
Chapter 2
Averaging in Time-Invariant Networks

Abstract This chapter studies the basic averaging dynamics on a fixed network.
This linear dynamics is also called “consensus” dynamics, because under suitable
assumptions it brings the states associated with the nodes to converge to the same
value. Section2.1 introduces the rendezvous problem, which serves us as the main
motivation to seek consensus, and states the main results of the chapter. Section2.2
solves the consensus problem in the special case of symmetric regular graphs, while
the general solution, which is based on the notion of stochastic matrix, is presented in
Sect. 2.3. The subsequent sections provide further insights into the averaging dynam-
ics, namely about its speed of convergence (Sects. 2.4 and 2.7) and its consensus
value (Sect. 2.5). Meanwhile, Sect. 2.6 presents some classical examples of stochas-
tic matrices associated with a graph, such as simple random walks and Metropolis
walks. Finally, Sect. 2.8 concentrates on reversible stochasticmatrices and their prop-
erties.

2.1 Rendezvous and Consensus

One of the simplest examples of coordinated control is the so-called rendezvous
problem. Assume that units have dynamics of type xv(t + 1) = xv(t) + uv(t) for
all t ∈ Z≥0 with xv(t) and uv(t) ∈ R

n for all v ∈ V and that the control goal is
to make all units converge their state to the same point. We can think of them as
moving agents with the state representing position. This is known as the rendezvous
problem: There are many variants of this problem, and the one we are addressing is
just the basic and simplest instance. What are exactly the issues we want to analyze?
Here is a brief list:

(a) Given a graph G, find out whether there exists a control scheme uv = gv(x)

adapted to G such that the state evolutions governed by the equations xv(t +1) =
xv(t) + gv(x) all converge to the same point, namely for all initial conditions
x(0), there exists x� ∈ R

n such that

lim
t→+∞ xv(t) = x� , ∀v ∈ V . (2.1)
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32 2 Averaging in Time-Invariant Networks

(b) In case when (a) has a positive answer, we would like to find effective ways for
producing the control scheme. Indeed, in general, there will be many possible
control schemes and the choice can be dictated to optimize certain performance
indices:

(b1) the velocity of convergence to the rendezvous point;
(b2) the displacement of x� from the initial condition.

Both indices will be defined precisely later on.

Notice that without further assumptions, the problem as stated in (a) is always
solvable and with no communication among units. It is sufficient to put uv = −xv,
and we will have that xv(t) = 0 for all v and for all t ≥ 1: In control theory, this is
known as a “deadbeat control.” The reason why this is not a feasible solution is the
following. This solution implicitly requires that units have already agreed to make
0 their rendezvous point, and in other terms, they have already coordinated off-line.
This prior coordination is something we want to avoid; moreover, the origin may be
far off from their initial condition and thus an unreasonable choice (in general not
optimizing (b2)). We make the following extra assumption on the rendezvous point
x� which automatically drops out the deadbeat control scheme above: We require
that, translating all initial conditions xv(0) → xv(0) + b with the same vector, also
the rendezvous point translates the same way x� → x� + b. We will refer to this as
to the translation invariance requirement.

As it is customary in control theory, it is natural to seek, in primis, a linear solution
to this problem, namely to consider controllers of type

uv(t) =
∑

w∈V

Kvwxw(t) (2.2)

where K ∈ R
V ×V is a gain matrix. Coupling with the unit dynamics, we thus obtain

xv(t + 1) =
∑

w∈V

Pvwxw(t) (2.3)

where P = I + K .
This type of models (2.3) has applications much broader than just in the ren-

dezvous problem for mobile agents. Instead of a position, the state xv(t) can as well
be interpreted as an estimation or as an opinion on some fact possessed by unit v
at time t and the common convergence to the same value is a phenomenon known
as consensus. Later on, we will provide more details on such possible applicative
contexts.

Notice that the dimension of the state does not play any particular role in the
dynamics (2.3) as all components of the state vectors xv(t) evolve separately all with
the same dynamics given by the matrix P . For this reason, from now on, we will
assume that the state xv(t) of each unit is one-dimensional, namely a scalar. In this
setting, (2.3) can be rewritten in more compact form simply as



2.1 Rendezvous and Consensus 33

x(t + 1) = Px(t) (2.4)

so that x(t) = Pt x(0). The translation invariance, in this context, amounts to require
that Pt1 → 1 for t → +∞. Since Pt+11 = P Pt1 then converges both to 1 and to
P1, the translation invariance is also equivalent to require P1 = 1 (each row of P
sums to 1).

Notice moreover that the feedback law (2.2) is adapted to G if K (or equiva-
lently P) is adapted to G. Therefore, in order to exhibit a solution to the rendezvous
problem with translation invariance, it is sufficient to exhibit P ∈ R

V ×V adapted to
G such that P1 = 1. The following result, which will be proven in the next sections,
is an elegant and simple solution.

Theorem 2.1 (Consensus) Suppose G has a globally reachable vertex v�. Then
the rendezvous problem with the translation-invariant requirement is solvable over
G. A possible solution is given by any matrix P ∈ R

V ×V satisfying the following
properties:

(Pa) Pvw ≥ 0 for every v, w ∈ V ;
(Pb) P1 = 1;
(Pc) For every v �= w, Pvw > 0 ⇔ (v, w) ∈ E;
(Pd) Pv�v� > 0.

It turns out that matrices as P sharing (Pa) and (Pb) have very special properties:
They are called stochastic and appear in many different contexts, one of these being
Markov chain theory. Property (Pc) says that GP and G can only possibly differ in
their self-loops.

There is an additional nice property of these systems. Being P stochastic, its
Laplacian is L(P) = I − P . Consequently, we may write (2.4) as x(t + 1) =
x(t) − L(P)x(t), which becomes xv(t + 1) = xv(t) + ∑

w Pvw(xw(t) − xv(t))
componentwise. We observe that this expression only involves the state of v and
differences between the states of v and of its neighbors w. Then, there is no need for
the nodes to exchange information in an absolute reference frame, but only relative
information suffices.

Before presenting the key results for stochastic matrices and proving Theorem 2.1
and some generalizations, we will work out a special case, which explains how
matrices like P above come naturally into the picture.

2.2 Averaging on Symmetric Regular Graphs

Notice that if the underlying graph was the complete one, the rendezvous problem
would have a very simple solution: It would be enough for all the units to compute the
barycenter x(t) := N−1∑

v∈V xv(t) (where N := |V |) and implement the control
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law uv(t) = x(t) − xv(t) which would yield xv(t) = x(t) for all v and all positive t .
This law implies that at time t = 1, all units have already reached consensus exactly
in the barycenter of the initial state x(0). It is then immediate to see that xv(t) = x(0)
for every t ≥ 1. The type of matrix P we obtain in this case is P = N−111∗, a very
special stochastic matrix with all elements equal to 1/N .

This solution is not admissible for a general graph, but its main idea can be
adapted. Indeed, it is sufficient to replace the barycenter x(t) with a local version of
it, namely for each unit to use a local barycenter based on the units to which it is
connected through the graph. Precisely, given a graph G = (V, E), each unit v ∈ V
computes at time t

xv(t) := 1

dout
v

∑

w∈V

(AG)vwxw(t)

and implements the dynamics xv(t + 1) = xv(t) + τ(xv(t) − xv(t)). The parameter
τ > 0 indicates the velocity at which unit v is following the local barycenter and
will play a crucial role in the rest of this section. In compact matrix form, we obtain
that x(t + 1) = Px(t) where

P = I + τ(D−1
G AG − I ) = I − τ D−1

G L(G). (2.5)

It is easy to see that τ ∈ (0, 1] guarantees that P is a stochastic matrix adapted to
the graph G.

Let us now analyze the special case when G is symmetric and d-regular. In this
case, P = I −τd−1L(G) is also symmetric. Assuming that 0 = λ1 ≤ λ2 ≤ · · · ≤ λN

are the eigenvalues of the Laplacian L(G), we obtain that the eigenvalues of P are
simply given by μi = 1− τd−1λi (with μ1 = 1). Moreover, the two matrices L(G)

and P share the same orthonormal basis of eigenvectors ξi ’s (with ξ1 = N−1/21).
We can thus write the usual orthonormal decomposition of P

P =
N∑

i=1

μiξiξ
∗
i = N−111∗ +

N∑

i=2

μiξiξ
∗
i

which yields, by orthonormality, Pt = N−111∗ +
N∑

i=2
μt

iξiξ
∗
i . The evolution of the

state configuration is thus

Pt x(0) = x̄(0)1 +
N∑

i=2

μt
iξiξ

∗
i x(0)
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Notice now that

||Pt x(0) − x̄(0)1||2 =
∣∣∣∣∣

∣∣∣∣∣

N∑

i=2

μt
iξiξ

∗
i x(0)

∣∣∣∣∣

∣∣∣∣∣

2

=
N∑

i=2

|μi |2t |ξ ∗
i x(0)|2

Since 1 = μ1 ≥ μ2 ≥ · · · ≥ μN , putting ρ2 := max{|μ2|, |μN |}, we obtain

||Pt x(0) − x̄(0)1||2 ≤ ρ2t
2

N∑

i=2

|ξ ∗
i x(0)|2 ≤ ρ2t

2 ||x(0)||2,

which can be rewritten as

||Pt x(0) − x̄(0)1|| ≤ ρ t
2||(I − N−111�)x(0)||. (2.6)

This bound shows that if ρ2 < 1, then x(t) = Pt x(0) → x̄(0)1 for t → +∞,
namely all states converge to a consensus point, which turns out to be again the
barycenter of the initial state conditions x̄(0). Moreover, (2.6) actually shows that ρ2

dictates the speed of convergence of the dynamics toward consensus. Under which
conditions can we guarantee that ρ2 < 1? Because of the way ρ2 is defined, we must
have |μ2|, |μN | < 1. If G is not connected, we know that λ2 = 0 and, consequently,
μ2 = 1: Indeed, in this case, it is clear that consensus can not be reached in general
since the network is composed of completely separated components. Instead, if G
is connected, then λ2 > 0 and, consequently, 1 > μ2 ≥ μN . Hence, the only
extra condition that needs to be satisfied is μN > −1, namely 1 − τd−1λN > −1.
This is equivalent to τ < 2d

λN
. Considering that (see Exercise1.17) λN ≤ 2d, a

sufficient condition which guarantees consensus is τ < 1. We can summarize the
above discussion in the following result.

Proposition 2.1 (Consensus on symmetric regular graphs) Let G be a symmetric,
d-regular, and connected graph. Then, the dynamics (2.4)–(2.5), with τ ∈ (0, 1),
guarantees convergence to consensus, where the consensus point is the barycenter
of the initial state and convergence happens at an exponential rate given by ρ2.

In the next section, wewill present a number of general results on stochasticmatri-
ces and we will be able to generalize this result to more general graphs, by dropping
the assumptions of symmetry, regularity, and—to a certain extent—connectivity of
the underlying graph.

2.3 Stochastic Matrices and Averaging

In general, a matrix P ∈ R
V ×V such that Pvw ≥ 0 for every v, w ∈ V is called

a nonnegative matrix. A nonnegative matrix P ∈ R
V ×V satisfying the row sum

condition P1 = 1 is said to be a stochastic matrix. With these new concepts, we

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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can restate properties (Pa)-(Pb)-(Pc) above by saying that P is a stochastic matrix
adapted to G.

As already noticed, P behaves as a local averaging operator: Given a vector
x ∈ R

V , the component v of Px is a weighted average of the values xw forw ∈ N out
v .

There is also an interesting flux interpretation of the adjoint operator. Given ζ ∈ R
V ,

(ζ ∗ P)v = ∑
ζw Pwv can be interpreted as follows: From each node w, the quantity

ζw will flow through the outgoing edges splitting according to the weights Pwv as
v varies among the out neighbors of w. Hence,

∑
ζw Pwv is the total new quantity

present at node v.
Moreover, a stochastic matrix is the main ingredient of a Markov chain, a special

stochastic process such that the future only depends on the past through the present
state and states are finite in number. Given a stochastic matrix P ∈ R

V ×V , the term
Pvw can be interpreted as the probability of making a transition from state v to state
w: If you associate each state with the node of the associated graph GP , you can
imagine to be sitting at state v and to walk along one of the available outgoing edges
from v according to the various probabilities Pvw. In this way, you construct what
is called a random walk on the graph G. In this probabilistic setting, flows can be
interpreted as probabilities: If ζ ∈ R

V is a probability vector where ζv indicates the
probability that at the initial instant the state is equal to v, then (ζ ∗ P)v indicates the
probability of finding the process in state v at the next time.

The first general observation to be done on stochastic matrices is that the set
of stochastic matrices is closed under a number of important operations (whose
elementary proof is left to the reader):

(1) If P, Q ∈ R
V ×V are stochastic, then λP + (1 − λ)Q is stochastic for any

λ ∈ (0, 1).
(2) If P, Q ∈ R

V ×V are stochastic, then P Q is stochastic. In particular, Pt is
stochastic, for any t ∈ N.

(3) If Pn is a sequence of stochastic matrices such that Pn → P for n → +∞, then
P is stochastic.

Properties (1) and (3) say that the set of stochastic matrices form a compact convex
subset of [0, 1]V ×V .

We are now almost ready to state and prove the main result of this chapter, which
investigates the behavior of the powers of a stochastic matrix, proposing minimal
conditions to get convergence. The proof is based on the following lemma, which
shall also be used later in these notes.

Lemma 2.1 (Contraction principle) Let Q ∈ R
V ×V be a stochastic matrix such that

there exist α > 0 and m ∈ V such that Qvm ≥ α for all v ∈ V . Then, for all x ∈ R
V ,

it holds true that y = Qx satisfies

max
v∈V

yv − min
v∈V

yv ≤ (1 − α)
(
max
v∈V

xv − min
v∈V

xv
)
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Proof Note that

yv =
∑

w∈V

Qvwxw =
∑

w∈V

Qvw(xw − min
u∈V

xu) +
∑

w∈V

Qvw min
u∈V

xu

≥ α(xm − min
u∈V

xu) + min
u∈V

xu

= αxm + (1 − α)min
u∈V

xu .

Similarly,

yv =
∑

w∈V

Qvwxw =
∑

w∈V

Qvw(xw − max
u∈V

xu) +
∑

w∈V

Qvw max
u∈V

xu

≤ α(xm − max
u∈V

xu) + max
u∈V

xu

= αxm + (1 − α)max
u∈V

xu .

Putting these two inequalities together gives:

max
u∈V

yu − min
u∈V

yu ≤ αxm + (1 − α)max
u∈V

xu − αxm − (1 − α)min
u∈V

xu

= (1 − α)(max
u∈V

xu − min
u∈V

xu),

that is the thesis. �

The main result is then the following.

Theorem 2.2 (Convergence to consensus) Let P ∈ R
V ×V be a stochastic matrix

such that GP admits a globally reachable aperiodic vertex. Then, the following two
equivalent facts hold true.

(i) The dynamics (2.4) is such that, for any initial condition x(0) = x0 ∈ R
V ,

there exists a scalar α such that

x(t) = Pt x(0) → α1 t → +∞.

In other terms, all components xv(t) converge to the same consensus value α.
(ii) There exists a vector π ∈ R

V such that πv ≥ 0 for all v,
∑

v πv = 1, and

lim
t→+∞ Pt = 1π∗. (2.7)

In other terms, Pt converges to a matrix having all rows equal to the row
vector π∗.

Furthermore, α = π∗x(0).
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Let s ∈ V be the aperiodic vertex which is reachable from all others. This means
that there exists t� ∈ N such that Q := Pt�

is such that Qvs > 0 for all v ∈ V . Let
α = min{Qvs : v ∈ V } > 0. Then, letting y0 ∈ R

V and y1 = Qy0, Lemma 2.1
implies that

max
v∈V

y1v − min
v∈V

y1v ≤ (1 − α)(max
v∈V

y0v − min
v∈V

y0v ).

Fix now x(0) = x0 ∈ R
V arbitrarily and consider (2.4). Define Mt =

maxv∈V xv(t) and mt = minv∈V xv(t), and notice that, since the components of
x(t) are convex combinations of those of x(t − 1), the sequences Mt and mt are
bounded and, respectively, nonincreasing and nondecreasing (hence convergent).
Hence, also
t = Mt −mt converges. For the previous argument, moreover, it holds
that 
nt� ≤ (1 − α)n
0. This implies that 
nt� → 0 for n → +∞. Hence, all
components of x(t) will converge to the same limit, thus proving the first claim. If
we apply this result choosing x(0) = ew, the wth element of the canonical basis of
R

V , we obtain that all elements of the wth column of Pt will converge to the same
limit. This clearly yields the second claim.

�
Theorem 2.2 immediately yields Theorem 2.1. An important special case is dis-

cussed in the following remark.

Remark 2.1 (Irreducibility) A stochastic matrix P for which GP is strongly con-
nected is called irreducible. A stochastic matrix is said to be aperiodic if GP is
aperiodic. Hence, Theorem 2.2 applies to the important case when P is irreducible
and aperiodic. Notice that for symmetric P these two properties are equivalent to the
assumptions in Theorem 2.2.

We now briefly discuss the necessity of the assumptions in Theorem 2.2.

Remark 2.2 (Aperiodicity) Notice that it is not necessary that all units have access to
their own state. It is instead sufficient that the globally reachable node is aperiodic;
hence, for instance, it is sufficient that there is a self-loop in this node. The fact that
some assumption of aperiodicity is necessary for convergence follows by considering
the simple example of a strongly connected graph with two nodes and no self-loops.
The only possible stochastic matrix adapted to such a graph is

P =
(
0 1
1 0

)

Notice that P2t = I for all t , and therefore, P does not yield consensus. A few
properties of periodic matrices are discussed in Exercise 2.3.

Remark 2.3 (Connectivity) If the graph GP has two (or more) sinks, the matrix P
can be written with the block structure

P =
⎡

⎣
R1 R2 R3

0 P1 0
0 0 P2

⎤

⎦
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Since the powers of P inherit its block structure, the entries of no column of Pt can
converge to the same value in general. This reasoning shows that global reachability
of a node is necessary for convergence to consensus.

The convergence theorem is illustrated by the following example and in Fig. 2.1.

Example 2.1 (An irreducible, aperiodic stochastic matrix) Consider the stochastic
matrix

P =
⎡

⎣
1/2 1/2 0
1/3 1/3 1/3
1/3 0 2/3

⎤

⎦

It is evident that P is irreducible and aperiodic. Let us compute the invariant proba-
bility π . From π∗ P = π∗, we get

⎧
⎨

⎩

− 1
2π1 + 1

3π2 + 1
3π3 = 0

1
2π1 − 2

3π2 = 0
1
3π2 − 1

3π3 = 0

which immediately yieldsπ2 = π3 andπ1 = 4
3π2. Using the normalization condition

π1 + π2 + π3 = 1, we finally get π = (
2
5 ,

3
10 ,

3
10

)∗
.

Theorem2.2 also contains further information useful to address issue (b) presented
at the beginning of the chapter. We shall make this information explicit in the next
two results, as well as in the following sections. The first result is about the spectrum
of the update matrix.

Corollary 2.1 Let P ∈ R
V ×V be a stochastic matrix such that GP admits a globally

reachable aperiodic node. Then,

(i) 1 is an algebraically simple eigenvalue whose eigenspace is generated by 1;
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Fig. 2.1 Illustration of convergence for Example 2.1. The left diagram plots the entries of the third
row of Pt that converges to π∗. The right diagram plots the associated averaging dynamics (2.4)
from random initial conditions within (0, 1)
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(ii) Any other eigenvalue μ of P is such that |μ| < 1.

Proof Suppose indeed that P satisfies the assumptions ofTheorem2.2 and let ξ ∈ R
V

be an eigenvector of P with eigenvalue μ. Then, for t → +∞,

μtξ = Ptξ → 1π∗ξ

This immediately yields that either μ = 1 and ξ is a multiple of 1, or |μ| < 1.
This remark yields (ii) and says that 1 is a geometrically simple eigenvalue (the
corresponding eigenspace has dimension 1). It remains to show that 1 is also alge-
braically simple. This follows using similar arguments showing that the presence of
a nontrivial Jordan block relative to the eigenvalue 1 will imply that Pt would grow
unbounded contrarily to what is asserted in Theorem 2.2. �

The second result further investigates the structure of the limit matrix.

Corollary 2.2 Let P ∈ R
V ×V be a stochastic matrix such that GP admits a globally

reachable aperiodic node. Consider the vector π as in Theorem 2.2. Then, π∗ P =
π∗, and π is the only vector sharing this property and the normalization condition∑

v πv = 1.

Proof A very well-known fact of linear algebra says that P and P∗ have the same
eigenvalues. This implies that there must exists ζ ∈ R

V such that ζ ∗ P = ζ ∗. This
yields, for t → +∞,

ζ ∗ = ζ ∗ Pt → ζ ∗1π∗

Hence, ζ is necessarily a multiple of π . In other words, this shows that π is a left
eigenvalue of P relative to the eigenvalue 1. Since 1 is also algebraically simple as
a left eigenvalue, the uniqueness result immediately follows. �

In the flux interpretation presented at the beginning of this section, the equation
π∗ P = π∗ can be interpreted as a “stationary regime”: The flux is not modifying the
quantity πv present in every node. For this reason, and because of the normalization
to 1, π is called stationary or invariant probability measure. Note that the invari-
ant probability measure needs not to be unique in general—find an example as an
exercise—, but is unique when there is a globally reachable node; see Exercise 2.3.

2.4 Convergence Rate and Eigenvalues

This section deals more precisely with question (b1) defined at the beginning of this
chapter, that is with convergence speed. The speed of convergence of (2.7) is dictated
by the magnitude of the eigenvalues of P . We start by recalling the following result,
which is a standard fact in the stability of linear dynamical systems.
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Lemma 2.2 Let M ∈ R
V ×V be any matrix and let λi be its eigenvalues. Let ρ =

max |λi | be the spectral radius of M. Then, for every ε > 0, there exists a constant
Cε such that

||Mt x0||2 ≤ Cε(ρ + ε)t ||x0||2 for all t.

A simple application of this lemma allows us to obtain the following result:

Proposition 2.2 (Convergence rate) Let P ∈ R
V ×V be a stochastic matrix such that

GP admits a globally reachable aperiodic node. Consider all its eigenvalues μi but
1 and put ρ2 = max{|μi | < 1}. Then, for every ε > 0, there exists a constant Cε

such that
||(Pt − 1π∗)x0||2 ≤ Cε(ρ2 + ε)t ||x0||2 for all t.

Proof Put Q := P − 1π∗, and notice that Qt = Pt − 1π∗ (check this for exercise).
Notice moreover that Q1 = 0. Consider now the subspace W of RV orthogonal to
the vector π , and notice that if w ∈ W , then Pw = Qw and π∗ Pw = π∗w = 0. In
other terms, the subspace W is invariant for P and Q, and on W , the two matrices
P and Q coincide. The eigenvalues of P and Q on W are exactly given by the
eigenvalues of P different from 1. Wrapping up, we have that Q has eigenvalues μi

plus the eigenvalue 0; hence, it is asymptotically stable, and the result follows from
Lemma 2.2. �

The parameter ρ2, introduced in the statement of the corollary above, is also called
the second eigenvalue of P , and the difference 1−ρ2 the spectral gap of P . The above
result essentially says that convergence to rendezvous happens exponentially fast as
ρ t
2. Actually, this is only approximately true because of the arbitrarily small ε we

have to fix. The ε is needed because of the possible presence in P of nontrivial Jordan
blocks (which is when the algebraic and geometric dimension of an eigenspace does
not coincide). When P is symmetric, things are much simpler: We can indeed follow
the proof of Equation (2.6) above and prove the following result which extends
Proposition 2.1 to general symmetric matrices P , possibly adapted to nonregular
graphs.

Corollary 2.3 (Convergence rate for symmetricP) Let P ∈ R
V ×V be a symmetric

stochastic matrix such that GP is strongly connected and aperiodic. Then,

||(Pt − N−111∗)x0||2 ≤ ρ t
2||x0||2

Example 2.2 (An irreducible, aperiodic stochastic matrix) Consider the stochastic
matrix P defined in Example 2.1. An easy computation shows that the characteristic
polynomial of P is given by

p(λ) := det(λI − P) = (λ − 1)(λ − 1/6)2

Therefore, ρ2 = 1/6.
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Once we have established that ρ2 is the right parameter to analyze the speed of
convergence, it remains to understand how it depends on the graph: This analysis
will be done, on certain families, in Sect. 2.7.

2.5 Consensus Point

Another important question—mentioned in (b2) at the beginning of this chapter—
regards the location of the consensus point with respect to the initial condition. As
we know from Theorem 2.2, this is completely determined by the left eigenvector π

of P . First, notice that the optimization problem:

min
y∈R

∑

v∈V

|y − yv|2

has solution given by the barycenter y = N−1∑
v yv. The rendezvous problem has

the barycenter as meeting point if and only if π = N−11. When will this happen?
The answer is very simple: if and only if 1∗ P = 1∗, namely if all columns of P also
sum up to 1. When this happens, P is called a doubly stochastic matrix. A particular
case is when P is symmetric.

What about the possibility to construct a doubly stochastic matrix over a preas-
signed graph? Is that always possible? The answer is on the negative. Before showing
this fact, we introduce another concept which will also be useful later on.

Definition 2.1 (Sub-stochastic matrix) A nonnegative matrix P ∈ R
V ×V is said to

be sub-stochastic if
∑

w Pvw ≤ 1 for all v ∈ V , and there exists at least one v ∈ V
for which the inequality is strict. Such node will be called a deficiency node of P .

There are a few useful facts about sub-stochastic matrices, which the reader is
encouraged to verify on his/her own and which are gathered in the following propo-
sition.

Proposition 2.3 (Sub-stochastic matrices) Let P ∈ R
V ×V be a sub-stochastic

matrix.

• Then, Pt is sub-stochastic for all t . More precisely, if we let V �
t to be the set of

deficiency nodes of Pt , then

V �
t ⊆ V �

t+1 for all t ∈ N.

• If, moreover, P is such that from every node v there is a path in GP to a deficiency
node, then there exists t� such that V �

t� = V (all nodes for Pt�

are deficiency
nodes).

Actually, this fact implies a simple condition for the stability of sub-stochastic matrices.
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Proposition 2.4 (Stability of sub-stochastic matrices) Let P ∈ R
V ×V be a sub-

stochastic matrix such that from every node v there is a path in GP to a deficiency
node. Then, P is asymptotically stable.

Proof Let t� be defined as in Proposition 2.3 and let ν = maxv
∑

w Pt�

vw < 1. Given
any t ∈ N, write t = nt� + r with r ∈ {0, . . . , t� − 1} and n ∈ N, and notice that
Pt1 ≤ Pnt�

1 ≤ νn1 (where inequalities have to be understood componentwise).
This inequality implies that Pt converges to 0. �

The following result characterizes the “zero pattern” of the invariant probability
measure of stochastic matrices and shows that it is not always possible to construct
a doubly stochastic matrix on a given graph.

Proposition 2.5 (Positivity of invariant probability measure) Let P ∈ R
V ×V be a

stochastic matrix such that GP admits a globally reachable node v�. Let π be its
invariant probability measure. Then, πv �= 0 if and only if v and v� are in the same
strongly connected component of GP .

Proof Let V � be the set of nodes corresponding to the connected component con-
taining v�, and let V �� = V \ V �. Ordering nodes in such a way that the first ones
are those in V ��, we get that P has the following block structure

P =
[

Q R
0 S

]

where Q ∈ R
V ��×V ��

, R ∈ R
V ��×V �

, and S ∈ R
V �×V �

. By the assumption made, it
follows that Q is sub-stochastic satisfying the assumptions of Proposition 2.4. On
the other hand, Pt will have the following block structure:

Pt =
[

Qt Rt

0 St

]
.

If we partition accordingly π = (π��, π�), we then obtain (π��)∗ Qt = π�� for
all t . This yields π�� = 0. We now prove that instead π�

v > 0 for every v ∈ V �.
Assume, by contradiction, that there exists w ∈ V � such that πw = 0. The relation∑

v∈V � πv Pvw = 0 yields πv = 0 for every v ∈ N in
w . A straightforward inductive

argument now shows that πv = 0 for all v ∈ V ∗ for which there exists a path from
v to w. By the definition of V ∗, this implies that πv = 0 for all v ∈ V ∗. But this
says that π is the 0 vector and can not be an invariant probability. The proof is thus
complete. �

This result implies that for a matrix to be doubly stochastic, its associated graph must
be strongly connected.
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2.6 Stochastic Matrices Adapted to a Graph

In this section, we focus on the problem of finding, given a graph, a stochastic/doubly
stochastic matrix adapted to it. One solution is based on assigning equal weight to
all outgoing edges of a node, similarly to what we did in (2.5):

P = D−1
G AG . (2.8)

This matrix is known as the simple random walk (SRW) matrix associated with G.
This name is explained by a probabilistic interpretation. Let us think of token that
is performing a random walk on the nodes of the graph, according to the following
rule: Fromeach node, transitions happenwith equal probability along all the available
edges. Then, the rows of the SRW matrix are the transition probabilities from each
node. More generally, we can consider, for τ ∈ (0, 1),

P = (1 − τ)I + τ D−1
G AG,

which is also stochastic and is called the lazy SRW. If G contains a globally reach-
able aperiodic vertex, then D−1

G AG yields consensus. On the other hand, even if the
globally reachable vertex of G is not aperiodic, the lazy SRW yields consensus for
any τ ∈ (0, 1) since aperiodicity is automatically gained from the presence of the
identity part. Notice that P is not symmetric even when G is symmetric (unless G is
also regular which was the case studied in Sect. 2.2). However, the case when G is
symmetric is very special since in this case it is very simple to compute the invariant
probability measure as πv = dv/d where d = ∑

u du . Indeed,

(π∗ P)w =
∑

v

πv Pvw =
∑

v∈Nw

dv

d

1

dv
= |Nw|

d
= πw.

Notice that the invariant measure for the SRW (or for the lazy version) is the
uniform vector N−11 if and only if G is regular. For symmetric nonregular graphs,
there is however an alternative construction yielding a symmetric stochastic matrix.
It is sufficient to define, for any v �= w,

Pvw := (AG)vw min

{
1

dv
,
1

dw

}
.

It is easy to see that, with this choice, the off-diagonal terms of any row of P sum
up to a value which is not greater than 1. To complete, we define P on the diagonal
terms in such a way to make it a stochastic matrix. Notice that P is symmetric by
construction and is called the Metropolis random walk.Next, we present an example
of Metropolis random walk.

Example 2.3 (Random walks on a symmetric graph) Let G be the graph represented
in Fig. 2.2. This graph is not regular, and its degree matrix is D = diag(2, 2, 2, 3, 1).
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Fig. 2.2 The graph of
Example 2.3

1

23

4

5

Then, the matrix corresponding to a SRW on G is

P =

⎡

⎢⎢⎢⎢⎣

1/2 0 0 0 0
0 1/2 0 0 0
0 0 1/2 0 0
0 0 0 1/3 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 0 0 1 0

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0 1/2 0 1/2 0
1/2 0 1/2 0 0
0 1/2 0 1/2 0
1/3 0 1/3 0 1/3
0 0 0 1 0

⎤

⎥⎥⎥⎥⎦
.

Note that this matrix is not doubly stochastic and has −1 as an eigenvalue, because
G is bipartite. Instead, the transition matrix of the Metropolis RW is

Q =

⎡

⎢⎢⎢⎢⎣

1/6 1/2 0 1/3 0
1/2 0 1/2 0 0
0 1/2 1/6 1/3 0
1/3 0 1/3 0 1/3
0 0 0 1/3 2/3

⎤

⎥⎥⎥⎥⎦
,

which is doubly stochastic and has second eigenvalue ρ2(Q)  0.7845.

Metropolis construction produces a doubly stochastic matrix, but works for sym-
metric graphs only. On which graphs is it possible to construct a doubly stochastic
matrix adapted to a generic graph? The following result gives us the answer.

Proposition 2.6 (Existence of doubly stochasticP) If G = (V, E) is strongly con-
nected, then there exists a doubly stochastic P ∈ R

V ×V such that GP = G.

Proof Given any circuit in G with edges

E ′ = {(k1, k2), (k2, k3), . . . , (kn, k1)} (ki �= k j for i �= j),

consider the matrix P (E ′) ∈ R
V ×V defined by

P (E ′)
vw =

⎧
⎨

⎩

1 if (v, w) ∈ E ′
1 if v = w �= ks ∀s = 1, . . . , n
0 otherwise
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It is immediate to check that P has the following property: On each row and on
each column, there is exactly one entry equal to 1, while all the others are equal
to 0. This is what is called a permutation matrix, a very special case of doubly
stochastic matrix. Now consider the familyD of all possible circuits and the convex
combination P = 1

|D|
∑

E ′∈D P (E ′): Clearly P is doubly stochastic and GP ⊆ G.
Since G is strongly connected, any edge in G belongs to at least one of the subgraphs
in D (check this as an exercise): This fact implies that GP = G and the proof is
complete. �

Example 2.4 (Doubly stochastic matrix) Consider the graph G = (V, E) with
V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1), (2, 1)}. Graph G is strongly connected
and we know from the proof of Proposition 2.6 that a doubly stochastic matrix can
be constructed as

P = 1

2

⎛

⎝

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦+
⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦

⎞

⎠ =
⎡

⎣
0 1 0
1/2 0 1/2
1/2 0 1/2

⎤

⎦ .

The proof of Proposition 2.6 provides a method to construct a doubly stochastic
matrix: The method can be easily applied on small graphs, but is not suitable to
large graphs because one needs to find all possible circuits in G. In view of this
difficulty, we become interested in matrices whose dominant left eigenvector is not
1, but some other vector that still guarantees a “balanced” consensus point. The
following definitions go in this direction, identifying sequences of matrices that do
not give “too much” weight to any node. Consider a sequence of irreducible matrices
{Qn}n∈N of increasing size, together with their unique invariant measures π(n), such
that Q∗

nπ
(n) = π(n) and 1∗π(n) = 1. We say that Qn is democratic if ‖π(n)‖∞ → 0

as n → +∞. Clearly, a sequence of doubly stochastic matrices is democratic. A less
trivial example is a SRW on a bidimensional grid Ln × Lm . More in general, a family
of SRWs on undirected graphs G N is democratic if and only if maxv dv/

∑
u du goes

to zero as N = |V | goes to infinity. This sufficient condition is not satisfied on star
graphs, and indeed, the lazy SRW on Sn is

PSRW(τ ) =
[
1 − τ τ/n1∗

n
τ1n (1 − τ)In

]
,

which is not democratic. However, a democratic sequence on star graphs can be
constructed as

Pdem =
[

0 1
n 1

∗
n

1
n 1n (1 − 1

n )In

]
.

Other examples of democratic matrices are given in the Exercises.
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2.7 Convergence Rate: Examples

We have already seen in Proposition 2.2 that the spectral radius of P determines the
rate of convergence to consensus. In this section, the spectral radius is studied in
some examples and its connection with convergence time is made more explicit.

We first present an example of a family of SRWs on a simple graph.

Example 2.5 (SRW on cycles) Let G = Cn be the symmetric cycle graph with n
vertices. Since Cn is 2-regular, we have that the matrix of the SRW is

P = circ([0, 1/2, 0, . . . , 0, 1/2]).

The eigenvalues of P can be computed as we did for the Laplacian eigenvalues of
Cn in Example1.5. Namely, the eigenvalues of P are

μk(P) = cos
(2π

n
k
)
.

Note that −1 is an eigenvalue if and only if n is even: This corresponds to the graph
being bipartite. If instead n is odd, the second eigenvalue of P is

ρ2 = max

{∣∣∣∣cos
(2π

n

)∣∣∣∣ ,
∣∣∣∣cos

(2π
n

n − 1

2

)∣∣∣∣

}
= cos

π

n
.

In order to control the convergence properties of a matrix adapted to Cn , we may
define the family of matrices Pτ = (1− τ)I + τ P , with the parameter τ ∈ (0, 1]. A
matrix in this family corresponds to a lazy SRW. In this case, μk(τ ; P) = 1 − τ +
τ cos

(
2π
n k
)
and

ρ2(τ ) =
{
max{|1 − τ + τ cos 2π

n |, |1 − 2τ |} if n is even

max{|1 − τ + τ cos 2π
n |, |1 − τ(1 + cos π

n )|} if n is odd.

It is clear that a choice of τ ∈ (0, 1) allows to have ρ2 smaller than 1 for every n.
Furthermore, if n is even,

ρ2(τ ) =
{
1 − τ(1 − cos 2π

n ) if τ ≤ 2
3−cos 2π

n

2τ − 1 otherwise

and the minimum is achieved for τ = 2
3−cos 2π

n
. If instead n is odd,

ρ2(τ ) =
{
1 − τ(1 − cos 2π

n ) if τ ≤ 2
2+cos π

n −cos 2π
n

τ(1 + cos π
n ) − 1 otherwise.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Fig. 2.3 Optimization in Example 2.5. Plots show the function |μk(τ ; P)| for k = 1 and k = ⌊ n
2

⌋

assuming n = 6 (left plot) and n = 7 (right plot), respectively

and the minimum is achieved for τ = 2
2+cos π

n −cos 2π
n

. This optimization is illustrated

in Fig. 2.3

The simple random walk can be also easily studied on the complete graph.

Example 2.6 (SWR on complete graphs) The SWR matrix on the complete graph is
P = 1

N−1 (11
∗ − I ), resulting in ρ2 = 1

N−1 . If we instead consider the lazy version
P(τ ) = (1 − τ)I + τ P , we obtain ρ2(τ ) = 1 − N

N−1τ , which vanishes when
τ = 1 − 1

N . Indeed, P(1 − 1
N ) = 1

N 11
∗ gives consensus in one step.

As we have observed in Example 2.5, −1 is an eigenvalue of the SRW matrix
when the graph is bipartite. To rule out such undesired case, in the next example we
concentrate on a specific class of lazy SRW.

Example 2.7 (Spectral radius of k-dimensional grids) Let G be a d-regular graph,
and consider the matrix P = 1

d+1 (I + A). When the spectrum of A is known, ρ2 can
be readily computed. For instance, for k-dimensional symmetric grids Ck , it holds

ρ2 = 2k − 1

2k + 1
+ 2

2k + 1
cos

2π

n
.

If the number of nodes N = nk goes to infinity while keeping the dimension k
fixed, then ρ2 → 1, and by the Taylor expansion of the cosine, we observe that1

ρ2 = 1 − 4π2

2k + 1

1

n2
+ o

(
1

n3

)
= 1 − 4π2

2k + 1

1

N 2/k
+ o

(
1

N 3/k

)
as n → ∞.

1Here and throughout the book, we will make use of the standard asymptotic notation. If fn and
gn are two positive sequences, we say that fn = O(gn) if fn/gn is upper bounded in n; that
fn = Θ(gn) if fn/gn is both lower and upper bounded in n; that fn = o(gn) if fn/gn → 0 as
n → ∞; and that fn ∼ gn if fn/gn → 1 as n → ∞.
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Hence, 1−ρ2 goes to zero at a polynomial rate.More details andmore graph examples
on this SRW are given in Exercise 2.12.

To better highlight the role of N , we define the convergence time as

Tε = inf{t > 0 : ||Pt − 1π∗|| < ε}.

On symmetric matrices, ||Pt − 1π∗|| = ρ t
2, so that Tε = log ε−1

log ρ−1
2

, which is in turn

upper bounded by log ε−1

1−ρ2
. Moreover, 1

1−ρ2
∼ 1

log ρ−1
2

as ρ2 → 1. Hence, the inverse

of the spectral gap of P can be immediately interpreted as an upper bound on the
convergence time. For instance, in the example above, Tε ∼ 2k+1

4π2 N 2/k log ε−1.

Remark 2.4 (Trade-off between speed and democracy) Consider again irreducible
matrices adapted to star graphs as at the end of Sect. 2.6. You can easily verify—
exercise—that Pdem has second eigenvalue ρ2(Pdem) = 1 − 1

n (thus growing to 1 as
n →= ∞), whereas ρ2(PSRW(τ )) = 1 − τ. On the other hand, Pdem is democratic
while PSWR(τ ) is not. This observation highlights that by choosing either matrix we
are trading off speed for democracy. This trade-off exhibited by star graphs is further
discussed in Exercise 2.18; see also Exercises 2.23 and 2.24 for other graphs having
this feature.

2.8 Reversible Matrices

An important family of stochastic matrices, encompassing SRW and in general all
symmetric stochastic matrices, is the family of reversible matrices. A reversible
matrix can be defined starting from any nonnegative symmetric matrix M ∈ R

V ×V

putting

Pvw = Mvw

(M1)v
. (2.9)

It is immediate to check that P is stochastic and that πv = (M1)v[∑u(M1)u]−1 is
an invariant probability measure of P . Notice that SRW on symmetric graphs is a
special case of this construction, when M is the adjacency matrix of the graph. We
have the following alternative characterization:

Proposition 2.7 (Reversibility) Let P be a stochastic matrix. The following condi-
tions are equivalent:

(i) P is reversible;
(ii) There exists a nonzero and nonnegative x ∈ R

V such that

xv Pvw = xw Pwv for all v, w ∈ V . (2.10)
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Proof On the one hand, if P satisfies (2.9), it follows that

(M1)v Pvw = Mvw = Mwv = (M1)w Pwv

On the other hand, if P satisfies (2.10), then putting Mvw := xv Pvw we have that
M is nonnegative symmetric, and it holds (M1)v = xv. Hence, (2.9) holds with
such M . �
Condition (2.10) is often referred to as the detailed balance condition: We note that
it implies that x is actually an invariant measure (possibly not normalized to 1) of P ,
because ∑

v

xv Pvw =
∑

v

xw Pwv = xv.

Condition (2.10) is actually stronger than the requirement that x is an invariant mea-
sure as it says that each pair of nodes v, w for which Pvw > 0 must balance the
exchange flow between each other. The reason for the name “reversible” becomes
clear when we interpret it in the probabilistic framework considering P as the tran-
sition matrix of a Markov chain Xt having initial probability vector π satisfying
the condition (2.10). Then, the left and right terms of (2.10) can be interpreted,
respectively, as P(Xt = v, Xt+1 = w) and P(Xt = w, Xt+1 = v).

It is possible to generalize to reversible matrices most of the results obtained for
symmetric matrices: The key fact is that reversible matrices are diagonalizable as we
show below. Let P ∈ R

V ×V be a reversible, irreducible, aperiodic stochastic matrix,
and let π ∈ R

V be its invariant probability measure. Consider Dπ the diagonal
matrix such that (Dπ )vv = πv, and define A = D1/2

π P D−1/2
π . Reversibility implies

(check this) that A is symmetric. Let φ j ’s, for j ∈ {1, . . . , n}, be an orthonormal
basis of eigenvectors for A with correspondent real eigenvalues μ j . It is immediate
to check that π1/2 is indeed an eigenvector with eigenvalue 1. Therefore, we will
assume that φ1 = π1/2 and μ1 = 1. A straightforward verification shows that the
ψ j = D−1/2

π φ j are eigenvectors of P with eigenvalue μ j . The ψ j ’s together with 1
do form a basis of eigenvectors of P which is thus diagonalizable. Using the usual
orthonormal splitting expression for A, we can write

At = π1/2(π1/2)
∗ +

∑

j≥2

μt
jφ jφ

∗
j ,

from which we can derive the following useful representation for Pt

Pt = 1π∗ + D−1/2
π

∑

j≥2

μt
jφ jφ

∗
j D1/2

π .

From this expression, we can estimate the speed of convergence as in the symmetric
case (see Problem 2.19 for details). Moreover, we can extend the theory developed
for the Laplacian L(P) = I − P , when P is a symmetric matrix, to the case when
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P is reversible. The idea for the extension simply involves replacing the Euclidean
scalar product with the product induced by π , which is 〈x, y〉π :=< x, Dπ y >=∑

v πvxv yv. In particular, the following results, extending Propositions1.9 and1.9,
hold true (their proof is left to the reader).

Proposition 2.8 (Dirichlet form for reversible matrices) Assume that P is a
reversible stochastic matrix with invariant probability measure π . For every x ∈ R

V ,
it holds

〈x, L(P)x〉π = 1

2

∑

v,w

Pvwπv(xv − xw)2. (2.11)

Proposition 2.9 (Variational characterization for reversible matrices) Assume that
P is a reversible stochastic matrix with invariant probability measure π and second
largest eigenvalue μ2. Let λ2 be the second smallest eigenvalue of L(P). It holds

λ2 = (1 − μ2) = min
x �=0,〈x,1〉π =0

〈x, L(P)x〉π
〈x, x〉π . (2.12)

A useful technique to upper bound the spectral gap of a reversible stochastic
matrix P is through the so-called bottleneck ratio, a sort of index measuring how
well the “flow” represented by the matrix is spreading along the underlying graph.
Suppose π is the usual invariant probability measure of P , and for every S ⊂ V ,
define π(S) = ∑

v∈S πv and

Q(S, Sc) =
∑

v∈S,w/∈S

πv Pvw

(check as an exercise that Q(S, Sc) = Q(Sc, S) for all S ⊂ V ). Then, we define

Φ(S) := Q(S, Sc)

π(S)

and the bottleneck ratio of P as

Φ∗ := min
S:π(S)≤ 1

2

Φ(S).

In the flow interpretation Q(S, Sc) represents the total flow exiting S (assuming we
are at the stationary regime), while Φ(S) the fraction of flow exiting S with respect
to the total flow exiting from the nodes in S. We have the following result:

Proposition 2.10 (Cheeger bound) Let μ2 be the second largest eigenvalue of a
reversible matrix P, and let Φ∗ be the bottleneck ratio of P. Then,

1 − μ2 ≤ 2Φ∗.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Proof Given S ⊆ V , consider the vector φ ∈ R
V defined by φv = π(Sc) if v ∈ S,

and φv = −π(S) if v ∈ Sc. Then, from Proposition 2.8 and the detailed balance
condition (2.10), it follows that

〈φ, L(P)φ〉π = 1

2

∑

v,w

πv Pvw(φv − φw)2

=
∑

v∈S,w/∈S

πv Pvw(φv − φw)2

=
∑

v∈S,w/∈S

πv Pvw(π(S) + π(Sc))2

=
∑

v∈S,w/∈S

πv Pvw = Q(S, Sc) .

On the other hand,

〈φ, φ〉π =
∑

v

πvφ
2
v =

∑

v∈S

πvπ(Sc)2 +
∑

w/∈S

πwπ(S)2 = π(S)π(Sc).

From the variational characterization of Proposition 2.9, and assuming π(S) ≤ 1/2,
we thus conclude

λ2 ≤ 〈φ, L(P)φ〉π
〈φ, φ〉π = Q(S, Sc)

π(S)π(Sc)
≤ 2Φ(S).

Since this inequality holds for all S such that π(S) ≤ 1
2 , the upper bound is

proved. �

Notice that, since ρ2 ≥ μ2, we can also bound the spectral gap by

1 − ρ2 ≤ 2Φ∗.

In the case when P is the SRW on a symmetric graph G = (V, E), the bottleneck
ratio takes a peculiar form which is convenient to work out:

Φ(S) =

∑

v∈S,w∈Sc

dv

|E | (AG)vw
1

dv

∑

v∈S

dv

|E |
=

∑
v∈S,w∈Sc

(AG)vw

∑
v∈S

dv
(2.13)

This equation says that Φ(S) equals the fraction of edges which start inside S and
end outside S.

Example 2.8 (Graphs with a bottleneck) Given two graphs G1 = (V1, E1), G2 =
(V2, E2) and a symmetric set of edges E3 ⊆ (V1 × V2)∪ (V2 × V1), we can consider
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the interconnected graph G = (V1 ∪ V2, E1 ∪ E2 ∪ E3). Following (2.13), for the
SRW on the graph G, we have that the bottleneck can be estimated as

Φ∗ ≤ Φ(V1) = |E3|
2|E1| + |E3|

For instance, consider the case when |V1| = |V2| = n, G1 and G2 are both complete,
and |E3| = 2 (namely, there is just one edge and its inverse) connecting the two
complete graphs (this is called barbell graph). Then, Φ∗ ≤ (n(n − 1) + 1)−1.

Similar reasonings can be applied to other families of matrices; see for instance
Exercise 2.20 on Metropolis random walks. For completeness, we report that also a
lower bound on the spectral gap involving the bottleneck ratio can be obtained [30,
Theorem 13.14].

Proposition 2.11 (Reverse Cheeger bound) Let μ2 be the second largest eigenvalue
of a reversible matrix P, and let Φ∗ be the bottleneck ratio of P. Then,

1 − μ2 ≥ Φ∗2

2
.

Exercises

Exercises are divided into five groups, respectively, devoted to some basic facts,
to the rate of convergence, to the consensus value, to reversible matrices, and to
miscellaneous arguments.

First Examples and Concepts

Exercise 2.1 (SRW example) Consider the graph G in Fig. 2.4, and let P be the
transition matrix relative to the simple random walk on G.

(i) Write P .
(ii) Compute P9

13.
(iii) What is the multiplicity of the eigenvalue 1 of P? Why?
(iv) Is −1 an eigenvalue of P? Is P aperiodic? Why?

Exercise 2.2 (Consensus example) Consider the simple random walk (2.8) on the
graph G = (V, E) defined in Exercise1.9, and let x(t) be the evolution of the
consensus algorithm associated with the corresponding stochastic matrix.

(i) Prove that x(t) converges to consensus at the value α.
(ii) Find the value of α as a function of the initial condition x(0).
(iii) Find t̄ such that ‖x(t̄) − |V |−11‖ ≤ 10−2‖x(0)‖.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Fig. 2.4 The graph G of
Exercise 2.1

1 2 3 4

5

Exercise 2.3 (Periodic matrices) Let P be a stochastic matrix such that GP has a
globally reachable node. Prove the following facts.

(i) Qε = ε I + (1 − ε)P is stochastic, and GQε
has a globally reachable aperiodic

node.
(ii) The scalar 1 is a simple eigenvalue of P .
(iii) The spectrum of P is contained in the closed unit disk of the complex plane.
(iv) P has a unique invariant probability measure.

Rate of Convergence

Exercise 2.4 (SRW on complete) Let G be the complete graph.

(i) Write down explicitly the corresponding symmetric randomwalk P , as in (2.8).
(ii) Compute all eigenvalues of P and, in particular, the second eigenvalue ρ2.
(iii) Consider the lazy SRW Pτ = (1−τ)I +τ P , and compute the correspondingρ2.

Exercise 2.5 (SRW on complete bipartite) Consider the complete bipartite graph
Km,n as defined in Example1.2

(i) Write down explicitly the corresponding symmetric randomwalk P , as in (2.8).
(ii) Compute all eigenvalues of P and, in particular, check that −1 is always an

eigenvalue.
(iii) Consider the lazy SRW Pτ = (1−τ)I +τ P , and compute the correspondingρ2.

Exercise 2.6 (SRW on grids) Let G = Cn × Cm be the symmetric two-dimensional
toroidal graph with n × m vertices.

(i) Observe that the corresponding symmetric random walk P is a Cayley matrix.
(ii) Compute all eigenvalues of P and find when −1 is an eigenvalue.
(iii) When n and m are both odd, compute the second eigenvalue ρ2 of P .
(iv) Consider the lazy SRW Pτ = (1 − τ)I + τ P , and compute the corresponding

ρ2 for every value of n and m.
(v) As τ varies in [0, 1], compute the maximal value of the spectral gap 1−ρ2 (you

may assume that n and m are sufficiently large).

Exercise 2.7 (Symmetric cycle) Let n ∈ N, and consider the symmetric cycle graph
Cn with adjacency matrix An . Consider the matrix Pn = 1

3 (I + An) corresponding
to a lazy random walk on Cn .

(i) Verify that Pn is a lazy simple random walk on Cn .

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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(ii) Let ρ
(n)
2 be the second largest eigenvalue of Pn . Using the formula for the

eigenvalues of circulantmatrices in Proposition1.13, find an expression forρ(n)
2 .

(iii) Find a function f (n) such that f (n) ∼ 1 − ρ
(n)
2 .

Exercise 2.8 (Augmented cycle I) Let n ∈ N, and consider the following augmenta-
tionGn of the symmetric cycle graphCn , defined as follows:Anode i ∈ {0, . . . , n−1}
is connected with nodes i − 2, i − 1, i + 1, i + 2 (mod n). Consider the matrix Pn

corresponding to the simple random walk on Gn . Let ρ
(n)
2 be the second largest

eigenvalue of Pn .

(i) Using the formula for the eigenvalues of circulant matrices in Proposition1.13,
find an expression for ρ

(n)
2 .

(ii) Find a function f (n) such that f (n) ∼ 1 − ρ
(n)
2 .

Exercise 2.9 (Augmented cycle II) Let n be an even number, and consider the fol-
lowing augmentation Gn of the symmetric cycle graph Cn , defined as follows: A
node i ∈ {0, . . . , n − 1} is connected with nodes i − 1, i + 1, i + n/2 (mod n).
Consider the matrix Pn corresponding to the simple random walk on Gn . Let ρ

(n)
2 be

the second largest eigenvalue of Pn .

(i) Using the formula for the eigenvalues of circulant matrices, find an expression
for ρ

(n)
2 .

(ii) Find a function f (n) such that f (n) ∼ 1 − ρ
(n)
2 .

Exercise 2.10 (Line graph) Let n ∈ N, and consider the following matrix Pn corre-
sponding to a random walk on the symmetric line graph Ln:

Pn = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0 0
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0

. . .

0 0 . . . 0 1 0
0 0 . . . 1 0 1
0 0 . . . 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let ρ(n)
2 be the second largest eigenvalue of Pn .

(i) Using the formulas for the eigenvalues of tridiagonal matrices in Exercise1.27,
verify that ρ(n)

2 = cos π
n .

(ii) Consider the simple random walk on a symmetric cycle Cn (see Exercise 2.7),
and denote by ρ̄

(n)
2 the second largest eigenvalue of the associated matrix. Show

that ρ(n)
2 ≥ ρ̄

(n)
2 , and compute lim

n

1 − ρ
(n)
2

1 − ρ̄
(n)
2

.

(iii) Interpret the above results in terms of speed of convergence of the corresponding
consensus algorithms on Ln and Cn.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Exercise 2.11 (Line graph II) Let n ∈ N, and consider the symmetric line graph Ln

with adjacency matrix Bn . Consider the matrix

Qn = 1

3
(I + Bn) + 1

3

⎡

⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
0 0 . . . 0 0

. . .

0 0 . . . 0 0
0 0 . . . 0 1

⎤

⎥⎥⎥⎥⎥⎦

corresponding to a lazy randomwalk on Ln . Let ρ
(n)
2 be the second largest eigenvalue

of Qn .

(i) Using Exercise1.27, find a closed form expression for ρ
(n)
2 .

(ii) Find a function f (n) such that f (n) ∼ 1 − ρ
(n)
2 .

(iii) Compare these results with the analogous results for the simple random walk
on the cycle graph Cn in Exercise 2.7.

Exercise 2.12 (Rate comparison) Consider cycle graphs, k-dimensional torus
graphs, k-dimensional hypercubes, and De Bruijn graphs on k symbols.

(i) Observe that the graphs at hand are regular. For each of these graphs, consider
its Laplacian matrix L and the stochastic matrix P = I − 1

d+1 L = 1
d+1 (I + A).

Let ρ2 be the magnitude of the second largest eigenvalue of P .
(ii) Observe that the graphs at hand have real Laplacian eigenvalues. Denote them

as 0 = λ1 < λ2 ≤ · · · ≤ λn , and verify that ρ2 = 1 − λ2
d+1 , where d is the

degree of the graph. Observe that under the current assumptions, the rate of
convergence of P is completely determined by the topology of the graph.

(iii) Compute the values ofρ2 as functions of the graph parameters and of the number
of nodes N . Derive the values in Table2.1.

(iv) By using Taylor expansions, compute the principal part of the rate ρ2 as N →
+∞, in the cases of Table2.1.

(v) Rank the graphs in Table2.1 from fastest to slowest. Observe that if we consider
a sequence Bk

h with k fixed and h ∈ N, then ρ2 does not depend on N .

Exercise 2.13 (Rate on directed grids) Let G = Cd
n be a directed d-dimensional

torus, P = 1
d+1 (I + AG), and N = nd .

(i) Verify that

ρ2 =
√

d2 + 1 + 2d cos
(
2π
n

)

(d + 1)2
= 1 − 2dπ2

(d + 1)2
1

n2
+ o

( 1

n3

)
as n → ∞

Exercise 2.14 (Rate comparison in SRW) Consider the same graphs as in
Exercise 2.12 and for each of them the stochastic matrix P = 1

d A, corresponding to
a symmetric random walk.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Table 2.1 Rates of convergence for consensus algorithms on several families of graphs; see
Example 2.7 and Exercise 2.12

Graph λ2 d N ρ2 ρ2(N )

Cn 2(1 − cos 2π
n ) 2 n 1

3

(
1 + 2 cos 2π

n

) 1

3

(
1 + 2 cos

2π

N

)

Cn × Cn 2(1 − cos 2π
n ) 4 n2 1

5 (3 + 2 cos 2π
n )

1

5
(3 + 2 cos

2π√
N

)

Ck
n 2(1 − cos 2π

n ) 2k nk 2k − 1

2k + 1
+

2

2k + 1
cos

2π

n

2k − 1

2k + 1
+

2

2k + 1
cos

2π

N 1/k

Hk 2 k 2k d − 1

d + 1

log2 N − 1

log2 N + 1

Bk
h k k kh 1

k + 1

1

N 1/h + 1

(i) Compute the second eigenvalues ρ2 as functions of the graph parameters and of
the number of nodes N .

(ii) Compare your results with those in Exercise 2.12.

Exercise 2.15 (Majority computation) Let G = (V, E) be a symmetric connected
graph and x̄ ∈ {−1,+1}V . Let N1 = |{v ∈ V : x̄v = 1}| and N−1 = N − N1 where
N = |V |. The agents want to estimate which state has the majority. Consider the
following algorithm. Let P be an aperiodic irreducible symmetric matrix adapted to
G, and define {

x(t) = Pt x̄

λ(t) = sign(x(t)) ∈ {−1,+1}V .

Clearly, if N1 �= N−1, then limt→∞ λ(t) = λ̄1 and λ̄ = 1 when N1 > N−1. Agent v
can then use λv(t) as an estimation of the majority value. Let Tmin = min{t ∈ N :
λv(t) = λ̄ ∀v ∈ V }.
(i) Estimate Tmin in terms of the second eigenvalue ρ2 of P and of the vector x̄ .
(ii) Estimate Tmin when P is the SRW in the toroidal d-grid of size N .

Evaluation of the Convergence Value and Democracy

Exercise 2.16 (Democracy and wisdom of crowds) Consider an irreducible aperi-
odic matrix Q used to solve a consensus problem with x(0) = θ1 + η, where θ is a
scalar and η is a vector of “disturbances.” We know that xv(t) → xv(∞) = θ + π∗η
for all v. Assume that ηvs are random variables, independent and identically dis-
tributed with zero mean and variance σ 2 (this setup will be considered again in
Sect. 4.5).

http://dx.doi.org/10.1007/978-3-319-68022-4_4
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Let {QN }N∈N be a sequence of suchmatrices, eachwith size N . According to [21],
the sequence QN is said to be wise if the variance of xv(∞) goes to 0 as N goes to
infinity. Prove the following statements.

(i) QN is democratic if and only if it is wise.
(ii) There exists c > 0 such that πu

πv
≤ c for all indices u, v and all size N if and

only if there exist two positive constants c1 and c2 such that c1
N ≤ πw ≤ c2

N for
all w and all N .

(iii) The conditions at point (ii) imply that QN is wise.

Exercise 2.17 (Line graph: democracy) Let n ∈ N, and consider the symmetric line
graph Ln . Consider the matrix Sn associated with the simple random walk on Ln ,
and define

Qn = 1

3
I + 2

3
Sn.

(i) Observe that Qn is stochastic but not doubly stochastic, and compute π(n), the
invariant probability measure of Qn .

(ii) Compute for each component v ∈ {1, . . . , n},

lim
n→+∞ π(n)

v and lim
n→+∞

π(n)
v

1/n
.

Comment on your results, recalling that the invariant probability measure of a
doubly stochastic matrix is 1

n 1. Is Qn democratic?
(iii) Compute ρ2(n), the second largest eigenvalue of Qn .
(iv) Compare these figures with the corresponding results for the simple random

walk on the cycle graph Cn (see Exercise 2.7).

Exercise 2.18 (Speed and democracy on star graphs) Consider the graph Sn , the
symmetric star graph with n edges and n +1 nodes, whose center node is denoted as
0 and the n leaves as the elements of the set {1, . . . , n}. Then, consider the following
family of adapted stochastic matrices

Pn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − nα α α α . . . α

β 1 − β 0 0 . . . 0
β 0 1 − β 0 . . . 0

...
. . .

...

β 0 . . . 0 0 1 − β

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the parameters α, β satisfy 0 ≤ α ≤ 1
n and 0 ≤ β ≤ 1.

(i) Verify that the eigenvalues of Pn are 1, 1 − β, and 1 − nα − β.
(ii) Find the values of α, β which give the fastest consensus algorithm.
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(iii) Design a consensus algorithm, adapted to Sn , which converges in a finite num-
ber of steps. How many steps does it need to converge? Compare the required
number of steps of the algorithm with the diameter of Sn . Which is the con-
sensus value?

(iv) Compute ρ2(n) as a function of α, β on its domain.
(v) Compute the invariant probability measure of Pn . Verify that the consensus

algorithm defined by Pn converges to the average of the initial states if and
only if α = β.

(vi) Prove that if α = β, the rate of convergence ρ2(n) grows to 1 as n → +∞.
Estimate the convergence time on large networks, as a function of n.

(vii) Prove that

(a) if Pn is democratic, then necessarily ρ2(n) → 1 as n diverges;
(b) conversely, if ρ2(n) ≤ 1 − c for all n and some positive c, then necessarily

Pn is not democratic.

Conclude that in optimizing Pn one necessarily needs to trade off the speed of
convergence for the distance between the limit value and the average of initial
states.

Reversible Matrices

Exercise 2.19 (Convergence rate) Suppose P ∈ R
V ×V is stochastic reversible with

invariant probability measure π . Then, the result in Proposition 2.2 can be strength-
ened to claim that

||Pt x(0) − 1π∗x(0)||2 ≤ maxv π
1/2
v

minv π
1/2
v

||x(0)||2ρ t
2 ∀t ∈ N.

Exercise 2.20 (Speed in unbalanced sequence) The goal of this exercise is to show
that the rate of convergence of a Metropolis random walk goes to one on a sequence
of graphs, if there is a node whose degree vanishes compared to the degree of its
neighbors. Let there be a sequence of symmetric connected graphs of increasing size
Gn = (Vn, En) and a sequence of nodes vn ∈ Vn such that

lim
n→+∞

dvn

min{dw : w ∈ Nvn }
= 0.

Let Pn be the Metropolis random walk associated with Gn and ρ
(n)
2 its second largest

eigenvalue. Using Cheeger bound, show that the gap 1 − ρ
(n)
2 goes to zero when n

diverges.

Exercise 2.21 (Matrices adapted to Km,n) Let α, β be real numbers, and let the
(m + n)-dimensional square matrix M (α,β) be

M (α,β) =
[

nα Im −α1m1∗
n

−β1n1∗
m mβ In

]
.
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Verify that M (α,β) has eigenvalues

• 0 corresponding to eigenvector 1m+n;

• nα + mβ corresponding to eigenvector

[
nα1m

−mβ1n

]
;

• nα corresponding to the (m −1)-dimensional eigenspace span {
[

x
0n

]
: x∗1 = 0};

• mβ corresponding to the (n−1)-dimensional eigenspace span {
[
0m

y

]
: y∗1 = 0}.

Exercise 2.22 (Matrices adapted to wheels) Let An be a normal2 matrix of order
n such that A1n = d1n , and denote by x (k) and λ(k) for k ∈ {1, . . . , n − 1} the
remaining (orthonormal) eigenvectors of An with the corresponding eigenvalues.
Consider matrix

M =
[

0 1
n 1

∗
n

1
d+11n

1
d+1 An

]
.

Verify that matrix M is stochastic and has eigenvalues 1 (simple),− 1
d+1 (with eigen-

vector

[−(d + 1)
1n

]
), and λ(k)

d+1 for k ∈ {1, . . . , n − 1} (with eigenvector
[

0
x (k)

]
).

Exercise 2.23 (Speed and democracy on Km,n) Let A, B be two sets such that |A| =
m ≤ n = |B| and consider the complete bipartite graph Km,n = (A∪B, E) as defined
in Example1.2. Define on this graph

• the lazy simple random walk P by Pvw = 1
2

1
dv
for all (v, w) ∈ E ; and

• the lazy Metropolis random walk P̄ by P̄vw = 1
2 min{ 1

dv
, 1

dw
} for all (v, w) ∈ E .

Let π and ρ2 be the invariant probability measure and the second largest eigenvalue
of P , and correspondingly, let π̄ and ρ̄2 be the invariant probability measure and the
second largest eigenvalue of P̄ .

(i) Using Exercise 2.21, prove that the LSRW P is such that ρ2 = 1
2 and the

invariant measure π is such that if a ∈ A, then πa = 1
2m , and if b ∈ B, then

πb = 1
2n .

(ii) Prove that the LMRW P̄ is such that π̄v = 1
m+n for all v ∈ (A ∪ B), and

ρ̄2 = 1 − m
2n .

(iii) Let m ∈ N be fixed and {Km,n}n≥m a sequence of complete bipartite graphs of
increasing size. Consider the consensus algorithms associatedwith these graphs
by the above two definitions of random walks and compare them. Observe that
the choice of either definition of the adapted stochasticmatrix implies a trade-off
between democracy and good convergence speed.

2Amatrix A is said to be normal when A∗ A = AA∗. Normal matrices are precisely those for which
a complete basis of eigenvectors exists. Symmetric matrices are normal.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Exercise 2.24 (Speed and democracy on wheels) Let n ≥ 3 and consider the n-
wheel graph Wn , which is defined as the union graph of a cycle Cn having node set
{1, . . . , n} and a star Sn having node set {0} ∪ {1, . . . , n}. Define on this graph
• the lazy simple random walk P by setting Pvw = 1

2
1
dv
for all (v, w) ∈ E ; and

• the lazy Metropolis walk P̄ by setting P̄vw = 1
2 min{ 1

dv
, 1

dw
} for all (v, w) ∈ E .

Let π and ρ2 be the invariant probability measure and the second largest eigenvalue
of P and correspondingly let π̄ and ρ̄2 be the invariant probability measure and the
second largest eigenvalue of P̄ .

(i) Prove that the LSRW P is such that ρ2 ≤ 5
6 , and the invariant measure is such

that π0 = 1
4 and πv = 3

4
1
n if v �= 0.

(ii) Prove that the LMRW P̄ , which has uniform invariant measure, is such that
1 − ρ̄2 ≤ 7

3
1
n .

(iii) Now consider a sequence of wheel graphs of increasing size {Wn}n≥3. Consider
the consensus algorithms associated with these graphs by the above definitions
of random walks. Remark that the choice of either definition of the adapted
stochastic matrix implies a choice between democracy and good convergence
speed.

Additional Topics

Exercise 2.25 (Properties of Laplacians) Let G = (V, E, A) be a weighted graph
of order n and L be the (weighted) Laplacian of G. Then, rank(L) = n − 1 if and
only if G contains a globally reachable vertex.

Exercise 2.26 (Consensus in continuous time) Consider a graph G = (V, E)whose
nodes are equippedwith scalar dynamical systems ẋv = uv, whereu ∈ R

V is a control
to be designed in order to achieve consensus. Let A ∈ R

V ×V be any nonnegative
matrix such that G = G A. Consider the feedback control law

u = −L(A)x .

(i) Verify that the control law u = −L(A)x can be written componentwise as

uv =
∑

w

Avw(xw − xv) ∀ v ∈ V .

Consequently, it may be implemented by communicating with neighbors only
and exchanging only relative information.

(ii) Show that, provided G has a globally reachable node, the closed loop system

ẋ = −L(A)x (2.14)

yields consensus: For every initial condition x(0), there exists a consensus
value x̄ ∈ R such that xv(t) → x̄ when t → +∞ for every v ∈ V . Hint: use
Exercise 2.25.
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(iii) Find the rate of convergence of (2.14).

Exercise 2.27 (Node counting on a tree by message-passing) Message-passing is
a powerful approach to distributed computation, at least when the graph is a tree.
Suppose then G = (V, E) to be a tree and consider the following algorithm for
the distributed computation of the number vertices N . Each unit v ∈ V keeps in
memory dv + 1 scalar numbers, where dv is the degree of v. We denote them as zw

v
with w ∈ Nv ∪ {v}. The algorithm is based on sending messages and updating zw

v ,
according to the following rules.

• (Initialization): Set zw
v = 1 for all (v, w) ∈ E .

• (Condition to send a message): Once unit v has received a message from all its
neighbors except w, then v sends to w the following message: z(v,w) = zw

v .
• (Update upon receiving a message): When a node v receives z(u,v), the node does
the following: zw

v = zw
v + z(u,v) for all w �= u.

• (Termination): Once unit v has received message from all its neighbors, and
updated zv

w accordingly, node v sends messages z(v,w) = zw
v to all neighbors w

to whom no message has been send from v yet.

Verify that

(i) upon initialization, there is at least a node which satisfies the “condition to send
a message”;

(ii) on every directed edge (v, w), the message z(v,w) is transmitted exactly once, so
that 2N − 2 messages are exchanged over the network in total;

(iii) the algorithm terminates in finite time;
(iv) upon termination, zv

v = N for all v ∈ V .

Exercise 2.28 (Consensus on a tree by message-passing)Message-passing is a pow-
erful approach to distributed computation, at least when G is a tree.

(i) Show that the procedure in Exercise 2.27—with a suitable initialization—may
be used to compute the sum of N numbers given at the nodes, xv ∈ R for v ∈ V .

(ii) Design a message-passing algorithm to compute the average of the xv’s.

Exercise 2.29 (De Bruijn graphs and consensus [14]) Consider De Bruijn graphs
Bk

h on k symbols of dimension h.

(i) Design an algorithm, adapted to a De Bruijn graph, which converges in finite
time to consensus.

(ii) How many steps does it take? Compare this value with the diameter and the
degree of Bk

h .

Bibliographical Notes

Consensus problems have a very long history in social sciences [8, 13, 18], in statis-
tics [10], and in computer science [40]. Their appearance in the field of control dates
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back to the thesis work of Tsitsiklis [49, 50] in the 80’s, before a surge of interest
about fifteen years ago, sparkled by the works [16, 28, 38]. Since then, the literature
on the topic has grown enormously, motivated by the broad range of applications:
rendezvous, deployment and formation control in robotic coordination [17], flocking
of natural and artificial groups [52], load balancing in networks of processors and
queues [12], clock synchronization [7, 32], optimal resource allocation [54], dis-
tributed optimization [37], distributed computation [24], distributed estimation and
learning in sensor networks [44], social network analysis [27], and synchronization
of interconnected systems [46, 53]. The averaging dynamics is ubiquitous to these
problems (and many others): It is thus unsurprising that several books deal with the
topic [5, 6, 31, 33, 41, 42].

This chapter gives a self-contained and comprehensive analysis of the “standard
consensus algorithm” on time-invariant networks. In most prior works, its conver-
gence properties are derived from the general theory of nonnegative matrices and in
particular as corollaries of the Perron–Frobenius theorem (cf. [19, 45] for two clas-
sical references). This choice has two drawbacks. First, it is unnecessary because
the needed results can be derived directly in an intuitive way. Second, since Perron–
Frobenius theory does not extend to time-dependent networks, it hides the intimate
connection between time-invariant and time-varying settings. Instead, the results
from this chapter will be the foundation for the rest of the book. The main conver-
gence principle in Lemma 2.1 is based on the presentation in Hendrickx’s thesis [22,
Sect. 9.2.1]. This principle is crucial and in this chapter we derived from it several
properties of stochastic matrices that are central to our theory.

In probability theory, an important reason for the interest in stochastic matrices
is the notion of Markov chain associated with it. While we refrain from introducing
Markov chains in this text,webelieve that the probabilistic interpretation of stochastic
matrices is very useful. For instance, it motivates our discussion about the vector π .
For these reasons, material on the theory ofMarkov chains can be a helpful additional
reading: We recommend the textbook [30] and the monograph [1] that concentrates
on reversible chains. More generally, the general theory of nonnegative matrices is
an important background of our work.

Our analysis has highlighted the role of the second eigenvalue of the updatematrix
ρ2(P), which determines the speed of convergence of the average dynamics. In turn,
the second eigenvalue is closely related to the spectral gap λ2 of the associated
graph. For this reason, graphs with a large spectral gap are of special interest to
us. Graphs with large spectral gap are called spectral expanders and have been
extensively studied in the last decades [2, 3, 43]. A serious study of expander graphs
is outside the scope of this book. We only recall that De Bruijn graphs [55], defined
in Chap.1, have good expansion properties that, indeed, have been exploited in
consensus problems [14].

In Sect. 2.6, we have shown how to construct stochastic matrices for a given
topology. These constructions include the simple random walk and the Metropolis
random walk, which are important examples all along the book. Actually, designing
stochastic matrices according to certain performance criteria gives rise to a wide
family of very interesting problems. For instance, one can look for doubly stochastic

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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matrices, as we did specifically in Proposition 2.6: Paper [20] provides distributed
algorithms to solve this design problem. Democracy is a milder requirement that is
actually robust to perturbations of the graph, as shown in [11, 15].

Otherwise, one can seek to optimize the speed, that is, minimize the second eigen-
value. This problem is equivalent to finding the fastest mixing Markov chain and has
been extensively studied, showing it to be a convex optimization problem [4]. Other
(convex) performance metrics will be defined in Chap.4. A related (more academic)
question is finding the slowest possible convergence rate. For SRW matrices, the
slowest rate is 1 − γ n−3, as proved in [29].

In a effort to overcome these slow convergence rates (recall also Exercise 2.12),
some researchers have designed other distributed algorithms that guarantee a certain
convergence speed, irrespective of the graph topology. For instance, the algorithm
in [39] has a guaranteed 1 − cn−1 rate: We refer the reader to that paper also for
several pointers to other “accelerated” consensus algorithms.

Our presentation of averaging dynamics has left aside a few topics which have
attracted the interest of researchers and which we admit to be important: An incom-
plete list includes (i) consensus algorithms converging in finite time, (ii) consensus
algorithms based on the “message-passing” approach, and (iii) consensus systems
evolving in a continuous-time domain. We briefly discuss these natural issues here.

(i) The consensus algorithms presented in this chapter converge to consensus
asymptotically. One can instead be interested in designing algorithms which
converge in a finite number of step (necessarily, not smaller than the diam-
eter). A trivial example is Example 2.6 for the complete graph, while other
relatively simple examples can be constructed on De Bruijn graphs, see
Exercise 2.29 and [14]. Actually, finite-time convergence can be obtained in
more general graphs if we allow the update matrix to change with time (as we
shall do in Chap.3): A simple example are hypercubes [12, Sect. 4], but more
general constructions are possible, see [23, 25, 47, 48].

(ii) Message-passing is a paradigm for distributed computation over networks,
which we present through simple instances in Exercises 2.27 and 2.28. Nodes
are thought of as objectswith computational capabilitieswhich can receivemes-
sages from their neighbors, elaborate them, and transmit them further. See, e.g.,
[34] for a general reference and [35] for an application to consensus. Message-
passing has also recently found application in problems of leader selection,
which will be defined in Chap.5 [51].

(iii) In our work, we focus on discrete-time dynamics. However, much literature
is concerned with continuous-time systems. For the time-invariant networks
considered in this chapter, the analysis for continuous time and discrete time is
closely related: Actually, the main results about the former can be derived as
corollaries of our analysis, see Exercise 2.26. Instead, the analysis in continuous
time can become trickier when the network is time-varying (see Chap.3) or
the interactions between nodes are nonlinear. We do not try to survey all the
differences here:A fewpossible references, besides the booksmentioned above,
are [9, 26, 36].

http://dx.doi.org/10.1007/978-3-319-68022-4_4
http://dx.doi.org/10.1007/978-3-319-68022-4_3
http://dx.doi.org/10.1007/978-3-319-68022-4_5
http://dx.doi.org/10.1007/978-3-319-68022-4_3
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