
Chapter 3
Averaging in Time-Varying Networks

Abstract This chapter studies averaging dynamics in which the update matrix and,
possibly, the underlying graph may be different at each time step. This extension
is particularly important for the applications. Indeed, in realistic models of sensor
and robotic networks, units, and links may be occasionally off due to environmen-
tal reasons or for energy saving purposes. Similarly, social dynamics may involve
complex patterns of interactions that change over time. We are going to show that
time-dependent consensus algorithms converge under relatively mild assumptions
involving suitable notions of connectivity. Actually, the underlying graph needs not
to be connected at any time, but the sequence of graphs must be “sufficiently con-
nected” over time. More specifically, in Sects. 3.1 and 3.2 we provide two families
of results, corresponding to two sufficient connectivity assumptions. Our presen-
tation also includes, in Sect. 3.3, cases when the matrix evolves randomly in time.
These randomized dynamics encompass the so-called gossip algorithms, which have
attracted much attention in the last decade.

3.1 Time-Varying Updates: Uniform Connectivity

Given a set of nodes V of cardinality N , we consider a distributed state x(t) ∈ R
V

evolving according to a system of the form

x(t + 1) = P(t)x(t) t ∈ Z≥0, (3.1)

where P(t) is a stochastic matrix for each t ≥ 0. We will use the following notation

P(s, s) = I, P(t, s) = P(t − 1) . . . P(s), 0 ≤ s < t

so that x(t) = P(t, s)x(s) for every s ≤ t .
We start with a preliminary result which is a simple consequence of the contraction

principle Lemma2.1 already used in the time-invariant context.
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70 3 Averaging in Time-Varying Networks

Lemma 3.1 Consider system (3.1). Assume that

(i) there exists α ∈ (0, 1] such that, for every t ≥ 0 and u, v ∈ V , Puv(t) > 0
implies Puv(t) ≥ α;

(ii) there exists a sequence of times {tk ∈ Z≥0 : k ∈ Z≥0} such that

(a) there exists B ∈ N such that tk+1 − tk ≤ B for all k and
(b) for every k, there exists v∗ ∈ V such that, P(tk+1, tk)uv∗ > 0 for every u ∈ V .

Then, x(t) converges to a point in span{1} from every initial condition in R
V .

Proof Notice first of all that thanks to assumptions (i) and (ii), we have that

P(tk+1, tk)uv∗ > αtk+1−tk ≥ αB, ∀u ∈ V . (3.2)

Define now, for every t ≥ 0,

xmin(t) = min
u

{xu(t)} xmax(t) = max
u

{xu(t)}

and notice that Lemma2.1 together with (3.2) implies that, for every k ≥ 0,

xmax(tk+1) − xmin(tk+1) ≤ (1 − αB)
(
xmax(tk) − xmin(tk)

)
(3.3)

Considering that xmax(t) and xmin(t) are two monotonic sequences, thus admitting
limit, it follows that xmax(t) − xmin(t) → 0 as t → +∞. This yields the thesis. �

The above result is not very appealing for application as condition (ii). needs in
principle to consider large products of the matrices P(t) determining the dynamics.
As in the time-invariant case, we would like to have results whose assumptions are at
the level of the associated graphsGP(t). The readermay recall that, on static networks,
consensus was proved (see Theorem2.2) under two conditions: a connectivity condi-
tion and an aperiodicity condition. On time-varying networks, we are going to make
suitable assumptions on the connectivity over time, while the aperiodicity condition
is replaced by the following assumption.

Definition 3.1 (Nondegeneracy) A set P of stochastic matrices over V is nonde-
generate if

(i) for every P ∈ P and for every u ∈ V , Puu(t) > 0;
(ii) there exists α ∈ (0, 1] such that, for every P ∈ P and u, v ∈ V , Puv(t) > 0

implies Puv(t) ≥ α.

It is clear that the assumption of nondegeneracy relates to aperiodicity: Indeed, ifP
is nondegenerate, then each P ∈ P is aperiodic. Notice that the converse is not true,
because of the strong positivity condition expressed in the definition. Moreover, the
mere aperiodicity of eachmatrix P(t) is not sufficient for consensus; seeExercise 3.1.

The following result shows some fundamental consequences of nondegeneracy.
If P is a stochastic matrix over V , below we will use the notation GP = (V, EP) for
the graph associated with P .
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Proposition 3.1 Suppose that P(t), for t ∈ Z≥0 is a non degenerate sequence of
stochastic matrices. Fix t1 ≤ t2 ≤ t3 ≤ t4. Then,

(i) EP(t3,t2) ⊆ EP(t4,t1);
(ii) If (u, v) ∈ EP(t4,t3) and (v, w) ∈ EP(t2,t1), then (u, w) ∈ EP(t4,t1).

Proof Both claims follow immediately by combining the two inequalities

P(t4, t1)uw ≥ P(t4, t3)uu P(t3, t2)uw P(t2, t1)ww

P(t4, t1)uw ≥ P(t4, t3)uv P(t3, t2)vv P(t2, t1)vw

and property (i) of nondegeneracy. �

We are now ready to state the main convergence result of this section which is a
generalization of Theorem2.2.

Theorem 3.1 (Time-dependent consensus I) Consider system (3.1). Assume that

(i) the set of matrices {P(t)} is nondegenerate;
(ii) there exists a duration T ∈ N such that, for all t0 ∈ Z≥0, the graph

T −1⋃

s=0

GP(t0+s)

contains a globally reachable node.

Then, x(t) converges to a point in span{1} from every initial condition in R
V .

The reader should note that the connectivity condition does not imply anything
on each single graph GP(t), which may well be not connected at any time t . The
following example illustrates the application of the theorem.

Example 3.1 (Sequences of graphs) Consider the following sequences composed of
the graphs represented in Fig. 3.1.

(i) S1(t) =
{

Ga if t is a square number

Gb otherwise

(ii) S2(t) =
{

Gb if t is a square number

Ga otherwise

(iii) S3(t) =
{

Gc if t is a square number

Gd otherwise

(iv) S4(t) =
{

Gd if t is a square number

Ga otherwise

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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Fig. 3.1 The graphs Ga , Gb, Gc, and Gd used in Example 3.1

Let now Pi (t) denote the sequence of SRWmatrices constructed on the sequence of
graphsSi (t). By Theorem 3.1, we conclude that P2(t) and P3(t) lead to consensus.
Instead, nothing can be concluded regarding P1(t) or P4(t) because assumption (ii)
in Theorem 3.1 is not satisfied. Both cases actually lead to a consensus. For P4(t),
consensus is trivial by observing that the SRW related to Gd leads to consensus in
one step, while for P1(t) consensus will follow by Corollary 3.2 later on.

The proof of Theorem 3.1 relies on the results proven so far as well on a classical
combinatorial argument reported below for the convenience of the reader.

Lemma 3.2 (Pigeonhole principle) If n discrete objects are to be allocated to m
containers, then at least one container must hold no fewer than 
 n

m � objects.

Proof (of Theorem 3.1) Notice first of all that since

T −1⋃

s=0

GP(t0+s) ⊆ GP(t0+T,t0)

by virtue of Proposition 3.1, it follows that the graph GP(t0+T,t0) contains a globally
reachable node for every t0. Let N = |V | and let M be the number of distinct graphs
over V possessing a globally reachable node. Consider the time interval [0, N MT [
split into subintervals [0, T [, [T, 2T [ and so on. By the pigeonhole principle, there
must exist a graph G over V possessing a globally reachable node, which is repeated
at least N times among the sequence of graphs GP( jT,( j−1)T ) for j = 0, . . . , N M .
Denote by v∗ the globally reachable node inside G. Since every node u ∈ V is
connected to v∗ in G with a path of length l ≤ N , it follows by a repeated application
of Proposition 3.1 that GP(N MT,0) contains every edge of type (u, v∗) for u ∈ V .
This implies that P(N MT, 0)uv∗ > 0 for every u ∈ V . Arguing similarly on every
matrix P(k N MT, (k − 1)N MT ), we can see that the assumptions of Lemma 3.1
are satisfied if we take tk = k N MT . �

Remark 3.1 (Convergence time) Note that the construction in the proof of Theo-
rem 3.1 is “worst-case” in nature and gives little clue about the actual convergence
time for the algorithm. This issue is investigated in an exemplary case in Exercise 3.2.
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Remark 3.2 (Consensus point) In general, the final value upon which all the states
xu agree in the limit is unknown. This final value depends on the initial condition and
the specific sequence of matrices defining the time-dependent linear algorithm. Only
in few cases, one can compute the final value. One instance are time-independent
consensus algorithms, which have been considered in the previous chapter. Another
instance are time-dependent algorithms (3.1) involving doubly stochastic matrices.
Indeed, it is clear that whenever P(t) is doubly stochastic for every t ≥ 0, then
xave(t) = xave(0). Then, provided x(t) converges, it converges to xave(0)1. This
simple remark can be immediately extended to any sequence of matrices which
share their dominant left eigenvector.

Theorem 3.1 requires a uniform connectivity assumption: The union of graphs,
over time, must be connected within a fixed window. Later on, we will present results
where the connectivity assumption is weaker. The following result shows that some
connectivity condition for consensus will, however, be necessary.

Proposition 3.2 (Connectivity is necessary) Consider system (3.1). If, for every
initial condition x(0), the state x(t) converges to a point in span{1}, then there exists
a node which is globally reachable in the graph

G =
⋃

s≥0

GP(s).

Proof By contradiction, assume that G does not possess a globally reachable node.
This implies that the correspondent condensation graph has two leaves that corre-
spond to two strongly connected subgraphs of G, denoted by Gi = (Vi , Ei ) for
i = 1, 2 and such that V1 ∩ V2 = ∅ and there is no path from V1 to V2 or from V2

to V1. Consider now an initial condition x(0) such that x(0)v = 0 for all v ∈ V1 and
x(0)v = 1 for all v /∈ V1. Since there is no edge outgoing G1 and G2, clearly, if Q
is a stochastic matrix adapted to G, it follows that (Qx(0))v = 0 for all v ∈ V1 and
Qx(0)v = 1 for all v ∈ V2. This implies that x(t)v = 0 for all v ∈ V1 and x(t)v = 1
for all v ∈ V2, and thus, x(t) cannot converge to a consensus. �

As the necessary condition in Proposition 3.2 is weaker than the sufficient condi-
tion in Theorem 3.1, it is natural to ask whether the former is sufficient as well. The
answer is negative, as shown by the example proposed in Exercise 3.3.

3.2 Time-Varying Updates: Cut-Balanced Interactions

Theorem 3.1 requires a uniform connectivity assumption: The union of graphs, over
time, must be connected within a fixed window. In this section, we seek conditions
under which this uniform connectivity requirement can be dropped, while maintain-
ing convergence.
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To this goal, we need to introduce two new concepts, cut-balanced graph and
limit graph. A graph G = (V, E) is said to be cut-balanced when for any nonempty
proper subset S ⊂ V , there exist v ∈ S and w /∈ S with (v, w) ∈ E if and only if
there exist v′ /∈ S and w′ ∈ S with (v′, w′) ∈ E . Clearly, if a graph is symmetric or
strongly connected, then it is also cut-balanced. More precisely, cut-balanced graphs
allow for the following characterization.

Lemma 3.3 The graph G is cut-balanced if and only if every weakly connected
component of G is strongly connected.

Proof Assume that the graph is cut-balanced and let W ⊆ V be a weakly connected
component of G. If W is not strongly connected, then there exist a node u ∈ W
from which not all nodes in W can be reached. Let S be the subset of nodes which
are reachable from u. Clearly, S is a proper subset of W and, necessarily, there is no
edge from S to W \ S, while there must be edges from W \ S to S; otherwise, W
would not be a weakly connected component. This clearly contradicts the fact that
G was cut-balanced. The proof of the reverse implication is left to the reader. �

The second key ingredient is the definition of limit graph. Given a sequence of
graphs (Gt )t∈N such that Gt = (V, Et ) for all t ∈ N, we say that the limit graph
of this sequence is the graph G∞ = (V, E∞) where the edge set E∞ equals to the
set-theoretic limit superior of the sequence (Et )t , that is,

E∞ = lim sup
t∈N

Et :=
⋂

t≥0

⋃

s≥0

Et+s .

Equivalently, an edge (u, v) is in E∞ when (u, v) ∈ En for infinitely many n. This
limit graph “forgets” transient interactions and focuses on those interactions that
occur infinitely often and thus affect the convergence behavior.

We are now ready to state and prove the main result of this section.

Theorem 3.2 (Convergence) Consider system (3.1). Assume that

(i) the set of matrices {P(t)} is nondegenerate;
(ii) the associated graph GP(t) is cut-balanced for every t ≥ 0.

Then, x(t) converges to a limit point x̃ ∈ R
V such that x̃u ∈ [xmin(0), xmax(0)] for

all u ∈ V . Furthermore, let G∞ be the limit graph of the sequence (GP(t))t . If two
nodes v and w belong to the same connected component of G∞, then x̃v = x̃w.

Proof SinceGP(t) is cut-balanced for every t ≥ 0, then also G∞ is cut-balanced: This
implies, by Lemma 3.3, that all weakly connected components of G∞ are strongly
connected. Let C ⊂ V denote the node set of one such connected component and
observe that there exists a time t0 ≥ 0 such that Pvw(t) = Pwv(t) = 0 for all v ∈ C ,
w /∈ C and t ≥ t0. Then, without loss of generality we disregard the dynamics before
t0 and we study the dynamics for t ≥ t0 over the component C .
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Let m ∈ C be a node such that xm(t0) = max{xu(t0) : u ∈ C}. Define St0 = {m}
and, iteratively for t ≥ t0, a sequence of subsets St ⊆ V , by

St+1 = {u ∈ C : ∃ w ∈ St such that Pvw(t) > 0}.

The sequence of sets St collects those nodes whose states at time t are influenced by
the state of node m at time t0. Note that because of the nondegeneracy assumption,
the inclusion St+1 ⊇ St holds for every t ≥ t0. Let t� be the time at which St is
maximal and assume by contradiction that St� �= C . Then, there is no vertex outside
St� that is connected to any vertex in St� for any time t ≥ t�: So C is not strongly
connected in the graph ∪s≥t�GP(s), contradicting the assumptions. Hence, St� = C.

We claim that for every t0 ≤ t ≤ t� and every v ∈ St , it holds

xv(t) ≥ min
u∈C

xu(t0) + α|St |−1
(
max
u∈C

xu(t0) − min
u∈C

xu(t0)
)
, (3.4)

where α > 0 is the nondegeneracy constant. This fact can be shown by induction
on t . For t = t0, we have St0 = {m} and so (3.4) trivially holds. For the induction
step, we need to consider two cases. If St+1 = St , then at time t every w ∈ St only
influences nodes in St . By the cut-balance assumption, every v ∈ St is then only
influenced by nodes in St . Hence, for every v ∈ St+1

xv(t + 1) =
∑

w∈St

Pvw(t)xw(t)

≥
∑

w∈St

Pvw(t)
(
min
u∈C

xu(t0) + α|St |−1(max
u∈C

xu(t0) − min
u∈C

xu(t0)
))

= min
u∈C

xu(t0) + α|St+1|−1
(
max
u∈C

xu(t0) − min
u∈C

xu(t0)
)
.

If instead St+1 �= St , we note that for every v ∈ St+1, there is at least one w ∈ St and
such that Pvw(t) > 0. Indeed, if v /∈ St , then v is, by construction, connected to at
least one node w ∈ St , whereas every v ∈ St is by the hypothesis always connected
to itself. Since all (positive) entries Pvw(t) are by hypothesis lower-bounded by α,
this together with the induction hypothesis implies that

xv(t + 1) =
∑

w∈V

Pvw(t)xw(t)

≥
∑

w∈St

Pvw(t)
(
min
u∈C

xu(t0) + α|St |−1(max
u∈C

xu(t0) − min
u∈C

xu(t0)
)) +

∑

w/∈St

Pvw(t)min
u∈C

xu(t0)

≥ min
u∈C

xu(t0) + α α|St |−1(max
u∈C

xu(t0) − min
u∈C

xu(t0)
)

≥ min
u∈C

xu(t0) + α|St+1|−1(max
u∈C

xu(t0) − min
u∈C

xu(t0)
)
,

thus proving (3.4). As maxu∈C xu(t) is not increasing, inequality (3.4) implies that
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max
u∈C

xu(t
�) − min

u∈C
xu(t

�) ≤ (1 − α|C |−1)(max
u∈C

xu(t0) − min
u∈C

xu(t0)).

By repeating all the above reasoning starting from t1 = t� and so on, we can construct
a sequence of times {tk : k ≥ 0} such that for every k it holds that

max
u∈C

xu(tk+1) − min
u∈C

xu(tk+1) ≤ (1 − α|C |−1)(max
u∈C

xu(tk) − min
u∈C

xu(tk)).

This fact implies that all nodes u ∈ C converge to consensus and thus proves the
result. �

Remarkably,Theorem3.2does not contain any connectivity assumptionother than
cut-balance. As a consequence, it does not guarantee consensus among all states, but
only convergence and “local” consensus inside each connected component of the
limit graph. Global consensus can instead be obtained by restoring an assumption of
global connectivity, as in the following two results which immediately follow from
Theorem 3.2.

Corollary 3.1 (Time-dependent consensus II) Consider system (3.1). Assume that

(i) the set of matrices {P(t)} is nondegenerate;
(ii) for every t ≥ 0, the graph GP(t) is cut-balanced; and

(iii) for every t ≥ 0, the graph
⋃

s≥0

GP(t+s) is weakly connected.

Then, x(t) converges to a point in span{1} from every initial condition in R
V .

Note that condition (iii) is equivalent to G∞ being strongly connected (as the reader
may verify). As a special case, we recover the following result on convergence for
symmetric graphs. We note that this theorem does not require the matrix P(t) to
be symmetric but just its induced graph to be symmetric, i.e., to encode reciprocal
communications.

Corollary 3.2 (Time-dependent consensus III) Consider system (3.1). Assume that

(i) the set of matrices {P(t)} is nondegenerate;
(ii) for every t ≥ 0, the graph GP(t) is symmetric; and

(iii) for every t ≥ 0, the graph
⋃

s≥0

GP(t+s) is connected.

Then, x(t) converges to a point in span{1} from every initial condition in R
V .

We stress that these two results do not require any uniform connectivity assumption,
and indeed, their proofs do not rely on Lemma2.1, as opposed to Theorem 3.1. As
an example, Corollary 3.2 implies that the sequence P1(t) in Example 3.1 leads to a
consensus.

The interest in a convergence result such as Theorem 3.2, which avoids con-
nectivity assumptions, becomes more apparent in those contexts where checking

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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connectivity is difficult, for instance because the evolution of P(t) depends on the
current state x(t). We are going to illustrate this difficulty with a very popular exam-
ple, known as Krause’s model.

Example 3.2 (Krause’s model) In this dynamics, agent v trusts, i.e., takes into
account for its update, only those agents w whose current state xw(t) is close enough
to xv(t). More precisely, we fix a threshold ε > 0 and, for all t ∈ Z≥0 and all v ∈ V ,
we let Nv(t) = {u ∈ V : |xv(t) − xu(t)| ≤ ε}. Given ρ ∈ (0, 1], we then define the
dynamics

xv(t + 1) = xv(t) + ρ

|Nv(t)|
∑

w∈Nv(t)

(xw(t) − xv(t)) v ∈ V . (3.5)

Convergence of dynamics (3.5) can be deduced from Theorem 3.2. Notice indeed
that if we define

Pvw(t) =
⎧
⎨

⎩

1 − ρ
|Nv(t)|−1
|Nv(t)| if w = v

ρ

|Nv(t)| if w ∈ Nv(t), w �= v
0 if w /∈ Nv(t)

it is immediate to check that x(t + 1) = P(t)x(t). Notice that GP(t) is symmetric so
that assumption (ii) is verified. Nondegeneracy follows easily from the definition as
Pvv(t) ≥ 1 − ρ N−1

N for every v ∈ V while, if v �= w and Pvw(t) > 0, it follows that
Pvw(t) = ρ/|Nv(t)| ≥ ρ/N .

Notice that, in this model, the matrix P(t) actually depends on the state of agents at
time t and, as a consequence, the model is nonlinear. There is no way to guarantee a
priori uniform connectivity conditions on the sequence of corresponding graphs, so
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Fig. 3.2 A typical evolution under the time-varying dynamics (3.5) for a large number of agents:
In this case, N = 1000 and ε = 0.05. Observe that clusters are approximately 2ε apart
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that Theorem 3.1 cannot be applied. Simulations (see Fig. 3.2) demonstrate that the
limit state is not a consensus point, but instead a collection of disconnected “clusters,”
composed of agents which share the same limit opinion. Moreover, if ρ = 1, then
convergence is attained in finite time (see Exercise 3.4).

Krause’s dynamics was originally proposed to model opinion dynamics with
bounded confidence, but can also represent a simple model of one-dimensional vehi-
cle rendezvous with limited visibility. This model has received much attention in the
last years and many generalizations have been proposed: In Exercise 3.5, we study
one of these.

3.3 Randomized Updates

This section presents time-varying consensus algorithms, where the update matrix
is selected at each time step by a random process. Given a set of nodes V of finite
cardinality N , we consider for every time t ∈ Z≥0 a random vector x(t) ∈ R

V

evolving according to a random discrete-time system of the form

x(t + 1) = P(t)x(t) t ∈ Z≥0, (3.6)

where P(t) is a stochastic matrix for each t ≥ 0 and
(
P(t)

)
t≥0 is a sequence of

independent and identically distributed random variables. Note that the initial condi-
tion is unknown but fixed (not random) and that all the randomness originates from
generating the sequence of P(t)s. Consequently, in what follows the phrase “almost
surely” means “with probability 1” with respect to the matrix selection process.

We begin our discussion from the following example of randomized dynamics.
Let a symmetric graph G = (V, E) be given, and for each time step t ≥ 0, let an
edge (v, w) be chosen in E , according to a uniform distribution over E . Define

xv(t + 1) = 1

2
xv(t) + 1

2
xw(t) ,

xw(t + 1) = 1

2
xw(t) + 1

2
xv(t) ,

xu(t + 1) = xu(t), for u �= v, w .

This dynamics can be written in the form (3.6) by defining

P (v,w) = I − 1

2
(eve∗

v − eve∗
w − ewe∗

v + ewe∗
w),

where eu is the uth vector of the canonical basis of RV , and P[P(t) = P (v,w)] = 1
|E | .

We shall refer to this dynamics as the uniform symmetric gossip (USG).
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Proposition 3.3 (USG convergence) A uniform symmetric gossip dynamics con-
verges almost surely to the average of the initial conditions, provided the underlying
graph is connected.

Proof For any t0 ≥ 0 and any edge (v, w) ∈ E , where E is the edge set of the
underlying graph, we evaluate the probability of the event “the edge (v, w) is not
selected for update at any time larger than t0.” Since the probability that (v, w) is not
selected at any time t is 1− 1

|E | , the probability that (v, w) is not selected for all times

s such that t0 ≤ s < t is
(
1 − 1

|E |
)t−t0

. Since lim
t→+∞

(
1 − 1

|E |
)t−t0

= 0, we argue

that (v, w) is selected infinitely often after t0 with probability 1. This fact implies that
G∞ = G almost surely. Since G is connected, convergence can be deduced from
Corollary 3.2. �

In the following, we are going to present a more general convergence result that
subsumes Proposition 3.3.Wewill rely on the results of Sect. 3.1. To beginwith, let us
goback to system (3.6) and let us study the expecteddynamics, that is, the dynamics of
E[x(t)]. Equation (3.6) and the independence among P(t)s implyE[x(t +1)|x(t)] =
E[P(t)]x(t) for all t . Then, denoting P̄ := E[P(t)], we have

E[x(t + 1)] = P̄ E[x(t)].

Note that P̄ is a stochastic matrix. If the graph associated with P̄ has a globally
reachable aperiodic node, by Theorem2.2 we have that E[x(t)] converges to a con-
sensus point c1. Moreover, the convergence rate is given by ρ2(P̄) and c = v∗x(0),
where v is the normalized dominant left eigenvector of P̄ . In principle, convergence
of the expected dynamics does not, by itself, guarantee convergence of the random
dynamics. However, the next result provides general and intuitive conditions for the
convergence of (3.6), which are indeed based on the convergence properties of the
expected dynamics.

Theorem 3.3 (Almost sure convergence to consensus) Consider the dynamical sys-
tem (3.6) and assume that the matrices P(t) are independently and randomly sam-
pled from an ensemble P of nondegenerate stochastic matrices equipped with a
fixed probability distribution. Then, the following three facts are equivalent:

(i) for every initial condition, there exists a scalar random variable x∞ such that
x(t) converges almost surely to x∞1;

(ii) ρ2(P̄) < 1;
(iii) the “expected graph” GP̄ has a globally reachable node.

Proof (i) ⇒ (i i): Being x(t) a bounded sequence, if x(t) converges almost surely to
x∞1, then alsoE[x(t)] converges toE[x∞]1 by the dominated convergence theorem.
As E[x(t + 1)] = P̄ E[x(t)], then necessarily ρ2(P̄) < 1.

(i i) ⇒ (i i i): Under the assumption on the diagonal of P(t), the graph GP̄ has a
globally reachable node if and only if ρ2(P̄) < 1.

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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(i i i) ⇒ (i): If GP̄ has a globally reachable node, say k ∈ V , then there exists
m ∈ N such that the kth column of P̄m is positive. This implies that, for every
t0, the entry (P(t0 + m) . . . P(t0 + 1)P(t0))vk has a positive probability of being
positive: Denote such probability by pv. Now, recall that Pkk(t) > 0 almost surely:
This implies that the kth column of matrix P(t0 + Nm) . . . P(t0 +1)P(t0) is positive
with probability

∏
u∈V pu . Consequently, there exists α > 0 such that, with positive

probability, each element of this column is larger than α. Now, let us define the
sequence of times th = m Nh for h ∈ Z≥0: Reasoning as in the proof of Lemma 3.1,
we can apply Lemma2.1 to argue that

max
v∈V

xv(tk+1) − min
v∈V

xv(tk+1) ≤ (1 − α)
(
max
v∈V

xv(tk) − min
v∈V

xv(tk)
)

with a positive probability which does not depend on tk . Hence, this inequality
almost surely holds for infinitely many k and then almost surely x(t) converges to
consensus. �

It is remarkable that Theorem 3.3 translates on the expected graph of the network
the same condition for consensus that holds for time-invariant networks. Following
this analogy, onewould expect that the essential spectral radius ofE[P(t)] determines
the speed of convergence of the algorithm. A result in this direction can be found by
a suitable mean-square analysis. Let us denote the current empirical variance as

xvar(t) := 1

N
||x(t) − xave(t)1||2 = 1

N
||Ωx(t)||2,

where Ω = I − 1
N 11

∗, and define the mean-square rate of convergence as

R := sup
x(0)

lim sup
t→+∞

E[xvar(t)]1/t . (3.7)

Notice that

E[xvar(t)] = 1

N
E[x(t)∗Ωx(t)] = 1

N
x(0)∗�(t)x(0),

where
�(t) := E[P(0)∗ P(1)∗ . . . P(t − 1)Ω P(t − 1) . . . P(1)P(0)]

if t ≥ 1 and �(0) := Ω . Clearly,

�(t + 1) = E[P(0)∗�(t)P(0)].

This recursion shows that �(t) is the solution of a linear dynamical system, which
can be written in the form

�(t + 1) = L (�(t))

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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whereL : RV ×V → R
V ×V is given byL (M) = E[P(0)∗M P(0)]. The knowledge

of the operatorL , in principle, provides all information about themean-square analy-
sis. For instance, we have that R is the spectral radius of the operator L , restricted
to the smallestL -invariant subspace of RV ×V containing Ω . This characterization,
however, is not very useful, because the operator L is difficult to compute in the
applications. The next result provides rate estimates that are easier to compute.

Proposition 3.4 (Mean-square convergence rate) Consider (3.6) and the conver-
gence rate R as in (3.7). Then,

ρ2(P̄)2 ≤ R ≤ sr
(
E[P(t)∗Ω P(t)]), (3.8)

where we recall that Ω = I − N−111∗ and sr(·) denotes the spectral radius of a
matrix.

Proof We start from the first inequality. We define Q(t) = P(t − 1) . . . P(0) and
notice that

E[x∗(t)Ωx(t)] = E[||Ωx(t)||2] = E[||Ω Q(t)x(0)||2].

Now using Jensen’s inequality, we have that

E[||Ω Q(t)x(0)||2] ≥ ||E[Ω Q(t)x(0)]||2 = ||Ω P̄ t x(0)||2,

which proves the inequality.
In order to prove the second inequality, let y ∈ R

V and note

y∗
E[P(0)∗Ω P(0)]y = E[y∗Ω P(0)∗Ω P(0)Ωy]

= y∗ΩE[P(0)∗Ω P(0)]Ωy

≤ ||E[P(0)∗Ω P(0)]||y∗Ωy,

by the symmetry of the matrix. We deduce that L (Ω) ≤ ||L (Ω)||Ω . This fact,
together with the remark that if M1 ≤ M2, then L (M1) ≤ L (M2), implies that

L t (Ω) = L t−1(L (Ω)) ≤ L t−1(||L (Ω)||Ω) = ||L (Ω)||L t−1(Ω).

By iterating this reasoning, we get L t (Ω) ≤ ||L (Ω)||tΩ, which gives the
thesis. �

Note that if all matrices P(t) are symmetric, then E[P(t)∗Ω P(t)] = E[P2(t)] −
1
N 11

∗. In the special case of the USG algorithm, we further haveE[P2(t)]− 1
N 11

∗ =
E[P(t)] − 1

N 11
∗ and we can thus argue that ρ2(E[P(t)])2 ≤ R ≤ ρ2(E[P(t)]).

We now introduce two examples of randomized averaging algorithms, which can
be studiedby the above results. Thefirst example generalizes theUSGand features the
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activation of one pair of connected nodes per time step: The two nodes communicate
with each other and both update their states.

Example 3.3 (symmetric gossip algorithm (SG)) Let aweighted graphG=(I, E, W )

and q ∈ (0, 1) be given, such that W is symmetric and 1∗W1 = 1. For every t ≥ 0,
one edge (v, w) ∈ E is sampled from a distribution such that the probability of
selecting (v, w) is Wvw. Then,

xv(t + 1) = (1 − q) xv(t) + q xw(t)

xw(t + 1) = (1 − q) xw(t) + q xv(t)

xu(t + 1) = xu(t) for u �= v, w.

Both W and q can be considered in principle as design parameters, with respect to
which one can optimize the performance.

In order to analyze the SG algorithm, for every (v, w) we let

P (v,w) := I − q(ev − ew)(ev − ew)∗ = I − q(eve∗
v − ewe∗

v − eve∗
w + ewe∗

w),

where eu is the uth vector of the canonical basis of RV . Note that trivially W =∑
(v,w) Wvweve∗

w. Then, the distribution of P(t) is concentrated on these matrices and
P[P(t) = P (v,w)] = Wvw. We have that (using the notation for the Laplacian of a
matrix)

E[P(t)] =
∑

(v,w)

Wvw P (v,w)

= I − q
∑

(v,w)

Wvw(ev − ew)(ev − ew)∗

= I − 2q L(W ).

Note that if the graph associated with W is strongly connected, then the average
graph is automatically strongly connected. Since in the SG all the diagonal elements
of P(t) are nonzero with probability 1 and all the P(t)s are symmetric, we can apply
Theorem3.3 and conclude that this algorithmyields average consensus almost surely.
Moreover, noting that ‖ev − ew‖22 = 2 and

(P(v,w))2 = I − 2q(ev − ew)(ev − ew)∗ + q2(ev − ew)(ev − ew)∗(ev − ew)(ev − ew)∗

= I − 2q(1 − q)(ev − ew)(ev − ew)∗,

we argue that

E[P(t)∗Ω P(t)] = E[P(t)2] − 1

N
11∗ = Ω − 4q(1 − q)L(W ).

Then, by applying Proposition 3.4, we can estimate the convergence rate as
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ρ2(I − 2q L(W ))2 ≤ R ≤ sr(Ω − 4q(1 − q)L(W ))

and, provided we denote by λ the smallest nonzero eigenvalue of L(W ), as

1 − 4qλ ≤ R ≤ 1 − 4q(1 − q)λ.

The next example features the activation of one node per time step. The activated
node communicates its current state to all its neighbors, which in turn update their
states. We note that the algorithm is inherently asymmetric: As a consequence, the
average of the initial states is not preserved.

Example 3.4 (Broadcast gossip algorithm (BG)) Let there be q ∈ (0, 1) and a
directed graph G = (V, E) whose adjacency matrix is denoted by A ∈ {0, 1}V ×V .
For every t ≥ 0, one node w is sampled from a uniform distribution over V . Then,

xv(t + 1) = (1 − q) xv(t) + q xw(t) if Avw > 0

xv(t + 1) = xv(t) otherwise.

In other words, one randomly selected node broadcasts its value to all its neighbors,
which update their values accordingly.

For the analysis of this algorithm, we define

P (w) = I − q
∑

v:Avw>0

(eve∗
v − eve∗

w)

and note that P[P(t) = P (w)] = 1
N . Then,

E[P(t)] = I − q

N
L .

If the graph G is strongly connected, then the algorithm converges to consensus
almost surely. Before we further investigate the properties of the BG algorithm, we
assume that the graph is topologically balanced, i.e., A1 = A∗1. This property in
particular implies that 1∗L = 1∗ and then E[x∞] = xave(0). Moreover, the reader
may compute that

E[P(t)∗ P(t)] = I − q(1 − q)

N
(L + L∗) (3.9a)

E[P(t)∗11∗ P(t)] = 11∗ + q2

N
L L∗. (3.9b)

As a consequence, the convergence rate can be estimated using Proposition 3.4 as

ρ2

(
I − q(1 − q)

N
(L + L∗)

)2

≤ R ≤ sr

(
Ω − q(1 − q)

N
(L + L∗) − q2

N 2
L L∗

)
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If we denote by 2λ the smallest nonzero eigenvalue of L + L∗, and we remark that
L L∗ is positive semidefinite, the above bounds can be simplified to

1 − 4
q(1 − q)

N
λ ≤ R ≤ 1 − 2

q(1 − q)

N
λ.

We have seen that, provided the graph is balanced, the BG algorithm yields
E[x∞] = xave(0). Considering that x∞ is a random variable, its spreading around the
mean value needs to be evaluated. To this aim, we introduce the mean-square error
E

[
(x∞ − xave(0))2

]
and below we provide a technical tool to estimate it. In order to

state the result, it is again convenient to denote the empirical variance as

xvar(t) := 1

N

N∑

i=1

(
xi (t) − xave(t)

) = 1

N
x∗Ωx(t).

Theorem 3.4 (Accuracy condition) Consider dynamics (3.6) and assume that
1∗ P̄ = 1∗ and that there exists γ > 0 such that1

E[P∗11∗ P] − 11∗ ≤ γ
(
I − E[P∗ P]). (3.10)

Then,
E

[
(xave(t) − xave(0))

2
] ≤ γ

N + γ
E [xvar(0) − xvar(t)] . (3.11)

If additionally GP̄ has a globally reachable node, then

E
[
(x∞ − xave(0))

2
] ≤ γ

N + γ
xvar(0). (3.12)

Proof In the proof, we shall use the notation xave = N−11∗x and xvar = N−1x∗Ωx
to denote the empirical average and variance of a generic vector x ∈ R

V . We let

C(x) := N (γ + N )x2
ave + Nγ xvar

= N (γ + N )

N 2
x∗11∗x + Nγ

N
x∗

(
I − 1

N
11∗

)
x

= x∗
(
11∗ + γ I

)
x .

Then, for a generic stochastic matrix P , we have that

C(Px) − C(x) = x∗
(

P∗11∗ P + γ P∗ P − 11∗ − γ I
)

x .

1In this result, inequalities between matrices like A ≤ B have to be intended as A − B being
negative semidefinite.
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Consequently, condition (3.10) implies that for dynamics (3.6)

E[C(x(t + 1)) − C(x(t))|x(t)] =x(t)∗
(
E[P∗11∗ P + γ P∗ P] − 11∗ − γ I

)
x(t) ≤ 0

and E[C(x(t))] ≤ C(x(0)) for all t ∈ N. This inequality can be rewritten as

E
[
xave(t)

2 − xave(0)
2] ≤ γ

N + γ
E [xvar(0) − xvar(t)] .

This inequality implies (3.11) if xave(0) = 0: The general case follows by applying
this special case to the translated dynamics x − xave(0)1. Finally, inequality (3.12)
is an immediate corollary of convergence. �

In the case of the broadcast gossip algorithm, (3.9) implies that (3.10) reads

q2

N
L L∗ ≤ γ

q(1 − q)

N
(L + L∗),

which holds true for γ = dmax
q

1−q because for balanced graphs L L∗ ≤ dmax(L+L∗).
Consequently,

E
[
(x∞ − xave(0))

2
] ≤ q

1 − q

dmax

N
xvar(0).

Remarkably, as long as dmax = o(N ), this upper bound goes to zero as N goes to
infinity, that is, the error committed by the algorithm in approximating the average
becomes negligible on large networks.

Exercises

Exercise 3.1 (Strong positivity [35]) Consider the sequence of matrices

P(t) =
(
1 − αt αt

αt 1 − αt

)

where αt ∈ [0, 1] is a given sequence. Observe that all P(t) are aperiodic and
irreducible.

(i) Prove that, if αt ≥ α > 0 for all t , then the sequence P(t) leads to a consensus.
(ii) For sequences αt → 0 when t → +∞, find sufficient conditions on the speed

of convergence which guarantee that P(t) leads to a consensus.
(iii) Find an explicit example of a sequence αt → 0 for t → +∞, for which P(t)

does not lead to a consensus.

Exercise 3.2 (Time-varying consensus on the line graph) Let V = {0, . . . , N − 1}
and consider the directed line graphL = (V, E). Let the vector eu ∈ R

V be such that
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the vth component of eu is equal to 1 if v = u and to 0 otherwise, and define thematrix
P (u,v) = I − 1

2 (eue∗
u − eue∗

v ). Consider a time-dependent consensus algorithm (3.1)
with

P(t) = P (k,k+1) where k = t (mod N ).

(i) Verify that the dynamics satisfies the assumptions of Theorem 3.1, and find the
minimal T for the connectivity assumption.

(ii) Verify that the dynamics satisfies the assumptions of Lemma 3.1, finding the
suitable value of B. Compare B with the value of T found in (i).

Exercise 3.3 (Uniform connectivity [35]) Consider (3.1) with x(0) = (0, 1, 1)∗ and
the sequence {P(t)}t defined as follows. Let

P1 =
⎡

⎣
1 0 0
1/2 1/2 0
0 0 1

⎤

⎦ P2 =
⎡

⎣
1/2 1/2 0
1/2 1/2 0
0 0 1

⎤

⎦

P3 =
⎡

⎣
1 0 0
0 1/2 1/2
0 0 1

⎤

⎦ P4 =
⎡

⎣
1 0 0
0 1/2 1/2
0 1/2 1/2

⎤

⎦

and Qs = P1, . . . , P1︸ ︷︷ ︸
2s

, P2, P3, . . . , P3︸ ︷︷ ︸
2s+1

, P4. Assume the sequence P(t) is the concate-

nation of Q0, Q1, Q2, . . .. Then, show that x(t) does not converge to a consensus.

Exercise 3.4 (Krause’s convergence time) Consider Krause’s dynamics (3.5).

(i) Show that the order between opinions is preserved, i.e., for all t ≥ 0, if xv(t) ≤
xw(t), then xv(t + 1) ≤ xw(t + 1). This implies that we can assume (without
loss of generality) that the agents are sorted, i.e., if v < w, then xv < xw.

(ii) Show that if at some time t the distance between two consecutive agent opinions
xv(t) and xv+1(t) is larger than ε, then it remains so for all time s > t .

(iii) Assume from now on that ρ = 1. Show that there exist T ∈ N and x̃ ∈ R
V

such that x(t) = x̃ for all t ≥ T .
(iv) Show that for all v, w ∈ V , either |x̃v − x̃w| > ε or x̃v = x̃w.
(v) Estimate the worst-case converge time T̄ = supx(0) inf{t : x(t) = x̃} ([5,

Sect. 4.6.1]).

Exercise 3.5 (Unbounded confidence) Consider the following generalized Krause’s
model. Fix a continuous function ξ : [0,+∞) → [0,+∞) such that ξ(x) > 0 for
all x ≥ 0, and define

xv(t + 1) = xv(t) + ρ
∑

w∈V
ξ(|xw(t) − xv(t)|)

∑

w∈V

ξ(|xw(t) − xv(t)|)(xw(t) − xv(t)) ,

(3.13)
where ρ ∈ (0, 1). Fix some initial condition x(0) and let P(t) be the sequence of
matrix such that x(t + 1) = P(t)x(t).
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(i) Prove that the sequence P(t) is nondegenerate and conclude, using Corol-
lary 3.2, that it leads to a consensus.

(ii) Assume that ξ(x) = e−x2
and let d(t) = max{xu(t)} − min{xu(t)}. Using

Lemma2.1, prove that

d(t + 1) ≤
(
1 − e−d(t)2

)
d(t)

(iii) Assuming that x(0)v ∈ [−1, 1] for all v ∈ V , find, for fixed ε > 0, an estimate
of the convergence time

tε := inf{t | d(t) ≤ ε}

Compare this estimate with explicit simulations of (3.13) for N = 10.

Exercise 3.6 (Broadcast on a star) Let SN = (V, E) be a star with N leaves.
Consider the following randomized consensus algorithm. For all positive integers
t , sample one node w from a uniform distribution over V , and update the states as
follows:

xv(t + 1) = (1 − q)xv(t) + qxw(t) if (v, w) ∈ E

xv(t + 1) = xv(t) if (v, w) /∈ E .

The update parameter satisfies q ∈ (0, 1).

(i) Write down the update rule for the proposed algorithm in matrix form.
(ii) Compute the expected update matrix P̄ = E[P(t)].
(iii) Let xave(t) = 1

N

∑
v∈V xv(t). Verify that, although in general xave(t + 1) �=

xave(t), nevertheless E[xave(t + 1)] = E[xave(t)].
(iv) Show that the algorithm ensures almost sure convergence of the states.
(v) Compute the second largest eigenvalue of P̄ . To this goal, you may use Exer-

cise2.18.
(vi) Estimate the convergence rate R of the algorithm as a function of q and N , and

conclude that limN→∞ R = 1 irrespective of q.

Exercise 3.7 (Triplet-gossip) Consider the following random dynamics on a com-
plete graph G = (V, E). At every discrete-time step t , three agents u, v, w are
uniformly and independently sampled from V , and they update their internal state
as follows:

xu(t + 1) = xv(t + 1) = xw(t + 1) = xu(t) + xv(t) + xw(t)

3

Let P(t) be the corresponding matrix acting on the full vector x(t).

(i) Compute P = E[P(t)], its eigenvalues, and its spectral gap.
(ii) Give an estimation of E||Ωx(t)||2 analogous to what is done for the pairwise

gossip algorithm in Example 3.3.

http://dx.doi.org/10.1007/978-3-319-68022-4_2
http://dx.doi.org/10.1007/978-3-319-68022-4_2
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Exercise 3.8 (Asynchronous asymmetric gossip algorithm (AAGA)) This exercise
gives an example of randomized algorithm, in which one directed edge is activated
at each time step, resulting in an asymmetric update rule.

Let a weighted graph G = (V, E, W ) and q ∈ (0, 1) be given, such that W1 =
W ∗1 and 1∗W1 = 1. For every t ≥ 0, one edge (v, w) is sampled from a distribution
such that the probability of selecting (v, w) is Wvw. Then, we define

xv(t + 1) = (1 − q) xv(t) + q xw(t) (3.14)

and xu(t + 1) = xu(t) for u �= v.

(i) Verify that (as proved in [18, Sect. 4])

E[P(t)] = I − q L(W )

E[P(t)∗ P(t)] = I − q(1 − q)L(W + W ∗)

E[P(t)∗11∗ P(t)] = 11 + q2L(W + W ∗).

(ii) Assume from now on that the graph G is strongly connected. Prove that sys-
tem (3.14) almost surely converges to a limit value x∞ such that E[x∞] =
xave(0) and

E
[
(x∞ − xave(0))

2
] ≤ q

1 − q

1

N
xvar(0).

(iii) Assume moreover that W is symmetric and denote by λ the spectral gap of
L(W ). Show that the convergence rate is bounded by

1 − 2qλ ≤ R ≤ 1 − 2q
(
(1 − q) + q

N

)
λ,

provided N is large enough.

Bibliographical Notes

Deterministic networks. Our choice of results on deterministic time-dependent
consensus mostly consist of necessary and sufficient conditions for convergence.
While the convergence analysis of time-invariant averaging dates back at least to
De Groot [13] in 1974, sufficient conditions for the time-varying case were given
by [45] in 1984 and later by [7, 8, 28, 31]. The results on convergence to consensus
that we present in Sect. 3.1 appeared, in quite a different formulation, in [35]: The
counterexample in Exercise 3.3 is in the original paper. Our version of the results is
based on the analysis in [24, 27].

In consensus-seeking systems, results which do make a “global” assumption of
connectivity can ensure convergence but possibly not consensus. Such results are
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motivated by the difficulty to satisfy, in some applications, connectivity conditions
over time. In this spirit, we have presented Theorem 3.2, which is more general than
early results as those in [31]. The result can be found in [25, Theorem 2]: We present
it here with a proof which is adapted to the rest of our arguments. The works [26, 27]
developed the notion of cut-balance, which has been used and extended in several
subsequent works, including [11, 33, 42, 44]. However, it is clear that in certain
applications, e.g., vehicle rendezvous, mere convergence is not satisfactory. For this
reason, there has been much work devoted to variations of the consensus algorithm,
which inherently guarantee connectivity. A discussion about this connectivity main-
tenance issue may be found, for instance, in [5, Chap. 4]. In the opposite direction,
Krause’s model is a simple but very interesting example of a consensus-seeking
dynamics without a global connectivity assumption. The dynamics was originally
proposed in [23, 29], as amodel for opinion dynamics with bounded confidence [32].
Krause’s dynamics have been the topic of several works [2], which have also con-
sidered variations of the dynamics that feature continuous-time evolution [3, 9],
multi-dimensional opinions [16, 38], heterogenous thresholds [34], and continua of
agents [3, 6].

Instead, we did not investigate much two important issues that have been dis-
cussed in detail in Chap.2 for time-invariant networks: speed of convergence and
limit state. Studying the speed of convergence of time-dependent consensus algo-
rithms is indeed quite delicate. First, it is essential to assume connectedness on
bounded interval; otherwise, the algorithm can be arbitrarily slowed down by intro-
ducing arbitrary sequences of disconnected graphs.Moreover, even if connectivity on
bounded intervals is assumed, the convergence time can be large (as in Exercise 3.2),
even exponentially large in the interval size and in N : We refer to [37] for a detailed
discussion. Results have been proved for specific dynamics, such as Krause’s, see
Exercise 3.4 and [15]. Stronger results can be found by assuming the matrices P(t)
to be nondegenerate and their associated graphs connected at each time step: Recent
results in this framework can be found in [36]. Also the issue of determining the
consensus (or convergence) point has no simple answer in the literature. In princi-
ple, such an analysis reduces to studying the absolute probability vectors as defined
in [39]. Explicit results, however, are only available in special cases: For instance,
see [2] for a partial description of the limit states of Krause’s dynamics and [46] for
some recent developments on this matter.
Randomized networks. Theorem 3.3 was originally proven in [19, 40]. The proof
presented here is new, although inspired by [40], and has been written to seam-
lessly take advantage of our treatment of the deterministic case. We acknowledge
that Theorem 3.3 is not the most general convergence result for randomized con-
sensus dynamics, because it requires positivity of the diagonal and statistical inde-
pendence of the update matrices. This independence assumption can be significantly
relaxed, at the price of using more subtle probabilistic tools. In [41], the condition
ρ2(E[P(t)]) < 1 is proven to be necessary and sufficient for consensus, under the
more general assumption that the sequence P(t) is generated by an ergodic sta-
tionary process (and has positive diagonals). In [30], it is proved that in fact any
adapted stochastic process is suitable, provided certain assumptions of uniform con-

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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nectivity hold. Also the assumption of positivity of the diagonal can be relaxed. A
necessary and sufficient condition for convergence, which does not require to assume
that the diagonal is positive, can be found in [19, Theorem 3.1] and is due to Cog-
burn [10]. An intermediate useful condition is strong aperiodicity as defined in [42].
Very general conditions for adapted processes of “balanced” stochastic matrices are
provided in [43].

For randomized dynamics, we have presented some estimates on the speed of
convergence, byusing themean-square analysis developed in [19].Another important
topic is studying the random variable x∞ and its distance from xave(0). Obtaining a
complete characterization of the distribution of x∞ seems to remain an open problem,
but a few practical results are available to estimate its variance. In principle, the
variance of the consensus value can be exactly computed by the formula in [41,
Eq. (7)], which involves the dominant eigenvectors of the first two moments of the
update matrix: However, this characterization can be inconvenient in the applications
anddoes not provide clear insights on the scaling for large networks.More recently, an
effective estimate has been derived in [22], providing conditions for the variance to go
to zero as N goes to infinity. This result, which we presented in Theorem 3.4, covers
a wide class of randomized algorithms that involve asymmetric communication or
packet losses [20, 21].

There is a large variety of examples in randomized consensus dynamics, and our
selection has focused on two models which have possibly been the most popular in
recent literature [14]. The symmetric gossip algorithm in Example 3.3 was popular-
ized in the systems and control community by the influential work [4]. The broad-
cast gossip algorithm in Example 3.4 has attracted a significant attention, because it
involves broadcast communication and thus applies very naturally to wireless net-
works [1, 17, 19]: Formulas (3.9) can be found in [1, Lemma 4]. As we have shown,
the consensus value of BG does not coincide with the average of the initial con-
ditions, but this bias becomes negligible for large networks [22]. Another intuitive
algorithm with the same property is the asymmetric gossip algorithm [18], which we
introduce in Exercise 3.8. Finally, we would like to mention that there exist dynam-
ics that combine gossiping and bounded confidence, proposed as opinion dynamics
models [12, 47].
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