
Chapter 5
Averaging with Exogenous Inputs
and Electrical Networks

Abstract The dynamical models analyzed so far, with the exception of the noisy
consensus models treated in Chap.4, are autonomous systems with no input signals:
Information enters the system only through the initial condition. Instead, there are a
variety of different situations where it is natural to consider consensus models driven
by exogenous input signals, including opinion dynamics in the presence of stubborn
agents that do not modify their opinion, rendezvous problems with leader robots, and
estimation algorithms based on pairwisemeasurements. A very useful tool to analyze
thesemodels is thinkingof the graph as an electrical circuitwith the exogenous signals
interpreted as input currents or as nodes kept at a fixed voltage. In this chapter, we
will first review the basic theory of electrical networks and their classical connection
with reversible stochastic matrices: Sect. 5.1 concentrates on Green matrices and
harmonic functions, while Sect. 5.2 is devoted to effective resistances. Afterward,
we apply these tools to averaging dynamics with stubborn agents in Sect. 5.3 and to
the problem of estimation from relative measurements in Sect. 5.4.

5.1 Electrical Networks and Harmonic Functions

There is a fundamental connection between reversible stochastic matrices, presented
in Sect. 2.5, and electrical circuits: This connection sheds light on some of the con-
cepts touched so far and, meanwhile, offers computational tools for new problems.

We start from a symmetric strongly connected graph G = (V, E) with |V | = N
and a symmetric nonnegative matrixC ∈ R

V×V called conductance matrix such that
GC = G. We know that from C we can canonically construct a reversible stochastic
matrix P = D−1

C1C . We now interpret G as an electrical circuit where edge (u, v)
has electrical conductance Cuv = Cvu . We will refer to (G,C) as to an electrical
network. Consider now a vector ι ∈ R

V such that ι∗1 = 0:We interpret ιv as the input
current injected at node v (if negative being an outgoing current). To the electrical
network (G,C) and the input current ι, we can associate two functions W ∈ R

V

(called the voltage) and φ ∈ R
E (called the current flow) such that the following

relations are satisfied
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{ ∑
v∈Nu

φuv = ιu ∀u ∈ V

φuv = Cuv(Wu − Wv) ∀(u, v) ∈ E .
(5.1)

The first relation is usually known as Kirchoff’s law (sum of currents outgoing node
u along the edges equals the incoming input current), while the second one is Ohm’s
law. The existence of a solution (W, φ) will follow by our considerations below, as
well as uniqueness up to addition to W of multiples of 1. Notice that because of
Ohm’s law, it follows that φuv = −φvu for all (u, v) ∈ E .

To the aim of rewriting in a more compact form relations (5.1), it is convenient
to introduce some additional concepts. Denote by Ē the set of undirected edges of
G: Namely Ē consists of those subsets {u, v} of cardinality 2 such that (u, v) ∈
E (possible self-loops present in G are disregarded in the construction of Ē). An
incidence matrix on G is any matrix B ∈ {0,+1,−1}Ē×V such that B1 = 0 and
Beu �= 0 iff u ∈ e. It is immediate to see that given e = {u, v}, the e-th row of
B has all zeroes except Beu and Bev: Necessarily one of them will be +1 and the
other one −1 and this will be interpreted as choosing a direction in e from the node
corresponding to +1 to the one corresponding to −1. Define DC ∈ R

Ē×Ē to be the
diagonal matrix such that (DC)ee = Cuv = Cvu if e = {u, v}. Observe that, for every
u ∈ V ,

(B∗DC B)uu =
∑
e∈Ē

(DC)ee B
2
eu = (C1)u − Cuu

while, if u �= v,
(B∗DC B)uv =

∑
e∈Ē

Beu(DC)ee Bev = −Cuv

In other terms
B∗DC B = DC1 − C = L(C) .

In the special case when C = AG (the adjacency matrix of G), we thus obtain
B∗B = LG . Finally, define φ̄ ∈ R

Ē such that φ̄e = φuvBeu if e = {u, v}: According
to this definition, φ̄e is the current flowing in the edge e, with the positive sign if flow
is happening in the same direction of the conventional direction chosen on e by B.
We can now rewrite relations (5.1) as

{
B∗φ̄ = ι

DC BW = φ̄.
(5.2)

These two equations together lead to the following equation for W :

L(C)W = ι. (5.3)

Recall that L(C) is a symmetric matrix with rank L(C) = N − 1 and L(C)1 = 0
(see Chap.1 for details). It thus admits the spectral representation

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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L(C) =
∑
i≥2

λi xi x
∗
i ,

where 0 = λ1 < λ2 ≤ · · · ≤ λN are the nonzero eigenvalues with corresponding
orthonormal eigenvectors N−1/21, x1, . . . , xN . The matrix

ZC =
∑
i≥2

λ−1
i xi x

∗
i

is said to be the Green matrix associated with C . It has the properties

ZC L(C) = L(C)ZC = I − N−111∗ , ZC1 = 0 . (5.4)

If we consider W = ZC ι, using the property ι∗1 = 0, we obtain L(C)W =
L(C)ZC ι = ι: Then,W solves (5.3). Notice that it also satisfies the relation 1∗W = 0
and that any other function W + c1 also satisfies (5.3). Since the rank of L(C) is
N − 1, these are all the possible solutions. All pairs solving (5.3) are thus

W = ZC ι + c1 , φ̄ = CDBZC ι .

We now give some insightful examples of computations of voltages.

Example 5.1 (Line graph) Consider the symmetric line graph G = LN+1 (with
vertex set V = {1, . . . , N + 1}) and with conductance matrix C ∈ R

V×V . Let
ι ∈ R

V be such that −ι1 = 1 = ιN+1 while ιk = 0 for all k = 2, . . . , N . Using
Kirchoff’s law and a simple inductive argument, it follows that the current flow
φ ∈ R

E×E is given by φk,k+1 = −1 for all k = 1, . . . , N . Ohm’s law then yields
Wk+1 − Wk = Ck,k+1 for all k. This yields Wk − W0 = ∑k−1

j=0 C j, j+1 In the special
case whenC = AG (all edges have conductance equal to 1), we obtainWk −W0 = k.

Example 5.2 (Leaves and branches) Let G = (V, E) be a symmetric graph, C a
conductance matrix and ι ∈ R

V an input current (with ι∗1 = 0). Let v ∈ V be such
that ιv = 0 and dv = 1. Consider the longest path in G, v1 = v, v2, . . . , vn with the
property that ιvk = 0 and dvk = 2 for all k = 2, . . . , n−1. Since ιv1 = 0, Kirchoff law
implies that no current can flow in the edge (v1, v2) and a simple inductive argument
yields that the same happens in all edges (vk−1, vk) for k = 3, . . . n. Ohm’s law then
implies that Wv1 = · · · = Wvn .

Example 5.3 (Toroidal grid) Consider the toroidal 2-gridG = Cn ×Cn with unitary
conductances (C = AG).We know fromExample 1.7 that its Laplacematrix L(G) =
L(C) has eigenvalues

λ(h,k) = 4 − 2 cos

(
2π

n
h

)
− 2 cos

(
2π

n
k

)
(h, k) ∈ {0, . . . , n − 1}2

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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with corresponding eigenvectors x (h,k)
(v,w) = exp

[
i 2πn (vh + wk)

]
. Therefore, the Green

matrix can be represented as

(ZC)(v1,w1)(v2,w2) =
∑

(h,k)�=(0,0)

exp
[
i 2πn ((v1 − v2)h + (w1 − w2)k)

]
4 − 2 cos

(
2π
n h

) − 2 cos
(
2π
n k

)
Ifwe consider an input current ι=e(0,0)−e(α,0) (thus, supported on the twonodes (0, 0)
and (α, 0)), we obtain that the corresponding voltage is given, up to constants, by

W(v,w) = (ZC)(v,w)(0,0) − (ZC)(v,w)(α,0)

=
∑

(h,k)�=(0,0)

[
1 − exp

(−i 2πn αh
)]
exp

[
i 2πn (vh + wk)

]
4 − 2 cos

(
2π
n h

) − 2 cos
(
2π
n k

) .

A similar explicit (but more complex) formula can be obtained for general Abelian
Cayley graphs by applying Proposition 1.18. Another example is reported below.

Example 5.4 (Hypercube) Consider the hypercube graph Hn having node set V =
{0, 1}n , defined in Example 1.3. Eigenvalues of the coincide with the numbers 2k for
k ∈ {0, . . . , n}: Eigenvalue 2k has multiplicity

(n
k

)
and corresponding eigenvectors

φ(x)
v = (−1)

∑
i xi vi , x, v ∈ {0, 1}n,

∑
i

xi = k

Therefore,

(ZC)vw =
∑

x∈{0,1}n\{(0,...,0)}

(−1)
∑

i xi (vi−wi )

2
∑

i xi

If we consider an input current ι = e(0,0,...0) − e(1,1,...,1), we obtain that the corre-
sponding voltage is given, up to constants, by

Wv =
∑

x∈{0,1}n\{(0,...,0)}

(−1)
∑

i xi vi − (−1)
∑

i xi (1−vi )

2
∑

i xi
(5.5)

Even though theGreenmatrix is a useful tool in constructing the theory, its explicit
computation can be inconvenient. However, one key advantage of the electrical net-
work approach is that there exist simple and powerful techniques to compute voltages
without the need for an explicit computation of the Green matrix. For instance, the
following result collects several useful tools that permit to simplify the computation
of voltages and current flows by replacing a network by an equivalent simpler one.
Preliminarily, notice that also graphs with multiple edges would be appropriate in
this context: Kirchoff’s and Ohm’s law would remain valid and the theory developed
so far would directly extend to this case.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Proposition 5.1 Let (G,C) be an electrical network. Let ι ∈ R
V be such that

ι∗1 = 0 and let (W, φ) be the corresponding voltage and current flow.

• Parallel law. Suppose e1 and e2 are two edges insisting on the same two vertices
u and v. Consider the new electrical network (G̃, C̃) where G̃ only differs from G
as the two edges e1 and e2 are replaced by a single edge e with conductance C̃ee =
Ce1e1 + Ce2e2 . Then, the voltage and the current flow in (G̃, C̃), corresponding to
the same exogenous input currents ι, coincide with W, φ.

• Series law. Suppose that v ∈ V is such that ιv = 0 and dv = 2 with neighbors
u1 and u2. Consider (G̃, C̃) where G̃ is a graph on V \ {v} with same undirected
edges as G but {u1, v} and {v, u2} replaced by {u1, u2}, and C̃u1u2 = C̃u2u1 =
(C−1

u1v+C−1
vu2)

−1. The voltage and current flow W̃ , φ̃ in (G̃, C̃) satisfy: W̃w = Ww for

everyw ∈ V \{v}, φ̃w1w2 = φw1w2 for nodes in V \{v} such that {w1,w2} �= {u1, u2},
while φ̃u1,u2 = φu1,v = φv,u2 .

• Glueing. Suppose that Wu = Wv. Consider the new electrical network (G̃, C̃)

where G̃ is obtained from G by glueing together the two nodes u and v, while
C̃ = C maintains the same conductances an all edges, and consider the input
current ι̃ defined by

ι̃w = ιw ∀w ∈ V \ {u, v} , ι̃u+v = ιu + ιv

where u + v denotes the glued node in G̃. Then, the corresponding voltage W̃
and current flow φ̃ on (G̃,C) coincide with (W, φ), with the only change that
W̃u+v = Wu = Wv.

Proof Straightforward check that Kirchoff’s and Ohm’s laws are satisfied in the new
networks. �

Wewill see in Sects. 5.3 and 5.4 that certain applications require to assign voltages
in certain nodes. Below we show how to do it. Notice first of all that (5.3) can be
rewritten as

L(P)W = D−1
C1 ι,

where P = D−1
C1C is the canonical reversible stochastic matrix associated with C .

Componentwise, this reads as

Wu −
∑
v∈V

PuvWv = ιu∑
w
Cuw

In particular, for each u ∈ V such that ιu = 0, it holds that

Wu =
∑
v∈V

PuvWv. (5.6)

A function W ∈ R
V satisfying (5.6) (or equivalently (5.3)) for every u belonging to

a subset Ṽ ⊆ V is said to be harmonic on Ṽ . We have the following result.
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Proposition 5.2 (Harmonic extension) Let Ṽ ⊆ V and let W̃ ∈ R
Ṽ . Then,

(i) There exists exactly one W ∈ R
V harmonic on V \ Ṽ and such that W|Ṽ = W̃ .

(ii) There exists a unique ι ∈ R
V such that ι∗1 = 0 and ιv = 0 for every v /∈ Ṽ such

that W is the voltage generated by the input current ι.

Proof (i) Order vertices of V in such a way that those in V \ Ṽ appear first and
consider the corresponding block decomposition

P =
(
Q R
S T

)
.

Consider a vector of type W = (x, W̃ )∗ and impose it satisfies (5.6) for every
u ∈ V \ Ṽ . This is equivalent to require

Qx + RW̃ = x . (5.7)

Since the graph is strongly connected, it is immediate to check, thanks to Proposition
2.4, that Q is an asymptotically stable sub-stochastic matrix. This implies that I −Q
is invertible, and therefore, (5.7) is solved by

x = (I − Q)−1RW̃ . (5.8)

Consequently, W = ((I − Q)−1RW̃ , W̃ )∗ is the wanted harmonic extension of W̃ .
(ii) It is sufficient to consider ι = L(C)W . �

Remark 5.1 (Harmonic extension is convex combination of assigned voltages) The
matrix (I − Q)−1R that appears in (5.8) has some important properties which we
now discuss. First, notice that the inverse of I − Q can be represented as a series
(I − Q)−1 = ∑∞

n=0 Q
k , and this implies that (I − Q)−1

uv ≥ 0 for all u, v ∈ V \ Ṽ .
Since also R is nonnegative it follows that (I−Q)−1R is also nonnegative.Moreover,
notice that since P is stochastic it holds (I − Q)1 + R1 = 0. But this implies that
(I − Q)−1R1 = 1. In other words, each row of (I − Q)−1R sums to 1. In general,
however, we cannot say that (I −Q)−1R is a stochastic matrix since it is not a square
matrix.

Example 5.5 (Binary trees) Consider a binary tree of depth t (see Fig. 5.1) with
unitary conductances and assume that the root node v0 is at voltage 0, while the 2t

leaves are at voltage 1. For symmetry reasons, all nodes at distance s from the root
node have the same voltage, and thus, we can replace, by the glueing and parallel
laws in Proposition 5.1, the network with an equivalent line graph Lt+1 with set of
nodes {v0, v1, . . . vt } and conductance matrix Cvsvs+1 = 2s+1 for s = 0, . . . , t − 1.
This implies that the total resistance between v0 and vt is given by

t−1∑
s=0

1

2s+1
= 1 − 2−t

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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v0

Fig. 5.1 A binary tree of depth 3: its root is labeled as v0

The current along the line graph is thus by Ohm’s law (1 − 2−t )−1. Voltages at the
various nodes can now be simply obtained by applying again Ohm’s law:

Wvs+1 − Wvs = (1 − 2−t )−12−(s+1)

and thus,

Ws = (1 − 2−t )−1
s−1∑
k=0

2−(k+1) = 1 − 2−s

1 − 2−t

Example 5.6 (Voltages in barbell graphs) Consider two complete graphs Ki =
(Vi , Ei ) (i = 1, 2) on the set of nodes Vi and unitary conductances. Fix two nodes
vi ∈ Vi and consider the barbell graph G = (V, E) where V = V1 ∪ V2 and
E = E1 ∪ E2 ∪ {(v1, v2), (v2, v1)}. Consider two nodes si ∈ (Vi \ vi ) and assign
voltages Ws1 = 0 and Ws2 = 1. We want to compute the harmonic extension of W .
For symmetry reasons,W will be constant at all nodes in Vi \ {si , vi } for i = 1, 2. By
the glueing property and the parallel law, the electrical network can thus be replaced
by a line with six nodes s1,w1, v1, v2,w2, s2 such that

Csi ,wi = Cwi ,vi = Ni − 2 , Cv1,v2 = 1

where Ni = |Vi |. In order to compute the current, we can use the series law further
reducing the electrical network to a single edge between s1 and s2 of conductance
[2(N1 − 2)−1 + 2(N2 − 2)−1 + 1]−1: The current coincides with the conductance.
Using now Ohm’s law we obtain

Ww1 = (N1−2)−1

2(N1−2)−1+2(N2−2)−1+1 , Wv1 = (2(N1−2))−1

2(N1−2)−1+2(N2−2)−1+1

Wv2 = 2(N1−2)−1+1
2(N1−2)−1+2(N2−2)−1+1 , Ww2 = 2(N1−2)−1+(N2−2)−1+1

2(N1−2)−1+2(N2−2)−1+1
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5.2 Effective Resistance in Electrical Networks

Avery useful concept in dealingwith electrical networks is that of effective resistance
between nodes. Formally, given an electrical network (G,C) and two nodes u, v ∈ V ,
we consider the input current ι = eu−ev. The corresponding voltage up to translation
is denoted by W , and the effective resistance between u and v is defined by

R eff(u, v) := Wu − Wv.

The average effective resistance in the network is then defined as

Rave(G,C) := 1

2N 2

∑
u,v∈V

R eff(u, v).

The average effective resistance can be used as a measure of graph connectivity, in
the sense that “well-connected” graphs will have small Rave. We will return to this
interpretation in Sect. 5.4 and in the Exercises.

Effective resistances can be characterized in terms of the Green matrix. Indeed,
recalling that W = ZC ι, it holds

R eff(u, v) = (eu − ev)
∗ZC(eu − ev) = (ZC)uu − 2(ZC)uv + (ZC)vv (5.9)

Therefore, recalling that ZC1 = 0, we also have

Rave(G,C) = 1

2N 2

∑
u,v∈V

R eff(u, v) = 1

N
tr(ZC) = 1

N

∑
i≥2

1

λi
, (5.10)

where 0 = λ1, . . . , λN are the eigenvalues of L(C).

Example 5.7 (Effective resistance on line graphs) Consider the symmetric line graph
G = LN+1 (with vertex set V = {1, . . . , N + 1}) with conductance matrix C ∈
R

V×V . It immediately follows from Example 5.1 that

R eff(1, N + 1) = WN+1 − W1 =
N∑

k=1

Ckk+1.

In the special case when C = AG (all edges have conductance equal to 1), we obtain
R eff(1, N + 1) = N .

Example 5.8 (Effective resistance on trees) Let G = (V, E) be a tree, C a conduc-
tance matrix and ι ∈ R

V an input current such that ιv = 1 = −ιw while ιu = 0 for
every u �= v,w. Consider the only path v = v1, . . . , vN+1 = w connecting v tow inG.
FromExample 5.2 and a repetition of glueing operations, it is immediate to check that
all edges not contained in this path will have a current flow equal to 0. Consequently,
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a current flow equal to 1 will be flowing from v to w along the connecting path as if it
was a line graph. From Example 5.7, it thus follows that R eff(v,w) = ∑N

k=1 Cvkvk+1

In the special case whenC = AG , it follows that the effective resistance between two
nodes coincides with their distance on the tree. Notice that it is also easy to compute
the corresponding voltage at any vertex of the tree. Given a vertex u ∈ V , let vk be
the closest vertex of the path v = v1, . . . , vN+1 = w to u. Then, Wu = Wvk .

Example 5.9 (Effective resistance on cycles) Consider the graph Cn with node set
Zn . By applying the parallel law and Example 5.7, we observe

R eff(u, v) = (|v − u|−1 + (n − |v − u|)−1
)−1 = |v − u| (n − |v − u|)

n
.

For general graphs, the computation of the effective resistance can be a complex
problem and closed formulas can hardly be found. However, there are tools to effi-
ciently estimate it. Before we can illustrate them, we need to introduce a further
concept. Given an electrical circuit (G = (V, E),C), a flow on it is any function
φ ∈ R

E such that φuv = −φvu . As before Ē will denote the set of undirected edges
of G. Given an incidence matrix B of G, we can consider the flow defined on Ē
and denote it by φ̄ (as we did for the current flow above). The energy of a flow φ is
defined as

|φ| = (1/2)
∑

(uv)∈E

φ2
uv

Cuv
=

∑
{uv}∈Ē

φ̄2
{uv}
Cuv

Given ι ∈ R
V such that ι∗1 = 0, we say that a flow φ is compatible with ι if it satisfies

Kirchoff’s law B∗φ̄ = ι. The following variational principle holds true (a proof can
be found in [20, Theorem 9.10]):

Lemma 5.1 (Thomson’s principle) Let (G,C) be an electrical network. Then,

R eff(u, v) = inf{|φ| : φ is a flow compatible with ι = eu − ev}.

Moreover the unique minimizer is the current flow induced by the input current
ι = eu − ev.

An immediate important consequence is the following result.

Corollary 5.1 (Raileigh’s monotonicity law) Let G be a symmetric graph and C ′
and C ′′ two conductance matrices on G such that C ′

uv ≤ C ′′
uv for all u, v ∈ V . Then,

for any pair of vertices the corresponding effective resistances in the two networks
satisfy

R′
eff(u, v) ≥ R′′

eff(u, v).

Glueing nodes in an electrical network is equivalent to put conductance equal to
∞ between certain pairs of nodes. By virtue of Raileigh monotonicity law, this
implies that the effective resistance, in the glueing operation, can never increase.
The following is an example of application of this useful remark.
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Example 5.10 (Effective resistance on grids) Consider a bidimensional grid Ln×Ln

with set of nodes {1, . . . , n}2 and unitary conductances. Suppose wewant to estimate
the effective resistance between (1, 1) and (n, n). Replace the network by a line
network obtained by glueing together all nodes at distance d from (1, 1) (and denote
such super node by vd ). The nodes (1, 1) and (n, n) become v0 and v2n−2 in the new
network. Let nd be the number of nodes at distance d from (0, 0). Since (x, y) is at
distance d from (0, 0) if and only if x + y = d + 2, we have that nd = d + 1 if
d ≤ n − 1. It follows that Cvdvd+1 = 2(d + 1) for all d = 0, . . . , n − 2. Considering
that the new network is specularly symmetric with respect to the node vn−1, we have
that

R eff((1, 1), (n, n)) ≥ R eff(v0, vd) =
n−2∑
d=0

1

d + 1
≥

n∫
1

1

x
d x = log n.

By constructing suitable flows and applying Thompson’s principle, it can be shown
that that it also holds R eff((1, 1), (n, n)) ≤ 2 log n. In case of grids of higher
dimension Ld

n , instead, there exists cd > 0 such that R eff(v,w) ≤ cd for all
v,w ∈ {1, . . . , n}d . More details can be found in [20].

When voltages are imposed at some nodes, all other voltages can be computed in
terms of effective resistances.

Proposition 5.3 (Voltages and effective resistance) Let (G,C) be an electrical net-
work and v0 and v1 two distinct nodes in G. Let W be the voltage satisfying Wv0 = 0
and Wv1 = 1. Then,

Wv = 1

2
+ R eff(v, v0) − R eff(v, v1)

2R eff(v0, v1)
∀v ∈ V . (5.11)

Proof Clearly, we can represent W = ZC ι + c1 where ι is the input current given
by ι = R eff(v0, v1)−1[ev1 − ev0 ] and c a constant. Imposing Wv0 = 0, we obtain that
c = R eff(v0, v1)−1[(ZC)v0v0 − (ZC)v0v1]. For a generic v ∈ V , the voltage can thus
be computed as follows (denoting ZC as Z for conciseness):

Wv = Zvv1 − Zvv0 + Zv0v0 − Zv0v1
R eff(v0, v1)

= (−Zvv + 2Zvv1 − Zv1v1) + (Zvv − 2Zvv0 + Zv0v0 ) + (Zv0v0 − 2Zv0v1 + Zv1v1)

2R eff(v0, v1)
.

The result now follows from relation (5.9). �

We now present a significant example.

Example 5.11 (Harmonic functions on line graphs) Consider the symmetric line
graph G = Ln+1 with vertex set V = {1, . . . , n + 1} and with conductance matrix
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C = AG . Let Ṽ = {1, n+1} and put W̃1 = 0 and W̃n+1 = 1. LetW be the harmonic
extension of W̃ . Using formula (5.11), we immediately obtain

Wk = 1

2

(k − 1) − (n + 1 − k) + n

n
= k − 1

n
, ∀k.

Notice that if the voltage assigned in nodes 1 and n + 1 were different, namely
W̃1 = w̃1 and W̃n+1 = w̃n+1, then using the fact that the harmonic extension is a
linear function of the boundary conditions, we would obtain the new voltage

W̃k = w̃1 + k − 1

n
(w̃n+1 − w̃1).

Furthermore, it is important to be aware that Proposition 5.3 can be applied when
the two nodes v0 and v1 are the outcome of glueing operations. Hence, its scope
of application covers all cases where some nodes are connected to any two voltage
levels.

5.3 Averaging Dynamics with Stubborn Agents

In the examples of consensus models studied so far, we have essentially assumed
that all the agents are implementing the same dynamic law, all of them cooperating
to reach a consensus. Very interesting models can however be obtained considering
instead heterogeneous model where agents have different behaviors. As a special
case, here we investigate the case when some of the agents maintain fixed initial
state. These agents will be called stubborn. Several interpretations are possible. In
robotic networks, these agents can be interpreted as leaders who are trying to keep the
rest of the units within a certain region: In this context, we talk about the containment
problem. In the context of opinion dynamics, stubborn agents play the role of opinion
leaders or influencers.

Let G = (V, E) be a strongly connected aperiodic graph endowed with a sto-
chastic matrix P ∈ R

V×V such that GP = G. Consider the split V = V � ∪ V f

with the understanding that agents in V � are the leaders while those in V f are the
followers. The dynamics we want to consider is given by the modified stochastic
matrix P̃ ∈ R

V×V defined by

P̃uv =
{
Puv if u ∈ V f , v ∈ V
δuv if u ∈ V �

If V � = {v	}, the node v	 will be globally reachable and aperiodic for the graph
GP̃ . Therefore, thanks to Theorem 2.2, there will be convergence to a consensus.
Because of Proposition 2.5, it follows that the corresponding invariant probability
for P will be π = δv	 and therefore

http://dx.doi.org/10.1007/978-3-319-68022-4_2
http://dx.doi.org/10.1007/978-3-319-68022-4_2


120 5 Averaging with Exogenous Inputs and Electrical Networks

P̃ t x(0) → 1x(0)v	

In other terms, consensus coincides with the initial (unchanged) state of the unique
leader v	. If |V �| > 1, the graph GP̃ will not possess a globally reachable vertex,
and therefore, consensus will not in general be achievable. Nevertheless, we would
like to understand the behavior of P̃ t x(0) for t → +∞.

If we order elements in V in such a way that followers come first, the matrix P̃
will have the block structure:

P̃ =
[
Q R
0 I

]

where Q ∈ R
V f ×V f

, R ∈ R
V f ×V �

, and where I ∈ R
V �×V �

is the identity matrix.
If we split accordingly the state vector x(t) = (x f (t), x�(t) ∈ R

V , we thus have
dynamics

x f (t + 1) = Qx f (t) + Rx�(t)
x�(t + 1) = x�(t)

(5.12)

By the assumption made, it follows that Q is sub-stochastic satisfying the assump-
tions of Proposition 2.4. Hence, Q is asymptotically stable. These dynamics easily
imply that x f (t) converges to x f (∞) ∈ R

V f
determined by the fixed point relation:

x f (∞) = Qx f (∞) + Rx�(0)

which is equivalent to
(I − Q)x f (∞) = Rx�

or since I − Q is invertible, to

x f (∞) = (I − Q)−1Rx� (5.13)

where x� = x�(0). Notice in particular that the initial condition of the state of the
followers, x f (0) does not play any role in the final state. If all the leaders share the
same state, x�

v = c for every v ∈ V �, then it is immediate to check that x f (∞)v = c
for every v ∈ V f , namely, they reach consensus. In general, however, x f (∞) is not a
consensus state. If we confront the formula for x f (∞) above with (5.8), we see that,
indeed, x f (∞) can be interpreted as the harmonic extension of the leader assignment
x�. If the original matrix P is a reversible stochastic matrix, we can then apply all
the machinery from electrical networks for computing the vector x f (∞).

Example 5.12 Consider the graph LN+1 with vertex set {1, . . . , N + 1} and leader
nodes �1 = 1 and �2 = N + 1. Let P be the SRW on the follower nodes. It follows
from Example 5.11 that the followers’ limit state is given by

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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x f
k (∞) = x�

�2
− x�

�1

N
(k − 1) + x�

�1
.

This formula also shows that there is consensus if and only if x�
�1

= x�
�2
.

Remark 5.2 (Connectivity and influence)Notice that
(
(I−Q)−1R

)
hk = ∑

n

(
QnR

)
hk

is not equal to 0 if and only if there exists a path in the graph connecting the follower
h to the leader k. This implies that if a follower h can reach leader k only, then
x f
h (∞) = x�

k (0).

Remark 5.3 (Multi-dimensional case) If the evolving state of each unit xv(t) is a vec-
tor (e.g., in R2 or R3) possibly indicating positions, the considerations above remain
valid with the usual interpretation of the matrix multiplications done in previous
chapter. Relation (5.13), in this case, has an even more vivid geometric representa-
tion. It says that the asymptotic state of each follower is a convex combination of the
state of the leaders, in other words, each follower will eventually stay in the convex
polyhedron whose vertices are the states of the leaders.

5.4 Estimation from Relative Measurements

Consider a set of agents V and a symmetric connected graphG = (V, E). Each agent
v possesses an attribute x̄v ∈ R

q (to be interpreted as position or quality, for instance)
which is unknown to the agent itself. Any pair of agents v,w ∈ V , connected by an
edge in G, make a cooperative measurements of their relative position

b{v,w} = x̄v − x̄w + n{v,w}, (5.14)

where n{v,w} is a random variable modeling the measurement noise. We will assume
that random variables are independent and identically distributed with mean 0 and
variance σ 2. Also, we will assume that q = 1: This choice does not entail any loss
of generality as the case of q > 1 can be captured working componentwise.

Notice that the measurements and the noises are naturally defined on the set of
undirected edges Ē of the graph b, n ∈ R

Ē . However, also notice that the measure-
ment model (5.14) assumes that a direction has been decided at the level of each
pair v,w. If we consider the incidence matrix B of G corresponding to such chosen
directions (e.g., B{v,w}v = 1 in reference to (5.14)), then we can rewrite relations
(5.14) in a more compact form as

b = Bx̄ + n. (5.15)

On the basis of the available measurements b, the goal is to obtain an estimate x̂ of
x̄ . A classical solution is the so called least squares estimator, defined as

x̂ := argminx∈RV ||Bx − b||22 (5.16)
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Notice that for sure the above minimum is not unique as B1 = 0. Indeed, notice
that any translation of all real positions x̄ of a vector c1 would not change the vector
b: In other terms, estimation can only be achieved modulo a translation addend. We
will see below that this is the only “freedom” in the system so that (5.16) is uniquely
defined up to this translation.

Remark 5.4 (Maximum likelihood interpretation) In the case when the variables
n{v,w} are Gaussian, the least squares estimator coincide with the classical Maximum
Likelihood (ML) estimator. Indeed, the density function of b = Bx + n assuming x
to be a parameter is given by

f (b|x) = 1

(2πσ 2)|Ē |/2 e
− ||b−Bx ||22

(2σ2)|Ē |

and therefore, the ML estimator is given by

x̂ML:=argmaxx∈RV f (b|x) = argminx∈RV ||Bx − b||22
Consider the functional

J (x) = ||Bx − b||22, (5.17)

which is what we want to minimize. Notice that J (x) = x∗B∗Bx − 2b∗Bx + ||b||22
is indeed a convex quadratic function and its minima coincide with its stationary
points. Since its gradient is given by ∇ J (x) = 2B∗Bx − 2B∗x , its minima are the
solutions of the equation LGx = B∗b (recall that B∗B = LG). This equation is the
voltage equation in the electrical network (G, AG) and with input current ι = B∗b
(notice that ι∗1 = b∗B1 = 0 as required). Solutions are then given by

x̂ = ZGB
∗b + c1, (5.18)

provided we denote ZG = ZAG . Notice that, since 1∗ZG = 0, it follows that the
solution x̂ = ZGB∗b is the (only) one satisfying 1∗ x̂ = 0 (barycenter in the origin).

Remark 5.5 (Trees) In the special case when G is a tree, notice that B is an (N −
1)× N -matrix having rank equal to N −1. Therefore, B is onto and there must exist
x̂ satisfying Bx̂ = b; this is for sure a minimizer of J (x), hence it must coincide
with the solution (5.18). This implies that must hold BZGB∗ = I .

We now want to study the performance of the least squares estimator. Particu-
larly, we are interested in evaluating the effects of the noise and the topology of the
graph. A natural performance measure is the minimum mean quadratic error, which
considering the nonuniqueness of the solution, takes the form

Jrel = 1

N
E‖x̂ − x̄‖22 := 1

N
min
c∈R

E||(ZGB
∗b + c1) − x̄‖22, (5.19)
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where the expectation is taken over the noise n. Notice that the optimal c is given by
c = N−11∗ x̄ , which corresponds to the estimate x̂ having the same barycenter of x̄ .

The following simple result shows that the mean-square error of the least squares
solution depends only on the variance of the noise and on the topology of the graph
through the Green matrix of the graph:

Proposition 5.4 (MSE formula) Provided the undirected graph G is connected,
cost (5.19) can be computed as

Jrel = σ 2

N
tr(ZG). (5.20)

Proof We compute as follows

Jrel = 1
N min

c∈R E||(ZG B∗b + c1) − x̄‖22
= 1

N min
c∈R E||ZGLG x̄ − x̄ + c1 + ZG B∗n||22

= 1
N min

c∈R E||1(−N−11∗ x̄ + c) + ZG B∗n||22
= 1

N min
c∈R E

[
N (−N−11∗ x̄ + c) + n∗BZ2

G B∗n
]

= 1
N E[n∗BZ2

G B∗n] = 1
N E tr[ZG B∗nn∗BZG ] = 1

N tr[ZG B∗
E[nn∗]BZG ] = σ 2

N tr(ZG),

by using (5.4) and recalling N−11∗ x̄ = c. �

It follows from (5.10) that
Jrel = σ 2Rave(G, AG).

Whenever we are able to compute or estimate the effective resistance in a graph, we
will be able to estimate the performance of the mean-square position estimator. In
particular, it follows from Examples 5.7 and 5.10 that for d-dimensional grids

Jrel =
⎧⎨
⎩

Θ(N ) for d = 1
Θ(log N ) for d = 2
Θ(1) for d > 2

(5.21)

as N → ∞. We thus have strikingly different behaviors of the algorithm for d ≤ 2
and d > 2, as in the first case performance degrades as N increases. A similarly poor
performance affects trees: Example 5.8 implies that Jrel is linear in the diameter on
trees with bounded degrees. This fact means that, even though the tree structure is
sufficient to estimate absolute distances (as explained in Remark 5.5), the availability
of additional measurements is essential to obtain good performance.

As shown by (5.18), the solution to the optimization problem (5.16) is easily
obtained analytically. However, it is not immediately clear whether in practice such
a solution can be computed in a distributed fashion by the nodes. We show now that
the answer is positive, by presenting a distributed algorithm that allows each node v
to compute its own component of the estimate x̂v.
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Let us recall that J (x) as defined in (5.17) is a convex function: Then its minima
can be found by an iterative gradient descent algorithm. Let x(t) ∈ R

V be the vector
of node estimates at iteration t . Then, we consider the following algorithm

x(t + 1) = x(t) − τ∇ J (x(t)),

with τ > 0 to be determined in order to ensure convergence. The recursive law can
be rewritten as:

x(t + 1) = x(t) − τ(LGx(t) − B∗b)
= (I − τ LG)x(t) + τ B∗b

Defining P := I − τ LG ∈ R
V×V and y := τ B∗b ∈ R

I , we obtain the compact form

x(t + 1) = Px(t) + y. (5.22)

It is of note that the matrix P is inherently adapted to the measurement graph G,
in the sense that Puv > 0 only if (u, v) is an edge in G. This observation is key as it
implies that the algorithm is naturally distributed over the graph which describes the
problem, that is, there is no need for communication between agents which do not
share a measurement.

The convergence properties of the algorithm are summarized in the next result.

Proposition 5.5 (Convergence)Let G be symmetric and strongly connected. Choose
τ such that 0 < τ < 1

dmax
, where dmax denotes the largest degree in G. Then, the

algorithm (5.22) is such that
lim

t→+∞ x(t) = x̂,

where x̂ is the solution in (5.18) characterized by the condition 1
N 1

∗ x̂ = 1
N 1

∗x(0).

Proof From the assumption on τ it follows that P is a symmetric, irreducible, ape-
riodic stochastic matrix. Then, we know from Chap.2 that 1 is a simple eigenvalue
whose eigenspace is spanned by 1, while all other eigenvalues are, in modulus,
strictly less than 1. Since 1∗y = 0, it easily follows that x(t) converges to a solution
of the equation x = Px + y. Substituting the expression of P , we immediately get
the result. Invariance of the barycenter simply follows by applying 1∗ to both sides
of (5.22). �

We observe that, given an initial condition x(0), the algorithm converges to a
corresponding solution x̂ , specifically that one with the same average as x(0). Then,
in order to converge to the best solution, it is necessary to impose the same average
of x̄ to the initial condition x(0).

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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Fig. 5.2 Graphs G1 and G2 for Exercise 5.2

Exercises

Electrical Networks

Exercise 5.1 (Notions of incidence matrix) Compare the definition of incidence
matrix given at the beginning of this chapter for undirected graphs and the notion
defined in Exercise 1.12 for general weighted graphs.

Exercise 5.2 (Potentials on small graphs) Consider the graphs is Fig. 5.2. Compute
the voltages

(i) W ′ defined on G1 such that W ′
0 = 0 and W ′

1 = 1;
(ii) W ′′ defined on G1 such that W ′′

0 = 3 and W ′′
1 = 1;

(iii) W ′′′ defined on G2 such that W ′′′
0 = 0 and W ′′′

3 = 1 and W ′′′
6 = 2.

Exercise 5.3 (Voltages on a hypercube) Consider the hypercube graph Hn having
node set V = {0, 1}n , defined in Example 1.3, with unitary conductances. Consider
an input current ι = e(0,0,...,0) − e(1,1,...,1). Voltages at various nodes can be computed
using the following method which is alternative to Example 5.4. First notice that for
symmetry reasons, nodes at a certain distance d from (0, 0, . . . 0) will all have the
same voltage. Transform consequently the electrical network into an equivalent line
and compute voltages. Show that you obtain the same result as formula (5.5).

Exercise 5.4 (Effective resistance is a distance) Verify that the effective resistance
satisfies the axioms (recalled in Exercise 1.11) to be a metric on the set of nodes of
an electrical network.

Exercise 5.5 (Average effective resistance) Using either (5.20) or an “electrical”
argument, compute Rave(G) of the following graphs (assume for simplicity to have
unitary conductances):

(i) complete graph KN ;
(ii) cycle graph CN ;
(iii) complete bipartite graph KN1,N2 ;

http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
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(iv) hypercube graph Hk ;
(v) barbell graph as defined in Example 5.6;
(vi) (toroidal) grid of dimension d, thereby proving (5.21).

Exercise 5.6 (Effective resistance on binary tree) Consider a binary tree of depth n
with edges of unit conductance. Compute the effective resistance between the root
and the leaves (glued together).

Exercise 5.7 (Foster’s equality) Let the conductance matrix C have unit entries.
Show that

∑
{u,v}∈Ē R eff(u, v) = |V | − 1.

Exercise 5.8 (Green matrix of a stochastic matrix) For any aperiodic irreducible
stochastic matrix P having invariant probability π , the Green matrix can be defined
as

ZP :=
+∞∑
t=0

(Pt − 1π∗).

Show that ZP L(P) = L(P)ZP = I − 1π∗ and (ZP + 1π∗) = (L(P) + 1π∗)−1.

Exercise 5.9 (Jx cost on symmetric matrices) Let the N -dimensional stochastic
irreducible aperiodic matrix P be symmetric and recall the cost

Jx (P) = 1

N
tr

∑
t≥0

(P2t − 1

N
11∗)

defined in (4.7). Verify that, following the notation from Exercise 5.8,

Jx (P) = 1

N
tr ZP2 = 1

N

N∑
i=2

(
1 − μi (P

2)
)−1

,

and thus by virtue of (5.10)

Jx (P) = Rave(GP2 , P2).

Exercise 5.10 (Jx cost on reversible matrices) This exercise extends Exercise 5.9
to reversible irreducible aperiodic matrices. In that case, the cost takes the form
Jx (P) = 1

N

∑
t≥0

||Pt − 1π∗||2F . For a reversible P , we can define the associated

conductance matrix as
Φ(P) = N diag(π)P.

(i) Verify that Φ(P) is symmetric and 1∗Φ(P)1 = N .
(ii) Verify that if C is a conductance matrix, then Φ(D−1

C1C) = (1∗C1)−1N C .
(iii) [22, Theorems 3.1 and 3.2] If we assume that P is reversible and irreducible

with positive diagonal, we let D = Φ(P2) and we denote by A the adjacency
matrix of GP , then

http://dx.doi.org/10.1007/978-3-319-68022-4_4
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N 2π3
min

πmax
Rave(GD, D) ≤ Jx (P) ≤ N 2π3

max

πmin
Rave(GD, D),

and

Nπ3
min

8p2maxd
2
maxπ

2
max

Rave(GP , A) ≤ Jx (P) ≤ Nπ3
max

8p2minπ
2
min

Rave(GP , A),

whereπmin ≤ πv ≤ πmax anddv ≤ dmax for every node v and pmin ≤ Puv ≤ pmax

for every Puv > 0.

Exercise 5.11 (Jx cost on example graphs) Derive the scaling of Jx for the symmet-
ric random walk matrix on the graphs of Exercise 5.5. To this goal, you can apply
Exercises 5.9 or 5.10 depending on the graph.

Consensus with stubborn agents

Exercise 5.12 (Asymptotic followers state) Consider the two graphs (with leader and
follower nodes) in Fig. 5.3, and the matrices corresponding to the Simple Random
Walks on them.

(i) Referring to the graph in Fig. 5.3 (left), compute the limit states of the followers
as a function of the states of the leaders l0, l1, l2, l3, l4, as time goes to infinity.

(ii) Referring to the graph in Fig. 5.3 (right), compute the limit states of the followers
as a function of the states of the leaders l0 and l1 = l2 = l3 = l4. (Hint: take
advantage of the symmetries to reduce the number of unknowns).

Exercise 5.13 (Asymptotic followers state on trees) Compute x f (∞) as a function
of x�(0) for the SRW on the trees with stubborn nodes in Fig. 5.4 Generalize the
second graph when the lines departing from the common central node have any
length n.

l0 l1

l2

l3

l4

1

2

3

4

56

7 8

l0 l1

l2

l3

l4

1

2

3

4

56

7 8

Fig. 5.3 Leader agents are represented by diamonds, follower agents by circles
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Fig. 5.4 Trees with stubborn agents (filled in black)

Exercise 5.14 (Leaders in barbell graphs I) Consider the graph G = (V, E) where
V = V ′ ∪ V ′′ with V ′ = {v′

1, . . . , v
′
N } and V ′′ = {v′′

1, . . . , v
′′
M } and

E := {(v′
i , v

′
k) | i, k = 1, . . . , N } ∪ {(v′′

i , v
′′
k ) | i, k = 1, . . . , M} ∪ {(v′

1, v
′′
1), (v

′′
1, v

′
1)}

Assume that v′
a and v′′

a are two leaders having opinion, respectively, equal to 0 and
1. Assume for the remaining nodes the consensus dynamics induced by the natural
SRW and consider the asymptotic opinions as time goes to infinity.

(i) Compute the asymptotic opinions of the followers.
(ii) Compute the limits of such asymptotic opinions in the case when N = M →

+∞.
(iii) Compute the limits of such asymptotic opinions in the case when N = M2 →

+∞.

Exercise 5.15 (Leaders in barbell graphs II) Consider the graphG = (V, E)where
V = V ′ ∪ V ′′ with V ′ = {v′

1, . . . , v
′
N } and V ′′ = {v′′

1, . . . , v
′′
N } and

E := {(v′
i , v

′
k) | i, k = 1, . . . , N } ∪ {(v′′

i , v
′′
k ) | i, k = 1, . . . , M}

∪ {(v′
h, v

′′
h), (v

′′
h, v

′
h) | h = 1, . . . r}

Assume that {v′
r+1, . . . v

′
r+s} and {v′′

r+1, . . . v
′′
r+s} are two set of leaders having opin-

ion, respectively, equal to 0 and 1. Consider for the remaining nodes the consensus
dynamics induced by a SRW on this graph.

(i) Compute the asymptotic opinions of the followers as functions of r and s.
(ii) Compute the limits of such asymptotic opinions in the case when N → +∞

and r, s are kept constant.
(iii) Compute the limits of such asymptotic opinions in the case when �r = αN�,

�s = βN�, and N + ∞.

Exercise 5.16 (Optimal leader selection) Let x denote the harmonic extension on a
graph when V � = {v0, v1} and xvi = i . We think of the two leaders as competing to
maximize their own influence. We define
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H(v0, v1) = 1

N

∑
v∈V

xv.

Note that H(v0, v1) ∈ (0, 1).

(i) Show that

H(v0, v1) = 1

2
−

1
N

∑
v R eff(v, v0) − 1

N

∑
v R eff(v, v1)

2R eff(v0, v1)

(ii) Consider the optimization problem

min
v0∈V

max
v1∈V \{v0}

H(v0, v1).

Show that the optimal value is not larger than 1
2 and the optimal solution is the

optimal solution of minw
∑

v R eff(v,w).

Bibliographical Notes

Themost influential works for our treatment of electrical networks in connectionwith
reversible stochastic matrices are the classical monograph [11] and the textbook [20],
where the reader can find a more comprehensive treatment. A detailed analysis of the
average resistance on d-dimensional graphs, which refines and extends Example 5.10
and Eq. (5.21), has been provided in various papers [2, 8, 31, 33]: For instance, it is
known that the average resistance decreases with increasing d. The optimal choice of
how to distribute conductances to minimize the average resistance is studied in [17].

Consensus with stubborn agents has attracted significant attention, in view of dif-
ferent applications. In robotic networks, it can be seen as a containment problem [19].
In social networks, stubborn agents that do not change their opinions are present,
explicitly or implicitly, in a variety of models of opinion dynamics [1, 14, 16, 23,
25]. A recent survey of related literature has been given in [26]. Electrical networks
have been used as a tool in this context by [10, 34]. Recently, the problem of the
optimal placement of stubborn agents has recently attracted significant attention, also
in relation with classical problems of actuator selection in control theory: Various
objective functions have been considered, see [9, 12, 21]. The formulation used in
Exercise 5.16 derives from [34, 35]. The paper [34] proposes a message-passing
algorithm to effectively solve the placement problem for v1 (after v0 is in place). The
algorithm was deduced within the electrical framework but has now been extended
to nonreversible update matrices [29].

The problem of estimation from relative measurements studied in Sect. 5.4 has
been brought to our attention by reading [3–5]. The electrical framework is a useful
tool for its analysis [4, 32]. This estimation problem relates to various streams of
applied research: It can be interpreted as a problem of relative localization between



130 5 Averaging with Exogenous Inputs and Electrical Networks

mobile robots [3], sensor calibration for wireless sensor networks [6], statistical
ranking in machine learning [24], clock synchronization [18], or voltage estimation
in power networks [13].

The simple distributed gradient algorithm is analyzed in [30], but several more
sophisticated solutions have been proposed since at least [3]. We note that also ran-
domized dynamics have been studied,which extend the ideas ofChap. 3 to consensus-
like dynamics with inputs [7, 15, 27]. A general convergence analysis of such affine
consensus-like randomized dynamics is given in [28].
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