
Chapter 1
Graph Theory

Abstract This chapter is a self-contained and concise introduction to graph theory,
which is essential to study the averaging dynamics over networks. After some basic
notions in Sect. 1.1, the emphasis is on connectivity and periodicity properties, which
are presented in Sects. 1.2 and 1.3, respectively. Section1.4 introduces the adjacency
and Laplacian matrices associated to a given graph and studies their spectra. Finally,
Sect. 1.5 introduces some notable examples of graphs, such as circulant, Cayley, and
De Bruijn graphs.

1.1 Basic Definitions and Examples

We begin with the definition of graph, which is central in our studies. A graph G is
a pair (V, E) where V is a finite set, whose elements are said to be the vertices (or
nodes) of G, and E ⊂ V × V is the set of edges (or arcs). The cardinality of V is
said to be the order or the size of the graph. An edge of the form (u, u) is said to be
a self-loop, or simply a loop. In a graph, every arc represents a connection or link
between two nodes. It is customary to draw graphs by representing nodes as dots and
arcs as arrows connecting the nodes in such away that for an edge (u, v) ∈ V × V ,
we understand that u is the tail and v is the head of the arrow; see Fig. 1.1. When
drawing a graph, we are thus implicitly assigning a location in the plane to each node.
The trivial graph EV = (V,∅) is said to be an empty graph. On the opposite extreme,
the graph KV = (V, {(u, v) : u �= v}) is said to be a complete graph (note that self-
loops have been excluded, see Fig. 1.1). Two graphs G = (V, E) and G ′ = (V ′, E ′)
are said to be isomorphic if there exists a bijection ψ : V → V ′ such that

(v,w) ∈ E ⇔ (ψ(v), ψ(w)) ∈ E ′.

For instance, two complete graphs are isomorphicwhen they have the same order. For
this reason,wemay also denote a complete graph of order n simply as Kn . Essentially,
two isomorphic graphs simply differ by a different labeling of the vertices. Since in
all the applications we will consider such differences will not play any role, we will
consider two isomorphic graphs as identical in what follows. This equivalence also
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(a) (b) (c) (d)

Fig. 1.1 Examples of graphs with four nodes: empty graph, complete graph, a graph without
self-loops, and a graph with a self-loop

allows us to identify (when convenient) the vertex set with a set of numbers, writing
for instance V = {1, . . . , |V |}.

Given a graph G = (V, E), the reverse graph of G is the graph which is obtained
by reversing all arcs. That is, rev(G) = (V, {(u, v) ∈ V × V : (v, u) ∈ E}). The
special case in which rev(G) = G is very important, as it means that (u, v) ∈ E if
and only if (v, u) ∈ E . If a graph is such, it is said to be symmetric. When drawing
a symmetric graph, there is no need to use pairs of arrows to connect nodes: In this
case, we will rather use double-headed arrows or just segments; see Figs. 1.1 and 1.3.

If (u, v) ∈ E , then v is said to be a out-neighbor of u, and we write that v ∈ N out
u .

Conversely, u is said to be a in-neighbor of v in the graph, and we write u ∈ N in
v .

The number of out-neighbors of a node v is said to be its out-degree and is denoted
by dout

v . Correspondingly, the number of in-neighbors of a node v is said to be its
in-degree and is denoted by d in

v . Note that for every graph, the following identity
holds true:

|E | =
∑

v∈V
dout
v =

∑

w∈V
d in
w . (1.1)

A source is a node with no in-neighbors, and a sink is a node u with no out-neighbors.
A graph is said to be d-(in/out-)regular if the (in/out-)degree of every node is d. A
graph is topologically balanced if dout

v = d in
v for all nodes v. Note that for a symmetric

graph, there is no need to distinguish between in- and out-neighbors, so that any
symmetric graph is topologically balanced and we will just talk about neighbors and
degrees dropping the labels “in” and “out”.

It is sometimes useful to identify certain relationships between graphs. The inter-
section and union of two graphs G = (V, E) and G ′ = (V ′, E ′) are denoted by,
respectively, G ∩ G ′ = (V ∩ V ′, E ∩ E ′) and G ∪ G ′ = (V ∪ V ′, E ∪ E ′). On the
other hand, we say that a graphG ′ = (V ′, E ′) is a subgraph ofG = (V, E) if V ′ ⊂ V
and E ′ ⊂ E : this relation is denoted asG ′ ⊂ G. Furthermore, the subgraphG ′ is said
to be spanning if V ′ = V and is said to be the subgraph induced by V ′ if

E ′ = E ∩ (V ′ × V ′).



1.1 Basic Definitions and Examples 3

Fig. 1.2 Directed and undirected line graphs on four nodes

(a) C6 (b) C5 (c) C4

Fig. 1.3 Three examples of directed and undirected cycle graphs of small size

In this last case, we use the notation G ′ = G |V ′ . Clearly, any graph on the vertex set
V , without self-loops, is a subgraph of the complete graph KV .

Next, we provide some more examples of graphs. Let V = {0, . . . , n − 1}.
(i) If E = {(u, v) ∈ V × V : |v − u| = 1}, then (V, E) is said to be a line graph

and is denoted as Ln .
(ii) If E = {(u, v) ∈ V × V : v − u = 1}, then (V, E) is said to be a directed line

graph and is denoted as �Ln .
(iii) If E = {(u, v) ∈ V × V : v − u = 1 mod n}, then (V, E) is said to be a

directed cycle graph and is denoted as �Cn .
(iv) If E = {(u, v) ∈ V × V : (v − u) mod n ∈ {−1,+1}}, then (V, E) is said to

be a cycle graph and is denoted as Cn .

Some properties of line and cycle graphs can be immediately observed: For exam-
ple, �Ln ⊂ Ln , and more precisely, Ln = �Ln ∪ rev( �Ln). Correspondingly, �Cn ⊂ Cn

and Cn = �Cn ∪ rev( �Cn). Moreover, the cycle graph Cn is 2-regular and the directed
cycle graph �Cn is topologically balanced. Examples of cycle and line graphs are
drawn in Figs. 1.2 and 1.3.

1.2 Paths and Connectivity

In this section, we turn our attention to investigate the connectivity properties of
graphs. The pictorial representation of graphs, which we have introduced above,
makes the following definitions very natural.

Given a graph G = (V, E) and a pair of nodes u, v, a path (of length l) from u to
v on G is an ordered list of nodes (w0, . . . ,wl) such that

(i) w0 = u and wl = v;
(ii) (wi ,wi+1) ∈ E for every i ∈ {0, . . . , l − 1}.
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Fig. 1.4 Connectivity examples using graphs with three nodes: (weakly) connected without a
globally reachable node, weakly connected with a globally reachable node, and strongly connected

The edges occurring in the definition of a path are said to insist on the path at hand.
The path is said to be simple if the edges (wi ,wi+1) are all distinct. If a path from
u to v exists, we say that v is reachable from u. Given two nodes u and v, we say
that they communicate if either u = v or u �= v and there are both a path from u to
v and one from v to u. It is easy to check—Exercise 1.2—that communication is an
equivalence relation between nodes. These notions are instrumental to the following
important definitions.

A graph G = (V, E) is said to be

• strongly connected if every two nodes communicate;
• connected if for any pair of nodes (u, v), either u is reachable from v or v is
reachable from u;

• weakly connected if G ∪ rev(G) is strongly connected.

Note that these three definitions are equivalent for symmetric graphs. We also note
that every graph can be seen as the disjoint union of weakly connected subgraphs,
which we call weakly connected components or simply connected components.

A node v is said to be globally reachable if for every other node w there exists
a path from w to v. Clearly, in a strongly connected graph, all nodes are globally
reachable. A partial converse is given by the following result:

Proposition 1.1 (Connectivity and balance) If G is topologically balanced and con-
tains a globally reachable node, then G is strongly connected.

Proof By contradiction, the graph G = (V, E) is not strongly connected. Let R be
the set of globally reachable nodes: By the assumptions, ∅ � R � V . Consider the
partition of nodes into R and V \ R, and note that there is no edge from R to V \ R
but there is at least one edge from V \ R to R. Let v be the tail of such edge. By the
balance property, there must be an edge (u, v) with u /∈ R. In turns, the same remark
implies that there exists an edge (t, u) with t /∈ R. As the set V \ R is finite, this
iterative procedure must end after a finite number of steps, showing that there is at
least one node in V \ R that has different in-degree and out-degree, contradiction.�

Some examples of graph connectivity are given in Fig. 1.4.
The notion of path is also the ground to endow graphs with a natural distance

between nodes. As we have defined above, the length of a path is the number of
edges insisting on the path. Then, given two nodes u and v of a graph G = (V, E),
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we can define the distance fromu to v as the length of the shortest pathwhich connects
them. Precisely, we let1

dstG(u, v) = min{� : there exists in G a path of length � from u to v}, (1.2)

provided u �= v, and dstG(u, u) = 0. Note that the function dstG(·, ·) is symmetric
in its arguments if G is a symmetric graph (cf. also Exercise 1.11). Furthermore, the
diameter of the graph G = (V, E) is defined as

diam(G) = max{dstG(u, v) : u, v ∈ V }.

Clearly, G is strongly connected if and only if diam(G) is finite. Moreover, for any
strongly connected graph G of order n, it holds that diam(G) ≤ n − 1. It is easy to
compute the diameter for the graph examples introduced above: For instance, for
every n ∈ N we have diam(Kn) = 1 and diam(Cn) = 
n/2�.

A very important class of paths are “closed” paths: A path from a node to itself is
said to be a circuit. For instance, loops are circuits of length one. A graph is said to be
circuit-free if it contains no circuit. The following is a simple property of circuit-free
graphs.

Proposition 1.2 (Source and sink) Every circuit-free graph has at least one source
and at least one sink.

Proof By contradiction, we take a graph G = (V, E) with no sink, that is such that
dout
u ≥ 1 for every u ∈ V . We pick any vertex and denote it as v0. Then, we take one
out-neighbor of v0 and denote it by v1. Then, recursively for k ≥ 1, we take vk+1

among the out-neighbors of vk . As the cardinality of V is finite, it must happen for a
certain � ∈ N that v�+1 belongs to {v0, . . . , v�}, thus forming a circuit and providing
the required contradiction. The existence of a source is proven similarly. �

When a graph G = (V, E) is not strongly connected, we can consider its strongly
connected components, which we define as follows. First, we have observed—
see Exercise 1.2—that the relation of communication between nodes is an equiv-
alence relation. Then, we can consider the partition of V into the correspond-
ing equivalence classes V = V1 ∪ V2 ∪ · · · ∪ Vs and the induced subgraphs Gi =(
Vi , E ∩ (Vi × Vi )

)
, which are called the strongly connected components of G. If

the graph G is symmetric, actually G is simply the union of these s subgraphs,
in the sense that there is no further edge in the graph, the connected components
being completely isolated from each other. For general graphs, the situation is more
complicated: A useful way to describe what is left beyond the strongly connected
components is the following concept of condensation graph, whose nodes represent
the strongly connected components of G.

Definition 1.1 (Condensation graph) Given any graph G = (V, E), consider its
strongly connected components Gk = (Vk, Ek), k ∈ {1, . . . , s}. The condensation

1We understand that the minimum of an empty set is +∞.
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Fig. 1.5 An example of graph G (left) with its condensation graph T (G) (right)

graph of G is a graph T (G) with set of vertices {1, . . . , s} such that there is an arc
inT (G) from h to k if k �= h and there is an arc in G from a vertex in Vk to a vertex
in Vh .

The construction is illustrated in Fig. 1.5. We leave to the reader the task of proving
the following properties of condensation graphs.

Proposition 1.3 (Condensation graphs) Let G be any graph and T (G) its conden-
sation graph. Then,

(i) T (G) is circuit-free;
(ii) T (G) is (weakly) connected if and only if G is (weakly) connected;
(iii) G contains a globally reachable node if and only if T (G) has only one sink.

A cycle is a circuit of length at least 3, with no vertex repeated except the first
and last one. A graph is said to be cycle-free if it contains no cycles, and unicyclic
if it contains exactly one cycle. A tree is a symmetric cycle-free connected graph,
and an cycle-free symmetric graph is also called a forest. The next result states some
relevant properties of trees: other properties are presented in Exercise 1.5.

Proposition 1.4 (Trees) Let G = (V, E) be a symmetric graph. Then, the following
four statements are equivalent.

(i) G is a tree;
(ii) for any pair of distinct nodes u and v in V , there is exactly one path from u to

v in G;
(iii) G is minimal connected, that is, G is strongly connected and removing any

edge makes the resulting graph not strongly connected;
(iv) G ismaximal cycle-free, that is, G is cycle-free and adding one edge creates a

cycle in G.

Proof The key point of this proof is the equivalence between (i) and (ii). Indeed,
assume G is a tree, that is, G is connected symmetric and cycle-free. Then, G is
strongly connected, and thus, there is a path connecting u to v. Furthermore, if there
was another path, the graph being symmetric would imply the existence of a cycle.
Conversely, the existence of exactly one path implies connectedness and absence
of cycles. Next, we can observe that removing any edge necessarily breaks at least
one path, thus causing a graph satisfying (ii) to become not strongly connected.
Conversely, property (iii) ensures that there are no multiple paths connecting the
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nodes, for otherwise strong connectivity would be robust to edge deletions. As we
have noted that in symmetric graphs the absence of multiple paths is equivalent to the
absence of cycle, we conclude that (iii) implies (ii). Proving the equivalence between
(iii) and (iv) is left to the reader. �

1.3 Periodicity

Given a graph G = (V, E) and v ∈ V , denote by Lv the set of lengths of the circuits
inG to which v belongs. The period of v is the greatest common divisor (GCD) of the
integers in Lv (if Lv = ∅, the period is undefined). The node is said to be aperiodic
if its period is one. Notice that if a self-loop (v, v) ∈ E is present, then 1 ∈ Lv and
v is thus certainly aperiodic. The graph itself is said to be aperiodic if every node is
aperiodic.

Example 1.1 In the directed cycle graph �Cn , each node has period equal to n. In the
symmetric cycle graph Cn , instead, the period of each node is equal to GCD(2, n).
In particular, symmetric cycle graphs Cn with n odd are all aperiodic.

Notice that, since circuits can be concatenated freely to obtain new circuits, it
follows that the length sets Lv are closed under addition2 (�1, �2 ∈ Lv yield �1 + �2 ∈
Lv). For aperiodic nodes, something very strong can be stated about Lv. We start
recalling the following well-known fact from algebra.

Lemma 1.1 (Bézout’s identity) Let a1, . . . , as ∈ N and let d ∈ N be their GCD.
Then, there exist s coefficients αi ∈ Z such that

∑
i αi ai = d.

By this lemma, we can prove the following key result.

Proposition 1.5 (Aperiodicity) Let G = (V, E) be a graph and let v ∈ V . The fol-
lowing conditions are equivalent.

(i) v is aperiodic;
(ii) there exists m ∈ N such that m,m + 1 ∈ Lv;
(iii) there exists � ∈ N such that for every n ≥ � it holds that n ∈ Lv.

Proof Clearly, (iii) ⇒ (ii) ⇒ (i).
(i) ⇒ (ii): Since v is aperiodic, we can find lengths �1, �2, . . . , �s ∈ Lv such that

1 = GCD(�1, . . . , �s). Hence, by Lemma 1.1, we can find numbers αi ∈ Z such

that 1 =
s∑

i=1
αi�i . Let m =

s∑
i=1

|αi |�i and notice that m + 1 =
s∑

i=1
(|αi | + αi )�i . This

shows that both m,m + 1 ∈ Lv, yielding (ii).
(ii) ⇒ (iii): Notice first that if m = 1 in (ii), then (iii) is immediate. Suppose

now that m > 1 and put � = (m − 1)m. Let n ≥ �. Dividing n by m, we obtain

2Note that this also implies closure under integermultiplication as � ∈ Lv andm ∈ N yieldm� ∈ Lv.
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n = mh + r = m(h − r) + (m + 1)r . Since, by definition of rest, r ≤ m − 1 and
by our choice of � the quotient satisfies h ≥ m − 1, we have that h − r ≥ 0. Since
both m and m + 1 belong to Lv, the last inequality implies that n ∈ Lv. �

The result above shows that for every aperiodic node, there exists � ∈ N such
that for every n ≥ � there exists a path of length n from the node to itself. In other
words, for every aperiodic node, there exist paths of any length from the node to
itself—possibly excluding lengths below a certain threshold. This fact clearly means
a great “freedom of movement” in the graph. Furthermore, aperiodicity of a single
node is easily inherited by the rest of the graph, as a consequence of the following
result.

Proposition 1.6 (Aperiodic vertices) Let G = (V, E) be a graph and let u, v ∈ V
be two communicating nodes. Then, u is aperiodic if and only if v is aperiodic.

Proof As the node u is aperiodic, there exists � ∈ N and two circuits from u to itself
which have lengths � and � + 1. By the communication assumption, there exist a
path from u to v (of length m) and a path from v to u (of length n). Hence, there
exist two circuits (possibly repeating vertices) from v to itself, which have lengths
m + � + n and m + � + n + 1, proving the thesis. �

As a corollary, if a graph is strongly connected and has an aperiodic vertex, the
graph is aperiodic. The above discussion also allows us to conclude the following
remarkable result.

Corollary 1.1 (Paths on strongly connected and aperiodic graphs) If a graph G =
(V, E) is strongly connected and aperiodic, then there exists � such that for any pair
of nodes u, v and any length m ≥ � there is a path from u to v of length m.

Next, we present an additional notion which relates to paths and connectivity. A
graph (V, E) is said to be bipartite if the set V can be apportioned into two subsets
V1 and V2 such that for all (u, v) ∈ E either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1.
We already know some examples of bipartite graphs. For instance, trees are bipartite
and Cn is bipartite if and only if n is even. The following is another natural example.

Example 1.2 (Complete bipartite) Let A, B be two nonempty sets of cardinalities
m and n, respectively. The complete bipartite graph Km,n is the graph with node set
A ∪ B and an edge (u, v) if and only if u ∈ A and v ∈ B or u ∈ B and v ∈ A.

An important characterization of bipartite graphs is given by the following result.

Proposition 1.7 (Bipartition condition) A graph is bipartite if and only if every
circuit has even length.

Proof If the graph G = (V, E) is bipartite with V = V1 ∪ V2, every path u0,
u1, . . . , u p having u0 ∈ V1 is such that ui ∈ V1 if and only if i is even. Therefore, if
u p = u0, then pmust be even. In order to prove the converse statement, we construct
the partition {V1, V2}. We take any circuit u0, u1, . . . , u p−1, u0 and let ui belong to
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(a) H1 (b) H2 (c) H3 (d) H4

Fig. 1.6 Hypercubes of dimensions until four

V1 if i is even, and to V2 otherwise. Note that there is no edge connecting ui and
u j when i and j are both even (or both odd), for otherwise the “shortcut” would
create a circuit with odd length. Next, we move to another circuit w0, . . . ,wq . If the
circuit has no intersection with that examined before, we can just repeat the same
reasoning. If instead, say, the new circuit contains a node s which has already been
attributed to V1, we denote s = w0 and proceed as above. Note that the procedure can
be performed without introducing contradictions, because of the absence of circuits
of odd length. Iterating the procedure constructs the required partition. �

As a corollary, we note that any bipartite graph is not aperiodic.
Next, we introduce a remarkable family of graphs, which the reader may easily

verify to be bipartite.

Example 1.3 (Hypercube) Let V be the set of the binary words of length n, that
is, V = {0, 1}n . Then, the hypercube Hn is the graph on V with an edge between
two words whenever they differ in exactly one component, i.e., E = {(u, v) :
‖u − v‖1 = 1}. It is immediate to observe that |V | = 2n , and that Hn is symmet-
ric, n-regular, and bipartite. Hypercube graphs are so-called because they draw the
vertices and edges of n-dimensional cubes: This can be observed from the examples
in Fig. 1.6.

1.4 Matrices and Eigenvalues

This section introduces (i) relevant matrices which are used in the study of graphs,
namely the adjacency and Laplacian matrices; (ii) the notion of graph associated
with a matrix; and (iii) the definition of weighted graph that inherently involves a
matrix. Relating graphs to matrices permits to take advantage of algebraic tools for
the study of graphs, and conversely to express matrix properties in terms of graphs.
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Furthermore, the spectrum of adjacency and Laplacian matrices conveys important
information about the graphs: This study is the topic of spectral graph theory.

First, we provide the fundamental definition of adjacency matrix. Given a graph
G = (V, E), the adjacency matrix A (sometimes denoted as AG) is a matrix in
{0, 1}V×V such that {

Auv = 1 if (u, v) ∈ E

Auv = 0 if (u, v) /∈ E .

As an example, observe that the adjacency matrix of the third graph in Fig. 1.1 is

A =

⎡

⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
1 1 1 0

⎤

⎥⎥⎦ .

The adjacencymatrix encodes all the information about the structure of the graph and
is thus a very important notion. Furthermore, it permits to answer questions about
paths and connectivity of the graph by purely algebraic computations. The next result
is a chief example.

Proposition 1.8 (Adjacency matrix and paths) Let G = (V, E) be a graph with
adjacency matrix A. Then, for all u, v ∈ V and k ∈ N, the u, v-entry of Ak equals the
number of paths of length k (including paths with self-loops) from node u to node v.

Proof The statement is proved by induction on the length k. By definition of adja-
cency matrix, the statement is true for k = 1. Next, we assume that the statement is
true for k and we prove it for k + 1. Note that each path from u to v of length k + 1
consists of an edge (u,w) and a path from w to v of length k. Since we can write

(Ak+1)uv =
∑

w∈V
Auw(Ak)wv,

the statement follows by the inductive hypothesis. �

Proposition 1.8 and Corollary 1.1 imply the following fact.

Corollary 1.2 (Adjacency matrix of aperiodic graphs) If a graph G = (V, E) is
strongly connected and aperiodic, then there exists � ∈ N such that, for every m ≥ �,
every entry of Am is strictly positive.

By writing the adjacency matrix, we associate a matrix to any graph: Conversely,
we may associate a graph to any matrix. Let M be a square matrix with nonnegative
entries, whose rows and columns are indexed in a set V . Then, the graph associated
to M , denoted by GM , is the graph (V, E) such that

E = {(u, v) ∈ V × V : Muv > 0}.
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M =

⎡
⎣
0.3 2 1
0 0 1
0 0 0

⎤
⎦

1

2

3

GM

Fig. 1.7 A nonnegative matrix and its associated graph

1

0.3

2

3
1

2 1

Fig. 1.8 ThematrixM and the graphGM = (V, E) in Fig. 1.7 drawn as aweighted graph (V, E, M)

An example is shown in Fig. 1.7. Based on this definition, we say that given a graph
G = (V, E), a matrix M ∈ RV×V

≥0 is said to be adapted to G when Muv > 0 and
u �= v imply (u, v) ∈ E . Equivalently, we may say that GM ⊂ G modulo self-loops.
Of course, the adjacency matrix of a graph is an example of a matrix adapted to it.

Example 1.4 Consider the graph GM in Fig. 1.7 and the matrices

M1

⎡

⎣
1 2.3 1
0 0 20
0 0 0

⎤

⎦ M2 =
⎡

⎣
1 0 1
0 0.1 2
0 0 0

⎤

⎦ M3 =
⎡

⎣
1 3.2 0
0.5 0 20
0 3 0

⎤

⎦ .

Then, M1 and M2 are adapted to the graph, whereas M3 is not.

Sometimes in the literature a graph G = (V, E) together with a matrix M ∈
RV×V

≥0 , adapted to G, is called a weighted graph and is also denoted as (V, E, M).
Weighted graphs are often depicted as graphswith each edge (v,w) labeledwithMvw,
as in Fig. 1.8. Depending on the applications, Mvw may have a variety of different
meanings: It can measure the capacity of a certain connection, a flow, a resistance, a
distance, and so on.

We now propose the following fundamental construction. The Laplacian matrix
associatedwith amatrixM ∈ RV×V

≥0 is thematrix L(M) ∈ RV×V such that L(M)uv =
−Muv if u �= v and L(M)uu =∑v:v �=u Muv. In matrix form, we may write that

L(M) = diag(M1) − M,

where the notation diag(x) denotes the square matrix whose main diagonal is the
vector x . In the special case when M is the adjacency matrix of the graph G, the
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resulting Laplacian matrix L(AG) is simply called the Laplacian of G and denoted
with the symbol LG . Notice that in this case, LG has the form

LG = DG − AG

where DG is a diagonal matrix such that (DG)uu = dout
u for every u ∈ V . As an

immediate consequence, we observe that L(M) does not depend on the diagonal
values of M . In particular LG is independent of the presence of self-loops in the
graph. As well, it is immediate that the graph G is symmetric if and only if LG is
symmetric.

The spectrum of L(M) plays an important role in graph theory and in many of the
arguments which will be discussed later on. From the definition, it is immediate that
for any matrix M , it holds that L(M)1 = 0, that is, 0 is an eigenvalue of L(M) with
eigenvector 1. We now propose a number of results in the case when M is symmetric.
Possible extensions and refinements are outlined in Exercises 1.21 and 2.25.We start
with the following basic fact.

Proposition 1.9 (Dirichlet form) Let M ∈ RV×V be a symmetric matrix. For every
x ∈ RV , it holds

x∗L(M)x = 1

2

∑

u,v

Muv(xu − xv)
2. (1.3)

Proof By computing the quadratic form, we obtain

x∗L(M)x = ∑
u

∑
v:v �=u

Muvx2u − ∑
u,v:u �=v

Muvxuxv

= ∑
u,v:u �=v

Muv(x2u − xuxv)

= 1
2

[
∑

u,v:u �=v
Muv(x2u − xuxv) + ∑

u,v:u �=v
Mvu(x2v − xuxv)

]

= 1
2

∑
u,v:u �=v

Muv(x2u − 2xuxv + x2v ).

Notice the so-called “symmetrization” trick used in the third equality and the crucial
role played by symmetry in the fourth equality. �

The previous result has a number of straightforward consequences.

Proposition 1.10 (Laplacian and connectivity) Suppose M is symmetric. Then,

(i) the Laplacian L(M) is positive semidefinite;
(ii) the multiplicity of the eigenvalue 0 equals the number of connected components

of GM.

Proof Exercise. Hint: to prove (ii), find suitable independent eigenvectors, each of
them corresponding to a connected component. �

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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When M is symmetric of order n, eigenvalues of L(M) are real and nonnegative:
0 = λ1 ≤ λ2 · · · ≤ λn . Particularly relevant is the “second eigenvalue” λ2, which
admits the following variational characterization.

Proposition 1.11 (Variational characterization) If M is symmetric, then it holds

λ2 = min
x �=0,x∗1=0

x∗L(M)x

x∗x
. (1.4)

Proof Since L(M) is symmetric we can find an orthonormal basis of eigenvec-
tors: x(i) ∈ RV for i ∈ {1, . . . , n} with L(M)x(i) = λi x(i). We can assume that
x(1) = n−1/21. L(M) can be expressed as a combination of orthogonal projectors:

L(M) =
∑

i≥2

λi x(i)x
∗
(i)

(this corresponds to diagonalizing L(M) with respect to the basis of eigenvectors).
Hence, if y ∈ RV is such that 1∗y = 0

y∗L(M)y =
∑

i≥2

λi (x
∗
(i)y)

2 ≥ λ2

∑

i≥2

(x∗
(i)y)

2 = λ2||y||22

This yields ≤ in (1.4). On the other hand, it holds

x∗
(2)L(M)x(2)

x∗
(2)x(2)

= λ2

and thus also ≥ is proven. �

This result has an immediate consequence.

Proposition 1.12 (Monotonicity) Let M and Q be two symmetric matrices such that
Muv ≥ Quv for every u �= v. If we denote byλ2(M) andλ2(Q) the second eigenvalues
of, respectively, L(M) and L(Q), then λ2(M) ≥ λ2(Q).

Proof It easily follows combining (1.4) with the quadratic form given by (1.3). �

1.5 Examples of Graphs

This section regards notable families of graphs and their properties.We also introduce
a notion of product between graphs, which is useful to construct further examples.
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1.5.1 Circulant Graphs

An n × n matrix A is said to be circulant if it exists a vector c ∈ Rn such that

A =

⎡

⎢⎢⎢⎣

c0 c1 c2 . . . cn−1

cn−1 c0 c1 c2 . . .
...

c1 · · · cn−1 c0

⎤

⎥⎥⎥⎦ .

This matrix can be denoted as A = circ(c), where c = [c0, c1, . . . , cn−1]. A graph is
said to be circulant if its adjacency matrix is circulant. Examples include the directed
cycle and cycle graphs introduced earlier.

Circulant matrices enjoy many interesting properties: Here we are interested in
simple properties of their spectra, summarized in the following result.

Proposition 1.13 (Spectra of circulant matrices) Let c ∈ Rn and consider the n × n
circulant matrix A = circ(c). Then, A has eigenvectors

x (k) = [1, ωk, . . . , ω
n−1
k ]� k ∈ {0, . . . , n − 1},

and corresponding eigenvalues λk =
n−1∑

�=0

c�ω
�
k, where we have denoted ωk = ei

2π
n k

with i the imaginary unit. Furthermore, the eigenvectors x (k) form an orthonormal
basis of Cn.

Proof Note that ωk is such that ωn
k = 1: Indeed, ωk is said to be a n-th root of unity.

We leave to the reader to verify that the set of vectors {x (k)}n−1
k=0 is orthonormal, and

we instead verify that the pair (x (k), λk) satisfies the eigenvalue definition. To this
goal, we compute

Ax (k) = c0

⎡

⎢⎢⎢⎢⎢⎣

1
ωk

ω2
k
...

ωn−1
k

⎤

⎥⎥⎥⎥⎥⎦
+ c1

⎡

⎢⎢⎢⎢⎢⎣

ωk

ω2
k
...

ωn−1
k
1

⎤

⎥⎥⎥⎥⎥⎦
+ · · · + cn−1

⎡

⎢⎢⎢⎢⎢⎣

ωn−1
k
1
ωk

ω2
k
...

⎤

⎥⎥⎥⎥⎥⎦

=
n−1∑

�=0

c�ω
�
k

⎡

⎢⎢⎢⎢⎢⎣

1
ωk

ω2
k
...

ωn−1
k

⎤

⎥⎥⎥⎥⎥⎦

=
n−1∑

�=0

c�ω
�
k x

(k)
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thus proving the thesis. �
As special cases, we can compute the spectra of cycle graphs.

Example 1.5 (Spectra of cycles) The graph �Cn has Laplacian eigenvalues

λk = 1 − exp
(
i
2π

n
k
)

k ∈ {0, . . . , n − 1}.

The graph Cn has Laplacian eigenvalues

λk = 2 − 2 cos

(
2π

n
k

)
k ∈ {0, . . . , n − 1}.

Note that these eigenvalues are real,λk = λn−k , and indeed abasis of real eigenvectors
can be found (exercise).

1.5.2 Product Graphs

In this paragraph, we introduce the binary operations of Cartesian product between
matrices and between graphs. Consider twomatrices A ∈ RV×V and B ∈ RH×H . We
start recalling the familiar Kronecker product of matrices A ⊗ B ∈ R(V×H)×(V×H)

defined by

(A ⊗ B)uh,vk = AuvBhk . (1.5)

The Cartesian product is instead defined as the matrix A × B ∈ R(V×H)×(V×H) such
that

(A × B)uh,vk = Auvδhk + Bhkδuv, (1.6)

where δhk is the standard Kronecker delta (δhh = 1 and δhk = 0 if h �= k). This
definition can be conveniently rewritten, by using the Kronecker product, as

A × B = A ⊗ IH + IV ⊗ B , (1.7)

where IV and IH are the identity matrices. Interpreting RV×H as the space of real
matrices with rows and columns labeled by, respectively, elements of V and H , the
Kronecker and Cartesian products can be thought as linear applications acting on
matrices. Given a matrix M ∈ RV×H , they can be equivalently expressed as

(A ⊗ B)M = AMB� and (A × B)M = AM + MB�. (1.8)

Both the Kronecker and the Cartesian product are associative and commutative up to
relabeling vertices (see also Exercise 1.26).
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(a) K3 (b) L3 (c) K3×L3

Fig. 1.9 Computing the Cartesian product between K3 and L3

The Cartesian product of matrices has a natural counterpart at the level of graphs.
The (Cartesian) product of two graphs G and G ′ is the graph G × G ′, such that the
vertex set is the Cartesian product of the vertex sets of G and G ′, and two vertices
are adjacent when they agree in one coordinate and are adjacent in the other. A
pictorial example is given in Fig. 1.9. We easily see that, as long as G and G ′ have
no self-loops, the adjacency matrix of G × G ′ is AG × AG ′ .

Furthermore, the degree of a node (u, h) in a product graph G × G ′ is the sum of
the degrees of u in G and h in G ′.

Proposition 1.14 (Product and Laplacian)Let A ∈ RV×V and B ∈ RH×H be square
matrices. Then,

L(A × B) = L(A) × L(B).

Proof We start with a remark on products of diagonal operators. If M ∈ RV×H ,
diag(M) ∈ R(V×H)×(V×H) denotes the diagonal operator such that diag(M)uh,uh =
Muh . Given two vectors x ∈ RV and y ∈ RH , it follows from definition (1.5) that
diag(x) ⊗ diag(y) = diag(xy�).

From
(A × B)1V 1�

H = (A1V )1�
H + 1V (B1H )�

we then obtain

diag
(
(A × B)1V 1�

H

) = diag(A1V ) ⊗ IH + IV ⊗ diag(B1H ).

Thus,

L(A × B) = diag(A1V ) ⊗ IH + IV ⊗ diag(B1H ) − A ⊗ IH − IV ⊗ B

= L(A) ⊗ IH + IV ⊗ L(B) = L(A) × L(B),

thereby proving the thesis. �
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The spectrum of a product of matrices is determined by the spectra of the factors via
a simple relation.

Proposition 1.15 (Spectrumof productmatrices) If A and B have eigenvaluesλ and
μwith corresponding eigenvectors x ∈ RV and y ∈ RH respectively, then A × B has
eigenvalue λ + μ with eigenvector xy� ∈ RV×H .

Proof From the definition of Cartesian product, we observe

(A × B)xy� = (Ax)y� + x(By)� = (λ + μ)xy�,

which gives the thesis. �

The spectral properties of several families of graphs can be studied using the
product operation defined above.

Example 1.6 (Hypercube graph) The hypercube Hn , defined in Example 1.3, is the
Cartesian product of n factors K2. The Laplace spectrum of K2 is {0, 2}, and hence
the Laplace spectrum of Hn consists of the numbers 2i with multiplicity

(n
i

)
, for

i ∈ {0, . . . , n}.
Other examples are products of cycle graphs: The product of two cycles represents

a square lattice on a two-dimensional torus.

Example 1.7 (Bidimensional torus grid) We know from Example 1.5 that the graph
Cn has Laplace spectrum

λk = 2 − 2 cos

(
2π

n
k

)
k ∈ {0, . . . , n − 1}.

Then, the product graph Cn × Cm has Laplace spectrum

4 − 2 cos

(
2π

m
h

)
− 2 cos

(
2π

n
k

)
h ∈ {0, . . . ,m − 1}, k ∈ {0, . . . , n − 1}.

The extension to k-dimensional grids is now natural.

Example 1.8 (k-dimensional torus grid) Since the graph Cm has Laplace spectrum
λk = 2 − 2 cos

(
2π
m k
)
, k ∈ {0, . . . ,m − 1}, the Laplace spectrum of the product

graph Ck
m = Cm × · · · × Cm︸ ︷︷ ︸

k times

is 2 k − 2
∑k

i=1 cos
(
2π
m hi

)
, hi ∈ {0, . . . ,m − 1}.

The reader may compute as an exercise the spectra of other multi-dimensional
graphs, e.g., Lk

n (using Example 1.27) and �Ck
n (using Example 1.5).
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1.5.3 Cayley Graphs

A generalization of cycle graphs and toroidal grids is provided by the family of
Abelian Cayley graphs, which are graphs whose set of nodes is an Abelian group
and the set of edges is stable by translation operations. The formal definition is
proposed below.

Definition 1.2 (Abelian Cayley matrices and graphs) Let Γ be an Abelian group
(we use the additive notation) and let S be a subset of Γ . Then, the Γ -Cayley graph
generated by S in Γ is the graph G (Γ, S) having Γ as node set and

E = {(g, h) ∈ Γ × Γ : h − g ∈ S}

as edge set. In words, two nodes—i.e., two group elements—are neighbors if their
difference is in S.When it causes no confusion,we shall simply refer toCayley graphs
without explicitly mentioning Γ . As well, a notion of Cayley matrix can be defined.
Given a group Γ and a generating row vector π ∈ RΓ , we shall define the Γ -Cayley
matrix generated by π as the matrix cayl(π) ∈ RΓ ×Γ defined by cayl(π)gh = πh−g

for all h and g in Γ . Correspondingly, for a given Cayley matrix M , we shall denote
by πM the generating vector of the Cayley matrix M which is simply the row of M
labeled by g = 0.

Clearly, the adjacency and Laplacian matrices of Γ -Cayley graphs are Γ -Cayley
matrices. Conversely, if P is a Γ -Cayley matrix generated by π , then GP is a Γ -
Cayley graph with S = {h ∈ Γ : πh �= 0}.

Abelian Cayley graphs encompass several important examples.

Example 1.9 Let Zn denote the cyclic group of integers modulo n.

(i) The complete graph on n nodes is G (Zn, Zn \ {0});
(ii) The circulant graphs (resp. matrices) are Abelian Cayley graphs (resp. matri-

ces) on the group Zn: We have that cayl(π) = circ(π). For instance, the cycle
graph Cn is the circulant graph G (Zn, {−1, 1}); its adjacency matrix is A =
circ([0, 1, 0, . . . , 0, 1]) and its Laplacian is L = circ([2,−1, 0, . . . , 0,−1]).

(iii) The grids on a d-dimensional torus are G (Zd
n , {ei ,−ei }i∈{1,...,d}), where ei are

the elements of the canonical basis of Rd .
(iv) Keeping the same notation, the d-dimensional hypercube isG (Zd

2 , {ei }i∈{1,...,d}).

The algebraic structure of Cayley graphs and matrices implies strong properties.
The next two results list some basic properties which can be proven as exercises.

Proposition 1.16 Assume Γ is an Abelian group and S ⊂ Γ . Then, the following
statements hold true.

(i) G (Γ, S) is a symmetric graph if and only if S is inverse-closed, and is strongly
connected if and only if S generates the group Γ .

(ii) G (Γ, S) is topologically balanced and |S|-regular.
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Proposition 1.17 If M and M ′ are Γ -Cayley matrices, then

(i) their sum is M + M ′ is Cayley and πM+M ′ = πM + πM ′
;

(ii) M and M ′ commute and their product is Cayley. Namely, πMM ′ = πM ∗ πM ′
,

where ∗ denotes convolution between vectors: (v ∗ v′)i =∑ j v j v
′
i− j .Moreover,

πM ∗ πM ′ = MπM ′
.

The spectrum of a Cayley matrix can be computed by a discrete Fourier transform
of its generating vector.

Proposition 1.18 (Spectrum of Cayley matrices) Let Γ = Zn1 ⊕ · · · ⊕ Znd , so that∑d
�=1 n� = N. Let M be Γ -Cayley and π ∈ RΓ be its generating vector. Then, the

spectral structure of M can be described as follows:

(i) the eigenvalues of M are

λh =
∑

k∈Γ

πk exp

(
−i 2π

d∑

�=1

k�h�

n�

)
h ∈ Γ ;

(ii) a corresponding orthogonal basis of eigenvectors χ(h) ∈ RΓ is given by

χ(h)(k) = exp

(
i 2π

d∑

�=1

k�h�

n�

)
(1.9)

(iii) the matrix M can be written as

M =
∑

h∈Γ

λh N
−1χ(h)χ(h)∗.

Proof To provide this proof, we first need to briefly review part of the theory of
Fourier transforms on discrete groups: We refer to [25] for a comprehensive intro-
duction. Let C∗ be the multiplicative group of the nonzero complex numbers. A
character on Γ is a group homomorphism χ : Γ → C∗, namely a function from Γ

to C∗ such that χ(g + h) = χ(g)χ(h) for all g, h ∈ Γ . We can interpret a character
as a linear function χ : Γ → CΓ , i.e., as an N -dimensional vector of complex num-
bers. Since we have that χ(g)N = χ(Ng) = χ(0) = 1 for every g ∈ Γ , it follows
that χ takes values on the N th-roots of unity. The character χ0(g) = 1 for every
g ∈ Γ is called the trivial character (notice that χ0 corresponds to 1). The set of
all characters of the group Γ forms an Abelian group with respect to the entrywise
multiplication. It is called the character group and denoted by Γ̂ . The trivial char-
acter is clearly the zero of Γ̂ . Moreover, Γ̂ is isomorphic to Γ , and its cardinality
is N . If we consider the vector space CΓ of all functions from Γ to C with the
canonical Hermitian form 〈 f1, f2〉 =∑g∈Γ f1(g) f2(g), it can be proved that the set

{N−1/2χ : χ ∈ Γ̂ } is an orthonormal basis of CΓ . Then, it is possible to define the
Fourier transform of a function f : Γ → C as
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f̂ : Γ̂ → C f̂ (χ) =
∑

g∈Γ

χ(−g) f (g).

After this review, consider the Cayley matrix M ∈ RΓ ×Γ generated by the vector
π ∈ RΓ . ThematrixM can be interpreted as amap fromCΓ to itself, and the spectral
structure of M can be described as follows. Each character χ is an eigenfunction of
M with eigenvalue π̂(χ), because

(Mχ)(g) =
∑

h∈Γ

Mghχ(h)

=
∑

h∈Γ

πg−hχ(h)

=
∑

h∈Γ

πg−hχ(g)χ(h − g)

=
∑

�∈Γ

π�χ(−�)χ(g)

= π̂(χ)χ(g).

Since the characters form an orthonormal basis, it follows that M is diagonaliz-
able and its spectrum is given by {π̂(χ) : χ ∈ Γ̂ }. Furthermore, the matrix can be
rewritten as

M =
∑

χ∈Γ̂

π̂ (χ)N−1χχ∗,

where 1
N χχ∗ is a linear function fromCΓ to itself, projectingCΓ onto the eigenspace

generated by χ . Finally, a straightforward verification shows that characters of Γ are
explicitly given by the χ(h)’s defined in (1.9). This completes the proof. �

1.5.4 De Bruijn Graphs

We now present a remarkable class of graphs based on a combinatorial construction.
A De Bruijn graph on k symbols of dimension h is defined as follows. The node set
is the set all strings of length h of k given symbols, and there is an edge from u to v if
v can be obtained from u by shifting all symbols by one place to the left and adding
a new symbol at the rightmost place. More formally, V = {0, . . . , k − 1}h and

E = {(u, v) ∈ V × V : vi−1 = ui for all i ∈ {1, . . . , h}}.

See Fig. 1.10 for an example. An equivalent definition is given in Exercise 1.8.
De Bruijn graphs have notable properties: Here, we limit ourselves to observe the

following facts, whose simple proofs are left to the reader (Exercise 1.32).
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000

100

001

101

010

011

110

111
A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1.10 De Bruijn graph of dimension three on two symbols and its adjacency matrix

(i) If h = 1, then the De Bruijn graph is the complete graph.
(ii) Each vertex has exactly k incoming and k outgoing edges (counting self-loops),

that is, 1∗A = k1∗ and A1 = k1.
(iii) The adjacency matrix A of a De Bruijn graph is such that Ah = 11∗.
(iv) The Laplacian eigenvalues of a De Bruijn graph are 0 and k, and k has multi-

plicity n − 1. In particular, the smallest nonzero Laplacian eigenvalue is equal
to k.

Exercises

Exercises are divided into three groups, respectively devoted to basic graph theory
(that is, the first three sections), algebraic graph theory (Sect. 1.4) and to significant
examples of graphs (Sect. 1.5).

Basic Graph Theory

Exercise 1.1 (Handshaking Lemma) Let G = (V, E) be a symmetric graph. Show
that the sum of the degrees of all nodes is even.

Exercise 1.2 (Strongly connected components) Let there be a graph G = (V, E).
Verify that the relation between nodes “u and v communicate” is an equivalence
relation in V , namely the relation is reflexive, symmetric, and transitive. Show that
the strongly connected components of G are the equivalence classes of this relation.

Exercise 1.3 (Periodicity and connectivity) LetG = (V, E) be a strongly connected
graph.

(i) Prove that all nodes in G have the same period.
(ii) Prove that if at least one edge is symmetric (i.e., {(u, v), (v, u)} ⊂ E), then the

period is either 1 or 2.
(iii) What can we argue about the period if �C3 is a subgraph of G? And if �C4 ⊂ G?
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(iv) Prove Corollary 1.1.

Exercise 1.4 (Trees have leaves) In a symmetric graph, a vertex of degree one is
said to be a leaf. Show that every tree has at least two leaves.

Exercise 1.5 (Trees and number of edges) Let G = (V, E) be a symmetric graph
and denote v = |V | and e = |E |/2. Then, the following statements are true.

(i) If G is connected, then e ≥ v − 1.
(ii) If G is connected and has at least one cycle, then e ≥ v.
(iii) If G is a tree, then e = v − 1. Vice versa, if G is connected and e = v − 1, then

G is a tree.
(iv) If G is a forest with k connected components, then e = v − k.
(v) If G is a connected unicycle, then e = v. Vice versa, if G is connected and

e = v, then G is a unicycle.

Exercise 1.6 (Globally reachable node) LetG = (V, E) be a graph of order at least
two. Given a subset of nodes U ⊂ V , we say that v is an out-neighbor of U if there
exists (u, v) ∈ E with u ∈ U . Prove the following fact. The graph G has no globally
reachable node if and only if there exist two disjoint nonempty subsets of nodes
U,W ⊂ V such that neither U nor W has an out-neighbor.

Exercise 1.7 (Rooted and spanning trees) A rooted tree is a circuit-free graph with
the following property: There exists a vertex, called the root, such that any other
vertex of the graph can be reached by one and only one directed path starting at the
root. A spanning tree of a given graph is a spanning subgraph that is a rooted tree.

(i) A graph contains a spanning tree if and only if the reverse graph contains a
globally reachable vertex.

(ii) If a graph is strongly connected, then it contains a globally reachable vertex and
a spanning tree.

Exercise 1.8 (Eulerian paths and circuits) An Eulerian path is a path that visits all
the graph edges exactly once. An Eulerian circuit is an Eulerian path which starts
and ends at the same node. Show that the following properties hold for a graph G.

(i) If G has an Eulerian circuit, then G is topologically balanced.
(ii) If G is weakly connected and has an Eulerian circuit, then G is strongly con-

nected.
(iii) G has an Eulerian circuit if and only ifG is topologically balanced, and all of its

verticeswith nonzero degree belong to the same strongly connected component.
(iv) Let G be a weakly connected graph. Then, G is topologically balanced if and

only if G has an Eulerian circuit.
(v) A weakly connected graph G = (V, E) has an Eulerian path if and only if

(a) at most one vertex v ∈ V has dout
v − d in

v = 1;
(b) at most one vertex u ∈ V has d in

u − dout
u = 1; and

(c) every other vertex has equal in-degree and out-degree.
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Algebraic and Spectral Graph Theory

Exercise 1.9 (Bipartite graph and adjacency matrices) Observe that the adjacency
matrix of bipartite graph G = (V, E) can be written, up to a vertex permutation, in
a block form

AG =
[
0 B
C 0

]

where B ∈ RV1×V2 and C ∈ RV2×V1 , such that V1 ∩ V2 = ∅, V1 ∪ V2 = V .

(i) Compute A2
G, A3

G, . . .

(ii) Prove that there is no path in G of odd length.

Exercise 1.10 (Weight balance and connectivity) Let G be a weighted graph. If
G is weight-balanced and contains a globally reachable node, then G is strongly
connected.

Exercise 1.11 (Distance on a weighted graph) Let G = (V, E, A) be a weighted
graph, and define the length of a path as the sum of the weights associated to the
edges insisting on the path. Then, assuming that G is connected, define the distance
function dst : V × V → R≥0 as in (1.2). Observe that these definitions naturally
extend the notions of path length and distance between nodes to weighted graphs.
Prove that, if G is symmetric, then dst is a metric on V , that is

(i) dst(u, v) ≥ 0 and dst(u, v) = 0 if and only if u = v (positive definiteness);
(ii) dst(u, v) = dst(v, u) for every u, v ∈ V (symmetry);
(iii) dst(u, v) ≤ dst(u,w) + dst(w, v) for every u, v,w ∈ V (triangle inequality).

Exercise 1.12 (Directed incidence matrix) Let G = (V, E, A) be a weighted graph
and L = L(A) the corresponding Laplacian matrix. Define the directed incidence
matrix Φ ∈ RE×V by

Φ(u,v),w =

⎧
⎪⎨

⎪⎩

1 if w = u

−1 if w = v

0 otherwise

so that for each row, corresponding to an edge, there is a 1 corresponding to the tail
and a −1 corresponding to the head of the edge. Then, show that

Φ∗WΦ = L + L∗,

where W ∈ RE×E is a diagonal matrix arranging all the weights of the edges, such
that W(u,v),(u,v) = Auv.

Exercise 1.13 (The 4-wheel) Let G = (V, E) be symmetric and |V | = 5.

(i) Prove or disprove the existence of a graph on V such that

(a) all vertices have degree 3;
(b) four vertices have degree 3 and one vertex has degree 4.
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(ii) When such graph exists, may it be bipartite? May it contain a Eulerian circuit?
(iii) Write the adjacency matrix of such a graph, and compute its eigenvalues.

Exercise 1.14 (Spectra of regular graphs) Let G be a graph and assume G is out-
regular with out-degree d. Then, λ is an adjacency eigenvalue if and only if d − λ is
a Laplacian eigenvalue.

Exercise 1.15 (Complement graph) Given a graph G = (V, E), let the complement
graph Ḡ be the graph having node set V of cardinality n and edge set Ē = {(u, v) ∈
V × V : u �= v and (u, v) /∈ E}.
(i) Show that the Laplacian matrices of G and Ḡ are such that

L(G) + L(Ḡ) = nI − 11∗.

(ii) For a given graph H , let λ j (H) denote the j-th smallest eigenvalue of L(H).
Conclude from (i) that for 2 ≤ j ≤ n, it holds λ j (Ḡ) = n − λn+2− j (G).

(iii) Prove that G and Ḡ cannot both be disconnected.

Exercise 1.16 (Edge addition) Let G = (V, E) be a symmetric graph and 0 =
λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) its Laplacian spectrum. LetG ∪ {e} denote the addi-
tion of a pair of edges {(u, v), (v, u)} to the graph G. Then,

λ2(G) ≤ λ2(G ∪ {e}) ≤ λ2(G) + 2.

Exercise 1.17 (Bounds on Laplacian eigenvalues) Let G = (V, E) be a symmetric
graph and λ an eigenvalue of its Laplacian. Show that λ ≤ 2dmax and that λ ≤ n,
where dmax is the largest degree and n the order of G. Find examples where the
corresponding equalities hold.

Exercise 1.18 (Algebraic connectivity and vertex connectivity) For a connected
symmetric graph G which is not complete, we define the vertex connectivity of
G as

κ(G) = min{k ∈ N : G can be disconnected by removing k nodes}.

Then, λ2 ≤ κ(G), where λ2 denotes the smallest nonzero eigenvalue of LG . For this
reason, λ2 also takes the name of algebraic connectivity of the graph.

Exercise 1.19 (Information from spectrum) Let G = (V, E) be symmetric and reg-
ular, and assume that the spectrum of the adjacency matrix of G is

{−3,−3,−1,−1,−1,−1, 1, 1, 0, 2, 2, 4}.

(i) Compute the cardinality of V .
(ii) Compute the degree of G.
(iii) Is G connected?
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(iv) Is G bipartite?
(v) Estimate the diameter of G.

Exercise 1.20 (Bipartite graphs) Let M be adapted to a bipartite graph. Show that
if λ is an eigenvalue of M , then also −λ is an eigenvalue of M .

Exercise 1.21 (Properties of Laplacians) Let G = (V, E, A) be a weighted graph
of order n and L be the (weighted) Laplacian of G. The following statements hold
true.

(i) All eigenvalues of L have nonnegative real part.
(ii) The following properties are equivalent:

(a) G is weight-balanced;
(b) 1∗L = 0;
(c) for all x ∈ RV , it holds x∗(L + L∗)x =∑u,v Auv(xv − xu)2;
(d) L + L∗ is positive semidefinite.

(iii) G is weakly connected if and only if ker(L + L∗) = span{1}.
Exercise 1.22 (Diameter and Laplacian [1, 20]) Given a connected symmetric
graph G of order n, let λ2 be its smallest nonzero Laplacian eigenvalue. Then,
λ2 ≥ 4

n(n−1) and

4

nλ2
≤ diam(G) ≤ 2

⌈√
2dmax

λ2
log2 n

⌉
.

Exercise 1.23 (Diameter and normalized Laplacian) Let G = (V, E) be a sym-
metric graph of order n, A its adjacency matrix, and D its (diagonal) degree matrix.
Let also L = D − A be the Laplacian matrix and M = I − D−1/2AD−1/2 the nor-
malized Laplacian (according to [10]). We denote by 0 = μ1 ≤ · · · ≤ μn ≤ 2 the
eigenvalues of M . Then,

1

μ2|E | ≤ diam(G) ≤ log n

log μn+μ2

μn−μ2

.

Exercise 1.24 (Paths of a certain length) Let G be a graph of order n and assume
there exists h ∈ N such that there is exactly one path of length h connecting any pair
of nodes. Prove that there exists k such that

(i) n = kh ;
(ii) each vertex of G has exactly k in-neighbors and out-neighbors;
(iii) k is the only nonzero adjacency eigenvalue of G and has multiplicity one.

Example Families of Graphs

Exercise 1.25 (Star graph) The star graph Sn is a symmetric graph of order n + 1
such that one node, called the center, is the only neighbor to all the other n nodes; see
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Fig. 1.11 The star graph S6

Fig. 1.11. Observe that Sn is a tree and is isomorphic to K1,n; its diameter is two for

every n. Let An =
[
0 1∗

n
1n 0

]
denote its adjacency matrix and Ln denote its Laplacian.

Show that

(i) powers of An have the form

A2k−1
n = nk−1An, A2k

n = nk−1

[
n 0
0 1n1n∗

]
for all k ∈ N;

(ii) the eigenvalues of Ln are the solutions of the polynomial

p(s) = s(s − 1)n−1(s − n).

Exercise 1.26 (Kronecker product) Verify the following useful properties of the
Kronecker product of matrices as defined in (1.5). All matrices are assumed to be
square.

(i) AB ⊗ CD = (A ⊗ C)(B ⊗ D);
(ii) (A ⊗ B)∗ = (A∗ ⊗ B∗);
(iii) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), up to a permutation of indices;
(iv) A ⊗ B = B ⊗ A, up to a permutation of indices;
(v) (A ⊗ B)−1 = (A−1 ⊗ B−1), provided A and B are invertible;
(vi) the eigenvalues of A ⊗ B are all possible products of an eigenvalue of A with

an eigenvalue of B;
(vii) the eigenvectors of A ⊗ B are all possible Kronecker products of an eigenvec-

tor of A with an eigenvector of B;
(viii) tr A ⊗ B = tr A tr B;
(ix) det(A ⊗ B) = (det A)n(det B)m where n and m are the dimensions, respec-

tively, of A and B.

Exercise 1.27 (Tridiagonal andaugmented tridiagonalToeplitzmatrices [6,Lemma
1.77 and (1.6.7)]) Let V = {1, . . . , n} and a, b ∈ R. Consider the n × n tridiagonal
Toeplitz matrix
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Tridn(a, b) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b a 0 . . . 0
a b a 0 · · · 0
0 a b a · · · 0
...

. . .
. . .

. . .

· · · 0 a b a
0 · · · 0 a b

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(i) The matrix Tridn(a, b) has eigenvalues λi = b + 2a cos
(

iπ
n+1

)
, i ∈ {1, . . . , n}

and corresponding eigenvectors

x (i) =
[
sin

(
iπ

n + 1

)
, sin

(
2iπ

n + 1

)
, . . . , sin

(
niπ

n + 1

)]∗
.

Furthermore, consider the n × n augmented tridiagonal Toeplitz matrix

ATrid±
n (a, b) := Tridn(a, b) ±

⎡

⎢⎢⎢⎣

a 0 . . . 0
0 0 . . . 0
...

. . .
. . .

0 · · · 0 a

⎤

⎥⎥⎥⎦

(ii) The matrix ATrid±
n (a, b) has eigenvalues

λi = b + 2a cos

(
iπ

n

)
i ∈ {1, . . . , n − 1},

λn = b ± 2a.

Exercise 1.28 (Bidimensional grid)

(i) Use Exercise 1.27 to verify that the graph Lm has adjacency spectrum

2 cos

(
kπ

m + 1

)
k ∈ {1, . . . ,m}.

(ii) Show that the product graph Lm × Ln has adjacency spectrum

2 cos

(
2π

m + 1
h

)
+ 2 cos

(
2π

n + 1
k

)
h ∈ {1, . . . ,m}, k ∈ {1, . . . , n}.

(iii) Find the Laplacian spectrum of Lm and Lm × Ln .

Exercise 1.29 (Cayley graph that is not a product) Consider the Γ -Cayley graph G
where Γ = ZN × ZN and where

S = {(±1, 0), (0,±1), ±(1, 1)}.
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Verify that the Laplacian eigenvalues are given by

6 − 2 cos
2πh

N
− 2 cos

2πk

N
− 2 cos

2π(h + k)

N
, h, k = 0, . . . , N − 1.

Exercise 1.30 (Algebraic connectivity of symmetric Cayley graphs) Let λ2 be the
algebraic connectivity (cf. Exercise 1.18) of the Cayley graph G (Γ, S). Then, a
nontrivial result in [7] implies that

λ2 ≤ C

|Γ |2/|S| ,

where C > 0 is a constant independent of Γ and S. This inequality can easily be
verified in examples of Cayley graphs presented in the text. For instance, you can
check that

(i) the Laplacian eigenvalues of Cn are {2(1 − cos
(
2π
n �
)
)}�∈Zn , and in particular

λ2 = 2 − 2 cos

(
2π

n

)
≤ 2π2

n2
;

(ii) the Laplacian eigenvalues of C2
m are 4 − 2 cos

(
2π
m h
)+ cos

(
2π
m k
)
, for h, k ∈

{0, . . . ,m − 1} and in particular

λ2 = 4 − 4 cos

(
2π

m

)
≤ 2π2

m2
;

(iii) the Laplacian eigenvalues of Hd are {2�}�∈{0,...,d}, and in particular λ2 = 2.

Exercise 1.31 (De Bruijn graphs) Show that the De Bruijn graph on k symbols
of dimension h denoted as Bh

k is the graph with order n = kh such that every node
u ∈ {0, . . . , n − 1} is connected to ku, ku + 1, ku + 2, . . . , ku + k − 1 (all modkh).

Exercise 1.32 (Properties of De Bruijn graphs) By using Exercise 1.24, prove the
properties of De Bruijn graphs stated in Sect. 1.5.4.

Exercise 1.33 (Geometric graphs) Let V be a node set and x ∈ (Rd)V . The r-
disk graph is a symmetric graph Gr,disk(x) = (V, E(x)) defined by E(x) = {(u, v) :
‖xv − xu‖ ≤ r}. On the other hand, define the distance graph as the complete graph
endowed with a weight matrix W (x) such that Wuv(x) = ‖xu − xv‖. Define the
Euclidean minimum spanning tree GEMST(x) as the spanning tree of the distance
graph of minimum weight (i.e., such that the sum of the weights of its edges is
minimal). Show that GEMST(x) ⊂ Gr,disk(x) if and only if Gr,disk(x) is connected.
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Bibliographical Notes

Our account of graph theory is of course far from being a complete one. Instead,
we have selected definitions and facts that will be needed in the following chapters.
Hence, we expect that the reader may be interested in a broader introduction, for
instance the books [3, 13]. Moreover, previous books on network coordination and
robotic networks do contain introductions to graph theory, which partly overlap with
ours [6, 19]. Our definition of graph is often referred to as directed graph in the
literature, as opposed to undirected graphs, pairs (V, Ē) in which the elements of Ē
are unordered pairs of nodes {u, v}. Then, an undirected graph is equivalent (in our
language) to a symmetric graph in which each pair of directed edges (u, v), (v, u) is
counted as one. This notion of undirected graph will be used later in Chap.5.

Matrices adapted to graphs are fundamental in this book: For this reason, we
have devoted significant attention to algebraic graph theory, which studies graphs
via certain matrices associated to them, especially the adjacency and the Laplacian
matrices. The study of their spectra is the goal of spectral graph theory: Several
books on this topic are available [5, 10, 11]. In our treatment, we have focused on the
Laplacian spectrum: The properties of the adjacency spectrum are also notable [3,
Sect.VIII], but less useful to our needs (for instance, insufficient to characterize
connectivity [5, Sect. 1.3.7]).

Section1.5 has been devoted to selected examples of graphs and associated matri-
ces. We have also introduced the Cartesian product, a useful operation to construct
graphs [9, 17]. We recall here the examples that we presented, together with some
useful references. Circulant matrices are a standard topic in applied mathematics,
covered for instance in the classical book [12]. A related class of matrices is that of
Toeplitz matrices: General Toeplitz matrices are not important to us, but an example
that is useful to compute the spectrum of line graphs is presented in Exercise 1.27.
More generally, Cayley graphs have a long history in abstract mathematics and have
been used in control theory to describe translation-invariant systems [24].Our interest
in Abelian Cayley topologies is motivated both by their algebraic properties, which
allow for an elegant mathematical treatment [7, 25], and by their potential for the
applications. Indeed, Abelian Cayley graphs are idealized representations of commu-
nication scenarios of practical interest. In particular, they describe communication
patterns that are local, not only in the sense of a limited number of neighbors, but also
with a bound on the geometric distance among connected nodes. In Abelian Cayley
graphs, this constraint is abstracted into the definition of edge set [2, 4, 8, 15, 18].
For this reason, Abelian Cayley graphs are an alternative to other models of “local”
communication, such as geometric graphs. Geometric graphs are graphs such that
each node is endowed with a location and the edge set depends on these locations
(see Exercise 1.33); various types of geometric graphs are presented in [6, Chap. 2].
If a geometric graph is constructed from a position vector which is a random vari-
able, then its properties (e.g., connectivity) can be studied statistically. Such random
geometric graphs have been studied extensively [22, 23] as a modeling paradigm to
describe wireless communication networks [14, 16]. It is important to mention that

http://dx.doi.org/10.1007/978-3-319-68022-4_5
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other random families of graphs are used to describe different kinds of real-world
networks, such as social networks, broadly referred to as to complex networks. Such
graphs typically exhibit scale-free properties, small diameter and small spectral gap,
thus being very different from geometric graphs. Their description is outside the
scope of this book, but many sources are available to the interested reader [21, 26].
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