50, 50, 50, 50, 50) as a 6-regular, 10-distinct partition; the map works,
but requires 65 iterations, and actually passes through (50, 50, 50, 50, 50, 50) again
halfway through the 63rd step.)

2.2 McKay-Thompson Series

For a final comment on the P (s,t)
R,D partitions, there is a connection which may be

spurious but could be very interesting if it is true in any depth.
To first give some background, recall the j-invariant

j (τ ) = 1

q
+ 196884q + 21493760q2 + . . . .

MonstrousMoonshine [6] is the conjecture, now theorem [7], that the coefficients
of this function are sums of the dimensions of irreducible representations of the
Monster groupM : 1 = 1, 196884 = 196883 + 1, 21296876 + 196883 + 1, etc. That
is, there is an ∞-dimensional graded representation of M whose graded dimension
is given by these coefficients, and whose lower-weight pieces decompose into irreps
of dimension 1, 196883, 21296876, etc., which sum in fairly simple ways to the
coefficients of j . The graded dimension is the graded trace of the identity element
e ∈ M ; the McKay-Thompson series Tg is the generating function for the graded
traces of nontrivial elements g ∈ M .

If we search the invaluable Online Encyclopedia of Integer Sequences [8] for
the coefficients of the generating function P (3,3)

(R,D), we find that they match OEIS se-
quence A112194 [9]: “McKay-Thompson series of class 54c for theMonster group.”
McKay-Thompson series are often of the form fs ft

f1 fst
, usually shifted by a power of

q and with a substitution q → q�; for instance, the generating function for this
McKay-Thompson series is actually 1

q P
(3,3)
(R,D)(q

6). With a little more searching, we
find many of these in the OEIS: (s, t) = (2, 5) gives class 60F; (s, t) = (3, 4) gives
48h; (s, t) = (5, 7) gives class 35B, but (s, t) = (3, 7) is not there.

So one wonders: is there a simple, partition-theoretic interpretation of these gen-
erating functions in terms of the dimensions being counted? That is:

Question 1: Are there structures in M or its representations which are in bijection
with partitions into, say, partitions into parts not divisible by 2 and appearing less
than 5 times, which yield the graded traces of elements in the apparently associated
conjugacy classes?

Since any (s, t) is a permissible pair for P (s,t)
R,D , but McKay-Thompson series are

restricted by the Monster group itself, such combinatorial descriptions might be
“coincidental”; but, given the great interest in the structure of the Monster group and
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its subgroups, even descriptions in a few cases might be valuable and interesting in
their own right.

3 Regular and Flat

In this section, we discuss partitions simultaneously s-regular and t-flat. For these,
we can write down the generating function in some restricted cases: namely, when
s|t , much more easily if s = t .

We defined (q; q)∞ earlier; it now becomes useful for us to generalize to the
notation (a; q)n = ∏n−1

i=0 (1 − aqi ), in which case (q; q)∞ = limn→∞(q; q)n . The
empty product is 1, so (a; q)0 = 1.

3.1 t-regular, t-flat Partitions

When s = t , our task is easiest.

Theorem 7 The generating function for partitions both t-regular and t-flat is

P (t,t)
R,F =

∞∑

j=0

j∑

i=0

(−1)i q(i+1
2 )t+ j−i (q(i+1)t ; qt ) j−i

(q; q) j−i
.

Proof The proof strategy is to note that a t-regular partition can be broken into its
flat part, plus differences of multiples of t :

a1 t t t
a2 t t
a3 t t
a4 t t
a5

where the ai are nonzero residues modulo t , and each t represents t added to the
part. If ai+1 ≤ ai , then the number of t units in the flat part of λi equals the number
of such units in λi+1, whereas if ai+1 > ai , the number of t units in λi is 1 greater
than the number in λi+1. For example, if the above diagram represents the 5-regular
partition (17, 13, 11, 11, 4), then the flat part of the partition is (12, 8, 6, 6, 4). An
amount 5 was added to parts 1 through 4. Notice that the t-flat part of a t-regular
partition is still t-regular; more generally, the s-flat part of a t-regular partition is still
t-regular if t divides s.

The amounts added will be multiples of t of sizes up to t times the number of parts
of the partition; thus, the generating function for t-regular partitions with exactly j
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parts equals the generating function for t-flat, t-regular partitions with exactly j
parts, times the generating function for partitions into multiples of t no larger than
j t .

Thus, suppressing the t for now and referring only to the generating functions for
partitions of the desired type into exactly j parts, we have

P (j parts)
R,F (q) × 1

(qt ; qt ) j
= P (j parts)

R .

Next, we must determine the generating function for t-regular partitions into
exactly j parts. We do so by considering all partitions of inclusion–exclusion on the
number of sizes of parts of λ divisible by t , obtaining the following:

Lemma 1

P(j parts)
R =

j∑

i=0

q j−i

(q; q) j−i
(−1)i q(i+1

2 )t 1

(qt ; qt )i
.

The argument is as follows: begin with j − i guaranteed parts of size 1 and add
any desired amount; add exactly i sizes of part divisible by t , from t to i t ; finally, add
additional multiples of t to these parts alone. Count those in which we guaranteed at
least i different sizes of part divisible by t with (−1)i ; by inclusion–exclusion, the
resulting sum counts exactly those partitions with no part divisible by t .

So, combining identities,

P ( j parts)
R,F (q) × 1

(qt ; qt ) j
= P ( j parts)

R =
j∑

i=0

q j−i

(q; q) j−i
(−1)i q(i+1

2 )t 1

(qt ; qt )i
.

Multiplying through, we obtain

P ( j parts)
R,F (q) =

j∑

i=0

q j−i

(q; q) j−i
(−1)i q(i+1

2 )t (q(i+1)t ; qt ) j−i .

Summing over numbers of parts j , we complete the proof.
An alternative version of this generating function has more terms but is combi-

natorially interesting. Observe that, given a vector ρ of nonzero residues modulo t ,
the t-flat partition with residues equal to ρ when read in order is uniquely given.
The number of units of size t below residue ρi is precisely the number of pairs
(ρk, ρk+1) with k ≥ i for which ρk < ρk+1, i.e., the number of ascents in the multiset
permutation, identified by ρ, of the multiset of residues listed.

Example Suppose that t = 3 and that ρ consists of two 1s and 2s each. The possible
partitions are:
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2
2
1
1

,

2 3
1 3
2
1

,

2 3
1 3
1 3
2

,

1 3
2
2
1

,

1 3 3
2 3
1 3
2

,

1 3
1 3
2
2

The t-complement ρc of ρ is the vector (t + 1 − ρ1, . . . , t + 1 − ρk); since ascents
in ρ map to descents in ρc, the number of t units depending from the residue vector
is easily seen to be the major index of ρc. It is well-known (see for instance [10])
that maj (ρc) is equidistributed with maj (ρ) over all permutations ρ of the same
multiset, and that if ρ contains i1 ones, i2 twos, . . . , and it−1 residues t − 1, then the
q-multinomial coefficient

[
i1 + · · · + it−1

i1, . . . , it−1

]

q

:= (q; q)i1+···+it−1

(q; q)i1 . . . (q; q)it−1

is the generating function for the major index over all multiset permutations of ρ,
i.e., [

i1 + · · · + it−1

i1, . . . , it−1

]

q

=
∑

σ(ρ)

qmaj (σ(ρ))

where summation is over all multiset permutations of ρ.
Since the units are of size t , we find that the generating function for the t-regular,

t-flat partitions with residue vector some permutation of ρ, which we may denote by
P (t,t;ρ)

R,F (q), is given by

Theorem 8

P (t,t;ρ)

R,F = qi1+···+(t−1)it−1

[
i1 + · · · + it−1

i1, . . . , it−1

]

qt

.

Finally, we note that if our partitions are s-regular and t-flat with s dividing t ,
a small variation of the previous argument suffices; we are restricted to a subset of
the possible residues modulo t . In the first form of the generating function, when
constructing P ( j parts)

R , we additionally include–exclude parts with residues divisible
by s, producing additional summations. For instance, if 2s = t , we have

P ( j parts)
R =

∑

i,k

q j−i−k

(q; q) j−i−k
(−1)i q(i+1

2 )t (−1)i q(i
2)t+ks 1

(qt ; qt )i (qt ; qt )k

and hence,

P ( j parts)
R,F =

∑

i,k

q j−i−k

(q; q) j−i−k
(−1)i q(i+1

2 )t (−1)i q(i
2)t+ks (qt ; qt ) j

(qt ; qt )i (qt ; qt )k
.
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Other than restricting the permissible residue vectors ρ, the second form of the
generating function is unchanged.

3.2 Other Observations

Unlike the other two classes discussed in this paper, simple calculation shows us
that s-regular, t-flat partitions are not symmetric in s and t . For instance, (1, 1, 1) is
3-regular and 2-flat, and also 2-regular and 3-flat; (2, 1) is 3-regular and 2-flat, but
not 2-regular; and (3) is in neither class. Comparatively, it appears to be the case that
the number of s-regular, t-flat partitions grows faster when s < t than when s > t .
An extreme example is the 2-regular, t-flat partitions, which are partitions into odd
parts not differing by too much, whereas the s-regular, 2-flat partitions can only be
partitions into consecutive parts up to size s − 1. The asymptotics of these partitions
is unexplored, however.

Letting P (s,t;k)
R,F (q) be the generating function for s-regular, t-flat partitions with

largest part at most k, we have that

P (s,t;k)
R,F (q) = P (s,t;k−1)

R,F (q) + χ(s � k)qk

1 − qk

(
P (s,t;k−1)
R,F − P (s,t;k−t)

R,F

)

where χ(T ) is the indicator function of the truth of statement T .
Not many of these generating functions are in the OEIS. The 2-regular (i.e., par-

titions into odd parts), 3-flat partitions are partitions into odd parts with consecutive
(among odds) sizes, startingwith aminimum size of 1; these constitute themock theta
functionψ(q), OEIS sequenceA053251. The 2-regular, 4-flat partitions are the same,
except that a 1 need not appear (a 3 always will), and hence, p(2,3)

R,F (n) = p(2,4)
R,F (n − 1)

for n > 0. As mentioned earlier, the s-regular, 2-flat partitions are just the partitions
into consecutive parts from 1 to s − 1, such as OEIS sequence A014591.

4 Distinct and Flat

For some reason, we can say very little about Partitions simultaneously distinct and
flat; except in the most restricted cases, we do not even have a generating function
written down for these partitions. Such observations as can be made are collected
below.

Recalling the definition of the Ferrers diagram of a partition, we see that partitions
into parts s-distinct and t-flat can be described geometrically; they are the partitions
in which the vertical segments of the outer boundary of the Ferrers diagram—the
profile of the partition—are of length less than s, and horizontal segments are of
length less than t .



Partitions into Parts Simultaneously Regular, Distinct, And/or Flat 167

It is easy to see from this form that the generating function of the s-distinct, t-flat
partitions is symmetric in s and t : the s-distinct, t-flat partitions of n are in bijection
with the t-distinct, s-flat partitions of n by conjugation. One notes that the class of
t-distinct, t-flat partitions is preserved, but not the partitions themselves; since the
number of t-distinct, t-flat partitions of n is not necessarily of the same parity as the
number of partitions of n, it is too much to hope for an involution that has only the
t-distinct, t-flat partitions as its fixed points, but one wonders if there is an involution
which at least fixes all of these.

Despite the existence of this simple geometric description, it has been difficult to
assert any general form of the generating function. The s-distinct, 2-flat partitions
are simply those in which all parts from 1 to some k appear, but at most s − 1 times.
Their generating function is

P (s,2)
D,F =

∞∑

k=0

q(k+1
2 ) (qs−1; qs−1)k

(q; q)k
.

In particular, the 3-distinct, 2-flat partitions are counted by OEIS sequence A053261,
the mock theta function ψ1(q).

More generally, one canwrite downvarious recurrences. For instance, if P (s,t;k)
D,F (q)

is the generating function for s-distinct, t-flat partitions in which the largest part is
at most k, then

P (s,t;k)
D,F (q) = P (s,t;k−1)

D,F (q) +
(

qk 1 − q(s−1)k

1 − qk

) (
P (s,t;k−1)
D,F (q) − P (s,t;k−t)

D,F (q)
)

with appropriate initial conditions. The standard techniques for solving generating
functions, however, do not seem to solve this recurrence very well.

By taking q → 1 in the previous recurrences, we obtain a solvable difference
equation, which can tell us something about the number of such partitions with
largest part at most k. For instance, if s = t = 3, the simplest case not covered by
the generating function above, we are considering partitions in which parts differ by
no more than 2 and repeat no more than twice. Letting f (k) = P (3,3;k)

D,F (1), we find
that we have the difference equation

f (k) = 3 f (k − 1) − 2 f (k − 3),

with initial conditions f (0) = 1, f (1) = 3, f (2) = 9, which yields OEIS sequence
A077846, (1, 3, 9, 25, 69, 189, 517, . . . ). At the OEIS entry, we find the expression
f (n) = ∑n

i, j=0 2
j
( j
i− j

)
; this is sometimes suggestive of a form for the generating

function for a combinatorial expression when one replaces
(N
M

)
by

[
N
M

]

qk
for some

useful k, but nothing obvious seems to work along these lines for this problem.
The hooklength of a square in the Ferrers diagram, identified as position (i, j)

when the lower right-hand corner of the square is at (x, y) coordinates (−i,− j)
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where the upper-left corner is the origin, is the sum of the number of squares directly
right of and below the square at (i, j), plus 1. The hooklengths in the partition
(4, 4, 3, 1, 1, 1) are illustrated below.

9 5 4 2
8 4 3 1
6 2 1
3
2
1

A partition is t-core if t is not among its hooklengths. The partition above is 7-core
or t-core for t > 9. Since a partition in which parts differ by t or appear t or more
times would automatically have t among the hooklengths in its outermost squares,
the t-core partitions perforce form a subset of the t-distinct, t-flat partitions of n. In
the case of t = 2, the sets are equal, as the partitions involved are just the triangular
partitions (n, n − 1, . . . , 2, 1). It might have been hoped that this observation would
be useful in producing generating functions, but investigation along this line did not
pan out.

5 Further Observations and Questions

Clearly since little can be said about s-distinct, t-flat partitions, less can possibly be
said about partitions simultaneously r -regular, s-distinct, and t-flat. Those that are
2-regular, 2-distinct, and 3-flat are partitions consisting of consecutive odd numbers
starting from 1, so their generating function is the Jacobi theta function

∑∞
n=0 q

n2 .
Those that are 2-regular, 3-distinct, and 3-flat permit an additional appearance of
each odd part, and these are the 5th order mock theta function φ0(q), OEIS entry
A053258.

Several interesting open questions can be posed:

1. The fact that mock theta functions arise in numerous contexts related to these
partitions might be spurious, but after all, a mock theta function has coefficients
that do not grow “too fast,” and the combination of flatness and another condition
restricts partitions rather heavily; while it is perhaps a bit much to hope that the
s-regular or s-distinct and t-flat partitions all qualify as mock theta functions,
perhaps there is a closer connection here.

2. A full and careful proof of Tenner’s conjecture on φsφt for s and t not coprime
should be interesting to produce.

3. What is the generating function for partitions with profile segments of length
less than 2, that is, into parts appearing not more than twice, with parts differing
by at most 2, including starting with 1 or 2?
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4. It is easy to show based on Ramanujan’s congruences that the number of 5-
regular, 5-distinct partitions of 5n + 4 is divisible by 5. Dyson’s rank and the
crank do not realize this congruence; is there another natural statistic on this
subset which does so?

For item 3, the set of partitions involved is of natural interest, the property is
invariant under the most natural involution on partitions, and it has at least a potential
relation to the much-studied 3-core partitions, and yet the simple question of writing
down the generating function for the set seems to elude any of the basic techniques
for doing so. It would certainly be interesting to see this function written down, and
more generally that for the s-distinct, t-flat partitions.

Item 4 is of interest regarding congruences for the partition function such as
p(5n + 4) ≡ 0 (mod 5). One observes that if p(An + B) ≡ 0 (mod C) for all n,
it must also hold that the pA,A(An + B), the number of A-regular, A-distinct parti-
tions of An + B, possesses this congruence, i.e., pA,A(An + B) ≡ 0 (mod C). This
follows since one may write a recurrence, perhaps a complicated one but still having
integer coefficients, for pA,A(n) in terms of p(n), p(n − A), p(n − 2A), etc., and
if the latter are all divisible by C , then pA,A(n) will be as well. Since p5,5(5n + 4)
shares the congruence but the currently constructed statistics fail to realize the con-
gruence, perhaps another statistic exists that does so—and perhaps, due to the set
being considered—is somewhat more natural and susceptible to simpler proof of
its properties than the rank and crank. A really elementary combinatorial proof of
Ramanujan’s congruences does not yet exist in the literature.

There are certainly many other questions to be explored with these partitions; it
is somewhat surprising that they have escaped serious notice for so long, and it is
hoped that this paper will spur some interest in this area.
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White’s Theorem

An Exposition of White’s Characterization of Empty
Lattice Tetrahedra

Mizan R. Khan and Karen M. Rogers

Abstract We give an exposition of White’s characterization of empty lattice tetra-
hedra. In particular, we describe the second author’s proof of White’s theorem that
appeared in her doctoral thesis (Rogers in Doctoral dissertation 1993) [7].

Keywords Lattice tetrahedron · Empty lattice polyhedron

1 Introduction

The motivating example is the lattice tetrahedron with vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), and (1, 1, c) with c being an arbitrary positive integer. We denote this
tetrahedron as T1,1,c. Regardless of the size of c (and consequently the volume of
T1,1,c), T1,1,c does not contain any lattice points other than its vertices. This is in
surprising contrast to the situation inR2 where a lattice triangle does not contain any
lattice points, other than its vertices, if and only if it has area 1/2. (To see this we
invoke Pick’s theorem.)

Reeve [4] posed the problem of characterizing such tetrahedra. Some years later,
White [10] solved this problem. Over the years, different authors have given proofs
of White’s theorem (see [1, 3, 5, 6, 8]). The second author gave a proof of White’s
theorem in her doctoral dissertation [7]. In this article, we give a detailed exposition
of this proof.

Before stating the relevant theorems, we establish some notation and definitions.
Let a, b, c ∈ Z with 0 ≤ a, b < c. We will use d to denote the integer

d = (1 − a − b) mod c, 0 ≤ d < c.
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Furthermore, Ta,b,c will denote the lattice tetrahedronwith vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), and (a, b, c).

Definition 1 Following Reznick [6], we call a lattice polyhedron that does not con-
tain any lattice points other than its vertices an empty lattice polyhedron. Such a
polyhedron belongs to a larger set of lattice polyhedra that do not contain any lattice
points on their boundary other than the vertices. We call such polyhedra clean lattice
polyhedra.

We insert a warning about the the terminology, particularly in the case of tetrahe-
dra. Other names in the literature for empty tetrahedra are fundamental, primitive,
Reeve.

Definition 2 An affine unimodular map is an affine map

L : R3 → R
3of the formL(x) = Mx + u,

where M ∈ GL3(Z), det(M) = ±1 and u ∈ Z
3.

We now state the two theorems that we will prove.

Theorem 1 Let T be an empty lattice tetrahedron. Then there is an affine unimodu-
lar map L such that L(T ) = Ta,b,c, with 0 ≤ a, b < c and gcd(a, c) = gcd(b, c) =
gcd(d, c) = 1.

Theorem 2 (White) The lattice tetrahedron Ta,b,c is empty if and only if gcd(a, c) =
gcd(b, c) = gcd(d, c) = 1 and at least one of the following hold:

a = 1, b = 1, c = 1, d = 1.

We now state definitions and background results that will be used to prove the
two theorems.

Definition 3 A set of lattice points {v1, . . . , vk} in Z
n is said to be primitive if it

is a basis for the sublattice Zn ∩ (Rv1 ⊕ · · · ⊕ Rvk). Geometrically, this means that
{v1, . . . , vk} is primitive if and only if the parallelepiped spanned by v1, . . . , vk is
empty.

The following is a list of standard resultswewill use. The proofs can be found in [9,
LecturesV,VIII].However,we have rephrased someof the statements. Consequently,
the reader who consults [9] may need to read the relevant material carefully.

Theorem 3 Every lattice has an integral basis.

Theorem 4 The property of being a lattice basis is preserved under the action
of any unimodular transformation, that is, if v1, v2, . . . , vn is a basis for Zn and
T : Rn → R

n is an unimodular transformation, then T (v1) , T (v2) , . . . , T (vn) is
also a basis of Zn. Furthermore, given two lattice bases, there is an unimodular
transformation that maps one basis into the other.
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Theorem 5 Let {v1, . . . , vn} be a linearly independent set of elements of Zn, and
let H = Zv1 ⊕ . . . ⊕ Zvn. Then the order of the quotient group Z

n/H equals

#(Zn/H) = | det(v1, . . . , vn)|.

Theorem 6 Let {v1, . . . , vr } be a primitive set of Zn. Then {v1, . . . , vr } can be
extended to a basis of Zn.

We mention an interesting fact that emerges in the course of proving White’s
theorem. From Theorem 5, it follows that if Ta,b,c is empty, then the parallelepiped
spanned by (1, 0, 0), (0, 1, 0), (a, b, c) contains (c − 1) lattice points in its interior.
In the course of proving Theorem 2, wewill find that all of these points are coplanar!
More precisely, we have the following.

Corollary 1 Let Pa,b,c denote the parallelepiped spanned by (1, 0, 0), (0, 1, 0), and
(a, b, c). If Ta,b,c is empty, then Pa,b,c contains (c − 1) lattice points in its interior.
If a = 1, then all of these lattice points lie on the plane x = 1; if b = 1, then all of
these lattice points lie on the plane y = 1; if d = 1, then all of these lattice points
lie on the plane x + y − z = 1.

Warning: The co-planarity of these lattice points was mentioned in an article of the
first author [2, Theorem 3.2]. Unfortunately, the description of the planes in [2] is
completely incorrect! The author should have done his homework and not just relied
on his faulty visualization skills!!

2 Proofs

We begin with some notation. Let u = (u1, u2, u3) ∈ Z
3. We will denote the integer

gcd(u1, u2, u3) by gcd(u). Occasionally, we will use e1, e2, and e3 to denote the
vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Proposition 1 Let u, v be two linearly independent elements in Z
3. The following

statements are equivalent.

1. P, the parallelogram spanned by u and v is an empty parallelogram.
2. T, the triangle spanned by u and v is an empty triangle.
3. gcd(u × v) = 1.

Proof Clearly (1) ⇒ (2). We prove the contrapositive to demonstrate that (2) ⇒ (1).
We assume that P contains a lattice point x that is not a vertex of P . Then either x or
(u + v − x) lies in T . Since neither lattice point can be a vertex of T , we conclude
that T is not an empty triangle.

We now turn to proving that (1) and (3) are equivalent.
(3) ⇒ (1): Since gcd(u × v) = 1, there exists, by the Extended Euclidean algo-

rithm, w ∈ Z
3 such that (u × v) · w = 1 = det(u, v,w). By Theorem 5, u, v,w is a
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basis of Z3, and consequently they span an empty parallelepiped. We conclude that
P is an empty parallelogram.

(1) ⇒ (3): Since P is an empty parallelogram, {u, v} is a primitive set of Z3,
and consequently by Theorem 6 there is a lattice point w such that u, v,w is a
basis of Z3. Consequently, | det(u, v,w)| = 1. Since det(u, v,w) = (u × v) · w, we
conclude that gcd(u × v) = 1.

Corollary 2 The tetrahedron Ta,b,c is clean if and only if gcd(a, c) = gcd(b, c) =
gcd(d, c) = 1.

Proof Let�1,�2,�3,�4 denote the faces of Ta,b,c where�1 is the triangle spanned
by e1 and e2;�2 is the triangle spanned by e1 and (a, b, c);�3 is the triangle spanned
by e2 and (a, b, c); and �4 is the triangle spanned by (e2 − e1) and ((a, b, c) − e1).
Ta,b,c is a clean tetrahedron if and only if �1,�2,�3, and �4 are all empty lattice
triangles. Clearly�1 is an empty triangle. By Proposition 1, the triangles�2,�3,�4

are empty if and only if

gcd(e1 × (a, b, c)) = gcd(e2 × (a, b, c)) = gcd((e2 − e1) × ((a, b, c) − e1)) = 1,

that is, gcd(b, c) = gcd(a, c) = gcd(d, c) = 1.

Proof (Proof of Theorem 1) Let T be an empty lattice tetrahedron in R
3. Without

loss of generality we may assume that the origin is one of the vertices and the other 3
vertices are u, v andw. Since the triangle spanned by u and v is empty, by Proposition
1, the same holds for the parallelogram spanned by u and v. Therefore, {u, v} is a
primitive set of Z3, and by Theorem 6 can be extended to a basis of Z3, u, v, x.
Now by Theorem 4, we have a unimodular transformation L1 such that L1(u) = e1,
L2(v) = e2, and L3(x) = e3. Under this transformation, we see that the tetrahedron
T is equivalent to the tetrahedron T1 with vertices 0, e1, e2 and (A, B, c) where
A, B, c ∈ Z and vol(T ) = |c/6|. If c < 0, we can compose L1 with the unimodular
transformation

L2((x, y, z)) = (x, y,−z).

Consequently, we can assume that c > 0. We now use the division algorithm to
express

A = q1c + a and B = q2c + b, 0 ≤ a, b < c.

By acting on T1 by the unimodular transformation

L3((x, y, z)) = (x − q1z, y − q2z, z)

we get that T is equivalent to the tetrahedron T2 with vertices 0, e1, e2 and (a, b, c).
Since T2 is a clean tetrahedron, we invoke Corollary 2 to conclude that gcd(a, c) =
gcd(b, c) = gcd(d, c) = 1.

We now turn to the proof of White’s theorem. Our proof is arranged in four parts.
These are as follows:



White’s Theorem 175

Part 1: We prove that the tetrahedron Ta,b,c is empty if and only if a system of
equations involving a, b, d hold.

Part 2: This system of equations give an immediate proof of the (⇐) direction of
White’s theorem.

Part 3: The proof of the (⇒) direction of White’s theorem is considerably more
involved. We first develop a slight modification of the system of equations.
This then leads us to define a finite set of arithmetic functions fn . We then
state and prove certain properties of these functions.

Part 4: We use the properties of fn to complete the proof.

We will invoke the following identity in several places

Lemma 1 Let x ∈ R. If x /∈ Z, then

〈−x〉 = 1 − 〈x〉. (1)

We will typically invoke this identity in the following form:

〈
kl

c

〉
+

〈
k(c − l)

c

〉
= 1 (2)

for 0 < l < c, gcd(l, c) = 1, and k = 1, . . . , c − 1.

Proposition 2 Let c ∈ Z with c > 1 and let Ta,b,c be a clean lattice tetrahedron.
Then, Ta,b,c is empty if and only if

〈
ka

c

〉
+

〈
kb

c

〉
+

〈
kd

c

〉
− k

c
= 1 (3)

holds for k = 1, . . . , c − 1.

Proof (Proof of Part 1) Let P denote the parallelepiped spanned by e1, e2 and
(a, b, c). Since volume(P) = c and the faces of P are empty lattice parallelograms,
we infer that P contains (c − 1) lattice points in its interior. These lattice points are

〈
k(c − a)

c

〉
(1, 0, 0) +

〈
k(c − b)

c

〉
(0, 1, 0) + k

c
(a, b, c) (4)

with k = 1, . . . , c − 1.
Ta,b,c is empty if and only if

1 <

〈
k(c − a)

c

〉
+

〈
k(c − b)

c

〉
+ k

c
< 2,

for k = 1, . . . , c − 1. Some algebraic manipulation in conjunction with identity (1)
gives the system of inequalities
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0 <

〈
ka

c

〉
+

〈
kb

c

〉
− k

c
< 1,

for k = 1, . . . , c − 1.We now observe that

〈
ka

c

〉
+

〈
kb

c

〉
− k

c
≡

〈
k(a + b − 1)

c

〉
(mod Z), (5)

for k = 1, . . . , c − 1. Since both sides of the congruence are between 0 and 1, we
conclude that we have a system of equalities

〈
ka

c

〉
+

〈
kb

c

〉
− k

c
=

〈
k(a + b − 1)

c

〉
,

for k = 1, . . . , c − 1. After a little more algebraic manipulation, we conclude that
Ta,b,c is empty if and only if

〈
ka

c

〉
+

〈
kb

c

〉
+

〈
kd

c

〉
− k

c
= 1

for k = 1, . . . , c − 1.

We can now easily prove (⇐) direction of White’s theorem. The system of equa-
tions (3) in conjunction with the system of identities (2) allow us to conclude that
the following tetrahedra are empty.

Corollary 3 Let gcd(a, c) = 1. Then the tetrahedra T1,a,c and Ta,c−a,c are empty.

To prove the (⇒) direction of White’s theorem, we will work with a modification
of (3). Define a set of arithmetic functions fn for n ∈ Z

+, n < c and gcd(n, c) = 1,

fn : {1, . . . , c − 2} → {0, 1}

via

fn(k) =
〈
kn

c

〉
−

〈
(k + 1)n

c

〉
+ n

c
=

[
(k + 1)n

c

]
−

[
kn

c

]
. (6)

From (3), we obtain the system of equations

fa(k) + fb(k) + fd(k) + 1

c
= a + b + d

c
, (7)

for k = 1, . . . , c − 2. We now look at the case of k = 1 in (3) which shows that

a + b + d

c
= 1 + 1

c
.

Thus, we can rewrite (7) as the system of equations
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fa(k) + fb(k) + fd(k) = 1, (8)

for k = 1, . . . , c − 2. We will work with this system (8) in conjunction with the
properties of fn to arrive at a proof of White’s theorem.

Proposition 3 The function fn has the following properties.

(i) f −1
1 ({1}) = ∅.

(ii) For n > 1,
f −1
n ({1}) = { [kc/n] : k = 1, . . . , n − 1} .

(iii) fc−n = 1 − fn.

Proof For k = 1, . . . , c − 2,

f1(k) =
[
k + 1

c

]
−

[
k

c

]
= 0 − 0 = 0,

which proves (i).
We now prove statement (ii). If l ∈ f −1

n ({1}) then there exists k ∈ Z
+ such that

ln

c
< k <

(l + 1)n

c
.

It follows that l = [kc/n]. Conversely, if l = [kc/n] for some integer k, with 1 ≤
k ≤ n − 1, then we have that

l <
kc

n
< l + 1.

We now obtain that
ln

c
< k <

(l + 1)n

c

and consequently l ∈ f −1
n ({1}).

Statement (iii) is a consequence of identity (2).

fc−n(k) =
〈
k(c − n)

c

〉
−

〈
(k + 1)(c − n)

c

〉
+ c − n

c

= 1 −
〈
kn

c

〉
− 1 +

〈
(k + 1)n

c

〉
+ 1 − n

c
= 1 − fn(k).

We now complete the proof of White’s theorem.

Proof (Proof of Part 3) Let Ta,b,c be an empty tetrahedron with c ≥ 2. We want to
prove that either a = 1 or b = 1 or d = 1. We will argue by contradiction. So we
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assume that a, b, d ≥ 2. Consequently none of the sets f −1
a ({1}), f −1

b ({1}), f −1
d ({1})

are empty. Since
fa + fb + fd = 1,

can infer that a, b and d are distinct integers, and the sets

f −1
a ({1}), f −1

b ({1}), f −1
d ({1})

are pairwise disjoint. (Spoiler alert: Our argument hinges crucially on the fact that
f −1
b ({1}) ∩ f −1

d ({1}) = ∅.) Without loss of generality, we can assume that a > b >

d. It follows that 1 ∈ f −1
a ({1}), and consequently 1 /∈ (

f −1
b ({1}) ∪ f −1

d ({1})). We
now have that

fb + fd = fc−a

and consequently (
f −1
b ({1}) ∪ f −1

d ({1})) = f −1
c−a({1}),

that is,
{ [kc/b] : k = 1, . . . , b − 1} ∪ { [kc/d] : k = 1, . . . , d − 1}

= { [kc/(c − a)] : k = 1, . . . , (c − a − 1)} .

We now compare the smallest and largest elements in each of the 3 sets. Since
b > d ≥ 2 and 1 /∈ f −1

c−a({1}), we have that

2 ≤
[

c

c − a

]
=

[ c
b

]
<

[ c
d

]
≤

[
(d − 1)c

d

]
<

[
(b − 1)c

b

]
=

[
(c − a − 1)c

c − a

]
.

We remark that the strict inequalities occur since

f −1
b ({1}) ∩ f −1

d ({1}) = ∅.

Let s be the positive integer such that

[ c
d

]
=

[
sc

c − a

]
.

We now obtain that
[
(s − 1)c

c − a

]
=

[
(s − 1)c

b

]
and

[
(s + 1)c

c − a

]
≤

[ sc
b

]
.

Combining these two observations, we get
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[
(s + 1)c

c − a

]
−

[
(s − 1)c

c − a

]
≤

[ sc
b

]
−

[
(s − 1)c

b

]
,

which implies the inequality

2

[
c

c − a

]
≤

[ c
b

]
+ 1.

This leads to the contradiction that
[

c

c − a

]
≤ 1,

and consequently our assumption that a, b, d ≥ 2 is false.

Proof (Proof of Corollary 1) Let Ta,b,c be empty, with c > 1. By Theorem 2, we
have that either a = 1 or b = 1 or b = c − a. If a = 1, then by replacing a by 1
in (4), we see that the x co-ordinate of each lattice point inside P1,b,c equals 1. The
same argument works if b = 1. The only case that needs a little more work is, if
b = c − a. In this case, (4) becomes

〈
k(c − a)

c

〉
(1, 0, 0) +

〈
ka

c

〉
(0, 1, 0) + k

c
(a, c − a, c). (9)

If we now add the x and y co-ordinates and subtract the z co-ordinate, we get

〈
k(c − a)

c

〉
+

〈
ka

c

〉
+ ka

c
+ k(c − a)

c
− k =

〈
k(c − a)

c

〉
+

〈
ka

c

〉
.

We now invoke the identities (2) to conclude that the RHS equals 1.
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A Misère-Play �-Operator

Matthieu Dufour, Silvia Heubach and Urban Larsson

Abstract We study the �-operator (Larsson et al. in Theoret. Comp. Sci.
412:8–10, 729–735, 2011) of impartial vector subtraction games (Golomb in
J. Combin. Theory 1:443–458, 1965). Here,we extend the operator to themisère-play
convention and prove convergence and other properties; notably, more structure is
obtained under misère-play as compared with the normal-play convention (Larsson
in Theoret. Comput. Sci. 422:52–58, 2012).

Keywords Combinatorial game · Game convergence · Game creation operator
Impartial game · Misére play · Star operator · Sum-free set

1 Introduction

The notion of vector subtraction games was introduced by Golomb [4], motivated
by methods in computer science. Then, much later the game family reappeared [3]
under a different name (invariant subtraction games) and now the motivation was a
conjecture in number theory.

The proposed problem was solved [5] by introducing the normal-play �-operator
on the class of games, and subsequently, some very general properties of this
�-operator were discovered [6]. All this work was done using the so-called normal-
play convention for impartial combinatorial games [1]. Here, we introduce the �-
operator under the misère-play convention and prove some general properties. Let
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Fig. 1 The move sets of a
sequence of games arising
from the initial game with
move set G 0 = {4, 9}. The
values at level i represent the
P-positions of the game
whose moves are listed on
level i − 1

us begin by using an example of a game in one dimension (those are usually just
called subtraction games).

Imagine two players who alternate in removing tokens from a single heap, subject
to the rules that either 4 or 9 tokens be removed, and that if you cannot move, you
win (misère-play). In this particular game, the first player to move wins if there are
less than 4 tokens in the pile, because these positions are terminal, and if there are
between 4 and 7 tokens, then the other player wins. By a recursive procedure, one
computes the pattern of P-positions (these are the positions from which the current
player cannot win given optimal play). The initial pattern of P-positions is shown in
the first line of Fig. 1, and the sequence is periodic as illustrated (on the 0th line, we
show the allowed moves of this game).

Since the underlying structure of the moves and the P-positions is the same (the
nonnegative integers), one can play a new game where the P-positions of the first
game are used as moves in the new game. The new set of moves is then

G 1 = {4, 5, 6, 7, 12, 17, 18, 19, 20, 25, . . .}.

The P-positions of this new game are shown on the second row of Fig. 1. By iterating
this process, we get a sequence of games where the moves in the next game consist
of the P-positions of the previous game (this is the �-operator to be defined formally
below).

In Fig. 1, the games shown on rows 4 and 5 have the same moves, and one of the
results in this paper is that the sequence of games converges to a limit game, for any
choice of the initial set of moves, and in any dimension. Moreover, the limit game is
reflexive (its set of P-positions is identical with the move set), and we show that it can
be defined (non-recursively) by a simple ‘sumset’ rule. We also show that the limit
game is the same for any two games (in the same dimension) if the set of smallest
(in the natural partial order) moves is the same. This is the third main result of this
paper, which concludes Sect. 2.

In one dimension, we obtain precise structure results for the class of reflexive
games (Sect. 3), and we use them to discuss some applications, for example, on so-
called maximal sum-free sets in relation with reflexive games (Sect. 4). Moreover,
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we find the set of all games which have a reflexive set S as its set of P-positions (the
notion of an S-complete set of games is introduced in Definition 6).

We have obtained some preliminary structure results in two dimensions, which
are illustrated in Sect. 5, where we also discuss directions for future work.

The remaining part of the introduction concerns some basic concepts and defin-
itions, and then in Sect. 1.2, we use an example of a game on one heap to illustrate
our method of proof for convergence.

1.1 Basic Concepts

LetN denote the positive integers, andN0 the nonnegative integers. Unless otherwise
stated, M will be a misére-play game on d ∈ N heaps (dimension d), and we use
calligraphy notation for sets when we want to indicate that we think of a subset of
vectors as a game. All games we consider are impartial and of the following form,
e.g., [3, 4].

Definition 1 Let d ∈ N, and letM ⊆ N
d
0 be the set of moves. In the d-dimensional

vector subtraction game M , a player can move from position x ∈ N
d
0 to position

y ∈ N
d
0 if x − y ∈ M . A position y for which x − y ∈ M is called an option of x .

We consider the misère-play version of the game, that is, a player who cannot move
wins.

Note that when we talk about a game, we refer to its rule set or subtraction set,
and we are interested to determine for each position whether it is a P- or N-positon.
We are not concerned about finding efficient strategies from starting positions, but
rather want to investigate the patterns of the set of P-positions.

Since our games are multidimensional, we use the natural partial order on N
d
0 ,

namely x � y if and only if xi � yi for i = 1, . . . , d, and x ≺ y if and only if x � y
with strict inequality holding for at least one component.

Definition 2 A nonempty subset I of a partially ordered set (X,�) is a lower ideal
if for every x ∈ I , y � x implies that y ∈ I .

We denote the set of terminal positions of the game M by TM . By definition
of a vector subtraction game, TM is the set of all x smaller than or unrelated to
everym ∈ M , that is, TM = {x � m | m ∈ M }. Of course, if 0 ∈ M then TM = ∅.
Moreover, since we play the misère version, we have the following observation.

Note 1 For any game M , in any dimension, the set of terminal positions is a lower
ideal, and, TM ⊆ N (M ).

It is well known that for impartial games without cycles (that is, no repeated game
positions), there are exactly two outcome classes, called N and P [1]. In misère-play,
they are characterized as follows: a position is an N-position if it has no option,
or if there is at least one P-position in its set of options. Otherwise, a position is a
P-position. In other words, a position is a P-position if and only if its set of options
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is a nonempty set of N-positions. We denote the set of N-positions of a misère-play
game M by N (M ) and the set of P-positions by P(M ).

Note that in Definition 1, we allow M = ∅ and also the case 0 ∈ M (that is, a
pass move is allowed). If 0 ∈ M , then each position can be repeated so the outcome
is a draw, and hence P(M ) = ∅. This trivial draw game was originally included in
the definition of normal-play vector subtraction games by Golomb [4].1 It is not very
interesting from a game player’s perspective, but from a theoretical point of view, as
we will see, there is no reason to exclude it. Similarly, ifM = ∅, then P(M ) = ∅,
because all positions are N-positions due to the misère convention.

On the other hand, if 0 /∈ M , then we get a recursive definition of the outcomes
of all positions from the characterization of N- and P-positions above, and by Note 1,
recurrence starts with N-positions. Moreover, observe that any smallest move 0 �=
m ∈ M is a P-position, so in this case P(M ) �= ∅. In fact, each game M has a
unique set of minimal elements which we denote by min(M )2, and we have the
following fundamental observation.

Note 2 For any game M , in any dimension, if 0 �= min(M ), then min(M ) ⊆
P(M ).

Since the underlying structure ofmoves and P-positions is the same (sets of integer
vectors), we can iteratively create new games [5, 6].

Definition 3 Let M be a game in any dimension. Then, M � is the game with
subtraction setM � = P(M ).

This defines the misère-play �-operator3 which acts on impartial subtraction
games.4 A P-position in gameM becomes a move in gameM � (and an N-position
inM becomes a non-move in gameM �). We can now study properties of sequence
of games created by repeated applications of the �-operator. First, we define special
sequences of games, obtained by the fixed points of the operator.

Definition 4 The game M ⊆ N
d
0 is reflexive ifM = M �.

Definition 5 Let M 0 = M be a game in any dimension, and let M i = (M i−1)�

for i > 0. The sequence of games M i converges (with respect to �) if M∞ =
limi→∞ M i exists.

Note that due to the recursive definition of the outcomes of an impartial com-
binatorial game, the notion of convergence is point-wise. The following lemma is
immediate from the definition of reflexivity.

1He also restricted the set of terminal positions to contain only 0, a definition not used in connection
with the �-operator.
2In one dimension, min(M ) consists of a single value and we sometimes abuse notation and write
the minimal number instead of the set. If M = ∅ then we define minM = ∅.
3Note that the �-operator under misère rules is the same as the �-operator in normal-play [5, 6].
However, since in misère-play 0 is never a P-position, the definition simplifies in this case.
4The �-operator is in fact an infinite class of operators, one operator for each dimension. However,
we will refer to ‘the’ �-operator because the operator acts in the same way in each dimension.
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Lemma 1 The game M ⊆ N
d
0 is reflexive if and only if there is a game X such that

M = X ∞.

Proof If M is reflexive, then we may take X = M , because M = M � = · · · =
M∞. If M = X ∞, for some game X , then by definition of a limit game, M is
reflexive. �

Note 3 We have that P(M ) = ∅ if and only if 0 ∈ M or M = ∅. Consequently,
if 0 ∈ M or M = ∅, then M∞ = ∅.

Vector subtraction games that have the same sets of P-positions have been studied
before (see e.g., [7]). We will be particularly interested in games for which the set of
P-positions is a reflexive game, which motivates the following definition.

Definition 6 Given misère or normal-play convention, we call a set of games G =
{Gi } S-solvable if, for all i , P(Gi ) = S. If G contains all such games (that is, G is
S-solvable andH /∈ G implies P(H ) �= S), then we say that the set of games G is
S-complete.

1.2 One Heap Examples

We begin by illustrating our results on reflexive games and their limit behavior via
the following examples of play on one heap.

Figure2 shows the result of applying the �-operator five times to two different
games. On the left, the move set is H 0 = {4, 7, 11}, while on the right, it is G 0 =
{4, 9} (same as in Fig. 1). Note that both sets have the same minimal move, k = 4.
Figure2 suggests that both games converge to the same limit game, which exhibits
a periodic structure: it consists of groups of k consecutive integers, and the smallest
values in consecutive groups differ by 13 = 3 · 4 − 1 = 3 · k − 1. We will show that
all games, under the misère-play �-operator, have a limit game, and that the limit
game is uniquely determined by the set of smallest elements.

In proving the convergence result, the approach is to show that the outcome
class (move or non-move) of the smallest position with differing outcome class in
consecutive games will become ‘fixed’ in subsequent iterations. Therefore, the set
of positions whose outcome class remains unchanged from iteration to iteration
increases in each step, and any values already in the set of ‘fixed’ positions cannot
become ‘unfixed.’ Figure3 shows the first five iterations of the game G 0 = {4, 9}.
The rectangles identify the smallest elements that differ when comparing G i and
G i+1. For example, for games G 0 and G 1, the smallest differing element is x = 5.
For G 0, x = 5 is not a move, but for G 1 (and all subsequent games) it is. Similarly,
the smallest differing element when comparing G 1 and G 2 is x = 12, which is a
move in G 1, but then becomes fixed as a non-move in G 2 and subsequent games.
For the game G 0 = {4, 9}, the initial set of outcome-fixed positions is {1, 2, 3, 4} (the
terminal positions and the smallest move), {1, 2, . . . , 11} after the first iteration, then
{1, 2, . . . , 15}, and finally {1, 2, . . . , 47}.
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Fig. 2 The behavior of the �-operator for two different games, H 0 = {4, 7, 11} and G 0 = {4, 9},
that have the same minimal move. The values at level i represent the move sets H i and G i ,
respectively

Fig. 3 Rectangles
identifying the smallest
elements with differing
outcome class in the i th and
the (i + 1)st iteration of the
game G0 = {4, 9}

2 Convergence and Reflexivity

As we have seen, the definition of the �-operator does not depend on the given
dimension, and as we will see, neither does its most notable property, convergence
to a fixed point, the class of reflexive games being the fixed points of the operator.
The following lemma makes this property conceivable.

Lemma 2 If 0 /∈ M , then min(M ) = min(P(M )), and consequently, min(M ) =
min(M i ) for all i ≥ 0, and min(M ) = min(M∞) if the limit exists.

Proof If M = ∅, then P(M ) = ∅ = M , so the conclusion holds. If M �= ∅, let
m ∈ min(M ). Then by Note 2, m ∈ P(M ). Also, for x ≺ m, x ∈ TM ⊆ N (M ),
and therefore, m ∈ min(P(M )). Thus, min(M ) ⊆ min(P(M )). On the other hand,
for m ′ ∈ min(P(M )), assume m ′ /∈ min(M ).

There are two possibilities. First, if form ∈ min(M ),m ′ � m, thenNote 2 contra-
dicts that m ′ ∈ min(P(M )) (because m ∈ P(M )). Second, if m ′

� m ∈ min(M ),
then m ′ ∈ TM , which contradicts m ′ ∈ P(M ). Therefore, m ′ ∈ min(M ), which
implies that min(P(M )) ⊆ min(M ), so min(P(M )) = min(M ). By definition of
the �-operator, we have thatmin(M ) = min(M i ) for all i ≥ 0, and the last statement
follows from the definition of the limit game. �
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For the �-operator, its definition as well as most of its important properties are
independent of the dimension, and it is the main purpose of this section to study
these general properties. To emphasize the type of behavior, we introduce the class
of accumulation-point operators.

Definition 7 Let Ω be a (totally ordered) set, and let f : Ωd → Ωd be an operator
defined in any dimension d ∈ N. Then f is an accumulation-point operator (asso-
ciated with Ω) if, for any dimension d ∈ N and any X ⊆ Ωd , limn→∞ f n X exists,
where f n X = f f n−1X , for n > 0 and f 0 = f .

In the context of our vector subtraction games, recall that Ω = N0 includes the
case of pass moves.

Theorem 1 The misère-play �-operator is an accumulation-point operator associ-
ated with N0. That is, for any d ∈ N, each game M ⊆ N

d
0 converges to a (reflexive)

limit game M∞.

Proof If either M = ∅ or 0 ∈ M , then by Note 3, M∞ exists.
Now let ∅ �= M ⊆ N

d
0 \ {0}. Assume that for some i � 0,

(M i \ P(M i )) ∪ (P(M i ) \ M i ) �= ∅,

since otherwise M 0 = M 1 = M∞ (by the definition of the star-operator). Let

X (i) = min((M i \ P(M i )) ∪ (P(M i ) \ M i ))

be the set of minimal differing elements among moves and P-positions at the i th

iteration. Note that by definition of X (i), if z � x for all x ∈ X (i), then z ∈ (M i ∩
P(M i )) ∪ ((M i )c ∩ (P(M i ))c), so either z ∈ M j for all j > i or z /∈ M j for all
j > i . Now for each x ∈ X (i), we consider the following two cases:

Case 1: Suppose x ∈ M i \ P(M i ). It suffices to show that x /∈ P(M i+1), since
then x /∈ M j for all j > i . Note that x is not a terminal position because x is a move.
Also, because x is not a P-position, there is a move m ∈ M i such that

x − m = z ∈ P(M i ). (1)

However, since 0 ≺ m, z ≺ x , then, by definition of X (i), m ∈ M i+1 and z ∈
P(M i+1), which, by equation (1), implies that x /∈ P(M i+1), as desired.5

Case 2: Suppose that x ∈ P(M i ) \ M i . It suffices to show that x ∈ P(M i+1),
since then x ∈ M j for all j > i . Let’s assume to the contrary that x /∈ P(M i+1).
Then there exists a move m ∈ M i+1 such that x − m = z ∈ P(M i+1). But then
m ∈ P(M i ) = M i+1, by definition of the �-operator, and z ∈ M i ∩ P(M i ), by
definition of X (i). Therefore, in the game M i we have a move z from a P-position
x to the P-position m, a contradiction, so x ∈ P(M i+1).6 �

5An example of this case is x = 12 ∈ X (1) in Fig. 3.
6Examples of this case are x = 5 ∈ X (0), x = 16 ∈ X (2), and x = 48 ∈ X (3) in Fig. 3.
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We now characterize reflexive games via a ‘sumset’ property.

Definition 8 Suppose that A, B ⊆ N
d
0 . Then A + B = {a + b | a ∈ A, b ∈ B}.

The following result on so-called sum-free sets is also discussed in Sect. 4.

Theorem 2 Let A ⊆ N
d
0 . Then the game A with move set A is reflexive if and only

if

A + A = Ac \ TA , (2)

where Ac denotes the complement of A with respect to N
d
0 .

Proof If A = ∅, then all positions are terminal N-positions, so TA = N
d
0 and

P(A ) = ∅ = A. Thus A is reflexive and (2) holds.
Next we assume that A is nonempty. If 0 ∈ A, then because 0 /∈ P(A ),A is not

reflexive. On the other hand, 0 ∈ A + A, but 0 /∈ A c, so (2) does not hold and the
claim is true in this case also.

Nowwe assume that A is nonempty and 0 /∈ A. Note that for any such gameA , we
have that for any nonterminal position x ∈ N (A ) \ TA there is a movem = x − z ∈
A that leads to a P-position z ∈ P(A ). Therefore, N (A ) \ TA ⊆ A + P(A ).

On the other hand, since a move from a P-position cannot result in a P-
position, for any z ∈ P(A ) and any move m ∈ A, m + z = x ∈ N (A ) \ TA . Thus,
A + P(A ) ⊆ N (A ) \ TA , and we have

A + P(A ) = N (A ) \ TA . (3)

We now prove that A is reflexive if and only if (2) holds.
‘⇒’ If A is a reflexive, then P(A ) = A and N (A ) = Ac, so (3) reduces to (2).
‘⇐’ Let B = P(A ), so we need to prove that B = A. Assume to the contrary that
there is x ∈ Ac ∩ B. Then B ⊆ Ac, because otherwise, there would exist z ∈ A ∩ B
and, by (2), a move m = x − z ∈ A from P-position x ∈ Ac ∩ B ⊂ Ac \ TA to P-
position z ∈ A ∩ B. So, B ⊆ Ac, or equivalently, A ⊆ Bc = N (A ). However, in
misère-play, a smallest move (which exists by assumption) is always a P-position,
which contradicts that A ⊆ N (A ), and so Ac ∩ B = ∅. Therefore, B ⊆ A.

It remains to prove that A ⊆ B, or equivalently, Bc ⊆ Ac. Let x ∈ Bc. Note that
TA ⊆ Ac ∩ Bc because terminal positions are neither moves nor P-positions. Thus,
we assume without loss of generality that x ∈ Bc \ TA , that is, x is a nonterminal
N-position. By (3), there is a move m = x − z ∈ A from x to z ∈ B ⊆ A. Since both
z and m are in A, then by assumption (2) we have that m + z = x ∈ Ac \ TA . Since
x /∈ TA , we must have that x ∈ Ac, which completes the proof. �

Using the sumset property of Theorem 2, we completely characterize the limit
games. There is exactly one reflexive limit game for each set of minimal moves, that
is, the set of minimal elements uniquely determines the limit game.

Theorem 3 LetM andG be nonempty games. ThenM∞ = G∞ ⇐⇒ min(M ) =
min(G ).
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Proof ‘⇒’ If M∞ = G∞ = ∅, then by Note 3, {0} = min(M ) = min(G ) since
bothM and G are nonempty. IfM∞ and G∞ are nonempty games, then by Note 2,
0 /∈ M ∩ G , and by Lemma 2, we have min(M ) = min(M∞) = min(G∞) =
min(G ) as claimed.

‘⇐’ If {0} = min(M ) = min(G ), then M∞ = G∞ = ∅ by Note 3. If {0} �=
min(M ) = min(G ), then by Lemma 2, min(M∞) = min(G∞) and TM∞ = TG∞ .
We need to show that M∞ = G∞. Assume to the contrary that there is a smallest
differing element

x = min(G∞ \ M∞ ∪ M∞ \ G∞).

Without loss of generality we may assume that x ∈ G∞ \ M∞. Be definition of
x , x /∈ M∞. Also, x � m ∈ min(G∞) = min(M∞), so x /∈ TM∞ , that is, x ∈
(M∞)c \ TM∞ . Since M∞ is reflexive, by Theorem 2, there must be 0 �= y, z ∈
M∞ such that y + z = x . However, since y, z ≺ x , by minimality of x , we have
y, z ∈ G∞. Applying Theorem 2 to G∞ now implies that x ∈ (G∞)c \ TG∞ , a con-
tradiction. Thus M∞ = G∞. �

Theorems 1 and 3 confirm what was suggested in Fig. 2; the games converge to
the same limit game. Now the question becomes: what do limit games ‘look like’?
We will completely answer this question in the next section for games on one heap,
and then in the final section, we sketch some of the observed behavior for two heaps
(see also [2]).

Both the misère-play �-operator and the normal-play ��-operator converge in any
dimension, but the properties of the fixed points are not the same. Our results imply
that the misère-play convergence is stable in the following sense.

Corollary 1 Let M be a reflexive game in any dimension, and let Y be a finite set
of vectors in the same dimension. For almost all perturbations of the form MY =
(M \ Y ) ∪ (Y \ M ), M∞ = MY

∞.

Proof This is a consequence of Theorems 1 and 3. �

3 A Characterization of Limit Games in One Dimension

We first consider d = 1, that is, play on a single heap. Motivated by the structure of
the limiting game in Fig. 1, for any k ∈ N, we define the period pk = 3k − 1 and let
Mk denote the set

Mk = {i pk + k, . . . , i pk + 2k − 1 | i ∈ N0},

with M0 = ∅. Note that k = min(Mk) for k � 1. By Theorem 3, the games in
Example1.2 have the same limit game, andwewill see in Theorem 4 andCorollary 2,
that H ∞ = G∞ = M4.

http://dx.doi.org/10.1007/978-3-319-68032-3_1
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Since the set Mk is periodic with period pk , we find it convenient to make our
using arithmetic modulo pk . We denote the set of residuals modulo p of elements
of a set A by [A]p. With this notation, it follows from the definition of Mk that for
k � 1,

[Mk]pk = {k, k + 1, . . . , 2k − 1} and (4)

[M c
k ]pk = {0, 1, . . . , k − 1, 2k, . . . , 3k − 2} ≡pk {−(k − 1), . . . , k − 1}.

Theorem 4 The gameM ⊆ N0 is reflexive if and only ifM = Mk , for some k ∈ N0.

Proof ‘⇐’ If k = 0, then M = M0 = ∅, which is reflexive by Note 3. Suppose
next thatM = Mk is nonempty and let k = min(Mk) ≥ 1. We show that the game
Mk is reflexive using Theorem 2. Note that by (4),

[Mk + Mk]pk = [{2k, . . . , 4k − 2}]pk

= {2k, . . . , 3k − 2, 0, . . . , k − 1} = [M c
k ]pk .

Since for any element m ∈ Mk , m + m ≥ 2k and the terminal positions are given
by TMk = {0, . . . , k − 1}, we have thatMk + Mk ⊆ M c

k \ TMk . On the other hand,
let z ∈ M c

k \ TMk , so z = i · pk + r with r ∈ [M c
k ]pk . If 0 ≤ r ≤ k − 1, then i �

1 (because z is not a terminal position), and we can write z = x + y with x =
(i − 1)pk + k + r ∈ Mk and y = 2k − 1 ∈ Mk . If 2k ≤ r ≤ 3k − 2, then z = x +
y with x = i · pk + k ∈ Mk and y = r − k ∈ Mk . Thus M c

k \ TMk ⊆ Mk + Mk ,
soMk is reflexive by Theorem 2.

‘⇒’ We show that if M �= Mk , then M is not reflexive. Let k = min(M ). If
k = 0, then M �= M� for any �, and furthermore, by Note 3, M is not reflexive.
Now assume that k > 0, so k ∈ P(M ) by Note 2. Assume that there is a positive
integer x = min(Mk \ M ∪ M \ Mk), that is, x is the smallest value that differs
between M and Mk . Necessarily, x > k.

Suppose first that x ∈ Mk \ M . Because x /∈ M , it suffices to prove that x ∈
P(M ) = M � to show that M is not reflexive. Since x > k, there exists y ∈ Mk ∩
M ⊇ {k} such that y < x . For any such y, y ∈ P(Mk) by reflexivity of Mk . By
minimality of x , y ∈ P(M ) because the samemoves are available from y in bothM
andMk . Since x, y ∈ Mk , we have x = i · pk + r and y = j · pk + s for some 0 �
j � i and k � r, s � 2k − 1. Thus z = x − y = (i − j) · pk + (r − s) with −k +
1 � r − s � k − 1, so z /∈ Mk , and by minimality of x , z /∈ M . This implies that
there is no move in M from x to a P-position y, so x ∈ P(M ), which completes
this case.

Suppose next that x ∈ M \ Mk . It suffices to prove that x /∈ P(M ) to show that
M is not reflexive. By the minimality of x , it suffices to find an option z of x with z ∈
P(M ), that is z = x − y for some y ∈ M . Because y, z < x , we have y, z ∈ Mk ∩
M due to the minimality of x . Since x /∈ Mk , x = i · pk + r for some i ≥ 0 and
r ∈ [M c

k ]pk . If r ∈ {0, . . . , k − 1}, let y = (i − 1)pk + (2k − 1) ∈ Mk , otherwise
choose y = i · pk + k ∈ Mk . In each case, [x − y]pk ∈ [Mk]pk . This shows that there



A Misère-Play �-Operator 191

is a move from x to a P-position z ∈ P(M ), so x /∈ P(M ), which implies that M
is not reflexive either in this case. Overall, the gameM is reflexive if and only ifM
is of the form Mk . �

Now that we have identified a family of games that are reflexive, we will show
that these games are the only ones that can occur as limit games.

Corollary 2 Let M ⊆ N0 and let k = min(M ) if M �= ∅, and k = 0 otherwise.
Then limi→∞ M i = Mk .

Proof Since the limit game is reflexive, Theorem 4 applies, and M∞ = M j for
some j ∈ N. If M = ∅ or 0 ∈ M , then M∞ = ∅ = M0, so the claim is true. If
M is nonempty and 0 /∈ M , then by Lemma 2, k = min(M ) = min(M∞). Since
min(M j ) = j for j > 0, the minimum uniquely determines M j , so we have that
M∞ = Mk . �

In conclusion, in one dimension we understand the structure of any limit game—
it is periodic and is completely determined by the minimal move. This result is
quite surprising in its simplicity, especially since in the case of normal-play, general
formulas for limit games are rare in any dimension, the exceptions consisting of a
few ‘immediately’ reflexive game families [5, 6].

Now that we have identified the sets Mk as the only possible limit games, we
answer which games have Mk as their set of P-positions.

Theorem 5 Let k ∈ N and Ak = {k, 2k − 1}. Then P(X ) = Mk if and only if Ak ⊆
X ⊆ Mk. That is, the set of games {X | Ak ⊆ X ⊆ Mk} is Mk-solvable and also Mk-
complete.

Proof We begin by proving that P(Ak) = Mk . Clearly, TAk = {0, . . . , k − 1} ⊂
N (Ak). We compute modulo pk = 3k − 1 and use (4) to justify that for each x ∈
Mc

k \ {0, . . . , k − 1}, x − k ∈ Mk , or x − (2k − 1) ∈ Mk . Indeed, if x ∈ {0, . . . , k −
1} (mod pk), then x − (2k − 1) ∈ Mk , and otherwise x − k ∈ Mk . For the other di-
rection we must show that for all x ∈ Mk , both x − k ∈ Mc

k and x − (2k − 1) ∈ Mc
k ,

and this follows directly by (4). Thus P(Ak) = Mk .
To prove the statement for a general set X with Ak ⊆ X ⊆ Mk , we use that

P(Mk) = Mk (by Theorem 4). Hence, no move in X connects any two candi-
date P-positions in Mk . Moreover, since Ak ⊆ X , for each candidate N-position we
find a move to a candidate P-position using the moves k or 2k − 1.

It remains to prove that no other sets X have the property P(X ) = Mk , that
is, we need to show that if there is x ∈ Ak \ X or x ∈ X \ Mk , then P(X ) �= Mk .
Suppose that there is a smallest x ∈ Ak \ X , with Mk = P(X ). Then x = k or
x = 2k − 1; in the first case, if k is not a move, then P(X ) = Mk implies that x < k
is a terminal N-position, so k as a non-move is also terminal and hence an N-position,
a contradiction. Hence assume k is a move, but 2k − 1 is not. Then, there is no move
from 4k − 2 ∈ Mc

k to a P-position in Mk = P(X ), contradicting that Mk is the set
of P-positions.
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Suppose next that there is a smallest move x ∈ X \ Mk with P(X ) = Mk . If x ∈
TMk , thenX andMk do not have the same P-positions (since x is a P-position inX ,
but anN-position inMk).Hence,wemust have x /∈ TMk and x ∈ {−(k − 1), . . . , k −
1} (mod pk). But, for each such x , we find two P-positions y, z ∈ {k, . . . , 2k − 1}
(mod pk) such that y − z = x , which contradicts x being a move. �

Given a game M (in any dimension), we denote the number of iterations of the
misère-play �-operator until the limit game appears for the first time by ϕ(M ) =
min{i | M i = M∞} ∈ N0 ∪ {∞}. For the game M = {k}, we derive ϕ(M ).

Lemma 3 Let M = {k} with k � 2. Then

1. M 1 = {x | x ≡ k, . . . , 2k − 1 (mod 2k)} = [{k, . . . , 2k − 1}]2k .
2. M 2 = {k, . . . , 2k − 1} ∪ {4k − 1, 6k − 1, . . .}.
3. M 3 = {k, . . . , 2k − 1} ∪ {4k − 1, . . . , 5k − 2} ∪ {7k − 2, 9k − 2, . . .}.
4. M 4 = Mk ∩ {0, . . . , 10k − 3}.
5. M 5 = Mk for any k.

Figure4 illustrates Lemma 3 forM = {4}.
Proof 1. Let S = [{k, . . . , 2k − 1}]2k . The terminal positions of M are given by
TM = {0, 1, . . . , k − 1} ⊂ Sc. For any position x ∈ S, the position x − k /∈ S. Also,
for x /∈ S, the position x − k ∈ S, so S = P(M ) = M 1.

2. Let S = {k, . . . , 2k − 1} ∪ {4k − 1, 6k − 1, . . .}. The allowed moves are of the
form m = i · 2k + r with k � r � 2k − 1 and i ≥ 0. Since M 1 ∩ Mk = {0, . . . ,
3k − 1}, these moves are already fixed as P-positions. If 3k � x � 4k − 2, then
x − (2k − 1) ∈ S, so x ∈ N (M 1). If x = j · 2k − 1 with j ≥ 2, then x − m ∈
{0, . . . , k − 1} ⊂ Sc. Also, for any x > 4k − 1 with x /∈ S, x = j · 2k + r with
0 ≤ r ≤ 2k − 2 and j ≥ 2. Then for 0 ≤ r < k − 1, x − m ∈ S for m = ( j − 1) ·

Fig. 4 The iterations of the misère-play �-operator for M = {4}
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2k + k + r , and for k ≤ r ≤ 2k − 2, x − (r + 1) ∈ S.

3. Let S = {k, . . . , 2k − 1} ∪ {4k − 1, . . . , 5k − 2} ∪ {7k − 2, 9k − 2, . . .}. Note
that M 2 ∩ Mk = {0, . . . , 4k − 1}. If x ∈ {4k − 2, . . . , 5k − 2}, then the possible
moves from x are of the form m ∈ {k, . . . , 2k − 1} ∪ {4k − 1}, which gives
m − x ∈ {1, . . . , k − 1} ∪ {2k + 1, . . . , 4k − 2} ⊂ N (M 2). Suppose next that x ∈
{5k − 1, . . . , 7k − 3}. Then, there is a move m ∈ {k, . . . , 2k − 1} to a position in the
set {4k − 1, . . . , 5k − 2} ⊂ P(M 2), so x ∈ N (M 2). If x ∈ {7k − 2, 9k − 2, . . .},
then one can easily check that there is no move to any y ∈ S. If 7k − 2 ≤ x /∈
{7k − 2, 9k − 2, . . .}, then for (2i − 1)k − 1 ≤ x ≤ (2i)k − 2 and i ≥ 4, the move
m = 2(i − 1)k − 1will lead to aP-position in {k, . . . , 2k − 1},while for (2i)k − 1 ≤
x ≤ (2i + 1)k − 1, the move leading to a P-position is m = 2(i − 2)k − 1.

4. Note that M 3 is identical with Mk for positions x ≤ 7k − 2, so it remains to
investigate the case x > 7k − 2. Here, the argument is similar to 3.

5. This follows from Theorem 5. �
Corollary 3 ForM = {k}, convergence to the limit setM∞ = Mk occurs in a finite
number of steps. In particular, ϕ({0}) = ϕ({1}) = 1, and for k � 2, ϕ({k}) = 5.

Proof For k = 0, it follows from Note 3 that M 1 = ∅ = M0. For k = 1, let
S = {1, 3, 5, . . .} = M1. Then for x ∈ S, y = x − 1 ∈ Sc, and likewise, for x ∈ Sc,
y = x − 1 ∈ S, so P({1}) = M1. In both cases, ϕ({k}) = 1. For k ≥ 2, ϕ({k}) = 5
follows by Lemma 3.

We do not yet understand ϕ(M ) for any other case than the one described in
Corollary 3. We have some experimental suggestions in the two-dimensional case,
presented in Sect. 5.

4 Sum-Free Sets and Reflexivity

A set A ⊂ N is sum-free if the equation a + b = c has no solutionwith a, b, c ∈ A. A
sum-free set A ⊂ N is maximal if A ∪ {x} sum-free, with x ∈ N, implies that x ∈ A.
A sum-free set A ⊂ N is perfect if {a + b | a, b ∈ A} = N \ A. For example, the set
of odd positive numbers is a perfect sum-free set. Each perfect sum-free set is also
maximal, but a maximal set need not be perfect.

For example, for k > 1, the set Mk (from Sect. 3) is maximal but not perfect. We
can remedy the situation by studying instead the setsNk = {k, k + 1, . . .}, for k ∈ N.
We say that a sum-free set A ⊂ Nk is k-min perfect if {a + b | a, b ∈ A} = Nk \ A
and min(A) = k. We get the following result.

Theorem 6 Let k ∈ N. A sum-free set A ⊂ Nk is k-min perfect if and only if the
misère-play subtraction game A is reflexive. Hence, the only k-min perfect sets are
the sets Mk.



194 M. Dufour et al.

Proof These are direct consequences of Theorems 2 and4. �

If the density of a set X ⊂ N exists, then it is

δ(X) = lim
n→∞

|X ∩ {1, . . . , n}|
n

.

Let A ⊂ Nk . Notice that the set of odd numbers greater than k > 1 is no longer
maximal. Since Mk is maximal, we have a lower bound for how ‘dense’ a maximal
set with smallest number k can be, namely

δ(Mk) = k

3k − 1
.

Can we do better? (Of course, if we relax ‘maximal’ to be only ‘sum-free’, then the
odd numbers ≥ k suffice for any k.)

What is the maximum of

lim sup
n→∞

|A ∩ {1, . . . , n}|
n

for maximal sets A with min(A) = k?

5 Structures in Two Dimensions

This section is intended as an overview of the behavior in two dimensions and
should be regarded as an informal exposition. We indicate experimental similarities
and differences with the known structures in one dimension.

In one dimension, all reflexive games have the same geometrical structure up to
rescaling (as demonstrated in Sect. 3). In two dimensions, the geometrical structures
of the reflexive games vary much more, even though for certain classes of games
we still obtain similar rescaled structures. At the very least, our experiments show
that we must distinguish classes of games according to where the minimal moves
occur, as they must have different behavior due to Theorem 3. That the conjectured
behavior is the same within each class is harder to prove in general but possible to
be shown in certain cases. The following classification scheme is the least required:

1. The game has only one minimal move

a. on one of the axes
b. not on an axis

2. The game has exactly two minimal moves

a. none of the minimal moves is on an axis
b. exactly one of the minimal moves is on an axis
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c. both minimal moves are on the axes

3. The game has at least three minimal moves

a. none of the minimal moves is on an axis
b. exactly one of the minimal moves is on an axis
c. there is a minimal move on each axis

The class 2(c) most closely resembles the one-dimensional case, as the two-
dimensional limit game inherits some of its structure from the respective one-
dimensional limit games. Figure5 shows the iterations for a game of the form
M = min(M ) = {(k, 0), (0, �)}, the simplest formof case 2(c), for k = 4 and � = 3.
It appears that this game converges to a limit game after seven steps. In addition,
after five steps, the behavior along the axes is as described in Theorem 4.

Informally, we defineMk,� as the type of limit game shown in Fig. 5 (for k = 4 and
� = 3). It can be defined in a periodic manner based on k, �, and the one-dimensional
associated periods.We are in the process of proving this game to be reflexive [2]. Due
to the periodic structure of Mk,�, we know the limit game to be periodic along half
lines of rational slopes. The structure of the limit game is generic, but the number of
iterations until convergence can vary for this class.

Computer explorations for games in the other classes (see, for example, Figs. 7
and 8) suggest that all limit games have some type of periodic structure, which leads
to the following conjecture.

Conjecture 1 Limit games for all two-dimensional vector subtraction games under
the misère-play �-operator are ultimately periodic along any line of rational slope.

Returning to class 2(c), one can ask which games Ak,� have the property that
P(Ak,�) = Mk,� (see Theorem 5 for the one-dimensional equivalent), and more

Fig. 5 Iterations of the misère-play �-operator for the game M = {(4, 0), (0, 3)} where the game
shown in the upper left is M �. The limit game is reached after seven steps in this case
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Fig. 6 The graph on the right represents the P-positions of the game Ak,l shown on the left, with
(k, �) = (7, 5)

Fig. 7 The graphs show convergence after two iterations for the game M =
{(2, 9), (3, 7), (4, 4), (5, 2), (8, 1)}; case 3(a)

specifically, whether there is a smallest such game. In Fig. 6, we display the ‘smallest’
game discovered so far that has the reflexive game Mk,� as its set of P-positions.

Question 1 Is the game depicted on the left in Fig. 6 a generic description of a
smallest game with a reflexive game of type 2(c) as its set of P-positions?

We conclude this section with some cases when there are at least three minimal
moves. Suppose thatmin(M ) ∩ {(0, x), (x, 0) | x ∈ N} = ∅, sowe are in class 3(a).
Then ϕ(M ) = 2, that is, M �� is reflexive. It is not hard (but somewhat technical)
to prove this statement by an explicit description of the generic description of the
right-most graph in Fig. 6. Note also that this ‘penultimate lower ideal’ is already a
subset of the second graph.

By comparison, the case 3(c) has most variation, and we do not yet know if each
games in this class converges in a finite number of steps. We conclude by showing
behavior of four games of the form

Mx = {(0, 5), (x, x), (5, 0)},
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Fig. 8 Iterations of the �-operator for four type 3c games M = {(0, 5), (x, x), (5, 0)}, for x =
1, 2, 3, 4

Fig. 9 A reflexive game
with diagonal shaped moves

for x = 1, 2, 3, 4. Based on Fig. 8, we hypothesize that ϕ(M1) = 7, ϕ(M2) =
6, ϕ(M3) = 6, ϕ(M4) = 5.Note that some limit games have generalized ‘L-shapes’,
while others have ‘negative-slope-diagonal-stripes,’ and yet others appear to be a
blend of the two.

The simplest nontrivial game whose limit game has ‘diagonal stripes of negative
slopes’ isM = {(0, 2), (1, 1), (2, 0)}. It converges in five steps to the game in Fig. 9.
It generalizes the game {(0, 1), (1, 0)}, which trivially converges in one step to a
checkerboard pattern.

We have performed many computer experiments in two dimensions but have
not (yet) found any limit game with ‘random’ or ‘chaotic’ behavior. This is quite
different from reflexivity in normal-play, where the crystal-like patterns so common
in misère-play are rare.

Acknowledgements Thanks to Lydia Ievins and Michale Bergman for making the trip to CANT
2016 possible.
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A New Proof of Khovanskiı̆’s Theorem
on the Geometry of Sumsets

Jaewoo Lee

Abstract Khovanskiı̆ studied how iterated sumsets grow geometrically, and pro-
vided the growth polynomial for sumsets as well as an approximation to lattice
points inside polytopes. In this paper, we present a new proof of the theorem about
geometric growth of sumsets.

Keywords Sumsets · Geometry of numbers · Geometry of sumsets
Growth of sumsets · Lattice points

1 Introduction and Notation

We denote by Zn the group of lattice points in Rn . Let A be a set of n- dimensional
lattice points. For any positive integer h, we define the h-fold sumset hA = {a1 +
a2 + · · · + ah : a1, a2, . . . , ah ∈ A}, and the dilation h ∗ A = {ha : a ∈ A}.

A hyperplane H is the set {x ∈ R
n : (x, u) = α} for a nonzero u ∈ R

n and a
number α, where (. , .) indicates an inner product in R

n . The vector u is called a
normal vector to H . A hyperplane divides Rn into two closed half-spaces H+ and
H− where

H+ = {x ∈ R
n : (x, u) ≥ α},

H− = {x ∈ R
n : (x, u) ≤ α}.

We write d(x, y) to denote the distance between two points x, y ∈ R
n . If S, T ⊆

R
n , then

d(x, S) = inf
s∈S d(x, s) ,

and
d(S, T ) = inf

s∈S,t∈T d(s, t).
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In particular, the distance from a point x ∈ R
n to a hyperplane H where x /∈ H is

given by the length of the perpendicular line segment from x to H .
If two different hyperplanes H1 and H2 are parallel, we may write H1 = {x :

(x, u) = α1} and H2 = {x : (x, u) = α2}. Take any x ∈ H1. Then, d(x, H2) is given
by the perpendicular line segment. To calculate the distance between H1 and H2, note
that x + tu where t ∈ R gives the perpendicular ray from x to H2. If the raymeets H2

at t = t2, then t2 = (α2 − α1)/|u|2. Thus, d(x, H2) = |t2u| = (α2 − α1)/|u|, which
is independent of the choice of x . Therefore, when H1 and H2 are parallel, d(H1, H2)

is given by the length of any perpendicular line segment joining them.
Apolytope is the convex hull of a finite set of points inRn (the algebraic definition),

or equivalently, the bounded set which is an intersection of finitely many closed half-
spaces (the geometric definition). Let Δ = conv(A), the convex hull of A, where
A = {a1, a2, . . . , am} is a finite set of lattice points in R

n . Then, define the dilation
of Δ, h ∗ Δ, as

h ∗ Δ = {hx : x ∈ Δ}

=
{

m∑
i=1

λi ai : λi ≥ 0,
m∑
i=1

λi = h

}

= conv(ha1, . . . , ham).

In [3], Khovanskiı̆ showed that |hA| eventually becomes a polynomial. Further-
more, he studied the geometric growth of hA in [3] as well.

Theorem 1 (Khovanskiı̆’s Theorem) Suppose Z
n(A) = Z

n where Z
n(A) is the

group generated by the difference set A − A = {a − a′ : a, a′ ∈ A}. There exists
a constant ρ with the following property: For any positive integer h, every lattice
point of h ∗ Δ, whose distance to the boundary ∂(h ∗ Δ) is more than ρ, belongs to
the sumset hA.

Theorem 1 implies that the sumset hA in R
n takes over the central region of

dilated polytopes, with fringes relatively getting smaller as h grows, giving a way
to approximate lattice points inside polytopes. Using ideas in [3] and the algebraic
definition of polytopes, the author [4] proved Theorem 1 conditionally. In this paper,
we prove Theorem 1 unconditionally using ideas in [3] and the geometric definition
of polytopes.

2 Lemmas and Proof of Theorem

We start with some lemmas that Khovanskiı̆ proved in [3]. Let A be a finite subset
of Zn , A = {a1, . . . , am}, with |A| = m and Δ = conv(A). Also, assume that A
generates Zn as a group.
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Lemma 1 There exists a constant C with the following property: For every linear
combination

∑
λi ai of ai ∈ A with real coefficients λi such that

∑
λi ai is a lattice

point, there exists a linear combination
∑

niai of ai with integer coefficients ni such
that

∑
niai = ∑

λi ai and
∑ |ni − λi | < C.

Proof Let X = {x : x ∈ Z
n, x = ∑

λi ai , with 0 ≤ λi ≤ 1}, which is a finite set.
Since A generatesZn , each x ∈ X can bewritten as x = ∑m

i=1 ni (x)ai , where ni (x) ∈
Z. So for each x ∈ X , we fix one representation

∑m
i=1 ni (x)ai with ni (x) ∈ Z. Let

q = maxx∈X
∑m

i=1 |ni (x)| and let C = m + q, a positive integer. Then, for any z =∑
λi ai ∈ Z

n , x = z − ∑[λi ]ai ∈ X . So x = ∑m
i=1 ni (x)ai with ni (x) ∈ Z and z =∑m

i=1

(
ni (x) + [λi ]

)
ai = ∑m

i=1 λi ai with
∑ |ni (x) + [λi ] − λi | <

∑m
i=1

(|ni (x)| +
1
) ≤ q + m = C . �
Let h be a positive integer and assume 0 ∈ A. Then,

Δ =
{ ∑

λi ai : λi ≥ 0,
∑

λi ≤ 1
}

and
h ∗ Δ =

{ ∑
λi ai : λi ≥ 0,

∑
λi ≤ h

}
.

Define
Δ(h,C) =

{ ∑
λi ai : λi ≥ C,

∑
λi ≤ h − C

}
with C as in Lemma 1.

Then, if x = ∑
λi ai ∈ Δ(h,C), let λi = αi + C, αi ≥ 0. So

Δ(h,C) =
{ ∑

(αi + C)ai : αi ≥ 0,
∑

αi ≤ h − C − mC
}

= C
∑

ai +
{ ∑

αi ai : αi ≥ 0,
∑

αi ≤ h − C − mC
}

= C
∑

ai + (h − C − mC) ∗ Δ.

Note Δ(h,C) is an empty set when h < C + mC , a single point C
∑

ai when h =
C + mC , and a dilation of Δ translated by a lattice point contained in h ∗ Δ when
h ≥ C + mC + 1.

Lemma 2 If Zn(A) = Z
n and 0 ∈ A, then every lattice point in Δ(h,C) belongs to

the sumset hA.

Proof Let z be a lattice point in Δ(h,C). Then,

z =
∑

λi ai , λi ≥ C,
∑

λi ≤ h − C.

ByLemma1, z = ∑
niai , ni ∈ Z,

∑ |ni − λi | < C . Ifni < 0 for some i , then |ni −
λi | > C . Therefore, all ni must be nonnegative.And

∑
ni = ∑ |ni | = ∑ |ni − λi +

λi | ≤ ∑ |ni − λi | + ∑ |λi | < C + h − C = h.
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Thus, z = ∑
niai , ni ≥ 0,

∑
ni < h. Since 0 ∈ A,

hA =
{ ∑

niai : ni ≥ 0,
∑

ni ≤ h
}

.

Therefore, z ∈ hA. �

Now, we prove Theorem 1.

Proof Take any hyperplane

H = {x : (x, u) = α}.

Then, for a positive integer h,

h ∗ H = {x : (x, u) = hα},

so the dilation of a hyperplane results in another hyperplane which is parallel to the
original one. And

H−b = {x : (x, u) = α − (b, u)}

where b ∈ R
n , so the translation of a hyperplane is a hyperplane that is parallel to

the original one as well.
Now, let us calculate the distance between

H1 = h ∗ H

and
H2 = g ∗ H − b ,

where h > g and h, g are positive integers with b ∈ R
n . Then, H1 = {x : (x, u) =

hα}, H2 = {x : (x, u) = gα − (b, u)}, so H1 is parallel to H2. Take any point x1 ∈
H1. Then, x1 + tu, t ∈ R is a ray perpendicular to both H1 and H2. Let us say
x1 + tu ∈ H2 when t = t2. Then,

t2 = (g − h)α − (b, u)

|u|2 ,

d(H1, H2) = |t2u| = |(g − h)α − (b, u)|
|u| .

Without loss of generality, we may assume 0 ∈ A because, if not, take any a ∈
A which is also a vertex of Δ. Then, take Δ̄ = Δ − a so that 0 ∈ Δ̄. Then, Δ̄ =
conv(A − a) and h ∗ Δ̄ = h ∗ conv(A − a) = h ∗ Δ − ha. And, for any positive
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integer h, if x ∈ (h ∗ Δ) ∩ Z
n with d(x, ∂(h ∗ Δ)) > ρ, then x − ha ∈ h ∗ Δ̄ and

d(x − ha, ∂(h ∗ Δ̄)) > ρ since a translation does not change the distance. Thus,
x − ha ∈ h(A − a) = hA − ha. So x ∈ hA, proving our claim.

Let h ≥ C + mC + 1. Recall

Δ(h,C) = C
∑

ai + (h − C − mC) ∗ Δ .

Let Δ = G+
1 ∩ · · · ∩ G+

l where Gi s are hyperplanes {x : (x, ui ) = αi } with Gi ∩
Δ 	= ∅. Then, h ∗ Δ = H+

1 ∩ · · · ∩ H+
l and Δ(h,C) = H

′+
1 ∩ · · · ∩ H

′+
l where

Hi = h ∗ Gi , H
′
i = (h − C − mC) ∗ Gi + C

∑
ai . And for all h ≥ C + mC + 1,

d(Hi , H
′
i ) = |(−C − mC)αi + (C

∑
ai , ui )|

|ui |
for i = 1, . . . , l, using the result aboveon the distance betweenhyperplanes. Thus, for
all i = 1, . . . , l, the distance d(Hi , H

′
i ) remains the same for all h ≥ C + mC + 1.

Therefore, fix any h ≥ C + mC + 1. Define

ρ = max { δ
(
(C + mC) ∗ Δ

)
, d(Hi , H

′
i ), i = 1, . . . , l }

where δ(S) represents the diameter of the set S. Then, ρ is independent of h.
Let z ∈ h ∗ Δ be a lattice point with d(z, ∂(h ∗ Δ)) > ρ. Note that if h ≤ C +

mC , then by the definition of ρ, such z does not exist.
Let Fi = Hi ∩ (h ∗ Δ) 	= ∅ be a face of h ∗ Δ and F

′
i = H

′
i ∩ Δ(h,C) 	= ∅ be

a face of Δ(h,C). Assume z ∈ H
′−
1 \ H

′
1. Then, d(z, H1) < d(H

′
1, H1) ≤ ρ, but

d(z, F1) > ρ. Thus, the perpendicular ray from z to H1 does not intersect F1. Every
compact convex body inRn with nonempty interior is homeomorphic to the closed n-
ball, and its boundary is homeomorphic to the (n − 1)-sphere (see, e.g., [1, p. 56]). So,
∂(h ∗ Δ) is homeomorphic to the (n − 1)-sphere. Thus, the perpendicular ray from z
to H1 intersects∂(h ∗ Δ) somewhere, say, at z2 which is a point of a face F2, F2 	= F1.
Then, z2 ∈ F2 ⊆ h ∗ Δ, so z2 ∈ H+

1 . Then, d(z, F2) ≤ d(z, z2) ≤ d(z, H1) < ρ, a
contradiction. Therefore, z ∈ H

′+
1 . Similarly, z belongs to other H

′+
i for i = 2, . . . , l

as well. Thus, z ∈ H
′+
1 ∩ · · · ∩ H

′+
l = Δ(h,C). Then, by Lemma 2, z ∈ hA. �

Han [2] showed that for A ⊆ R
2 satisfying some conditions, the cardinality of hA

in the fringe region of dilated polytopes is a linear function of h when h is sufficiently
large. It will be interesting if we can tell something more about the density or the
distribution of sumsets in the fringe region.
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Initial Sums of the Legendre Symbol:
Is min+max ≥ 0 ?

Kieren MacMillan and Jonathan Sondow

Abstract Dirichlet famously proved that for primes p of the form 4n + 3, the half-
interval (0, 1

2 p) contains more quadratic residues modulo p than nonresidues. An
elementary argument then uses this to prove an inequality for an initial sum of the
Legendre symbol

(
a
p

)
for any odd prime p, namely

∑
0<a< 1

2 p

(
a
p

) ≥ 0, with strict
inequality if and only if p ≡ 3 (mod 4). From computations with the first 25000
primes, Sondow conjectured that

min
0<k<p

k∑

a=1

(
a

p

)
+ max

0<k<p

k∑

a=1

(
a

p

)
≥ 0,

also with strict inequality if and only if p ≡ 3 (mod 4). In this note, we prove
that equality holds when p ≡ 1 (mod 4), and that if 3 �= p ≡ 3 (mod 4) then
max
0<k<p

∑k
a=1

(
a
p

)
exceeds the class number h(−p). We also give extensions to the

Jacobi and Kronecker symbols
(
a
n

)
.

Keywords Quadratic residue · Legendre symbol · Class number
Jacobi symbol · Kronecker symbol

1 Introduction: The Legendre Symbol

Let p be an odd prime number. For any integer a, the Legendre symbol
(
a
p

)
is defined

as
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Fig. 1 Johann Peter Gustav
Lejeune Dirichlet
(1805–1859)

(
a

p

)
=

⎧
⎪⎨

⎪⎩

0 if p | a,
+1 if p � a and the congruence x2 ≡ a (mod p) has a solution,

−1 if p � a and the congruence x2 ≡ a (mod p) has no solution.

In the second case, we say that a is a quadratic residuemodulo p, and in the third
case that a is a quadratic nonresidue modulo p (Fig. 1).

In 1839, as a by-product of his investigations on binary quadratic forms [4],
Dirichlet established the remarkable theorem that for primes p of the form 4n+3, the
half-interval (0, 1

2 p) contains more quadratic residues modulo p than nonresidues.
(No elementary proof is known, but the proofs in [1, 5, 9] avoid quadratic forms
by using complex variables or Fourier series.) On the other hand, an elementary
argument shows that if p is a prime of the form 4n+1, then (0, 1

2 p) contains exactly
as many quadratic residues modulo p as nonresidues. The two cases may be stated
together using the Legendre symbol.

Theorem 1 (Dirichlet) For any odd prime p, the Legendre symbol
(
a
p

)
satisfies

∑

0<a< 1
2 p

(
a

p

) {
= 0 if p ≡ 1 (mod 4),

> 0 if p ≡ 3 (mod 4).
(1)

Sondow made a related prediction after calculations with the first 25000 primes.

Conjecture 1 (Sondow) For any odd prime p, the minimum and maximum initial
sums of the Legendre symbol

(
a
p

)
satisfy

min
0<k<p

k∑

a=1

(
a

p

)
+ max

0<k<p

k∑

a=1

(
a

p

) {
= 0 if p ≡ 1 (mod 4),

> 0 if p ≡ 3 (mod 4).
(2)

For brevity, when p is an odd prime, we denote

m = m(p) := min
0<k<p

k∑

a=1

(
a

p

)
, M = M(p) := max

0<k<p

k∑

a=1

(
a

p

)
. (3)
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Table 1 Initial sums of the Legendre symbol for p = 5 and p = 7

p p (mod 4) a
( a
p

) ∑k
a=1

( a
p

)
m + M

5 1 1, 2, 3, 4 1,−1,−1, 1 0, 1, 0,−1, 0 −1 + 1 = 0

7 3 1, 2, 3, 4,
5, 6

1, 1,−1, 1,−1,−1 0, 1, 2, 1, 2, 1, 0 0 + 2 > 0

As m ≤ 0 ≤ M , the inequality m + M ≥ 0 holds if and only if it is true that
max(|m| ,M) = M . Thus, if Conjecture 1 is true, then for p = 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, . . ., we have

max
0<k<p

k∑

a=1

(
a

p

)
= max

0<k<p

∣
∣∣∣∣

k∑

a=1

(
a

p

)∣
∣∣∣∣
= 1, 1, 2, 3, 2, 2, 3, 5, 3, 6, 4, 4, 5, . . .

(see [7, Sequence A177865]). Indeed, computing both maxima led to Conjecture 1.
Table1 shows the examples p = 5 and 7 with quadratic residues in bold and the

values of
∑k

a=1

(
a
p

)
listed for k = 0, 1, . . . , p − 2, p − 1 to exhibit their (anti)symmetry.

In Sect. 2, we prove the first case of Conjecture 1. In Sect. 3, we conjecture that in
the second case the class number h(−p) is a lower bound and prove a special case.
In Sects. 4 and 5, we discuss extensions to the Jacobi and Kronecker symbols

(
a
n

)
.

2 The Case p ≡ 1 (mod 4)

We prove the first case of Conjecture 1.

Theorem 2 For primes p ≡ 1 (mod 4), we have the equality

min
0<k<p

k∑

a=1

(
a

p

)
+ max

0<k<p

k∑

a=1

(
a

p

)
= 0.

Proof At first, we let p be any odd prime. Denote by Sk = Sk(p) := ∑k
a=1

(
a
p

)
the

kth initial sum of
(
a
p

)
, so that the empty sum is S0 = 0.

We first show that Sp−1 = 0. A reduced residue system modulo p consists of
(p − 1)/2 quadratic residues congruent to the numbers 12, 22, . . . , ((p − 1)/2)2,
and (p − 1)/2 quadratic nonresidues (see, e.g., [8, p. 80]). Thus half of the Legendre
symbols

(
a
p

)
are +1 and half are −1, so Sp−1 = 0.

We next prove that, for k = 0, 1, . . . , p − 1, the (anti)symmetry

Sp−1−k = (−1)
p+1
2 Sk (4)

holds. Euler’s criterion (see, e.g., [8, p. 81]) asserts that
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(
a

p

)
≡ a

p−1
2 (mod p).

From this and the definition of the Legendre symbol, we infer that

(
aa′

p

)
=

(
a

p

)(
a′

p

)
,

(−1

p

)
= (−1)

p−1
2 ,

a ≡ a′ (mod p) =⇒
(
a

p

)
=

(
a′

p

)
.

(5)

Hence
( p−a

p

) = (−a
p

) = (−1)
p−1
2
(
a
p

)
. Now, by re-indexing, we can write

Sp−k−1 =
∑

k<a<p

(
p − a

p

)
= (−1)

p−1
2

∑

k<a<p

(
a

p

)
= (−1)

p−1
2 (Sp−1 − Sk)

and as Sp−1 = 0 we get (4).
Finally, assume that p ≡ 1 (mod 4) and let themaximum initial sum beM = Sk0 .

Then by (4), for k = 0, 1, . . . , p − 1 we have

Sk ≤ Sk0 =⇒ −Sk ≥ −Sk0 =⇒ Sp−k−1 ≥ Sp−k0−1.

Thus the minimum initial sum is m = Sp−k0−1 = −Sk0 = −M . This proves the
theorem. �	

Notice that for a prime p ≡ 1 (mod 4), setting k = 1
2 (p − 1) in (4) yields

S 1
2 (p−1) = 0. This proves the first case of (1) and strengthens its connection with

the first case of (2).

3 The Case p ≡ 3 (mod 4)

For the second case of Theorem 1, Dirichlet actually proved an exact formula. Its
statement involves a quantity denoted h(−p) called either “the ideal class number
of the imaginary quadratic field Q(

√−p)” or, equivalently, “the class number of
binary quadratic forms of discriminant −p” (see [1, 5, 9]). In the present note, the
only property of the class number h(−p) we use is that it is a positive integer.

Theorem 3 (Dirichlet) For any prime p ≥ 7 with p ≡ 3 (mod 4), let h = h(−p).
Then

∑

0<a< 1
2 p

(
a

p

)
=

(
2 −

(
2

p

))
h =

{
3h if p ≡ 3 (mod 8),

h if p ≡ 7 (mod 8).
(6)
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Table 2 Theorem 3 and Conjecture 2 for p = 7 and p = 11

p p (mod 8)
( a
p

) ∑k
a=1

( a
p

)
m + M h

7 7 1, 1,−1, 1,−1,−1 0, 1, 2, 1, 2, 1, 0 2 1

11 3 1,−1, 1, 1, 1,−1,−1,−1, 1,−1 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0 3 1

Table 3 Theorem 3 and Conjecture 2 up to p = 157

p = 7 11 19 23 31 43 47 59 67 71 79 83 103 107 127 131 139 157

p (mod 8) = 7 3 3 7 7 3 7 3 3 7 7 3 7 3 7 3 3 7

m = 0 0 −1 0 0 −2 0 0 −3 0 0 0 0 −2 −1 0 −3 0

M = 2 3 3 5 6 5 8 9 6 10 10 9 10 9 10 15 9 14

m + M = 2 3 2 5 6 3 8 9 3 10 10 9 10 7 9 15 6 14

h = 1 1 1 3 3 1 5 3 1 7 5 3 5 3 5 5 3 7

The second equality follows from the quadratic reciprocity law supplement

(
2

p

)
= (−1)

p2−1
8 . (7)

The computations which led to Conjecture 1 suggest more precisely that, in the
second case, the class number is a lower bound. This leads to our second conjecture.

Conjecture 2 For any prime p ≥ 7with p ≡ 3 (mod 4), we have the strict inequal-
ity

min
0<k<p

k∑

a=1

(
a

p

)
+ max

0<k<p

k∑

a=1

(
a

p

)
> h(−p).

For example, when p = 19 it becomes −1 + 3 > 1. Thus Conjecture 2 is sharp.
Using the notation (3), we illustrate Theorem 3 and Conjecture 2 with a table for

p = 7 and p = 11, a table for all p ≡ 3 (mod 4) with 7 ≤ p ≤ 157, and a plot for
p = 163 (Tables2, 3 and Fig. 2).

For primes p �= 3 with p ≡ 3 (mod 4), Dirichlet’s class number formula (6) im-
plies the lower bound M ≥ h. We sharpen it slightly, confirming a special case of
Conjecture 2.

Theorem 4 For any prime p ≥ 7 with p ≡ 3 (mod 4), we have the strict inequality

max
0<k<p

k∑

a=1

(
a

p

)
> h(−p).

In particular, Conjecture 2 holds true when min
0<k<p

∑k
a=1

(
a
p

)
vanishes (Fig. 2).
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163

2
p 163

k

m 6

h 1

m M 3

M 9

a 1

k a

163

Fig. 2 Theorem 3 and Conjecture 2 for p = 163

Proof First let p be any odd prime. Using the notation in Sect. 2, we see by changing
the order of summation and applying the formula Sp−1 = 0, that

∑

0<k<p

Sk =
∑

0<k<p

k∑

a=1

(
a

p

)
=

∑

0<a<p

p−1∑

k=a

(
a

p

)
=

∑

0<a<p

(
a

p

)
(p − a) = −

∑

0<a<p

(
a

p

)
a.

Since for primes p �= 3 with p ≡ 3 (mod 4), Dirichlet proved the class number
formula

h(−p) = −
∑

0<a<p

(
a

p

)
a

p

(see [5, Eq. (3)], [6, p. 219, Eq. (25)]), it follows that the mean of the numbers
S0,S1, . . . ,Sp−1 is 1

p

∑p−1
k=0 Sk = h(−p). As S0 = 0 is less than h(−p), some Sk

must be greater than h(−p). The theorem follows. �	
Here is an easy application.

Corollary 1 Let p �= 3 be a prime of the form 4n + 3. Then on some interval [1, k]
with 2 ≤ k ≤ p − 3, the excess in the number of quadratic residues modulo p over
the number of nonresidues exceeds the class number h(−p). Moreover, if p ≡ 7
(mod 8), then a �= 1

2 (p − 1).

Proof Since Sk ≤ 1 ≤ h(−p) for k = 1, p − 2, p − 1, the first assertion follows
from Theorem 4. The second then follows from Theorem 3. �	

Thus Conjecture 2, and hence also Conjecture 1, holds at least for those primes
p for which all initial sums

∑k
a=1

(
a
p

)
are nonnegative, i.e., for p =7, 11, 23, 31, 47,
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59, 71, 79, 83, 103, 131, 151, 167, 191, 199, 239, 251, 263, 271, 311, 359, 383, . . .
(see [7, Sequence A095102]). Of course, the case p ≡ 3 (mod 8) follows immedi-
ately from (6), since M ≥ 3h > h. Similarly, it might be easier to prove Conjecture 2
for p ≡ 3 (mod 8) than for p ≡ 7 (mod 8).

4 An Extension: The Jacobi Symbol

To extend our results from odd prime modulus p to odd composite modulus n, we
replace the Legendre symbol

(
a
p

)
with the Jacobi symbol

(
a
n

)
, where n is any odd

positive integer. If it has prime factorization n = pe11 pe22 · · · pess , with each exponent
ei ≥ 1, then

(
a
n

)
is defined as the product of the Legendre symbols

(a
n

)
=

(
a

p1

)e1( a

p2

)e2
· · ·

(
a

ps

)es
. (8)

Thus
(
a
1

) = 1 is the empty product,
(
a
n

) = 0 if gcd(a, n) > 1, and
(
a
n

) = ±1 if
gcd(a, n) = 1. Also, a ≡ a′ (mod n) implies

(
a
n

)=(
a′
n

)
.

If
(
a
n

) = −1, then
(
a
pi

) = −1 for some pi | n, and so the congruence x2 ≡ a
(mod n) has no solution. But the converse is false: there may or may not be a
solution if

(
a
n

) = +1. For example, 2 is not a square modulo 15, even though
(
2
15

) =(
2
3

)(
2
5

) = (−1)(−1) = +1.
A generalization of Conjecture 1 to the Jacobi symbol

(
a
n

)
would also be false;

for instance, if n = 423 ≡ 3 (mod 4), then—using the notation (3) with n in place
of p—the sum m + M = −5 + 4 = −1 is negative. However, Theorem 2 extends
in the following way.

Theorem 5 For odd n, the initial sums of the Jacobi symbol
(
a
n

)
satisfy

min
0<k<n

k∑

a=1

(a
n

)
+ max

0<k<n

k∑

a=1

(a
n

)
=

{
0 if n ≡ 1 (mod 4) is not a, �
1 + φ(n) if n > 1 is a, �

where φ(n) := #{a : 1 ≤ a ≤ n, gcd(a, n) = 1} is Euler’s totient function.
Proof If n = r2 is a square, then

(
a
n

) = (
a
r2

) = (
a
r

)2 = 1 when gcd(a, n) = 1, and(
a
n

) = 0 when gcd(a, n) > 1. Now n > 1 impliesm = 1 and M = φ(n), proving the
second case.

To prove the first case, it suffices (as in the proof of Theorem 2) to show (A)
that

(
n−a
n

) = (
a
n

)
if n ≡ 1(mod 4), and (B) that Sn−1 := ∑n−1

a=1

(
a
n

) = 0 if n is not a
square.

For (A), if n ≡ 1 (mod 4), then n has an even number ν ≥ 0 of prime factors ≡ 3
(mod 4), counted with multiplicity. Hence

(−1
n

) = (−1)ν = 1 and
(
n−a
n

) = (−a
n

) =(
a
n

)
.
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For (B), we first find an integer b with
(
b
n

) = −1. If odd n = pe11 pe22 · · · pess is not
a square, where p1 < p2 < · · · < ps are primes, then some exponent ei is odd. From
Sp−1 = 0 with p = pi , there exists c with

(
c
pi

) = −1. By the Chinese Remainder
Theorem, the system of congruences

x ≡ c (mod pi ), x ≡ 1 (mod p j ) (1 ≤ j ≤ s, j �= i)

has a solution x = b. As ei is odd, we infer from (5) and (8) that
(
b
n

) = −1.
Hence gcd(b, n) = 1, and so the numbers b, 2b, 3b, . . . , (n − 1)b represent the

n − 1 nonzero congruence classes modulo n. Therefore

Sn−1 =
n−1∑

a=1

(
ab

n

)
=

(
b

n

) n−1∑

a=1

(a
n

)
= −Sn−1

so that Sn−1 = 0. The first case of the theorem follows (as in Sect. 2) and we are
done. �	

To shorten the proof, one could use the theory of Dirichlet characters (see [2, pp.
40–41], [3, pp. 27–30]). Namely, the Jacobi symbol

(
a
n

)
is a character modulo n, and

any character χ modulo n has period sum
∑n−1

a=0 χ(a) = 0 if χ is nonprincipal, i.e.,
if χ(a) �= 0, 1 for some a.

5 A Further Extension: The Kronecker Symbol

In attempting to extend our results to even numbers n, wemay try using theKronecker
symbol

(
a
n

)
, where n is any positive integer. If n = pe11 pe22 · · · pess with p1 < p2 <

· · · < ps , then
(
a
n

)
is defined by the product (8) together with, in the case p1 = 2,

the values (compare (7))

(a
2

)
:=

⎧
⎨

⎩

0 if a is even,(
2

|a|
)

if a is odd.

However, for even n it is not true that a ≡ a′ (mod n) implies
(
a
n

) = (
a′
n

)
; for

example, 21 ≡ 1 (mod 10) but
(
21
10

) = (
21
2

)(
21
5

) = (−1)(+1) = −1 �= +1 = (
1
10

)
.

Thus the last paragraph in the proof of Theorem 5 would not be valid if n were even.
For the same reason, the Kronecker symbol

(
a
n

)
is not always a Dirichlet character

modulo n.
For n = 60, 142, 240, 423, 963 ≡ 4, 6, 0, 7, 3 (mod 8), the sum m + M = −1,

−4,−1,−1,−1 is negative. Thus, while the inequalities of Conjecture 1 extend
from odd primes p to composite numbers n ≡ 1 or 5 (mod 8) as in Theorem 5,
the inequalities do not extend to composite numbers n ≡ 0, 3, 4, 6, or 7 (mod 8).
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For the remaining case n ≡ 2 (mod 8), we offer the following conjecture, which is
supported by numerical experiments.

Conjecture 3 For any positive integer n ≡ 2 (mod 8), the initial sums of the Kro-
necker symbol

(
a
n

)
satisfy the inequality

min
0<k<n

k∑

a=1

(a
n

)
+ max

0<k<n

k∑

a=1

(a
n

)
≥ 0.

Acknowledgements We are grateful to Patrick Gallagher for stimulating discussions on quadratic
residues and to Tauno Metsänkylä for information on class numbers.

References

1. B.C. Berndt, Classical theorems on quadratic residues. Enseign. Math. 2(22), 261–304 (1976)
2. R. Crandall, C. Pomerance, Prime Numbers: A Computational Perspective, 2nd edn. (Springer,

New York, 2005)
3. Davenport, H.: Multiplicative Number Theory, vol. 74, 2nd edn., ed. by H.L. Montgomery.

Graduate Texts in Mathematics (Springer, New York, 1980)
4. P.G.L. Dirichlet, Recherches sur diverses applications de l’analyse infinitésimale à la théorie des

nombres. J. Reine Angew. Math. 19, 324–369 (1839), https://doi.org/10.1515/crll.1840.21.1
5. K. Girstmair, A “popular” class number formula. Amer. Math. Monthly 101, 997–1001 (1994)
6. P. Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (Springer, New

York, 2000)
7. N.J.A. Sloane, The on-line encyclopedia of integer sequences (2015), http://oeis.org/
8. I.M. Vinogradov, Elements of Number Theory (trans. S. Kravetz), 5th revised ed. (Dover, New

York, 1954)
9. A.L. Whiteman, Theorems on quadratic residues. Math. Mag. 23, 71–74 (1949)

https://doi.org/10.1515/crll.1840.21.1
http://oeis.org/


A Second Wave of Expanders in Finite Fields

Brendan Murphy and Giorgis Petridis

Abstract This is an expository survey on recent sum-product results in finite fields.
We present a number of sum-product or “expander” results that say that if |A| > p2/3,
then some set determined by sums and product of elements of A is nearly as large
as possible, and if |A| < p2/3, then the set in question is significantly larger than
A. These results are based on a point-plane incidence bound of Rudnev and are
quantitatively stronger than a wave of earlier results following Bourgain, Katz, and
Tao’s breakthrough sum-product result. In addition,we present twogeometric results:
an incidence bound due to Stevens and de Zeeuw, and bound on collinear triples, and
an example of an expander that breaks the threshold of p2/3 required by the other
results. We have simplified proofs wherever possible and hope that this survey may
serve as a compact guide to recent advances in arithmetic combinatorics over finite
fields. We do not claim originality for any of the results.

Keywords Sum product problem · Incidence bounds · Collinear triples
Arithmetic combinatorics

1 Introduction

This is an expository survey of recent results related to the sum-product problem
over finite fields. Roughly speaking, the sum-product problem is to show that a finite
subset of a field cannot have both additive and multiplicative structure (unless it is
essentially a subfield). For instance, if p is prime and A is a subset of the field Fp

with p elements, then we would expect the set
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A + AA := {a1 + a2a3 : a1, a2, a3 ∈ A}

to be much larger than |A|, since Fp has no non-trivial subfields.
In general, we will consider polynomials f ∈ Z[x1, . . . , xn] and ask if there is a

δ > 0 such that
| f (A, . . . , A)| ≥ |A|1+δ

for all “small” subsets A ofFp.Wewill call such polynomials expanding polynomials
or expanders.

Explicit examples of expanding polynomials were first given in characteristic
zero [7, 8]. The arguments employed here typically use topological properties of the
underlying field—for instance, the order of the integers or reals. Over finite fields,
such as Fp = Z/pZ, such properties are unavailable, and expansion results are more
difficult to prove. Using Fourier analysis in Fp, Garaev [10] showed that for A ⊆ Fp

max(|A + A|, |AA|) � min

(√
p|A|, |A|2

p1/2

)
, (1)

which is optimal for |A| > p2/3 and trivial for |A| < p1/2.
Bourgain et al. [3] proved the first non-trivial sum-product estimate for “small”

subsets of finite fields. They showed that if A is a subset of the prime field Fp such
that pα < |A| < p1−α for some α > 0, then there is some ε > 0 depending on α

such that
max(|A + A|, |AA|) � |A|1+ε . (2)

The bounds on |A| rule out the possibility that |A ∩ F| � p−α max(|A|, |F |) for any
subfield F of Fp (i.e., for F = {0},F = Fp); in general, it is true that there is a non-
trivial sum-product estimate for A ⊆ Fq as long as A is not “roughly equivalent” to a
subfield. The estimate (30) still holds when the lower bound on |A| is dropped—this
is due to Glibichuk and Konyagin [11].

Garaev [9] found the first explicit value of ε, which was then improved by several
authors [2, 14, 26], finally resulting in the lower bound

max(|A + A|, |AA|) � |A|1+1/11(log |A|)−4/11.

The method behind these early sum-product results for finite fields is called the pivot
method. The pivot method is essentially algebraic; it is a flexible method, but it is
quantitatively inefficient.

Recently, a new geometricmethod for proving sum-product results in finite fields
was discovered. This geometric method is based on a point-plane incidence bound
of Rudnev [27]. Rudnev’s bound has ushered in a new wave of expander results.

For instance, Roche-Newton et al. [25] applied Rudnev’s bound to show that if A
is a subset of Fp with |A| < p2/3, then

max(|A + A|, |AA|) � |A|1+1/5.
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Even more impressive is their lower bound for the mixed sum-product set A + AA:
For A ⊆ Fq

|A + AA| � min(|A|3/2, p) (3)

where again p is the characteristic of the fieldFq . For |A| < p2/3, this boundmatches
what canbeproveddirectly by theSzemerédi-Trotter incidenceboundoverR, namely

|A + AA| � |A|3/2 (4)

for all finite subsets A ⊆ R. The bound (4) has only been slightly improved over R
[29]; thus, Rudnev’s point-plane incidence bound allows us to prove expander results
that nearly match those known over the real numbers.

A number of similar results have followed from Rudnev’s point-plane bound.
These results are often of the form | f (Ak)| � min(|A|3/2, p) for some polynomial
f ∈ Z[x1, . . . , xk]; thus if |A| > p2/3, then | f (Ak)| � p. We say that these results
are at the “p2/3 threshold”:

1. |AA + AA| � min(p, |A|3/2) (Rudnev [27])
2. |(A − A)(A − A)| � p if |A| > p2/3 (Bennett et al. [1], see also [13])
3. |(A − A)2 + (A − A)2| � min(p, |A|3/2) (Petridis [20], see also [5])
4. |A + AA| � min(p, |A|3/2) (Roche-Newton et al. [25])
5. |A(A + A)| � min(p, |A|3/2) (Aksoy-Yazici et al. [32])
In the last section of the paper,we present an expander result below the p2/3 threshold.
Namely, that if |A| > p5/8, then

|(A − A)(A − A)| � p. (5)

This result is due to the second author [21]. As an expander result, this says that the
polynomial f (x, y, z,w) = (x − y)(z − w) satisfies | f (A4)| � p whenever |A| >

p5/8.
In this survey, we take Rudnev’s point-plane incidence bound as a black box

and use it to prove a variety of sum-product estimates. We have tried to present
the cleanest possible proofs and have chosen results that illustrate how to apply the
point-plane incidence bound in a variety of situations. We do not claim originality
for any of the results.

In Sect. 2, we introduce Rudnev’s point-plane incidence bound and use it prove
that |A + AA| � min(p, |A|3/2). This method of proof will be a model for many
later arguments. The section ends with a generalization of the method, due to [32],
phrased in terms of certain “energies” E(Q; A) or E(L , A), where A ⊆ Fp, Q ⊆ F

2
p,

and L is a collection of lines in F
2
p.

This generalized argument will be applied in Sect. 3 to prove two further expander
results and inSect. 4 toprove twogeometric results: an incidencebounddue toStevens
and de Zeeuw, and a bound on “collinear triples” due to Aksoy-Yazici et al. [32].
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The final section of paper contains a proof of the expansion result (5), which seems
to be the first such result below the p2/3 threshold.

2 AGeometricApproach to Sum-Product Problems
in Finite Fields

In this section, we present a proof of (3) based on Rudnev’s point-plane incidence
bound,whichwill serve as a prototype for further applications.We then generalize the
method of proof; this generalized formulation will be applied to a variety of applica-
tions in the remaining sections.

2.1 Rudnev’s Point-Plane Incidence Bound

Rudnev’s incidence bound is the following.

Theorem 1 (Rudnev [27]) LetF denote a field, and let p denote the characteristic of
F. Let P be a set of points in F

3, and let Π be a set of planes in F
3 with |P| ≤ |Π |.

If p > 0, assume that |P| � p2. Let k denote the maximum number of points of P
contained in a line. Then,

I (P,Π) � |P|1/2|Π | + k|P|.

Theorem 1 is strongest when |P| = |Π |. See [6] for a short proof of Theorem 1, due
to de Zeeuw.

For convenience,we combineTheorem1with an incidencebound for large subsets
of F2

P .

Corollary 1 Let p be an odd prime, let P be a collection of points in F3
p, and let Π

be a collection of planes in F3
p.

Suppose that |P| = |Π | = N and that atmost k points of P are collinear. Then, the
number of point-plane incidences satisfies

I (P,Π) � N 2

p
+ N 3/2 + kN .

The advantage of Corollary 1 over Theorem 1 is that we do not need to bound the size
of the point set and the collection of planes before applying the bound.

Proof By [16] (see also [12, 15, 31]), we have

I (P,Π) ≤ |P||Π |
p

+ p
√|P||Π | = N 2

p
+ pN .
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Thus if N > p2, then

I (P,Π) � N 2

p
.

On the other hand, if N < p2, then by Theorem 1 we have

I (P,Π) � |P|1/2|Π | + k|P| = N 3/2 + kN .

2.2 A Lower Bound for |A + AA|

In this section, we prove the following theorem, due to Roche-Newton et al. [25].

Theorem 2 For all subsets A of Fp, we have

|A + AA| � min(p, |A|3/2).

The proof of Theorem 2will serve as a model for the rest of the results in this section.

Proof First, we apply Cauchy-Schwarz. Let

rA+AA(x) = |{(a, b, c) ∈ A3 : a + bc = x}|.

The support of rA+AA is |A + AA| and
∑
x

rA+AA(x) = |A|3,

and thus by Cauchy-Schwarz

|A|6 =
(∑

x

rA+AA(x)

)2

≤ |A + AA|
∑
x

r2A+AA(x).

To show that
|A + AA| � min(p, |A|3/2)

it suffices to show that

∑
x

r2A+AA(x) � max

( |A|6
p

, |A|9/2
)

.

Next, we reduce the problem to a point-plane incidence problem. The second
moment of rA+AA(x) counts the number of solutions to the equation
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a + bc = a′ + b′c′ (6)

with a, b, c, a′, b′, c′ in A.
To bound the number of solutions to this equation, we will realize each solution as

an incidence between a certain point and a certain plane. Let πa,b,c′ denote the set of
points (x, y, z) such that

a = x − by + c′z.

The point (x, y, z) = (a′, c, b′) is incident to the plane πa,b,c′ precisely when (6) is
satisfied: If

a = a′ − bc + c′b′,

then
a + bc = a′ + b′c′.

Finally,weapplyRudnev’spoint-plane incidencebound, in the formofCorollary1.
Let P = {(a′, c, b′) ∈ A3} and letΠ = {πa,b,c′ : (a, b, c′) ∈ A3}. Then, |P| = |Π | =
|A|3. Thus by Corollary 1, we have

I (P,Π) � |A|6
p

+ |A|9/2 + k|A|3.

This yields the desired upper bound on the secondmoment of rA+AA(x), provided that
the number k of collinear points of P = A × A × A is not too large.

It is not hard to show that k ≤ |A|: If � is parallel to the x-axis, then |P ∩ �| ≤ |A|,
while if � is not parallel to the x-axis, then �may be parameterized in terms of y or z,
which again implies that |P ∩ �| ≤ |A|.

Since k|A|3 ≤ |A|4 ≤ |A|9/2, we have
∑
x

r2A+AA(x) = I (P,Π) � |A|6
p

+ |A|9/2 + k|A|3

� max

( |A|6
p

, |A|9/2
)

,

as desired.

2.3 Generalizing the Method

In this section, wewill generalize themethod used to count solutions to (6). This gen-
eralization first appeared in [32]; belowwe present simplification of the original argu-
ment.
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In order to form the set of points and planes associated with Eq. (6)

a + bc = a′ + b′c′

it was essential that (a, c)was independent from b and (a′, c′)was independent from
b′. While we also knew that a and c were independent, we do not make use of this in
forming the points and planes.

Given a set of pairs Q ⊆ F
2
p and a set A ⊆ Fp, let E(Q; A) denote the number of

solutions to
ma + b = m ′a′ + b′ (7)

with (m, b), (m ′, b′) in Q and a, a′ in A.

Theorem 3

E(Q; A) � |Q|2|A|2
p

+ (|Q||A|)3/2 + k|Q||A|,

where

k ≤ max

(
|A|, max

� line in F2
|Q ∩ �|

)
.

Proof For each (m, b) in Q and a in A, form a plane

π(m,b),a′ = {(x, y, z) ∈ F
3
q : mx + b = ya′ + z}.

Eq. (7) holds if and only if (a,m ′, b′) ∈ π(m,b),a′ .
If we let P = A × Q and let Π denote the set of all planes π(m,b),a′ with (m, b) in

Q and a′ in A. Then, |P| = |Π |, so we have

I (P,Π) � |P|2
p

+ |P|3/2 + k|P|.

To bound k, we argue as before: If the x-coordinate of � is not constant, then
|P ∩ �| ≤ |A|, since we may parameterize � in terms of x , and P = A × Q. If the
x-coordinate of � is constant (say equal to a0), then

|P ∩ �| ≤ |{a0} × Q ∩ �| ≤ max
� line in F2

|Q ∩ �|.

2.4 A Bound for the Energy of Affine Transformations Acting
on the Line

In [32], the points in Q were associated with lines by duality. There is a natural inter-
pretation of this dual quantity; however, the proof is more convoluted. Now that we
have the bound for (7) in hand, we can give the dual version quite easily.



222 B. Murphy and G. Petridis

To each point (m, b) in Q, we associate an affine transformation �m,b defined by
�m,b(x) = mx + b. We let LQ denote the set of all �m,b with (m, b) in Q. With this
notation, equation (7) counts the number of solutions to

�(a) = �′(a′) (8)

with �, �′ in LQ and a, a′ in A. We use E(L , A) to denote the number of solutions to
(8).

Corollary 2 Let L be a set of lines inF2
p, and let A be a subset ofFp. Let κ denote the

size of the largest pencil of lines in L; that is, κ is maximum size of a subset L ′ ⊆ L
such that all of the lines of L ′ are parallel or pass through a common point.

Then,

E(L , A) � |L|2|A|2
p

+ (|L||A|)3/2 + k|L||A|,

where k ≤ max(|A|, κ).

Proof Let Q be such that L = LQ . Then,

E(L , A) = E(Q; A)

and k is the maximum of |A| and themaximum number of points of Q lying on a line,
which is precisely maximum number of lines in a pencil.

The quantity E(L , A), which is the number of solutions to

�(a) = �′(a′) �, �′ ∈ L , a, a′ ∈ A,

is analogous to themultiplicative energy E×(B, A) of a set B and a set A, which is the
number of solutions to

ba = b′a′ b, b′ ∈ B, a, a′ ∈ A.

3 ExpansionResults at the p2/3 Threshold

3.1 A Lower Bound for |A(A + A)|

Theorem 4 For any subset A of Fp, we have

|A(A + A)| � min(p, |A|3/2).

Proof Without loss of generality, suppose that A does not contain 0.
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By Cauchy-Schwarz, we have

|A|6 ≤ |A(A + A)| |{(a, b, c, a′, b′, c′) ∈ A6 : a(b + c) = a′(b′ + c′)}|. (9)

We wish to bound the number of solutions to

a(b + c) = a′(b′ + c′) (10)

with a, . . . , c′ in A.
Since we can write a(b + c) = ab + ac, if we let Q = {(a, ac) : a, c ∈ A}, then

the number of solutions to (10) is E(Q; A). The map (a, c) 
→ (a, ac) is injective, as
long as a �= 0, so |Q| = |A|2. At most |A| elements of Q lie on a single line, so by
Theorem 3, the number of solutions to (10) is

|{(a, b, c, a′, b′, c′) ∈ A6 : a(b + c) = a′(b′ + c′)}| � |A|6
p

+ |A|9/2.

Combining this bound with (9) yields the desired lower bound on |A(A + A)|.
Note 1 The set of points Q = {(a, ac) : a, c ∈ A} is projectively equivalent to A ×
A, which immediately implies that |Q ∩ �| ≤ |A| for any line �. In general, if Q is
projectively equivalent to B × C , then we have k ≤ max(|A|, |B|, |C |).

The following example, suggested by Roche-Newton, can be proved by a similar
argument.

Exercise 1 Let
A(AA + 1) = {a(bc + 1) : a, b, c ∈ A}.

Show that
|A(AA + 1)| � min(p, |A|3/2).

3.2 A Lower Bound for |(A − A)2 + (A − A)2|

In this section, we show that there is a point (u, v) in A × A such that

|(A − u)2 + (A − v)2| � min(p, |A|3/2). (11)

This result is due to the second author [20].
Geometrically, Eq. (11) says that the product set P = A × A

determines� min(p, |P|3/4) distances to the point (u, v) ∈ P .

Proof To prove a lower bound for |(A − u)2 + (A − v)2|, we will bound the number
of solutions to
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(a − u)2 + (b − v)2 = (c − u)2 + (d − v)2 a, b, c, d,u, v ∈ A. (12)

Then,wewill pigeonholeoveru andv andapply aCauchy-Schwarz energy-typeargu-
ment.

To bound the number of solutions to (12), we rearrange the equation

(a − u)2 − (c − u)2 = (d − v)2 − (b − v)2

and simplify
a2 − c2 − 2(a − c)u = d2 − b2 − 2(d − b)v. (13)

Equation (13) is linear inu, andu is independent from a, c, similarly for v, b, d, sowe
might hope to apply Theorem 3.

Let
Q = {(−2(a − c), a2 − c2) : a, c ∈ A}.

Then, the number of solutions to (13) is E(Q; A).
Note that |Q| = |A|2, since the map

(a, c) 
→ (−2(a − c), a2 − c2)

is invertible.
Further, at most 2|A| points of Q are contained in a single line, since for fixed

α, β, γ , the number of solutions to

α[−2(a − c)] + β(a2 − c2) = γ

is bounded by themaximum number of pairs (a, c) of A × A that are contained in the
quadratic curve

−α(x − y) + β(x2 − y2) = γ.

Given any x , there are at most two solutions for y.
Thus by Theorem 3, the number of solutions to (12) is at most

E(Q; A) � |A|6
p

+ (|A|3)3/2 + 2|A|3 � |A|6
p

+ |A|9/2.

By the pigeonhole principle, it follows that there is a pair (u, v) in A × A such that
the number of solutions to

(a − u)2 + (b − v)2 = (c − u)2 + (d − v)2 a, b, c, d ∈ A

is at most O(|A|4/p + |A|7/2).
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By Cauchy-Schwarz, we have

|A|4 � |(A − u)2 + (A − v)2| · max(|A|4/p, |A|7/2),

which implies the desired lower bound.

See [23] for a generalization of this result to higher dimensions, aswell as a general
result on expanding quadratic polynomials.

4 IncidenceResults for Points andLines inF2
p

4.1 An Incidence Bound for Cartesian Product Point Sets
P = A × B

The following incidence bound is due to Stevens and de Zeeuw [30].

Theorem 5 Let A and B be subsets of Fp with |A| ≤ |B|. If P = A × B and L is a
set of lines in F2

p, then

I (P, L) � |A||B|1/2|L|
p1/2

+ |A|3/4|B|1/2|L|3/4 + |P|2/3|L|2/3 + |L|.

In particular, if |A||L| ≤ p2, then

I (P, L) � |A|3/2|B|1/2|L|3/4 + |P| + |L|. (14)

BeforeweproveTheorem5,weprove a lemma that gives the correct leading terms.

Lemma 1 For P = A × B, as above, and any set of lines L, we have

I (P, L) ≤ |B|1/2E(L , A)1/2.

Thus,

I (P, L) � |A||B|1/2|L|
p1/2

+ |A|3/4|B|1/2|L|3/4 + k(|A||B||L|)1/2.

A priori, we have no control over k, so Theorem 5 does not follow immediately from
Lemma 1.
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Proof (Proof of Lemma 1)We have

I (P, L) = |{(a, b, �) ∈ A × B × L : b = �(a)}| =
∑
b∈B

|{(a, �) ∈ A × L : b = �(a)}|.

Thus by Cauchy-Schwarz,

I (P, L) ≤ |B|1/2
(∑

b

|{(a, �) ∈ A × L : b = �(a)}|2
)1/2

.

Thesumoverallb inFp isequal toE(L , A); that is, it isequal to thenumberofsolutions
to

�(a) = �′(a′)

with �, �′ in L and a, a′ in A. Thus,

I (P, L) ≤ |B|1/2E(L , A)1/2.

To apply Lemma 1, we need to make sure that not too many lines of L lie in a pencil.

Proof (Proof of Theorem 5) Let k > 0 be a parameter that we will choose later.
Webegin by pruning large pencils of lines from L . Suppose that L contains a pencil

P1 withmore thank lines.Thispencilcontributesatmost |A||B| + |P1| incidences.Let
L1 = L \ P1.We continue pruning pencils untilwe reach a set of lines L ′ that contains
nopencilsof sizegreater thank.Thisprocess takesatmost |L|/k steps;hence, the lines
removed contribute at most

|L|/k∑
i=1

(|A||B| + |Pi |) = |A||B||L|
k

+ |L|

incidences.
By Lemma 1 and Corollary 2, we have

I (P, L ′) ≤ |B|1/2E(L , A)1/2 � |B|1/2
( |L|2|A|2

p
+ (|L||A|)3/2 + k|L||A|

)1/2

� |A||B|1/2|L|
p1/2

+ |A|3/4|B|1/2|L|3/4 + √
k|A||B||L|.

Since I (P, L) = I (P, L ′) + I (P, L \ L ′), we have

I (P, L) � |A||B|1/2|L|
p1/2

+ |A|3/4|B|1/2|L|3/4 + √
k|A||B||L| + |A||B||L|

k
+ |L|.
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Setting k = (|A||B||L|)1/3 yields

I (P, L) � |A||B|1/2|L|
p1/2

+ |A|3/4|B|1/2|L|3/4 + |P|2/3|L|2/3 + |L|.

To prove (14) note that we have

I (A × B, L) ≤ |A||L| + |A||B|,

since vertical lines contribute at most |A||B| incidences and non-vertical lines can be
incident to at most |A| points of A × B. Thus if |A||L| ≤ |B|2, we have

I (A × B, L) ≤ |A||L| + |P| ≤ |A|3/4|B|1/2|L|3/4 + |P|.

On the other hand, if |B|2 ≤ |A||L| ≤ p2, then

I (A × B, L) � |A||B|1/2|L|
p1/2

+ |A|3/4|B|1/2|L|3/4 + |P|2/3|L|2/3 + |L|
� |A|3/4|B|1/2|L|3/4 + |L|.

Exercise 2 Theorem 5 can be used to prove a number of sum-product results using
Elekes’ method [7].

1. Use the lines �a,b(t) = a(t + b)with a, b ∈ A and the point set P = A × A(A +
A) to show that

|A(A + A)| � min(p, |A|3/2).

2. Use the lines �a,b(t) = at + b with a, b ∈ A and the point set P = A × (A +
AA) to show that

|A + AA| � min(p, |A|3/2).

3. Use the lines �a,b(t) = t/a + b or �a,b(t) = a(t − b) and a point set of the form
P = AA × (A + A) or P = (A + A) × AA to show that

max(|A + A|, |AA|) � min(p1/3|A|2/3, |A|6/5).

The last part of the exercise implies that if |A| ≤ p5/8, then

max(|A + A|, |AA|) � |A|6/5.

Since |A|2/p1/2 > p1/3|A|2/3 when |A| > p5/8, the best known sum-product results
in Fp can be summarized as

max(|A + A|, |AA|) � min(
√
p|A|, |A|2/p1/2, |A|6/5). (15)



228 B. Murphy and G. Petridis

In [30],StevensanddeZeeuwuseTheorem5 inconjunctionwithaclever induction
argument toproveapoint-line incidenceboundforgeneralpoint sets P ⊆ F

2
p.Namely,

that for any set of lines L inF2
p such that |P|7/8 < |L| < |P|8/7 and |L|13 � p15|P|2,

I (P, L) � |P|11/15|L|11/15.

Further applications of this bound and Theorem 5 may be found in [30].

4.2 A Bound for the Number of Collinear Triples
in P = A × A

Given a subset A of Fp, let T (A) denote the number of collinear triples of points in
P = A × A.

For any set A, we have T (A) � |A|5, which we may see as follows. Three points
(a, a′), (b, b′), (c, c′) in P = A × A are collinear if

det

⎛
⎝1 1 1
a b c
a′ b′ c′

⎞
⎠ = 0. (16)

Evaluating the determinant yields the equation

(b − a)(c′ − a′) = (b′ − a′)(c − a). (17)

Since we have six variables in |A|6 and one equation, we have� |A|5 solutions.
Recall that to find lower bounds for |A + AA| and |A(A + A)|, we found upper

bounds for six-variable energy-type equations. It turns out that (17) can be bounded in
a similar way, leading to the following bound, due to [32], see also [19, 22].

Theorem 6 Let A be a subset of Fp. If |A| � p2/3, then

T (A) � |A|6
p

+ |A|9/2.

Proof If a, b �= c and a′, b′ �= c, then Eq. (17) reduces to

b − a

c − a
= b′ − a′

c′ − a′ . (18)

Sincethenumberofcollinear tripleswherea = c, b = c, a′ = c′,orb′ = c′ isO(|A|4),
we have
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T (A) =
∣∣∣∣
{
(a, . . . , c′) ∈ A6 : b − a

c − a
= b′ − a′

c′ − a′ �= 0,∞
}∣∣∣∣ + O(|A|4). (19)

Thus to bound T (A), it suffices to count the number of solutions to (18) with
a, b, c, a′, b′, c′ in A. We apply Theorem 3 to (18).

Let
Q = {(1/(c − a),−a/(c − a)) : a, c ∈ A}.

By (19) and our definition of Q, it follows that T (A) = E(Q; A) + O(|A|4). The
proposition will follow from Theorem 3 if we can show that |Q| = |A|2 and k ≤ |A|,
since then

E(Q; A) � |A|6
p

+ (|A|3)3/2 + |A|4 � |A|6
p

+ |A|9/2.

First |Q| = |A|2, since every (x, y) ∈ Q corresponds to a unique pair (c, a) in A ×
A, where

a = −y

x
and c = 1

x
− y

x
.

Second, to show that k ≤ |A| we must show that at most k points of Q are collinear.
Consider the linear equationαx + βy = γ withα, β, andγ fixed; supposeoneofα, β

equals 1. Plugging in x = 1/(c − a) and y = −a/(c − a) yields the equation

α − βa = γ (c − a),

which has at most |A| solutions (a, c), as required.

Thenumberofcollinear triplesT (A)canbeexpressed in termsof themultiplicative
energy of shifts of A:

T (A) =
∑

a,a′∈A

E×(A − a, A − a′). (20)

This is easy to see from (17). We first learned of Eq. (20) in [24], and the proof there
inspired the proof of Theorem 6.

Thefollowingeasycorollarywasusedin[32] toproveanincidenceboundforpoints
and lines (which has since been subsumed by Theorem 5).

Corollary 3 Let A be a subset ofFp with |A| < p2/3, and let Lk denote the set of lines
containing at least k points of P = A × A. If k > 3, then

|Lk | � |A|9/2
k3

.
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Proof We have

(
k

3

)
|Lk | ≤

∑
�∈Lk

(|P ∩ �|
3

)
� T (A) � |A|9/2.

Since k > 3, we have
(k
3

) � k3, so the bound follows.

Theorem 5 implies that

|Lk | � |A|5
k4

(21)

for k > |A|3/2/p1/2. In Lemma 4, we show that the same bound actually holds when-
ever k > 2|A|2/p. The bound (21) is essentially equivalent to the statement that for
|A| < p2/3, the point set A × A determines � |A|5 log(|A|) collinear quadruples.
Given such abound for collinear quadruples,wemay recover (21) by the samemethod
used to prove Corollary 3. See [19] for further discussion.

5 AnExpanderBelow the p2/3 Threshold

In this section, we prove the following theorem due to the second listed author [21]:

Theorem 7 Let p beaprime,and let AbeasubsetofFp.Then, thenumberof solutions
to

(a − b)(c − d) = (a′ − b′)(c′ − d ′) with a, b, c, d, a′, b′, c′, d ′ in A (22)

is |A|8/p + O(p2/3|A|16/3).
Hence if |A| � p5/8, then the number of solution is O(|A|8/p), and hence,

|(A − A)(A − A)| � p.

This result is that it says that |(A − A)(A − A)| is nearly as large as possible when
|A| is at least p5/8, which is lower than the p2/3 threshold. Subsequently, Rudnev et al.
[28] proved that ∣∣∣∣

{
ab − c

a − d
: a, b, c, d ∈ A

}∣∣∣∣ � p

whenever |A| � p25/42−o(1),whichalsobreaksthe p2/3 threshold.Recently, theauthors,
together with Roche-Newton et al. [17], have proved several results that pass the p2/3

threshold. For instance,

|R[A]| =
∣∣∣∣
{
b − a

c − a
: a, b, c ∈ A

}∣∣∣∣ � p
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whenever |A| ≥ p3/5, and

|R[A]| � |A|8/5
log2(|A|)

whenever |A| ≤ p5/12.

Proof (Proof of Theorem 7)As before, we use an energy-type argument: Let r(x) =
r(A−A)(A−A)(x).Then,r(x) issupportedon(A − A)(A − A)and

∑
x r(x) = |A|4,and

thus
|A|8 ≤ |(A − A)(A − A)|

∑
x

r2(x).

The second moment of r(x) counts solutions to Eq. (22).
There are O(|A|6) solutions where either side of (22) is zero; thus, we have

∑
x

r2(x) =
∣∣∣∣
{
a − b

a′ − b′ = c − d

c′ − d ′ �= 0,∞
}∣∣∣∣ + O(|A|6). (23)

We can write this quantity as a second moment of a different function, which we will
call Qξ :

Qξ :=
∣∣∣∣
{
(a, b, c, d) ∈ A4 : a − b

c − d
= ξ

}∣∣∣∣ . (24)

Then by (23) and (24), we have

∑
x

r2(x) =
∑
ξ �=0

Q2
ξ + O(|A|6). (25)

The following lemma provides the necessary bound for the secondmoment of Qξ :

Lemma 2 ∑
ξ �=0

Q2
ξ ≤ |A|8

p
+ O(p2/3|A|16/3).

We defer the proof of Lemma 2 and finish the proof of Theorem 7.
Combining (25) with Lemma 2 yields

∑
x

r2(x) ≤ |A|8
p

+ O(|A|6 + p2/3|A|16/3).

Since |A|6 � p2/3|A|16/3 for all A, we have
∑
x

r2(x) ≤ |A|8
p

+ O(p2/3|A|16/3), (26)



232 B. Murphy and G. Petridis

as claimed.
If |A| ≥ p5/8, then

∑
x r

2(x) � |A|8/p, so |(A − A)(A − A)| � p.
Now we prove Lemma 2.

Proof (ProofofLemma2)Tobegin,werecordsomebasicfactsaboutQξ andintroduce
a related quantity, Eξ . For ξ �= 0, we have

Qξ = |{(a, b, c, d) ∈ A4 : a − ξc = b − ξd, a �= b, c �= d}| = E+(A, ξ A) − |A|2.
(27)

Since ∑
ξ �=0

Qξ = |A|2(|A| − 1)2,

we have ∑
ξ∈X

E+(A, ξ A) =
∑
ξ∈X

(
Qξ + |A|2) ≤ |A|4 + |X ||A|2. (28)

It follows from (28) that if we set

Eξ = E+(A, ξ A) − |A|4
p

,

then ∑
ξ �=0

Eξ ≤ p|A|2. (29)

The quantity Eξ is useful because it is nonnegative: By Cauchy-Schwarz,

E+(A, ξ A) ≥ |A|4
|A ± ξ A| ≥ |A|4

p
.

Now we will estimate the second moment of Qξ . To begin, we replace one power
of Qξ by Eξ and estimate the error:

∑
ξ �=0

Q2
ξ =

∑
ξ �=0

Qξ

(
E+(A, ξ A) − |A|2)

=
∑
ξ �=0

Qξ

(
Eξ + |A|4

p
− |A|2

)

≤
∑
ξ �=0

Qξ Eξ + |A|4
p

∑
ξ �=0

Qξ

≤ |A|8
p

+
∑
ξ �=0

Qξ Eξ .
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Thus by (25),

∑
x

r2(x) =
∑
ξ �=0

Q2
ξ + O(|A|6) ≤ |A|8

p
+

∑
ξ �=0

Qξ Eξ + O(|A|6). (30)

Now, toestimate thesumoverξ ,wedivide into twocases.Let BK = {ξ �= 0 : Qξ >

|A|3/K }. Then,
∑
ξ �=0

Qξ Eξ ≤
∑
ξ∈BK

Qξ Eξ + |A|3
K

∑
ξ �=0

Eξ = I + I I. (31)

We bound second term by (29):

I I = |A|3
K

∑
ξ �=0

Eξ ≤ p|A|5
K

. (32)

To bound the first term, we use the trivial bound |Qξ | ≤ |A|3 to find

I =
∑
ξ∈BK

Qξ Eξ ≤ |A|3
∑
ξ∈BK

Eξ ≤ |A|3
∑
ξ∈BK

E+(A, ξ A). (33)

To bound this last sum, we use the following lemma, which we will prove in the next
section.

Lemma 3 If |A| � p2/3, then for any X ⊆ Fp such that |X | ≤ |A|3,
∑
ξ∈X

E+(A, ξ A) � |A|3|X |2/3.

Since |A|3
K

|BK | <
∑
ξ∈BK

Qξ ≤ |A|4

and K ≤ |A|, we have
|BK | ≤ |A|2.

Thus, we may apply Lemma 3 with X = BK .
By Lemma 3 and (33),

I � |A|6|BK |2/3. (34)

Nowwe use Lemma 3 again to bound |BK |:
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|A|3
K

|BK | ≤
∑
ξ∈BK

E+(A, ξ A) � |A|3|BK |2/3,

and hence, |BK | � K 3.
Combining the bounds for I and I I with the bound |BK | � K 3, we have

∑
ξ �=0

Qξ Eξ � K 2|A|6 + p|A|5
K

.

To balance the terms on the right-hand side of the previous equation, we set K =
(p/|A|)1/3: ∑

ξ �=0

Qξ Eξ � p2/3|A|16/3. (35)

This completes the proof of Lemma 2, pending the proof of Lemma 3.

Proof of Lemma 3

Recall that Lemma 3 states that if |A| � p2/3, then for any set X ⊆ Fp such that
|X | ≤ |A|3, we have ∑

ξ∈X
E+(A, ξ A) � |A|3|X |2/3.

This is an explicit version of Bourgain’s Theorem C from [4]. Similar results were
proved over R in [18] by the Szemerédi-Trotter incidence bound. We use the same
approach as [18], but we use the following lemma in place of the Szemerédi-Trotter
theorem.

Lemma 4 Let A be a subset ofFp, and let Lt denote the set of lines inF2
P that contain

at least t points of P = A × A. If t > min(2|A|2/p, 1), then

|Lt | � |A|5
t4

.

The proof of Lemma 4 requires the following bound, which is implicit in the work of
Bourgain et al. [3] and appears explicitly in [16]:

∑
all lines �

(
i(�) − |A|2

p

)2

≤ p|A|2, (36)

where i(�) = |(A × A) ∩ �|.
Proof (Proof of Lemma 4) For a line � in F2

p, let i(�) = |P ∩ �|, where P = A × A.
Thus if � ∈ Lt , then i(�) ≥ t .

Since t > 2|A|2/p, we have
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i(�) − |A|2
p

≥ t

2

for all � in Lt . Thus,
|Lt |t2
4

≤
∑
�∈Lt

(
i(�) − |A|2

p

)2

.

On the other hand, by Eq. (36) the right-hand side of the previous equation is at most
p|A|2, so

|Lt | � p|A|2
t2

.

Nowwe consider two cases. If t ≤ c|A|3/2/p1/2, we have

|Lt | ≤ c2|A|3
pt2

|Lt | � |A|5
t4

.

If t ≥ c|A|3/2/p1/2, then we will apply Theorem 5. Since

t |Lt | ≤ I (P, Lt ),

by Theorem 5, we have

t |Lt | � |A|3/2|Lt |
p1/2

+ |A|5/4|Lt |3/4 + |A|2.

Since t ≥ c|A|3/2/p1/2, if c is sufficiently large (depending on the implicit constants
in Theorem 5), we have

t |Lt | � |A|5/4|Lt |3/4 + |A|2,

and hence,

|Lt | � |A|5
t4

+ |A|2
t

� |A|5
t4

.

(The last inequality follows because t ≤ |A|.)
Finally, note that if 1 < t � 1, then |Lt | � |A|5/t4 is trivial, since |Lt | ≤ |A|4.
Now we proceed to the proof of the main result of this section.

Proof (Proof of Lemma 3) To show that

S :=
∑
ξ∈X

E+(A, ξ A) � |A|3|X |2/3,
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we first write
S =

∑
ξ∈X

∑
y

r2A+ξ A(y).

Let Z j denote the set of pairs {(ξ, y) : rA+ξ A(y) > Δ2 j }. Then,

S � Δ|X ||A|2 +
∑
j≥0

|Z j |(Δ2 j )2. (37)

Ontheotherhand,foreachpair(ξ, y) in Z j ,wemayassociatetheline�ξ,y = {(a, b) : a +
ξb = y}. Since the line�ξ,y containsat leastΔ2 j pointsof A × A, byLemma3wehave

|Z j | ≤ |L j | � |A|5
(Δ2 j )4

, (38)

whenever Δ2 j ≥ min(2|A|2/p, 1). (We do not need strict inequality because it is
included in the definition of Z j .)

Assume for now that Δ ≥ min(2|A|2/p, 1); at the end of the argument, we will
prove that our choice ofΔ satisfies this condition whenever |A| � p2/3. By (37) and
(38), we have

S � Δ|X ||A|2 +
∑
j≥0

(Δ2 j )2
|A|5

(Δ2 j )4
,

Thus,

S � Δ|X ||A|2 + |A|5
Δ2

.

ChoosingΔ = |A|/|X |1/3 yields

S � |A|3|X |2/3,

as desired.
Nowwewill check thatΔ = |A|/|X |1/3 is at least 2|A|2/pwhenever |A| � p2/3:

Δ = |A|
|X |1/3 ≥ 2|A|2

p
⇐⇒ |X | � p3

|A|3 .

Ontheotherhand, if |A| � p2/3, then p3/|A|3 � p ≥ |X |.Finally, |X | ≤ |A|3 implies
Δ ≥ 1.
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Sumsets Contained in Sets of Upper Banach
Density 1

Melvyn B. Nathanson

Abstract Every set A of positive integers with upper Banach density 1 contains an
infinite sequence of pairwise disjoint subsets (Bi )

∞
i=1 such that Bi has upper Banach

density 1 for all i ∈ N and
∑

i∈I Bi ⊆ A for every nonempty finite set I of positive
integers.
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1 Upper Banach Density

Let N, N0, and Z denote, respectively, the sets of positive integers, nonnegative
integers, and integers. Let |S| denote the cardinality of the set S. We define the
interval of integers

[x, y] = {n ∈ N : x ≤ n ≤ y}.

Let A be a set of positive integers. Let n ∈ N. For all u ∈ N0, we have

|A ∩ [u, u + n − 1]| ∈ [0, n]

and so
f A(n) = max

u∈N0

|A ∩ [u, u + n − 1]|

exists. The upper Banach density of A is
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δ(A) = lim sup
n→∞

f A(n)

n
.

Let n1, n2 ∈ N. There exists u∗
1 ∈ N0 such that, with u∗

2 = u∗
1 + n1,

f A(n1 + n2) = ∣
∣A ∩ [u∗

1, u
∗
1 + n1 + n2 − 1]∣∣

= ∣
∣A ∩ [u∗

1, u
∗
1 + n1 − 1]∣∣ + ∣

∣A ∩ [u∗
1 + n1, u

∗
1 + n1 + n2 − 1]∣∣

= ∣
∣A ∩ [u∗

1, u
∗
1 + n1 − 1]∣∣ + ∣

∣A ∩ [u∗
2, u

∗
2 + n2 − 1]∣∣

≤ f A(n1) + f A(n2).

It is well known, and proved in the Appendix, that this inequality implies that

δ(A) = lim
n→∞

f A(n)

n
= inf

n∈N
f A(n)

n
.

2 An Erdős Sumset Conjecture

About 40 years ago, Erdős conjectured that if A is a set of positive integers of positive
upper Banach density, then there exist infinite sets B and C of positive integers such
that B + C ⊆ A. This conjecture has not yet been verified or disproved.

The translation of the set X by t is the set

X + t = {x + t : x ∈ X}.

Let B and C be sets of integers. For every integer t , if B ′ = B + t and C ′ = C − t ,
then

B ′ + C ′ = (B + t) + (C − t) = B + C.

In particular, if C is bounded below and t = min(C), then 0 = min(C ′) and B ′ ⊆
B ′ + C ′. It follows that if B and C are infinite sets such that B + C ⊆ A, then, by
translation, there exist infinite sets B ′ and C ′ such that B ′ ⊆ A and B ′ + C ′ ⊆ A.

However, a set A with positive upper Banach density does not necessarily contain
infinite subsets B and C with B + C ⊆ A. For example, let A be any set of odd
numbers. For all sets B and C of odd numbers, the sumset B + C is a set of even
numbers, and so A ∩ (B + C) = ∅. Of course, in this example, we have B + C ⊆
A + 1.

In this note, we prove that if A is a set of positive integers with upper Banach den-
sity δ(A) = 1, then for every h ≥ 2 there exist pairwise disjoint subsets B1, . . . , Bh

of A such that δ(Bi ) = 1 for all i = 1, . . . , h and

B1 + · · · + Bh ⊆ A.
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Indeed, Theorem 2 states an even stronger result.
There are sets A of upper Banach density 1 for which no infinite subset B of A

satisfies 2B ⊆ A + t for any integer t . A simple example is

A =
∞⋃

i=1

[
4i , 4i + i − 1

]
.

The set A is the union of the infinite sequence of pairwise disjoint intervals

Ai = [
4i , 4i + i − 1

]
.

Let t ∈ N0. There exists i0(t) such that 4i − i > t for all i ≥ i0(t). If bi ∈ Ai for
some i ≥ i0(t), then

4i + i + t < 2 · 4i ≤ 2bi < 2 · 4i + 2i < 4i+1 − 2t ≤ 4i+1 − t

and so 2bi /∈ 2A ± t . If B is an infinite subset of A, then for infinitely many i , there
exist integers bi ∈ B ∩ Ai , and so 2B � A + t for all t ∈ Z.

There are very few results about the Erdős conjecture. In 1980, Nathanson [9]
proved that if δ(A) > 0, then for every n there is a finite set C with |C | = n and
a subset B of A with δ(B) > 0 such that B + C ⊆ A. In 2015, Di Nasso et al. [3]
used nonstandard analysis to prove that the Erdős conjecture is true for sets A with
upper Banach density δ(A) > 1/2. They also proved that if δ(A) > 0, then there
exist infinite sets B and C and an integer t such that

B + C ⊆ A ∪ (A + t).

It would be of interest to have purely combinatorial proofs of the results of Di Nasso
et al.

For related work, see Di Nasso [1, 2], Gromov [4], Hegyvári [5, 6], Hindman [7],
and Jin [8].

3 Results

The following result is well known.

Lemma 1 A set of positive integers has upper Banach density 1 if and only if,
for every d, it contains infinitely many pairwise disjoint intervals of d consecutive
integers.



242 M. B. Nathanson

Proof Let A be a set of positive integers. If, for every positive integer d, the set A
contains an interval of d consecutive integers, then

max
u∈N0

( |A ∩ [u, u + d − 1]|
d

)

= 1

and so

δ(A) = lim
d→∞max

u∈N0

( |A ∩ [u, u + d − 1]|
d

)

= 1.

Suppose that, for some integer d ≥ 2, the set A contains no interval of d consec-
utive integers. For every u ∈ N0, we consider the interval Iu,n = [u, u + n − 1]. By
the division algorithm, there are integers q and r with 0 ≤ r < d such that

|Iu,n| = n = qd + r

and
q = n − r

d
>

n

d
− 1.

For j = 1, . . . , q, the intervals of integers

I ( j)
u,n = [u + ( j − 1)d, u + jd − 1]

and
I (q+1)
u,n = [u + qd, u + n − 1]

are pairwise disjoint subsets of Iu,n such that

Iu,n =
q+1⋃

j=1

I ( j)
u,n .

We have

A ∩ Iu,n =
q+1⋃

j=1

(A ∩ I ( j)
u,n)

If A contains no interval of d consecutive integers, then, for all j ∈ [1, q], at least
one element of the interval I ( j)

u,n is not an element of A, and so

|A ∩ I ( j)
u,n | ≤ |I ( j)

u,n | − 1.
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It follows that

|A ∩ Iu,n| =
q+1∑

j=1

∣
∣A ∩ I ( j)

u,n

∣
∣ ≤

q∑

j=1

(∣
∣I ( j)

u,n

∣
∣ − 1

) + ∣
∣I (q+1)

u,n

∣
∣

=
q+1∑

j=1

∣
∣I ( j)

u,n

∣
∣ − q = |Iu,n| − q = n − q

< n − n

d
+ 1 =

(

1 − 1

d

)

n + 1.

Dividing by n = |Iu,n|, we obtain

max
u∈N0

|A ∩ Iu,n|
n

≤ 1 − 1

d
+ 1

n
.

and so

δ(A) = lim
n→∞max

u∈N0

|A ∩ Iu,n|
n

≤ 1 − 1

d
< 1

which is absurd. Therefore, A contains an interval of d consecutive integers for every
d ∈ N.

To prove that A contains infinitely many intervals of size d, it suffices to prove
that if [u, u + d − 1] ⊆ A, then [v, v + d − 1] ⊆ A for some v ≥ u + d. Let d ′ =
u + 2d. There exists u′ ∈ N such that

[u′, u′ + d ′ − 1] = [u′, u′ + u + 2d − 1] ⊆ A.

Choosing v = u′ + u + d, we have v ≥ u + d and

[v, v + d − 1] ⊆ [u′, u′ + u + 2d − 1] ⊆ A.

This completes the proof.

Let F(S) denote the set of all finite subsets of the set S, and let F∗(S) denote the
set of all nonempty finite subsets of S. We have the fundamental binomial identity

F∗([1, n + 1]) = F∗([1, n]) ∪ {{n + 1} ∪ J : J ∈ F([1, n])} . (1)

Theorem 1 Let A be a set of positive integers that has upper Banach density 1.
For every sequence (� j )

∞
j=1 of positive integers, there exists a sequence (b j )

∞
j=1 of

positive integers such that
b j+1 ≥ b j + � j
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for all j ∈ N, and ∑

j∈J

[b j , b j + � j − 1] ⊆ A

for all J ∈ F∗(N).

Proof We shall construct the sequence (b j )
∞
j=1 by induction. For n = 1, choose

b1 ∈ A such that [b1, b1 + �1 − 1] ⊆ A.
Suppose that (b j )

n
j=1 is a finite sequence of positive integers such that b j+1 ≥

b j + � j for j ∈ [1, n − 1] and
∑

j∈J

[b j , b j + � j − 1] ⊆ A (2)

for all J ∈ F∗([1, n]). By Lemma 1, there exists bn+1 ∈ A such that

bn+1 ≥ bn + �n

and ⎡

⎣bn+1,

n+1∑

j=1

(b j + � j ) − 1

⎤

⎦ ⊆ A.

It follows that [
bn+1, bn+1 + �n+1 − 1

] ⊆ A.

Let J ∈ F([1, n]). If

a ∈
∑

j∈{n+1}∪J

[b j , b j + � j − 1]

= [
bn+1, bn+1 + �n+1 − 1

] +
∑

j∈J

[b j , b j + � j − 1]

then

bn+1 ≤ a ≤ (bn+1 + �n+1 − 1) +
∑

j∈J

(
b j + � j − 1

)

≤
n+1∑

j=1

(b j + � j ) − 1
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and so a ∈ A and

∑

j∈{n+1}∪J

[b j , b j + � j − 1] ⊆
⎡

⎣bn+1,

n+1∑

j=1

(b j + � j ) − 1

⎤

⎦ ⊆ A. (3)

Relations (1), (2), and (3) imply that

∑

j∈J

[b j , b j + � j − 1] ⊆ A

for all J ∈ F∗([1, n + 1]). This completes the induction.

Theorem 2 Every set A of positive integers that has upperBanach density 1 contains
an infinite sequence of pairwise disjoint subsets (Bi )

∞
i=1 such that Bi has upper

Banach density 1 for all i ∈ N and

∑

i∈I
Bi ⊆ A

for all I ∈ F∗(N).

Proof Let (� j )
∞
j=1 be a sequence of positive integers such that lim j→∞ � j = ∞, and

let (b j )
∞
j=1 be a sequence of positive integers that satisfies Theorem 1. (For simplicity,

we can let � j = j for all j .) Let (Xi )
∞
i=1 be a sequence of infinite sets of positive

integers that are pairwise disjoint. For i ∈ N, let

Bi =
⋃

j∈Xi

[b j , b j + � j − 1].

The set Bi contains intervals of � j consecutive integers for infinitely many � j , and
so Bi has upper Banach density 1.

Let I ∈ F∗(N). If
a ∈

∑

i∈I
Bi ⊆ A

then for each i ∈ I there exists ai ∈ Bi such that a = ∑
i∈I ai . If ai ∈ Bi , then there

exists ji ∈ Xi such that
xi ∈ [

b ji , b ji + � ji − 1
]
.

We have J = { ji : i ∈ I } ∈ F∗(N) and

a ∈
∑

ji∈J

[
b ji , b ji + � ji − 1

] ⊆ A.

This completes the proof.
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Theorem 3 Let A be a set of integers that contains arbitrarily long finite arithmetic
progressions with bounded differences. There exist positive integers m and r, and
an infinite sequence of pairwise disjoint sets (Bi )

∞
i=1 such that Bi has upper Banach

density 1 for all i ∈ N and
m ∗

∑

i∈I
Bi + r ⊆ A

for all I ∈ F∗(N).

Proof If the differences in the infinite set of finite arithmetic progressions contained
in A are bounded by m0, then there exists a difference m ≤ m0 that occurs infinitely
often. It follows that there are arbitrarily long finite arithmetic progressions with
difference m. Because there are only finitely many congruence classes modulo m,
there exists a congruence class r (mod m) such that A contains arbitrarily long
sequences of consecutive integers in the congruence class r (mod m). Thus, there
exists an infinite set A′ such that

m ∗ A′ + r ⊆ A

and A′ contains arbitrarily long sequences of consecutive integers. Equivalently, A′
has Banach density 1. By Theorem 2, the sequence A′ contains an infinite sequence
of pairwise disjoint subsets (Bi )

∞
i=1 such that Bi has upper Banach density 1 for all

i ∈ N and ∑

i∈I
Bi ⊆ A′

for all I ∈ F∗(N). It follows that

m ∗
∑

i∈I
Bi + r ⊆ m ∗ A′ + r ⊆ A

for all I ∈ F∗(N). This completes the proof.

Appendix: Subadditivity and Limits

A real-valued arithmetic function f is subadditive if

f (n1 + n2) ≤ f (n1) + f (n2) (4)

for all n1, n2 ∈ N.
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The following result is sometimes called Fekete’s lemma.

Lemma 2 If f is a subadditive arithmetic function, then limn→∞ f (n)/n exists, and

lim
n→∞

f (n)

n
= inf

n∈N
f (n)

n
.

Proof It follows by induction from inequality (4) that

f (n1 + · · · + nq) ≤ f (n1) + · · · + f (nq)

for all n1, . . . , nq ∈ N. Let f (0) = 0. Fix a positive integer d. For all q, r ∈ N0, we
have

f (qd + r) ≤ q f (d) + f (r).

By the division algorithm, every nonnegative integer n can be represented uniquely
in the form n = qd + r , where q ∈ N0 and r ∈ [0, d − 1]. Therefore,

f (n)

n
= f (qd + r)

n
≤ q f (d)

qd
+ f (r)

n
= f (d)

d
+ f (r)

n
.

Because the set { f (r) : r ∈ [0, d − 1]} is bounded, it follows that

lim sup
n→∞

f (n)

n
≤ lim sup

n→∞

(
f (d)

d
+ f (r)

n

)

= f (d)

d

for all d ∈ N, and so

lim sup
n→∞

f (n)

n
≤ inf

d∈N
f (d)

d
≤ lim inf

d→∞
f (d)

d
= lim inf

n→∞
f (n)

n
.

This completes the proof.
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The Erdős Paradox

Melvyn B. Nathanson

Prologue
The great Hungarian mathematician Paul Erdős was born in Budapest on March 26,
1913. He died alone in a hospital room in Warsaw, Poland, on Friday afternoon,
September 20, 1996. It was sad and ironic that he was alone, because he probably
had more friends in more places than any mathematician in the world. He was in
Warsaw for a conference. Vera Sós had also been there, but had gone to Budapest
on Thursday and intended to return on Saturday with András Sárközy to travel with
Paul to a number theory meeting in Vilnius. On Thursday night, Erdős felt ill and
called the desk in his hotel. He was having a heart attack and was taken to a hospital,
where he died about 12 hours later. No one knew he was in the hospital. When Paul
did not appear at the meeting on Friday morning, one of the Polish mathematicians
called the hotel. He did not get through, and no one tried to telephone the hotel again
for several hours. By the time it was learned that Paul was in the hospital, he was
dead.

Vera was informed by telephone on Friday afternoon that Paul had died. She
returned to Warsaw on Saturday. It was decided that Paul should be cremated. This
was contrary to Jewish law, but Paul was not an observant Jew and it is not known
what he would have wanted. Nor was he buried promptly in accordance with Jewish
tradition. Instead, four weeks later, on October 18, there was a secular funeral service
in Budapest, and his ashes were buried in the Jewish cemetery in Budapest.

Erdős strongly identified with Hungary and with Judaism. He was not religious,
but he visited Israel often, and established a mathematics prize and a postdoctoral
fellowship there. He also established a prize and a lectureship in Hungary. He told
me that he was happy whenever someone proved a beautiful theorem, but that he was
especially happy if the person who proved the theorem was Hungarian or Jewish.
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Mathematicians from the USA, Israel, and many European countries traveled to
Hungary to attend Erdos’s funeral. The following day a conference, entitled “Paul
Erdős and his Mathematics,” took place at the Hungarian Academy of Sciences in
Budapest, andmathematicians whowere present for the funeral were asked to lecture
on different parts of Erdős’s work. I was asked to chair one of the sessions and to
begin with some personal remarks about my relationship with Erdős and his life and
style.

This paper is in two parts. The first is the verbatim text of my remarks at the
Erdős memorial conference in Budapest on October 19, 1996. A few months after
the funeral and conference, I returned to Europe to lecture in Germany. At Bielefeld,
someone told me that my eulogy had generated controversy, and indeed, I heard the
same report a few weeks later when I was back in the USA. Eighteen years later, on
the 100th anniversary of his birth, it is fitting to reconsider Erdős’s life and work.

1 Eulogy, Delivered in Budapest on October 19, 1996

I knew Erdős for 25 years, half my life, but still not very long compared to many
people in this room. His memory was much better than mine; he often reminded me
that we proved the theorems in our first paper in 1972 in a car as we drove back to
Southern Illinois University in Carbondale after a meeting of the Illinois Number
Theory Conference in Normal, Illinois. He visited me often in Carbondale and even
more often after I moved to New Jersey. He would frequently leave his winter coat
in my house when he left for Europe in the spring, and retrieve it when he returned
in the fall. I still have a carton of his belongings in my attic. My children Becky and
Alex, who are five and seven years old, would ask, “When is Paul coming to visit
again?” They liked his silly tricks for kids, like dropping a coin and catching it before
it hit the floor. He was tolerant of the dietary rules in my house, which meant, for
example, no milk in his espresso if we had just eaten meat.

Hewas tough. “No illegal thinking,” hewould saywhenwewereworking together.
This meant no thinking about mathematical problems other than the ones we were
working on at that time. In other words, he knew how to enforce party discipline.

Erdős loved to discuss politics, especially Sam and Joe, which, in his idiosyncratic
language, meant the USA (Uncle Sam) and the Soviet Union (Joseph Stalin). His
politics seemed to me to be the politics of the 30s, much to the left of my own.
He embraced a kind of naive and altruistic socialism that I associate with idealistic
intellectuals of his generation. He never wanted to believe what I told him about the
Soviet Union as an “evil empire.” I think he was genuinely saddened by the fact that
the demise of communism in the Soviet Union meant the failure of certain dreams
and principles that were important to him.

Erdős’s cultural interests were narrowly focused. When he was in my house, he
always wanted to hear “noise” (that is, music), especially Bach. He loved to quote
Hungarian poetry (in translation). I assume that when he was young he read literature
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(he was amazed that Anatole France is a forgotten literary figure today), but I don’t
think he read much anymore.

I subscribe to many political journals. When he came to my house, he would look
for the latest issue of Foreign Affairs, but usually disagreed with the contents. Not
long ago, an American historian at Pacific Lutheran University published a book
entitled Ordinary Men,1 a study of how large numbers of “ordinary Germans,” not
just a few SS, actively and willingly participated in the murder of Jews. He found the
book on my desk and read it, but did not believe or did not want to believe it could
be true, because it conflicted with his belief in the natural goodness of ordinary men.

He had absolutely no interest in the visual arts. My wife was a curator at the
Museum of Modern Art in New York, and we went with her one day to the museum.
It has the finest collection of modern art in the world, but Paul was bored. After a
few minutes, he went out to the sculpture garden and started, as usual, to prove and
conjecture.

Paul’s mathematics was like his politics. He learned mathematics in the 1930s
in Hungary and England, and England at that time was a kind of mathematical
backwater. For the rest of his life, he concentrated on the fields that he had learned
as a boy. Elementary and analytic number theory, at the level of Landau, graph
theory, set theory, probability theory, and classical analysis. In these fields, he was
an absolute master, a virtuoso.

At the same time, it is extraordinary to think of the parts of mathematics he never
learned. Much of contemporary number theory, for example. In retrospect, probably
the greatest number theorist of the 1930s was Hecke, but Erdős knew nothing about
his work and cared less. Hardy and Littlewood dominated British number theory
when Erdős lived in England, but I doubt they understood Hecke.

There is an essay by Irving Segal2 in the current issue of the Bulletin of the Amer-
ican Mathematical Society. He tells the story of the visit of another great Hungarian
mathematician, John von Neumann, to Cambridge in the 1930s. After his lecture,
Hardy remarked, “Obviously a very intelligent young man. But was that mathemat-
ics?”

A few months ago, on his last visit to New Jersey, I was telling Erdős something
about p-adic analysis. Erdős was not interested. “You know,” he said about the p-adic
numbers, “they don’t really exist.”

Paul never learned algebraic number theory. He was offended—actually, he was
furious—when André Weil wrote that analytic number theory is good mathematics,
but analysis, not number theory.3 Paul’s “tit-for-tat” response was that André Weil
did good mathematics, but it was algebra, not number theory. I think Paul was a bit

1Christopher R. Browning, Ordinary Men, HarperCollins Publishers, New York, 1992.
2Irving Segal, “Noncommutative Geometry by Alain Connes (book review),” Bull. Amer. Math. Soc.
33 (1996), 459–465.
3Weil wrote, “…there is a subject in mathematics (it’s a perfectly good and valid subject and it’s
perfectly good and valid mathematics) which is called Analytic Number Theory…. I would classify
it under analysis….” (Œuvres Scientifiques Collected Papers, Springer-Verlag, New York, 1979,
Volume III, p. 280).
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shocked that a problem he did consider number theory, Fermat’s Last Theorem, was
solved using ideas andmethods ofWeil and other very sophisticatedmathematicians.

It is idle to speculate about how great a mathematician Erdős was, as if one
could put together a list of the top 10 or top 100 mathematicians of our century.
His interests were broad, his conjectures, problems, and results profound, and his
humanity extraordinary.

He was the “Bob Hope” of mathematics, a kind of vaudeville performer who told
the same jokes and the same stories a thousand times. When he was scheduled to
give yet another talk, no matter how tired he was, as soon as he was introduced to
the audience, the adrenaline (or maybe amphetamine) would release into his system
and he would bound onto the stage, full of energy, and do his routine for the 1001st
time.

If he were here today, he would be sitting in the first row, half asleep, happy to be
in the presence of so many colleagues, collaborators, and friends.

Yitgadal v’yitkadash sh’mei raba.
Y’hei zekronoh l’olam.
May his memory be with us forever.4

2 Reconsideration

My brief talk at the Erdős conference was not intended for publication. Someone
asked me for a copy, and it subsequently spread via e-mail. Many people who heard
me in Budapest or who later read my eulogy told me that it helped them remember
Paul as a human being, but others clearly disliked what I said. I confess I still don’t
know what disturbed them so deeply. It has less to do with Erdős, I think, than with
the status of “Hungarian mathematics” in the scientific world.5

Everyone understands that Erdős was an extraordinary human being and a great
mathematician who made major contributions to many parts of mathematics. He was
a central figure in the creation of new fields, such as probabilistic number theory and
random graphs. This part of the story is trivial.

It is also true, understood by almost everyone, and not controversial, that Erdős
did not work in and never learned the central core of twentieth-century mathematics.
It is amazing to me how great were Erdos’s contributions to mathematics, and how
little he knew. He never learned, for example, the great discoveries in number theory
that were made at the beginning of the twentieth century. These include, for example,
Weil’s work on Diophantine equations, Artin’s class field theory, and Hecke’s monu-
mental contributions to modular forms and analytic number theory. Erdős apparently

4I ended my eulogy with a sentence in Aramaic and a sentence in Hebrew. The first is the first line
of the Kaddish, the Jewish prayer for the dead. Immediately following the second sentence is its
English translation.
5cf. L. Babai, “In and out of Hungary: Paul Erdős, his friends, and times,” in: Combinatorics,
Paul Erdős is Eighty (Volume 2), Keszthely (Hungary) 1993, Bolyai Society Mathematical Studies,
Budapest, 1996, pp. 7–95.
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knew nothing about Lie groups, Riemannian manifolds, algebraic geometry, alge-
braic topology, global analysis, or the deep ocean of mathematics connected with
quantum mechanics and relativity theory. These subjects, already intensely investi-
gated in the 1930s, were at the heart of twentieth-century mathematics. How could a
great mathematician not want to study these things?6 This is the first Erdős paradox.

In the case of the Indian mathematician Ramanujan, whose knowledge was also
deep but narrow, there is a discussion in the literature about the possible sources of
his mathematical education. The explanation of Hardy7 and others is that the only
serious book that was accessible to Ramanujan in India was Carr’s A Synopsis of
Elementary Results in Pure and Applied Mathematics, and that Ramanujan lacked
a broad mathematical culture because he did not have access to books and journals
in India. But Hungary was not India; there were libraries, books, and journals in
Budapest, and in other places where Erdős lived in the 1930s and 1940s.

For the past half-century, “Hungarian mathematics” has been a term of art to
describe the kind of mathematics that Erdős did.8 It includes combinatorics, graph
theory, combinatorial set theory, and elementary and combinatorial number theory.
Not all Hungarians do this kind ofmathematics, of course, andmany non-Hungarians
do Hungarian mathematics. It happens that combinatorial reasoning is central to the-
oretical computer science, and “Hungarian mathematics” commands vast respect in
the computer science world. It is also true, however, that for many years combina-
torics did not have the highest reputation among mathematicians in the ruling subset
of the research community, exactly because combinatorics was concerned largely
with questions that they believed (incorrectly) were not central to twentieth-century
mathematics.9

In a volume in honor of Erdős’s 70th birthday, Ernst Straus wrote, “In our century,
in which mathematics is so strongly dominated by ‘theory constructors’ [Erdős]
has remained the prince of problem solvers and the absolute monarch of problem
posers.”10 I disagree. There is, as Gel’fand often said, only onemathematics. There is
no separationofmathematics into “theory” and “problems.”But there is an interesting
lurking issue.

In his lifetime, did Erdős get the recognition he deserved? Even though Erdős
received almost every honor that can be given to amathematician, some of his friends
believe that he was still insufficiently appreciated, and they are bitter on his behalf.

6This suggests the fundamental question: How much, or how little, must one know in order to do
great mathematics?.
7“It was a book of a very different kind, Carr’s Synopsis, which first aroused Ramanujan’s full
powers,” according to G. H. Hardy, in his book Ramanujan, Chelsea Publishing, New York, 1959,
p. 2
8For example, Joel Spencer, “I felt… I was working on ‘Hungarian mathematics’,” quoted in Babai,
op. cit.
9For example, S.Mac Lane criticized “emphasizing toomuch of a Hungarian view ofmathematics,”
in: “The health of mathematics,” Math.Intelligencer 5 (1983), 53–55.
10E. G. Straus, “Paul Erdős at 70,” Combinatorica 3 (1983), 245–246. Tim Gowers revisited this
notion in his essay, “The two cultures of mathematics,” published in Mathematics: Frontiers and
Perspectives, American Mathematical Society, 2000.
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He was awarded a Wolf Prize and a Cole Prize, but he did not get a Fields Medal or
a permanent professorship at the Institute for Advanced Study. He traveled from one
university to another across the USA and was never without an invitation to lecture
somewhere, but his mathematics was not highly regarded by the power brokers of
mathematics. To them, his methods were insufficiently abstruse and obscure; they
did not require complicated machinery. Paul invented diabolically clever arguments
from arithmetic, combinatorics, and probability to solve problems. But the technique
was too simple, too elementary. It was suspicious. The work could not be “deep.”

None of this seemed to matter to Erdős, who was content to prove and conjecture
and publish more than 1,500 papers.

Not because of politicking, but because of computer science and because his
mathematics was always beautiful, in the past decade the reputation of Erdős and
the respect paid to discrete mathematics have increased exponentially. The Annals of
Mathematics will now publish papers in combinatorics, and the most active seminar
at the Institute for Advanced Study is in discrete mathematics and theoretical com-
puter science. Fields Medals are awarded to mathematicians who solve Erdős-type
problems. Science has changed.

In 1988, Alexander Grothendieck was awarded the Crafoord Prize of the Swedish
Academy of Sciences. In the letter to the Swedish Academy in which he declined
the prize, he wrote, “Je suis persuadé que la seule épreuve décisive pour la fécundité
d’idées ou d’une vision nouvelles est celle du temps. La fécondité se reconnait par
la progéniture, et non par les honneurs.”11

Time has proved the fertility and richness of Erdős’s work. The second Erdős
paradox is that his methods and results, considered marginal in the twentieth century,
have become central in twenty-first-century mathematics.

May his memory be with us forever.

11“I believe that time gives the only definite proof of the fertility of new ideas or a new vision. We
recognize fertility by its offspring, and not by honors.”
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The family A = (Ai )i∈I is an additive system if A is a unique representation
system for the set of nonnegative integers, that is, if N0 = ⊕

i∈I Ai . The following
lemma follows immediately from the definition of an additive system.

Lemma 1 Let B = (Bj ) j∈J be an additive system. If {Ji }i∈I is a partition of J into
pairwise disjoint nonempty sets, and if

Ai =
∑

j∈Ji

B j

then A = (Ai )i∈I is an additive system.

The additive system A obtained from the additive system B by the partition
procedure described in Lemma 1 is called a contraction of B. (In [1], de Bruijn
called A a degeneration of B.) If I = J and if σ is a permutation of J such that
Ji = {σ(i)} for all i ∈ J , then A and B contain exactly the same sets. Thus, every
additive system is a contraction of itself. An additive systemA is a proper contraction
of B if at least one set Ai ∈ A is the sum of at least two sets in B.

Let X be a set of integers, and let g be an integer. The dilation of X by g is the
set g ∗ X = {gx : x ∈ X}.
Lemma 2 Let B = (Bj ) j∈J be an additive system and let I = {i0} ∪ J , where i0 /∈
J . If

Ai0 = [0, g)

and
A j = g ∗ Bj for all j ∈ J

then A = (Ai )i∈I is an additive system.

The additive system A obtained from the additive system B by the procedure
described in Lemma 2 is called the dilation of B by g.

There are certain additive systems that de Bruijn called British number systems.
A British number system is an additive system constructed from an infinite sequence
of integers according to the algorithm in Theorem 1 below. de Bruijn [1] proved that
British number systems are essentially the only additive systems.

Theorem 1 Let (gi )i∈N be an infinite sequence of integers such that gi ≥ 2 for all
i ≥ 1. Let G0 = 1 and, for i ∈ N, let Gi = ∏i

j=1 g j and

Ai = {0,Gi−1, 2Gi−1, . . . , (gi − 1)Gi−1} = Gi−1 ∗ [0, gi ).

Then A = (Ai )i∈N is an additive system.

Theorem 2 Every additive system is aBritish number systemor aproper contraction
of a British number system.
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The proof of Theorem 2 depends on the following fundamental lemma.

Lemma 3 Let A = (Ai )i∈I be an additive system with |I | ≥ 2, and let i1 be the
unique element of I such that 1 ∈ Ii1 . There exist an integer g ≥ 2 and a family of
sets B = (Bi )i∈I such that

Ai1 = [0, g) ⊕ g ∗ Bi1

and, for all i ∈ I \ {i1},
Ai = g ∗ Bi .

If Bi1 = {0}, then B = (Bi )i∈I\{i1} is an additive system, and A is the dilation of
the additive system B by the integer g. If Bi1 �= {0}, then B = (Bi )i∈I is an additive
system and A is a contraction of the additive system B dilated by g.

For proofs of Lemmas 1, 2, and 3 and Theorems 1 and 2, see Nathanson [4].
This paper gives a refinement of de Bruijn’s theorem. Every additive system is

a contraction of a British number system, but even a British number system can be
a proper contraction of another British number system. An additive system that is
not a proper contraction of another number system will be called indecomposable.
In Sect. 3, we describe all indecomposable British number systems. Unsurprisingly,
there is a one-to-one correspondence between indecomposable British number sys-
tems and infinite sequences of prime numbers.

In Sect. 4, we define the limit of a sequence of additive systems and discuss the
stability of British number systems.

Maltenfort [2] and Munagi [3] have also studied de Bruijn’s additive systems.

2 Decomposable and Indecomposable Sets

The set A of integers is a proper sumset if there exist sets B and C of integers
such that |B| ≥ 2, |C | ≥ 2, and A = B + C . For example, if u and v are integers
and v − u ≥ 3, then the interval [u, v) is a proper sumset:

[u, v) = [0, i) + [u, v + 1 − i)

for every i ∈ [2, v − u).
The set A of integers is decomposable if there exist sets B andC such that (B,C)

is a unique representation system for A, that is, if |B| ≥ 2, |C | ≥ 2, and A = B ⊕ C .
A decomposition A = B ⊕ C is also called a tiling of A by B. For example,

[0, 12) = {0, 3} ⊕ {0, 1, 2, 6, 7, 8}.

If A = B ⊕ C is a decomposition, then |A| = |B| |C | and so the integer |A| is
composite.
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Let n ≥ 2 and consider the interval of integers A = [0, n). A proper divisor of n
is a divisor d of n such that 1 < d < n. Associated to every proper divisor d of n is
the decomposition

[0, n) = [0, d) ⊕ d ∗ [0, n/d). (1)

This is simply the division algorithm for integers. The number of decompositions of
type (1) is the number of proper divisors d of n. There is exactly one such decom-
position if and only if the integer n has a unique proper divisor if and only if n is the
square of a prime number.

Lemma 4 Let n ≥ 2. The interval [0, n) is indecomposable if and only if n is prime.

Proof If n is prime then [0, n) is indecomposable, and if n is composite, then [0, n)

is decomposable.

If A = B ⊕ C and g is a nonzero integer, then g ∗ A = g ∗ B ⊕ g ∗ C , and so
every dilation of a decomposable set is decomposable.

The translate of the set A by an integer t is the set

A + t = {a + t : a ∈ A}.

Let t1, t2 ∈ Z with t = t1 + t2. If A = B + C , then

A + t = (B + t1) + (C + t2).

In particular, A + t = (B + t) + C . If A = B ⊕ C , then A + t = (B + t) ⊕ C , and
so every translate of a decomposable set is decomposable. Similarly, if A = B ⊕ C ,
then A = (B − t) ⊕ (C + t) for every integer t .

Let A be a set of nonnegative integers with 0 ∈ A, and let B and C be sets of
integers with A = B ⊕ C . Let t = min(B). Defining B ′ = B − t and C ′ = C + t ,
we obtain A = B ′ ⊕ C ′. Because min(B ′) = 0, we obtain

0 = min(A) = min(B ′) + min(C ′) = 0 + min(C ′) = min(C ′)

and so B ′ and C ′ are sets of nonnegative integers with 0 ∈ B ′ ∩ C ′.
Not every setwith a composite number of elements is decomposable. For example,

the n-element set {0, 1, 2, 22, . . . , 2n−2} is indecomposable for every n ≥ 2. This is
a special case of the following result.

Lemma 5 Let m ≥ 2. Let A be a set of integers that contains integers a0 and a1
such that a0 �≡ a1 (mod m), and a ≡ a0 (mod m) for all a ∈ A \ {a1}. The set A is
indecomposable.

Proof The distinct congruence classes a0 (mod m) and a1 (mod m) contain ele-
ments of A. Let B and C be sets of integers such that A = B + C with |B|, |C | ≥ 2.
If B is contained in the congruence class r (mod m) and C is contained in the con-
gruence class s (mod m), then B + C is contained in the congruence class r + s
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(mod m), and so A �= B + C (because A intersects two congruence classes). There-
fore, at least one of the sets B andC must contain elements from distinct congruence
classes modulo m. Let b1, b2 ∈ B with b1 �≡ b2 (mod m), and let c1, c2 ∈ C with
c1 �= c2. We have bi + c1 ∈ B + C for i = 1, 2 and b1 + c1 �≡ b2 + c1 (mod m).
Because A intersects only two congruence classes modulo m, and because the inter-
section with the congruence class a1 (mod m) contains only the integer a1, we must
have bi + c1 = a1 for some i ∈ {1, 2}.

Similarly, b j + c2 ∈ B + C for j = 1, 2 with b1 + c2 �≡ b2 + c2 (mod m), and
so b j + c2 = a1 for some j ∈ {1, 2}. The equation bi + c1 = b j + c2 implies that
A �= B ⊕ C . This completes the proof.

The following examples show that, in Lemma 5, the condition that the set A
contains exactly one element of the congruence class a1 (mod m) is necessary.

Let m ≥ 2, and let R ⊆ [0,m) with |R| ≥ 2. For every set J of integers with
|J | ≥ 2, we have

A = { jm + r : j ∈ J and r ∈ R} = B ⊕ C

where
B = { jm : j ∈ J } and C = R.

Let k, �, and m be integers with k ≥ 2, � ≥ 2, and m ≥ 2, and let u and v be
integers such that u �≡ v (mod m). Consider the set

A = {im + u : i ∈ [0, �)} ∪ { jm + v : j ∈ [0, k�)}.

The sets
B = {u} ∪ {q�m + v : q ∈ [0, k)}

and
C = {im : i ∈ [0, �)}

satisfy |B| = 1 + k� ≥ 2, |C | = � ≥ 2 and

A = B ⊕ C.

3 Decomposition of Additive Systems

Contraction and dilation are two methods to construct new additive systems from
old ones. Decomposition is a third method to produce new additive systems.

An additive systemA = (Ai )i∈I is called decomposable if the set Ai0 is decom-
posable for some i0 ∈ I and indecomposable if Ai is indecomposable for all i ∈ I .



260 M. B. Nathanson

Equivalently, an indecomposable additive system is an additive system that is not a
proper contraction of another additive system.

Theorem 3 Let A = (Ai )i∈I be a decomposable additive system, and let Ai0 be
a decomposable set in A. Choose sets B and C of nonnegative integers such that
0 ∈ B ∩ C, |B| ≥ 2, |C | ≥ 2, and Ai0 = B ⊕ C. Let

I ′ = { j1, j2} ∪ I \ {i0}.

The family of sets A′ = (A′
i )i∈I ′ defined by

A′
i =

⎧
⎪⎨

⎪⎩

Ai if i ∈ I \ {i0}
B if i = j1
C if i = j2

is an additive system.

Proof This follows immediately from the definitions of additive system and inde-
composable set.

We call A′ a decomposition of the additive system A.

Lemma 6 Let a and b be positive integers, and let X be a set of integers. Then

[0, ab) = [0, a) ⊕ X (2)

if and only if
X = a ∗ [0, b).

Proof The division algorithm implies that [0, ab) = [0, a) ⊕ a ∗ [0, b), and so X =
a ∗ [0, b) is a solution of the additive set equation (2).

Conversely, let X be any solution of (2). Let I = {1, 2, 3} and let A1 = [0, a),
A2 = X , and A3 = ab ∗ N0. By the division algorithm, A = (Ai )i∈I is an additive
system. Applying Lemma 3 to A, we obtain an integer g ≥ 2 and sets B1, B2, and
B3 such that

[0, a) = [0, g) ⊕ g ∗ B1

X = g ∗ B2

ab ∗ N0 = g ∗ B3.

It follows that g = a, B1 = {0}, B3 = b ∗ N0, and

N0 = B2 ⊕ B3 = B2 ⊕ b ∗ N0.

This implies that B2 = [0, b) and X = a ∗ [0, b).
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There is also a nice polynomial proof of Lemma 6. Let

f (t) =
∑

i∈[0,ab)
t i

g(t) =
∑

j∈[0,a)

t j

h(t) =
∑

k∈[0,b)
tak

hX (t) =
∑

x∈X
t x .

The set equation [0, ab) = [0, a) ⊕ a ∗ [0, b) implies that

f (t) = g(t)h(t).

If [0, ab) = [0, a) ⊕ X , then

f (t) = g(t)hX (t)

and so
g(t)(h(t) − hX (t)) = 0.

Because g(t) �= 0, it follows that h(t) = hX (t) or, equivalently, a ∗ [0, b) = X .
By Theorem 2, every additive system is a British number system or a proper

contraction of a British number system. However, a British number system can also
be a proper contraction of another British number system. Consider, for example, the
British number systems A2 and A4 generated by the sequences (2)i∈N and (4)i∈N,
respectively:

A2 = ({0, 2i−1})i∈N = (2i−1 ∗ [0, 2))i∈N

= ({0, 1}, {0, 2}, {0, 4}, {0, 8}, . . .)

and

A4 = ({0, 4i−1, 2 · 4i−1, 3 · 4i−1})i∈N = (4i−1 ∗ [0, 4))i∈N

= ({0, 1, 2, 3}, {0, 4, 8, 12}, {0, 16, 32, 48}, {0, 64, 128, 192, 256}, . . .) .

Because

4i−1 ∗ [0, 4) = {0, 22i−2} + {0, 22i−1} = 22i−2 ∗ [0, 2) + 22i−1 ∗ [0, 2)

we see that A4 is a contraction of A2.
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de Bruijn [1] asserted the following necessary and sufficient condition for one
British number system to be a contraction of another British number system.

Theorem 4 Let B = (Bj ) j∈N be the British number system constructed from the
integer sequence (h j ) j∈N, and let A = (Ai )i∈N be the contraction of B constructed
from a partition (Ji )i∈N of N into nonempty finite sets. Then, A is a British number
system if and only if Ji is a finite interval of integers for all i ∈ N.

Proof Let (Ji )i∈N be a partition of N into nonempty finite intervals of integers. After
re-indexing, there is a strictly increasing sequence (ui )i∈N0 of integers with u0 = 0
such that Ji = [ui−1 + 1, ui ] for all i ∈ N.

If B = (Bj ) j∈N is the British number system constructed from the integer
sequence (h j ) j∈N, then Bj = Hj−1 ∗ [0, h j ), where H0 = 1 and Hj = ∏ j

k=1 hk . Let
G0 = 1. For i ∈ N we define

gi = Hui

Hui−1

and

Gi =
i∏

j=1

g j =
i∏

j=1

Hu j

Hu j−1

= Hui .

We have

Ai =
⊕

j∈Ji

B j =
ui⊕

j=ui−1+1

Hj−1 ∗ [0, h j )

= Hui−1 ∗
ui⊕

j=ui−1+1

Hj−1

Hui−1

∗ [0, h j )

= Hui−1 ∗ ([0, hui−1+1) + hui−1+1 ∗ [0, hui−1+2)

+ hui−1+1hui−1+2 ∗ [0, hui−1+3) + · · ·
+ hui−1+1 · · · hui−1 ∗ [0, hui )

)

= Hui−1 ∗
[

0,
Hui

Hui−1

)

= Gi−1 ∗ [0, gi )

and so A = (Ai )i∈N is the British number system constructed from the integer
sequence (gi )i∈N.

Conversely, let A = (Ai )i∈N be a contraction of B constructed from a partition
(Ji )i∈N of N in which some set Ji0 is a not a finite interval of integers. Let u =
min

(
Ji0

)
andw = max

(
Ji0

)
. Because Ji0 is not an interval, there is a smallest integer

v such that
u < v < w
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and [u, v − 1] ⊆ Ji0 , but v /∈ I j0 . Because

[u, v − 1] ∪ {w} ⊆ Ji0 ⊆ [u, v − 1] ∪ [v + 1, w]

and
Ai0 =

∑

j∈Ji0

Hj−1 ∗ [0, h j )

we have

Hu−1 ∗ [0, hu) ∪ Hw−1 ∗ [0, hw) ⊆ Ai0

⊆
∑

j∈[u,v−1]
Hj−1 ∗ [0, h j ) +

∑

j∈[v+1,w]
Hj−1 ∗ [0, h j )

⊆ Hu−1 ∗
[

0,
Hv−1

Hu−1

)

+ Hv ∗
[

0,
Hw

Hv

)

Because hu ≥ 2 and hv ≥ 2, it follows that

Hu−1 ∈ Ai0

and

Hw−1 = Hu−1

(
Hw−1

Hu−1

)

∈ Ai0 .

The largestmultiple of Hu−1 in Hu−1 ∗ [
0, Hv−1/Hu−1) is Hu−1(Hv−1/Hu−1 − 1).

The smallest positivemultiple of Hu−1 in Hv ∗ [0, Hw/Hv) is Hv = Hu−1(Hv/Hu−1).
The inequality

1 ≤ Hv−1

Hu−1
− 1 <

Hv−1

Hu−1
<

Hv

Hu−1
≤ Hw−1

Hu−1

implies that the set Ai0 does not contain the integer Hu−1(Hv−1/Hu−1). In a British
number system, every set consists of consecutive multiples of its smallest positive
element. Because the set Ai0 lacks this property, it follows that A is not a British
number system. This completes the proof.

Theorem 5 There is a one-to-one correspondence between sequences (pi )i∈N of
prime numbers and indecomposable British number systems. Moreover, every addi-
tive system is either indecomposable or a contraction of an indecomposable system.

Proof Let A be a British number system generated by the sequence (gi )i∈N, so that

A = (Gi−1 ∗ [0, gi ))i∈N .

Suppose that gk is composite for some k ∈ N. Then gk = rs, where r ≥ 2 and s ≥ 2
are integers. Construct the sequence (g′

i )i∈N as follows:
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g′
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi if i ≤ k − 1

r if i = k

s if i = k + 1

gi−1 if i ≥ k + 2.

Then,

G ′
i =

i∏

j=1

g′
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gi if i ≤ k − 1

rGk−1 if i = k

Gk if i = k + 1

Gi−1 if i ≥ k + 2

and
A′ = (

G ′
i−1 ∗ [0, g′

i )
)
i∈N

is the British number system generated by the sequence (g′
i )i∈N. We have

Gi−1 ∗ [0, gi ) =
{
G ′

i−1 ∗ [0, g′
i ) if i ≤ k − 1

G ′
i ∗ [0, g′

i+1) if i ≥ k + 1.

The identity

[0, gk) = [0, rs) = [0, r) ⊕ r ∗ [0, s) = [0, g′
k) + G ′

k

Gk−1
∗ [0, g′

k+1)

implies that

Gk−1 ∗ [0, gk) = G ′
k−1 ∗ [0, g′

k) + G ′
k ∗ [0, g′

k+1) =
∑

i∈{k,k+1}
G ′

i−1 ∗ [0, g′
i )

and so the British number system A is a contraction of the British number system
A′.

Conversely, if A is a contraction of a British number system A′ =(
G ′

i−1 ∗ [0, g′
i )

)
i∈N, then there are a positive integer k and a set Ik of positive integers

with |Ik | ≥ 2 such that

Gk−1 ∗ [0, gk) =
∑

i∈Ik
G ′

i−1 ∗ [0, g′
i ).

Therefore,

gk = |Gk−1 ∗ [0, gk)| =
∣
∣
∣
∣
∣
∣

∑

i∈Ik
G ′

i−1 ∗ [0, g′
i )

∣
∣
∣
∣
∣
∣
=

∏

i∈Ik
g′
i .
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Because |Ik | ≥ 2 and |g′
i | ≥ 2 for all i ∈ N, it follows that the integer gk is composite.

Thus, the British number system generated by (gi )i∈N is decomposable if and only
if gi is composite for at least one i ∈ N. Equivalently, the British number system
generated by (gi )i∈N is indecomposable if and only if (gi )i∈N is a sequence of prime
numbers. This completes the proof.

Theorem 5 has also been observed by Munagi [3].

4 Limits of Additive Systems

Let A = (Ai )i∈N0 be an additive system, and let (gi )i∈[1,n] be a finite sequence of
integers with gi ≥ 2 for all i ∈ [1, n]. The dilation of A by the sequence (gi )i∈[1,n]
is the additive system defined inductively by

(gi )i∈[1,n] ∗ A = g1 ∗ (
(gi )i∈[2,n] ∗ A)

.

For n = 1, we have

A(1) = (gi )i∈[1,1] ∗ A = g1 ∗ A
= [0, g1) ∪ (g1 ∗ Ai )i∈N0

=
(
A(1)
i

)

i∈N0

where
A(1)
1 = [0, g1)

and
A(1)
i = g1 ∗ Ai−1 fori ≥ 2.

For n = 2, we have

A(2) = (gi )i∈[1,2] ∗ A = g1 ∗ (g2 ∗ A)

= g1 ∗ ([0, g2) ∪ (g2 ∗ Ai )i∈N0

)

= [0, g1) ∪ (g1 ∗ [0, g2)) ∪ (g1g2 ∗ Ai )i∈N0

=
(
A(2)
i

)

i∈N0

where

A(2)
1 = [0, g1)

A(2)
2 = g1 ∗ [0, g2)
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and
A(2)
i = g1g2 ∗ Ai−2 for i ≥ 3.

For n = 3, we have

g3 ∗ A = [0, g3) ∪ (g3 ∗ Ai )i∈N0

g2 ∗ (g3 ∗ A) = [0, g2) ∪ g2 ∗ [0, g3) ∪ (g2g3 ∗ Ai )i∈N0

and

A(3) = (gi )i∈[1,3] ∗ A = g1 ∗ (g2 ∗ (g3 ∗ A))

= [0, g1) ∪ (g1 ∗ [0, g2)) ∪ (g1g2 ∗ [0, g3)) ∪ (g1g2g3 ∗ Ai )i∈N0

=
(
A(3)
i

)

i∈N0

where

A(3)
1 = [0, g1)

A(3)
2 = g1 ∗ [0, g2)

A(3)
3 = g1g2 ∗ [0, g3)

A(3)
i = g1g2g3Ai−3 for i ≥ 4.

Lemma 7 Let (gi )ni=1 be a sequence of integers such that gi ≥ 2 for all i . For every
additive system A = (Ai )i∈N,

A(n) = (gi )
n
i=1 ∗ A =

(
A(n)
i

)

i∈N

where
A(n)
i = g1g2 · · · gi−1 ∗ [0, gi ) for i = 1, . . . , n

and
A(n)
i = g1g2 · · · gn ∗ Ai−n−1 for i ≥ n + 1.

Proof Induction on n.

Let (A(n))n∈N be a sequence of additive systems. The additive system A is the
limit of the sequence (A(n))n∈N if it satisfies the following condition: The set S
belongs to A if and only if S belongs to A(n) for all sufficiently large n. We write

lim
n→∞A(n) = A

ifA is the limit of the sequence (A(n))n∈N. The following result indicates the remark-
able stability of a British number system.
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Theorem 6 Let (gi )i∈N be a sequence of integers such that gi ≥ 2 for all i ∈ N, and
let G be the British number system generated by (gi )i∈N. LetA be an additive system
and let A(n) = (gi )i∈[1,n] ∗ A. Then,

lim
n→∞A(n) = G.

Proof If S is a set inG, then S = g1g2 · · · gi−1 ∗ [0, gi ) for some i ∈ N. By Lemma 7,
S is a set in A(n) for all n ≥ i , and so S ∈ limn→∞ A(n).

Conversely, let S be a set that is in A(n) for all sufficiently large n. If S is finite,
then max(S) < g1g2 · · · gk for some integer k. If n ≥ k and i ≥ n + 1, then

max
(
A(n)
i

)
≥ g1 . . . gn ≥ g1 . . . gk

and so S �= A(n)
i . Therefore, S = A(n)

i for some i ≤ n, and so S = g1g2 · · · gi−1 ∗
[0, gi ) for some i ≤ n.

If T is an infinite set in A(n), then T = g1g2 · · · gn ∗ Ai−n−1 for some i ≥ n + 1,
and so min(T \ {0}) ≥ g1g2 · · · gn ≥ 2n . If T ∈ A(n) for all n ≥ N , then min(T \
{0}) ≥ 2n for all n ≥ N , which is absurd. It follows that the set S is in A(n) for all
sufficiently large n if and only if S is finite and S is a set in the British number system
generated by (gi )i∈N. This completes the proof.

Corollary 8 Let (gi )i∈N be a sequence of integers such that gi ≥ 2 for all i ∈ N,
and let G be the British number system generated by (gi )i∈N. If Gn = (gi )i∈[1,n] ∗ N0,
then

lim
n→∞Gn = G.
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Extending Babbage’s (Non-)Primality Tests

Jonathan Sondow

Abstract We recall Charles Babbage’s 1819 criterion for primality, based on simul-
taneous congruences for binomial coefficients, and extend it to a least-prime-factor
test. We also prove a partial converse of his non-primality test, based on a single
congruence. Along the way we encounter Bachet, Bernoulli, Bézout, Euler, Fer-
mat, Kummer, Lagrange, Lucas, Vandermonde, Waring, Wilson, Wolstenholme, and
several contemporary mathematicians.

Keywords Charles Babbage · Primality test · Binomial coefficient · Congruence
Wolstenholme prime · Lucas’s theorem

1 Introduction

Charles Babbage was an English mathematician, philosopher, inventor, mechan-
ical engineer, and “irascible genius” who pioneered computing machines
[2, 4, 10, 21–23]. Although he held the Lucasian Chair ofMathematics at Cambridge
University from 1828 to 1839, during that period he never resided in Cambridge or
delivered a lecture [5, 7, p. 7].

In 1819, he published his only work on number theory, a short paper [1] that
begins:

The singular theorem of Wilson respecting Prime Numbers, which was first published by
Waring in his Meditationes Analyticae [31, p. 218], and to which neither himself nor its
author could supply the demonstration, excited the attention of the most celebrated analysts
of the continent, and to the labors of Lagrange [14] and Euler we are indebted for several
modes of proof . . . .

Babbage formulatedWilson’s theorem as a criterion for primality: an integer p > 1
is a prime if and only if (p − 1)! ≡ −1 (mod p). (For a modern proof, see Moll
[20, p. 66].) He then introduced several such criteria, involving congruences for
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binomial coefficients (see Granville [11, Sections1 and 4]). However, some of his
claims were unproven or even wrong (as Dubbey points out in [7, pp. 139–141]).
One of his valid results is a necessary and sufficient condition for primality, based
on a number of simultaneous congruences. Henceforth, let n denote an integer.

Theorem 1 (Babbage’s Primality Test) An integer p > 1 is a prime if and only if(
p + n

n

)
≡ 1 (mod p) (1)

for all n satisfying 0 ≤ n ≤ p − 1.

This is of only theoretical interest, the test being slower than trial division.
The “only if” part is an immediate consequence of the beautiful theoremofLucas

[15] (see [8, 11, 17, 19] and [20, p. 70]), which asserts that if p is a prime and the non-
negative integers a = α0 + α1 p + · · · + αr pr and b = β0 + β1 p + · · · + βr pr are
written in base p (so that 0 ≤ αi , βi ≤ p − 1 for all i), then

(
a

b

)
≡

r∏
i=0

(
αi

βi

)
(mod p). (2)

(Here the convention is that
(
α

β

) = 0 if α < β.) The congruence (1) follows if 0 ≤
n ≤ p − 1, for then all the binomial coefficients formed on the right-hand side of
(2) are of the form

(
α

α

) = 1, except the last one, which is
(1
0

) = 1.
However, the theoremwas not available toBabbage becausewhen itwas published

in 1878 he had been dead for seven years.
Lucas’s theorem implies more generally that for p a prime and m a power of p,

the congruences

(
m + n

n

)
≡ 1 (mod p) (0 ≤ n ≤ m − 1) (3)

hold. A converse was proven in 2013:Meštrović’s theorem [19] states that if m > 1
and p > 1 are integers such that (3) holds, then p is a prime and m is a power of p.

To begin the proof, Meštrović noted that for n = 1, the hypothesis gives

(
m + 1

1

)
= m + 1 ≡ 1 (mod p) =⇒ p | m.

The rest of the proof involves combinatorial congruences modulo prime powers.
AsMeštrović pointed out, “the ‘if’ part of Theorem1 is an immediate consequence

of [his theorem] (supposing a priori [that m = p]). Accordingly, [his theorem] may
be considered as a generalization of Babbage’s criterion for primality.”

Here we offer another generalization of Babbage’s primality test.

Theorem 2 (Least-Prime-Factor Test) The least prime factor of an integer m > 1
is the smallest natural number � satisfying



Extending Babbage’s (Non-)Primality Tests 271

(
m + �

�

)
�≡ 1 (mod m). (4)

For that value of �, the least non-negative residue of
(m+�

�

)
modulo m is m

�
+ 1.

The proof is given in Sect. 2.
Babbage’s primality test is an easy corollary of the least-prime-factor test. Indeed,

Theorem 2 implies a sharp version of Theorem 1 noticed by Granville [11] in 1995.

Corollary 1 (Sharp Babbage Primality Test) Theorem 1 remains true if the range
for n is shortened to 0 ≤ n ≤ √

p.

Proof An integer m > 1 is a prime if and only if its least prime factor � exceeds
√

m.

The corollary follows by setting m = p in Theorem 2. �

To see thatCorollary 1 is sharp in that the range for n cannot be further shortened
to 0 ≤ n ≤ √

p − 1, let q be any prime and set p = q2. Then p is not a prime, but
the least-prime-factor test with m = p and � = q implies (1) when 0 ≤ n ≤ q − 1.

Problem 1 Since the “if” part of Babbage’s primality test is a consequence both
of Meštrović’s theorem and of the least-prime-factor test, one may ask, Is there a
common generalization of Meštrović’s theorem and Theorem 2? (Note, though, that
the modulus in the former is p, while that in the latter is m.)

Actually, the incongruence (4) holds more generally if the least prime factor � | m
is replaced with any prime factor p | m. The following extension of the least-prime-
factor test is proven in Sect. 2.

Theorem 3 (i) Given a positive integer m and a prime factor p | m, we have

(
m + p

p

)
�≡ 1 (mod m). (5)

(i i) If in addition pr | m but pr+1 � m, where r ≥ 1, then

(
m + p

p

)
≡ m

p
+ 1 �≡ 1 (mod pr ). (6)

Part (i) is clearly equivalent to the statement that if d > 1 divides m and
(m+d

d

) ≡ 1
(mod m), then d is composite. As an example, for m = 260 and d = 10, we have

(
m + d

d

)
=

(
270

10

)
= 479322759878148681 ≡ 1 (mod 260).

The sequence of integers m > 1, for which some integer d (necessarily composite)
satisfies
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d > 1, d | m,

(
m + d

d

)
≡ 1 (mod m),

begins [28, Seq. A290040]

m = 260, 1056, 1060, 3460, 3905, 4428, 5000, 5060, 5512, 5860, 6372, 6596, . . .

and the sequence of smallest such divisors d is, respectively, [28, Seq. A290041]

d = 10, 264, 10, 10, 55, 18, 20, 10, 52, 10, 18, 34, . . . . (7)

Problem 2 Does Theorem 3 extend to prime power factors, i.e., does (5) also hold
when p is replaced with pk , where pk | m and k > 1? In particular, in the sequence
(7), is any term d a prime power?

Babbage also claimed a necessary and sufficient condition for primality based on a
single congruence. But he proved only necessity, so we call it a test for non-primality.

Theorem 4 (Babbage’s Non-Primality Test) An integer m ≥ 3 is composite if

(
2m − 1

m − 1

)
�≡ 1 (mod m2). (8)

Our version of his proof is given in Sect. 3.
Not only did Babbage not prove the claimed converse, but in fact it is false. Indeed,

the numbers m1 = p2
1 = 283686649 and m2 = p2

2 = 4514260853041 are composite
but do not satisfy (8), where p1 = 16843 and p2 = 2124679 are primes.

Here p1 (indicated by Selfridge and Pollack in 1964) and p2 (discovered by
Crandall, Ernvall, and Metsänkylä in 1993) are Wolstenholme primes, so called by
Mcintosh [16] because, while Wolstenholme’s theorem [32] (see [11, 18, 29] and
[20, p. 73]) of 1862 guarantees that every prime p ≥ 5 satisfies

(
2p − 1

p − 1

)
≡ 1 (mod p3), (9)

in fact p1 and p2 satisfy the congruence in (9) modulo p4, not just p3 (see Guy [12,
p. 131] and Ribenboim [25, p. 23]).

Note that (9) strengthens Babbage’s non-primality test, as Theorem 4 is equivalent
to the statement that the congruence in (9) holds modulo p2 for any prime p ≥ 3.

In their solutions to a problem by Segal in the Monthly, Brinkmann [26] and John-
son [27] made Babbage’s and Wolstenholme’s theorems more precise by showing
that every prime p ≥ 5 satisfies the congruences

(
2p − 1

p − 1

)
≡ 1 − 2

3
p3Bp−3 ≡

(
2p2 − 1

p2 − 1

)
(mod p4),
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where Bk denotes the kth Bernoulli number, a rational number. (See also Gardiner
[9] and Mcintosh [16].) Thus, a prime p ≥ 5 is a Wolstenholme prime if and only if
Bp−3 ≡ 0 (mod p). (The congruence means that p divides the numerator of Bp−3.)
In that case, the square of that prime, say m = p2, is composite but must satisfy

(
2m − 1

m − 1

)
≡ 1 (mod m2),

thereby providing a counterexample to the converse of Babbage’s non-primality test.
Johnson [27] commented that “interest in [Wolstenholme primes] arises from the

fact that in 1857, Kummer proved that the first case of [Fermat’s Last Theorem] is
true for all prime exponents p such that p � Bp−3.”

We have seen that the converse of Babbage’s non-primality test is false. The
converse ofWolstenholme’s theorem is the statement that if p ≥ 5 is composite, then
(9) does not hold. It is not known whether this is generally true. A proof that it is
true for even positive integers was outlined by Trevisan and Weber [29] in 2001. In
Sect. 3, we fill in some details omitted from their argument and extend it to prove the
following stronger result.

Theorem 5 (Converse of Babbage’s Non-Primality Test for Even Numbers) If a
positive integer m is even, then

(
2m − 1

m − 1

)
�≡ 1 (mod m2). (10)

2 Proofs of the Least-Prime-Factor Test and Its Extension

We prove Theorems 2 and 3. The arguments use only mathematics available in
Babbage’s time.

Proof (Theorem 2) As � is the smallest prime factor of m, if 0 < k < � then k! and m
are coprime. In that case,Bézout’s identity (proven in 1624 by Bachet in a bookwith
the charming title Pleasant and Delectable Problems [3, p. 18, Proposition XVIII]—
see [6, Section4.3]) gives integers a and b with ak! + bm = 1. Multiplying Bézout’s
equation by the number

(m
k

) = m(m − 1) · · · (m − k + 1)/k! yields

am(m − 1) · · · (m − k + 1) + bm

(
m

k

)
=

(
m

k

)
,

so
(m

k

) ≡ 0 (mod m) if 1 ≤ k ≤ � − 1. Now, for n = 0, 1, . . . , � − 1,
Vandermonde’s convolution [30] (see [20, p. 164]) of 1772 gives

(
m + n

n

)
=

n∑
k=0

(
m

k

)(
n

n − k

)
≡

(
m

0

)(
n

n

)
(mod m).
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(To see the equality, equate the coefficients of xn in the expansions of (1 + x)m+n

and (1 + x)m(1 + x)n). Thus, we arrive at the congruences(
m + n

n

)
≡ 1 (mod m) (0 ≤ n ≤ � − 1). (11)

On the other hand, from the identity(
a

b

)
= a

b

(
a − 1

b − 1

)
(12)

(to prove it, use factorials), the congruence (11) for n = � − 1, the integrality of
m+�

�
= m

�
+ 1, and the inequality � > 1 (as � is a prime), we deduce that

(
m + �

�

)
= m + �

�

(
m + � − 1

� − 1

)
≡ m

�
+ 1 �≡ 1 (mod m).

Together with (11), this implies the least-prime-factor test. �

Proof (Theorem 3) It suffices to prove (i i). Set

g
def= gcd((p − 1)!, m) and m p

def= m

g
.

Note that
p prime =⇒ p � g =⇒ pr | m p, (13)

since pr | m. Bézout’s identity gives integers a and b with a(p − 1)! + bm = g.
When 0 < k < p, multiplying Bézout’s equation by

(m
k

)
yields

am(m − 1) · · · (m − k + 1)
(p − 1)!

k! + bm

(
m

k

)
= g

(
m

k

)

with (p − 1)!/k! an integer, so g
(m

k

) ≡ 0 (mod m). Dividing by g gives

(
m

k

)
≡ 0 (mod m p) (1 ≤ k ≤ p − 1).

Combining this with (12) and Vandermonde’s convolution, we get

(
m + p

p

)
= m + p

p

(
m + p − 1

p − 1

)
= m + p

p

p−1∑
k=0

(
m

k

)(
p − 1

p − 1 − k

)

≡ m

p
+ 1 (mod m p).

(14)

As pr+1 � m, we have pr � m
p . Now, (13) and (14) imply (6), as required. �
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3 Proofs of Babbage’s Non-primality Test and Its Converse
for Even Numbers

The following proof is close to the one Babbage gave.

Proof (Theorem 4) Suppose on the contrary that m is prime. If we have 1 ≤ n
≤ m − 1, then m divides the numerator of

(m
n

) = m!/n!(m − n)! but not the denom-
inator, so

(m
n

) ≡ 0 (mod m). Thus, by (12) and a famous case of Vandermonde’s
convolution,

2

(
2m − 1

m − 1

)
=

(
2m

m

)
=

m∑
n=0

(
m

n

)2

≡ 12 + 12 ≡ 2 (mod m2).

But as m ≥ 3 is odd, (3) contradicts (8). Therefore, m is composite. �

Before giving the proof of Theorem 5, we establish two lemmas. For any positive
integer k, let 2v(k) denote the highest power of 2 that divides k.

Lemma 1 If m ≥ n ≥ 1 are integers satisfying n ≤ 2v(m), then the formula
v(

(m
n

)
) = v(m) − v(n) holds.

Proof Let m = 2r m ′ with m ′ odd. Note that v(2r m ′ − k) = v(k) if 0 < k < 2r .
(Proof. Write k = 2t k ′,where 0 ≤ t = v(k) ≤ r − 1 and k ′ is odd. Then 2r−t m ′ − k ′
is also odd, so v(2r m ′ − k) = v(2t (2r−t m ′ − k ′)) = t = v(k).) The logarithmic for-
mula v(ab) = v(a) + v(b) then implies that when 1 ≤ n ≤ 2r , the exponent of the
highest power of 2 that divides the product

n!
(

m

n

)
= 2r m ′(2r m ′ − 1)(2r m ′ − 2) · · · (2r m ′ − (n − 1))

is v(n!) + v(
(m

n

)
) = r + v(1 · 2 · · · (n − 1)), so v(

(m
n

)
) = r − v(n). As r = v(m),

this proves the desired formula. �

Lemma 1 is sharp in that the hypothesis n ≤ 2v(m) cannot be replaced with the
weaker hypothesis v(n) ≤ v(m). For example, v(

(10
6

)
) = v(210) = 1, but v(10) −

v(6) = 0.

Lemma 2 A binomial coefficient
(2m−1

m−1

)
is odd if and only if m = 2r for some r ≥ 0.

Proof Kummer’s theorem [13] (see [20, p. 78] or [24]) for the prime 2 states
that v(

(a+b
a

)
) equals the number of carries when adding a and b in base 2 arith-

metic. Hence, v(
(m+m

m

)
) is the number of ones in the binary expansion of m, and

so v(
(2m

m

)
) = 1 if and only if m = 2r for some r ≥ 0. As

(2m
m

) = 2
(2m−1

m−1

)
by (12),

we are done. �
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We can now prove the converse of Babbage’s non-primality test for even numbers.

Proof (Theorem 5) For m ≥ 2 not a power of 2, Lemma 2 implies that
(2m−1

m−1

)
is

even, so
(2m−1

m−1

)
is congruent modulo 4 to either 0 or 2. For m ≥ 2 a power of 2, say

m = 2r , the equalities in (3) and the symmetry
(m

n

) = ( m
m−n

)
yield

(
2m − 1

m − 1

)
= 1 + 1

2

(
2r

2r−1

)2

+
2r−1−1∑

k=1

(
2r

k

)2

,

and Lemma 1 implies that 1
2

( 2r

2r−1

)2 ≡ 2 (mod 4) and that
(2r

k

)2 ≡ 0 (mod 4) when
0 < k < 2r−1; thus, by addition

(2m−1
m−1

) ≡ 3(mod 4). Hence for all m ≥ 2, we have(2m−1
m−1

) �≡ 1(mod 4). Now as 4 divides m2 when m is even, (10) holds a fortiori. This
completes the proof. �
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Conjectures on Representations
Involving Primes

Zhi-Wei Sun

Abstract We pose 100 new conjectures on representations involving primes or
related things, which might interest number theorists and stimulate further re-
search. Below are five typical examples: (i) For any positive integer n, there exists
k ∈ {0, . . . , n} such that n + k and n + k2 are both prime. (ii) Each integer n > 1
can be written as x + y with x, y ∈ {1, 2, 3, . . .} such that x + ny and x2 + ny2 are
both prime. (iii) For any rational number r > 0, there are distinct primes q1, . . . , qk
with r = ∑k

j=1 1/(q j − 1). (iv) Every n = 4, 5, . . . can be written as p + q, where
p is a prime with p − 1 and p + 1 both practical, and q is either prime or practical.
(v) Any positive rational number can be written as m/n, where m and n are positive
integers with pm + pn a square (or π(m)π(n) a positive square), pk is the kth prime
and π(x) is the prime-counting function.

Keywords Conjectures · Primes · Practical numbers · Representations
2010 Mathematics Subject Classification. Primary 11A41, 11P32 · Secondary
11B13, 11D68

1 Introduction

Primes have been investigated for over 2000 years. Nevertheless, there are many
problems on primes that remain open. The famous Goldbach’s conjecture (cf. [2,
14]) states that any even integer n > 2 can be represented as a sum of two primes.
Lemoine’s conjecture (see [10]) asserts that any odd integer n > 6 can be written
as p + 2q with p and q both prime; this is a refinement of the weak Goldbach’s
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conjecture (involving sums of three primes) proved by Vinogradov [24] for large odd
numbers and confirmed by Helfgott [9] completely. Legendre’s conjecture states that
for any positive integer n, there is a prime between n2 and (n + 1)2. Another well-
known conjecture of A. de Polignac asserts that for any positive even number d, there
are infinitely many positive integers n with pn+1 − pn = d, where pk denotes the
kth prime. (This conjecture in the case d = 2 is the famous twin prime conjecture;
recently Zhang [26] made an important breakthrough along this line.) Polignac’s
conjecture follows from the following well-known hypothesis due to A. Schinzel.

Schinzel’s Hypothesis. If f1(x), . . . , fk(x) are irreducible polynomials with integer
coefficients and positive leading coefficients such that there is no prime dividing the
product f1(q) f2(q) . . . fk(q) for all q ∈ Z, then there are infinitely many positive
integers n such that f1(n), f2(n), . . . , fk(n) are all primes.

A positive integer n is said to be practical if every m = 1, . . . , n can be written
as the sum of some distinct (positive) divisors of n. In 1954, Stewart [15] showed
that if q1 < · · · < qr are distinct primes and a1, . . . , ar are positive integers, then
m = qa1

1 · · · qar
r is practical if and only if q1 = 2 and

qs+1 − 1 � σ(qa1
1 · · · qas

s ) for all 0 < s < r,

where σ(n) stands for the sum of all divisors of n. The behavior of practical numbers
is quite similar to that of primes. For example, Melfi [12] proved the following
Goldbach-type conjecture of Margenstern [11]: Each positive even integer is a sum
of two practical numbers, and there are infinitely many practical numbers m with
m − 2 and m + 2 also practical. Recently, Weingartner [25] proved that the number
of practical numbers not exceeding x � 2 is asymptotically equivalent to cx/ log x ,
where c is a positive constant close to 1; this analog of the Prime Number Theorem
for practical numbers was first conjectured by Margenstern [11] in 1991.

In the published papers [19, 20, 22, 23], the author posed many conjectures
on primes. For example, [22] contains 60 problems on combinatorial properties of
primes many of which depend on some exact values of the prime-counting function
π(x) (π(x) with x � 0 denotes the number of primes not exceeding x).

In this paper, we present 100 new conjectures on representations involving primes
or related things. In particular, we find some surprising refinements of Goldbach’s
conjecture, Lemoine’s conjecture, Legendre’s conjecture, and the twin prime con-
jecture. The next section contains 25 conjectures, the first of which is a general
hypothesis (similar to Schinzel’s Hypothesis) on representations of integers involv-
ing primes, and the other 24 conjectures are closely related to this general hypothesis.
In Sect. 3, we include 45 conjectures on various other representation problems for
integers. In Sect. 4, we pose 30 conjectures on representations of positive rational
numbers and related things. For numbers of representations related to some conjec-
tures in Sects. 2–4, the reader may consult [16] for certain sequences in the OEIS.

We hope that the 100 conjectures collected here might interest some number
theorists and stimulate further research.
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Throughout this paper, we setN = {0, 1, 2, . . .} andZ
+ = {1, 2, 3, . . .}. For a real

number x , the fractional part of {x} is given by x − �x�. For a ∈ Z and n ∈ Z
+, by

{a}n we mean the least nonnegative residue of a modulo n, i.e., {a}n = n{a/n}. For
a ∈ Z and n ∈ Z

+ with 2 � n, ( an ) denotes the Jacobi symbol. As usual, ϕ stands for
Euler’s totient function.

2 A General Hypothesis and Related Conjectures

Note that Schinzel’s Hypothesis does not imply Goldbach’s conjecture. Here, we
pose a general hypothesis on representations of integers.

Conjecture 2.1 (General Hypothesis, 2012-12-28) Let

f1(x, y), . . . , fm(x, y)

be non-constant polynomials with integer coefficients. Suppose that for all large
n ∈ Z

+, those f1(x, n − x), . . . , fm(x, n − x) are irreducible, and there is no prime
dividing all the products

∏m
k=1 fk(x, n − x) with x ∈ Z. If n ∈ Z

+ is large enough,
then we can write n = x + y (x, y ∈ Z

+) such that | f1(x, y)|, . . . , | fm(x, y)| are all
prime.

Remark 2.1 In view of this general hypothesis, almost all of the other conjectures
in this section are essentially reasonable.

Conjecture 2.2 (Symmetric Conjecture, 2015-08-27) For any integer n > 6, there
is a prime p < n/n′ such that n − (pn′ − 1) and n + (pn′ − 1) are both prime,
where n′ = 2 − {n}2 is 1 or 2 according as n is odd or even.

Remark 2.2 Conjecture 2.2 is stronger than Goldbach’s conjecture and Lemoine’s
conjecture.We have verified Conjecture 2.2 for all n = 7, . . . , 108; see [16, A261627
and A261628] for related data. Conjecture 2.1 implies that Conjecture 2.2 holds for
all sufficiently large integers n. In fact, if we apply Conjecture 2.1 with f1(x, y) = x ,
f2(x, y) = 2y + 1 and f3(x, y) = 4x + 2y − 1, then for sufficiently large n ∈ Z

+
there are primes p and q with n = p + (q − 1)/2 (i.e., 2n − (2p − 1) = q) such that
2n + 2p − 1 = 4p + q − 2 is prime; if we apply Conjecture 2.1 with f1(x, y) =
2x + 1, f2(x, y) = 2y − 1 and f3(x, y) = 4x + 2y − 1, then for sufficiently large
n ∈ Z

+ there are primes p and q with n = (p − 1)/2 + (q + 1)/2 (i.e., 2n − 1 −
(p − 1) = q) such that 2n − 1 + (p − 1) = 2p + q − 2 is prime.

Conjecture 2.3 For each n = 6, 7, . . . there is a prime p < n such that both 6n − p
and 6n + p are prime.

Remark 2.3 We also have some conjectures involving practical numbers similar to
Conjectures 2.2 and 2.3; see [16, A261641] and Conjectures 3.43 and 3.44. Con-
jecture 2.1 with f1(x, y) = x , f2(x, y) = 5x + 6y and f3(x, y) = 7x + 6y implies
that Conjecture 2.3 holds for sufficiently large integers n.
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Conjecture 2.4 (2012-12-22)Any integer n � 12 can be written as p + q (q ∈ Z
+)

with p, p + 6, 6q − 1, and 6q + 1 all prime.

Remark 2.4 Conjecture 2.1 implies that Conjecture 2.4 holds for all sufficiently large
integers n. We have verified Conjecture 2.4 for n up to 109; see [16, A199920] for
numbers of such representations. Conjecture 2.4 implies that there are infinitelymany
twin primes and also infinitely many sexy primes, because for any m = 2, 3, . . . the
interval [m! + 2,m! + m] of length m − 2 contains no prime.

Conjecture 2.5 (2013-10-09) Any integer n > 1 can be written as k + m (k,m ∈
Z

+) with 6k − 1 a Sophie Germain prime and {6m − 1, 6m + 1} a twin prime pair.
Remark 2.5 Recall that a SophieGermain prime is a prime pwith 2p + 1 also prime.
Conjecture 2.1 implies that Conjecture 2.5 holds for all sufficiently large integers
n. We have verified Conjecture 2.5 for all n = 2, . . . , 108; see [16, A227923] for
numbers of such representations. Conjecture 2.5 implies that there are infinitely
many twin primes and also infinitely many Sophie Germain primes. For example, if
all twin primes do not exceed an integer N > 2 and (N + 1)!/6 = k + m (k,m ∈
Z

+) with 6k − 1 a Sophie Germain prime and {6m − 1, 6m + 1} a twin prime pair,
then 6k − 1 = (N + 1)! − (6m + 1) with 2 � 6m + 1 � N which contradicts that
6k − 1 is prime.

Recall that for two subsets X and Y of Z, the sumset X + Y is defined as {x + y :
x ∈ X and y ∈ Y }.
Conjecture 2.6 (2013-01-03) Let

A = {x ∈ Z
+ : 6x − 1 and 6x + 1 are both prime},

B = {x ∈ Z
+ : 6x + 1 and 6x + 5 are both prime},

C = {x ∈ Z
+ : 2x − 3 and 2x + 3 are both prime}.

Then

A + B = {2, 3, . . .}, B + C = {5, 6, . . .}, A + C = {5, 6, . . .} \ {161}.

Also, if we set 2X := X + X for X ⊆ Z, then

2A ⊇ {702, 703, . . .}, 2B ⊇ {492, 493, . . .}, 2C ⊇ {4006, 4007, . . .}.

Remark 2.6 Conjecture 2.1 implies that each of the sumsets A + B, B + C, A +
C, 2A, 2B, 2C in Conjecture 2.6 contains all sufficiently large integers.

Conjecture 2.7 (2013-10-12)

(i) For any integer n > 3, we can write 2n as p + q with p, q, 3p − 10, 3q + 10
all prime.
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(ii) For any integer n > 4 not equal to 76, we can write 2n as p + q with p, 3p −
10, q, 3q − 10 all prime.

Remark 2.7 Note that if 2n = p + q, then 6n = (3p − 10) + (3q + 10). We have
verifiedConjecture 2.7 for n up to 108. See [16,A230230] for related data. Conjecture
2.1 implies that Conjecture 2.7 holds for all sufficiently large integers n.

Conjecture 2.8 (2012-11-07)For any integer n > 8, we canwrite 2n − 1 as p + 2q
with p, q, and p2 + 60q2 all prime.

Remark 2.8 This is stronger thanLemoine’s conjecture.Wehave verifiedConjecture
2.8 for n up to 108. See [16, A218825] for related data.

Conjecture 2.9 (2013-10-16) Any integer n > 3 can be written as p + q (q ∈ Z
+)

with p, 2p2 − 1, and 2q2 − 1 all prime.

Remark 2.9 See [16, A230351] for related data. Note that each of 7, 12, 68, 330 has
a unique required representation:

7 = 3 + 4, 2 · 32 − 1 = 17, 2 · 42 − 1 = 31;
12 = 2 + 10, 2 · 22 − 1 = 7, 2 · 102 − 1 = 199;

68 = 43 + 25, 2 · 432 − 1 = 3697, 2 · 252 − 1 = 1249;
330 = 7 + 323, 2 · 72 − 1 = 97, 2 · 3232 − 1 = 208657.

In 2001, A. Murthy (cf. [13]) conjectured that for any integer n > 1, there is an
integer 0 < k < n such that kn + 1 is prime. In 2005, he [13] conjectured that any
integer n > 3 can be written as x + y (x, y ∈ Z

+) with xy − 1 prime. In the 1990s,
Ming-Zhi Zhang (cf. [6, p. 161]) asked whether any odd integer n > 1 can be written
as a + b with a, b ∈ Z

+ and a2 + b2 prime.

Conjecture 2.10 (2012-12-20)

(i) For any integer n > 3, there is an integer k ∈ {1, . . . , n − 1} such that kn + 1
and k(n − k) − 1 are both prime.

(ii) For anyodd integer n > 1, there is an integer k ∈ {1, . . . , n − 1} such that kn + 1
and k2 + (n − k)2 are both prime.

Remark 2.10 This combines Murthy’s conjectures and Zhang’s conjecture. We also
conjecture that any integer n > 3 can be written as x + y with x, y ∈ Z

+ such that
3x ± 1 and xy − 1 are all prime (cf. [16, A220431]).

Conjecture 2.11 (2013-11-12)

(i) Any integer n > 2 can be written as k + m (k,m ∈ Z
+) with k2m − 1 prime.

Also, each integer n > 4 can be written as k + m (k,m ∈ Z
+) with k2m + 1

prime.
(ii) Any integer n > 1 can be written as k + m (k,m ∈ Z

+) with (km)2 + km +
1 prime. Also, each integer n > 2 can be written as k + m (k,m ∈ Z

+) with
(km)2 + km − 1 (or 2k2m2 − 1) prime.
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Remark 2.11 See [16, A231633] for related data.

Conjecture 2.12 (2013-10-13)

(i) For any integer n > 1, there is a prime p � n such that (p − 1)n + 1 is prime.
Moreover, for any integer n > 4, there is a prime p < n such that 3p + 8 and
(p − 1)n + 1 are both prime.

(ii) Any integer n > 5 can be written as p + q (q ∈ Z
+) with p, 3p − 10, and

(p − 1)q − 1 all prime.

Remark 2.12 See [16, A230243 and A230241] for related data.

Conjecture 2.13 (2012-12-16) For any integer n > 1, we can write 2n as p + q,
where p is a Sophie Germain prime, q is a positive integer, and (p − 1)2 + q2 is
prime.

Remark 2.13 This is stronger than Zhang’s conjecture. Conjecture 2.1 implies that
any sufficiently large n can be written as x + y (x, y ∈ Z

+) with p = 2x + 1, 2p +
1 = 4x + 3 and

(p − 1)2 + (2n − p)2 = (2x)2 + (2y − 1)2

all prime. See [16, A220554] for related data. For example, 32 = 11 + 21 with 11 a
Sophie Germain prime and (11 − 1)2 + 212 = 541 a prime.

Conjecture 2.14 (i) (2011-11-04) Any odd integer n > 1 can be written as x + y
with x, y ∈ Z

+ such that x4 + y4 is prime.
(ii) (2012-12-01) Any integer n > 10 can be written as p + q (q ∈ Z

+) with p,
p + 6, and p2 + 3pq + q2 = n2 + pq all prime.

(iii) (2013-11-21) Let n > 1 be an odd integer. We can write n = k + m with k,m ∈
Z

+ such that both k2 + m2 and k3 + m2 are prime.

Remark 2.14 See [16, A218656, A218654, A218754 andA232269] for related data.

Conjecture 2.15 (Olivier Gerard and Zhi-Wei Sun, 2013-10-13). For any integer
n > 1, we can write 2n as p + q with p, q, and (p − 1)(q + 1) − 1 all prime.

Remark 2.15 This is stronger than Goldbach’s conjecture. Note also that (p − 1) +
(q + 1) = p + q. We have verified Conjecture 2.15 for all n = 2, . . . , 108. See [16,
A227909] for related data.

Conjecture 2.16 (2012-11-30)Any integer n > 7 can be written as p + q (q ∈ Z
+)

with p and 2pq + 1 both prime. In general, for each m ∈ N, any sufficiently large
integer n can be written as x + y (x, y ∈ Z

+) with x − m, x + m, and 2xy + 1 all
prime.

Remark 2.16 We have verified the first assertion in Conjecture 2.16 for all n =
8, 9, . . . , 109. See [16, A219864] for related data. Concerning the general statement
in Conjecture 2.16, for m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, it suffices to require that n is
greater than
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623, 28, 151, 357, 199, 307, 357, 278, 697, 263

respectively.

Conjecture 2.17 (2013-10-14)Any integer n > 3 can be written as p + q (q ∈ Z
+)

with p and (p + 1)q/2 + 1 both prime.

Remark 2.17 We have verified this conjecture for all n = 4, . . . , 108. See [16,
A230254] for related data. For example, 30 has a unique representation 2 + 28 with
(2 + 1)28/2 + 1 = 43 prime.

Bertrand’s Postulate proved by Chebyshev in 1852 states that for any positive
integer n, the interval [n, 2n] contains at least a prime. Goldbach’s conjecture essen-
tially asserts that for any integer n > 1, there is an integer k ∈ {0, . . . , n} such that
n − k and n + k are both prime. The following conjecture is of a similar flavor.

Conjecture 2.18 (2012-12-18) For each positive integer n, there is an integer k ∈
{0, . . . , n} such that n + k and n + k2 are both prime.

Remark 2.18 We have verified this for n up to 108. See [16, A185636 and A204065]
for related data. The author would like to offer 100 US dollars as the prize for the
first solution of Conjecture 2.18.

Conjecture 2.19 (2013-04-15) For any positive integer n, there is a positive integer
k � 4

√
n + 1 such that n2 + k2 is prime.

Remark 2.19 Note that the least k ∈ Z
+ with 632 + k2 prime is 32 = 4

√
63 + 1.

Conjecture 2.20 (2013-10-15)

(i) For any integer n > 5, there is a prime p < n with p + 6 and n + (n − p)2 both
prime.

(ii) For any integer n > 3, there is a prime p < n with 3p − 4 and n2 + (n − p)2

both prime.

Remark 2.20 See [16, A227898 and A227899] for related data.

Conjecture 2.21 (2013-11-20)

(i) Any integer n > 1 can be written as x + y with x, y ∈ Z
+ such that x + ny and

x2 + ny2 are both prime.
(ii) Any integer n > 2 can be written as x + y with x, y ∈ Z

+ such that nx + y
and nx − y are both prime. Also, any integer n > 2 can be written as x + y
with x, y ∈ Z

+ such that x2 + (n − 2)y2 is prime.
(iii) Any integer n > 2 can be written as p + q with q ∈ Z

+ such that p and p3 +
nq2 (or p + nq) are both prime.
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Remark 2.21 See [16, A232174, A231883 and A232186] for related data. For ex-
ample, 20 = 11 + 9 with 11 + 20 · 9 = 191 and 112 + 20 · 92 = 121 + 20 × 81 =
1741 both prime. The author would like to offer 200 US dollars as the prize for the
first solution to part (i) of Conjecture 2.21. We also conjecture that there are infi-
nitely many n ∈ Z

+ such that pn = x2 + ny2 for some x, y ∈ Z
+ (where pn is the

nth prime).

Conjecture 2.22 (2013-10-14) Any integer n > 1 can be written as x + y with
x, y ∈ Z

+ such that 2x + 1, x2 + x + 1 and y2 + y + 1 are all prime. Also, each
integer n > 1 can be written as x + y with x, y ∈ Z

+ such that x2 + 1 (or 4x2 + 1)
and 4y2 + 1 are both prime.

Remark 2.22 See [16, A230252] for related data. For example, 31 = 14 + 17 with
2 · 14 + 1 = 29, 142 + 14 + 1 = 211, and 172 + 17 + 1 = 307 all prime.

In 2001, Heath-Brown [8] proved that there are infinitely many primes of the form
x3 + 2y3 where x and y are positive integers.

Conjecture 2.23 (2012-12-14)Anypositive integer n canbewrittenas x + y (x, y ∈
N) with x3 + 2y3 prime. In general, for each positive odd integer m, any sufficiently
large integer can be written as x + y (x, y ∈ N) with xm + 2ym prime.

Remark 2.23 See [16, A220413] for related data. For any integer d > 2, not every
sufficiently large integer n can be written as x + y (x, y ∈ N) with x3 + dy3 prime.
For, if n is a multiple of a prime divisor p of d − 1, then x3 + d(n − x)3 ≡ (1 −
d)x3 ≡ 0 (mod p) for any integer x .

Conjecture 2.24 (2013-04-15) For any integer n > 4, there is a positive integer
k < n such that p = 2n + k and 2n3 + k3 = 2n3 + (p − 2n)3 are both prime.

Remark 2.24 See [16, A224030] for related data.

Conjecture 2.25 (2012-12-16) Let m be a positive integer. Then, any sufficiently
large odd integer n can be written as x + y (x, y ∈ Z

+) with xm + 3ym prime (and
any sufficiently large even integer n can be written as x + y (x, y ∈ Z

+) with xm +
3ym + 1 prime). In particular, if m � 6 or m = 18, then each positive odd integer
can be written as x + y (x, y ∈ N) with xm + 3ym prime.

Remark 2.25 See [16, A220572] for related data and comments. For example, 5 can
be written as 1 + 4 with

118 + 3 · 418 = 206158430209

prime.
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3 Other Representation Problems for Positive Integers

Conjecture 3.1 (2013-11-12) Any integer n > 1 can be written as x + y (x, y ∈
Z

+) with [x, y] + 1 prime, where [x, y] is the least common multiple of x and y.
Also, each integer n > 3 can be written as x + y (x, y ∈ Z

+) with [x, y] − 1 prime.

Remark 3.1 See [16, A231635] for related data. For example, 10 = 4 + 6 with
[4, 6] + 1 = 13 and [4, 6] − 1 = 11 both prime.

As usual, for x ∈ Z, we let Tx denote the triangular number x(x + 1)/2.

Conjecture 3.2 (i) (2013-11-10)Any integer n > 1 canbewritten as x + y (x, y ∈
Z

+)with Tx + y2 prime. Also, any integer n > 6 can be written as x + y (x, y ∈
Z

+) with Tx + y4 prime.
(ii) (2013-11-18) Any integer n > 1 can be written as x + y (x, y ∈ Z

+) with p =
2x + 1 and Tx + y = n + (p − 1)(p − 3)/8 both prime.

Remark 3.2 See [16, A228425 and A232109] for related data. For example, 18 =
7 + 11 with T7 + 112 = 149 prime, 27 = 5 + 22 with T5 + 224 = 234271 prime,
and 18 = 11 + 7 with 2 · 11 + 1 = 23 and T11 + 7 = 73 both prime.

Conjecture 3.3 (2012-10-15) Each n = 1, 2, 3. . . . can be written as Tx + y with
x, y ∈ N such that Ty + 1 is prime.

Remark 3.3 See [16, A229166] for related data. For example, 34 has a unique re-
quired representation: 34 = T5 + 19 with T19 + 1 = 191 prime.

Conjecture 3.4 (2012-12-09) Any integer n > 2 can be written as x2 + y (x, y ∈
Z

+) with 2xy − 1 prime. In other words, for each n = 3, 4, . . . , there is a prime of
the form 2k(n − k2) − 1 with k ∈ Z

+.

Remark 3.4 We have verified Conjecture 3.4 for all n = 3, 4, . . . , 3 · 109. See [16,
A220272] for related data. For example, 18 = 32 + 9 with 2 × 3 × 9 − 1 = 53
prime.

Conjecture 3.5 (2013-10-21) Any integer n > 1 can be written as x2 + y with
2y2 − 1 prime, where x, y ∈ N. In other words, for each n = 2, 3, 4, . . . there is
an integer 0 � k � √

n such that 2(n − k2)2 − 1 is prime.

Remark 3.5 We have verified this conjecture for all n = 2, 3, . . . , 108. See [16,
A230494] for related data. For example, 9 = 12 + 8 with 2 · 82 − 1 = 127 prime.

Conjecture 3.6 (2013-11-11)

(i) Any integer n > 1 can be written as k + m (k,m ∈ Z
+) with 2k + m prime.

In other words, for each n = 2, 3, . . ., there is a positive integer k < n with
n + 2k − k prime.

(ii) For any integer n > 3, there is a positive integer k < n such that n + 2k + k is
prime.
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Remark 3.6 We have verified parts (i) and (ii) of this conjecture for n up to 107

and 3.8 × 106, respectively, see [16, A231201, A231557 and A231725] for related
data and other similar conjectures. For example, 9302003 = 311468 + 8990535with
2311468 + 8990535 a prime of 93762 decimal digits. In [21], the author proved that
the set {2k − k : k = 1, 2, 3, . . .} contains a complete system of residues modulo any
positive integer. The author would like to offer 1000 US dollars as the prize for the
first solution to part (i) of Conjecture 3.6.

Conjecture 3.7 (2013-11-23) Any integer n > 3 can be written as p + (2k − k) +
(2m − m) with p prime and k,m ∈ Z

+.

Remark 3.7 For example, 94 has a unique required representation 31 + (23 − 3) +
(26 − 6). See [16, A232398] for related data. After the author verified this conjecture
for n up to 2 × 108, Qing-Hu Hou extended the verification to 1010 in December
2013. In contrast with Conjecture 3.7, Crocker [3] proved in 1971 that there are
infinitely many positive odd numbers not of the form p + 2k + 2m with p prime and
k,m ∈ Z

+.

Conjecture 3.8 (2013-11-11) Let r ∈ {1, 2}. Then, any integer n > 1 can be written
as k + m (k,m ∈ Z

+) with 2kmr + 1 prime. Also, any integer n > 2 can be written
as k + m (k,m ∈ Z

+) with 2kmr − 1 prime.

Remark 3.8 See [16, A231561] for related data.

Conjecture 3.9 (i) (2013-11-10) Any integer n > 1 can be written as k + m (k,m
∈ Z

+)with Fk + m (or Fk + 2m,or Fk + m(m + 1))prime,where theFibonacci
sequence (Fj ) j�0 is given by F0 = 0, F1 = 1, and Fj+1 = Fj + Fj−1 for j ∈
Z

+.
(ii) (2014-04-27) Any integer n > 1 can be written as k + m (k,m ∈ Z

+)with Lk +
m prime, where the Lucas sequence (L j ) j�0 is given by L0 = 2, L1 = 1, and
L j+1 = L j + L j−1 for j ∈ Z

+.

Remark 3.9 See [16, A231555 andA241844] for related data.We have verified parts
(i) and (ii) of Conjecture 3.9 for n up to 3.7 × 106 and 7 × 106, respectively.

Conjecture 3.10 (i) (2013-11-11) Any integer n > 1 can bewritten as k + m (k,m
∈ Z

+) with k!m + 1 prime. Also, any integer n > 3 can be written as k +
m (k,m ∈ Z

+) with k!m − 1 prime.
(ii) (2014-03-19) Let r ∈ {1,−1}. For each integer n > 1, there is a number k ∈

{1, . . . , n} with k!n + r prime.

Remark 3.10 See [16, A231516 and A231631] for related data. We have verified
part (i) of Conjecture 3.10 for n up to 106. We also conjecture that for any integer
n > 2, there is a positive integer k <

√
n log n with k!(n − k) + 1 prime.

Conjecture 3.11 (i) (2015-04-01) Let k,m ∈ Z
+ with k + m > 2. Then, any inte-

ger n > 2 can be written as �p/k� + �q/m� with p and q both prime.
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(ii) (2015-04-24) Let

T :=
{⌊ x

9

⌋
: x − 1 and x + 1 are twin prime

}

=
{⌊ x

3

⌋
: 3x − 1 and 3x + 1 are twin prime

}
.

Then, any positive integer can be written as the sum of two distinct elements of
T one of which is even.

Remark 3.11 See [16,A256555 andA256707] for related data. Part (i) of Conjecture
3.11 in the case k = m = 2 reduces to Goldbach’s conjecture, and it reduces to
Lemoine’s conjecture when {k,m} = {1, 2}. Part (ii) of Conjecture 3.11 implies the
twin prime conjecture.

Conjecture 3.12 (2014-03-03)

(i) Let 1 < m < n be integers with m � n. Then, �kn/m� is prime for some k =
1, . . . , n − 1.

(ii) Let m > 2 and n > 2 be integers. Then, there is a prime p < n with �(n −
p)/m� a square. Also, there is a prime p < n such that �(n − p)/m� is a tri-
angular number of the form T(q−3)/2 = (q − 1)(q − 3)/8 with q an odd prime.

(iii) For each n = 3, 4, . . ., there is a prime p < n with �(n − p)/5� a cube.

Remark 3.12 See [16, A238703, A238732 and A238733] for related data.

Conjecture 3.13 (i) (2013-10-21) Let

S = {n ∈ Z
+ : 2n + 1 and 2n3 + 1 are both prime}.

Then, any integer n > 2 is a sum of three elements of S.
(ii) (2013-10-22) Any integer n > 5 can be written as a + b + c with a, b, c ∈ Z

+
such that

{a2 + a ± 1}, {b2 + b ± 1}, {c2 + c ± 1}

are all twin prime pairs!

Remark 3.13 See [16, A230507 and A230516] for related data and comments.

Conjecture 3.14 (2013-10-11) Let

P = {p : p, p + 6 and 3p + 8 are all prime}.

Then, for any integer n > 6, we can write 2n + 1 = p + q + r with p, q, r ∈ P such
that p + q + 9 is also prime.

Remark 3.14 This implies not onlyGoldbach’s weak conjecture but alsoGoldbach’s
conjecture for even numbers. See [16, A230217 and A230219] for related data. Note
that 37 has a unique required representation 7 + 13 + 17; in fact,
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7, 7 + 6 = 13, 3 × 7 + 8 = 29,

13, 13 + 6 = 19, 3 · 13 + 8 = 47,

17, 17 + 6 = 23, 3 · 17 + 8 = 59,

and 7 + 13 + 9 = 29 are all prime.

Conjecture 3.15 (2013-10-12) Let

P ′ = {p : p, 3p − 4, 3p − 10 and 3p − 14 are all prime}.

Then, for any integer n > 17, we can write 2n = p + q + r + s with p, q, r, s ∈ P ′.

Remark 3.15 See [16, A230223 and A230224] for related data. Note that such a rep-
resentation involves 16 primes! For example, 54 has a unique required representation
7 + 11 + 17 + 19; in fact,

7, 3 · 7 − 4 = 17, 3 · 7 − 10 = 11, 3 · 7 − 14 = 7,

11, 3 · 11 − 4 = 29, 3 · 11 − 10 = 23, 3 · 11 − 14 = 19,

17, 3 · 17 − 4 = 47, 3 · 17 − 10 = 41, 3 · 17 − 14 = 37,

19, 3 · 19 − 4 = 53, 3 · 19 − 10 = 47, 3 · 19 − 14 = 43

are all prime.

Conjecture 3.16 (i) (2015-10-01) Any integer n > 1 can be written as x2 + y2 +
ϕ(z2) with x, y ∈ N, x � y and z ∈ Z

+ such that y or z is prime.
(ii) (2015-10-02) Each positive integer can be written as x2 + y2 + p(p + ε)/2,

where x, y ∈ Z, ε ∈ {±1}, and p is a prime.

Remark 3.16 See [16,A262311,A262785,A262982,A262985,A263992,A263998,
A264010 and A264025] for related data and similar conjectures. For example, 13 =
12 + 22 + ϕ(42) with 2 prime, 94415 = 1152 + 1782 + ϕ(2232) with 223 prime,
97 = 12 + 92 + 5(5 + 1)/2 with 5 prime, and 538 = 32 + 82 + 31(31 − 1)/2 with
31 prime. It is known that each n ∈ N can be expressed as the sum of two squares
and a triangular number (cf. [17]).

Conjecture 3.17 (2014-02-26)

(i) Any integer n > 6 can be written as k + m (k,m ∈ Z
+) such that pk + π(m) is

a triangular number.
(ii) Any integer n > 10 can be written as k + m (k,m ∈ Z

+) such that p = pk +
π(m) and p + 2 are both prime.

Remark 3.17 See [16, A238405 and A238386] for related data. For example, 72 =
41 + 31 with p72 + π(31) = 179 + 11 = 19 · 20/2 a triangular number, and 108 =
15 + 93 with p15 + π(93) = 47 + 24 = 71 and 71 + 2 = 73 twin prime.
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Conjecture 3.18 (2014-03-05) Any integer n > 2 can be written as q + m with
m ∈ Z

+ such that q, pq − q + 1, and ppm − pm + 1 are all prime.

Remark 3.18 See [16, A237715] for related data.

Conjecture 3.19 (2014-01-04)For any integer n > 6, there is a prime q < n/2with
pq − q + 1 prime such that n − (1 + {n}2)q is prime.

Remark 3.19 This conjecture is stronger than Goldbach’s conjecture and Lemoine’s
conjecture, and it also implies that there are infinitelymany primes q with pq − q + 1
prime. See [16, A235189] for related data. For example, 7, p7 − 7 + 1 = 17 − 6 =
11, and 61 − 2 · 7 = 47 are all prime, and 31, p31 − 31 + 1 = 97 and 98 − 31 = 67
are all prime.

Conjecture 3.20 (2014-02-04)

(i) For any integer n > 2, we can write 2n = p + q with p, q, and ϕ(p + 2) ± 1
all prime. Also, for any integer n > 12 we can write 2n − 1 = 2p + q with p,
q and ϕ(p + 1) ± 1 all prime.

(ii) Any integer n � 24 can be written as (1 + {n}2)p + q with p, q, ϕ(p + 1) − 1,
and ϕ(q − 1) + 1 all prime.

Remark 3.20 See [16, A237168, A237183 and A237184] for related data. Note
that either of the two parts is stronger than Goldbach’s conjecture and Lemoine’s
conjecture. Also, part (i) of Conjecture 3.20 implies the twin prime conjecture.

Conjecture 3.21 (2014-02-04)

(i) Any integer n � 12 can be written as k + m with k,m ∈ Z
+ and k 
= m such

that ϕ(k) ± 1 and ϕ(m) ± 1 are all prime.
(ii) Any integer n > 6 can bewritten as k + m (k,m ∈ Z

+) such that both {pk, pk +
2} and {ϕ(m) − 1, ϕ(m) + 1} are twin prime pairs.

(iii) Any integer n � 6 can be written as k + m (k,m ∈ Z
+) with ppk + 2 and

ϕ(m) ± 1 all prime. Also, each n = 2, 3, 4, . . . can be written as k + m (k,m ∈
Z

+) with ppk + 2 and 6m ± 1 all prime.
(iv) Any integer n � 8 can be written as k + m (k,m ∈ Z

+) with pppk
− 2 and

ϕ(m) ± 1 all prime.
(v) Any integer n > 8 canbewritten as k + m (k,m ∈ Z

+)with3k ± 1andϕ(m) ±
1 all prime.

(vi) Any integer n � 12 can be written as p + q (q ∈ Z
+) with p, p + 6, and

ϕ(q) ± 1 all prime.

Remark 3.21 See [16, A237127, A237130, A218829 and A237253] for related data
and comments. Clearly each part of Conjecture 3.21 implies the twin prime conjec-
ture.
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Conjecture 3.22 (2013-12-31)

(i) Any integer n > 1 with n 
= 8 can be written as k + m (k,m ∈ Z
+) such that

p = k + ϕ(m) and 2n − p are both prime.
(ii) Each integer n > 2 canbewritten as k + m (k,m ∈ Z

+) such that p = k + ϕ(m)

and 2n + 1 − 2p are both prime.

Remark 3.22 Clearly parts (i) and (ii) are stronger than Goldbach’s conjecture and
Lemoine’s conjecture, respectively. See [16, A234808 andA234809] for related data.
For example, 24 = 9 + 15 with 9 + ϕ(15) = 17 and 2 · 24 − 17 = 31 both prime,
and 41 = 7 + 34 with 7 + ϕ(34) = 23 and 2 · 41 + 1 − 2 · 23 = 37 both prime.

Conjecture 3.23 (2014-02-02)

(i) Any integer n > 1 can be written as k + m (k,m ∈ Z
+) such that 6k ± 1 and

k + ϕ(m) are all prime.
(ii) Any integer n > 3 with n 
= 12 can be written as k + m (k,m ∈ Z

+) such that
6k ± 1 and k + ϕ(m)/2 are all prime.

(iii) Each integer n > 5 can be written as k + m (k,m ∈ Z
+) with k + ϕ(m)/2 a

square.

Remark 3.23 See [16, A236968 and A236567] for related data.

Conjecture 3.24 (2014-01-13) Define

K := {k ∈ Z
+ : k(k + 1) − pk is prime}.

(i) Any integer n > 3 can be written as a + b with a, b ∈ K.
(ii) Any integer n > 2 can be expressed as the sum of an element of K and a positive

triangular number.
(iii) Any integer n > 3 can be written as the sum of an element of K and a prime q

with pq − q + 1 also prime.
(iv) Any integer n > 7 can be written as k + m (k,m ∈ Z

+) such that q = pk +
ϕ(m) and q(q + 1) − pq are both prime.

Remark 3.24 See [16, A235592, A235613, A235614, A235661, A235703,
A232353] for related data.

Conjecture 3.25 (2014-01-18)

(i) Any integer n > 7 can be written as k + m (k,m ∈ Z
+) such that p = ϕ(k) +

ϕ(m)/2 − 1 is a prime and also 2 is a primitive root modulo p.
(ii) Any integer n � 38 can be written as k + m (k,m ∈ Z

+) such that p = pk +
ϕ(m) is a Sophie Germain prime and also 2 is a primitive root modulo p.

Remark 3.25 See [16, A235987] for related data and comments. For example, 79 =
19 + 60, p19 + ϕ(60) = 67 + 16 = 83 is aSophieGermainprimeand2 is a primitive
root modulo 83.
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Conjecture 3.26 (i) (2012-12-23) Any integer n > 5 can bewritten as k + m (k,m
∈ {3, 4, . . .}) with 2ϕ(k) + 2ϕ(m) − 1 prime.

(ii) (2012-12-24) For any integer a > 1, there is a positive integer N (a) such that
any integer n > N (a) can be written as k + m with k,m ∈ {3, 4, . . .} such
that aϕ(k) + aϕ(m)/2 − 1 is prime. Moreover, we may take N (2) = N (3) = . . . =
N (6) = N (8) = 5 and N (7) = 17.

Remark 3.26 See [16, A234309, A234347 and A234359] for related data and com-
ments. Clearly, part (ii) of Conjecture 3.26 implies that for each a = 2, 3, . . ., there
are infinitely many primes of the form a2k + am − 1 with k,m ∈ Z

+.

Conjecture 3.27 (2013-12-26)

(i) Any integer n � 10 can bewritten as k + m (k,m ∈ Z
+)with 2ϕ(k)/2+ϕ(m)/6 + 3

prime. Also, any integer n > 13 can be written as k + m (k,m ∈ Z
+) with

2ϕ(k)/2+ϕ(m)/6 − 3 prime.
(ii) Any integer n > 25 can be written as k + m (k,m ∈ Z

+) with 3 · 2ϕ(k)/2+ϕ(m)/8

+ 1 prime. Also, any integer n � 15 can be written as k + m (k,m ∈ Z
+) with

3 · 2ϕ(k)/2+ϕ(m)/12 − 1 prime.
(iii) Any integer n � 27 can be written as k + m (k,m ∈ Z

+)with 2 · 3ϕ(k)/2+ϕ(m)/12

+1 prime. Also, any integer n > 37 can be written as k + m (k,m ∈ Z
+) with

2 · 3ϕ(k)/2+ϕ(m)/12 − 1 prime.
(iv) Any integer n > 10 can be written as k + m (k,m ∈ Z

+) with 2ϕ(k)+ϕ(m)/4 − 5
prime.

Remark 3.27 This implies that there are infinitely many primes in any of the follow-
ing seven forms:

2n + 3, 2n − 3, 3 · 2n + 1, 3 · 2n − 1, 2 · 3n + 1, 2 · 3n − 1, 2n − 5.

We have verified Conjecture 3.27 for n up to 50,000. See [16, A234451, A236358
and A234504] for related data.

Conjecture 3.28 (2012-12-24)

(i) Any integer n > 1 can be written as k + m (k,m ∈ Z
+) with (k + 1)ϕ(m) + k

prime. Also, each integer n > 1 can be written as k + m (k,m ∈ Z
+)with k(k +

1)ϕ(m) + 1 prime.
(ii) Any integer n > 5 can be written as k + m (k,m ∈ Z

+) with (k + 1)ϕ(m)/2 − k
prime. Also, each integer n > 3 can be written as k + m (k,m ∈ Z

+)with k(k +
1)ϕ(m)/2 − 1 prime.

Remark 3.28 This conjecture is somewhat curious. See [16, A234360] for related
data.

Conjecture 3.29 (i) (2014-02-02) Any integer n > 8 can be written as i + j with
i, j ∈ Z

+ and i < j such that ϕ(i)ϕ( j) is a square. Also, for each k = 3, 4, . . .,
any integer n � 3k can be written as i1 + i2 + . . . + ik with i1, i2, . . . , ik ∈ Z

+
not all equal such that ϕ(i1)ϕ(i2) · · · ϕ(ik) is a kth power.
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(ii) (2014-02-09) Any integer n � 8 can be written as i + j with i, j ∈ Z
+ and i <

j such that ϕ(i j) + 1 is a square. Also, for each k = 3, 4, . . ., any integer n >

2k + 1 can bewritten as
∑k

j=1 i j with i1, i2, . . . , ik ∈ Z
+ such thatϕ(i1i2 . . . ik)

is a kth power.
(iii) (2014-02-04) Let k > 1 be an integer. Any sufficiently large integer n can be

written as
∑k

j=1 i j with i1, . . . , ik ∈ Z
+ and i1 < . . . < ik such that all those

ϕ(i j ) ( j = 1, . . . , k) are kth powers.
(iv) (2014-02-02) For each k = 3, 4, . . . any sufficiently large integer n can be writ-

ten as i1 + i2 + . . . + ik with i1, i2, . . . , ik not all equal such that the product
i1i2 . . . ik is a kth power.

Remark 3.29 See [16,A236998,A233386,A237523,A237524,A237123,A237050]
for related data. For any integer k > 1, we clearly have 2k + 2 = 4 + (k − 1)2 with
ϕ(4 · 2k−1) = 2k a kth power. In contrast with part (i) of Conjecture 3.29, we also
conjecture that (cf. [16, A237049]) for each k = 2, 3, 4, . . ., any sufficiently large
integer n can be written as

∑k
j=1 i j with i1, i2, . . . , ik ∈ Z

+ not all equal such that
∏k

j=1 σ(i j ) is a kth power, where σ(m) denotes the sum of all positive divisors of
m ∈ Z

+.

Conjecture 3.30 (i) (2013-12-21) Any integer n > 5 can be written as k + m with
k,m ∈ Z

+ such that (ϕ(k) + ϕ(m))/2 is prime.
(ii) (2013-12-22) Any positive integer n not dividing 6 can be written as k + m

with k,m ∈ Z
+ such that kϕ(m) + 1 is a square. Also, any integer n > 4 can be

written as k + m with k,m ∈ Z
+ and k < m such that kϕ(m) − 1 and kϕ(m) +

1 are both prime.
(iii) (2013-12-12) Any integer n > 5 can be written as k + m with k,m ∈ Z

+ such
that ϕ(k)ϕ(m) − 1 and ϕ(k)ϕ(m) + 1 are both prime.

(iv) (2013-12-23) Any integer n > 4 can be written as k + m (k,m ∈ Z
+) with

ϕ(k2)ϕ(m) − 1 a Sophie Germain prime.

Remark 3.30 See [16, A233918, A234200, A234246, A233547, A234308] for re-
lated data. For example, 13 = 3 + 10 with (ϕ(3) + ϕ(10))/2 = 3 prime, 13 = 4 + 9
with 4ϕ(9) + 1 = 25 a square, 18 = 5 + 13 with {5ϕ(13) ± 1} = {59, 61} a twin
prime pair, 26 = 7 + 19 with {ϕ(7)ϕ(19) ± 1} = {107, 109} a twin prime pair, and
30 = 2 + 28 with ϕ(22)ϕ(28) − 1 = 23 a Sophie Germain prime.

Conjecture 3.31 (2013-12-12)

(i) Any integer n > 1 can be written as k2 + m with σ(k2) + ϕ(m) prime, where k
and m are positive integers with k2 � m.

(ii) Any integer n > 1 can be written as k + m with k,m ∈ Z
+ such that σ(k)2 +

ϕ(m) (or σ(k) + ϕ(m)2) is prime.

Remark 3.31 See [16, A233544] for related data and comments. We have verified
part (i) of Conjecture 3.31 for all n = 2, . . . , 108; for example, 25 = 22 + 21 with
σ(22) + ϕ(21) = 7 + 12 = 19 prime.
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Conjecture 3.32 Let n > 2 be an integer.

(i) (2013-12-14) If n is even, then n can be written as p + σ(k), where p is an odd
prime and k ∈ {1, . . . , n − 1}.

(ii) (2013-12-17) If n is odd, then n can be written as p + ϕ(k2), where p is a prime
and k is a positive integer with k2 < n.

Remark 3.32 See [16, A233654, A233793 and A233867] for related data. For ex-
ample, 28 = 13 + σ(8) with 13 prime, and 29 = 23 + ϕ(32) with 23 prime. Note
that if n = p + q with p and q both prime, then n + 1 = p + (q + 1) = p + σ(q)

and n − 1 = p + (q − 1) = p + ϕ(q).

Conjecture 3.33 (2012-12-29)

(i) For each integer n > 8 with n 
= 14, there is a prime p between n and 2n with
( n
p ) = 1. If n ∈ Z

+ is not a square, then there is a prime p between n and 2n
with ( n

p ) = −1.

(ii) For any integer n > 5, there is a prime p ∈ (n, 2n)with ( 2np ) = 1. For any integer

n > 6, there is a prime p ∈ (n, 2n) with (−n
p ) = −1.

Remark 3.33 We have verified this refinement of Bertrand’s Postulate for n up to
5 × 108.

Conjecture 3.34 (2012-12-29)For any positive integer n, there is a prime p between
n2 and (n + 1)2 with ( n

p ) = 1. Also, for any integer n > 1, we have ( n(n+1)
p ) = 1 for

some prime p ∈ (n2, (n + 1)2).

Remark 3.34 We have verified this refinement of Legendre’s conjecture for n up to
109.

Conjecture 3.35 (Olivier Gerard and Zhi-Wei Sun, 2012-11-19) For any integer
n � 400with n 
= 757, 1069, 1238, there are odd primes p and q with (

p
q ) = (

q
p ) =

1 such that p + (1 + {n}2)q = n.

Remark 3.35 We have verified Conjecture 3.35 for n up to 108. See [5] for the
announcement of this conjecture.

Conjecture 3.36 (2012-11-22) Let m be any integer. Then, for every sufficiently
large integer n, there are primes p > q > 2 with (

p−(1+{n}2)m
q ) = (

q+m
p ) = 1 and

p + (1 + {n}2)q = n.

Remark 3.36 Conjecture 3.36 in the case m = 0 corresponds to Conjecture 3.35.

Conjecture 3.37 (2012-12-30) Any integer n > 5 can be written as p + (1 +
{n}2)q, where p is an odd prime and q is a prime not exceeding n/2 such that
(
q
n ) = 1 if 2 � n, and (

(q+1)/2
n+1 ) = 1 if 2 | n.

Remark 3.37 We have verified this refinement of Goldbach’s and Lemoine’s con-
jectures for n up to 109.
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Conjecture 3.38 (2013-01-19)

(i) Any even integer 2n > 4 can be written as p + q = (p + 1) + (q − 1), where
p and q are primes with p + 1 and q − 1 both practical.

(ii) For each integer n > 8, we can write 2n − 1 = p + q = 2p + (q − p), where
p and q − p are both prime, and q is practical.

Remark 3.38 We have verified both parts of Conjecture 3.38 for n up to 108. See
[16, A209320 and A209315] for related data.

If one of n and n + 1 is prime and the other is practical, then we call {n, n + 1} a
couple. As powers of two are practical numbers, {2p − 1, 2p} is a couple if 2p − 1
is a Mersenne prime, and {22n , 22n + 1} is a couple if 22n + 1 is a Fermat prime. If p
is a prime and p − 1 and p + 1 are both practical, then we call {p − 1, p, p + 1} a
sandwich of the first kind. If {p, p + 2} is a twin prime pair and p + 1 is practical, then
we call {p, p + 1, p + 2} a sandwich of the second kind. For example, {88, 89, 90}
is a sandwich of the first kind, while {59, 60, 61} is a sandwich of the second kind.
See [16, A210479] for the list of the first 10,000 sandwiches of the first kind, and
[16, A258838] for the list of the first 10,000 sandwiches of the second kind.

Conjecture 3.39 (2013-01-12)

(i) For any integer n > 8, the interval [n, 2n] contains a sandwich of the first kind.
(ii) For each n = 7, 8, . . ., the interval [n, 2n] contains a sandwich of the second

kind.
(iii) For any integer n > 231, the interval [n, 2n] contains four consecutive integers

p − 1, p, p + 1, p + 2 with {p, p + 2} a twin prime pair and {p − 1, p + 1}
a twin practical pair.

(iv) There are infinitely many quintuples {m − 2,m − 1,m,m + 1,m + 2} with
{m − 1,m + 1} a twin prime pair and m,m ± 2 all practical.

Remark 3.39 For those middle terms m described in part (iv) of Conjecture 3.39,
the reader may consult [16, A209236]. It is known that (cf. [12]) there are infinitely
many practical numbers m with m ± 2 also practical.

Conjecture 3.40 (i) (2013-01-23) Each n = 4, 5, . . . can be written as p + q,
where {p − 1, p, p + 1} is a sandwich of the first kind, and q is either prime or
practical.

(ii) (2013-01-29) Any integer n > 11 can be written as (1 + {n}2)p + q + r , where
{p − 1, p, p + 1} and {q − 1, q, q + 1} are sandwiches of the first kind, and
{r − 1, r, r + 1} is a sandwich of the second kind.

Remark 3.40 We have verified parts (i) and (ii) of Conjecture 3.40 for n up to 108

and 107, respectively. For numbers of representations related to parts (i) and (ii), see
[16, A210480 and A210681].
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Conjecture 3.41 (2013-01-29)

(i) Any integer n > 6 can be written as p + q + r such that {p − 1, p, p + 1} and
{q − 1, q, q + 1} are sandwiches of the first kind, and {6r − 1, 6r, 6r + 1} is
a sandwich of the second kind.

(ii) Every n = 3, 4, . . . can be expressed as x + y + z with x, y, z ∈ Z
+ such that

{6x − 1, 6x, 6x + 1}, {6y − 1, 6y, 6y + 1}, and {6z − 1, 6z, 6z + 1} are all
sandwiches of the second kind.

(iiii) Each integer n > 7 can be written as p + q + x2 with x ∈ Z such that {p −
1, p, p + 1} is a sandwich of the first kind and {q − 1, q, q + 1} is a sandwich
of the second kind.

Remark 3.41 We also conjecture that each n = 3, 4, . . . can be written as the sum
of two triangular numbers and a prime p with {p − 1, p, p + 1} a sandwich of the
first kind. See [16, A210681] for related comments.

Conjecture 3.42 (2013-01-30)

(i) For any integer n > 8, we can write 2n = p + 2q + 3r , where {p − 1, p, p +
1}, {q − 1, q, q + 1}, and {r − 1, r, r + 1} are all sandwiches of the first kind.

(ii) Each integer n > 5 can bewritten as the sum of a prime p with {p − 1, p, p + 1}
a sandwich of the first kind, a prime q with q + 2 also prime, and a Fibonacci
number.

Remark 3.42 See [16, A211190 and A211165] for related data. We have verified
part (ii) of Conjecture 3.42 for n up to 2, 000, 000.

Conjecture 3.43 (i) (2013-01-14) Any odd number n > 1 can be expressed as
p + q, where p is a Sophie Germain prime and q is a practical number.

(ii) (2013-01-19) For any integer n > 2, there is a practical number q < n such that
n − q and n + q are both prime or both practical.

Remark 3.43 We have verified this conjecture for n up to 108. See [16, A209253
and A209312] for related data. We also conjecture that each positive integer can
be represented as the sum of a practical number and a triangular number (cf. [16,
A208244]), which is an analog of the author’s conjecture on sums of primes and
triangular numbers (cf. [18]).

Conjecture 3.44 (2015-08-28)

(i) For any integer n > 6, there is a prime p < n such that n − (p + 1) and n +
(p + 1) are both prime or both practical.

(ii) For any integer n > 2, there is a prime p < n such that n − (p − 1) and n +
(p − 1) are both prime or both practical.

Remark 3.44 See [16, A261653] for related data, and compare this conjecture with
Conjectures 2.2, 2.3 and 3.43.



298 Z.-W. Sun

Conjecture 3.45 (2015-07-12)

(i) There are infinitely many sandwiches {n − 1, n, n + 1} of the first kind such that
{pn − 1, pn, pn + 1} is also a sandwich of the first kind.

(ii) There are infinitely many sandwiches {n − 1, n, n + 1} of the second kind such
that {pn − 1, pn, pn + 1} is a sandwich of the first kind.

Remark 3.45 See [16, A257924 and A257922] for related data.

4 On Representations of Positive Rational Numbers

It is well known that any positive rational number can be written as finitely many
distinct unit fractions. It is also known that the series

∑∞
n=1 1/pn diverges as proved

by Euler.

Conjecture 4.1 (i) (2015-09-09) For any positive rational number r , there are
finitely many distinct primes q1, . . . , qk such that

r =
k∑

j=1

1

q j − 1
.

(ii) (2015-09-12) For any positive rational number r , there are finitelymany distinct
primes q1, . . . , qk such that

r =
k∑

j=1

1

q j + 1
.

(iii) (2015-09-12) For any positive rational number r , there are finitelymany distinct
practical numbers q1, . . . , qk with r = ∑k

j=1 1/q j .

Remark 4.1 For example,

2 = 1

2 − 1
+ 1

3 − 1
+ 1

5 − 1
+ 1

7 − 1
+ 1

13 − 1
= 1

1
+ 1

2
+ 1

4
+ 1

6
+ 1

12

with 2, 3, 5, 7 all prime and 1, 2, 4, 6, 12 all practical, and

1 = 1

2 + 1
+ 1

3 + 1
+ 1

5 + 1
+ 1

7 + 1
+ 1

11 + 1
+ 1

23 + 1

with 2, 3, 5, 7, 11, 23 all prime. Also,
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10

11
= 1

3 − 1
+ 1

5 − 1
+ 1

13 − 1
+ 1

19 − 1
+ 1

67 − 1
+ 1

199 − 1

= 1

2 + 1
+ 1

3 + 1
+ 1

5 + 1
+ 1

7 + 1
+ 1

43 + 1
+ 1

131 + 1
+ 1

263 + 1

= 1

2
+ 1

4
+ 1

8
+ 1

48
+ 1

132
+ 1

176

with 2, 3, 5, 7, 13, 19, 43, 67, 131, 199, 263 all prime and 2, 4, 8, 48, 132, 176 all
practical. After learning Conjecture 4.1 from the author, Qing-Hu Hou verified parts
(i) and (ii) in November 2015 for all rational numbers r ∈ (0, 1) with denominators
not exceeding 100. The author would like to offer 500 US dollars as the prize for the
first solution to parts (i) and (ii) of Conjecture 4.1.

Conjecture 4.2 (2015-09-09) Let m be any positive integer.

(i) All the rational numbers

k∑

i= j

1

(pi − 1)m
with 1 � j � k

are pairwise distinct! If

k∑

i= j

1

(pi − 1)m
and

t∑

r=s

1

(pr − 1)m

have the same fractional part with

0 < min{2, k} � j � k, 0 < min{2, t} � s � t and j � s,

but the ordered pairs ( j, k) and (s, t) are different, then we must have m = 1
and

k∑

i= j

1

pi − 1
= 1 +

t∑

r=s

1

pr − 1
;

moreover, either ( j, k) = (2, 6) and (s, t) = (5, 5), or ( j, k) = (2, 5) and
(s, t) = (18, 18), or ( j, k) = (2, 17) and (s, t) = (6, 18).

(ii) If
k∑

i= j

1

(pi + 1)m
and

t∑

r=s

1

(pr + 1)m

have the same fractional part with

1 � j � k, 1 � s � t and j � s,



300 Z.-W. Sun

but the ordered pairs ( j, k) and (s, t) are different, then we must have m = 1
and

k∑

i= j

1

pi + 1
−

t∑

r=s

1

pr + 1
∈ {0, 1};

moreover, ( j, k) = (1, 9) and (s, t) = (6, 8), or ( j, k) = (4, 4) and (s, t) =
(8, 10), or ( j, k) = (4, 7) and (s, t) = (5, 10), or ( j, k) = (1, 10) and (s, t) =
(5, 7).

(iii) For any integer d > 1, the rational numbers

k∑

i= j

1

(pi + d)m
with 1 � j � k

have pairwise distinct fractional parts.

Remark 4.2 Recall that
∑∞

j=1 1/p j diverges.

Actually, Conjecture 4.2 was motivated by our following conjecture whose proofs
might involve primes.

Conjecture 4.3 (i) (2015-09-09) If 1/j + · · · + 1/k and 1/s + · · · + 1/t have the
same fractional part with

0 < min{2, k} � j � k, 0 < min{2, t} � s � t and j � s,

but the ordered pairs ( j, k) and (s, t) are different, then we have

1

j
+ . . . + 1

k
= 1 + 1

s
+ . . . + 1

t
;

moreover, one of the following (a)-(d) holds.

(a) ( j, k) = (2, 6) and (s, t) = (4, 5),
(b) ( j, k) = (2, 4) and (s, t) = (12, 12),
(c) ( j, k) = (2, 11) and (s, t) = (5, 12),
(d) ( j, k) = (3, 20) and (s, t) = (7, 19).

(ii) (2015-09-11) Let a > b � 0 and m > 0 be integers with gcd(a, b) = 1 <

max{a,m}. Then, the numbers
k∑

i= j

1

(ai − b)m
with 1 � j � k and ( j > 1 if k > a − b = 1)

have pairwise distinct fractional parts. Also, for each r = 0, 1, the numbers
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k∑

i= j

(−1)i− jr

(ai − b)m
with 1 � j � k and ( j > 1 if k > a − b = 1)

have pairwise distinct fractional parts.

Remark 4.3 In 1918, J. Kürschak proved that for any integers k � j > 1, the number
1/j + · · · + 1/k is not an integer. In 1946, Erdős and Niven [4] used Sylvester’s
theorem (which states that the product of n consecutive integers greater than n is
divisible by a prime greater than n) to show that all the numbers 1/j + · · · + 1/k
with 1 � j � k are pairwise distinct.

If d ∈ Z
+ is not a square, then the Pell equation x2 − dy2 = 1 has infinitely many

integral solutions. Thus, for r = a/b with a, b ∈ Z
+ and gcd(a, b) = 1, if r is not a

square of rational numbers, then there is a positive integer k such that (ka)(kb) + 1 is
a square, i.e., we can write a/b = m/n withm, n ∈ Z

+ such thatmn + 1 is a square.
Motivated by this, below we consider various representations of positive rational
numbers.

Conjecture 4.4 (i) (2015-07-03) The set

{m

n
: m, n ∈ Z

+ and pm + pn is a square
}

contains any positive rational number r . Also, any rational number r > 1 can
be written as m/n with m, n ∈ Z

+ such that pm − pn is a square.
(ii) (2015-08-20) Any positive rational number r 
= 1 can be written as m/n with

m, n ∈ Z
+ such that ppm + ppn is a square.

Remark 4.4 Wehave verified part (i) of Conjecture 4.4 for all those rational numbers
r = a/b with a, b ∈ {1, . . . , 200} (cf. [16, A259712 and A257856]) and part (ii) of
Conjecture 4.4 for all those rational numbers r = a/b 
= 1 with a, b ∈ {1, . . . , 60}.
For example, 2 = 20/10 with p20 + p10 = 71 + 29 = 102, and 2 = 92/46 with
pp92 + pp46 = p479 + p199 = 3407 + 1217 = 682.

Conjecture 4.5 (2015-07-08) The set

{m

n
: m, n ∈ Z

+, and ϕ(m) and σ(n) are both squares
}

contains any positive rational number r .

Remark 4.5 We have verified Conjecture 4.5 for all those r = a/b with a, b ∈
{1, . . . , 150} (cf. [16, A259915 and A259916]). For example, 4/5 = 136/170 with
ϕ(136) = 82 and σ(170) = 182, and 5/4 = 1365/1092 with ϕ(1365) = 242 and
σ(1092) = 562.

Conjecture 4.6 (i) (2015-07-05) Any positive rational number r can be written as
m/n with m, n ∈ Z

+ such that π(m)π(n) is a positive square.
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(ii) (2015-07-06) Any positive rational number r can be written as m/n with m, n ∈
Z

+ such that π(m) and π(π(n)) are positive squares.

Remark 4.6 We have verified part (i) of this conjecture for all those rational numbers
r = a/b with a, b ∈ {1, . . . , 60}. See [16, A259789] for related data. For example,
49/58 = 1076068567/1273713814 with

π(1076068567)π(1273713814) = 54511776 · 63975626 = 590544242.

Conjecture 4.7 (2015-07-10) Each positive rational number r < 1 can be written
as m/n with 1 < m < n such that π(m)2 + π(n)2 is a square. Also, any rational
number r > 1 can be written as m/n with m > n > 1 such that π(m)2 − π(n)2 is a
square.

Remark 4.7 We have verified this conjecture for all those rational numbers r = a/b
with a, b ∈ {1, . . . , 50}. See [16, A255677] for related data. For example, 23/24 =
19947716/20815008 with

π(19947716)2 + π(20815008)2 = 12674972 + 13190042 = 18292952,

and 7/3 = 26964/11556 with

π(26964)2 − π(11556)2 = 29582 − 13922 = 26102.

Motivated by Conjecture 4.7, we raise the following conjecture which sounds
interesting and challenging.

Conjecture 4.8 (i) (2015-07-11) For any n ∈ Z
+, there are distinct primes p, q, r

such that π(pn)2 = π(qn)2 + π(rn)2.
(ii) (2015-07-13) For any n ∈ Z

+, there are distinct primes p, q, r with π(pn) =
π(qn)π(rn) (or π(pn) = π(qn) + π(rn)).

Remark 4.8 See [16, A257364 and A257928] for related data.

Conjecture 4.9 (i) (2015-07-02) Any positive rational number r can be written
as m/n with m, n ∈ Z

+ such that p(m)2 + p(n)2 is prime, where p(·) is the
partition function.

(ii) (2015-08-20) Any positive rational number r 
= 1 can be written as m/n with
m, n ∈ Z

+ such that p(pm) + p(pn) is prime.

Remark 4.9 Conjecture 4.9 implies that there are infinitely many primes of the form
p(m)2 + p(n)2 with m, n ∈ Z

+ as well as primes of the form p(q) + p(r) with q
and r both prime. We have verified part (i) for all those rational numbers r = a/b
with a, b ∈ {1, . . . , 100}, and part (ii) for all those rational numbers r = a/b 
= 1
with a, b ∈ {1, . . . , 37}. See [16, A259531, A259678, A261513 and A261515] for
related data. For example, 4/5 = 124/155 with
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p(124)2 + p(155)2 = 28419405002 + 664931820972

= 4429419891190341567409

prime, and 3 = 138/46 with

p(p138) + p(p46) = p(787) + p(199)

= 3223934948277725160271634798 + 3646072432125

= 3223934948277728806344066923

prime.

Conjecture 4.10 (2015-08-17) Any positive rational number r can be written as
m/n, where m and n are positive integers with (m ± 1)2 + n2 and m2 + (n ± 1)2 all
prime.

Remark 4.10 We have verified this for all those r = a/b with a, b ∈ {1, . . . , 60}.
See [16, A261382] for related data. It is easy to prove that if m and n are positive
integers with (m ± 1)2 + n2 and m2 + (n ± 1)2 all prime, then either m = n = 2 or
m ≡ n ≡ 0 (mod 5).

Conjecture 4.11 (i) (2015-06-28) Each rational number r > 0 can be written as
m/n, where m and n are positive integers with

pm ± m, pn ± n, pm + n and pn + m

all prime.
(ii) (2015-07-02) Any rational number r > 0 can be written as m/n, where m and n

are positive integers with

m2 + p2m, n2 + p2n, m2 + p2n and n2 + p2m

all prime.
(iii) (2015-08-15) Any rational number r > 0 can be written as m/n with m and n in

the set

{k ∈ Z
+ : k + 1, k2 + 1 and k2 + p2k are all prime}

= {q − 1 : q, (q − 1)2 + 1 and (q − 1)2 + p2(q−1) are all prime}.

Remark 4.11 We have verified parts (i)–(ii) for those r = a/b with a, b ∈ {1, . . . ,
150} and part (iii) for those r = a/b with a, b ∈ {1, . . . , 60}. See [16, A259492 and
A261339] for related data.

Conjecture 4.12 (i) (2015-06-30) Let

U := {n ∈ Z
+ : n ± 1 and pn + 2 are all prime}.
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Then, any positive rational number r can be written as m/n with m, n ∈ U.
(ii) (2015-06-28) Let

V := {n ∈ Z
+ : pn + 2 and ppn + 2 are both prime}.

Then, any positive rational number r can be written as m/n with m, n ∈ V .
(iii) (2015-06-12) Let

Q := {q ∈ Z
+ : q is practical with q ± 1 twin prime}.

Then, any positive rational number r can be written as q/q ′ with q, q ′ ∈ Q.

Remark 4.12 Wehaveverifiedpart (i) for all those r = a/bwitha, b ∈ {1, . . . , 100},
part (ii) for all those r = a/b with a, b ∈ {1, . . . , 400}, and part (iii) for all those r =
a/bwitha, b ∈ {1, . . . , 1000}. See [16,A259539,A259540,A259487,A259488 and
A258836] for related data. For example, 4/5 = 11673840/14592300with 11673840
and 14592300 in the set U .

Motivated by part (i) of Conjecture 4.12 and [22, Conjecture 3.7(i)], we pose the
following conjecture.

Conjecture 4.13 (2015-07-01) There are infinitely many positive integers n such
that the seven numbers

n ± 1, pn + 2, pn ± n, npn ± 1

are all prime.

Remark 4.13 We have listed the first 160 such positive integers n the least of which
is 2523708 (cf. [16, A259628]).

Conjecture 4.14 (2015-08-24) Any positive rational number r can be written as
m/n, where m and n belong to the set

{k ∈ Z
+ : pk + 2, pk + 6 and pk + 8 are all prime}.

Also, each positive rational number r can be written as m/n, where m and n belong
to the set

{k ∈ Z
+ : pk + 4, pk + 6 and pk + 10 are all prime}.

Remark 4.14 This conjecture implies that there are infinitelymany prime quadruples
(p, p + 2, p + 6, p + 8) as well as (p, p + 4, p + 6, p + 10), which is a special
case of Schinzel’s Hypothesis. See [16, A261541] for related data. For example,
3/4 = m/n with m = 20723892 and n = 27631856, and
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pm + 2 = 387875563, pm + 6 = 387875567, pm + 8 = 387875569,

pn + 2 = 525608593, pn + 6 = 525608597, pn + 8 = 525608599

are all prime.

Conjecture 4.15 (2015-08-23) Any positive rational number r can be written as
m/n, where m and n belong to the set

W = {k ∈ Z
+ : pk + 2 is prime and ppk+2 − ppk = 6}.

Remark 4.15 See [16, A261528 and A261533] for related data. For example, 2 =
1782/891 with 891 and 1782 in the set W . Conjecture 4.15 implies that there are
infinitely many twin prime pairs {q, q + 2} with pq+2 − pq = 6.

Conjecture 4.16 (2015-08-14) Each positive rational number r can be written as
m/n with m and n in the set

{k ∈ Z
+ : p2k − 2 and p2pk − 2 are both prime}.

Remark 4.16 We have verified this for all those r = a/b with a, b ∈ {1, . . . , 300}.
See [16, A261281] for related data.

Conjecture 4.17 (i) (2014-05-14) For any prime p > 5, there is a positive square
k2 < p such that the inverse of k2 modulo p is prime, where the inverse of a ∈
{1, . . . , p − 1} modulo p denotes the unique x ∈ {1, . . . , p − 1} with ax ≡ 1
(mod p).

(ii) (2015-08-18) Any positive rational number r � 1 can be written as m/n with
m, n ∈ Z

+ such that the inverse of m modulo pn is a square.

Remark 4.17 We have checked part (i) of Conjecture 4.17 for those primes p <

1.8 × 108. See [16, A242425 andA242441] for related data. For example, the inverse
of 42 modulo 23 is the prime 13.

Conjecture 4.18 (2014-08-26)

(i) Any integer n > 2 with n 
= 8 can be written as k + m with k,m ∈ Z
+ and

k 
= m such that pk is a primitive root modulo pm and pm is also a primitive
root modulo pk.

(ii) Any positive rational number r 
= 1 can be written as m/n with m, n ∈ Z
+ such

that pm is a primitive root modulo pn and also pn is a primitive root modulo pm.

Remark 4.18 See [16, A261387] for related data and comments.

Conjecture 4.19 (2015-07-20) Let n ∈ Z
+ and s, t ∈ {1,−1}. Then, any positive

rational number r0 can be written as (pqn + s)/(prn + t) with q and r both prime,
unless n > r0 = 1 and {s, t} = {1,−1}.
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Remark 4.19 We have verified this conjecture in the case n = 1 for all those
r0 = a/b with a, b ∈ {1, . . . , 500} (cf. [16, A258803]). For n = 2, . . . , 10 we have
verified Conjecture 4.19 for all those r0 = a/b with a, b ∈ {1, . . . , 30} (cf. [16,
A260252]). For example, 23 = (p17209 − 1)/(p1039 − 1) = (190579 − 1)/(8287 −
1) with 1039 and 17209 both prime.

Conjecture 4.20 (2015-08-02)

(i) If a, b, c are positive integers with gcd(a, b) = gcd(a, c) = gcd(b, c) = 1, and
a 
= b and a + b ≡ c (mod 2), then for any n ∈ Z

+ the linear equation ax −
by = c has solutions with x and y in the set {pqn : q is prime}.

(ii) Let a and b be relatively prime positive integers, and let c be any integer. For
any n ∈ Z

+, the linear equation ax − by = c has solutions with x and y in the
set {π(pn) : p is prime}.

Remark 4.20 Note that part (i) of Conjecture 4.20 is an extension of Conjecture
4.19. In the a = c = 1 and b = 2, it asserts that for any n ∈ Z

+, there are primes q
and r such that 2pqn + 1 = prn . This implies that there are infinitely many Sophie
Germain primes. Also, part (ii) of Conjecture 4.20 with c = 0 asserts that for any
n ∈ Z

+, the set {
π(pn)

π(qn)
: p and q are primes

}

contains all positive rational numbers (cf. [16, A260232]). We have checked both
parts of the conjecture for a, b, c = 1, . . . , 20 and n = 1, . . . , 30. For related data,
see [16, A260886 and A260888].

Recall that a prime p is called a Chen prime if p + 2 is a product of at most two
primes. In 1973, Chen [1] proved that there are infinitely many Chen primes.

Conjecture 4.21 (i) (2015-07-14) For any positive integer n, there are i, j, k ∈ Z
+

with i 
= j such that pkn + 2 = pin p jn.
(ii) (2015-07-15) For any positive integer n, there are i, j, k ∈ Z

+ with i 
= j such
that p2kn − 2 = pin p jn.

Remark 4.21 See [16, A257926 and A260080] for related data. Clearly, part (i) of
Conjecture 4.21 implies that there are infinitely many Chen primes.

Conjecture 4.22 (2015-07-15) Let d be a nonzero integer and let n ∈ Z
+. Set

D := {pkn + d : k = 1, 2, 3, . . .}.

(i) If gcd(6, d) = 1, then there are two distinct elements x and y of D with x + y ∈
D and x − y ∈ D.

(ii) For each k = 1, 2, we have xy = zk for some distinct elements x, y, z of D.

Remark 4.22 See [16, A260078, A257938 and A260082] for related data.
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Conjecture 4.23 (2015-07-17)

(i) Let a, n ∈ Z
+ and b, c ∈ Z with gcd(a, b, c) = 1, 2 � (a + b + c) and 3 � gcd

(b, a + c). If b2 − 4ac is not a square, then there are x, y ∈ {pkn : k =
1, 2, 3, . . .} such that y = ax2 + bx + c.

(ii) For any a, n ∈ Z
+ and b, c ∈ Z, there are x, y ∈ {π(pn) : p is prime} such that

y = ax2 + bx + c.

Remark 4.23 See [16,A260120 andA260140] for related data. Part (i) of Conjecture
4.23 implies that for any n ∈ Z

+, there are j, k ∈ Z
+ with p2kn − 2 = p jn (or (pkn −

1)2 = p jn − 1). Part (ii) of Conjecture 4.23 implies that for any n ∈ Z
+, there are

primes p and q with π(pn) = π(qn)2.

Conjecture 4.24 (2015-08-14) Let

S1 := {q + 1 : q and pq + 2 are both prime}

and
S2 := {q − 1 : q and pq − 2 are both prime}.

For any i, j ∈ {1, 2}, each positive rational number r can be written as m/n with
m ∈ Si and n ∈ Sj , unless i 
= j and r = 1.

Remark 4.24 See [16, A261295] for related data. For example, 4/5 = 15648/19560
with 15647, p15647 + 2 = 171763, 19559, and p19559 + 2 = 219409 all prime. A
twin prime pair {p, p + 2} with π(p) also prime is called a super twin prime pair
(cf. [22, Conjecture 3.2 and Remark 3.2]).

Conjecture 4.25 (2015-08-18) Let s, t ∈ {1,−1}. Then, any positive rational num-
ber r can be written as m/n with m and n in the set

Ks,t := {k ∈ Z
+ : ppk + spk + t = pq for some prime q}.

Remark 4.25 This implies that for any s, t ∈ {±1}, there are infinitely many primes
q with p = pq + sq + t and π(p) both prime. See [16, A260753 and A261136] for
related data. For example, 3 = 6837/2279, and

pp6837 − p6837 + 1 = p68777 − 68777 + 1 = 865757 − 68776 = 796981 = p63737

with 63737 prime, and

pp2279 − p2279 + 1 = p20147 − 20147 + 1 = 226553 − 20146 = 206407 = p18503

with 18503 prime.

Conjecture 4.26 (2015-08-16) Any positive rational number can be written as m/n,
where m and n are positive integers with ppm ppn = pq + 2 for some prime q.



308 Z.-W. Sun

Remark 4.26 See [16, A261352 and A261353] for related data. For example, 4 =
2424/606 and

pp2424 pp606 = p21589 p4457 = 244471 · 42643 = 10424976853 = p473490161 + 2

with 473490161 prime. Conjecture 4.26 implies that there are infinitely many prime
triples (q, r, s) with pq + 2 = pr ps .

Conjecture 4.27 (2014-08-17)

(i) Let d be any nonzero integer. Then any positive rational number r can be written
as m/n with m, n ∈ Z

+ such that (ppm + d)(ppn + d) = pq + d for some prime
q.

(ii) For any nonzero integer d, there are infinitely many prime triples (q, r, s) with
q, r, s distinct such that (pq + d)2 = (pr + d)(ps + d).

Remark 4.27 See [16, A261385 and A261395] for related data and comments.
Clearly, for each d ∈ Z \ {0}, part (i) of Conjecture 4.27 implies that the equation
xy = z has infinitely many solutions with x, y, z ∈ {pq + d : q is prime}, and part
(ii) of Conjecture 4.27 implies that the set {pq + d : q is prime} contains infinitely
many nontrivial three-term geometric progressions.

Conjecture 4.28 (2015-08-16)

(i) Let a, b, c ∈ Z
+ with a 
= b, a + b ≡ c (mod 2) and gcd(a, b) = gcd(a, c) =

gcd(b, c) = 1. Then, any positive rational number r can be written as m/n with
m and n in the set

{k ∈ Z
+ : apq − bppk = c for some prime q},

and thus there are infinitely many pairs of primes q and r such that apq − bpr =
c.

(ii) Let a ∈ Z
+ and b, c ∈ Zwith gcd(a, b, c) = 1. If 2 � (a + b + c), 3 � gcd(b, a +

c), and b2 − 4ac is not a square, then the equation y = ax2 + bx + c has infi-
nitely many solutions with x, y ∈ {pq : q is prime}.

Remark 4.28 See [16, A261361, A261362 and A261354] for related data and com-
ments. Clearly, part (i) of Conjecture 4.28 implies that there are infinitelymany prime
pairs q and r with 2pq + 1 = pr , and part (ii) of Conjecture 4.28 implies that there
are infinitely many prime pairs q and r with p2q − 2 = pr .

Conjecture 4.29 (i) (2015-08-18) For any j = ±1 and n ∈ Z
+, there is a positive

integer k such that kn + j = pq and k2n + 1 = pr for some pair of primes q
and r.

(ii) (2015-08-20) Each positive rational number r � 1 can be written as m/n, where
m and n are positive integers such that ppm , ppn , ppk , ppl form a four-term
arithmetic progression for some k, l ∈ Z

+.
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(iii) (2015-08-25) Any positive rational number r can be written as m/n, where m
and n are positive integers with (pppm

+ pppn
)/2 = ppq for some prime q.

Remark 4.29 See [16, A261437, A261462 and A261583] for related data.

Motivated by Conjecture 4.29, we define

p(1)
n = pn, and p(m+1)

n = p(m)
pn for m, n = 1, 2, 3, . . . ,

and pose the following conjecture.

Conjecture 4.30 (2015-08-25)

(i) If q ∈ Z
+ and a ∈ Z are relatively prime, then for anym ∈ Z

+ there are infinitely
many n ∈ Z

+ with p(m)
n ≡ a (mod q).

(ii) For any integer k > 2 and m > 0, the set Pm := {p(m)
n : n ∈ Z

+} contains infi-
nitely many nontrivial k-term arithmetic progressions.

(iii) For any m, n ∈ Z
+, we have

n+1

√
p(m+1)
n+1

n

√

p(m+1)
n

<

n+1

√
p(m)
n+1

n

√

p(m)
n

< 1.

Remark 4.30 Part (i) of Conjecture 4.30 is an extension of Dirichlet’s theorem on
primes in arithmetic progressions, and part (ii) of Conjecture 4.30 is an extension
of the Green–Tao theorem [7]. Part (iii) is an analog of Firoobakht’s conjecture (cf.
[19]), and we also conjecture that the sequence ( n

√
qn)n�3 is strictly decreasing if qn

denotes the nth practical number.
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