
Chapter 4
Performance and Robustness of Averaging
Algorithms

Abstract This chapter has the goal of introducing more instruments for the study of
consensus algorithms. We will define several performance metrics: Each proposed
metric highlights a specific aspect of the algorithm, possibly in relation with a field
of application. Namely, we shall consider the speed of convergence in Sect. 4.1,
a quadratic control cost in Sect. 4.2, the robustness to noise in Sect. 4.3, and the
estimation error in a distributed inference problem in Sect. 4.5. The metrics that we
describe share the following feature: under suitable assumptions of symmetry of the
update matrix, they can be evaluated as functions of the eigenvalues of the update
matrix.

4.1 A Deeper Analysis of the Convergence to Consensus

We consider the usual time-invariant consensus dynamics

x(t + 1) = Px(t), (4.1)

where the matrix P is adapted to a strongly connected aperiodic graph G = (V, E)

of order N . For simplicity, we assume that the matrix P is symmetric, although this
assumption can be relaxed to some extent. The eigenvalues of P are denoted as
μi for i ∈ {1, . . . , N } and μ1 = 1. We recall that the second eigenvalue is defined
as ρ2 = max{|μi |, i = 2, . . . , N }. When convenient, we will also make suitable
assumptions on the statistics of the initial condition.

In Chap.2, the speed of convergence to the consensus value of dynamics (4.1)
has been estimated in terms of the second eigenvalue ρ2 of the matrix P . From
Proposition 2.2 andCorollary 2.3,we can recall that the second eigenvalue determines
the convergence rate according to the estimate

N−1||Pt x(0) − N−111∗x(0)||2 ≤ ρ2t
2 N−1||x(0)||. (4.2)
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Notice that we have multiplied both sides of the inequality by N−1. Indeed, in the
large-scale limit N → +∞, it makes sense to consider the normalized version of the
squared norm N−1|| · ||2, because |x(0)v| ≤ ε for every v ∈ V yields N−1||x(0)||2
≤ ε2.

There are applications, however, where estimate (4.2) turns out to be too loose
or simply not adequate to the specific context. We consider the simplest such case,
where the initial conditions x(0)v are assumed to be realizations of independent
random variables with mean m and variance σ 2. From (4.2), by taking the mean
value we obtain:

N−1
E||Pt x(0) − N−111∗x(0)||2 ≤ σ 2ρ2t

2 . (4.3)

Actually, in this case, it is possible to work out an exact characterization of the
mean distance:

1

N
E||Pt x(0) − N−111∗x(0)||2 = 1

N
E[‖(Pt − N−111∗)x(0)‖2]

= 1

N
E[tr((Pt − N−111∗)x(0)x(0)∗(Pt − N−111∗))]

= 1

N
[tr((Pt − N−111∗)E[x(0)x(0)∗](Pt − N−111∗))]

= σ 2

N
tr(P2t − N−111∗). (4.4)

This formula can be rewritten in terms of the Frobenius norm of a square matrix A,

formally defined as ||A||F := √
tr(AA∗). In our case, we have that

||Pt − N−111∗||F =
√
tr(P2t − N−111∗) =

√√
√
√

N∑

i=2

|μi |2t .

Therefore,

N−1
E||Pt x(0) − N−111∗x(0)||2 = σ 2

N
||Pt − N−111∗||2F = σ 2

N

N∑

i=2

|μi |2t . (4.5)

Notice how (4.2) can be directly obtained from (4.5) by simply upper bounding
||Pt − N−111∗||F ≤ Nρ t

2. To illustrate the relation between these two estimates, we
propose a few examples.

Example 4.1 (Complete graph) If P = N−111∗, we trivially have that Pt − N−1

11∗ = 0 for every t so that ||Pt − N−111∗||F = 0. On the other hand, we also have
that ρ2 = 0. The two estimates coincide in this case.

Example 4.2 (Disconnected graph) Consider now the simple random walk associ-
ated with a disconnected graph consisting of two complete isolated graphs with N/2
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nodes each (N is assumed to be even):

P =
[ 2

N 11
∗ 0

0 2
N 11

∗

]
. (4.6)

The eigenvalues of P are 1 with multiplicity 2 and 0 with multiplicity N − 2. There-
fore,

||P t − N−111∗||F = 1, and ρ2 = 1.

In this case, expressions (4.5) and (4.2) respectively become, for t ≥ 1,

N−1
E||P t x(0) − N−111∗x(0)||2 = σ 2N−1,

N−1
E||P t x(0) − N−111∗x(0)||2 ≤ σ 2.

Clearly, they are significantly different in terms of N . Notice in particular that the
first bound says that, for large N , the mean distance from consensus is small for
every value of t ≥ 1. This difference seems in contrast with the fact that the simple
random walk on a disconnected graph does not lead to a consensus. However, notice
that the consensus values on the two components are both small for large N with high
probability because of the law of large numbers, and therefore, the two consensus
values are close to each other.

Perhaps more interestingly, this inconsistency between the two estimates is not
limited to disconnected graphs, as we show in the following example, which is in
fact a slight modification of the previous one.

Example 4.3 (Barbell graph) A barbell graph, defined for even N , is a graph com-
posed of two disjoint cliques connected by an edge. The SRW is now

P̃ = P +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2/N 2/N
2/N −2/N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where P is the SRW (4.6). Matrix P̃ has eigenvalue 1 with multiplicity 1, eigenvalue

0 with multiplicity N − 3 and two simple eigenvalues 1
2 − 2

N ± 1
2

√
1 + 8

N − 16
N 2 .

Here, we rare facing a bottleneck phenomenon due to the single edge connecting the
two cliques and this results in a very slow convergence rate ρ2(P) = 1 − 8

N 2 + o( 1
N 2 )

as N → ∞. Nevertheless, for all t ≥ 1, it holds
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||P t − N−111∗||2F =
(
1

2
− 2

N
+ 1

2

√

1 + 8

N
− 16

N2

)2t

+
(
1

2
− 2

N
− 1

2

√

1 + 8

N
− 16

N2

)2t

≤ 2

N
.

As in the previous example, the estimation error becomes small already from the first
iteration if N is large, but this cannot be seen in the estimation that uses the second
eigenvalue ρ2.

4.2 Rendezvous and Linear-Quadratic Control

The mean convergence rate introduced in Sect. 4.1 is related to the analysis of var-
ious other cost functionals. In this section, we consider the consensus dynamics in
the context of the rendezvous application, interpreting it as a closed-loop feedback
control:

x(t + 1) = x(t) + u(t) where u(t) = (P − I )x(t).

In this, setting a popular cost functional to measure the control performance of the
systems is the quadratic cost defined as JLQ := Jx + ε Ju , where ε is a positive weight
and

Jx := N−1
∞∑

t=0

E||x(t) − N−111∗x(0)||2 (4.7)

Ju := N−1
∞∑

t=0

E||u(t)||2. (4.8)

Cost Jx measures the speed of convergence to consensus, whereas Ju measures the
control effort needed to achieve it. The two functionals Jx and Ju can be expressed
in terms of the eigenvalues {μi } as shown in the following result.

Proposition 4.1 (LQ cost) If the stochastic matrix P is irreducible aperiodic and
symmetric, then

Jx = σ 2

N

∞∑

t=0

||P t − N−111∗||2F = σ 2

N

N∑

i=2

1

1 − μ2
i

Ju = σ 2

N

∞∑

t=0

||P t+1 − P t ||2F = σ 2

N

N∑

i=2

1 − μi

1 + μi

Proof The expression for Jx is a straightforward consequence of (4.5). Regarding
Ju , the first equality comes from a computation analogous to (4.4). The second one
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instead follows from the observation that the eigenvalues of (Pt+1 − P t )2 are given
by {(μt+1

i − μt
i )
2} = {μ2t

i (1 − μi )
2}. �

The values of Jx and Ju can be effectively estimated or computed in several
examples. In general, it is immediate to see that

N − 1

N
≤ Jx

σ 2
≤ 1

1 − ρ2
2

,

where both bounds are tight (take P = N−111∗). The lower bound implies that Jx is
never infinitesimal in the number of nodes, while the upper bound implies that Jx is
limited if the second largest eigenvalue of P is bounded away from one. Otherwise,
Jx may or may not diverge as N goes to infinity, as shown in the example below.

Let us consider the lazy simple random walk matrix P = (2d + 1)−1(I + A) on
a d-dimensional torus Cd

n . Eigenvalues can easily be obtained from the eigenvalues
of L(A) computed in Example 1.8:

μ(h1,...,hd ) = 1

2d + 1

(

1 + 2
d∑

i=1

cos
2π

n
hi

)

, h1, . . . , hd ∈ {0, 1, . . . , n − 1}

Notice now that

Jx = σ 2

nd
∑

(h1,...hd )
=0

1

1 − |μ(h1,...,hd )|2

can be interpreted as a Riemann sum of the function f : [0, 1]d \ {0} → R given by

f (x) = σ 2

1 −
∣
∣
∣
∣

1
2d+1

(
1 + 2

d∑

i=1
cos 2πxi

)∣
∣
∣
∣

2

Notice that f (x) presents a singularity in 0: Precisely, we have that f (x) =
�(||x ||−2) for x → 0.This implies that in dimensiond ≥ 3, function f is (absolutely)
integrable on [0, 1]d . This, combinedwith the fact that f (x) ismonotonicwith respect
to the each component of x in a neighborhood of 0, implies that

lim
n→+∞ Jx =

∫

[0,1]d
f (x)d x < +∞

In particular this shows that on a d-dimensional torus, with d ≥ 3, Jx is bounded
in N . Instead, in dimension 1 and 2, f is no longer integrable and previous argument
cannot be applied. Indeed in both cases, Jx turns out to be unbounded in N . In
dimension one, an explicit computation shows that (letting σ = 1):

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Jx = 1

N

N−1∑

h=1

1

1 − 1
9 (1 + 2 cos

(
2π
N h

)
)2

≥ N−19/4

2 − cos
(
2π
N

) − cos2
(
2π
N

) ≥ 3

8π2
N .

(4.9)
A more detailed analysis including the two-dimensional case is provided in Exer-
cise 5.11, by using the tools developed in that chapter.

On the contrary, Ju shows better scaling properties: for the lazy SRWon the cycle,

Ju = 1

N

N−1∑

h=1

1 − cos
(
2π
N h

)

2 + cos
(
2π
N h

) ,

which is clearly bounded in N . By interpreting it as a Riemann sum one can see that,
more precisely,

lim
n→+∞ Ju =

∫ 1

0

1 − cos(2πx)

2 + cos(2πx)
d x = √

3 − 1.

Other examples are given in Exercise 4.10. More generally, Ju can be shown to be
bounded under weak assumptions. To this goal, we recall a well-known property of
the spectrum of a matrix.

Lemma 4.1 (Gershgorin) Let A be an n × n matrix. Then,

spec(A) ⊂
⋃

i∈{1,...,n}
{z ∈ C : |z − aii | ≤

∑

j 
=i

|ai j |}.

An immediate application of this lemma yields the following result.

Proposition 4.2 (Boundedness of Ju) Let P be such that Pvv > 0 for all v ∈ V , and
denote α = minv Pvv. Then,

Ju ≤ 1 − α

α
.

4.3 Robustness Against Noise

In this section, we analyze the behavior and performance of consensus algorithms
under the presence of noise in the dynamics. As we will see, cost functionals similar
to those introduced above naturally come up in this case. Noise is unavoidable in
many applications. Instances can be imprecisions in the motion of robots in the
rendezvous problem or quantization errors in digital transmissions among the nodes
of the network. In this section, we analyze the effects of noise in several models
where the consensus dynamics is perturbed in different ways. We recall the standing
assumption that P is a symmetric stochastic matrix.

We start considering the case when noise enters additively in the update equation
(this can be a model for the robots motion error):

http://dx.doi.org/10.1007/978-3-319-68022-4_5
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x(t + 1) = Px(t) + n(t) (4.10)

We assume the nv(t) to be independent random variables with mean 0 and variance
σ 2. Notice first that the mean value is governed by E[x(t + 1)] = PE[x(t)] so that,
if P is irreducible and aperiodic, we have convergence to the average consensus:
E[x(t)] → N−111∗x(0) (here, x(0) is seen as deterministic). If we define m(t) =
N−1 ∑

v xv(t) and μ(t) = N−1 ∑
v nv(t), Eq. (4.10) implies that

m(t + 1) = m(t) + μ(t). (4.11)

Consequently,

m(t) = m(0) +
t−1∑

s=0

μ(s)

Notice that each μ(t) is a r.v. with mean 0 and variance σ 2/N . Therefore, we can
conclude that m(t) is a process with

E[m(t)] = m(0), Var[m(t)] = σ 2 t

N
. (4.12)

This shows how noise accumulates into the linear dynamics (essentially because of
its marginally stable structure) and creates such unbounded effects on the average
dynamics. A similar phenomenon takes place if we measure the distance of the
process from a consensus point. Consider indeed the following functional

Jnoise = 1

N
lim

t→+∞E||x(t) − N−111∗x(t)||2 (4.13)

Remarkably, Jnoise coincides with the functional Jx introduced to describe the LQ
cost functional.

Proposition 4.3 (Noise cost) Suppose that P is a symmetric irreducible and aperi-

odic stochastic matrix. Then, Jnoise = Jx = σ 2

N

+∞∑

t=0
||P 2 t − N−111∗||2F .

Proof It follows from (4.10) that, for every time t , it holds

x(t) = P t x(0) +
t−1∑

s=0

Psn(t − s − 1)

which yields
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E||x(t)− N−111∗ x(t)||2 = E||(P t − N−111∗)x(0)||2

+
t−1∑

s=0

t−1∑

s′=0

E[(Ps − N−111∗)n(t − s − 1)]∗[(Ps′ − N−111∗)n(t − s′ − 1)]

+ 2
t−1∑

s=0
E[((P t − N−111∗)x(0))∗(Ps − N−111∗)n(t − s − 1)]

Now, the first term converges to 0, when t → +∞, because of the assumptions
made on P . The third term is 0 because all noises are zero mean. Finally, the second
term can be rewritten as

σ 2
t−1∑

s=0

tr[P2s − N−111∗] = σ 2
t−1∑

s=0

||Ps − N−111∗||2F

where we have used the independence assumption on the noises. By taking the limit
t → +∞, we obtain the result. �

The example in Eq. (4.9) implies then that Jnoise is in general unbounded in N
for large-scale graphs. Moreover, Eq. (4.12) shows that the variance of the average
value diverges with time. These considerations demonstrate that consensus dynamics
is sensitive to additive noise: This sensitivity is stronger for matrices P that have
eigenvalues closer to the unit circle. Actually, when the dispersion of the initial
condition is small with respect to the variance of the noise and to the number of nodes
N , running a consensus algorithm may even be detrimental in terms of E||x(t) −
N−111∗x(t)||2. These circumstances are explored in Exercise 4.8. Even outside such
extreme cases, sensitivity to noise can be a problem in practical applications and some
countermeasures against noise have thus been proposed. A useful idea is replacing
the time-invariant averaging dynamics with a time-varying version that smooths out
the effects of noise by employing a “decreasing gain” strategy.We do not cover these
more refined algorithms here, but some literature pointers are given at the end of this
chapter.

4.4 Robustness Against Quantization Errors

If we assume that communication among units takes place through digital chan-
nels, then the communicated states will be affected by rounding (or quantization)
errors. These errors are unavoidable because the state is real-valued, whereas the
communicated values are discrete. These errors, which depend on the state and on
the quantization rule, can be modeled as independent stochastic noises with zero
mean and with variance σ 2 determined by the precision of the approximation. This
modeling leads to consider a dynamics like

x(t + 1) = P
(
x(t) + n(t)

)
. (4.14)
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It is easy to realize that this dynamics suffers from the same drawbacks as dynamics
(4.10). In particular, the average processm(t) is governed by the same relation (4.11),
and consequently, the same conclusions on the moments (4.12) can be drawn. More-
over, the functional defined as in (4.13) can be evaluated similarly to Proposition 4.3,
as detailed in Exercise 4.7.

Notice, however, that in this case one can run, instead of (4.14), the alternative
averaging dynamics

x(t + 1) = P
(
x(t) + n(t)

) − n(t). (4.15)

In this dynamics, we subtract the noise n(t): This operation is feasible as it is realistic
to assume that each node v knows nv(t), that is, the quantization error affecting its
own value. This dynamics is chosen with the purpose of reducing the effect of the
noise. Indeed, differently from (4.10), dynamics (4.15) deterministically preserves
the average of the initial condition:

N−111∗x(t + 1) = N−111∗x(t) + N−111∗n(t) − N−111∗n(t) = N−111∗x(t).

The asymptotical dispersion around the average can be evaluated by using the func-
tional

Jq = lim
t→+∞E||x(t) − N−111∗x(t)||2,

which is formally defined as (4.13) but with the understanding that here x(t) fol-
lows (4.15). Perhaps surprisingly, Jq coincides with the functional Ju introduced to
describe the LQ cost functional, as the reader can verify as an exercise.

Proposition 4.4 (Quantization cost) Suppose that P is a symmetric irreducible and

aperiodic stochastic matrix. Then, Jq = Ju = σ 2

N

∞∑

t=0
||Pt+1 − P t ||2F .

By recalling the results of Sect. 4.2, the reader can see that the effect of noise is
largely reduced in (4.15), compared to (4.14).

4.5 Distributed Inference

An important application of consensus is solving, in a distributed fashion, network
inference problems. Below we discuss some basic examples and we show how the
analysis of performance, also in this case, leads to functionals similar to those con-
sidered before.

Assume that each node v ∈ V takes a measurement of the same unknown scalar
quantity θ . Each of these measurements, denoted by yv, is affected by an (additive)
measurement error nv. Namely, yv = θ + nv. The goal of each node is to estimate θ .
The node v by itself could only estimate θ by the taken measurement yv, whereas if
it was possible to gather the measurements from all nodes, more efficient estimation
could be performed. If we assume the measurement errors to be independent random
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variables with zero mean and variance σ 2, then the average θ̂ = 1
N

∑
v yv is the

optimal estimator for θ and has estimation errorE||θ̂ − θ ||2 = N−1σ 2. Conveniently,
the network may collectively compute θ̂ by simply using the dynamics (4.1) with
xv(0) = yv for all nodes v. In this context, it is natural to define the time-dependent
estimation error as

Je(t) = 1

N
E[‖x(t) − θ1‖2].

If we denote by n ∈ R
V the random vector collecting all noises and we repeat the

computation as in (4.4), we see that Je(t) can be rewritten as

Je(t) = 1

N
E[‖P tn‖2] = σ 2N−1||P t ||2F = σ 2N−1

N∑

i=1

μ2t
i (4.16)

Notice the difference with respect to (4.5), where we had the Frobenius norm of
P t − N−111∗. Indeed, differently from (4.5) that converges to 0 for t → +∞, we
here have Je(t) → σ 2

N as t → ∞. The asymptotic error is due to the intrinsic mean
estimation error. The consensus algorithm (4.1) can also be used to solvemore general
inference problems, in which the measurements errors can have different variances
σ 2
v . Again, the goal of each node is to estimate θ . The node v by itself could only

estimate θ by the taken measurement yv, whereas if it was possible to gather the
measurements from all nodes, more efficient estimation could be performed. In the
latter case, the best least squares estimator, defined as

θ̂ := argminθ

∑

v

(yv − θ)2

σ 2
v

,

can be computed as

θ̂ =
(

∑

w∈V

1

σ 2
w

)−1 ∑

v∈V

yv
σ 2
v

.

This estimator, which is a Maximum Likelihood estimator when the measurement
noises are Gaussian (see Exercise 4.1), simply becomes the average of the measure-
ments when all variances are equal. Clearly, to compute such an estimator, one needs
to gather all the measurements yv’s. However, rewriting it as

θ̂ =
(
1

N

∑

w∈V

1

σ 2
w

)−1
1

N

∑

v∈V

yv
σ 2
v

,

one can notice that it is the ratio between two arithmetic means. Then, consensus
algorithms can be naturally applied to approximate it, provided each node knows the
variance of its own measurement error. Consider two consensus algorithms built on
the matrix P and running in parallel:
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x (1)(t + 1) = Px (1)(t), x (1)
v (0) = yv

σ 2
v

∀v ∈ V

x (2)(t + 1) = Px (2)(t), x (2)
v (0) = 1

σ 2
v

∀v ∈ V

and define θ̂v(t) = x (1)
v (t)/x (2)

v (t). We know from the results of Chap.2 (see also
Exercise 4.2) that

lim
t→+∞ θ̂ (t)v = θ̂ ∀v ∈ V .

Hence, the estimator can be computed by running two consensus algorithms and
computing the ratio of their states. In the exercises, we propose a few adaptations
and variations of the above procedure.

Exercises

Exercise 4.1 (Maximum Likelihood estimator) For all v ∈ V , let yv = θ + nv and
assume that each nv is a measurement error to be independent Gaussian random
variables with zero mean and variance σ 2

v . Consider the density distribution of yv
given that the unknown quantity is θ

f (yv | θ) = 1
√
2πσ 2

v

e
(yv−θ)2

2σ2v

and the global density of the vector y ∈ R
V

f (y | θ) =
∏

v

f (yv | θ) =
∏

v

1
√
2πσ 2

v

e
∑

v
(yv−θ)2

2σ2v

The ML estimator is defined to be θ̂ML := argmaxθ∈R f (y | θ). Verify that

θ̂ML =
(

∑

w∈V

1

σ 2
w

)−1 ∑

v∈V

yv
σ 2
v

Exercise 4.2 (Consensus ratio) Let P ∈ R
V×V be a stochastic irreducible aperiodic

matrix. Consider the dynamics
{
x(t + 1) = P x(t) x(0) ∈ R

V

y(t + 1) = P y(t) y(0) ∈ R
V , yv(0) > 0 ∀v ∈ V .

Let z(t) = x(t)
y(t) . Determine z(∞) := limt→+∞ z(t).

Exercise 4.3 (Average consensus with nondoubly stochastic matrices) Let P ∈
R

V×V be a stochastic irreducible aperiodic matrix. Consider the dynamics

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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{
x(t + 1) = P∗x(t) x(0) ∈ R

V

y(t + 1) = P∗y(t) y(0) ∈ R
V , yv(0) > 0 ∀v ∈ V .

(i) Let z(t) = x(t)
y(t) . Determine z(∞) := limt→+∞ z(t).

(ii) Given a vector x̄ ∈ R
V , choose x(0) and y(0) in such way that z(∞) =

1N−11∗ x̄ .

Exercise 4.4 (Weighted averages) Using a doubly stochastic matrix P , design a
consensus-based algorithm to compute any weighted average of values known to the
nodes.

Exercise 4.5 (Number of nodes) Design a consensus-based algorithm for a network
to compute the number of its nodes.

Exercise 4.6 (Least Squares Regression) We want to estimate a function y = f (x)
from a noisy data set {(xv, yv)}v∈V collected by the nodes.We parameterize f (·)
according to a basis of functions {g j (·)} j∈J , where J a suitable index set, so that
fθ (x) = ∑

j∈J θ j g j (x). The basis functions are known, and the |J |-dimensional
vector θ is to be determined. We want to compute (distributely) the best estimate of
θ in a least squares sense. Provided we define G ∈ R

J×V to be a matrix such that
G jv = g j (xv), the optimal estimator is defined as

θ̂ = argminθ‖y − Gθ‖2.

(i) Verify that θ̂ = (G∗G)−1G∗y.

Let gv denote a column of G and define two consensus algorithms with initial con-
ditions

z(1)
v (0) =gv(gv)∗ ∀v ∈ V

z(2)
v (0) =gvyv ∀v ∈ V .

Note that z(1)
v ∈ R

J×J and z(2)
v ∈ R

J . Since the states are non scalar, the update is
performed independently on each component.

(ii) Remark that θ̂ = (
∑

v g
v(gv)∗)−1 ∑

v g
v yv, and deduce that

lim
t→+∞(z(1)

v (t))−1z(2)
v (t) = θ̂ .

Exercise 4.7 (Communication noise) Consider a symmetric stochastic matrix P on
V and the process x(t) taking values in RV and governed by equation

xv(t + 1) =
∑

w∈V
Pvw

(
xw(t) + nvw(t)

)
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where {nvw)(t)} is a family of independent 0 mean, σ 2 variance random variables.
In this model, we assume that noises are independently generated in any pairwise
transmission betweenunits. For suchprocess, study the behavior of the corresponding
average process m(t) and find an expression for the functional as defined in (4.13)
in terms of the eigenvalues of P .

Exercise 4.8 (Noise effects at finite times) We define the following time-dependent
version of the noise cost (4.13)

Jnoise(t) = 1

N
E||x(t) − N−111∗x(t)||2, (4.17)

assuming that the noise components are iid random variables with zero mean and
variance σ 2

n , while initial conditions are iid random variables with zero mean and
variance σ 2

x independent of the noise.

(i) By proceeding as in the proof of Proposition 4.3, show that

Jnoise(t) = 1

N

N∑

i=2

σ 2
n

1 − |μi |2 + 1

N

N∑

i=2

(
σ 2
x − σ 2

n

1 − |μi |2
)

|μi |2t (4.18)

(ii) Observe that if σx is small enough (for instance if σx < σn), then Jnoise(t) is
increasing with time.

(iii) Verify that the second term of (4.18) is upper bounded by 1
N

(
Nσ 2

x − σ 2
n

1−ρ2
2

)
ρ2t
2

(iv) Assume that P is the lazy simple random walk matrix P on the cycle graph CN

(cf. Exercise 2.12). Verify that if N > 8π
9

σ 2
x

σ 2
n
, then Jnoise(t) is increasing with

time.

Exercise 4.9 (Normal update matrix) Reconsider system (4.1) with the assumption
that the irreducible and aperiodic matrix P is doubly stochastic and normal (but not
necessarily symmetric). Show that

Je(t) = 1

N

∑

i

|μi |2t Jx = 1

N

∑

i>1

1

1 − |μi |2 Ju = 1

N

∑

i>1

|1 − μi |2
1 − |μi |2 .

Exercise 4.10 (Ju cost [11]) Consider the cost Ju defined in Sect. 4.2.

(i) LetG = CN be a directed cycle graph and P = circ(1/2, 1/2, 0, . . . , 0). Then,
Ju = 1 − 1

N .

(ii) Let G = Cd
n be a directed d-dimensional torus graph and P = 1

d+1 (I + AG).
Then, Ju = 1 − 1

nd .

(iii) Let G be a d-dimensional hypercube and P = 1
d+1 (I + AG). Then, Ju = 1 −

1
2d .

Exercise 4.11 (Je cost on toroidal grids [14]) Let G = Cd
n be a d-dimensional torus

graph, P = 1
2d+1 (I + AG) and N = nd .

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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(i) Verify that

c1 max{ 1
N

,
1

td/2
} ≤ Je(t) ≤ c2 max{ 1

N
,

1

td/2
} for some positive c1, c2.

(ii) Estimate the time needed to achieve the best precision in the estimation for a
given N .

Exercise 4.12 (Size optimization in distributed estimation [14]) Based on the func-
tional Je(t), we consider the problem of optimizing the size of the graph in a specific
family of consensus matrices. Let An be the adjacency matrix of cycle graph Cn of
order n. Let Pn = 1

3 (I + An).

(i) Verify that

(a) J (Pn, t) is nonincreasing in n;
(b) J (Pn, t) is nonincreasing in t ;
(c) J (Pn, t) = J (P2t+1, t) for all n ≥ 2t + 1.

(ii) Discuss the results above from the point of view of design, having the goal of
efficient estimation of a parameter which is known via noisy measurements.
Is there a “best” size of the network, if the available time for computation is
limited?

Bibliographical Notes

An introduction to the costs considered in this chapter is available in [13], which also
provides useful pointers to the literature. These costs have been explicitly computed
using the eigenvalues of P , thanks to the assumption of symmetry: However, one
can generalize this analysis to normal matrices (see Exercise 4.9 and [7]) and to
reversible matrices (see Exercise 5.10).

Specific references can be given for the different functionals considered. For
instance, a thorough analysis of Je on geometric graphs is given by [14]. Cost Jnoise
has been defined in the seminal paper [25] and later extensively studied with different
interpretations and variations [17, 21]. Paper [11] has proposed dynamics (4.14) to
cope with quantization errors and has studied cost Jq. The statistical assumptions
on the quantization errors can either be rigorously justified for certain randomized
quantizers (for instance, quantizers with “dithering” [1]) or taken as a useful approx-
imation for deterministic quantizers. Actually, several researchers have looked at
quantization in the context of averaging algorithms, starting with [19]: A selection
of the papers that are most closely related to our perspective includes [3, 6, 9, 18,
20, 22].

As we mentioned, the effects of noise entering the averaging system can be miti-
gated by using properly designed decreasing gains. This adaptation typically results
in systems that almost surely converge to consensus, but such that convergence is not

http://dx.doi.org/10.1007/978-3-319-68022-4_5
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exponentially fast. Their analysis can benefit from the so-called stochastic approxi-
mation techniques [2]. Many papers have taken this approach to ensure robustness,
including [5, 8, 16, 23, 24].

The application of distributed parameter estimation has also been presented in
this chapter. In the literature, this problem has been extended in various directions,
including least squares regression (see Exercise 4.6), distributedKalman filtering [4],
and estimation of parameters that are vector-valued and distributed over the nodes
(see Sect. 5.4). The treatment given in this chapter assumes that each node knows the
variance of its own measurement error. If this is not the case, a more complex algo-
rithm is needed in order to estimate these quantities as well. For instance, paper [10]
looks at a special case of this problem, where nodes are divided into two classes,
having respectively small and large variance, and must identify to which class they
belong to. The issue of parameter estimation can also be interpreted in the context
of social networks. Empirical and theoretical evidences have shown that aggregate
opinions may provide a good estimate of unknown quantities: Such phenomenon has
been referred to in the literature as the wisdom of crowds [12, 15].
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