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Preface

This book has been written to be an agile but accurate introduction to the dynamics
over network usually known as averaging or consensus dynamics. Mathematically,
the simplest averaging dynamics is a linear dynamical system driven by a fixed
stochastic matrix, whose zero pattern is determined by the network topology. The
main goal of this book is proposing a unified and self-contained theoretical
framework that is suitable to analyze not only this simple instance, but also several
related dynamical models that feature time-variance, randomness, and hetero-
geneities. Even if most emphasis will be put on the methodological and general
aspects of the subject, we will also treat applications to inferential problems in
sensor networks, rendezvous of mobile robots, and opinion dynamics in social
networks.

This book originated from our lectures for the graduate courses Control of/over
networks and Dynamics over networks, taught at the Politecnico di Torino since
2011. The treatment is completely self-contained, with only standard linear algebra,
calculus, and probability as prerequisites. For this reason and for the abundance of
exercises, we hope that this text can be effectively used as a resource for teaching
and self-study at graduate or advanced undergraduate level.

This preface has for us a threefold goal: concisely introducing the topic of this
book, explaining our perspective in writing it, and outlining its contents.

Averaging Dynamics and Multi-agent Systems

Multi-agent systems constitute one of the fundamental paradigms of science and
technology in the present century. Their key feature is that complex dynamical
evolutions originate from the interactions of a large number of simple units. Not
only such collective behaviors are evident in biological and social systems, but the
digital revolution and the miniaturization in electronics have also made possible the
creation of man-made complex architectures of interconnected devices, including
computers, sensors, and cameras. Moreover, the creation of the Internet has enabled
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totally new forms of social and economic aggregation. These technological and
social evolutions have strongly pushed researchers toward a deeper and more
systematic study of multi-agent dynamical systems.

The mathematical structure of multi-agent systems is that of a graph (typically of
large scale), where the nodes are agents or units endowed with some (typically
simple) dynamical system. These dynamical systems are coupled through the edges
of the graph. Complexity is thus the outcome of the topology and the nature of the
interconnections, which may often be of stochastic nature. The typical mathematical
issue is understanding how the topology of the graph affects the transient and
asymptotic behavior of the intercoupled dynamics, relating graph-theoretical con-
cepts (such as diameter, degrees, connectivity, presence of bottlenecks) to the
dynamic behavior in a quantitative way.

In the applications, these dynamical systems can represent a multitude of dif-
ferent situations. For instance, the graph can be an infrastructure network (e.g.,
sensor or computer network) and the dynamics be an algorithm designed to fuse
information and eventually reach a preassigned goal, such as estimation or syn-
chronization, through cooperation. In other situations, the network may represent
relationships between socioeconomic or financial units (people, companies) and the
state variables represent opinions or other economic indicators. Finally, the units
may be physically positioned in the space (such as animals, pedestrians, or vehicles)
and have as state variables their positions and velocities: The dynamics then rep-
resent some collective motion, such as platooning for automated vehicles, formation
flight for drones, or flocking for animals.

Averaging dynamics is one of the most popular and maybe the simplest
multi-agent dynamics. It may be convenient to introduce it by the language of social
sciences. Suppose that a number of individuals possess some information repre-
sented by a real number: For instance, such numbers can represent their opinions on
a certain matter. The individuals interact and change their opinions by averaging
them with the opinions of other individuals to which they are connected. Under
certain assumptions, these updates will lead all the community to converge to a
common opinion that depends on the initial opinions of all individuals. Because of
its intrinsic push toward consensus, the averaging dynamics is also known as
consensus dynamics.

Aims and Scope

While teaching this topic and preparing this manuscript, we have tried to follow
four guidelines.

(i) We concentrate on linear discrete-time averaging dynamics, which we iden-
tify as the core theoretical issue. We present the fundamental results on
averaging dynamics and a unified viewpoint of various models and results
scattered in the literature. Starting from the classical evolution of the powers of
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a fixed stochastic matrix, we then consider more general products of a
sequence of stochastic matrices.

(ii) We keep the discourse simple and self-contained. The necessary theory is
constructed in this book without, in particular, assuming any knowledge of
Markov chains or of Perron–Frobenius theory. All convergence results pre-
sented are proposed as derivations of two different principles. The first one is a
“contraction” principle, prescribing that the convex hull of the states shrinks as
time elapses. This principle applies to time-invariant dynamics and to
time-varying dynamics where information is able to flow between any two
units within a bounded time. The second principle, instead, postulates a “re-
ciprocity” in the network dynamics, namely that if information can flow from
a set of units to another, also the converse must be possible. This second
principle also permits to prove convergence in settings where consensus is not
necessarily reached.

(iii) We constantly aim to relate the properties of the information flow (essentially
determined by a suitable graph) with the properties of dynamics. Dynamical
properties of interest include not only mere convergence but also “perfor-
mance,” broadly intended. We indeed consider different notions of perfor-
mance, including the rate of convergence, the accuracy in approximating the
average of the initial states, and the robustness against noise and communi-
cation errors. In all these cases, the relation between graph and performance is
made explicit by the spectral analysis of the update matrix.

(iv) We develop our approach in the perspective of large-scale networks: Even
though our theory is valid for networks of any size, we pay special attention to
how dynamical properties depend on the size of the network. Concretely, this
leads us to specialize our results to specific families of graphs (for instance,
grids) and to take limits where the number of nodes grows to infinity.

Contents

We now outline the contents of this book, even though the reader will be provided
with more detailed summaries at the beginning of each of its five chapters.

The initial Chap. 1 presents the graph-theoretical background that is essential to
our work, with particular emphasis on connectivity properties and on algebraic
graph theory. We also define several graphs that are used as leading examples in the
rest of this book.

Chapter 2 is the core of this book and is entirely devoted to time-invariant
averaging dynamics. Actually, we jointly study the convergence of averaging
dynamics and the properties of stochastic matrices, by means of a basic and fun-
damental contraction principle. We also pay attention to reversible matrices and
present the classical Cheeger bound to estimate the second eigenvalue.
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In Chap. 3, we study time-varying dynamics; that is, we allow the graph to
change with time. We present an extension to the contraction principle already used
in Chap. 2 and then propose a different convergence analysis based on a principle of
reciprocity in the flow of information. A number of applications of these general
results are presented including models where time-variance is due to a random
mechanism, e.g., gossiping, and models exhibiting nonconsensus behaviors, e.g.,
bounded-confidence opinion dynamics in social networks.

Chapter 4 is devoted to a finer analysis of the time-invariant averaging dynamics.
We define various performance metrics that quantify, for instance, convergence
speed and robustness with respect to noise. Performance metrics are then evaluated
as functions of the eigenvalues of the graph. We also present the application to
distributed inferential estimation.

Finally, in Chap. 5, we develop the theory of electrical networks of resistors,
which has important connections with reversible stochastic matrices. Using just
linear algebra techniques and no probability, we present some basic concepts like
that of voltage, Green matrix, harmonic extension, and effective resistance. This
machinery is then used to address two different problems: (i) estimation from
relative measurements and (ii) averaging dynamics in the presence of stubborn
agents.

The main dependences between these chapters are straightforward to describe by
a graph.

Chapter 1 Chapter 2

Chapter 3

Chapter 4

Chapter 5

All chapters include extended examples and are concluded by a selection of
Exercises (about 100 in total) and by some Bibliographical Notes, which have no
ambition to be exhaustive but simply to provide some context and propose some
additional readings.

Last but not least, we would like to acknowledge that our perspective on these
topics has been shaped by fruitful collaborations with students and colleagues: A
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nonexhaustive list includes Ruggero Carli, Giacomo Como, Jean-Charles
Delvenne, Federica Garin, Julien Hendrickx, Chiara Ravazzi, Wilbert Samuel
Rossi, and Sandro Zampieri.

Turin, Italy Fabio Fagnani
Grenoble, France Paolo Frasca
July 2017
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Chapter 1
Graph Theory

Abstract This chapter is a self-contained and concise introduction to graph theory,
which is essential to study the averaging dynamics over networks. After some basic
notions in Sect. 1.1, the emphasis is on connectivity and periodicity properties, which
are presented in Sects. 1.2 and 1.3, respectively. Section1.4 introduces the adjacency
and Laplacian matrices associated to a given graph and studies their spectra. Finally,
Sect. 1.5 introduces some notable examples of graphs, such as circulant, Cayley, and
De Bruijn graphs.

1.1 Basic Definitions and Examples

We begin with the definition of graph, which is central in our studies. A graph G is
a pair (V, E) where V is a finite set, whose elements are said to be the vertices (or
nodes) of G, and E ⊂ V × V is the set of edges (or arcs). The cardinality of V is
said to be the order or the size of the graph. An edge of the form (u, u) is said to be
a self-loop, or simply a loop. In a graph, every arc represents a connection or link
between two nodes. It is customary to draw graphs by representing nodes as dots and
arcs as arrows connecting the nodes in such away that for an edge (u, v) ∈ V × V ,
we understand that u is the tail and v is the head of the arrow; see Fig. 1.1. When
drawing a graph, we are thus implicitly assigning a location in the plane to each node.
The trivial graph EV = (V,∅) is said to be an empty graph. On the opposite extreme,
the graph KV = (V, {(u, v) : u �= v}) is said to be a complete graph (note that self-
loops have been excluded, see Fig. 1.1). Two graphs G = (V, E) and G ′ = (V ′, E ′)
are said to be isomorphic if there exists a bijection ψ : V → V ′ such that

(v,w) ∈ E ⇔ (ψ(v), ψ(w)) ∈ E ′.

For instance, two complete graphs are isomorphicwhen they have the same order. For
this reason,wemay also denote a complete graph of order n simply as Kn . Essentially,
two isomorphic graphs simply differ by a different labeling of the vertices. Since in
all the applications we will consider such differences will not play any role, we will
consider two isomorphic graphs as identical in what follows. This equivalence also

© Springer International Publishing AG 2018
F. Fagnani and P. Frasca, Introduction to Averaging Dynamics
over Networks, Lecture Notes in Control and Information Sciences 472,
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2 1 Graph Theory

(a) (b) (c) (d)

Fig. 1.1 Examples of graphs with four nodes: empty graph, complete graph, a graph without
self-loops, and a graph with a self-loop

allows us to identify (when convenient) the vertex set with a set of numbers, writing
for instance V = {1, . . . , |V |}.

Given a graph G = (V, E), the reverse graph of G is the graph which is obtained
by reversing all arcs. That is, rev(G) = (V, {(u, v) ∈ V × V : (v, u) ∈ E}). The
special case in which rev(G) = G is very important, as it means that (u, v) ∈ E if
and only if (v, u) ∈ E . If a graph is such, it is said to be symmetric. When drawing
a symmetric graph, there is no need to use pairs of arrows to connect nodes: In this
case, we will rather use double-headed arrows or just segments; see Figs. 1.1 and 1.3.

If (u, v) ∈ E , then v is said to be a out-neighbor of u, and we write that v ∈ N out
u .

Conversely, u is said to be a in-neighbor of v in the graph, and we write u ∈ N in
v .

The number of out-neighbors of a node v is said to be its out-degree and is denoted
by dout

v . Correspondingly, the number of in-neighbors of a node v is said to be its
in-degree and is denoted by d in

v . Note that for every graph, the following identity
holds true:

|E | =
∑

v∈V
dout
v =

∑

w∈V
d in
w . (1.1)

A source is a node with no in-neighbors, and a sink is a node u with no out-neighbors.
A graph is said to be d-(in/out-)regular if the (in/out-)degree of every node is d. A
graph is topologically balanced if dout

v = d in
v for all nodes v. Note that for a symmetric

graph, there is no need to distinguish between in- and out-neighbors, so that any
symmetric graph is topologically balanced and we will just talk about neighbors and
degrees dropping the labels “in” and “out”.

It is sometimes useful to identify certain relationships between graphs. The inter-
section and union of two graphs G = (V, E) and G ′ = (V ′, E ′) are denoted by,
respectively, G ∩ G ′ = (V ∩ V ′, E ∩ E ′) and G ∪ G ′ = (V ∪ V ′, E ∪ E ′). On the
other hand, we say that a graphG ′ = (V ′, E ′) is a subgraph ofG = (V, E) if V ′ ⊂ V
and E ′ ⊂ E : this relation is denoted asG ′ ⊂ G. Furthermore, the subgraphG ′ is said
to be spanning if V ′ = V and is said to be the subgraph induced by V ′ if

E ′ = E ∩ (V ′ × V ′).
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Fig. 1.2 Directed and undirected line graphs on four nodes

(a) C6 (b) C5 (c) C4

Fig. 1.3 Three examples of directed and undirected cycle graphs of small size

In this last case, we use the notation G ′ = G |V ′ . Clearly, any graph on the vertex set
V , without self-loops, is a subgraph of the complete graph KV .

Next, we provide some more examples of graphs. Let V = {0, . . . , n − 1}.
(i) If E = {(u, v) ∈ V × V : |v − u| = 1}, then (V, E) is said to be a line graph

and is denoted as Ln .
(ii) If E = {(u, v) ∈ V × V : v − u = 1}, then (V, E) is said to be a directed line

graph and is denoted as �Ln .
(iii) If E = {(u, v) ∈ V × V : v − u = 1 mod n}, then (V, E) is said to be a

directed cycle graph and is denoted as �Cn .
(iv) If E = {(u, v) ∈ V × V : (v − u) mod n ∈ {−1,+1}}, then (V, E) is said to

be a cycle graph and is denoted as Cn .

Some properties of line and cycle graphs can be immediately observed: For exam-
ple, �Ln ⊂ Ln , and more precisely, Ln = �Ln ∪ rev( �Ln). Correspondingly, �Cn ⊂ Cn

and Cn = �Cn ∪ rev( �Cn). Moreover, the cycle graph Cn is 2-regular and the directed
cycle graph �Cn is topologically balanced. Examples of cycle and line graphs are
drawn in Figs. 1.2 and 1.3.

1.2 Paths and Connectivity

In this section, we turn our attention to investigate the connectivity properties of
graphs. The pictorial representation of graphs, which we have introduced above,
makes the following definitions very natural.

Given a graph G = (V, E) and a pair of nodes u, v, a path (of length l) from u to
v on G is an ordered list of nodes (w0, . . . ,wl) such that

(i) w0 = u and wl = v;
(ii) (wi ,wi+1) ∈ E for every i ∈ {0, . . . , l − 1}.



4 1 Graph Theory

Fig. 1.4 Connectivity examples using graphs with three nodes: (weakly) connected without a
globally reachable node, weakly connected with a globally reachable node, and strongly connected

The edges occurring in the definition of a path are said to insist on the path at hand.
The path is said to be simple if the edges (wi ,wi+1) are all distinct. If a path from
u to v exists, we say that v is reachable from u. Given two nodes u and v, we say
that they communicate if either u = v or u �= v and there are both a path from u to
v and one from v to u. It is easy to check—Exercise 1.2—that communication is an
equivalence relation between nodes. These notions are instrumental to the following
important definitions.

A graph G = (V, E) is said to be

• strongly connected if every two nodes communicate;
• connected if for any pair of nodes (u, v), either u is reachable from v or v is
reachable from u;

• weakly connected if G ∪ rev(G) is strongly connected.

Note that these three definitions are equivalent for symmetric graphs. We also note
that every graph can be seen as the disjoint union of weakly connected subgraphs,
which we call weakly connected components or simply connected components.

A node v is said to be globally reachable if for every other node w there exists
a path from w to v. Clearly, in a strongly connected graph, all nodes are globally
reachable. A partial converse is given by the following result:

Proposition 1.1 (Connectivity and balance) If G is topologically balanced and con-
tains a globally reachable node, then G is strongly connected.

Proof By contradiction, the graph G = (V, E) is not strongly connected. Let R be
the set of globally reachable nodes: By the assumptions, ∅ � R � V . Consider the
partition of nodes into R and V \ R, and note that there is no edge from R to V \ R
but there is at least one edge from V \ R to R. Let v be the tail of such edge. By the
balance property, there must be an edge (u, v) with u /∈ R. In turns, the same remark
implies that there exists an edge (t, u) with t /∈ R. As the set V \ R is finite, this
iterative procedure must end after a finite number of steps, showing that there is at
least one node in V \ R that has different in-degree and out-degree, contradiction.�

Some examples of graph connectivity are given in Fig. 1.4.
The notion of path is also the ground to endow graphs with a natural distance

between nodes. As we have defined above, the length of a path is the number of
edges insisting on the path. Then, given two nodes u and v of a graph G = (V, E),
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we can define the distance fromu to v as the length of the shortest pathwhich connects
them. Precisely, we let1

dstG(u, v) = min{� : there exists in G a path of length � from u to v}, (1.2)

provided u �= v, and dstG(u, u) = 0. Note that the function dstG(·, ·) is symmetric
in its arguments if G is a symmetric graph (cf. also Exercise 1.11). Furthermore, the
diameter of the graph G = (V, E) is defined as

diam(G) = max{dstG(u, v) : u, v ∈ V }.

Clearly, G is strongly connected if and only if diam(G) is finite. Moreover, for any
strongly connected graph G of order n, it holds that diam(G) ≤ n − 1. It is easy to
compute the diameter for the graph examples introduced above: For instance, for
every n ∈ N we have diam(Kn) = 1 and diam(Cn) = n/2�.

A very important class of paths are “closed” paths: A path from a node to itself is
said to be a circuit. For instance, loops are circuits of length one. A graph is said to be
circuit-free if it contains no circuit. The following is a simple property of circuit-free
graphs.

Proposition 1.2 (Source and sink) Every circuit-free graph has at least one source
and at least one sink.

Proof By contradiction, we take a graph G = (V, E) with no sink, that is such that
dout
u ≥ 1 for every u ∈ V . We pick any vertex and denote it as v0. Then, we take one
out-neighbor of v0 and denote it by v1. Then, recursively for k ≥ 1, we take vk+1

among the out-neighbors of vk . As the cardinality of V is finite, it must happen for a
certain � ∈ N that v�+1 belongs to {v0, . . . , v�}, thus forming a circuit and providing
the required contradiction. The existence of a source is proven similarly. �

When a graph G = (V, E) is not strongly connected, we can consider its strongly
connected components, which we define as follows. First, we have observed—
see Exercise 1.2—that the relation of communication between nodes is an equiv-
alence relation. Then, we can consider the partition of V into the correspond-
ing equivalence classes V = V1 ∪ V2 ∪ · · · ∪ Vs and the induced subgraphs Gi =(
Vi , E ∩ (Vi × Vi )

)
, which are called the strongly connected components of G. If

the graph G is symmetric, actually G is simply the union of these s subgraphs,
in the sense that there is no further edge in the graph, the connected components
being completely isolated from each other. For general graphs, the situation is more
complicated: A useful way to describe what is left beyond the strongly connected
components is the following concept of condensation graph, whose nodes represent
the strongly connected components of G.

Definition 1.1 (Condensation graph) Given any graph G = (V, E), consider its
strongly connected components Gk = (Vk, Ek), k ∈ {1, . . . , s}. The condensation

1We understand that the minimum of an empty set is +∞.
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1 2 3

456 1,6,5

3

2,4

Fig. 1.5 An example of graph G (left) with its condensation graph T (G) (right)

graph of G is a graph T (G) with set of vertices {1, . . . , s} such that there is an arc
inT (G) from h to k if k �= h and there is an arc in G from a vertex in Vk to a vertex
in Vh .

The construction is illustrated in Fig. 1.5. We leave to the reader the task of proving
the following properties of condensation graphs.

Proposition 1.3 (Condensation graphs) Let G be any graph and T (G) its conden-
sation graph. Then,

(i) T (G) is circuit-free;
(ii) T (G) is (weakly) connected if and only if G is (weakly) connected;
(iii) G contains a globally reachable node if and only if T (G) has only one sink.

A cycle is a circuit of length at least 3, with no vertex repeated except the first
and last one. A graph is said to be cycle-free if it contains no cycles, and unicyclic
if it contains exactly one cycle. A tree is a symmetric cycle-free connected graph,
and an cycle-free symmetric graph is also called a forest. The next result states some
relevant properties of trees: other properties are presented in Exercise 1.5.

Proposition 1.4 (Trees) Let G = (V, E) be a symmetric graph. Then, the following
four statements are equivalent.

(i) G is a tree;
(ii) for any pair of distinct nodes u and v in V , there is exactly one path from u to

v in G;
(iii) G is minimal connected, that is, G is strongly connected and removing any

edge makes the resulting graph not strongly connected;
(iv) G ismaximal cycle-free, that is, G is cycle-free and adding one edge creates a

cycle in G.

Proof The key point of this proof is the equivalence between (i) and (ii). Indeed,
assume G is a tree, that is, G is connected symmetric and cycle-free. Then, G is
strongly connected, and thus, there is a path connecting u to v. Furthermore, if there
was another path, the graph being symmetric would imply the existence of a cycle.
Conversely, the existence of exactly one path implies connectedness and absence
of cycles. Next, we can observe that removing any edge necessarily breaks at least
one path, thus causing a graph satisfying (ii) to become not strongly connected.
Conversely, property (iii) ensures that there are no multiple paths connecting the
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nodes, for otherwise strong connectivity would be robust to edge deletions. As we
have noted that in symmetric graphs the absence of multiple paths is equivalent to the
absence of cycle, we conclude that (iii) implies (ii). Proving the equivalence between
(iii) and (iv) is left to the reader. �

1.3 Periodicity

Given a graph G = (V, E) and v ∈ V , denote by Lv the set of lengths of the circuits
inG to which v belongs. The period of v is the greatest common divisor (GCD) of the
integers in Lv (if Lv = ∅, the period is undefined). The node is said to be aperiodic
if its period is one. Notice that if a self-loop (v, v) ∈ E is present, then 1 ∈ Lv and
v is thus certainly aperiodic. The graph itself is said to be aperiodic if every node is
aperiodic.

Example 1.1 In the directed cycle graph �Cn , each node has period equal to n. In the
symmetric cycle graph Cn , instead, the period of each node is equal to GCD(2, n).
In particular, symmetric cycle graphs Cn with n odd are all aperiodic.

Notice that, since circuits can be concatenated freely to obtain new circuits, it
follows that the length sets Lv are closed under addition2 (�1, �2 ∈ Lv yield �1 + �2 ∈
Lv). For aperiodic nodes, something very strong can be stated about Lv. We start
recalling the following well-known fact from algebra.

Lemma 1.1 (Bézout’s identity) Let a1, . . . , as ∈ N and let d ∈ N be their GCD.
Then, there exist s coefficients αi ∈ Z such that

∑
i αi ai = d.

By this lemma, we can prove the following key result.

Proposition 1.5 (Aperiodicity) Let G = (V, E) be a graph and let v ∈ V . The fol-
lowing conditions are equivalent.

(i) v is aperiodic;
(ii) there exists m ∈ N such that m,m + 1 ∈ Lv;
(iii) there exists � ∈ N such that for every n ≥ � it holds that n ∈ Lv.

Proof Clearly, (iii) ⇒ (ii) ⇒ (i).
(i) ⇒ (ii): Since v is aperiodic, we can find lengths �1, �2, . . . , �s ∈ Lv such that

1 = GCD(�1, . . . , �s). Hence, by Lemma 1.1, we can find numbers αi ∈ Z such

that 1 =
s∑

i=1
αi�i . Let m =

s∑
i=1

|αi |�i and notice that m + 1 =
s∑

i=1
(|αi | + αi )�i . This

shows that both m,m + 1 ∈ Lv, yielding (ii).
(ii) ⇒ (iii): Notice first that if m = 1 in (ii), then (iii) is immediate. Suppose

now that m > 1 and put � = (m − 1)m. Let n ≥ �. Dividing n by m, we obtain

2Note that this also implies closure under integermultiplication as � ∈ Lv andm ∈ N yieldm� ∈ Lv.
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n = mh + r = m(h − r) + (m + 1)r . Since, by definition of rest, r ≤ m − 1 and
by our choice of � the quotient satisfies h ≥ m − 1, we have that h − r ≥ 0. Since
both m and m + 1 belong to Lv, the last inequality implies that n ∈ Lv. �

The result above shows that for every aperiodic node, there exists � ∈ N such
that for every n ≥ � there exists a path of length n from the node to itself. In other
words, for every aperiodic node, there exist paths of any length from the node to
itself—possibly excluding lengths below a certain threshold. This fact clearly means
a great “freedom of movement” in the graph. Furthermore, aperiodicity of a single
node is easily inherited by the rest of the graph, as a consequence of the following
result.

Proposition 1.6 (Aperiodic vertices) Let G = (V, E) be a graph and let u, v ∈ V
be two communicating nodes. Then, u is aperiodic if and only if v is aperiodic.

Proof As the node u is aperiodic, there exists � ∈ N and two circuits from u to itself
which have lengths � and � + 1. By the communication assumption, there exist a
path from u to v (of length m) and a path from v to u (of length n). Hence, there
exist two circuits (possibly repeating vertices) from v to itself, which have lengths
m + � + n and m + � + n + 1, proving the thesis. �

As a corollary, if a graph is strongly connected and has an aperiodic vertex, the
graph is aperiodic. The above discussion also allows us to conclude the following
remarkable result.

Corollary 1.1 (Paths on strongly connected and aperiodic graphs) If a graph G =
(V, E) is strongly connected and aperiodic, then there exists � such that for any pair
of nodes u, v and any length m ≥ � there is a path from u to v of length m.

Next, we present an additional notion which relates to paths and connectivity. A
graph (V, E) is said to be bipartite if the set V can be apportioned into two subsets
V1 and V2 such that for all (u, v) ∈ E either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1.
We already know some examples of bipartite graphs. For instance, trees are bipartite
and Cn is bipartite if and only if n is even. The following is another natural example.

Example 1.2 (Complete bipartite) Let A, B be two nonempty sets of cardinalities
m and n, respectively. The complete bipartite graph Km,n is the graph with node set
A ∪ B and an edge (u, v) if and only if u ∈ A and v ∈ B or u ∈ B and v ∈ A.

An important characterization of bipartite graphs is given by the following result.

Proposition 1.7 (Bipartition condition) A graph is bipartite if and only if every
circuit has even length.

Proof If the graph G = (V, E) is bipartite with V = V1 ∪ V2, every path u0,
u1, . . . , u p having u0 ∈ V1 is such that ui ∈ V1 if and only if i is even. Therefore, if
u p = u0, then pmust be even. In order to prove the converse statement, we construct
the partition {V1, V2}. We take any circuit u0, u1, . . . , u p−1, u0 and let ui belong to
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(a) H1 (b) H2 (c) H3 (d) H4

Fig. 1.6 Hypercubes of dimensions until four

V1 if i is even, and to V2 otherwise. Note that there is no edge connecting ui and
u j when i and j are both even (or both odd), for otherwise the “shortcut” would
create a circuit with odd length. Next, we move to another circuit w0, . . . ,wq . If the
circuit has no intersection with that examined before, we can just repeat the same
reasoning. If instead, say, the new circuit contains a node s which has already been
attributed to V1, we denote s = w0 and proceed as above. Note that the procedure can
be performed without introducing contradictions, because of the absence of circuits
of odd length. Iterating the procedure constructs the required partition. �

As a corollary, we note that any bipartite graph is not aperiodic.
Next, we introduce a remarkable family of graphs, which the reader may easily

verify to be bipartite.

Example 1.3 (Hypercube) Let V be the set of the binary words of length n, that
is, V = {0, 1}n . Then, the hypercube Hn is the graph on V with an edge between
two words whenever they differ in exactly one component, i.e., E = {(u, v) :
‖u − v‖1 = 1}. It is immediate to observe that |V | = 2n , and that Hn is symmet-
ric, n-regular, and bipartite. Hypercube graphs are so-called because they draw the
vertices and edges of n-dimensional cubes: This can be observed from the examples
in Fig. 1.6.

1.4 Matrices and Eigenvalues

This section introduces (i) relevant matrices which are used in the study of graphs,
namely the adjacency and Laplacian matrices; (ii) the notion of graph associated
with a matrix; and (iii) the definition of weighted graph that inherently involves a
matrix. Relating graphs to matrices permits to take advantage of algebraic tools for
the study of graphs, and conversely to express matrix properties in terms of graphs.
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Furthermore, the spectrum of adjacency and Laplacian matrices conveys important
information about the graphs: This study is the topic of spectral graph theory.

First, we provide the fundamental definition of adjacency matrix. Given a graph
G = (V, E), the adjacency matrix A (sometimes denoted as AG) is a matrix in
{0, 1}V×V such that {

Auv = 1 if (u, v) ∈ E

Auv = 0 if (u, v) /∈ E .

As an example, observe that the adjacency matrix of the third graph in Fig. 1.1 is

A =

⎡

⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
1 1 1 0

⎤

⎥⎥⎦ .

The adjacencymatrix encodes all the information about the structure of the graph and
is thus a very important notion. Furthermore, it permits to answer questions about
paths and connectivity of the graph by purely algebraic computations. The next result
is a chief example.

Proposition 1.8 (Adjacency matrix and paths) Let G = (V, E) be a graph with
adjacency matrix A. Then, for all u, v ∈ V and k ∈ N, the u, v-entry of Ak equals the
number of paths of length k (including paths with self-loops) from node u to node v.

Proof The statement is proved by induction on the length k. By definition of adja-
cency matrix, the statement is true for k = 1. Next, we assume that the statement is
true for k and we prove it for k + 1. Note that each path from u to v of length k + 1
consists of an edge (u,w) and a path from w to v of length k. Since we can write

(Ak+1)uv =
∑

w∈V
Auw(Ak)wv,

the statement follows by the inductive hypothesis. �

Proposition 1.8 and Corollary 1.1 imply the following fact.

Corollary 1.2 (Adjacency matrix of aperiodic graphs) If a graph G = (V, E) is
strongly connected and aperiodic, then there exists � ∈ N such that, for every m ≥ �,
every entry of Am is strictly positive.

By writing the adjacency matrix, we associate a matrix to any graph: Conversely,
we may associate a graph to any matrix. Let M be a square matrix with nonnegative
entries, whose rows and columns are indexed in a set V . Then, the graph associated
to M , denoted by GM , is the graph (V, E) such that

E = {(u, v) ∈ V × V : Muv > 0}.



1.4 Matrices and Eigenvalues 11

M =

⎡
⎣
0.3 2 1
0 0 1
0 0 0

⎤
⎦

1

2

3

GM

Fig. 1.7 A nonnegative matrix and its associated graph

1

0.3

2

3
1

2 1

Fig. 1.8 ThematrixM and the graphGM = (V, E) in Fig. 1.7 drawn as aweighted graph (V, E, M)

An example is shown in Fig. 1.7. Based on this definition, we say that given a graph
G = (V, E), a matrix M ∈ RV×V

≥0 is said to be adapted to G when Muv > 0 and
u �= v imply (u, v) ∈ E . Equivalently, we may say that GM ⊂ G modulo self-loops.
Of course, the adjacency matrix of a graph is an example of a matrix adapted to it.

Example 1.4 Consider the graph GM in Fig. 1.7 and the matrices

M1

⎡

⎣
1 2.3 1
0 0 20
0 0 0

⎤

⎦ M2 =
⎡

⎣
1 0 1
0 0.1 2
0 0 0

⎤

⎦ M3 =
⎡

⎣
1 3.2 0
0.5 0 20
0 3 0

⎤

⎦ .

Then, M1 and M2 are adapted to the graph, whereas M3 is not.

Sometimes in the literature a graph G = (V, E) together with a matrix M ∈
RV×V

≥0 , adapted to G, is called a weighted graph and is also denoted as (V, E, M).
Weighted graphs are often depicted as graphswith each edge (v,w) labeledwithMvw,
as in Fig. 1.8. Depending on the applications, Mvw may have a variety of different
meanings: It can measure the capacity of a certain connection, a flow, a resistance, a
distance, and so on.

We now propose the following fundamental construction. The Laplacian matrix
associatedwith amatrixM ∈ RV×V

≥0 is thematrix L(M) ∈ RV×V such that L(M)uv =
−Muv if u �= v and L(M)uu =∑v:v �=u Muv. In matrix form, we may write that

L(M) = diag(M1) − M,

where the notation diag(x) denotes the square matrix whose main diagonal is the
vector x . In the special case when M is the adjacency matrix of the graph G, the



12 1 Graph Theory

resulting Laplacian matrix L(AG) is simply called the Laplacian of G and denoted
with the symbol LG . Notice that in this case, LG has the form

LG = DG − AG

where DG is a diagonal matrix such that (DG)uu = dout
u for every u ∈ V . As an

immediate consequence, we observe that L(M) does not depend on the diagonal
values of M . In particular LG is independent of the presence of self-loops in the
graph. As well, it is immediate that the graph G is symmetric if and only if LG is
symmetric.

The spectrum of L(M) plays an important role in graph theory and in many of the
arguments which will be discussed later on. From the definition, it is immediate that
for any matrix M , it holds that L(M)1 = 0, that is, 0 is an eigenvalue of L(M) with
eigenvector 1. We now propose a number of results in the case when M is symmetric.
Possible extensions and refinements are outlined in Exercises 1.21 and 2.25.We start
with the following basic fact.

Proposition 1.9 (Dirichlet form) Let M ∈ RV×V be a symmetric matrix. For every
x ∈ RV , it holds

x∗L(M)x = 1

2

∑

u,v

Muv(xu − xv)
2. (1.3)

Proof By computing the quadratic form, we obtain

x∗L(M)x = ∑
u

∑
v:v �=u

Muvx2u − ∑
u,v:u �=v

Muvxuxv

= ∑
u,v:u �=v

Muv(x2u − xuxv)

= 1
2

[
∑

u,v:u �=v
Muv(x2u − xuxv) + ∑

u,v:u �=v
Mvu(x2v − xuxv)

]

= 1
2

∑
u,v:u �=v

Muv(x2u − 2xuxv + x2v ).

Notice the so-called “symmetrization” trick used in the third equality and the crucial
role played by symmetry in the fourth equality. �

The previous result has a number of straightforward consequences.

Proposition 1.10 (Laplacian and connectivity) Suppose M is symmetric. Then,

(i) the Laplacian L(M) is positive semidefinite;
(ii) the multiplicity of the eigenvalue 0 equals the number of connected components

of GM.

Proof Exercise. Hint: to prove (ii), find suitable independent eigenvectors, each of
them corresponding to a connected component. �

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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When M is symmetric of order n, eigenvalues of L(M) are real and nonnegative:
0 = λ1 ≤ λ2 · · · ≤ λn . Particularly relevant is the “second eigenvalue” λ2, which
admits the following variational characterization.

Proposition 1.11 (Variational characterization) If M is symmetric, then it holds

λ2 = min
x �=0,x∗1=0

x∗L(M)x

x∗x
. (1.4)

Proof Since L(M) is symmetric we can find an orthonormal basis of eigenvec-
tors: x(i) ∈ RV for i ∈ {1, . . . , n} with L(M)x(i) = λi x(i). We can assume that
x(1) = n−1/21. L(M) can be expressed as a combination of orthogonal projectors:

L(M) =
∑

i≥2

λi x(i)x
∗
(i)

(this corresponds to diagonalizing L(M) with respect to the basis of eigenvectors).
Hence, if y ∈ RV is such that 1∗y = 0

y∗L(M)y =
∑

i≥2

λi (x
∗
(i)y)

2 ≥ λ2

∑

i≥2

(x∗
(i)y)

2 = λ2||y||22

This yields ≤ in (1.4). On the other hand, it holds

x∗
(2)L(M)x(2)

x∗
(2)x(2)

= λ2

and thus also ≥ is proven. �

This result has an immediate consequence.

Proposition 1.12 (Monotonicity) Let M and Q be two symmetric matrices such that
Muv ≥ Quv for every u �= v. If we denote byλ2(M) andλ2(Q) the second eigenvalues
of, respectively, L(M) and L(Q), then λ2(M) ≥ λ2(Q).

Proof It easily follows combining (1.4) with the quadratic form given by (1.3). �

1.5 Examples of Graphs

This section regards notable families of graphs and their properties.We also introduce
a notion of product between graphs, which is useful to construct further examples.
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1.5.1 Circulant Graphs

An n × n matrix A is said to be circulant if it exists a vector c ∈ Rn such that

A =

⎡

⎢⎢⎢⎣

c0 c1 c2 . . . cn−1

cn−1 c0 c1 c2 . . .
...

c1 · · · cn−1 c0

⎤

⎥⎥⎥⎦ .

This matrix can be denoted as A = circ(c), where c = [c0, c1, . . . , cn−1]. A graph is
said to be circulant if its adjacency matrix is circulant. Examples include the directed
cycle and cycle graphs introduced earlier.

Circulant matrices enjoy many interesting properties: Here we are interested in
simple properties of their spectra, summarized in the following result.

Proposition 1.13 (Spectra of circulant matrices) Let c ∈ Rn and consider the n × n
circulant matrix A = circ(c). Then, A has eigenvectors

x (k) = [1, ωk, . . . , ω
n−1
k ]� k ∈ {0, . . . , n − 1},

and corresponding eigenvalues λk =
n−1∑

�=0

c�ω
�
k, where we have denoted ωk = ei

2π
n k

with i the imaginary unit. Furthermore, the eigenvectors x (k) form an orthonormal
basis of Cn.

Proof Note that ωk is such that ωn
k = 1: Indeed, ωk is said to be a n-th root of unity.

We leave to the reader to verify that the set of vectors {x (k)}n−1
k=0 is orthonormal, and

we instead verify that the pair (x (k), λk) satisfies the eigenvalue definition. To this
goal, we compute

Ax (k) = c0

⎡

⎢⎢⎢⎢⎢⎣

1
ωk

ω2
k
...

ωn−1
k

⎤

⎥⎥⎥⎥⎥⎦
+ c1

⎡

⎢⎢⎢⎢⎢⎣

ωk

ω2
k
...

ωn−1
k
1

⎤

⎥⎥⎥⎥⎥⎦
+ · · · + cn−1

⎡

⎢⎢⎢⎢⎢⎣

ωn−1
k
1
ωk

ω2
k
...

⎤

⎥⎥⎥⎥⎥⎦

=
n−1∑

�=0

c�ω
�
k

⎡

⎢⎢⎢⎢⎢⎣

1
ωk

ω2
k
...

ωn−1
k

⎤

⎥⎥⎥⎥⎥⎦

=
n−1∑

�=0

c�ω
�
k x

(k)
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thus proving the thesis. �
As special cases, we can compute the spectra of cycle graphs.

Example 1.5 (Spectra of cycles) The graph �Cn has Laplacian eigenvalues

λk = 1 − exp
(
i
2π

n
k
)

k ∈ {0, . . . , n − 1}.

The graph Cn has Laplacian eigenvalues

λk = 2 − 2 cos

(
2π

n
k

)
k ∈ {0, . . . , n − 1}.

Note that these eigenvalues are real,λk = λn−k , and indeed abasis of real eigenvectors
can be found (exercise).

1.5.2 Product Graphs

In this paragraph, we introduce the binary operations of Cartesian product between
matrices and between graphs. Consider twomatrices A ∈ RV×V and B ∈ RH×H . We
start recalling the familiar Kronecker product of matrices A ⊗ B ∈ R(V×H)×(V×H)

defined by

(A ⊗ B)uh,vk = AuvBhk . (1.5)

The Cartesian product is instead defined as the matrix A × B ∈ R(V×H)×(V×H) such
that

(A × B)uh,vk = Auvδhk + Bhkδuv, (1.6)

where δhk is the standard Kronecker delta (δhh = 1 and δhk = 0 if h �= k). This
definition can be conveniently rewritten, by using the Kronecker product, as

A × B = A ⊗ IH + IV ⊗ B , (1.7)

where IV and IH are the identity matrices. Interpreting RV×H as the space of real
matrices with rows and columns labeled by, respectively, elements of V and H , the
Kronecker and Cartesian products can be thought as linear applications acting on
matrices. Given a matrix M ∈ RV×H , they can be equivalently expressed as

(A ⊗ B)M = AMB� and (A × B)M = AM + MB�. (1.8)

Both the Kronecker and the Cartesian product are associative and commutative up to
relabeling vertices (see also Exercise 1.26).
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(a) K3 (b) L3 (c) K3×L3

Fig. 1.9 Computing the Cartesian product between K3 and L3

The Cartesian product of matrices has a natural counterpart at the level of graphs.
The (Cartesian) product of two graphs G and G ′ is the graph G × G ′, such that the
vertex set is the Cartesian product of the vertex sets of G and G ′, and two vertices
are adjacent when they agree in one coordinate and are adjacent in the other. A
pictorial example is given in Fig. 1.9. We easily see that, as long as G and G ′ have
no self-loops, the adjacency matrix of G × G ′ is AG × AG ′ .

Furthermore, the degree of a node (u, h) in a product graph G × G ′ is the sum of
the degrees of u in G and h in G ′.

Proposition 1.14 (Product and Laplacian)Let A ∈ RV×V and B ∈ RH×H be square
matrices. Then,

L(A × B) = L(A) × L(B).

Proof We start with a remark on products of diagonal operators. If M ∈ RV×H ,
diag(M) ∈ R(V×H)×(V×H) denotes the diagonal operator such that diag(M)uh,uh =
Muh . Given two vectors x ∈ RV and y ∈ RH , it follows from definition (1.5) that
diag(x) ⊗ diag(y) = diag(xy�).

From
(A × B)1V 1�

H = (A1V )1�
H + 1V (B1H )�

we then obtain

diag
(
(A × B)1V 1�

H

) = diag(A1V ) ⊗ IH + IV ⊗ diag(B1H ).

Thus,

L(A × B) = diag(A1V ) ⊗ IH + IV ⊗ diag(B1H ) − A ⊗ IH − IV ⊗ B

= L(A) ⊗ IH + IV ⊗ L(B) = L(A) × L(B),

thereby proving the thesis. �
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The spectrum of a product of matrices is determined by the spectra of the factors via
a simple relation.

Proposition 1.15 (Spectrumof productmatrices) If A and B have eigenvaluesλ and
μwith corresponding eigenvectors x ∈ RV and y ∈ RH respectively, then A × B has
eigenvalue λ + μ with eigenvector xy� ∈ RV×H .

Proof From the definition of Cartesian product, we observe

(A × B)xy� = (Ax)y� + x(By)� = (λ + μ)xy�,

which gives the thesis. �

The spectral properties of several families of graphs can be studied using the
product operation defined above.

Example 1.6 (Hypercube graph) The hypercube Hn , defined in Example 1.3, is the
Cartesian product of n factors K2. The Laplace spectrum of K2 is {0, 2}, and hence
the Laplace spectrum of Hn consists of the numbers 2i with multiplicity

(n
i

)
, for

i ∈ {0, . . . , n}.
Other examples are products of cycle graphs: The product of two cycles represents

a square lattice on a two-dimensional torus.

Example 1.7 (Bidimensional torus grid) We know from Example 1.5 that the graph
Cn has Laplace spectrum

λk = 2 − 2 cos

(
2π

n
k

)
k ∈ {0, . . . , n − 1}.

Then, the product graph Cn × Cm has Laplace spectrum

4 − 2 cos

(
2π

m
h

)
− 2 cos

(
2π

n
k

)
h ∈ {0, . . . ,m − 1}, k ∈ {0, . . . , n − 1}.

The extension to k-dimensional grids is now natural.

Example 1.8 (k-dimensional torus grid) Since the graph Cm has Laplace spectrum
λk = 2 − 2 cos

(
2π
m k
)
, k ∈ {0, . . . ,m − 1}, the Laplace spectrum of the product

graph Ck
m = Cm × · · · × Cm︸ ︷︷ ︸

k times

is 2 k − 2
∑k

i=1 cos
(
2π
m hi

)
, hi ∈ {0, . . . ,m − 1}.

The reader may compute as an exercise the spectra of other multi-dimensional
graphs, e.g., Lk

n (using Example 1.27) and �Ck
n (using Example 1.5).
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1.5.3 Cayley Graphs

A generalization of cycle graphs and toroidal grids is provided by the family of
Abelian Cayley graphs, which are graphs whose set of nodes is an Abelian group
and the set of edges is stable by translation operations. The formal definition is
proposed below.

Definition 1.2 (Abelian Cayley matrices and graphs) Let Γ be an Abelian group
(we use the additive notation) and let S be a subset of Γ . Then, the Γ -Cayley graph
generated by S in Γ is the graph G (Γ, S) having Γ as node set and

E = {(g, h) ∈ Γ × Γ : h − g ∈ S}

as edge set. In words, two nodes—i.e., two group elements—are neighbors if their
difference is in S.When it causes no confusion,we shall simply refer toCayley graphs
without explicitly mentioning Γ . As well, a notion of Cayley matrix can be defined.
Given a group Γ and a generating row vector π ∈ RΓ , we shall define the Γ -Cayley
matrix generated by π as the matrix cayl(π) ∈ RΓ ×Γ defined by cayl(π)gh = πh−g

for all h and g in Γ . Correspondingly, for a given Cayley matrix M , we shall denote
by πM the generating vector of the Cayley matrix M which is simply the row of M
labeled by g = 0.

Clearly, the adjacency and Laplacian matrices of Γ -Cayley graphs are Γ -Cayley
matrices. Conversely, if P is a Γ -Cayley matrix generated by π , then GP is a Γ -
Cayley graph with S = {h ∈ Γ : πh �= 0}.

Abelian Cayley graphs encompass several important examples.

Example 1.9 Let Zn denote the cyclic group of integers modulo n.

(i) The complete graph on n nodes is G (Zn, Zn \ {0});
(ii) The circulant graphs (resp. matrices) are Abelian Cayley graphs (resp. matri-

ces) on the group Zn: We have that cayl(π) = circ(π). For instance, the cycle
graph Cn is the circulant graph G (Zn, {−1, 1}); its adjacency matrix is A =
circ([0, 1, 0, . . . , 0, 1]) and its Laplacian is L = circ([2,−1, 0, . . . , 0,−1]).

(iii) The grids on a d-dimensional torus are G (Zd
n , {ei ,−ei }i∈{1,...,d}), where ei are

the elements of the canonical basis of Rd .
(iv) Keeping the same notation, the d-dimensional hypercube isG (Zd

2 , {ei }i∈{1,...,d}).

The algebraic structure of Cayley graphs and matrices implies strong properties.
The next two results list some basic properties which can be proven as exercises.

Proposition 1.16 Assume Γ is an Abelian group and S ⊂ Γ . Then, the following
statements hold true.

(i) G (Γ, S) is a symmetric graph if and only if S is inverse-closed, and is strongly
connected if and only if S generates the group Γ .

(ii) G (Γ, S) is topologically balanced and |S|-regular.
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Proposition 1.17 If M and M ′ are Γ -Cayley matrices, then

(i) their sum is M + M ′ is Cayley and πM+M ′ = πM + πM ′
;

(ii) M and M ′ commute and their product is Cayley. Namely, πMM ′ = πM ∗ πM ′
,

where ∗ denotes convolution between vectors: (v ∗ v′)i =∑ j v j v
′
i− j .Moreover,

πM ∗ πM ′ = MπM ′
.

The spectrum of a Cayley matrix can be computed by a discrete Fourier transform
of its generating vector.

Proposition 1.18 (Spectrum of Cayley matrices) Let Γ = Zn1 ⊕ · · · ⊕ Znd , so that∑d
�=1 n� = N. Let M be Γ -Cayley and π ∈ RΓ be its generating vector. Then, the

spectral structure of M can be described as follows:

(i) the eigenvalues of M are

λh =
∑

k∈Γ

πk exp

(
−i 2π

d∑

�=1

k�h�

n�

)
h ∈ Γ ;

(ii) a corresponding orthogonal basis of eigenvectors χ(h) ∈ RΓ is given by

χ(h)(k) = exp

(
i 2π

d∑

�=1

k�h�

n�

)
(1.9)

(iii) the matrix M can be written as

M =
∑

h∈Γ

λh N
−1χ(h)χ(h)∗.

Proof To provide this proof, we first need to briefly review part of the theory of
Fourier transforms on discrete groups: We refer to [25] for a comprehensive intro-
duction. Let C∗ be the multiplicative group of the nonzero complex numbers. A
character on Γ is a group homomorphism χ : Γ → C∗, namely a function from Γ

to C∗ such that χ(g + h) = χ(g)χ(h) for all g, h ∈ Γ . We can interpret a character
as a linear function χ : Γ → CΓ , i.e., as an N -dimensional vector of complex num-
bers. Since we have that χ(g)N = χ(Ng) = χ(0) = 1 for every g ∈ Γ , it follows
that χ takes values on the N th-roots of unity. The character χ0(g) = 1 for every
g ∈ Γ is called the trivial character (notice that χ0 corresponds to 1). The set of
all characters of the group Γ forms an Abelian group with respect to the entrywise
multiplication. It is called the character group and denoted by Γ̂ . The trivial char-
acter is clearly the zero of Γ̂ . Moreover, Γ̂ is isomorphic to Γ , and its cardinality
is N . If we consider the vector space CΓ of all functions from Γ to C with the
canonical Hermitian form 〈 f1, f2〉 =∑g∈Γ f1(g) f2(g), it can be proved that the set

{N−1/2χ : χ ∈ Γ̂ } is an orthonormal basis of CΓ . Then, it is possible to define the
Fourier transform of a function f : Γ → C as
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f̂ : Γ̂ → C f̂ (χ) =
∑

g∈Γ

χ(−g) f (g).

After this review, consider the Cayley matrix M ∈ RΓ ×Γ generated by the vector
π ∈ RΓ . ThematrixM can be interpreted as amap fromCΓ to itself, and the spectral
structure of M can be described as follows. Each character χ is an eigenfunction of
M with eigenvalue π̂(χ), because

(Mχ)(g) =
∑

h∈Γ

Mghχ(h)

=
∑

h∈Γ

πg−hχ(h)

=
∑

h∈Γ

πg−hχ(g)χ(h − g)

=
∑

�∈Γ

π�χ(−�)χ(g)

= π̂(χ)χ(g).

Since the characters form an orthonormal basis, it follows that M is diagonaliz-
able and its spectrum is given by {π̂(χ) : χ ∈ Γ̂ }. Furthermore, the matrix can be
rewritten as

M =
∑

χ∈Γ̂

π̂ (χ)N−1χχ∗,

where 1
N χχ∗ is a linear function fromCΓ to itself, projectingCΓ onto the eigenspace

generated by χ . Finally, a straightforward verification shows that characters of Γ are
explicitly given by the χ(h)’s defined in (1.9). This completes the proof. �

1.5.4 De Bruijn Graphs

We now present a remarkable class of graphs based on a combinatorial construction.
A De Bruijn graph on k symbols of dimension h is defined as follows. The node set
is the set all strings of length h of k given symbols, and there is an edge from u to v if
v can be obtained from u by shifting all symbols by one place to the left and adding
a new symbol at the rightmost place. More formally, V = {0, . . . , k − 1}h and

E = {(u, v) ∈ V × V : vi−1 = ui for all i ∈ {1, . . . , h}}.

See Fig. 1.10 for an example. An equivalent definition is given in Exercise 1.8.
De Bruijn graphs have notable properties: Here, we limit ourselves to observe the

following facts, whose simple proofs are left to the reader (Exercise 1.32).
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000

100

001

101

010

011

110

111
A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1.10 De Bruijn graph of dimension three on two symbols and its adjacency matrix

(i) If h = 1, then the De Bruijn graph is the complete graph.
(ii) Each vertex has exactly k incoming and k outgoing edges (counting self-loops),

that is, 1∗A = k1∗ and A1 = k1.
(iii) The adjacency matrix A of a De Bruijn graph is such that Ah = 11∗.
(iv) The Laplacian eigenvalues of a De Bruijn graph are 0 and k, and k has multi-

plicity n − 1. In particular, the smallest nonzero Laplacian eigenvalue is equal
to k.

Exercises

Exercises are divided into three groups, respectively devoted to basic graph theory
(that is, the first three sections), algebraic graph theory (Sect. 1.4) and to significant
examples of graphs (Sect. 1.5).

Basic Graph Theory

Exercise 1.1 (Handshaking Lemma) Let G = (V, E) be a symmetric graph. Show
that the sum of the degrees of all nodes is even.

Exercise 1.2 (Strongly connected components) Let there be a graph G = (V, E).
Verify that the relation between nodes “u and v communicate” is an equivalence
relation in V , namely the relation is reflexive, symmetric, and transitive. Show that
the strongly connected components of G are the equivalence classes of this relation.

Exercise 1.3 (Periodicity and connectivity) LetG = (V, E) be a strongly connected
graph.

(i) Prove that all nodes in G have the same period.
(ii) Prove that if at least one edge is symmetric (i.e., {(u, v), (v, u)} ⊂ E), then the

period is either 1 or 2.
(iii) What can we argue about the period if �C3 is a subgraph of G? And if �C4 ⊂ G?



22 1 Graph Theory

(iv) Prove Corollary 1.1.

Exercise 1.4 (Trees have leaves) In a symmetric graph, a vertex of degree one is
said to be a leaf. Show that every tree has at least two leaves.

Exercise 1.5 (Trees and number of edges) Let G = (V, E) be a symmetric graph
and denote v = |V | and e = |E |/2. Then, the following statements are true.

(i) If G is connected, then e ≥ v − 1.
(ii) If G is connected and has at least one cycle, then e ≥ v.
(iii) If G is a tree, then e = v − 1. Vice versa, if G is connected and e = v − 1, then

G is a tree.
(iv) If G is a forest with k connected components, then e = v − k.
(v) If G is a connected unicycle, then e = v. Vice versa, if G is connected and

e = v, then G is a unicycle.

Exercise 1.6 (Globally reachable node) LetG = (V, E) be a graph of order at least
two. Given a subset of nodes U ⊂ V , we say that v is an out-neighbor of U if there
exists (u, v) ∈ E with u ∈ U . Prove the following fact. The graph G has no globally
reachable node if and only if there exist two disjoint nonempty subsets of nodes
U,W ⊂ V such that neither U nor W has an out-neighbor.

Exercise 1.7 (Rooted and spanning trees) A rooted tree is a circuit-free graph with
the following property: There exists a vertex, called the root, such that any other
vertex of the graph can be reached by one and only one directed path starting at the
root. A spanning tree of a given graph is a spanning subgraph that is a rooted tree.

(i) A graph contains a spanning tree if and only if the reverse graph contains a
globally reachable vertex.

(ii) If a graph is strongly connected, then it contains a globally reachable vertex and
a spanning tree.

Exercise 1.8 (Eulerian paths and circuits) An Eulerian path is a path that visits all
the graph edges exactly once. An Eulerian circuit is an Eulerian path which starts
and ends at the same node. Show that the following properties hold for a graph G.

(i) If G has an Eulerian circuit, then G is topologically balanced.
(ii) If G is weakly connected and has an Eulerian circuit, then G is strongly con-

nected.
(iii) G has an Eulerian circuit if and only ifG is topologically balanced, and all of its

verticeswith nonzero degree belong to the same strongly connected component.
(iv) Let G be a weakly connected graph. Then, G is topologically balanced if and

only if G has an Eulerian circuit.
(v) A weakly connected graph G = (V, E) has an Eulerian path if and only if

(a) at most one vertex v ∈ V has dout
v − d in

v = 1;
(b) at most one vertex u ∈ V has d in

u − dout
u = 1; and

(c) every other vertex has equal in-degree and out-degree.
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Algebraic and Spectral Graph Theory

Exercise 1.9 (Bipartite graph and adjacency matrices) Observe that the adjacency
matrix of bipartite graph G = (V, E) can be written, up to a vertex permutation, in
a block form

AG =
[
0 B
C 0

]

where B ∈ RV1×V2 and C ∈ RV2×V1 , such that V1 ∩ V2 = ∅, V1 ∪ V2 = V .

(i) Compute A2
G, A3

G, . . .

(ii) Prove that there is no path in G of odd length.

Exercise 1.10 (Weight balance and connectivity) Let G be a weighted graph. If
G is weight-balanced and contains a globally reachable node, then G is strongly
connected.

Exercise 1.11 (Distance on a weighted graph) Let G = (V, E, A) be a weighted
graph, and define the length of a path as the sum of the weights associated to the
edges insisting on the path. Then, assuming that G is connected, define the distance
function dst : V × V → R≥0 as in (1.2). Observe that these definitions naturally
extend the notions of path length and distance between nodes to weighted graphs.
Prove that, if G is symmetric, then dst is a metric on V , that is

(i) dst(u, v) ≥ 0 and dst(u, v) = 0 if and only if u = v (positive definiteness);
(ii) dst(u, v) = dst(v, u) for every u, v ∈ V (symmetry);
(iii) dst(u, v) ≤ dst(u,w) + dst(w, v) for every u, v,w ∈ V (triangle inequality).

Exercise 1.12 (Directed incidence matrix) Let G = (V, E, A) be a weighted graph
and L = L(A) the corresponding Laplacian matrix. Define the directed incidence
matrix Φ ∈ RE×V by

Φ(u,v),w =

⎧
⎪⎨

⎪⎩

1 if w = u

−1 if w = v

0 otherwise

so that for each row, corresponding to an edge, there is a 1 corresponding to the tail
and a −1 corresponding to the head of the edge. Then, show that

Φ∗WΦ = L + L∗,

where W ∈ RE×E is a diagonal matrix arranging all the weights of the edges, such
that W(u,v),(u,v) = Auv.

Exercise 1.13 (The 4-wheel) Let G = (V, E) be symmetric and |V | = 5.

(i) Prove or disprove the existence of a graph on V such that

(a) all vertices have degree 3;
(b) four vertices have degree 3 and one vertex has degree 4.
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(ii) When such graph exists, may it be bipartite? May it contain a Eulerian circuit?
(iii) Write the adjacency matrix of such a graph, and compute its eigenvalues.

Exercise 1.14 (Spectra of regular graphs) Let G be a graph and assume G is out-
regular with out-degree d. Then, λ is an adjacency eigenvalue if and only if d − λ is
a Laplacian eigenvalue.

Exercise 1.15 (Complement graph) Given a graph G = (V, E), let the complement
graph Ḡ be the graph having node set V of cardinality n and edge set Ē = {(u, v) ∈
V × V : u �= v and (u, v) /∈ E}.
(i) Show that the Laplacian matrices of G and Ḡ are such that

L(G) + L(Ḡ) = nI − 11∗.

(ii) For a given graph H , let λ j (H) denote the j-th smallest eigenvalue of L(H).
Conclude from (i) that for 2 ≤ j ≤ n, it holds λ j (Ḡ) = n − λn+2− j (G).

(iii) Prove that G and Ḡ cannot both be disconnected.

Exercise 1.16 (Edge addition) Let G = (V, E) be a symmetric graph and 0 =
λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) its Laplacian spectrum. LetG ∪ {e} denote the addi-
tion of a pair of edges {(u, v), (v, u)} to the graph G. Then,

λ2(G) ≤ λ2(G ∪ {e}) ≤ λ2(G) + 2.

Exercise 1.17 (Bounds on Laplacian eigenvalues) Let G = (V, E) be a symmetric
graph and λ an eigenvalue of its Laplacian. Show that λ ≤ 2dmax and that λ ≤ n,
where dmax is the largest degree and n the order of G. Find examples where the
corresponding equalities hold.

Exercise 1.18 (Algebraic connectivity and vertex connectivity) For a connected
symmetric graph G which is not complete, we define the vertex connectivity of
G as

κ(G) = min{k ∈ N : G can be disconnected by removing k nodes}.

Then, λ2 ≤ κ(G), where λ2 denotes the smallest nonzero eigenvalue of LG . For this
reason, λ2 also takes the name of algebraic connectivity of the graph.

Exercise 1.19 (Information from spectrum) Let G = (V, E) be symmetric and reg-
ular, and assume that the spectrum of the adjacency matrix of G is

{−3,−3,−1,−1,−1,−1, 1, 1, 0, 2, 2, 4}.

(i) Compute the cardinality of V .
(ii) Compute the degree of G.
(iii) Is G connected?
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(iv) Is G bipartite?
(v) Estimate the diameter of G.

Exercise 1.20 (Bipartite graphs) Let M be adapted to a bipartite graph. Show that
if λ is an eigenvalue of M , then also −λ is an eigenvalue of M .

Exercise 1.21 (Properties of Laplacians) Let G = (V, E, A) be a weighted graph
of order n and L be the (weighted) Laplacian of G. The following statements hold
true.

(i) All eigenvalues of L have nonnegative real part.
(ii) The following properties are equivalent:

(a) G is weight-balanced;
(b) 1∗L = 0;
(c) for all x ∈ RV , it holds x∗(L + L∗)x =∑u,v Auv(xv − xu)2;
(d) L + L∗ is positive semidefinite.

(iii) G is weakly connected if and only if ker(L + L∗) = span{1}.
Exercise 1.22 (Diameter and Laplacian [1, 20]) Given a connected symmetric
graph G of order n, let λ2 be its smallest nonzero Laplacian eigenvalue. Then,
λ2 ≥ 4

n(n−1) and

4

nλ2
≤ diam(G) ≤ 2

⌈√
2dmax

λ2
log2 n

⌉
.

Exercise 1.23 (Diameter and normalized Laplacian) Let G = (V, E) be a sym-
metric graph of order n, A its adjacency matrix, and D its (diagonal) degree matrix.
Let also L = D − A be the Laplacian matrix and M = I − D−1/2AD−1/2 the nor-
malized Laplacian (according to [10]). We denote by 0 = μ1 ≤ · · · ≤ μn ≤ 2 the
eigenvalues of M . Then,

1

μ2|E | ≤ diam(G) ≤ log n

log μn+μ2

μn−μ2

.

Exercise 1.24 (Paths of a certain length) Let G be a graph of order n and assume
there exists h ∈ N such that there is exactly one path of length h connecting any pair
of nodes. Prove that there exists k such that

(i) n = kh ;
(ii) each vertex of G has exactly k in-neighbors and out-neighbors;
(iii) k is the only nonzero adjacency eigenvalue of G and has multiplicity one.

Example Families of Graphs

Exercise 1.25 (Star graph) The star graph Sn is a symmetric graph of order n + 1
such that one node, called the center, is the only neighbor to all the other n nodes; see
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Fig. 1.11 The star graph S6

Fig. 1.11. Observe that Sn is a tree and is isomorphic to K1,n; its diameter is two for

every n. Let An =
[
0 1∗

n
1n 0

]
denote its adjacency matrix and Ln denote its Laplacian.

Show that

(i) powers of An have the form

A2k−1
n = nk−1An, A2k

n = nk−1

[
n 0
0 1n1n∗

]
for all k ∈ N;

(ii) the eigenvalues of Ln are the solutions of the polynomial

p(s) = s(s − 1)n−1(s − n).

Exercise 1.26 (Kronecker product) Verify the following useful properties of the
Kronecker product of matrices as defined in (1.5). All matrices are assumed to be
square.

(i) AB ⊗ CD = (A ⊗ C)(B ⊗ D);
(ii) (A ⊗ B)∗ = (A∗ ⊗ B∗);
(iii) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), up to a permutation of indices;
(iv) A ⊗ B = B ⊗ A, up to a permutation of indices;
(v) (A ⊗ B)−1 = (A−1 ⊗ B−1), provided A and B are invertible;
(vi) the eigenvalues of A ⊗ B are all possible products of an eigenvalue of A with

an eigenvalue of B;
(vii) the eigenvectors of A ⊗ B are all possible Kronecker products of an eigenvec-

tor of A with an eigenvector of B;
(viii) tr A ⊗ B = tr A tr B;
(ix) det(A ⊗ B) = (det A)n(det B)m where n and m are the dimensions, respec-

tively, of A and B.

Exercise 1.27 (Tridiagonal andaugmented tridiagonalToeplitzmatrices [6,Lemma
1.77 and (1.6.7)]) Let V = {1, . . . , n} and a, b ∈ R. Consider the n × n tridiagonal
Toeplitz matrix
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Tridn(a, b) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b a 0 . . . 0
a b a 0 · · · 0
0 a b a · · · 0
...

. . .
. . .

. . .

· · · 0 a b a
0 · · · 0 a b

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(i) The matrix Tridn(a, b) has eigenvalues λi = b + 2a cos
(

iπ
n+1

)
, i ∈ {1, . . . , n}

and corresponding eigenvectors

x (i) =
[
sin

(
iπ

n + 1

)
, sin

(
2iπ

n + 1

)
, . . . , sin

(
niπ

n + 1

)]∗
.

Furthermore, consider the n × n augmented tridiagonal Toeplitz matrix

ATrid±
n (a, b) := Tridn(a, b) ±

⎡

⎢⎢⎢⎣

a 0 . . . 0
0 0 . . . 0
...

. . .
. . .

0 · · · 0 a

⎤

⎥⎥⎥⎦

(ii) The matrix ATrid±
n (a, b) has eigenvalues

λi = b + 2a cos

(
iπ

n

)
i ∈ {1, . . . , n − 1},

λn = b ± 2a.

Exercise 1.28 (Bidimensional grid)

(i) Use Exercise 1.27 to verify that the graph Lm has adjacency spectrum

2 cos

(
kπ

m + 1

)
k ∈ {1, . . . ,m}.

(ii) Show that the product graph Lm × Ln has adjacency spectrum

2 cos

(
2π

m + 1
h

)
+ 2 cos

(
2π

n + 1
k

)
h ∈ {1, . . . ,m}, k ∈ {1, . . . , n}.

(iii) Find the Laplacian spectrum of Lm and Lm × Ln .

Exercise 1.29 (Cayley graph that is not a product) Consider the Γ -Cayley graph G
where Γ = ZN × ZN and where

S = {(±1, 0), (0,±1), ±(1, 1)}.
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Verify that the Laplacian eigenvalues are given by

6 − 2 cos
2πh

N
− 2 cos

2πk

N
− 2 cos

2π(h + k)

N
, h, k = 0, . . . , N − 1.

Exercise 1.30 (Algebraic connectivity of symmetric Cayley graphs) Let λ2 be the
algebraic connectivity (cf. Exercise 1.18) of the Cayley graph G (Γ, S). Then, a
nontrivial result in [7] implies that

λ2 ≤ C

|Γ |2/|S| ,

where C > 0 is a constant independent of Γ and S. This inequality can easily be
verified in examples of Cayley graphs presented in the text. For instance, you can
check that

(i) the Laplacian eigenvalues of Cn are {2(1 − cos
(
2π
n �
)
)}�∈Zn , and in particular

λ2 = 2 − 2 cos

(
2π

n

)
≤ 2π2

n2
;

(ii) the Laplacian eigenvalues of C2
m are 4 − 2 cos

(
2π
m h
)+ cos

(
2π
m k
)
, for h, k ∈

{0, . . . ,m − 1} and in particular

λ2 = 4 − 4 cos

(
2π

m

)
≤ 2π2

m2
;

(iii) the Laplacian eigenvalues of Hd are {2�}�∈{0,...,d}, and in particular λ2 = 2.

Exercise 1.31 (De Bruijn graphs) Show that the De Bruijn graph on k symbols
of dimension h denoted as Bh

k is the graph with order n = kh such that every node
u ∈ {0, . . . , n − 1} is connected to ku, ku + 1, ku + 2, . . . , ku + k − 1 (all modkh).

Exercise 1.32 (Properties of De Bruijn graphs) By using Exercise 1.24, prove the
properties of De Bruijn graphs stated in Sect. 1.5.4.

Exercise 1.33 (Geometric graphs) Let V be a node set and x ∈ (Rd)V . The r-
disk graph is a symmetric graph Gr,disk(x) = (V, E(x)) defined by E(x) = {(u, v) :
‖xv − xu‖ ≤ r}. On the other hand, define the distance graph as the complete graph
endowed with a weight matrix W (x) such that Wuv(x) = ‖xu − xv‖. Define the
Euclidean minimum spanning tree GEMST(x) as the spanning tree of the distance
graph of minimum weight (i.e., such that the sum of the weights of its edges is
minimal). Show that GEMST(x) ⊂ Gr,disk(x) if and only if Gr,disk(x) is connected.
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Bibliographical Notes

Our account of graph theory is of course far from being a complete one. Instead,
we have selected definitions and facts that will be needed in the following chapters.
Hence, we expect that the reader may be interested in a broader introduction, for
instance the books [3, 13]. Moreover, previous books on network coordination and
robotic networks do contain introductions to graph theory, which partly overlap with
ours [6, 19]. Our definition of graph is often referred to as directed graph in the
literature, as opposed to undirected graphs, pairs (V, Ē) in which the elements of Ē
are unordered pairs of nodes {u, v}. Then, an undirected graph is equivalent (in our
language) to a symmetric graph in which each pair of directed edges (u, v), (v, u) is
counted as one. This notion of undirected graph will be used later in Chap.5.

Matrices adapted to graphs are fundamental in this book: For this reason, we
have devoted significant attention to algebraic graph theory, which studies graphs
via certain matrices associated to them, especially the adjacency and the Laplacian
matrices. The study of their spectra is the goal of spectral graph theory: Several
books on this topic are available [5, 10, 11]. In our treatment, we have focused on the
Laplacian spectrum: The properties of the adjacency spectrum are also notable [3,
Sect.VIII], but less useful to our needs (for instance, insufficient to characterize
connectivity [5, Sect. 1.3.7]).

Section1.5 has been devoted to selected examples of graphs and associated matri-
ces. We have also introduced the Cartesian product, a useful operation to construct
graphs [9, 17]. We recall here the examples that we presented, together with some
useful references. Circulant matrices are a standard topic in applied mathematics,
covered for instance in the classical book [12]. A related class of matrices is that of
Toeplitz matrices: General Toeplitz matrices are not important to us, but an example
that is useful to compute the spectrum of line graphs is presented in Exercise 1.27.
More generally, Cayley graphs have a long history in abstract mathematics and have
been used in control theory to describe translation-invariant systems [24].Our interest
in Abelian Cayley topologies is motivated both by their algebraic properties, which
allow for an elegant mathematical treatment [7, 25], and by their potential for the
applications. Indeed, Abelian Cayley graphs are idealized representations of commu-
nication scenarios of practical interest. In particular, they describe communication
patterns that are local, not only in the sense of a limited number of neighbors, but also
with a bound on the geometric distance among connected nodes. In Abelian Cayley
graphs, this constraint is abstracted into the definition of edge set [2, 4, 8, 15, 18].
For this reason, Abelian Cayley graphs are an alternative to other models of “local”
communication, such as geometric graphs. Geometric graphs are graphs such that
each node is endowed with a location and the edge set depends on these locations
(see Exercise 1.33); various types of geometric graphs are presented in [6, Chap. 2].
If a geometric graph is constructed from a position vector which is a random vari-
able, then its properties (e.g., connectivity) can be studied statistically. Such random
geometric graphs have been studied extensively [22, 23] as a modeling paradigm to
describe wireless communication networks [14, 16]. It is important to mention that

http://dx.doi.org/10.1007/978-3-319-68022-4_5
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other random families of graphs are used to describe different kinds of real-world
networks, such as social networks, broadly referred to as to complex networks. Such
graphs typically exhibit scale-free properties, small diameter and small spectral gap,
thus being very different from geometric graphs. Their description is outside the
scope of this book, but many sources are available to the interested reader [21, 26].
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Chapter 2
Averaging in Time-Invariant Networks

Abstract This chapter studies the basic averaging dynamics on a fixed network.
This linear dynamics is also called “consensus” dynamics, because under suitable
assumptions it brings the states associated with the nodes to converge to the same
value. Section2.1 introduces the rendezvous problem, which serves us as the main
motivation to seek consensus, and states the main results of the chapter. Section2.2
solves the consensus problem in the special case of symmetric regular graphs, while
the general solution, which is based on the notion of stochastic matrix, is presented in
Sect. 2.3. The subsequent sections provide further insights into the averaging dynam-
ics, namely about its speed of convergence (Sects. 2.4 and 2.7) and its consensus
value (Sect. 2.5). Meanwhile, Sect. 2.6 presents some classical examples of stochas-
tic matrices associated with a graph, such as simple random walks and Metropolis
walks. Finally, Sect. 2.8 concentrates on reversible stochasticmatrices and their prop-
erties.

2.1 Rendezvous and Consensus

One of the simplest examples of coordinated control is the so-called rendezvous
problem. Assume that units have dynamics of type xv(t + 1) = xv(t) + uv(t) for
all t ∈ Z≥0 with xv(t) and uv(t) ∈ R

n for all v ∈ V and that the control goal is
to make all units converge their state to the same point. We can think of them as
moving agents with the state representing position. This is known as the rendezvous
problem: There are many variants of this problem, and the one we are addressing is
just the basic and simplest instance. What are exactly the issues we want to analyze?
Here is a brief list:

(a) Given a graph G, find out whether there exists a control scheme uv = gv(x)

adapted to G such that the state evolutions governed by the equations xv(t +1) =
xv(t) + gv(x) all converge to the same point, namely for all initial conditions
x(0), there exists x� ∈ R

n such that

lim
t→+∞ xv(t) = x� , ∀v ∈ V . (2.1)
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(b) In case when (a) has a positive answer, we would like to find effective ways for
producing the control scheme. Indeed, in general, there will be many possible
control schemes and the choice can be dictated to optimize certain performance
indices:

(b1) the velocity of convergence to the rendezvous point;
(b2) the displacement of x� from the initial condition.

Both indices will be defined precisely later on.

Notice that without further assumptions, the problem as stated in (a) is always
solvable and with no communication among units. It is sufficient to put uv = −xv,
and we will have that xv(t) = 0 for all v and for all t ≥ 1: In control theory, this is
known as a “deadbeat control.” The reason why this is not a feasible solution is the
following. This solution implicitly requires that units have already agreed to make
0 their rendezvous point, and in other terms, they have already coordinated off-line.
This prior coordination is something we want to avoid; moreover, the origin may be
far off from their initial condition and thus an unreasonable choice (in general not
optimizing (b2)). We make the following extra assumption on the rendezvous point
x� which automatically drops out the deadbeat control scheme above: We require
that, translating all initial conditions xv(0) → xv(0) + b with the same vector, also
the rendezvous point translates the same way x� → x� + b. We will refer to this as
to the translation invariance requirement.

As it is customary in control theory, it is natural to seek, in primis, a linear solution
to this problem, namely to consider controllers of type

uv(t) =
∑

w∈V

Kvwxw(t) (2.2)

where K ∈ R
V ×V is a gain matrix. Coupling with the unit dynamics, we thus obtain

xv(t + 1) =
∑

w∈V

Pvwxw(t) (2.3)

where P = I + K .
This type of models (2.3) has applications much broader than just in the ren-

dezvous problem for mobile agents. Instead of a position, the state xv(t) can as well
be interpreted as an estimation or as an opinion on some fact possessed by unit v
at time t and the common convergence to the same value is a phenomenon known
as consensus. Later on, we will provide more details on such possible applicative
contexts.

Notice that the dimension of the state does not play any particular role in the
dynamics (2.3) as all components of the state vectors xv(t) evolve separately all with
the same dynamics given by the matrix P . For this reason, from now on, we will
assume that the state xv(t) of each unit is one-dimensional, namely a scalar. In this
setting, (2.3) can be rewritten in more compact form simply as
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x(t + 1) = Px(t) (2.4)

so that x(t) = Pt x(0). The translation invariance, in this context, amounts to require
that Pt1 → 1 for t → +∞. Since Pt+11 = P Pt1 then converges both to 1 and to
P1, the translation invariance is also equivalent to require P1 = 1 (each row of P
sums to 1).

Notice moreover that the feedback law (2.2) is adapted to G if K (or equiva-
lently P) is adapted to G. Therefore, in order to exhibit a solution to the rendezvous
problem with translation invariance, it is sufficient to exhibit P ∈ R

V ×V adapted to
G such that P1 = 1. The following result, which will be proven in the next sections,
is an elegant and simple solution.

Theorem 2.1 (Consensus) Suppose G has a globally reachable vertex v�. Then
the rendezvous problem with the translation-invariant requirement is solvable over
G. A possible solution is given by any matrix P ∈ R

V ×V satisfying the following
properties:

(Pa) Pvw ≥ 0 for every v, w ∈ V ;
(Pb) P1 = 1;
(Pc) For every v �= w, Pvw > 0 ⇔ (v, w) ∈ E;
(Pd) Pv�v� > 0.

It turns out that matrices as P sharing (Pa) and (Pb) have very special properties:
They are called stochastic and appear in many different contexts, one of these being
Markov chain theory. Property (Pc) says that GP and G can only possibly differ in
their self-loops.

There is an additional nice property of these systems. Being P stochastic, its
Laplacian is L(P) = I − P . Consequently, we may write (2.4) as x(t + 1) =
x(t) − L(P)x(t), which becomes xv(t + 1) = xv(t) + ∑

w Pvw(xw(t) − xv(t))
componentwise. We observe that this expression only involves the state of v and
differences between the states of v and of its neighbors w. Then, there is no need for
the nodes to exchange information in an absolute reference frame, but only relative
information suffices.

Before presenting the key results for stochastic matrices and proving Theorem 2.1
and some generalizations, we will work out a special case, which explains how
matrices like P above come naturally into the picture.

2.2 Averaging on Symmetric Regular Graphs

Notice that if the underlying graph was the complete one, the rendezvous problem
would have a very simple solution: It would be enough for all the units to compute the
barycenter x(t) := N−1∑

v∈V xv(t) (where N := |V |) and implement the control
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law uv(t) = x(t) − xv(t) which would yield xv(t) = x(t) for all v and all positive t .
This law implies that at time t = 1, all units have already reached consensus exactly
in the barycenter of the initial state x(0). It is then immediate to see that xv(t) = x(0)
for every t ≥ 1. The type of matrix P we obtain in this case is P = N−111∗, a very
special stochastic matrix with all elements equal to 1/N .

This solution is not admissible for a general graph, but its main idea can be
adapted. Indeed, it is sufficient to replace the barycenter x(t) with a local version of
it, namely for each unit to use a local barycenter based on the units to which it is
connected through the graph. Precisely, given a graph G = (V, E), each unit v ∈ V
computes at time t

xv(t) := 1

dout
v

∑

w∈V

(AG)vwxw(t)

and implements the dynamics xv(t + 1) = xv(t) + τ(xv(t) − xv(t)). The parameter
τ > 0 indicates the velocity at which unit v is following the local barycenter and
will play a crucial role in the rest of this section. In compact matrix form, we obtain
that x(t + 1) = Px(t) where

P = I + τ(D−1
G AG − I ) = I − τ D−1

G L(G). (2.5)

It is easy to see that τ ∈ (0, 1] guarantees that P is a stochastic matrix adapted to
the graph G.

Let us now analyze the special case when G is symmetric and d-regular. In this
case, P = I −τd−1L(G) is also symmetric. Assuming that 0 = λ1 ≤ λ2 ≤ · · · ≤ λN

are the eigenvalues of the Laplacian L(G), we obtain that the eigenvalues of P are
simply given by μi = 1− τd−1λi (with μ1 = 1). Moreover, the two matrices L(G)

and P share the same orthonormal basis of eigenvectors ξi ’s (with ξ1 = N−1/21).
We can thus write the usual orthonormal decomposition of P

P =
N∑

i=1

μiξiξ
∗
i = N−111∗ +

N∑

i=2

μiξiξ
∗
i

which yields, by orthonormality, Pt = N−111∗ +
N∑

i=2
μt

iξiξ
∗
i . The evolution of the

state configuration is thus

Pt x(0) = x̄(0)1 +
N∑

i=2

μt
iξiξ

∗
i x(0)
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Notice now that

||Pt x(0) − x̄(0)1||2 =
∣∣∣∣∣

∣∣∣∣∣

N∑

i=2

μt
iξiξ

∗
i x(0)

∣∣∣∣∣

∣∣∣∣∣

2

=
N∑

i=2

|μi |2t |ξ ∗
i x(0)|2

Since 1 = μ1 ≥ μ2 ≥ · · · ≥ μN , putting ρ2 := max{|μ2|, |μN |}, we obtain

||Pt x(0) − x̄(0)1||2 ≤ ρ2t
2

N∑

i=2

|ξ ∗
i x(0)|2 ≤ ρ2t

2 ||x(0)||2,

which can be rewritten as

||Pt x(0) − x̄(0)1|| ≤ ρ t
2||(I − N−111�)x(0)||. (2.6)

This bound shows that if ρ2 < 1, then x(t) = Pt x(0) → x̄(0)1 for t → +∞,
namely all states converge to a consensus point, which turns out to be again the
barycenter of the initial state conditions x̄(0). Moreover, (2.6) actually shows that ρ2

dictates the speed of convergence of the dynamics toward consensus. Under which
conditions can we guarantee that ρ2 < 1? Because of the way ρ2 is defined, we must
have |μ2|, |μN | < 1. If G is not connected, we know that λ2 = 0 and, consequently,
μ2 = 1: Indeed, in this case, it is clear that consensus can not be reached in general
since the network is composed of completely separated components. Instead, if G
is connected, then λ2 > 0 and, consequently, 1 > μ2 ≥ μN . Hence, the only
extra condition that needs to be satisfied is μN > −1, namely 1 − τd−1λN > −1.
This is equivalent to τ < 2d

λN
. Considering that (see Exercise1.17) λN ≤ 2d, a

sufficient condition which guarantees consensus is τ < 1. We can summarize the
above discussion in the following result.

Proposition 2.1 (Consensus on symmetric regular graphs) Let G be a symmetric,
d-regular, and connected graph. Then, the dynamics (2.4)–(2.5), with τ ∈ (0, 1),
guarantees convergence to consensus, where the consensus point is the barycenter
of the initial state and convergence happens at an exponential rate given by ρ2.

In the next section, wewill present a number of general results on stochasticmatri-
ces and we will be able to generalize this result to more general graphs, by dropping
the assumptions of symmetry, regularity, and—to a certain extent—connectivity of
the underlying graph.

2.3 Stochastic Matrices and Averaging

In general, a matrix P ∈ R
V ×V such that Pvw ≥ 0 for every v, w ∈ V is called

a nonnegative matrix. A nonnegative matrix P ∈ R
V ×V satisfying the row sum

condition P1 = 1 is said to be a stochastic matrix. With these new concepts, we

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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can restate properties (Pa)-(Pb)-(Pc) above by saying that P is a stochastic matrix
adapted to G.

As already noticed, P behaves as a local averaging operator: Given a vector
x ∈ R

V , the component v of Px is a weighted average of the values xw forw ∈ N out
v .

There is also an interesting flux interpretation of the adjoint operator. Given ζ ∈ R
V ,

(ζ ∗ P)v = ∑
ζw Pwv can be interpreted as follows: From each node w, the quantity

ζw will flow through the outgoing edges splitting according to the weights Pwv as
v varies among the out neighbors of w. Hence,

∑
ζw Pwv is the total new quantity

present at node v.
Moreover, a stochastic matrix is the main ingredient of a Markov chain, a special

stochastic process such that the future only depends on the past through the present
state and states are finite in number. Given a stochastic matrix P ∈ R

V ×V , the term
Pvw can be interpreted as the probability of making a transition from state v to state
w: If you associate each state with the node of the associated graph GP , you can
imagine to be sitting at state v and to walk along one of the available outgoing edges
from v according to the various probabilities Pvw. In this way, you construct what
is called a random walk on the graph G. In this probabilistic setting, flows can be
interpreted as probabilities: If ζ ∈ R

V is a probability vector where ζv indicates the
probability that at the initial instant the state is equal to v, then (ζ ∗ P)v indicates the
probability of finding the process in state v at the next time.

The first general observation to be done on stochastic matrices is that the set
of stochastic matrices is closed under a number of important operations (whose
elementary proof is left to the reader):

(1) If P, Q ∈ R
V ×V are stochastic, then λP + (1 − λ)Q is stochastic for any

λ ∈ (0, 1).
(2) If P, Q ∈ R

V ×V are stochastic, then P Q is stochastic. In particular, Pt is
stochastic, for any t ∈ N.

(3) If Pn is a sequence of stochastic matrices such that Pn → P for n → +∞, then
P is stochastic.

Properties (1) and (3) say that the set of stochastic matrices form a compact convex
subset of [0, 1]V ×V .

We are now almost ready to state and prove the main result of this chapter, which
investigates the behavior of the powers of a stochastic matrix, proposing minimal
conditions to get convergence. The proof is based on the following lemma, which
shall also be used later in these notes.

Lemma 2.1 (Contraction principle) Let Q ∈ R
V ×V be a stochastic matrix such that

there exist α > 0 and m ∈ V such that Qvm ≥ α for all v ∈ V . Then, for all x ∈ R
V ,

it holds true that y = Qx satisfies

max
v∈V

yv − min
v∈V

yv ≤ (1 − α)
(
max
v∈V

xv − min
v∈V

xv
)
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Proof Note that

yv =
∑

w∈V

Qvwxw =
∑

w∈V

Qvw(xw − min
u∈V

xu) +
∑

w∈V

Qvw min
u∈V

xu

≥ α(xm − min
u∈V

xu) + min
u∈V

xu

= αxm + (1 − α)min
u∈V

xu .

Similarly,

yv =
∑

w∈V

Qvwxw =
∑

w∈V

Qvw(xw − max
u∈V

xu) +
∑

w∈V

Qvw max
u∈V

xu

≤ α(xm − max
u∈V

xu) + max
u∈V

xu

= αxm + (1 − α)max
u∈V

xu .

Putting these two inequalities together gives:

max
u∈V

yu − min
u∈V

yu ≤ αxm + (1 − α)max
u∈V

xu − αxm − (1 − α)min
u∈V

xu

= (1 − α)(max
u∈V

xu − min
u∈V

xu),

that is the thesis. �

The main result is then the following.

Theorem 2.2 (Convergence to consensus) Let P ∈ R
V ×V be a stochastic matrix

such that GP admits a globally reachable aperiodic vertex. Then, the following two
equivalent facts hold true.

(i) The dynamics (2.4) is such that, for any initial condition x(0) = x0 ∈ R
V ,

there exists a scalar α such that

x(t) = Pt x(0) → α1 t → +∞.

In other terms, all components xv(t) converge to the same consensus value α.
(ii) There exists a vector π ∈ R

V such that πv ≥ 0 for all v,
∑

v πv = 1, and

lim
t→+∞ Pt = 1π∗. (2.7)

In other terms, Pt converges to a matrix having all rows equal to the row
vector π∗.

Furthermore, α = π∗x(0).
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Let s ∈ V be the aperiodic vertex which is reachable from all others. This means
that there exists t� ∈ N such that Q := Pt�

is such that Qvs > 0 for all v ∈ V . Let
α = min{Qvs : v ∈ V } > 0. Then, letting y0 ∈ R

V and y1 = Qy0, Lemma 2.1
implies that

max
v∈V

y1v − min
v∈V

y1v ≤ (1 − α)(max
v∈V

y0v − min
v∈V

y0v ).

Fix now x(0) = x0 ∈ R
V arbitrarily and consider (2.4). Define Mt =

maxv∈V xv(t) and mt = minv∈V xv(t), and notice that, since the components of
x(t) are convex combinations of those of x(t − 1), the sequences Mt and mt are
bounded and, respectively, nonincreasing and nondecreasing (hence convergent).
Hence, also
t = Mt −mt converges. For the previous argument, moreover, it holds
that 
nt� ≤ (1 − α)n
0. This implies that 
nt� → 0 for n → +∞. Hence, all
components of x(t) will converge to the same limit, thus proving the first claim. If
we apply this result choosing x(0) = ew, the wth element of the canonical basis of
R

V , we obtain that all elements of the wth column of Pt will converge to the same
limit. This clearly yields the second claim.

�
Theorem 2.2 immediately yields Theorem 2.1. An important special case is dis-

cussed in the following remark.

Remark 2.1 (Irreducibility) A stochastic matrix P for which GP is strongly con-
nected is called irreducible. A stochastic matrix is said to be aperiodic if GP is
aperiodic. Hence, Theorem 2.2 applies to the important case when P is irreducible
and aperiodic. Notice that for symmetric P these two properties are equivalent to the
assumptions in Theorem 2.2.

We now briefly discuss the necessity of the assumptions in Theorem 2.2.

Remark 2.2 (Aperiodicity) Notice that it is not necessary that all units have access to
their own state. It is instead sufficient that the globally reachable node is aperiodic;
hence, for instance, it is sufficient that there is a self-loop in this node. The fact that
some assumption of aperiodicity is necessary for convergence follows by considering
the simple example of a strongly connected graph with two nodes and no self-loops.
The only possible stochastic matrix adapted to such a graph is

P =
(
0 1
1 0

)

Notice that P2t = I for all t , and therefore, P does not yield consensus. A few
properties of periodic matrices are discussed in Exercise 2.3.

Remark 2.3 (Connectivity) If the graph GP has two (or more) sinks, the matrix P
can be written with the block structure

P =
⎡

⎣
R1 R2 R3

0 P1 0
0 0 P2

⎤

⎦
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Since the powers of P inherit its block structure, the entries of no column of Pt can
converge to the same value in general. This reasoning shows that global reachability
of a node is necessary for convergence to consensus.

The convergence theorem is illustrated by the following example and in Fig. 2.1.

Example 2.1 (An irreducible, aperiodic stochastic matrix) Consider the stochastic
matrix

P =
⎡

⎣
1/2 1/2 0
1/3 1/3 1/3
1/3 0 2/3

⎤

⎦

It is evident that P is irreducible and aperiodic. Let us compute the invariant proba-
bility π . From π∗ P = π∗, we get

⎧
⎨

⎩

− 1
2π1 + 1

3π2 + 1
3π3 = 0

1
2π1 − 2

3π2 = 0
1
3π2 − 1

3π3 = 0

which immediately yieldsπ2 = π3 andπ1 = 4
3π2. Using the normalization condition

π1 + π2 + π3 = 1, we finally get π = (
2
5 ,

3
10 ,

3
10

)∗
.

Theorem2.2 also contains further information useful to address issue (b) presented
at the beginning of the chapter. We shall make this information explicit in the next
two results, as well as in the following sections. The first result is about the spectrum
of the update matrix.

Corollary 2.1 Let P ∈ R
V ×V be a stochastic matrix such that GP admits a globally

reachable aperiodic node. Then,

(i) 1 is an algebraically simple eigenvalue whose eigenspace is generated by 1;
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Fig. 2.1 Illustration of convergence for Example 2.1. The left diagram plots the entries of the third
row of Pt that converges to π∗. The right diagram plots the associated averaging dynamics (2.4)
from random initial conditions within (0, 1)
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(ii) Any other eigenvalue μ of P is such that |μ| < 1.

Proof Suppose indeed that P satisfies the assumptions ofTheorem2.2 and let ξ ∈ R
V

be an eigenvector of P with eigenvalue μ. Then, for t → +∞,

μtξ = Ptξ → 1π∗ξ

This immediately yields that either μ = 1 and ξ is a multiple of 1, or |μ| < 1.
This remark yields (ii) and says that 1 is a geometrically simple eigenvalue (the
corresponding eigenspace has dimension 1). It remains to show that 1 is also alge-
braically simple. This follows using similar arguments showing that the presence of
a nontrivial Jordan block relative to the eigenvalue 1 will imply that Pt would grow
unbounded contrarily to what is asserted in Theorem 2.2. �

The second result further investigates the structure of the limit matrix.

Corollary 2.2 Let P ∈ R
V ×V be a stochastic matrix such that GP admits a globally

reachable aperiodic node. Consider the vector π as in Theorem 2.2. Then, π∗ P =
π∗, and π is the only vector sharing this property and the normalization condition∑

v πv = 1.

Proof A very well-known fact of linear algebra says that P and P∗ have the same
eigenvalues. This implies that there must exists ζ ∈ R

V such that ζ ∗ P = ζ ∗. This
yields, for t → +∞,

ζ ∗ = ζ ∗ Pt → ζ ∗1π∗

Hence, ζ is necessarily a multiple of π . In other words, this shows that π is a left
eigenvalue of P relative to the eigenvalue 1. Since 1 is also algebraically simple as
a left eigenvalue, the uniqueness result immediately follows. �

In the flux interpretation presented at the beginning of this section, the equation
π∗ P = π∗ can be interpreted as a “stationary regime”: The flux is not modifying the
quantity πv present in every node. For this reason, and because of the normalization
to 1, π is called stationary or invariant probability measure. Note that the invari-
ant probability measure needs not to be unique in general—find an example as an
exercise—, but is unique when there is a globally reachable node; see Exercise 2.3.

2.4 Convergence Rate and Eigenvalues

This section deals more precisely with question (b1) defined at the beginning of this
chapter, that is with convergence speed. The speed of convergence of (2.7) is dictated
by the magnitude of the eigenvalues of P . We start by recalling the following result,
which is a standard fact in the stability of linear dynamical systems.



2.4 Convergence Rate and Eigenvalues 41

Lemma 2.2 Let M ∈ R
V ×V be any matrix and let λi be its eigenvalues. Let ρ =

max |λi | be the spectral radius of M. Then, for every ε > 0, there exists a constant
Cε such that

||Mt x0||2 ≤ Cε(ρ + ε)t ||x0||2 for all t.

A simple application of this lemma allows us to obtain the following result:

Proposition 2.2 (Convergence rate) Let P ∈ R
V ×V be a stochastic matrix such that

GP admits a globally reachable aperiodic node. Consider all its eigenvalues μi but
1 and put ρ2 = max{|μi | < 1}. Then, for every ε > 0, there exists a constant Cε

such that
||(Pt − 1π∗)x0||2 ≤ Cε(ρ2 + ε)t ||x0||2 for all t.

Proof Put Q := P − 1π∗, and notice that Qt = Pt − 1π∗ (check this for exercise).
Notice moreover that Q1 = 0. Consider now the subspace W of RV orthogonal to
the vector π , and notice that if w ∈ W , then Pw = Qw and π∗ Pw = π∗w = 0. In
other terms, the subspace W is invariant for P and Q, and on W , the two matrices
P and Q coincide. The eigenvalues of P and Q on W are exactly given by the
eigenvalues of P different from 1. Wrapping up, we have that Q has eigenvalues μi

plus the eigenvalue 0; hence, it is asymptotically stable, and the result follows from
Lemma 2.2. �

The parameter ρ2, introduced in the statement of the corollary above, is also called
the second eigenvalue of P , and the difference 1−ρ2 the spectral gap of P . The above
result essentially says that convergence to rendezvous happens exponentially fast as
ρ t
2. Actually, this is only approximately true because of the arbitrarily small ε we

have to fix. The ε is needed because of the possible presence in P of nontrivial Jordan
blocks (which is when the algebraic and geometric dimension of an eigenspace does
not coincide). When P is symmetric, things are much simpler: We can indeed follow
the proof of Equation (2.6) above and prove the following result which extends
Proposition 2.1 to general symmetric matrices P , possibly adapted to nonregular
graphs.

Corollary 2.3 (Convergence rate for symmetricP) Let P ∈ R
V ×V be a symmetric

stochastic matrix such that GP is strongly connected and aperiodic. Then,

||(Pt − N−111∗)x0||2 ≤ ρ t
2||x0||2

Example 2.2 (An irreducible, aperiodic stochastic matrix) Consider the stochastic
matrix P defined in Example 2.1. An easy computation shows that the characteristic
polynomial of P is given by

p(λ) := det(λI − P) = (λ − 1)(λ − 1/6)2

Therefore, ρ2 = 1/6.
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Once we have established that ρ2 is the right parameter to analyze the speed of
convergence, it remains to understand how it depends on the graph: This analysis
will be done, on certain families, in Sect. 2.7.

2.5 Consensus Point

Another important question—mentioned in (b2) at the beginning of this chapter—
regards the location of the consensus point with respect to the initial condition. As
we know from Theorem 2.2, this is completely determined by the left eigenvector π

of P . First, notice that the optimization problem:

min
y∈R

∑

v∈V

|y − yv|2

has solution given by the barycenter y = N−1∑
v yv. The rendezvous problem has

the barycenter as meeting point if and only if π = N−11. When will this happen?
The answer is very simple: if and only if 1∗ P = 1∗, namely if all columns of P also
sum up to 1. When this happens, P is called a doubly stochastic matrix. A particular
case is when P is symmetric.

What about the possibility to construct a doubly stochastic matrix over a preas-
signed graph? Is that always possible? The answer is on the negative. Before showing
this fact, we introduce another concept which will also be useful later on.

Definition 2.1 (Sub-stochastic matrix) A nonnegative matrix P ∈ R
V ×V is said to

be sub-stochastic if
∑

w Pvw ≤ 1 for all v ∈ V , and there exists at least one v ∈ V
for which the inequality is strict. Such node will be called a deficiency node of P .

There are a few useful facts about sub-stochastic matrices, which the reader is
encouraged to verify on his/her own and which are gathered in the following propo-
sition.

Proposition 2.3 (Sub-stochastic matrices) Let P ∈ R
V ×V be a sub-stochastic

matrix.

• Then, Pt is sub-stochastic for all t . More precisely, if we let V �
t to be the set of

deficiency nodes of Pt , then

V �
t ⊆ V �

t+1 for all t ∈ N.

• If, moreover, P is such that from every node v there is a path in GP to a deficiency
node, then there exists t� such that V �

t� = V (all nodes for Pt�

are deficiency
nodes).

Actually, this fact implies a simple condition for the stability of sub-stochastic matrices.
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Proposition 2.4 (Stability of sub-stochastic matrices) Let P ∈ R
V ×V be a sub-

stochastic matrix such that from every node v there is a path in GP to a deficiency
node. Then, P is asymptotically stable.

Proof Let t� be defined as in Proposition 2.3 and let ν = maxv
∑

w Pt�

vw < 1. Given
any t ∈ N, write t = nt� + r with r ∈ {0, . . . , t� − 1} and n ∈ N, and notice that
Pt1 ≤ Pnt�

1 ≤ νn1 (where inequalities have to be understood componentwise).
This inequality implies that Pt converges to 0. �

The following result characterizes the “zero pattern” of the invariant probability
measure of stochastic matrices and shows that it is not always possible to construct
a doubly stochastic matrix on a given graph.

Proposition 2.5 (Positivity of invariant probability measure) Let P ∈ R
V ×V be a

stochastic matrix such that GP admits a globally reachable node v�. Let π be its
invariant probability measure. Then, πv �= 0 if and only if v and v� are in the same
strongly connected component of GP .

Proof Let V � be the set of nodes corresponding to the connected component con-
taining v�, and let V �� = V \ V �. Ordering nodes in such a way that the first ones
are those in V ��, we get that P has the following block structure

P =
[

Q R
0 S

]

where Q ∈ R
V ��×V ��

, R ∈ R
V ��×V �

, and S ∈ R
V �×V �

. By the assumption made, it
follows that Q is sub-stochastic satisfying the assumptions of Proposition 2.4. On
the other hand, Pt will have the following block structure:

Pt =
[

Qt Rt

0 St

]
.

If we partition accordingly π = (π��, π�), we then obtain (π��)∗ Qt = π�� for
all t . This yields π�� = 0. We now prove that instead π�

v > 0 for every v ∈ V �.
Assume, by contradiction, that there exists w ∈ V � such that πw = 0. The relation∑

v∈V � πv Pvw = 0 yields πv = 0 for every v ∈ N in
w . A straightforward inductive

argument now shows that πv = 0 for all v ∈ V ∗ for which there exists a path from
v to w. By the definition of V ∗, this implies that πv = 0 for all v ∈ V ∗. But this
says that π is the 0 vector and can not be an invariant probability. The proof is thus
complete. �

This result implies that for a matrix to be doubly stochastic, its associated graph must
be strongly connected.
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2.6 Stochastic Matrices Adapted to a Graph

In this section, we focus on the problem of finding, given a graph, a stochastic/doubly
stochastic matrix adapted to it. One solution is based on assigning equal weight to
all outgoing edges of a node, similarly to what we did in (2.5):

P = D−1
G AG . (2.8)

This matrix is known as the simple random walk (SRW) matrix associated with G.
This name is explained by a probabilistic interpretation. Let us think of token that
is performing a random walk on the nodes of the graph, according to the following
rule: Fromeach node, transitions happenwith equal probability along all the available
edges. Then, the rows of the SRW matrix are the transition probabilities from each
node. More generally, we can consider, for τ ∈ (0, 1),

P = (1 − τ)I + τ D−1
G AG,

which is also stochastic and is called the lazy SRW. If G contains a globally reach-
able aperiodic vertex, then D−1

G AG yields consensus. On the other hand, even if the
globally reachable vertex of G is not aperiodic, the lazy SRW yields consensus for
any τ ∈ (0, 1) since aperiodicity is automatically gained from the presence of the
identity part. Notice that P is not symmetric even when G is symmetric (unless G is
also regular which was the case studied in Sect. 2.2). However, the case when G is
symmetric is very special since in this case it is very simple to compute the invariant
probability measure as πv = dv/d where d = ∑

u du . Indeed,

(π∗ P)w =
∑

v

πv Pvw =
∑

v∈Nw

dv

d

1

dv
= |Nw|

d
= πw.

Notice that the invariant measure for the SRW (or for the lazy version) is the
uniform vector N−11 if and only if G is regular. For symmetric nonregular graphs,
there is however an alternative construction yielding a symmetric stochastic matrix.
It is sufficient to define, for any v �= w,

Pvw := (AG)vw min

{
1

dv
,
1

dw

}
.

It is easy to see that, with this choice, the off-diagonal terms of any row of P sum
up to a value which is not greater than 1. To complete, we define P on the diagonal
terms in such a way to make it a stochastic matrix. Notice that P is symmetric by
construction and is called the Metropolis random walk.Next, we present an example
of Metropolis random walk.

Example 2.3 (Random walks on a symmetric graph) Let G be the graph represented
in Fig. 2.2. This graph is not regular, and its degree matrix is D = diag(2, 2, 2, 3, 1).
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Fig. 2.2 The graph of
Example 2.3

1

23

4

5

Then, the matrix corresponding to a SRW on G is

P =

⎡

⎢⎢⎢⎢⎣

1/2 0 0 0 0
0 1/2 0 0 0
0 0 1/2 0 0
0 0 0 1/3 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 0 0 1 0

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0 1/2 0 1/2 0
1/2 0 1/2 0 0
0 1/2 0 1/2 0
1/3 0 1/3 0 1/3
0 0 0 1 0

⎤

⎥⎥⎥⎥⎦
.

Note that this matrix is not doubly stochastic and has −1 as an eigenvalue, because
G is bipartite. Instead, the transition matrix of the Metropolis RW is

Q =

⎡

⎢⎢⎢⎢⎣

1/6 1/2 0 1/3 0
1/2 0 1/2 0 0
0 1/2 1/6 1/3 0
1/3 0 1/3 0 1/3
0 0 0 1/3 2/3

⎤

⎥⎥⎥⎥⎦
,

which is doubly stochastic and has second eigenvalue ρ2(Q)  0.7845.

Metropolis construction produces a doubly stochastic matrix, but works for sym-
metric graphs only. On which graphs is it possible to construct a doubly stochastic
matrix adapted to a generic graph? The following result gives us the answer.

Proposition 2.6 (Existence of doubly stochasticP) If G = (V, E) is strongly con-
nected, then there exists a doubly stochastic P ∈ R

V ×V such that GP = G.

Proof Given any circuit in G with edges

E ′ = {(k1, k2), (k2, k3), . . . , (kn, k1)} (ki �= k j for i �= j),

consider the matrix P (E ′) ∈ R
V ×V defined by

P (E ′)
vw =

⎧
⎨

⎩

1 if (v, w) ∈ E ′
1 if v = w �= ks ∀s = 1, . . . , n
0 otherwise



46 2 Averaging in Time-Invariant Networks

It is immediate to check that P has the following property: On each row and on
each column, there is exactly one entry equal to 1, while all the others are equal
to 0. This is what is called a permutation matrix, a very special case of doubly
stochastic matrix. Now consider the familyD of all possible circuits and the convex
combination P = 1

|D|
∑

E ′∈D P (E ′): Clearly P is doubly stochastic and GP ⊆ G.
Since G is strongly connected, any edge in G belongs to at least one of the subgraphs
in D (check this as an exercise): This fact implies that GP = G and the proof is
complete. �

Example 2.4 (Doubly stochastic matrix) Consider the graph G = (V, E) with
V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1), (2, 1)}. Graph G is strongly connected
and we know from the proof of Proposition 2.6 that a doubly stochastic matrix can
be constructed as

P = 1

2

⎛

⎝

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦+
⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦

⎞

⎠ =
⎡

⎣
0 1 0
1/2 0 1/2
1/2 0 1/2

⎤

⎦ .

The proof of Proposition 2.6 provides a method to construct a doubly stochastic
matrix: The method can be easily applied on small graphs, but is not suitable to
large graphs because one needs to find all possible circuits in G. In view of this
difficulty, we become interested in matrices whose dominant left eigenvector is not
1, but some other vector that still guarantees a “balanced” consensus point. The
following definitions go in this direction, identifying sequences of matrices that do
not give “too much” weight to any node. Consider a sequence of irreducible matrices
{Qn}n∈N of increasing size, together with their unique invariant measures π(n), such
that Q∗

nπ
(n) = π(n) and 1∗π(n) = 1. We say that Qn is democratic if ‖π(n)‖∞ → 0

as n → +∞. Clearly, a sequence of doubly stochastic matrices is democratic. A less
trivial example is a SRW on a bidimensional grid Ln × Lm . More in general, a family
of SRWs on undirected graphs G N is democratic if and only if maxv dv/

∑
u du goes

to zero as N = |V | goes to infinity. This sufficient condition is not satisfied on star
graphs, and indeed, the lazy SRW on Sn is

PSRW(τ ) =
[
1 − τ τ/n1∗

n
τ1n (1 − τ)In

]
,

which is not democratic. However, a democratic sequence on star graphs can be
constructed as

Pdem =
[

0 1
n 1

∗
n

1
n 1n (1 − 1

n )In

]
.

Other examples of democratic matrices are given in the Exercises.
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2.7 Convergence Rate: Examples

We have already seen in Proposition 2.2 that the spectral radius of P determines the
rate of convergence to consensus. In this section, the spectral radius is studied in
some examples and its connection with convergence time is made more explicit.

We first present an example of a family of SRWs on a simple graph.

Example 2.5 (SRW on cycles) Let G = Cn be the symmetric cycle graph with n
vertices. Since Cn is 2-regular, we have that the matrix of the SRW is

P = circ([0, 1/2, 0, . . . , 0, 1/2]).

The eigenvalues of P can be computed as we did for the Laplacian eigenvalues of
Cn in Example1.5. Namely, the eigenvalues of P are

μk(P) = cos
(2π

n
k
)
.

Note that −1 is an eigenvalue if and only if n is even: This corresponds to the graph
being bipartite. If instead n is odd, the second eigenvalue of P is

ρ2 = max

{∣∣∣∣cos
(2π

n

)∣∣∣∣ ,
∣∣∣∣cos

(2π
n

n − 1

2

)∣∣∣∣

}
= cos

π

n
.

In order to control the convergence properties of a matrix adapted to Cn , we may
define the family of matrices Pτ = (1− τ)I + τ P , with the parameter τ ∈ (0, 1]. A
matrix in this family corresponds to a lazy SRW. In this case, μk(τ ; P) = 1 − τ +
τ cos

(
2π
n k
)
and

ρ2(τ ) =
{
max{|1 − τ + τ cos 2π

n |, |1 − 2τ |} if n is even

max{|1 − τ + τ cos 2π
n |, |1 − τ(1 + cos π

n )|} if n is odd.

It is clear that a choice of τ ∈ (0, 1) allows to have ρ2 smaller than 1 for every n.
Furthermore, if n is even,

ρ2(τ ) =
{
1 − τ(1 − cos 2π

n ) if τ ≤ 2
3−cos 2π

n

2τ − 1 otherwise

and the minimum is achieved for τ = 2
3−cos 2π

n
. If instead n is odd,

ρ2(τ ) =
{
1 − τ(1 − cos 2π

n ) if τ ≤ 2
2+cos π

n −cos 2π
n

τ(1 + cos π
n ) − 1 otherwise.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Fig. 2.3 Optimization in Example 2.5. Plots show the function |μk(τ ; P)| for k = 1 and k = ⌊ n
2

⌋

assuming n = 6 (left plot) and n = 7 (right plot), respectively

and the minimum is achieved for τ = 2
2+cos π

n −cos 2π
n

. This optimization is illustrated

in Fig. 2.3

The simple random walk can be also easily studied on the complete graph.

Example 2.6 (SWR on complete graphs) The SWR matrix on the complete graph is
P = 1

N−1 (11
∗ − I ), resulting in ρ2 = 1

N−1 . If we instead consider the lazy version
P(τ ) = (1 − τ)I + τ P , we obtain ρ2(τ ) = 1 − N

N−1τ , which vanishes when
τ = 1 − 1

N . Indeed, P(1 − 1
N ) = 1

N 11
∗ gives consensus in one step.

As we have observed in Example 2.5, −1 is an eigenvalue of the SRW matrix
when the graph is bipartite. To rule out such undesired case, in the next example we
concentrate on a specific class of lazy SRW.

Example 2.7 (Spectral radius of k-dimensional grids) Let G be a d-regular graph,
and consider the matrix P = 1

d+1 (I + A). When the spectrum of A is known, ρ2 can
be readily computed. For instance, for k-dimensional symmetric grids Ck , it holds

ρ2 = 2k − 1

2k + 1
+ 2

2k + 1
cos

2π

n
.

If the number of nodes N = nk goes to infinity while keeping the dimension k
fixed, then ρ2 → 1, and by the Taylor expansion of the cosine, we observe that1

ρ2 = 1 − 4π2

2k + 1

1

n2
+ o

(
1

n3

)
= 1 − 4π2

2k + 1

1

N 2/k
+ o

(
1

N 3/k

)
as n → ∞.

1Here and throughout the book, we will make use of the standard asymptotic notation. If fn and
gn are two positive sequences, we say that fn = O(gn) if fn/gn is upper bounded in n; that
fn = Θ(gn) if fn/gn is both lower and upper bounded in n; that fn = o(gn) if fn/gn → 0 as
n → ∞; and that fn ∼ gn if fn/gn → 1 as n → ∞.



2.7 Convergence Rate: Examples 49

Hence, 1−ρ2 goes to zero at a polynomial rate.More details andmore graph examples
on this SRW are given in Exercise 2.12.

To better highlight the role of N , we define the convergence time as

Tε = inf{t > 0 : ||Pt − 1π∗|| < ε}.

On symmetric matrices, ||Pt − 1π∗|| = ρ t
2, so that Tε = log ε−1

log ρ−1
2

, which is in turn

upper bounded by log ε−1

1−ρ2
. Moreover, 1

1−ρ2
∼ 1

log ρ−1
2

as ρ2 → 1. Hence, the inverse

of the spectral gap of P can be immediately interpreted as an upper bound on the
convergence time. For instance, in the example above, Tε ∼ 2k+1

4π2 N 2/k log ε−1.

Remark 2.4 (Trade-off between speed and democracy) Consider again irreducible
matrices adapted to star graphs as at the end of Sect. 2.6. You can easily verify—
exercise—that Pdem has second eigenvalue ρ2(Pdem) = 1 − 1

n (thus growing to 1 as
n →= ∞), whereas ρ2(PSRW(τ )) = 1 − τ. On the other hand, Pdem is democratic
while PSWR(τ ) is not. This observation highlights that by choosing either matrix we
are trading off speed for democracy. This trade-off exhibited by star graphs is further
discussed in Exercise 2.18; see also Exercises 2.23 and 2.24 for other graphs having
this feature.

2.8 Reversible Matrices

An important family of stochastic matrices, encompassing SRW and in general all
symmetric stochastic matrices, is the family of reversible matrices. A reversible
matrix can be defined starting from any nonnegative symmetric matrix M ∈ R

V ×V

putting

Pvw = Mvw

(M1)v
. (2.9)

It is immediate to check that P is stochastic and that πv = (M1)v[∑u(M1)u]−1 is
an invariant probability measure of P . Notice that SRW on symmetric graphs is a
special case of this construction, when M is the adjacency matrix of the graph. We
have the following alternative characterization:

Proposition 2.7 (Reversibility) Let P be a stochastic matrix. The following condi-
tions are equivalent:

(i) P is reversible;
(ii) There exists a nonzero and nonnegative x ∈ R

V such that

xv Pvw = xw Pwv for all v, w ∈ V . (2.10)
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Proof On the one hand, if P satisfies (2.9), it follows that

(M1)v Pvw = Mvw = Mwv = (M1)w Pwv

On the other hand, if P satisfies (2.10), then putting Mvw := xv Pvw we have that
M is nonnegative symmetric, and it holds (M1)v = xv. Hence, (2.9) holds with
such M . �
Condition (2.10) is often referred to as the detailed balance condition: We note that
it implies that x is actually an invariant measure (possibly not normalized to 1) of P ,
because ∑

v

xv Pvw =
∑

v

xw Pwv = xv.

Condition (2.10) is actually stronger than the requirement that x is an invariant mea-
sure as it says that each pair of nodes v, w for which Pvw > 0 must balance the
exchange flow between each other. The reason for the name “reversible” becomes
clear when we interpret it in the probabilistic framework considering P as the tran-
sition matrix of a Markov chain Xt having initial probability vector π satisfying
the condition (2.10). Then, the left and right terms of (2.10) can be interpreted,
respectively, as P(Xt = v, Xt+1 = w) and P(Xt = w, Xt+1 = v).

It is possible to generalize to reversible matrices most of the results obtained for
symmetric matrices: The key fact is that reversible matrices are diagonalizable as we
show below. Let P ∈ R

V ×V be a reversible, irreducible, aperiodic stochastic matrix,
and let π ∈ R

V be its invariant probability measure. Consider Dπ the diagonal
matrix such that (Dπ )vv = πv, and define A = D1/2

π P D−1/2
π . Reversibility implies

(check this) that A is symmetric. Let φ j ’s, for j ∈ {1, . . . , n}, be an orthonormal
basis of eigenvectors for A with correspondent real eigenvalues μ j . It is immediate
to check that π1/2 is indeed an eigenvector with eigenvalue 1. Therefore, we will
assume that φ1 = π1/2 and μ1 = 1. A straightforward verification shows that the
ψ j = D−1/2

π φ j are eigenvectors of P with eigenvalue μ j . The ψ j ’s together with 1
do form a basis of eigenvectors of P which is thus diagonalizable. Using the usual
orthonormal splitting expression for A, we can write

At = π1/2(π1/2)
∗ +

∑

j≥2

μt
jφ jφ

∗
j ,

from which we can derive the following useful representation for Pt

Pt = 1π∗ + D−1/2
π

∑

j≥2

μt
jφ jφ

∗
j D1/2

π .

From this expression, we can estimate the speed of convergence as in the symmetric
case (see Problem 2.19 for details). Moreover, we can extend the theory developed
for the Laplacian L(P) = I − P , when P is a symmetric matrix, to the case when
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P is reversible. The idea for the extension simply involves replacing the Euclidean
scalar product with the product induced by π , which is 〈x, y〉π :=< x, Dπ y >=∑

v πvxv yv. In particular, the following results, extending Propositions1.9 and1.9,
hold true (their proof is left to the reader).

Proposition 2.8 (Dirichlet form for reversible matrices) Assume that P is a
reversible stochastic matrix with invariant probability measure π . For every x ∈ R

V ,
it holds

〈x, L(P)x〉π = 1

2

∑

v,w

Pvwπv(xv − xw)2. (2.11)

Proposition 2.9 (Variational characterization for reversible matrices) Assume that
P is a reversible stochastic matrix with invariant probability measure π and second
largest eigenvalue μ2. Let λ2 be the second smallest eigenvalue of L(P). It holds

λ2 = (1 − μ2) = min
x �=0,〈x,1〉π =0

〈x, L(P)x〉π
〈x, x〉π . (2.12)

A useful technique to upper bound the spectral gap of a reversible stochastic
matrix P is through the so-called bottleneck ratio, a sort of index measuring how
well the “flow” represented by the matrix is spreading along the underlying graph.
Suppose π is the usual invariant probability measure of P , and for every S ⊂ V ,
define π(S) = ∑

v∈S πv and

Q(S, Sc) =
∑

v∈S,w/∈S

πv Pvw

(check as an exercise that Q(S, Sc) = Q(Sc, S) for all S ⊂ V ). Then, we define

Φ(S) := Q(S, Sc)

π(S)

and the bottleneck ratio of P as

Φ∗ := min
S:π(S)≤ 1

2

Φ(S).

In the flow interpretation Q(S, Sc) represents the total flow exiting S (assuming we
are at the stationary regime), while Φ(S) the fraction of flow exiting S with respect
to the total flow exiting from the nodes in S. We have the following result:

Proposition 2.10 (Cheeger bound) Let μ2 be the second largest eigenvalue of a
reversible matrix P, and let Φ∗ be the bottleneck ratio of P. Then,

1 − μ2 ≤ 2Φ∗.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Proof Given S ⊆ V , consider the vector φ ∈ R
V defined by φv = π(Sc) if v ∈ S,

and φv = −π(S) if v ∈ Sc. Then, from Proposition 2.8 and the detailed balance
condition (2.10), it follows that

〈φ, L(P)φ〉π = 1

2

∑

v,w

πv Pvw(φv − φw)2

=
∑

v∈S,w/∈S

πv Pvw(φv − φw)2

=
∑

v∈S,w/∈S

πv Pvw(π(S) + π(Sc))2

=
∑

v∈S,w/∈S

πv Pvw = Q(S, Sc) .

On the other hand,

〈φ, φ〉π =
∑

v

πvφ
2
v =

∑

v∈S

πvπ(Sc)2 +
∑

w/∈S

πwπ(S)2 = π(S)π(Sc).

From the variational characterization of Proposition 2.9, and assuming π(S) ≤ 1/2,
we thus conclude

λ2 ≤ 〈φ, L(P)φ〉π
〈φ, φ〉π = Q(S, Sc)

π(S)π(Sc)
≤ 2Φ(S).

Since this inequality holds for all S such that π(S) ≤ 1
2 , the upper bound is

proved. �

Notice that, since ρ2 ≥ μ2, we can also bound the spectral gap by

1 − ρ2 ≤ 2Φ∗.

In the case when P is the SRW on a symmetric graph G = (V, E), the bottleneck
ratio takes a peculiar form which is convenient to work out:

Φ(S) =

∑

v∈S,w∈Sc

dv

|E | (AG)vw
1

dv

∑

v∈S

dv

|E |
=

∑
v∈S,w∈Sc

(AG)vw

∑
v∈S

dv
(2.13)

This equation says that Φ(S) equals the fraction of edges which start inside S and
end outside S.

Example 2.8 (Graphs with a bottleneck) Given two graphs G1 = (V1, E1), G2 =
(V2, E2) and a symmetric set of edges E3 ⊆ (V1 × V2)∪ (V2 × V1), we can consider
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the interconnected graph G = (V1 ∪ V2, E1 ∪ E2 ∪ E3). Following (2.13), for the
SRW on the graph G, we have that the bottleneck can be estimated as

Φ∗ ≤ Φ(V1) = |E3|
2|E1| + |E3|

For instance, consider the case when |V1| = |V2| = n, G1 and G2 are both complete,
and |E3| = 2 (namely, there is just one edge and its inverse) connecting the two
complete graphs (this is called barbell graph). Then, Φ∗ ≤ (n(n − 1) + 1)−1.

Similar reasonings can be applied to other families of matrices; see for instance
Exercise 2.20 on Metropolis random walks. For completeness, we report that also a
lower bound on the spectral gap involving the bottleneck ratio can be obtained [30,
Theorem 13.14].

Proposition 2.11 (Reverse Cheeger bound) Let μ2 be the second largest eigenvalue
of a reversible matrix P, and let Φ∗ be the bottleneck ratio of P. Then,

1 − μ2 ≥ Φ∗2

2
.

Exercises

Exercises are divided into five groups, respectively, devoted to some basic facts,
to the rate of convergence, to the consensus value, to reversible matrices, and to
miscellaneous arguments.

First Examples and Concepts

Exercise 2.1 (SRW example) Consider the graph G in Fig. 2.4, and let P be the
transition matrix relative to the simple random walk on G.

(i) Write P .
(ii) Compute P9

13.
(iii) What is the multiplicity of the eigenvalue 1 of P? Why?
(iv) Is −1 an eigenvalue of P? Is P aperiodic? Why?

Exercise 2.2 (Consensus example) Consider the simple random walk (2.8) on the
graph G = (V, E) defined in Exercise1.9, and let x(t) be the evolution of the
consensus algorithm associated with the corresponding stochastic matrix.

(i) Prove that x(t) converges to consensus at the value α.
(ii) Find the value of α as a function of the initial condition x(0).
(iii) Find t̄ such that ‖x(t̄) − |V |−11‖ ≤ 10−2‖x(0)‖.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Fig. 2.4 The graph G of
Exercise 2.1

1 2 3 4

5

Exercise 2.3 (Periodic matrices) Let P be a stochastic matrix such that GP has a
globally reachable node. Prove the following facts.

(i) Qε = ε I + (1 − ε)P is stochastic, and GQε
has a globally reachable aperiodic

node.
(ii) The scalar 1 is a simple eigenvalue of P .
(iii) The spectrum of P is contained in the closed unit disk of the complex plane.
(iv) P has a unique invariant probability measure.

Rate of Convergence

Exercise 2.4 (SRW on complete) Let G be the complete graph.

(i) Write down explicitly the corresponding symmetric randomwalk P , as in (2.8).
(ii) Compute all eigenvalues of P and, in particular, the second eigenvalue ρ2.
(iii) Consider the lazy SRW Pτ = (1−τ)I +τ P , and compute the correspondingρ2.

Exercise 2.5 (SRW on complete bipartite) Consider the complete bipartite graph
Km,n as defined in Example1.2

(i) Write down explicitly the corresponding symmetric randomwalk P , as in (2.8).
(ii) Compute all eigenvalues of P and, in particular, check that −1 is always an

eigenvalue.
(iii) Consider the lazy SRW Pτ = (1−τ)I +τ P , and compute the correspondingρ2.

Exercise 2.6 (SRW on grids) Let G = Cn × Cm be the symmetric two-dimensional
toroidal graph with n × m vertices.

(i) Observe that the corresponding symmetric random walk P is a Cayley matrix.
(ii) Compute all eigenvalues of P and find when −1 is an eigenvalue.
(iii) When n and m are both odd, compute the second eigenvalue ρ2 of P .
(iv) Consider the lazy SRW Pτ = (1 − τ)I + τ P , and compute the corresponding

ρ2 for every value of n and m.
(v) As τ varies in [0, 1], compute the maximal value of the spectral gap 1−ρ2 (you

may assume that n and m are sufficiently large).

Exercise 2.7 (Symmetric cycle) Let n ∈ N, and consider the symmetric cycle graph
Cn with adjacency matrix An . Consider the matrix Pn = 1

3 (I + An) corresponding
to a lazy random walk on Cn .

(i) Verify that Pn is a lazy simple random walk on Cn .

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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(ii) Let ρ
(n)
2 be the second largest eigenvalue of Pn . Using the formula for the

eigenvalues of circulantmatrices in Proposition1.13, find an expression forρ(n)
2 .

(iii) Find a function f (n) such that f (n) ∼ 1 − ρ
(n)
2 .

Exercise 2.8 (Augmented cycle I) Let n ∈ N, and consider the following augmenta-
tionGn of the symmetric cycle graphCn , defined as follows:Anode i ∈ {0, . . . , n−1}
is connected with nodes i − 2, i − 1, i + 1, i + 2 (mod n). Consider the matrix Pn

corresponding to the simple random walk on Gn . Let ρ
(n)
2 be the second largest

eigenvalue of Pn .

(i) Using the formula for the eigenvalues of circulant matrices in Proposition1.13,
find an expression for ρ

(n)
2 .

(ii) Find a function f (n) such that f (n) ∼ 1 − ρ
(n)
2 .

Exercise 2.9 (Augmented cycle II) Let n be an even number, and consider the fol-
lowing augmentation Gn of the symmetric cycle graph Cn , defined as follows: A
node i ∈ {0, . . . , n − 1} is connected with nodes i − 1, i + 1, i + n/2 (mod n).
Consider the matrix Pn corresponding to the simple random walk on Gn . Let ρ

(n)
2 be

the second largest eigenvalue of Pn .

(i) Using the formula for the eigenvalues of circulant matrices, find an expression
for ρ

(n)
2 .

(ii) Find a function f (n) such that f (n) ∼ 1 − ρ
(n)
2 .

Exercise 2.10 (Line graph) Let n ∈ N, and consider the following matrix Pn corre-
sponding to a random walk on the symmetric line graph Ln:

Pn = 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0 0
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0

. . .

0 0 . . . 0 1 0
0 0 . . . 1 0 1
0 0 . . . 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let ρ(n)
2 be the second largest eigenvalue of Pn .

(i) Using the formulas for the eigenvalues of tridiagonal matrices in Exercise1.27,
verify that ρ(n)

2 = cos π
n .

(ii) Consider the simple random walk on a symmetric cycle Cn (see Exercise 2.7),
and denote by ρ̄

(n)
2 the second largest eigenvalue of the associated matrix. Show

that ρ(n)
2 ≥ ρ̄

(n)
2 , and compute lim

n

1 − ρ
(n)
2

1 − ρ̄
(n)
2

.

(iii) Interpret the above results in terms of speed of convergence of the corresponding
consensus algorithms on Ln and Cn.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Exercise 2.11 (Line graph II) Let n ∈ N, and consider the symmetric line graph Ln

with adjacency matrix Bn . Consider the matrix

Qn = 1

3
(I + Bn) + 1

3

⎡

⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
0 0 . . . 0 0

. . .

0 0 . . . 0 0
0 0 . . . 0 1

⎤

⎥⎥⎥⎥⎥⎦

corresponding to a lazy randomwalk on Ln . Let ρ
(n)
2 be the second largest eigenvalue

of Qn .

(i) Using Exercise1.27, find a closed form expression for ρ
(n)
2 .

(ii) Find a function f (n) such that f (n) ∼ 1 − ρ
(n)
2 .

(iii) Compare these results with the analogous results for the simple random walk
on the cycle graph Cn in Exercise 2.7.

Exercise 2.12 (Rate comparison) Consider cycle graphs, k-dimensional torus
graphs, k-dimensional hypercubes, and De Bruijn graphs on k symbols.

(i) Observe that the graphs at hand are regular. For each of these graphs, consider
its Laplacian matrix L and the stochastic matrix P = I − 1

d+1 L = 1
d+1 (I + A).

Let ρ2 be the magnitude of the second largest eigenvalue of P .
(ii) Observe that the graphs at hand have real Laplacian eigenvalues. Denote them

as 0 = λ1 < λ2 ≤ · · · ≤ λn , and verify that ρ2 = 1 − λ2
d+1 , where d is the

degree of the graph. Observe that under the current assumptions, the rate of
convergence of P is completely determined by the topology of the graph.

(iii) Compute the values ofρ2 as functions of the graph parameters and of the number
of nodes N . Derive the values in Table2.1.

(iv) By using Taylor expansions, compute the principal part of the rate ρ2 as N →
+∞, in the cases of Table2.1.

(v) Rank the graphs in Table2.1 from fastest to slowest. Observe that if we consider
a sequence Bk

h with k fixed and h ∈ N, then ρ2 does not depend on N .

Exercise 2.13 (Rate on directed grids) Let G = Cd
n be a directed d-dimensional

torus, P = 1
d+1 (I + AG), and N = nd .

(i) Verify that

ρ2 =
√

d2 + 1 + 2d cos
(
2π
n

)

(d + 1)2
= 1 − 2dπ2

(d + 1)2
1

n2
+ o

( 1

n3

)
as n → ∞

Exercise 2.14 (Rate comparison in SRW) Consider the same graphs as in
Exercise 2.12 and for each of them the stochastic matrix P = 1

d A, corresponding to
a symmetric random walk.

http://dx.doi.org/10.1007/978-3-319-68022-4_1


Exercises 57

Table 2.1 Rates of convergence for consensus algorithms on several families of graphs; see
Example 2.7 and Exercise 2.12

Graph λ2 d N ρ2 ρ2(N )

Cn 2(1 − cos 2π
n ) 2 n 1

3

(
1 + 2 cos 2π

n

) 1

3

(
1 + 2 cos

2π

N

)

Cn × Cn 2(1 − cos 2π
n ) 4 n2 1

5 (3 + 2 cos 2π
n )

1

5
(3 + 2 cos

2π√
N

)

Ck
n 2(1 − cos 2π

n ) 2k nk 2k − 1

2k + 1
+

2

2k + 1
cos

2π

n

2k − 1

2k + 1
+

2

2k + 1
cos

2π

N 1/k

Hk 2 k 2k d − 1

d + 1

log2 N − 1

log2 N + 1

Bk
h k k kh 1

k + 1

1

N 1/h + 1

(i) Compute the second eigenvalues ρ2 as functions of the graph parameters and of
the number of nodes N .

(ii) Compare your results with those in Exercise 2.12.

Exercise 2.15 (Majority computation) Let G = (V, E) be a symmetric connected
graph and x̄ ∈ {−1,+1}V . Let N1 = |{v ∈ V : x̄v = 1}| and N−1 = N − N1 where
N = |V |. The agents want to estimate which state has the majority. Consider the
following algorithm. Let P be an aperiodic irreducible symmetric matrix adapted to
G, and define {

x(t) = Pt x̄

λ(t) = sign(x(t)) ∈ {−1,+1}V .

Clearly, if N1 �= N−1, then limt→∞ λ(t) = λ̄1 and λ̄ = 1 when N1 > N−1. Agent v
can then use λv(t) as an estimation of the majority value. Let Tmin = min{t ∈ N :
λv(t) = λ̄ ∀v ∈ V }.
(i) Estimate Tmin in terms of the second eigenvalue ρ2 of P and of the vector x̄ .
(ii) Estimate Tmin when P is the SRW in the toroidal d-grid of size N .

Evaluation of the Convergence Value and Democracy

Exercise 2.16 (Democracy and wisdom of crowds) Consider an irreducible aperi-
odic matrix Q used to solve a consensus problem with x(0) = θ1 + η, where θ is a
scalar and η is a vector of “disturbances.” We know that xv(t) → xv(∞) = θ + π∗η
for all v. Assume that ηvs are random variables, independent and identically dis-
tributed with zero mean and variance σ 2 (this setup will be considered again in
Sect. 4.5).

http://dx.doi.org/10.1007/978-3-319-68022-4_4
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Let {QN }N∈N be a sequence of suchmatrices, eachwith size N . According to [21],
the sequence QN is said to be wise if the variance of xv(∞) goes to 0 as N goes to
infinity. Prove the following statements.

(i) QN is democratic if and only if it is wise.
(ii) There exists c > 0 such that πu

πv
≤ c for all indices u, v and all size N if and

only if there exist two positive constants c1 and c2 such that c1
N ≤ πw ≤ c2

N for
all w and all N .

(iii) The conditions at point (ii) imply that QN is wise.

Exercise 2.17 (Line graph: democracy) Let n ∈ N, and consider the symmetric line
graph Ln . Consider the matrix Sn associated with the simple random walk on Ln ,
and define

Qn = 1

3
I + 2

3
Sn.

(i) Observe that Qn is stochastic but not doubly stochastic, and compute π(n), the
invariant probability measure of Qn .

(ii) Compute for each component v ∈ {1, . . . , n},

lim
n→+∞ π(n)

v and lim
n→+∞

π(n)
v

1/n
.

Comment on your results, recalling that the invariant probability measure of a
doubly stochastic matrix is 1

n 1. Is Qn democratic?
(iii) Compute ρ2(n), the second largest eigenvalue of Qn .
(iv) Compare these figures with the corresponding results for the simple random

walk on the cycle graph Cn (see Exercise 2.7).

Exercise 2.18 (Speed and democracy on star graphs) Consider the graph Sn , the
symmetric star graph with n edges and n +1 nodes, whose center node is denoted as
0 and the n leaves as the elements of the set {1, . . . , n}. Then, consider the following
family of adapted stochastic matrices

Pn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − nα α α α . . . α

β 1 − β 0 0 . . . 0
β 0 1 − β 0 . . . 0

...
. . .

...

β 0 . . . 0 0 1 − β

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the parameters α, β satisfy 0 ≤ α ≤ 1
n and 0 ≤ β ≤ 1.

(i) Verify that the eigenvalues of Pn are 1, 1 − β, and 1 − nα − β.
(ii) Find the values of α, β which give the fastest consensus algorithm.
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(iii) Design a consensus algorithm, adapted to Sn , which converges in a finite num-
ber of steps. How many steps does it need to converge? Compare the required
number of steps of the algorithm with the diameter of Sn . Which is the con-
sensus value?

(iv) Compute ρ2(n) as a function of α, β on its domain.
(v) Compute the invariant probability measure of Pn . Verify that the consensus

algorithm defined by Pn converges to the average of the initial states if and
only if α = β.

(vi) Prove that if α = β, the rate of convergence ρ2(n) grows to 1 as n → +∞.
Estimate the convergence time on large networks, as a function of n.

(vii) Prove that

(a) if Pn is democratic, then necessarily ρ2(n) → 1 as n diverges;
(b) conversely, if ρ2(n) ≤ 1 − c for all n and some positive c, then necessarily

Pn is not democratic.

Conclude that in optimizing Pn one necessarily needs to trade off the speed of
convergence for the distance between the limit value and the average of initial
states.

Reversible Matrices

Exercise 2.19 (Convergence rate) Suppose P ∈ R
V ×V is stochastic reversible with

invariant probability measure π . Then, the result in Proposition 2.2 can be strength-
ened to claim that

||Pt x(0) − 1π∗x(0)||2 ≤ maxv π
1/2
v

minv π
1/2
v

||x(0)||2ρ t
2 ∀t ∈ N.

Exercise 2.20 (Speed in unbalanced sequence) The goal of this exercise is to show
that the rate of convergence of a Metropolis random walk goes to one on a sequence
of graphs, if there is a node whose degree vanishes compared to the degree of its
neighbors. Let there be a sequence of symmetric connected graphs of increasing size
Gn = (Vn, En) and a sequence of nodes vn ∈ Vn such that

lim
n→+∞

dvn

min{dw : w ∈ Nvn }
= 0.

Let Pn be the Metropolis random walk associated with Gn and ρ
(n)
2 its second largest

eigenvalue. Using Cheeger bound, show that the gap 1 − ρ
(n)
2 goes to zero when n

diverges.

Exercise 2.21 (Matrices adapted to Km,n) Let α, β be real numbers, and let the
(m + n)-dimensional square matrix M (α,β) be

M (α,β) =
[

nα Im −α1m1∗
n

−β1n1∗
m mβ In

]
.



60 2 Averaging in Time-Invariant Networks

Verify that M (α,β) has eigenvalues

• 0 corresponding to eigenvector 1m+n;

• nα + mβ corresponding to eigenvector

[
nα1m

−mβ1n

]
;

• nα corresponding to the (m −1)-dimensional eigenspace span {
[

x
0n

]
: x∗1 = 0};

• mβ corresponding to the (n−1)-dimensional eigenspace span {
[
0m

y

]
: y∗1 = 0}.

Exercise 2.22 (Matrices adapted to wheels) Let An be a normal2 matrix of order
n such that A1n = d1n , and denote by x (k) and λ(k) for k ∈ {1, . . . , n − 1} the
remaining (orthonormal) eigenvectors of An with the corresponding eigenvalues.
Consider matrix

M =
[

0 1
n 1

∗
n

1
d+11n

1
d+1 An

]
.

Verify that matrix M is stochastic and has eigenvalues 1 (simple),− 1
d+1 (with eigen-

vector

[−(d + 1)
1n

]
), and λ(k)

d+1 for k ∈ {1, . . . , n − 1} (with eigenvector
[

0
x (k)

]
).

Exercise 2.23 (Speed and democracy on Km,n) Let A, B be two sets such that |A| =
m ≤ n = |B| and consider the complete bipartite graph Km,n = (A∪B, E) as defined
in Example1.2. Define on this graph

• the lazy simple random walk P by Pvw = 1
2

1
dv
for all (v, w) ∈ E ; and

• the lazy Metropolis random walk P̄ by P̄vw = 1
2 min{ 1

dv
, 1

dw
} for all (v, w) ∈ E .

Let π and ρ2 be the invariant probability measure and the second largest eigenvalue
of P , and correspondingly, let π̄ and ρ̄2 be the invariant probability measure and the
second largest eigenvalue of P̄ .

(i) Using Exercise 2.21, prove that the LSRW P is such that ρ2 = 1
2 and the

invariant measure π is such that if a ∈ A, then πa = 1
2m , and if b ∈ B, then

πb = 1
2n .

(ii) Prove that the LMRW P̄ is such that π̄v = 1
m+n for all v ∈ (A ∪ B), and

ρ̄2 = 1 − m
2n .

(iii) Let m ∈ N be fixed and {Km,n}n≥m a sequence of complete bipartite graphs of
increasing size. Consider the consensus algorithms associatedwith these graphs
by the above two definitions of random walks and compare them. Observe that
the choice of either definition of the adapted stochasticmatrix implies a trade-off
between democracy and good convergence speed.

2Amatrix A is said to be normal when A∗ A = AA∗. Normal matrices are precisely those for which
a complete basis of eigenvectors exists. Symmetric matrices are normal.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Exercise 2.24 (Speed and democracy on wheels) Let n ≥ 3 and consider the n-
wheel graph Wn , which is defined as the union graph of a cycle Cn having node set
{1, . . . , n} and a star Sn having node set {0} ∪ {1, . . . , n}. Define on this graph
• the lazy simple random walk P by setting Pvw = 1

2
1
dv
for all (v, w) ∈ E ; and

• the lazy Metropolis walk P̄ by setting P̄vw = 1
2 min{ 1

dv
, 1

dw
} for all (v, w) ∈ E .

Let π and ρ2 be the invariant probability measure and the second largest eigenvalue
of P and correspondingly let π̄ and ρ̄2 be the invariant probability measure and the
second largest eigenvalue of P̄ .

(i) Prove that the LSRW P is such that ρ2 ≤ 5
6 , and the invariant measure is such

that π0 = 1
4 and πv = 3

4
1
n if v �= 0.

(ii) Prove that the LMRW P̄ , which has uniform invariant measure, is such that
1 − ρ̄2 ≤ 7

3
1
n .

(iii) Now consider a sequence of wheel graphs of increasing size {Wn}n≥3. Consider
the consensus algorithms associated with these graphs by the above definitions
of random walks. Remark that the choice of either definition of the adapted
stochastic matrix implies a choice between democracy and good convergence
speed.

Additional Topics

Exercise 2.25 (Properties of Laplacians) Let G = (V, E, A) be a weighted graph
of order n and L be the (weighted) Laplacian of G. Then, rank(L) = n − 1 if and
only if G contains a globally reachable vertex.

Exercise 2.26 (Consensus in continuous time) Consider a graph G = (V, E)whose
nodes are equippedwith scalar dynamical systems ẋv = uv, whereu ∈ R

V is a control
to be designed in order to achieve consensus. Let A ∈ R

V ×V be any nonnegative
matrix such that G = G A. Consider the feedback control law

u = −L(A)x .

(i) Verify that the control law u = −L(A)x can be written componentwise as

uv =
∑

w

Avw(xw − xv) ∀ v ∈ V .

Consequently, it may be implemented by communicating with neighbors only
and exchanging only relative information.

(ii) Show that, provided G has a globally reachable node, the closed loop system

ẋ = −L(A)x (2.14)

yields consensus: For every initial condition x(0), there exists a consensus
value x̄ ∈ R such that xv(t) → x̄ when t → +∞ for every v ∈ V . Hint: use
Exercise 2.25.
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(iii) Find the rate of convergence of (2.14).

Exercise 2.27 (Node counting on a tree by message-passing) Message-passing is
a powerful approach to distributed computation, at least when the graph is a tree.
Suppose then G = (V, E) to be a tree and consider the following algorithm for
the distributed computation of the number vertices N . Each unit v ∈ V keeps in
memory dv + 1 scalar numbers, where dv is the degree of v. We denote them as zw

v
with w ∈ Nv ∪ {v}. The algorithm is based on sending messages and updating zw

v ,
according to the following rules.

• (Initialization): Set zw
v = 1 for all (v, w) ∈ E .

• (Condition to send a message): Once unit v has received a message from all its
neighbors except w, then v sends to w the following message: z(v,w) = zw

v .
• (Update upon receiving a message): When a node v receives z(u,v), the node does
the following: zw

v = zw
v + z(u,v) for all w �= u.

• (Termination): Once unit v has received message from all its neighbors, and
updated zv

w accordingly, node v sends messages z(v,w) = zw
v to all neighbors w

to whom no message has been send from v yet.

Verify that

(i) upon initialization, there is at least a node which satisfies the “condition to send
a message”;

(ii) on every directed edge (v, w), the message z(v,w) is transmitted exactly once, so
that 2N − 2 messages are exchanged over the network in total;

(iii) the algorithm terminates in finite time;
(iv) upon termination, zv

v = N for all v ∈ V .

Exercise 2.28 (Consensus on a tree by message-passing)Message-passing is a pow-
erful approach to distributed computation, at least when G is a tree.

(i) Show that the procedure in Exercise 2.27—with a suitable initialization—may
be used to compute the sum of N numbers given at the nodes, xv ∈ R for v ∈ V .

(ii) Design a message-passing algorithm to compute the average of the xv’s.

Exercise 2.29 (De Bruijn graphs and consensus [14]) Consider De Bruijn graphs
Bk

h on k symbols of dimension h.

(i) Design an algorithm, adapted to a De Bruijn graph, which converges in finite
time to consensus.

(ii) How many steps does it take? Compare this value with the diameter and the
degree of Bk

h .

Bibliographical Notes

Consensus problems have a very long history in social sciences [8, 13, 18], in statis-
tics [10], and in computer science [40]. Their appearance in the field of control dates
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back to the thesis work of Tsitsiklis [49, 50] in the 80’s, before a surge of interest
about fifteen years ago, sparkled by the works [16, 28, 38]. Since then, the literature
on the topic has grown enormously, motivated by the broad range of applications:
rendezvous, deployment and formation control in robotic coordination [17], flocking
of natural and artificial groups [52], load balancing in networks of processors and
queues [12], clock synchronization [7, 32], optimal resource allocation [54], dis-
tributed optimization [37], distributed computation [24], distributed estimation and
learning in sensor networks [44], social network analysis [27], and synchronization
of interconnected systems [46, 53]. The averaging dynamics is ubiquitous to these
problems (and many others): It is thus unsurprising that several books deal with the
topic [5, 6, 31, 33, 41, 42].

This chapter gives a self-contained and comprehensive analysis of the “standard
consensus algorithm” on time-invariant networks. In most prior works, its conver-
gence properties are derived from the general theory of nonnegative matrices and in
particular as corollaries of the Perron–Frobenius theorem (cf. [19, 45] for two clas-
sical references). This choice has two drawbacks. First, it is unnecessary because
the needed results can be derived directly in an intuitive way. Second, since Perron–
Frobenius theory does not extend to time-dependent networks, it hides the intimate
connection between time-invariant and time-varying settings. Instead, the results
from this chapter will be the foundation for the rest of the book. The main conver-
gence principle in Lemma 2.1 is based on the presentation in Hendrickx’s thesis [22,
Sect. 9.2.1]. This principle is crucial and in this chapter we derived from it several
properties of stochastic matrices that are central to our theory.

In probability theory, an important reason for the interest in stochastic matrices
is the notion of Markov chain associated with it. While we refrain from introducing
Markov chains in this text,webelieve that the probabilistic interpretation of stochastic
matrices is very useful. For instance, it motivates our discussion about the vector π .
For these reasons, material on the theory ofMarkov chains can be a helpful additional
reading: We recommend the textbook [30] and the monograph [1] that concentrates
on reversible chains. More generally, the general theory of nonnegative matrices is
an important background of our work.

Our analysis has highlighted the role of the second eigenvalue of the updatematrix
ρ2(P), which determines the speed of convergence of the average dynamics. In turn,
the second eigenvalue is closely related to the spectral gap λ2 of the associated
graph. For this reason, graphs with a large spectral gap are of special interest to
us. Graphs with large spectral gap are called spectral expanders and have been
extensively studied in the last decades [2, 3, 43]. A serious study of expander graphs
is outside the scope of this book. We only recall that De Bruijn graphs [55], defined
in Chap.1, have good expansion properties that, indeed, have been exploited in
consensus problems [14].

In Sect. 2.6, we have shown how to construct stochastic matrices for a given
topology. These constructions include the simple random walk and the Metropolis
random walk, which are important examples all along the book. Actually, designing
stochastic matrices according to certain performance criteria gives rise to a wide
family of very interesting problems. For instance, one can look for doubly stochastic

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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matrices, as we did specifically in Proposition 2.6: Paper [20] provides distributed
algorithms to solve this design problem. Democracy is a milder requirement that is
actually robust to perturbations of the graph, as shown in [11, 15].

Otherwise, one can seek to optimize the speed, that is, minimize the second eigen-
value. This problem is equivalent to finding the fastest mixing Markov chain and has
been extensively studied, showing it to be a convex optimization problem [4]. Other
(convex) performance metrics will be defined in Chap.4. A related (more academic)
question is finding the slowest possible convergence rate. For SRW matrices, the
slowest rate is 1 − γ n−3, as proved in [29].

In a effort to overcome these slow convergence rates (recall also Exercise 2.12),
some researchers have designed other distributed algorithms that guarantee a certain
convergence speed, irrespective of the graph topology. For instance, the algorithm
in [39] has a guaranteed 1 − cn−1 rate: We refer the reader to that paper also for
several pointers to other “accelerated” consensus algorithms.

Our presentation of averaging dynamics has left aside a few topics which have
attracted the interest of researchers and which we admit to be important: An incom-
plete list includes (i) consensus algorithms converging in finite time, (ii) consensus
algorithms based on the “message-passing” approach, and (iii) consensus systems
evolving in a continuous-time domain. We briefly discuss these natural issues here.

(i) The consensus algorithms presented in this chapter converge to consensus
asymptotically. One can instead be interested in designing algorithms which
converge in a finite number of step (necessarily, not smaller than the diam-
eter). A trivial example is Example 2.6 for the complete graph, while other
relatively simple examples can be constructed on De Bruijn graphs, see
Exercise 2.29 and [14]. Actually, finite-time convergence can be obtained in
more general graphs if we allow the update matrix to change with time (as we
shall do in Chap.3): A simple example are hypercubes [12, Sect. 4], but more
general constructions are possible, see [23, 25, 47, 48].

(ii) Message-passing is a paradigm for distributed computation over networks,
which we present through simple instances in Exercises 2.27 and 2.28. Nodes
are thought of as objectswith computational capabilitieswhich can receivemes-
sages from their neighbors, elaborate them, and transmit them further. See, e.g.,
[34] for a general reference and [35] for an application to consensus. Message-
passing has also recently found application in problems of leader selection,
which will be defined in Chap.5 [51].

(iii) In our work, we focus on discrete-time dynamics. However, much literature
is concerned with continuous-time systems. For the time-invariant networks
considered in this chapter, the analysis for continuous time and discrete time is
closely related: Actually, the main results about the former can be derived as
corollaries of our analysis, see Exercise 2.26. Instead, the analysis in continuous
time can become trickier when the network is time-varying (see Chap.3) or
the interactions between nodes are nonlinear. We do not try to survey all the
differences here:A fewpossible references, besides the booksmentioned above,
are [9, 26, 36].

http://dx.doi.org/10.1007/978-3-319-68022-4_4
http://dx.doi.org/10.1007/978-3-319-68022-4_3
http://dx.doi.org/10.1007/978-3-319-68022-4_5
http://dx.doi.org/10.1007/978-3-319-68022-4_3
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Chapter 3
Averaging in Time-Varying Networks

Abstract This chapter studies averaging dynamics in which the update matrix and,
possibly, the underlying graph may be different at each time step. This extension
is particularly important for the applications. Indeed, in realistic models of sensor
and robotic networks, units, and links may be occasionally off due to environmen-
tal reasons or for energy saving purposes. Similarly, social dynamics may involve
complex patterns of interactions that change over time. We are going to show that
time-dependent consensus algorithms converge under relatively mild assumptions
involving suitable notions of connectivity. Actually, the underlying graph needs not
to be connected at any time, but the sequence of graphs must be “sufficiently con-
nected” over time. More specifically, in Sects. 3.1 and 3.2 we provide two families
of results, corresponding to two sufficient connectivity assumptions. Our presen-
tation also includes, in Sect. 3.3, cases when the matrix evolves randomly in time.
These randomized dynamics encompass the so-called gossip algorithms, which have
attracted much attention in the last decade.

3.1 Time-Varying Updates: Uniform Connectivity

Given a set of nodes V of cardinality N , we consider a distributed state x(t) ∈ R
V

evolving according to a system of the form

x(t + 1) = P(t)x(t) t ∈ Z≥0, (3.1)

where P(t) is a stochastic matrix for each t ≥ 0. We will use the following notation

P(s, s) = I, P(t, s) = P(t − 1) . . . P(s), 0 ≤ s < t

so that x(t) = P(t, s)x(s) for every s ≤ t .
We start with a preliminary result which is a simple consequence of the contraction

principle Lemma2.1 already used in the time-invariant context.
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Lemma 3.1 Consider system (3.1). Assume that

(i) there exists α ∈ (0, 1] such that, for every t ≥ 0 and u, v ∈ V , Puv(t) > 0
implies Puv(t) ≥ α;

(ii) there exists a sequence of times {tk ∈ Z≥0 : k ∈ Z≥0} such that

(a) there exists B ∈ N such that tk+1 − tk ≤ B for all k and
(b) for every k, there exists v∗ ∈ V such that, P(tk+1, tk)uv∗ > 0 for every u ∈ V .

Then, x(t) converges to a point in span{1} from every initial condition in R
V .

Proof Notice first of all that thanks to assumptions (i) and (ii), we have that

P(tk+1, tk)uv∗ > αtk+1−tk ≥ αB, ∀u ∈ V . (3.2)

Define now, for every t ≥ 0,

xmin(t) = min
u

{xu(t)} xmax(t) = max
u

{xu(t)}

and notice that Lemma2.1 together with (3.2) implies that, for every k ≥ 0,

xmax(tk+1) − xmin(tk+1) ≤ (1 − αB)
(
xmax(tk) − xmin(tk)

)
(3.3)

Considering that xmax(t) and xmin(t) are two monotonic sequences, thus admitting
limit, it follows that xmax(t) − xmin(t) → 0 as t → +∞. This yields the thesis. �

The above result is not very appealing for application as condition (ii). needs in
principle to consider large products of the matrices P(t) determining the dynamics.
As in the time-invariant case, we would like to have results whose assumptions are at
the level of the associated graphsGP(t). The readermay recall that, on static networks,
consensus was proved (see Theorem2.2) under two conditions: a connectivity condi-
tion and an aperiodicity condition. On time-varying networks, we are going to make
suitable assumptions on the connectivity over time, while the aperiodicity condition
is replaced by the following assumption.

Definition 3.1 (Nondegeneracy) A set P of stochastic matrices over V is nonde-
generate if

(i) for every P ∈ P and for every u ∈ V , Puu(t) > 0;
(ii) there exists α ∈ (0, 1] such that, for every P ∈ P and u, v ∈ V , Puv(t) > 0

implies Puv(t) ≥ α.

It is clear that the assumption of nondegeneracy relates to aperiodicity: Indeed, ifP
is nondegenerate, then each P ∈ P is aperiodic. Notice that the converse is not true,
because of the strong positivity condition expressed in the definition. Moreover, the
mere aperiodicity of eachmatrix P(t) is not sufficient for consensus; seeExercise 3.1.

The following result shows some fundamental consequences of nondegeneracy.
If P is a stochastic matrix over V , below we will use the notation GP = (V, EP) for
the graph associated with P .

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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Proposition 3.1 Suppose that P(t), for t ∈ Z≥0 is a non degenerate sequence of
stochastic matrices. Fix t1 ≤ t2 ≤ t3 ≤ t4. Then,

(i) EP(t3,t2) ⊆ EP(t4,t1);
(ii) If (u, v) ∈ EP(t4,t3) and (v, w) ∈ EP(t2,t1), then (u, w) ∈ EP(t4,t1).

Proof Both claims follow immediately by combining the two inequalities

P(t4, t1)uw ≥ P(t4, t3)uu P(t3, t2)uw P(t2, t1)ww

P(t4, t1)uw ≥ P(t4, t3)uv P(t3, t2)vv P(t2, t1)vw

and property (i) of nondegeneracy. �

We are now ready to state the main convergence result of this section which is a
generalization of Theorem2.2.

Theorem 3.1 (Time-dependent consensus I) Consider system (3.1). Assume that

(i) the set of matrices {P(t)} is nondegenerate;
(ii) there exists a duration T ∈ N such that, for all t0 ∈ Z≥0, the graph

T −1⋃

s=0

GP(t0+s)

contains a globally reachable node.

Then, x(t) converges to a point in span{1} from every initial condition in R
V .

The reader should note that the connectivity condition does not imply anything
on each single graph GP(t), which may well be not connected at any time t . The
following example illustrates the application of the theorem.

Example 3.1 (Sequences of graphs) Consider the following sequences composed of
the graphs represented in Fig. 3.1.

(i) S1(t) =
{

Ga if t is a square number

Gb otherwise

(ii) S2(t) =
{

Gb if t is a square number

Ga otherwise

(iii) S3(t) =
{

Gc if t is a square number

Gd otherwise

(iv) S4(t) =
{

Gd if t is a square number

Ga otherwise

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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Fig. 3.1 The graphs Ga , Gb, Gc, and Gd used in Example 3.1

Let now Pi (t) denote the sequence of SRWmatrices constructed on the sequence of
graphsSi (t). By Theorem 3.1, we conclude that P2(t) and P3(t) lead to consensus.
Instead, nothing can be concluded regarding P1(t) or P4(t) because assumption (ii)
in Theorem 3.1 is not satisfied. Both cases actually lead to a consensus. For P4(t),
consensus is trivial by observing that the SRW related to Gd leads to consensus in
one step, while for P1(t) consensus will follow by Corollary 3.2 later on.

The proof of Theorem 3.1 relies on the results proven so far as well on a classical
combinatorial argument reported below for the convenience of the reader.

Lemma 3.2 (Pigeonhole principle) If n discrete objects are to be allocated to m
containers, then at least one container must hold no fewer than 
 n

m � objects.

Proof (of Theorem 3.1) Notice first of all that since

T −1⋃

s=0

GP(t0+s) ⊆ GP(t0+T,t0)

by virtue of Proposition 3.1, it follows that the graph GP(t0+T,t0) contains a globally
reachable node for every t0. Let N = |V | and let M be the number of distinct graphs
over V possessing a globally reachable node. Consider the time interval [0, N MT [
split into subintervals [0, T [, [T, 2T [ and so on. By the pigeonhole principle, there
must exist a graph G over V possessing a globally reachable node, which is repeated
at least N times among the sequence of graphs GP( jT,( j−1)T ) for j = 0, . . . , N M .
Denote by v∗ the globally reachable node inside G. Since every node u ∈ V is
connected to v∗ in G with a path of length l ≤ N , it follows by a repeated application
of Proposition 3.1 that GP(N MT,0) contains every edge of type (u, v∗) for u ∈ V .
This implies that P(N MT, 0)uv∗ > 0 for every u ∈ V . Arguing similarly on every
matrix P(k N MT, (k − 1)N MT ), we can see that the assumptions of Lemma 3.1
are satisfied if we take tk = k N MT . �

Remark 3.1 (Convergence time) Note that the construction in the proof of Theo-
rem 3.1 is “worst-case” in nature and gives little clue about the actual convergence
time for the algorithm. This issue is investigated in an exemplary case in Exercise 3.2.
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Remark 3.2 (Consensus point) In general, the final value upon which all the states
xu agree in the limit is unknown. This final value depends on the initial condition and
the specific sequence of matrices defining the time-dependent linear algorithm. Only
in few cases, one can compute the final value. One instance are time-independent
consensus algorithms, which have been considered in the previous chapter. Another
instance are time-dependent algorithms (3.1) involving doubly stochastic matrices.
Indeed, it is clear that whenever P(t) is doubly stochastic for every t ≥ 0, then
xave(t) = xave(0). Then, provided x(t) converges, it converges to xave(0)1. This
simple remark can be immediately extended to any sequence of matrices which
share their dominant left eigenvector.

Theorem 3.1 requires a uniform connectivity assumption: The union of graphs,
over time, must be connected within a fixed window. Later on, we will present results
where the connectivity assumption is weaker. The following result shows that some
connectivity condition for consensus will, however, be necessary.

Proposition 3.2 (Connectivity is necessary) Consider system (3.1). If, for every
initial condition x(0), the state x(t) converges to a point in span{1}, then there exists
a node which is globally reachable in the graph

G =
⋃

s≥0

GP(s).

Proof By contradiction, assume that G does not possess a globally reachable node.
This implies that the correspondent condensation graph has two leaves that corre-
spond to two strongly connected subgraphs of G, denoted by Gi = (Vi , Ei ) for
i = 1, 2 and such that V1 ∩ V2 = ∅ and there is no path from V1 to V2 or from V2

to V1. Consider now an initial condition x(0) such that x(0)v = 0 for all v ∈ V1 and
x(0)v = 1 for all v /∈ V1. Since there is no edge outgoing G1 and G2, clearly, if Q
is a stochastic matrix adapted to G, it follows that (Qx(0))v = 0 for all v ∈ V1 and
Qx(0)v = 1 for all v ∈ V2. This implies that x(t)v = 0 for all v ∈ V1 and x(t)v = 1
for all v ∈ V2, and thus, x(t) cannot converge to a consensus. �

As the necessary condition in Proposition 3.2 is weaker than the sufficient condi-
tion in Theorem 3.1, it is natural to ask whether the former is sufficient as well. The
answer is negative, as shown by the example proposed in Exercise 3.3.

3.2 Time-Varying Updates: Cut-Balanced Interactions

Theorem 3.1 requires a uniform connectivity assumption: The union of graphs, over
time, must be connected within a fixed window. In this section, we seek conditions
under which this uniform connectivity requirement can be dropped, while maintain-
ing convergence.
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To this goal, we need to introduce two new concepts, cut-balanced graph and
limit graph. A graph G = (V, E) is said to be cut-balanced when for any nonempty
proper subset S ⊂ V , there exist v ∈ S and w /∈ S with (v, w) ∈ E if and only if
there exist v′ /∈ S and w′ ∈ S with (v′, w′) ∈ E . Clearly, if a graph is symmetric or
strongly connected, then it is also cut-balanced. More precisely, cut-balanced graphs
allow for the following characterization.

Lemma 3.3 The graph G is cut-balanced if and only if every weakly connected
component of G is strongly connected.

Proof Assume that the graph is cut-balanced and let W ⊆ V be a weakly connected
component of G. If W is not strongly connected, then there exist a node u ∈ W
from which not all nodes in W can be reached. Let S be the subset of nodes which
are reachable from u. Clearly, S is a proper subset of W and, necessarily, there is no
edge from S to W \ S, while there must be edges from W \ S to S; otherwise, W
would not be a weakly connected component. This clearly contradicts the fact that
G was cut-balanced. The proof of the reverse implication is left to the reader. �

The second key ingredient is the definition of limit graph. Given a sequence of
graphs (Gt )t∈N such that Gt = (V, Et ) for all t ∈ N, we say that the limit graph
of this sequence is the graph G∞ = (V, E∞) where the edge set E∞ equals to the
set-theoretic limit superior of the sequence (Et )t , that is,

E∞ = lim sup
t∈N

Et :=
⋂

t≥0

⋃

s≥0

Et+s .

Equivalently, an edge (u, v) is in E∞ when (u, v) ∈ En for infinitely many n. This
limit graph “forgets” transient interactions and focuses on those interactions that
occur infinitely often and thus affect the convergence behavior.

We are now ready to state and prove the main result of this section.

Theorem 3.2 (Convergence) Consider system (3.1). Assume that

(i) the set of matrices {P(t)} is nondegenerate;
(ii) the associated graph GP(t) is cut-balanced for every t ≥ 0.

Then, x(t) converges to a limit point x̃ ∈ R
V such that x̃u ∈ [xmin(0), xmax(0)] for

all u ∈ V . Furthermore, let G∞ be the limit graph of the sequence (GP(t))t . If two
nodes v and w belong to the same connected component of G∞, then x̃v = x̃w.

Proof SinceGP(t) is cut-balanced for every t ≥ 0, then also G∞ is cut-balanced: This
implies, by Lemma 3.3, that all weakly connected components of G∞ are strongly
connected. Let C ⊂ V denote the node set of one such connected component and
observe that there exists a time t0 ≥ 0 such that Pvw(t) = Pwv(t) = 0 for all v ∈ C ,
w /∈ C and t ≥ t0. Then, without loss of generality we disregard the dynamics before
t0 and we study the dynamics for t ≥ t0 over the component C .
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Let m ∈ C be a node such that xm(t0) = max{xu(t0) : u ∈ C}. Define St0 = {m}
and, iteratively for t ≥ t0, a sequence of subsets St ⊆ V , by

St+1 = {u ∈ C : ∃ w ∈ St such that Pvw(t) > 0}.

The sequence of sets St collects those nodes whose states at time t are influenced by
the state of node m at time t0. Note that because of the nondegeneracy assumption,
the inclusion St+1 ⊇ St holds for every t ≥ t0. Let t� be the time at which St is
maximal and assume by contradiction that St� �= C . Then, there is no vertex outside
St� that is connected to any vertex in St� for any time t ≥ t�: So C is not strongly
connected in the graph ∪s≥t�GP(s), contradicting the assumptions. Hence, St� = C.

We claim that for every t0 ≤ t ≤ t� and every v ∈ St , it holds

xv(t) ≥ min
u∈C

xu(t0) + α|St |−1
(
max
u∈C

xu(t0) − min
u∈C

xu(t0)
)
, (3.4)

where α > 0 is the nondegeneracy constant. This fact can be shown by induction
on t . For t = t0, we have St0 = {m} and so (3.4) trivially holds. For the induction
step, we need to consider two cases. If St+1 = St , then at time t every w ∈ St only
influences nodes in St . By the cut-balance assumption, every v ∈ St is then only
influenced by nodes in St . Hence, for every v ∈ St+1

xv(t + 1) =
∑

w∈St

Pvw(t)xw(t)

≥
∑

w∈St

Pvw(t)
(
min
u∈C

xu(t0) + α|St |−1(max
u∈C

xu(t0) − min
u∈C

xu(t0)
))

= min
u∈C

xu(t0) + α|St+1|−1
(
max
u∈C

xu(t0) − min
u∈C

xu(t0)
)
.

If instead St+1 �= St , we note that for every v ∈ St+1, there is at least one w ∈ St and
such that Pvw(t) > 0. Indeed, if v /∈ St , then v is, by construction, connected to at
least one node w ∈ St , whereas every v ∈ St is by the hypothesis always connected
to itself. Since all (positive) entries Pvw(t) are by hypothesis lower-bounded by α,
this together with the induction hypothesis implies that

xv(t + 1) =
∑

w∈V

Pvw(t)xw(t)

≥
∑

w∈St

Pvw(t)
(
min
u∈C

xu(t0) + α|St |−1(max
u∈C

xu(t0) − min
u∈C

xu(t0)
)) +

∑

w/∈St

Pvw(t)min
u∈C

xu(t0)

≥ min
u∈C

xu(t0) + α α|St |−1(max
u∈C

xu(t0) − min
u∈C

xu(t0)
)

≥ min
u∈C

xu(t0) + α|St+1|−1(max
u∈C

xu(t0) − min
u∈C

xu(t0)
)
,

thus proving (3.4). As maxu∈C xu(t) is not increasing, inequality (3.4) implies that
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max
u∈C

xu(t
�) − min

u∈C
xu(t

�) ≤ (1 − α|C |−1)(max
u∈C

xu(t0) − min
u∈C

xu(t0)).

By repeating all the above reasoning starting from t1 = t� and so on, we can construct
a sequence of times {tk : k ≥ 0} such that for every k it holds that

max
u∈C

xu(tk+1) − min
u∈C

xu(tk+1) ≤ (1 − α|C |−1)(max
u∈C

xu(tk) − min
u∈C

xu(tk)).

This fact implies that all nodes u ∈ C converge to consensus and thus proves the
result. �

Remarkably,Theorem3.2does not contain any connectivity assumptionother than
cut-balance. As a consequence, it does not guarantee consensus among all states, but
only convergence and “local” consensus inside each connected component of the
limit graph. Global consensus can instead be obtained by restoring an assumption of
global connectivity, as in the following two results which immediately follow from
Theorem 3.2.

Corollary 3.1 (Time-dependent consensus II) Consider system (3.1). Assume that

(i) the set of matrices {P(t)} is nondegenerate;
(ii) for every t ≥ 0, the graph GP(t) is cut-balanced; and

(iii) for every t ≥ 0, the graph
⋃

s≥0

GP(t+s) is weakly connected.

Then, x(t) converges to a point in span{1} from every initial condition in R
V .

Note that condition (iii) is equivalent to G∞ being strongly connected (as the reader
may verify). As a special case, we recover the following result on convergence for
symmetric graphs. We note that this theorem does not require the matrix P(t) to
be symmetric but just its induced graph to be symmetric, i.e., to encode reciprocal
communications.

Corollary 3.2 (Time-dependent consensus III) Consider system (3.1). Assume that

(i) the set of matrices {P(t)} is nondegenerate;
(ii) for every t ≥ 0, the graph GP(t) is symmetric; and

(iii) for every t ≥ 0, the graph
⋃

s≥0

GP(t+s) is connected.

Then, x(t) converges to a point in span{1} from every initial condition in R
V .

We stress that these two results do not require any uniform connectivity assumption,
and indeed, their proofs do not rely on Lemma2.1, as opposed to Theorem 3.1. As
an example, Corollary 3.2 implies that the sequence P1(t) in Example 3.1 leads to a
consensus.

The interest in a convergence result such as Theorem 3.2, which avoids con-
nectivity assumptions, becomes more apparent in those contexts where checking

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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connectivity is difficult, for instance because the evolution of P(t) depends on the
current state x(t). We are going to illustrate this difficulty with a very popular exam-
ple, known as Krause’s model.

Example 3.2 (Krause’s model) In this dynamics, agent v trusts, i.e., takes into
account for its update, only those agents w whose current state xw(t) is close enough
to xv(t). More precisely, we fix a threshold ε > 0 and, for all t ∈ Z≥0 and all v ∈ V ,
we let Nv(t) = {u ∈ V : |xv(t) − xu(t)| ≤ ε}. Given ρ ∈ (0, 1], we then define the
dynamics

xv(t + 1) = xv(t) + ρ

|Nv(t)|
∑

w∈Nv(t)

(xw(t) − xv(t)) v ∈ V . (3.5)

Convergence of dynamics (3.5) can be deduced from Theorem 3.2. Notice indeed
that if we define

Pvw(t) =
⎧
⎨

⎩

1 − ρ
|Nv(t)|−1
|Nv(t)| if w = v

ρ

|Nv(t)| if w ∈ Nv(t), w �= v
0 if w /∈ Nv(t)

it is immediate to check that x(t + 1) = P(t)x(t). Notice that GP(t) is symmetric so
that assumption (ii) is verified. Nondegeneracy follows easily from the definition as
Pvv(t) ≥ 1 − ρ N−1

N for every v ∈ V while, if v �= w and Pvw(t) > 0, it follows that
Pvw(t) = ρ/|Nv(t)| ≥ ρ/N .

Notice that, in this model, the matrix P(t) actually depends on the state of agents at
time t and, as a consequence, the model is nonlinear. There is no way to guarantee a
priori uniform connectivity conditions on the sequence of corresponding graphs, so
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Fig. 3.2 A typical evolution under the time-varying dynamics (3.5) for a large number of agents:
In this case, N = 1000 and ε = 0.05. Observe that clusters are approximately 2ε apart
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that Theorem 3.1 cannot be applied. Simulations (see Fig. 3.2) demonstrate that the
limit state is not a consensus point, but instead a collection of disconnected “clusters,”
composed of agents which share the same limit opinion. Moreover, if ρ = 1, then
convergence is attained in finite time (see Exercise 3.4).

Krause’s dynamics was originally proposed to model opinion dynamics with
bounded confidence, but can also represent a simple model of one-dimensional vehi-
cle rendezvous with limited visibility. This model has received much attention in the
last years and many generalizations have been proposed: In Exercise 3.5, we study
one of these.

3.3 Randomized Updates

This section presents time-varying consensus algorithms, where the update matrix
is selected at each time step by a random process. Given a set of nodes V of finite
cardinality N , we consider for every time t ∈ Z≥0 a random vector x(t) ∈ R

V

evolving according to a random discrete-time system of the form

x(t + 1) = P(t)x(t) t ∈ Z≥0, (3.6)

where P(t) is a stochastic matrix for each t ≥ 0 and
(
P(t)

)
t≥0 is a sequence of

independent and identically distributed random variables. Note that the initial condi-
tion is unknown but fixed (not random) and that all the randomness originates from
generating the sequence of P(t)s. Consequently, in what follows the phrase “almost
surely” means “with probability 1” with respect to the matrix selection process.

We begin our discussion from the following example of randomized dynamics.
Let a symmetric graph G = (V, E) be given, and for each time step t ≥ 0, let an
edge (v, w) be chosen in E , according to a uniform distribution over E . Define

xv(t + 1) = 1

2
xv(t) + 1

2
xw(t) ,

xw(t + 1) = 1

2
xw(t) + 1

2
xv(t) ,

xu(t + 1) = xu(t), for u �= v, w .

This dynamics can be written in the form (3.6) by defining

P (v,w) = I − 1

2
(eve∗

v − eve∗
w − ewe∗

v + ewe∗
w),

where eu is the uth vector of the canonical basis of RV , and P[P(t) = P (v,w)] = 1
|E | .

We shall refer to this dynamics as the uniform symmetric gossip (USG).
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Proposition 3.3 (USG convergence) A uniform symmetric gossip dynamics con-
verges almost surely to the average of the initial conditions, provided the underlying
graph is connected.

Proof For any t0 ≥ 0 and any edge (v, w) ∈ E , where E is the edge set of the
underlying graph, we evaluate the probability of the event “the edge (v, w) is not
selected for update at any time larger than t0.” Since the probability that (v, w) is not
selected at any time t is 1− 1

|E | , the probability that (v, w) is not selected for all times

s such that t0 ≤ s < t is
(
1 − 1

|E |
)t−t0

. Since lim
t→+∞

(
1 − 1

|E |
)t−t0

= 0, we argue

that (v, w) is selected infinitely often after t0 with probability 1. This fact implies that
G∞ = G almost surely. Since G is connected, convergence can be deduced from
Corollary 3.2. �

In the following, we are going to present a more general convergence result that
subsumes Proposition 3.3.Wewill rely on the results of Sect. 3.1. To beginwith, let us
goback to system (3.6) and let us study the expecteddynamics, that is, the dynamics of
E[x(t)]. Equation (3.6) and the independence among P(t)s implyE[x(t +1)|x(t)] =
E[P(t)]x(t) for all t . Then, denoting P̄ := E[P(t)], we have

E[x(t + 1)] = P̄ E[x(t)].

Note that P̄ is a stochastic matrix. If the graph associated with P̄ has a globally
reachable aperiodic node, by Theorem2.2 we have that E[x(t)] converges to a con-
sensus point c1. Moreover, the convergence rate is given by ρ2(P̄) and c = v∗x(0),
where v is the normalized dominant left eigenvector of P̄ . In principle, convergence
of the expected dynamics does not, by itself, guarantee convergence of the random
dynamics. However, the next result provides general and intuitive conditions for the
convergence of (3.6), which are indeed based on the convergence properties of the
expected dynamics.

Theorem 3.3 (Almost sure convergence to consensus) Consider the dynamical sys-
tem (3.6) and assume that the matrices P(t) are independently and randomly sam-
pled from an ensemble P of nondegenerate stochastic matrices equipped with a
fixed probability distribution. Then, the following three facts are equivalent:

(i) for every initial condition, there exists a scalar random variable x∞ such that
x(t) converges almost surely to x∞1;

(ii) ρ2(P̄) < 1;
(iii) the “expected graph” GP̄ has a globally reachable node.

Proof (i) ⇒ (i i): Being x(t) a bounded sequence, if x(t) converges almost surely to
x∞1, then alsoE[x(t)] converges toE[x∞]1 by the dominated convergence theorem.
As E[x(t + 1)] = P̄ E[x(t)], then necessarily ρ2(P̄) < 1.

(i i) ⇒ (i i i): Under the assumption on the diagonal of P(t), the graph GP̄ has a
globally reachable node if and only if ρ2(P̄) < 1.

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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(i i i) ⇒ (i): If GP̄ has a globally reachable node, say k ∈ V , then there exists
m ∈ N such that the kth column of P̄m is positive. This implies that, for every
t0, the entry (P(t0 + m) . . . P(t0 + 1)P(t0))vk has a positive probability of being
positive: Denote such probability by pv. Now, recall that Pkk(t) > 0 almost surely:
This implies that the kth column of matrix P(t0 + Nm) . . . P(t0 +1)P(t0) is positive
with probability

∏
u∈V pu . Consequently, there exists α > 0 such that, with positive

probability, each element of this column is larger than α. Now, let us define the
sequence of times th = m Nh for h ∈ Z≥0: Reasoning as in the proof of Lemma 3.1,
we can apply Lemma2.1 to argue that

max
v∈V

xv(tk+1) − min
v∈V

xv(tk+1) ≤ (1 − α)
(
max
v∈V

xv(tk) − min
v∈V

xv(tk)
)

with a positive probability which does not depend on tk . Hence, this inequality
almost surely holds for infinitely many k and then almost surely x(t) converges to
consensus. �

It is remarkable that Theorem 3.3 translates on the expected graph of the network
the same condition for consensus that holds for time-invariant networks. Following
this analogy, onewould expect that the essential spectral radius ofE[P(t)] determines
the speed of convergence of the algorithm. A result in this direction can be found by
a suitable mean-square analysis. Let us denote the current empirical variance as

xvar(t) := 1

N
||x(t) − xave(t)1||2 = 1

N
||Ωx(t)||2,

where Ω = I − 1
N 11

∗, and define the mean-square rate of convergence as

R := sup
x(0)

lim sup
t→+∞

E[xvar(t)]1/t . (3.7)

Notice that

E[xvar(t)] = 1

N
E[x(t)∗Ωx(t)] = 1

N
x(0)∗�(t)x(0),

where
�(t) := E[P(0)∗ P(1)∗ . . . P(t − 1)Ω P(t − 1) . . . P(1)P(0)]

if t ≥ 1 and �(0) := Ω . Clearly,

�(t + 1) = E[P(0)∗�(t)P(0)].

This recursion shows that �(t) is the solution of a linear dynamical system, which
can be written in the form

�(t + 1) = L (�(t))

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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whereL : RV ×V → R
V ×V is given byL (M) = E[P(0)∗M P(0)]. The knowledge

of the operatorL , in principle, provides all information about themean-square analy-
sis. For instance, we have that R is the spectral radius of the operator L , restricted
to the smallestL -invariant subspace of RV ×V containing Ω . This characterization,
however, is not very useful, because the operator L is difficult to compute in the
applications. The next result provides rate estimates that are easier to compute.

Proposition 3.4 (Mean-square convergence rate) Consider (3.6) and the conver-
gence rate R as in (3.7). Then,

ρ2(P̄)2 ≤ R ≤ sr
(
E[P(t)∗Ω P(t)]), (3.8)

where we recall that Ω = I − N−111∗ and sr(·) denotes the spectral radius of a
matrix.

Proof We start from the first inequality. We define Q(t) = P(t − 1) . . . P(0) and
notice that

E[x∗(t)Ωx(t)] = E[||Ωx(t)||2] = E[||Ω Q(t)x(0)||2].

Now using Jensen’s inequality, we have that

E[||Ω Q(t)x(0)||2] ≥ ||E[Ω Q(t)x(0)]||2 = ||Ω P̄ t x(0)||2,

which proves the inequality.
In order to prove the second inequality, let y ∈ R

V and note

y∗
E[P(0)∗Ω P(0)]y = E[y∗Ω P(0)∗Ω P(0)Ωy]

= y∗ΩE[P(0)∗Ω P(0)]Ωy

≤ ||E[P(0)∗Ω P(0)]||y∗Ωy,

by the symmetry of the matrix. We deduce that L (Ω) ≤ ||L (Ω)||Ω . This fact,
together with the remark that if M1 ≤ M2, then L (M1) ≤ L (M2), implies that

L t (Ω) = L t−1(L (Ω)) ≤ L t−1(||L (Ω)||Ω) = ||L (Ω)||L t−1(Ω).

By iterating this reasoning, we get L t (Ω) ≤ ||L (Ω)||tΩ, which gives the
thesis. �

Note that if all matrices P(t) are symmetric, then E[P(t)∗Ω P(t)] = E[P2(t)] −
1
N 11

∗. In the special case of the USG algorithm, we further haveE[P2(t)]− 1
N 11

∗ =
E[P(t)] − 1

N 11
∗ and we can thus argue that ρ2(E[P(t)])2 ≤ R ≤ ρ2(E[P(t)]).

We now introduce two examples of randomized averaging algorithms, which can
be studiedby the above results. Thefirst example generalizes theUSGand features the
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activation of one pair of connected nodes per time step: The two nodes communicate
with each other and both update their states.

Example 3.3 (symmetric gossip algorithm (SG)) Let aweighted graphG=(I, E, W )

and q ∈ (0, 1) be given, such that W is symmetric and 1∗W1 = 1. For every t ≥ 0,
one edge (v, w) ∈ E is sampled from a distribution such that the probability of
selecting (v, w) is Wvw. Then,

xv(t + 1) = (1 − q) xv(t) + q xw(t)

xw(t + 1) = (1 − q) xw(t) + q xv(t)

xu(t + 1) = xu(t) for u �= v, w.

Both W and q can be considered in principle as design parameters, with respect to
which one can optimize the performance.

In order to analyze the SG algorithm, for every (v, w) we let

P (v,w) := I − q(ev − ew)(ev − ew)∗ = I − q(eve∗
v − ewe∗

v − eve∗
w + ewe∗

w),

where eu is the uth vector of the canonical basis of RV . Note that trivially W =∑
(v,w) Wvweve∗

w. Then, the distribution of P(t) is concentrated on these matrices and
P[P(t) = P (v,w)] = Wvw. We have that (using the notation for the Laplacian of a
matrix)

E[P(t)] =
∑

(v,w)

Wvw P (v,w)

= I − q
∑

(v,w)

Wvw(ev − ew)(ev − ew)∗

= I − 2q L(W ).

Note that if the graph associated with W is strongly connected, then the average
graph is automatically strongly connected. Since in the SG all the diagonal elements
of P(t) are nonzero with probability 1 and all the P(t)s are symmetric, we can apply
Theorem3.3 and conclude that this algorithmyields average consensus almost surely.
Moreover, noting that ‖ev − ew‖22 = 2 and

(P(v,w))2 = I − 2q(ev − ew)(ev − ew)∗ + q2(ev − ew)(ev − ew)∗(ev − ew)(ev − ew)∗

= I − 2q(1 − q)(ev − ew)(ev − ew)∗,

we argue that

E[P(t)∗Ω P(t)] = E[P(t)2] − 1

N
11∗ = Ω − 4q(1 − q)L(W ).

Then, by applying Proposition 3.4, we can estimate the convergence rate as
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ρ2(I − 2q L(W ))2 ≤ R ≤ sr(Ω − 4q(1 − q)L(W ))

and, provided we denote by λ the smallest nonzero eigenvalue of L(W ), as

1 − 4qλ ≤ R ≤ 1 − 4q(1 − q)λ.

The next example features the activation of one node per time step. The activated
node communicates its current state to all its neighbors, which in turn update their
states. We note that the algorithm is inherently asymmetric: As a consequence, the
average of the initial states is not preserved.

Example 3.4 (Broadcast gossip algorithm (BG)) Let there be q ∈ (0, 1) and a
directed graph G = (V, E) whose adjacency matrix is denoted by A ∈ {0, 1}V ×V .
For every t ≥ 0, one node w is sampled from a uniform distribution over V . Then,

xv(t + 1) = (1 − q) xv(t) + q xw(t) if Avw > 0

xv(t + 1) = xv(t) otherwise.

In other words, one randomly selected node broadcasts its value to all its neighbors,
which update their values accordingly.

For the analysis of this algorithm, we define

P (w) = I − q
∑

v:Avw>0

(eve∗
v − eve∗

w)

and note that P[P(t) = P (w)] = 1
N . Then,

E[P(t)] = I − q

N
L .

If the graph G is strongly connected, then the algorithm converges to consensus
almost surely. Before we further investigate the properties of the BG algorithm, we
assume that the graph is topologically balanced, i.e., A1 = A∗1. This property in
particular implies that 1∗L = 1∗ and then E[x∞] = xave(0). Moreover, the reader
may compute that

E[P(t)∗ P(t)] = I − q(1 − q)

N
(L + L∗) (3.9a)

E[P(t)∗11∗ P(t)] = 11∗ + q2

N
L L∗. (3.9b)

As a consequence, the convergence rate can be estimated using Proposition 3.4 as

ρ2

(
I − q(1 − q)

N
(L + L∗)

)2

≤ R ≤ sr

(
Ω − q(1 − q)

N
(L + L∗) − q2

N 2
L L∗

)



84 3 Averaging in Time-Varying Networks

If we denote by 2λ the smallest nonzero eigenvalue of L + L∗, and we remark that
L L∗ is positive semidefinite, the above bounds can be simplified to

1 − 4
q(1 − q)

N
λ ≤ R ≤ 1 − 2

q(1 − q)

N
λ.

We have seen that, provided the graph is balanced, the BG algorithm yields
E[x∞] = xave(0). Considering that x∞ is a random variable, its spreading around the
mean value needs to be evaluated. To this aim, we introduce the mean-square error
E

[
(x∞ − xave(0))2

]
and below we provide a technical tool to estimate it. In order to

state the result, it is again convenient to denote the empirical variance as

xvar(t) := 1

N

N∑

i=1

(
xi (t) − xave(t)

) = 1

N
x∗Ωx(t).

Theorem 3.4 (Accuracy condition) Consider dynamics (3.6) and assume that
1∗ P̄ = 1∗ and that there exists γ > 0 such that1

E[P∗11∗ P] − 11∗ ≤ γ
(
I − E[P∗ P]). (3.10)

Then,
E

[
(xave(t) − xave(0))

2
] ≤ γ

N + γ
E [xvar(0) − xvar(t)] . (3.11)

If additionally GP̄ has a globally reachable node, then

E
[
(x∞ − xave(0))

2
] ≤ γ

N + γ
xvar(0). (3.12)

Proof In the proof, we shall use the notation xave = N−11∗x and xvar = N−1x∗Ωx
to denote the empirical average and variance of a generic vector x ∈ R

V . We let

C(x) := N (γ + N )x2
ave + Nγ xvar

= N (γ + N )

N 2
x∗11∗x + Nγ

N
x∗

(
I − 1

N
11∗

)
x

= x∗
(
11∗ + γ I

)
x .

Then, for a generic stochastic matrix P , we have that

C(Px) − C(x) = x∗
(

P∗11∗ P + γ P∗ P − 11∗ − γ I
)

x .

1In this result, inequalities between matrices like A ≤ B have to be intended as A − B being
negative semidefinite.
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Consequently, condition (3.10) implies that for dynamics (3.6)

E[C(x(t + 1)) − C(x(t))|x(t)] =x(t)∗
(
E[P∗11∗ P + γ P∗ P] − 11∗ − γ I

)
x(t) ≤ 0

and E[C(x(t))] ≤ C(x(0)) for all t ∈ N. This inequality can be rewritten as

E
[
xave(t)

2 − xave(0)
2] ≤ γ

N + γ
E [xvar(0) − xvar(t)] .

This inequality implies (3.11) if xave(0) = 0: The general case follows by applying
this special case to the translated dynamics x − xave(0)1. Finally, inequality (3.12)
is an immediate corollary of convergence. �

In the case of the broadcast gossip algorithm, (3.9) implies that (3.10) reads

q2

N
L L∗ ≤ γ

q(1 − q)

N
(L + L∗),

which holds true for γ = dmax
q

1−q because for balanced graphs L L∗ ≤ dmax(L+L∗).
Consequently,

E
[
(x∞ − xave(0))

2
] ≤ q

1 − q

dmax

N
xvar(0).

Remarkably, as long as dmax = o(N ), this upper bound goes to zero as N goes to
infinity, that is, the error committed by the algorithm in approximating the average
becomes negligible on large networks.

Exercises

Exercise 3.1 (Strong positivity [35]) Consider the sequence of matrices

P(t) =
(
1 − αt αt

αt 1 − αt

)

where αt ∈ [0, 1] is a given sequence. Observe that all P(t) are aperiodic and
irreducible.

(i) Prove that, if αt ≥ α > 0 for all t , then the sequence P(t) leads to a consensus.
(ii) For sequences αt → 0 when t → +∞, find sufficient conditions on the speed

of convergence which guarantee that P(t) leads to a consensus.
(iii) Find an explicit example of a sequence αt → 0 for t → +∞, for which P(t)

does not lead to a consensus.

Exercise 3.2 (Time-varying consensus on the line graph) Let V = {0, . . . , N − 1}
and consider the directed line graphL = (V, E). Let the vector eu ∈ R

V be such that
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the vth component of eu is equal to 1 if v = u and to 0 otherwise, and define thematrix
P (u,v) = I − 1

2 (eue∗
u − eue∗

v ). Consider a time-dependent consensus algorithm (3.1)
with

P(t) = P (k,k+1) where k = t (mod N ).

(i) Verify that the dynamics satisfies the assumptions of Theorem 3.1, and find the
minimal T for the connectivity assumption.

(ii) Verify that the dynamics satisfies the assumptions of Lemma 3.1, finding the
suitable value of B. Compare B with the value of T found in (i).

Exercise 3.3 (Uniform connectivity [35]) Consider (3.1) with x(0) = (0, 1, 1)∗ and
the sequence {P(t)}t defined as follows. Let

P1 =
⎡

⎣
1 0 0
1/2 1/2 0
0 0 1

⎤

⎦ P2 =
⎡

⎣
1/2 1/2 0
1/2 1/2 0
0 0 1

⎤

⎦

P3 =
⎡

⎣
1 0 0
0 1/2 1/2
0 0 1

⎤

⎦ P4 =
⎡

⎣
1 0 0
0 1/2 1/2
0 1/2 1/2

⎤

⎦

and Qs = P1, . . . , P1︸ ︷︷ ︸
2s

, P2, P3, . . . , P3︸ ︷︷ ︸
2s+1

, P4. Assume the sequence P(t) is the concate-

nation of Q0, Q1, Q2, . . .. Then, show that x(t) does not converge to a consensus.

Exercise 3.4 (Krause’s convergence time) Consider Krause’s dynamics (3.5).

(i) Show that the order between opinions is preserved, i.e., for all t ≥ 0, if xv(t) ≤
xw(t), then xv(t + 1) ≤ xw(t + 1). This implies that we can assume (without
loss of generality) that the agents are sorted, i.e., if v < w, then xv < xw.

(ii) Show that if at some time t the distance between two consecutive agent opinions
xv(t) and xv+1(t) is larger than ε, then it remains so for all time s > t .

(iii) Assume from now on that ρ = 1. Show that there exist T ∈ N and x̃ ∈ R
V

such that x(t) = x̃ for all t ≥ T .
(iv) Show that for all v, w ∈ V , either |x̃v − x̃w| > ε or x̃v = x̃w.
(v) Estimate the worst-case converge time T̄ = supx(0) inf{t : x(t) = x̃} ([5,

Sect. 4.6.1]).

Exercise 3.5 (Unbounded confidence) Consider the following generalized Krause’s
model. Fix a continuous function ξ : [0,+∞) → [0,+∞) such that ξ(x) > 0 for
all x ≥ 0, and define

xv(t + 1) = xv(t) + ρ
∑

w∈V
ξ(|xw(t) − xv(t)|)

∑

w∈V

ξ(|xw(t) − xv(t)|)(xw(t) − xv(t)) ,

(3.13)
where ρ ∈ (0, 1). Fix some initial condition x(0) and let P(t) be the sequence of
matrix such that x(t + 1) = P(t)x(t).
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(i) Prove that the sequence P(t) is nondegenerate and conclude, using Corol-
lary 3.2, that it leads to a consensus.

(ii) Assume that ξ(x) = e−x2
and let d(t) = max{xu(t)} − min{xu(t)}. Using

Lemma2.1, prove that

d(t + 1) ≤
(
1 − e−d(t)2

)
d(t)

(iii) Assuming that x(0)v ∈ [−1, 1] for all v ∈ V , find, for fixed ε > 0, an estimate
of the convergence time

tε := inf{t | d(t) ≤ ε}

Compare this estimate with explicit simulations of (3.13) for N = 10.

Exercise 3.6 (Broadcast on a star) Let SN = (V, E) be a star with N leaves.
Consider the following randomized consensus algorithm. For all positive integers
t , sample one node w from a uniform distribution over V , and update the states as
follows:

xv(t + 1) = (1 − q)xv(t) + qxw(t) if (v, w) ∈ E

xv(t + 1) = xv(t) if (v, w) /∈ E .

The update parameter satisfies q ∈ (0, 1).

(i) Write down the update rule for the proposed algorithm in matrix form.
(ii) Compute the expected update matrix P̄ = E[P(t)].
(iii) Let xave(t) = 1

N

∑
v∈V xv(t). Verify that, although in general xave(t + 1) �=

xave(t), nevertheless E[xave(t + 1)] = E[xave(t)].
(iv) Show that the algorithm ensures almost sure convergence of the states.
(v) Compute the second largest eigenvalue of P̄ . To this goal, you may use Exer-

cise2.18.
(vi) Estimate the convergence rate R of the algorithm as a function of q and N , and

conclude that limN→∞ R = 1 irrespective of q.

Exercise 3.7 (Triplet-gossip) Consider the following random dynamics on a com-
plete graph G = (V, E). At every discrete-time step t , three agents u, v, w are
uniformly and independently sampled from V , and they update their internal state
as follows:

xu(t + 1) = xv(t + 1) = xw(t + 1) = xu(t) + xv(t) + xw(t)

3

Let P(t) be the corresponding matrix acting on the full vector x(t).

(i) Compute P = E[P(t)], its eigenvalues, and its spectral gap.
(ii) Give an estimation of E||Ωx(t)||2 analogous to what is done for the pairwise

gossip algorithm in Example 3.3.

http://dx.doi.org/10.1007/978-3-319-68022-4_2
http://dx.doi.org/10.1007/978-3-319-68022-4_2
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Exercise 3.8 (Asynchronous asymmetric gossip algorithm (AAGA)) This exercise
gives an example of randomized algorithm, in which one directed edge is activated
at each time step, resulting in an asymmetric update rule.

Let a weighted graph G = (V, E, W ) and q ∈ (0, 1) be given, such that W1 =
W ∗1 and 1∗W1 = 1. For every t ≥ 0, one edge (v, w) is sampled from a distribution
such that the probability of selecting (v, w) is Wvw. Then, we define

xv(t + 1) = (1 − q) xv(t) + q xw(t) (3.14)

and xu(t + 1) = xu(t) for u �= v.

(i) Verify that (as proved in [18, Sect. 4])

E[P(t)] = I − q L(W )

E[P(t)∗ P(t)] = I − q(1 − q)L(W + W ∗)

E[P(t)∗11∗ P(t)] = 11 + q2L(W + W ∗).

(ii) Assume from now on that the graph G is strongly connected. Prove that sys-
tem (3.14) almost surely converges to a limit value x∞ such that E[x∞] =
xave(0) and

E
[
(x∞ − xave(0))

2
] ≤ q

1 − q

1

N
xvar(0).

(iii) Assume moreover that W is symmetric and denote by λ the spectral gap of
L(W ). Show that the convergence rate is bounded by

1 − 2qλ ≤ R ≤ 1 − 2q
(
(1 − q) + q

N

)
λ,

provided N is large enough.

Bibliographical Notes

Deterministic networks. Our choice of results on deterministic time-dependent
consensus mostly consist of necessary and sufficient conditions for convergence.
While the convergence analysis of time-invariant averaging dates back at least to
De Groot [13] in 1974, sufficient conditions for the time-varying case were given
by [45] in 1984 and later by [7, 8, 28, 31]. The results on convergence to consensus
that we present in Sect. 3.1 appeared, in quite a different formulation, in [35]: The
counterexample in Exercise 3.3 is in the original paper. Our version of the results is
based on the analysis in [24, 27].

In consensus-seeking systems, results which do make a “global” assumption of
connectivity can ensure convergence but possibly not consensus. Such results are
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motivated by the difficulty to satisfy, in some applications, connectivity conditions
over time. In this spirit, we have presented Theorem 3.2, which is more general than
early results as those in [31]. The result can be found in [25, Theorem 2]: We present
it here with a proof which is adapted to the rest of our arguments. The works [26, 27]
developed the notion of cut-balance, which has been used and extended in several
subsequent works, including [11, 33, 42, 44]. However, it is clear that in certain
applications, e.g., vehicle rendezvous, mere convergence is not satisfactory. For this
reason, there has been much work devoted to variations of the consensus algorithm,
which inherently guarantee connectivity. A discussion about this connectivity main-
tenance issue may be found, for instance, in [5, Chap. 4]. In the opposite direction,
Krause’s model is a simple but very interesting example of a consensus-seeking
dynamics without a global connectivity assumption. The dynamics was originally
proposed in [23, 29], as amodel for opinion dynamics with bounded confidence [32].
Krause’s dynamics have been the topic of several works [2], which have also con-
sidered variations of the dynamics that feature continuous-time evolution [3, 9],
multi-dimensional opinions [16, 38], heterogenous thresholds [34], and continua of
agents [3, 6].

Instead, we did not investigate much two important issues that have been dis-
cussed in detail in Chap.2 for time-invariant networks: speed of convergence and
limit state. Studying the speed of convergence of time-dependent consensus algo-
rithms is indeed quite delicate. First, it is essential to assume connectedness on
bounded interval; otherwise, the algorithm can be arbitrarily slowed down by intro-
ducing arbitrary sequences of disconnected graphs.Moreover, even if connectivity on
bounded intervals is assumed, the convergence time can be large (as in Exercise 3.2),
even exponentially large in the interval size and in N : We refer to [37] for a detailed
discussion. Results have been proved for specific dynamics, such as Krause’s, see
Exercise 3.4 and [15]. Stronger results can be found by assuming the matrices P(t)
to be nondegenerate and their associated graphs connected at each time step: Recent
results in this framework can be found in [36]. Also the issue of determining the
consensus (or convergence) point has no simple answer in the literature. In princi-
ple, such an analysis reduces to studying the absolute probability vectors as defined
in [39]. Explicit results, however, are only available in special cases: For instance,
see [2] for a partial description of the limit states of Krause’s dynamics and [46] for
some recent developments on this matter.
Randomized networks. Theorem 3.3 was originally proven in [19, 40]. The proof
presented here is new, although inspired by [40], and has been written to seam-
lessly take advantage of our treatment of the deterministic case. We acknowledge
that Theorem 3.3 is not the most general convergence result for randomized con-
sensus dynamics, because it requires positivity of the diagonal and statistical inde-
pendence of the update matrices. This independence assumption can be significantly
relaxed, at the price of using more subtle probabilistic tools. In [41], the condition
ρ2(E[P(t)]) < 1 is proven to be necessary and sufficient for consensus, under the
more general assumption that the sequence P(t) is generated by an ergodic sta-
tionary process (and has positive diagonals). In [30], it is proved that in fact any
adapted stochastic process is suitable, provided certain assumptions of uniform con-

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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nectivity hold. Also the assumption of positivity of the diagonal can be relaxed. A
necessary and sufficient condition for convergence, which does not require to assume
that the diagonal is positive, can be found in [19, Theorem 3.1] and is due to Cog-
burn [10]. An intermediate useful condition is strong aperiodicity as defined in [42].
Very general conditions for adapted processes of “balanced” stochastic matrices are
provided in [43].

For randomized dynamics, we have presented some estimates on the speed of
convergence, byusing themean-square analysis developed in [19].Another important
topic is studying the random variable x∞ and its distance from xave(0). Obtaining a
complete characterization of the distribution of x∞ seems to remain an open problem,
but a few practical results are available to estimate its variance. In principle, the
variance of the consensus value can be exactly computed by the formula in [41,
Eq. (7)], which involves the dominant eigenvectors of the first two moments of the
update matrix: However, this characterization can be inconvenient in the applications
anddoes not provide clear insights on the scaling for large networks.More recently, an
effective estimate has been derived in [22], providing conditions for the variance to go
to zero as N goes to infinity. This result, which we presented in Theorem 3.4, covers
a wide class of randomized algorithms that involve asymmetric communication or
packet losses [20, 21].

There is a large variety of examples in randomized consensus dynamics, and our
selection has focused on two models which have possibly been the most popular in
recent literature [14]. The symmetric gossip algorithm in Example 3.3 was popular-
ized in the systems and control community by the influential work [4]. The broad-
cast gossip algorithm in Example 3.4 has attracted a significant attention, because it
involves broadcast communication and thus applies very naturally to wireless net-
works [1, 17, 19]: Formulas (3.9) can be found in [1, Lemma 4]. As we have shown,
the consensus value of BG does not coincide with the average of the initial con-
ditions, but this bias becomes negligible for large networks [22]. Another intuitive
algorithm with the same property is the asymmetric gossip algorithm [18], which we
introduce in Exercise 3.8. Finally, we would like to mention that there exist dynam-
ics that combine gossiping and bounded confidence, proposed as opinion dynamics
models [12, 47].
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Chapter 4
Performance and Robustness of Averaging
Algorithms

Abstract This chapter has the goal of introducing more instruments for the study of
consensus algorithms. We will define several performance metrics: Each proposed
metric highlights a specific aspect of the algorithm, possibly in relation with a field
of application. Namely, we shall consider the speed of convergence in Sect. 4.1,
a quadratic control cost in Sect. 4.2, the robustness to noise in Sect. 4.3, and the
estimation error in a distributed inference problem in Sect. 4.5. The metrics that we
describe share the following feature: under suitable assumptions of symmetry of the
update matrix, they can be evaluated as functions of the eigenvalues of the update
matrix.

4.1 A Deeper Analysis of the Convergence to Consensus

We consider the usual time-invariant consensus dynamics

x(t + 1) = Px(t), (4.1)

where the matrix P is adapted to a strongly connected aperiodic graph G = (V, E)

of order N . For simplicity, we assume that the matrix P is symmetric, although this
assumption can be relaxed to some extent. The eigenvalues of P are denoted as
μi for i ∈ {1, . . . , N } and μ1 = 1. We recall that the second eigenvalue is defined
as ρ2 = max{|μi |, i = 2, . . . , N }. When convenient, we will also make suitable
assumptions on the statistics of the initial condition.

In Chap.2, the speed of convergence to the consensus value of dynamics (4.1)
has been estimated in terms of the second eigenvalue ρ2 of the matrix P . From
Proposition 2.2 andCorollary 2.3,we can recall that the second eigenvalue determines
the convergence rate according to the estimate

N−1||Pt x(0) − N−111∗x(0)||2 ≤ ρ2t
2 N−1||x(0)||. (4.2)

© Springer International Publishing AG 2018
F. Fagnani and P. Frasca, Introduction to Averaging Dynamics
over Networks, Lecture Notes in Control and Information Sciences 472,
https://doi.org/10.1007/978-3-319-68022-4_4

93

http://dx.doi.org/10.1007/978-3-319-68022-4_2
http://dx.doi.org/10.1007/978-3-319-68022-4_2
http://dx.doi.org/10.1007/978-3-319-68022-4_2


94 4 Performance and Robustness of Averaging Algorithms

Notice that we have multiplied both sides of the inequality by N−1. Indeed, in the
large-scale limit N → +∞, it makes sense to consider the normalized version of the
squared norm N−1|| · ||2, because |x(0)v| ≤ ε for every v ∈ V yields N−1||x(0)||2
≤ ε2.

There are applications, however, where estimate (4.2) turns out to be too loose
or simply not adequate to the specific context. We consider the simplest such case,
where the initial conditions x(0)v are assumed to be realizations of independent
random variables with mean m and variance σ 2. From (4.2), by taking the mean
value we obtain:

N−1
E||Pt x(0) − N−111∗x(0)||2 ≤ σ 2ρ2t

2 . (4.3)

Actually, in this case, it is possible to work out an exact characterization of the
mean distance:

1

N
E||Pt x(0) − N−111∗x(0)||2 = 1

N
E[‖(Pt − N−111∗)x(0)‖2]

= 1

N
E[tr((Pt − N−111∗)x(0)x(0)∗(Pt − N−111∗))]

= 1

N
[tr((Pt − N−111∗)E[x(0)x(0)∗](Pt − N−111∗))]

= σ 2

N
tr(P2t − N−111∗). (4.4)

This formula can be rewritten in terms of the Frobenius norm of a square matrix A,

formally defined as ||A||F := √
tr(AA∗). In our case, we have that

||Pt − N−111∗||F =
√
tr(P2t − N−111∗) =

√√
√
√

N∑

i=2

|μi |2t .

Therefore,

N−1
E||Pt x(0) − N−111∗x(0)||2 = σ 2

N
||Pt − N−111∗||2F = σ 2

N

N∑

i=2

|μi |2t . (4.5)

Notice how (4.2) can be directly obtained from (4.5) by simply upper bounding
||Pt − N−111∗||F ≤ Nρ t

2. To illustrate the relation between these two estimates, we
propose a few examples.

Example 4.1 (Complete graph) If P = N−111∗, we trivially have that Pt − N−1

11∗ = 0 for every t so that ||Pt − N−111∗||F = 0. On the other hand, we also have
that ρ2 = 0. The two estimates coincide in this case.

Example 4.2 (Disconnected graph) Consider now the simple random walk associ-
ated with a disconnected graph consisting of two complete isolated graphs with N/2
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nodes each (N is assumed to be even):

P =
[ 2

N 11
∗ 0

0 2
N 11

∗

]
. (4.6)

The eigenvalues of P are 1 with multiplicity 2 and 0 with multiplicity N − 2. There-
fore,

||P t − N−111∗||F = 1, and ρ2 = 1.

In this case, expressions (4.5) and (4.2) respectively become, for t ≥ 1,

N−1
E||P t x(0) − N−111∗x(0)||2 = σ 2N−1,

N−1
E||P t x(0) − N−111∗x(0)||2 ≤ σ 2.

Clearly, they are significantly different in terms of N . Notice in particular that the
first bound says that, for large N , the mean distance from consensus is small for
every value of t ≥ 1. This difference seems in contrast with the fact that the simple
random walk on a disconnected graph does not lead to a consensus. However, notice
that the consensus values on the two components are both small for large N with high
probability because of the law of large numbers, and therefore, the two consensus
values are close to each other.

Perhaps more interestingly, this inconsistency between the two estimates is not
limited to disconnected graphs, as we show in the following example, which is in
fact a slight modification of the previous one.

Example 4.3 (Barbell graph) A barbell graph, defined for even N , is a graph com-
posed of two disjoint cliques connected by an edge. The SRW is now

P̃ = P +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2/N 2/N
2/N −2/N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where P is the SRW (4.6). Matrix P̃ has eigenvalue 1 with multiplicity 1, eigenvalue

0 with multiplicity N − 3 and two simple eigenvalues 1
2 − 2

N ± 1
2

√
1 + 8

N − 16
N 2 .

Here, we rare facing a bottleneck phenomenon due to the single edge connecting the
two cliques and this results in a very slow convergence rate ρ2(P) = 1 − 8

N 2 + o( 1
N 2 )

as N → ∞. Nevertheless, for all t ≥ 1, it holds
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||P t − N−111∗||2F =
(
1

2
− 2

N
+ 1

2

√

1 + 8

N
− 16

N2

)2t

+
(
1

2
− 2

N
− 1

2

√

1 + 8

N
− 16

N2

)2t

≤ 2

N
.

As in the previous example, the estimation error becomes small already from the first
iteration if N is large, but this cannot be seen in the estimation that uses the second
eigenvalue ρ2.

4.2 Rendezvous and Linear-Quadratic Control

The mean convergence rate introduced in Sect. 4.1 is related to the analysis of var-
ious other cost functionals. In this section, we consider the consensus dynamics in
the context of the rendezvous application, interpreting it as a closed-loop feedback
control:

x(t + 1) = x(t) + u(t) where u(t) = (P − I )x(t).

In this, setting a popular cost functional to measure the control performance of the
systems is the quadratic cost defined as JLQ := Jx + ε Ju , where ε is a positive weight
and

Jx := N−1
∞∑

t=0

E||x(t) − N−111∗x(0)||2 (4.7)

Ju := N−1
∞∑

t=0

E||u(t)||2. (4.8)

Cost Jx measures the speed of convergence to consensus, whereas Ju measures the
control effort needed to achieve it. The two functionals Jx and Ju can be expressed
in terms of the eigenvalues {μi } as shown in the following result.

Proposition 4.1 (LQ cost) If the stochastic matrix P is irreducible aperiodic and
symmetric, then

Jx = σ 2

N

∞∑

t=0

||P t − N−111∗||2F = σ 2

N

N∑

i=2

1

1 − μ2
i

Ju = σ 2

N

∞∑

t=0

||P t+1 − P t ||2F = σ 2

N

N∑

i=2

1 − μi

1 + μi

Proof The expression for Jx is a straightforward consequence of (4.5). Regarding
Ju , the first equality comes from a computation analogous to (4.4). The second one
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instead follows from the observation that the eigenvalues of (Pt+1 − P t )2 are given
by {(μt+1

i − μt
i )
2} = {μ2t

i (1 − μi )
2}. �

The values of Jx and Ju can be effectively estimated or computed in several
examples. In general, it is immediate to see that

N − 1

N
≤ Jx

σ 2
≤ 1

1 − ρ2
2

,

where both bounds are tight (take P = N−111∗). The lower bound implies that Jx is
never infinitesimal in the number of nodes, while the upper bound implies that Jx is
limited if the second largest eigenvalue of P is bounded away from one. Otherwise,
Jx may or may not diverge as N goes to infinity, as shown in the example below.

Let us consider the lazy simple random walk matrix P = (2d + 1)−1(I + A) on
a d-dimensional torus Cd

n . Eigenvalues can easily be obtained from the eigenvalues
of L(A) computed in Example 1.8:

μ(h1,...,hd ) = 1

2d + 1

(

1 + 2
d∑

i=1

cos
2π

n
hi

)

, h1, . . . , hd ∈ {0, 1, . . . , n − 1}

Notice now that

Jx = σ 2

nd
∑

(h1,...hd )
=0

1

1 − |μ(h1,...,hd )|2

can be interpreted as a Riemann sum of the function f : [0, 1]d \ {0} → R given by

f (x) = σ 2

1 −
∣
∣
∣
∣

1
2d+1

(
1 + 2

d∑

i=1
cos 2πxi

)∣
∣
∣
∣

2

Notice that f (x) presents a singularity in 0: Precisely, we have that f (x) =
�(||x ||−2) for x → 0.This implies that in dimensiond ≥ 3, function f is (absolutely)
integrable on [0, 1]d . This, combinedwith the fact that f (x) ismonotonicwith respect
to the each component of x in a neighborhood of 0, implies that

lim
n→+∞ Jx =

∫

[0,1]d
f (x)d x < +∞

In particular this shows that on a d-dimensional torus, with d ≥ 3, Jx is bounded
in N . Instead, in dimension 1 and 2, f is no longer integrable and previous argument
cannot be applied. Indeed in both cases, Jx turns out to be unbounded in N . In
dimension one, an explicit computation shows that (letting σ = 1):

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Jx = 1

N

N−1∑

h=1

1

1 − 1
9 (1 + 2 cos

(
2π
N h

)
)2

≥ N−19/4

2 − cos
(
2π
N

) − cos2
(
2π
N

) ≥ 3

8π2
N .

(4.9)
A more detailed analysis including the two-dimensional case is provided in Exer-
cise 5.11, by using the tools developed in that chapter.

On the contrary, Ju shows better scaling properties: for the lazy SRWon the cycle,

Ju = 1

N

N−1∑

h=1

1 − cos
(
2π
N h

)

2 + cos
(
2π
N h

) ,

which is clearly bounded in N . By interpreting it as a Riemann sum one can see that,
more precisely,

lim
n→+∞ Ju =

∫ 1

0

1 − cos(2πx)

2 + cos(2πx)
d x = √

3 − 1.

Other examples are given in Exercise 4.10. More generally, Ju can be shown to be
bounded under weak assumptions. To this goal, we recall a well-known property of
the spectrum of a matrix.

Lemma 4.1 (Gershgorin) Let A be an n × n matrix. Then,

spec(A) ⊂
⋃

i∈{1,...,n}
{z ∈ C : |z − aii | ≤

∑

j 
=i

|ai j |}.

An immediate application of this lemma yields the following result.

Proposition 4.2 (Boundedness of Ju) Let P be such that Pvv > 0 for all v ∈ V , and
denote α = minv Pvv. Then,

Ju ≤ 1 − α

α
.

4.3 Robustness Against Noise

In this section, we analyze the behavior and performance of consensus algorithms
under the presence of noise in the dynamics. As we will see, cost functionals similar
to those introduced above naturally come up in this case. Noise is unavoidable in
many applications. Instances can be imprecisions in the motion of robots in the
rendezvous problem or quantization errors in digital transmissions among the nodes
of the network. In this section, we analyze the effects of noise in several models
where the consensus dynamics is perturbed in different ways. We recall the standing
assumption that P is a symmetric stochastic matrix.

We start considering the case when noise enters additively in the update equation
(this can be a model for the robots motion error):

http://dx.doi.org/10.1007/978-3-319-68022-4_5
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x(t + 1) = Px(t) + n(t) (4.10)

We assume the nv(t) to be independent random variables with mean 0 and variance
σ 2. Notice first that the mean value is governed by E[x(t + 1)] = PE[x(t)] so that,
if P is irreducible and aperiodic, we have convergence to the average consensus:
E[x(t)] → N−111∗x(0) (here, x(0) is seen as deterministic). If we define m(t) =
N−1 ∑

v xv(t) and μ(t) = N−1 ∑
v nv(t), Eq. (4.10) implies that

m(t + 1) = m(t) + μ(t). (4.11)

Consequently,

m(t) = m(0) +
t−1∑

s=0

μ(s)

Notice that each μ(t) is a r.v. with mean 0 and variance σ 2/N . Therefore, we can
conclude that m(t) is a process with

E[m(t)] = m(0), Var[m(t)] = σ 2 t

N
. (4.12)

This shows how noise accumulates into the linear dynamics (essentially because of
its marginally stable structure) and creates such unbounded effects on the average
dynamics. A similar phenomenon takes place if we measure the distance of the
process from a consensus point. Consider indeed the following functional

Jnoise = 1

N
lim

t→+∞E||x(t) − N−111∗x(t)||2 (4.13)

Remarkably, Jnoise coincides with the functional Jx introduced to describe the LQ
cost functional.

Proposition 4.3 (Noise cost) Suppose that P is a symmetric irreducible and aperi-

odic stochastic matrix. Then, Jnoise = Jx = σ 2

N

+∞∑

t=0
||P 2 t − N−111∗||2F .

Proof It follows from (4.10) that, for every time t , it holds

x(t) = P t x(0) +
t−1∑

s=0

Psn(t − s − 1)

which yields
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E||x(t)− N−111∗ x(t)||2 = E||(P t − N−111∗)x(0)||2

+
t−1∑

s=0

t−1∑

s′=0

E[(Ps − N−111∗)n(t − s − 1)]∗[(Ps′ − N−111∗)n(t − s′ − 1)]

+ 2
t−1∑

s=0
E[((P t − N−111∗)x(0))∗(Ps − N−111∗)n(t − s − 1)]

Now, the first term converges to 0, when t → +∞, because of the assumptions
made on P . The third term is 0 because all noises are zero mean. Finally, the second
term can be rewritten as

σ 2
t−1∑

s=0

tr[P2s − N−111∗] = σ 2
t−1∑

s=0

||Ps − N−111∗||2F

where we have used the independence assumption on the noises. By taking the limit
t → +∞, we obtain the result. �

The example in Eq. (4.9) implies then that Jnoise is in general unbounded in N
for large-scale graphs. Moreover, Eq. (4.12) shows that the variance of the average
value diverges with time. These considerations demonstrate that consensus dynamics
is sensitive to additive noise: This sensitivity is stronger for matrices P that have
eigenvalues closer to the unit circle. Actually, when the dispersion of the initial
condition is small with respect to the variance of the noise and to the number of nodes
N , running a consensus algorithm may even be detrimental in terms of E||x(t) −
N−111∗x(t)||2. These circumstances are explored in Exercise 4.8. Even outside such
extreme cases, sensitivity to noise can be a problem in practical applications and some
countermeasures against noise have thus been proposed. A useful idea is replacing
the time-invariant averaging dynamics with a time-varying version that smooths out
the effects of noise by employing a “decreasing gain” strategy.We do not cover these
more refined algorithms here, but some literature pointers are given at the end of this
chapter.

4.4 Robustness Against Quantization Errors

If we assume that communication among units takes place through digital chan-
nels, then the communicated states will be affected by rounding (or quantization)
errors. These errors are unavoidable because the state is real-valued, whereas the
communicated values are discrete. These errors, which depend on the state and on
the quantization rule, can be modeled as independent stochastic noises with zero
mean and with variance σ 2 determined by the precision of the approximation. This
modeling leads to consider a dynamics like

x(t + 1) = P
(
x(t) + n(t)

)
. (4.14)
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It is easy to realize that this dynamics suffers from the same drawbacks as dynamics
(4.10). In particular, the average processm(t) is governed by the same relation (4.11),
and consequently, the same conclusions on the moments (4.12) can be drawn. More-
over, the functional defined as in (4.13) can be evaluated similarly to Proposition 4.3,
as detailed in Exercise 4.7.

Notice, however, that in this case one can run, instead of (4.14), the alternative
averaging dynamics

x(t + 1) = P
(
x(t) + n(t)

) − n(t). (4.15)

In this dynamics, we subtract the noise n(t): This operation is feasible as it is realistic
to assume that each node v knows nv(t), that is, the quantization error affecting its
own value. This dynamics is chosen with the purpose of reducing the effect of the
noise. Indeed, differently from (4.10), dynamics (4.15) deterministically preserves
the average of the initial condition:

N−111∗x(t + 1) = N−111∗x(t) + N−111∗n(t) − N−111∗n(t) = N−111∗x(t).

The asymptotical dispersion around the average can be evaluated by using the func-
tional

Jq = lim
t→+∞E||x(t) − N−111∗x(t)||2,

which is formally defined as (4.13) but with the understanding that here x(t) fol-
lows (4.15). Perhaps surprisingly, Jq coincides with the functional Ju introduced to
describe the LQ cost functional, as the reader can verify as an exercise.

Proposition 4.4 (Quantization cost) Suppose that P is a symmetric irreducible and

aperiodic stochastic matrix. Then, Jq = Ju = σ 2

N

∞∑

t=0
||Pt+1 − P t ||2F .

By recalling the results of Sect. 4.2, the reader can see that the effect of noise is
largely reduced in (4.15), compared to (4.14).

4.5 Distributed Inference

An important application of consensus is solving, in a distributed fashion, network
inference problems. Below we discuss some basic examples and we show how the
analysis of performance, also in this case, leads to functionals similar to those con-
sidered before.

Assume that each node v ∈ V takes a measurement of the same unknown scalar
quantity θ . Each of these measurements, denoted by yv, is affected by an (additive)
measurement error nv. Namely, yv = θ + nv. The goal of each node is to estimate θ .
The node v by itself could only estimate θ by the taken measurement yv, whereas if
it was possible to gather the measurements from all nodes, more efficient estimation
could be performed. If we assume the measurement errors to be independent random
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variables with zero mean and variance σ 2, then the average θ̂ = 1
N

∑
v yv is the

optimal estimator for θ and has estimation errorE||θ̂ − θ ||2 = N−1σ 2. Conveniently,
the network may collectively compute θ̂ by simply using the dynamics (4.1) with
xv(0) = yv for all nodes v. In this context, it is natural to define the time-dependent
estimation error as

Je(t) = 1

N
E[‖x(t) − θ1‖2].

If we denote by n ∈ R
V the random vector collecting all noises and we repeat the

computation as in (4.4), we see that Je(t) can be rewritten as

Je(t) = 1

N
E[‖P tn‖2] = σ 2N−1||P t ||2F = σ 2N−1

N∑

i=1

μ2t
i (4.16)

Notice the difference with respect to (4.5), where we had the Frobenius norm of
P t − N−111∗. Indeed, differently from (4.5) that converges to 0 for t → +∞, we
here have Je(t) → σ 2

N as t → ∞. The asymptotic error is due to the intrinsic mean
estimation error. The consensus algorithm (4.1) can also be used to solvemore general
inference problems, in which the measurements errors can have different variances
σ 2
v . Again, the goal of each node is to estimate θ . The node v by itself could only

estimate θ by the taken measurement yv, whereas if it was possible to gather the
measurements from all nodes, more efficient estimation could be performed. In the
latter case, the best least squares estimator, defined as

θ̂ := argminθ

∑

v

(yv − θ)2

σ 2
v

,

can be computed as

θ̂ =
(

∑

w∈V

1

σ 2
w

)−1 ∑

v∈V

yv
σ 2
v

.

This estimator, which is a Maximum Likelihood estimator when the measurement
noises are Gaussian (see Exercise 4.1), simply becomes the average of the measure-
ments when all variances are equal. Clearly, to compute such an estimator, one needs
to gather all the measurements yv’s. However, rewriting it as

θ̂ =
(
1

N

∑

w∈V

1

σ 2
w

)−1
1

N

∑

v∈V

yv
σ 2
v

,

one can notice that it is the ratio between two arithmetic means. Then, consensus
algorithms can be naturally applied to approximate it, provided each node knows the
variance of its own measurement error. Consider two consensus algorithms built on
the matrix P and running in parallel:
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x (1)(t + 1) = Px (1)(t), x (1)
v (0) = yv

σ 2
v

∀v ∈ V

x (2)(t + 1) = Px (2)(t), x (2)
v (0) = 1

σ 2
v

∀v ∈ V

and define θ̂v(t) = x (1)
v (t)/x (2)

v (t). We know from the results of Chap.2 (see also
Exercise 4.2) that

lim
t→+∞ θ̂ (t)v = θ̂ ∀v ∈ V .

Hence, the estimator can be computed by running two consensus algorithms and
computing the ratio of their states. In the exercises, we propose a few adaptations
and variations of the above procedure.

Exercises

Exercise 4.1 (Maximum Likelihood estimator) For all v ∈ V , let yv = θ + nv and
assume that each nv is a measurement error to be independent Gaussian random
variables with zero mean and variance σ 2

v . Consider the density distribution of yv
given that the unknown quantity is θ

f (yv | θ) = 1
√
2πσ 2

v

e
(yv−θ)2

2σ2v

and the global density of the vector y ∈ R
V

f (y | θ) =
∏

v

f (yv | θ) =
∏

v

1
√
2πσ 2

v

e
∑

v
(yv−θ)2

2σ2v

The ML estimator is defined to be θ̂ML := argmaxθ∈R f (y | θ). Verify that

θ̂ML =
(

∑

w∈V

1

σ 2
w

)−1 ∑

v∈V

yv
σ 2
v

Exercise 4.2 (Consensus ratio) Let P ∈ R
V×V be a stochastic irreducible aperiodic

matrix. Consider the dynamics
{
x(t + 1) = P x(t) x(0) ∈ R

V

y(t + 1) = P y(t) y(0) ∈ R
V , yv(0) > 0 ∀v ∈ V .

Let z(t) = x(t)
y(t) . Determine z(∞) := limt→+∞ z(t).

Exercise 4.3 (Average consensus with nondoubly stochastic matrices) Let P ∈
R

V×V be a stochastic irreducible aperiodic matrix. Consider the dynamics

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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{
x(t + 1) = P∗x(t) x(0) ∈ R

V

y(t + 1) = P∗y(t) y(0) ∈ R
V , yv(0) > 0 ∀v ∈ V .

(i) Let z(t) = x(t)
y(t) . Determine z(∞) := limt→+∞ z(t).

(ii) Given a vector x̄ ∈ R
V , choose x(0) and y(0) in such way that z(∞) =

1N−11∗ x̄ .

Exercise 4.4 (Weighted averages) Using a doubly stochastic matrix P , design a
consensus-based algorithm to compute any weighted average of values known to the
nodes.

Exercise 4.5 (Number of nodes) Design a consensus-based algorithm for a network
to compute the number of its nodes.

Exercise 4.6 (Least Squares Regression) We want to estimate a function y = f (x)
from a noisy data set {(xv, yv)}v∈V collected by the nodes.We parameterize f (·)
according to a basis of functions {g j (·)} j∈J , where J a suitable index set, so that
fθ (x) = ∑

j∈J θ j g j (x). The basis functions are known, and the |J |-dimensional
vector θ is to be determined. We want to compute (distributely) the best estimate of
θ in a least squares sense. Provided we define G ∈ R

J×V to be a matrix such that
G jv = g j (xv), the optimal estimator is defined as

θ̂ = argminθ‖y − Gθ‖2.

(i) Verify that θ̂ = (G∗G)−1G∗y.

Let gv denote a column of G and define two consensus algorithms with initial con-
ditions

z(1)
v (0) =gv(gv)∗ ∀v ∈ V

z(2)
v (0) =gvyv ∀v ∈ V .

Note that z(1)
v ∈ R

J×J and z(2)
v ∈ R

J . Since the states are non scalar, the update is
performed independently on each component.

(ii) Remark that θ̂ = (
∑

v g
v(gv)∗)−1 ∑

v g
v yv, and deduce that

lim
t→+∞(z(1)

v (t))−1z(2)
v (t) = θ̂ .

Exercise 4.7 (Communication noise) Consider a symmetric stochastic matrix P on
V and the process x(t) taking values in RV and governed by equation

xv(t + 1) =
∑

w∈V
Pvw

(
xw(t) + nvw(t)

)
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where {nvw)(t)} is a family of independent 0 mean, σ 2 variance random variables.
In this model, we assume that noises are independently generated in any pairwise
transmission betweenunits. For suchprocess, study the behavior of the corresponding
average process m(t) and find an expression for the functional as defined in (4.13)
in terms of the eigenvalues of P .

Exercise 4.8 (Noise effects at finite times) We define the following time-dependent
version of the noise cost (4.13)

Jnoise(t) = 1

N
E||x(t) − N−111∗x(t)||2, (4.17)

assuming that the noise components are iid random variables with zero mean and
variance σ 2

n , while initial conditions are iid random variables with zero mean and
variance σ 2

x independent of the noise.

(i) By proceeding as in the proof of Proposition 4.3, show that

Jnoise(t) = 1

N

N∑

i=2

σ 2
n

1 − |μi |2 + 1

N

N∑

i=2

(
σ 2
x − σ 2

n

1 − |μi |2
)

|μi |2t (4.18)

(ii) Observe that if σx is small enough (for instance if σx < σn), then Jnoise(t) is
increasing with time.

(iii) Verify that the second term of (4.18) is upper bounded by 1
N

(
Nσ 2

x − σ 2
n

1−ρ2
2

)
ρ2t
2

(iv) Assume that P is the lazy simple random walk matrix P on the cycle graph CN

(cf. Exercise 2.12). Verify that if N > 8π
9

σ 2
x

σ 2
n
, then Jnoise(t) is increasing with

time.

Exercise 4.9 (Normal update matrix) Reconsider system (4.1) with the assumption
that the irreducible and aperiodic matrix P is doubly stochastic and normal (but not
necessarily symmetric). Show that

Je(t) = 1

N

∑

i

|μi |2t Jx = 1

N

∑

i>1

1

1 − |μi |2 Ju = 1

N

∑

i>1

|1 − μi |2
1 − |μi |2 .

Exercise 4.10 (Ju cost [11]) Consider the cost Ju defined in Sect. 4.2.

(i) LetG = CN be a directed cycle graph and P = circ(1/2, 1/2, 0, . . . , 0). Then,
Ju = 1 − 1

N .

(ii) Let G = Cd
n be a directed d-dimensional torus graph and P = 1

d+1 (I + AG).
Then, Ju = 1 − 1

nd .

(iii) Let G be a d-dimensional hypercube and P = 1
d+1 (I + AG). Then, Ju = 1 −

1
2d .

Exercise 4.11 (Je cost on toroidal grids [14]) Let G = Cd
n be a d-dimensional torus

graph, P = 1
2d+1 (I + AG) and N = nd .

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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(i) Verify that

c1 max{ 1
N

,
1

td/2
} ≤ Je(t) ≤ c2 max{ 1

N
,

1

td/2
} for some positive c1, c2.

(ii) Estimate the time needed to achieve the best precision in the estimation for a
given N .

Exercise 4.12 (Size optimization in distributed estimation [14]) Based on the func-
tional Je(t), we consider the problem of optimizing the size of the graph in a specific
family of consensus matrices. Let An be the adjacency matrix of cycle graph Cn of
order n. Let Pn = 1

3 (I + An).

(i) Verify that

(a) J (Pn, t) is nonincreasing in n;
(b) J (Pn, t) is nonincreasing in t ;
(c) J (Pn, t) = J (P2t+1, t) for all n ≥ 2t + 1.

(ii) Discuss the results above from the point of view of design, having the goal of
efficient estimation of a parameter which is known via noisy measurements.
Is there a “best” size of the network, if the available time for computation is
limited?

Bibliographical Notes

An introduction to the costs considered in this chapter is available in [13], which also
provides useful pointers to the literature. These costs have been explicitly computed
using the eigenvalues of P , thanks to the assumption of symmetry: However, one
can generalize this analysis to normal matrices (see Exercise 4.9 and [7]) and to
reversible matrices (see Exercise 5.10).

Specific references can be given for the different functionals considered. For
instance, a thorough analysis of Je on geometric graphs is given by [14]. Cost Jnoise
has been defined in the seminal paper [25] and later extensively studied with different
interpretations and variations [17, 21]. Paper [11] has proposed dynamics (4.14) to
cope with quantization errors and has studied cost Jq. The statistical assumptions
on the quantization errors can either be rigorously justified for certain randomized
quantizers (for instance, quantizers with “dithering” [1]) or taken as a useful approx-
imation for deterministic quantizers. Actually, several researchers have looked at
quantization in the context of averaging algorithms, starting with [19]: A selection
of the papers that are most closely related to our perspective includes [3, 6, 9, 18,
20, 22].

As we mentioned, the effects of noise entering the averaging system can be miti-
gated by using properly designed decreasing gains. This adaptation typically results
in systems that almost surely converge to consensus, but such that convergence is not

http://dx.doi.org/10.1007/978-3-319-68022-4_5
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exponentially fast. Their analysis can benefit from the so-called stochastic approxi-
mation techniques [2]. Many papers have taken this approach to ensure robustness,
including [5, 8, 16, 23, 24].

The application of distributed parameter estimation has also been presented in
this chapter. In the literature, this problem has been extended in various directions,
including least squares regression (see Exercise 4.6), distributedKalman filtering [4],
and estimation of parameters that are vector-valued and distributed over the nodes
(see Sect. 5.4). The treatment given in this chapter assumes that each node knows the
variance of its own measurement error. If this is not the case, a more complex algo-
rithm is needed in order to estimate these quantities as well. For instance, paper [10]
looks at a special case of this problem, where nodes are divided into two classes,
having respectively small and large variance, and must identify to which class they
belong to. The issue of parameter estimation can also be interpreted in the context
of social networks. Empirical and theoretical evidences have shown that aggregate
opinions may provide a good estimate of unknown quantities: Such phenomenon has
been referred to in the literature as the wisdom of crowds [12, 15].
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9. El Chamie, M., Liu, J., Başar, T.: Design and analysis of distributed averaging with quantized
communication. IEEE Trans. Autom. Control 61(12), 3870–3884 (2016)

10. Fagnani, F., Fosson, S.M., Ravazzi, C.: A distributed classification/estimation algorithm for
sensor networks. SIAM J. Control Optim. 52(1), 189–218 (2014)

11. Frasca, P., Carli, R., Fagnani, F., Zampieri, S.: Average consensus on networks with quantized
communication. Int. J. Robust Nonlinear Control 19(16), 1787–1816 (2009)

12. Galton, F.: Vox populi. Nature 75(1949), 450–451 (1907)
13. Garin, F., Schenato, L.: A survey on distributed estimation and control applications using

linear consensus algorithms. In: Bemporad, A., Heemels, M., Johansson, M. (eds.) Networked
Control Systems. Lecture Notes in Control and Information Sciences. Springer (2010)

14. Garin, F., Zampieri, S.: Mean square performance of consensus-based distributed estimation
over regular geometric graphs. SIAM J. Control Optim. 50(1), 306–333 (2012)

http://dx.doi.org/10.1007/978-3-319-68022-4_5


108 4 Performance and Robustness of Averaging Algorithms

15. Golub,B., Jackson,M.O.:Naïve learning in social networks and the hegsel of crowds.American
Econ. J. Microecon. 2(1), 112–149 (2010)

16. Huang, M., Manton, J.H.: Coordination and consensus of networked agents with noisy mea-
surements: stochastic algorithms and asymptotic behavior. SIAM J. Control Optim. 48(1),
134–161 (2009)

17. Jadbabaie, A., Olshevsky, A.: On performance of consensus protocols subject to noise: role of
hitting times and network structure. In: IEEE Conference on Decision and Control, Las Vegas,
NV, pp. 179–184, December 2016

18. Kar, S., Moura, J.M.F.: Distributed consensus algorithms in sensor networks: Quantized data
and random link failures. IEEE Trans. Signal Process. 58(3), 1383–1400 (2010)
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Chapter 5
Averaging with Exogenous Inputs
and Electrical Networks

Abstract The dynamical models analyzed so far, with the exception of the noisy
consensus models treated in Chap.4, are autonomous systems with no input signals:
Information enters the system only through the initial condition. Instead, there are a
variety of different situations where it is natural to consider consensus models driven
by exogenous input signals, including opinion dynamics in the presence of stubborn
agents that do not modify their opinion, rendezvous problems with leader robots, and
estimation algorithms based on pairwisemeasurements. A very useful tool to analyze
thesemodels is thinkingof the graph as an electrical circuitwith the exogenous signals
interpreted as input currents or as nodes kept at a fixed voltage. In this chapter, we
will first review the basic theory of electrical networks and their classical connection
with reversible stochastic matrices: Sect. 5.1 concentrates on Green matrices and
harmonic functions, while Sect. 5.2 is devoted to effective resistances. Afterward,
we apply these tools to averaging dynamics with stubborn agents in Sect. 5.3 and to
the problem of estimation from relative measurements in Sect. 5.4.

5.1 Electrical Networks and Harmonic Functions

There is a fundamental connection between reversible stochastic matrices, presented
in Sect. 2.5, and electrical circuits: This connection sheds light on some of the con-
cepts touched so far and, meanwhile, offers computational tools for new problems.

We start from a symmetric strongly connected graph G = (V, E) with |V | = N
and a symmetric nonnegative matrixC ∈ R

V×V called conductance matrix such that
GC = G. We know that from C we can canonically construct a reversible stochastic
matrix P = D−1

C1C . We now interpret G as an electrical circuit where edge (u, v)
has electrical conductance Cuv = Cvu . We will refer to (G,C) as to an electrical
network. Consider now a vector ι ∈ R

V such that ι∗1 = 0:We interpret ιv as the input
current injected at node v (if negative being an outgoing current). To the electrical
network (G,C) and the input current ι, we can associate two functions W ∈ R

V

(called the voltage) and φ ∈ R
E (called the current flow) such that the following

relations are satisfied
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{ ∑
v∈Nu

φuv = ιu ∀u ∈ V

φuv = Cuv(Wu − Wv) ∀(u, v) ∈ E .
(5.1)

The first relation is usually known as Kirchoff’s law (sum of currents outgoing node
u along the edges equals the incoming input current), while the second one is Ohm’s
law. The existence of a solution (W, φ) will follow by our considerations below, as
well as uniqueness up to addition to W of multiples of 1. Notice that because of
Ohm’s law, it follows that φuv = −φvu for all (u, v) ∈ E .

To the aim of rewriting in a more compact form relations (5.1), it is convenient
to introduce some additional concepts. Denote by Ē the set of undirected edges of
G: Namely Ē consists of those subsets {u, v} of cardinality 2 such that (u, v) ∈
E (possible self-loops present in G are disregarded in the construction of Ē). An
incidence matrix on G is any matrix B ∈ {0,+1,−1}Ē×V such that B1 = 0 and
Beu �= 0 iff u ∈ e. It is immediate to see that given e = {u, v}, the e-th row of
B has all zeroes except Beu and Bev: Necessarily one of them will be +1 and the
other one −1 and this will be interpreted as choosing a direction in e from the node
corresponding to +1 to the one corresponding to −1. Define DC ∈ R

Ē×Ē to be the
diagonal matrix such that (DC)ee = Cuv = Cvu if e = {u, v}. Observe that, for every
u ∈ V ,

(B∗DC B)uu =
∑
e∈Ē

(DC)ee B
2
eu = (C1)u − Cuu

while, if u �= v,
(B∗DC B)uv =

∑
e∈Ē

Beu(DC)ee Bev = −Cuv

In other terms
B∗DC B = DC1 − C = L(C) .

In the special case when C = AG (the adjacency matrix of G), we thus obtain
B∗B = LG . Finally, define φ̄ ∈ R

Ē such that φ̄e = φuvBeu if e = {u, v}: According
to this definition, φ̄e is the current flowing in the edge e, with the positive sign if flow
is happening in the same direction of the conventional direction chosen on e by B.
We can now rewrite relations (5.1) as

{
B∗φ̄ = ι

DC BW = φ̄.
(5.2)

These two equations together lead to the following equation for W :

L(C)W = ι. (5.3)

Recall that L(C) is a symmetric matrix with rank L(C) = N − 1 and L(C)1 = 0
(see Chap.1 for details). It thus admits the spectral representation

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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L(C) =
∑
i≥2

λi xi x
∗
i ,

where 0 = λ1 < λ2 ≤ · · · ≤ λN are the nonzero eigenvalues with corresponding
orthonormal eigenvectors N−1/21, x1, . . . , xN . The matrix

ZC =
∑
i≥2

λ−1
i xi x

∗
i

is said to be the Green matrix associated with C . It has the properties

ZC L(C) = L(C)ZC = I − N−111∗ , ZC1 = 0 . (5.4)

If we consider W = ZC ι, using the property ι∗1 = 0, we obtain L(C)W =
L(C)ZC ι = ι: Then,W solves (5.3). Notice that it also satisfies the relation 1∗W = 0
and that any other function W + c1 also satisfies (5.3). Since the rank of L(C) is
N − 1, these are all the possible solutions. All pairs solving (5.3) are thus

W = ZC ι + c1 , φ̄ = CDBZC ι .

We now give some insightful examples of computations of voltages.

Example 5.1 (Line graph) Consider the symmetric line graph G = LN+1 (with
vertex set V = {1, . . . , N + 1}) and with conductance matrix C ∈ R

V×V . Let
ι ∈ R

V be such that −ι1 = 1 = ιN+1 while ιk = 0 for all k = 2, . . . , N . Using
Kirchoff’s law and a simple inductive argument, it follows that the current flow
φ ∈ R

E×E is given by φk,k+1 = −1 for all k = 1, . . . , N . Ohm’s law then yields
Wk+1 − Wk = Ck,k+1 for all k. This yields Wk − W0 = ∑k−1

j=0 C j, j+1 In the special
case whenC = AG (all edges have conductance equal to 1), we obtainWk −W0 = k.

Example 5.2 (Leaves and branches) Let G = (V, E) be a symmetric graph, C a
conductance matrix and ι ∈ R

V an input current (with ι∗1 = 0). Let v ∈ V be such
that ιv = 0 and dv = 1. Consider the longest path in G, v1 = v, v2, . . . , vn with the
property that ιvk = 0 and dvk = 2 for all k = 2, . . . , n−1. Since ιv1 = 0, Kirchoff law
implies that no current can flow in the edge (v1, v2) and a simple inductive argument
yields that the same happens in all edges (vk−1, vk) for k = 3, . . . n. Ohm’s law then
implies that Wv1 = · · · = Wvn .

Example 5.3 (Toroidal grid) Consider the toroidal 2-gridG = Cn ×Cn with unitary
conductances (C = AG).We know fromExample 1.7 that its Laplacematrix L(G) =
L(C) has eigenvalues

λ(h,k) = 4 − 2 cos

(
2π

n
h

)
− 2 cos

(
2π

n
k

)
(h, k) ∈ {0, . . . , n − 1}2

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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with corresponding eigenvectors x (h,k)
(v,w) = exp

[
i 2πn (vh + wk)

]
. Therefore, the Green

matrix can be represented as

(ZC)(v1,w1)(v2,w2) =
∑

(h,k)�=(0,0)

exp
[
i 2πn ((v1 − v2)h + (w1 − w2)k)

]
4 − 2 cos

(
2π
n h

) − 2 cos
(
2π
n k

)
Ifwe consider an input current ι=e(0,0)−e(α,0) (thus, supported on the twonodes (0, 0)
and (α, 0)), we obtain that the corresponding voltage is given, up to constants, by

W(v,w) = (ZC)(v,w)(0,0) − (ZC)(v,w)(α,0)

=
∑

(h,k)�=(0,0)

[
1 − exp

(−i 2πn αh
)]
exp

[
i 2πn (vh + wk)

]
4 − 2 cos

(
2π
n h

) − 2 cos
(
2π
n k

) .

A similar explicit (but more complex) formula can be obtained for general Abelian
Cayley graphs by applying Proposition 1.18. Another example is reported below.

Example 5.4 (Hypercube) Consider the hypercube graph Hn having node set V =
{0, 1}n , defined in Example 1.3. Eigenvalues of the coincide with the numbers 2k for
k ∈ {0, . . . , n}: Eigenvalue 2k has multiplicity

(n
k

)
and corresponding eigenvectors

φ(x)
v = (−1)

∑
i xi vi , x, v ∈ {0, 1}n,

∑
i

xi = k

Therefore,

(ZC)vw =
∑

x∈{0,1}n\{(0,...,0)}

(−1)
∑

i xi (vi−wi )

2
∑

i xi

If we consider an input current ι = e(0,0,...0) − e(1,1,...,1), we obtain that the corre-
sponding voltage is given, up to constants, by

Wv =
∑

x∈{0,1}n\{(0,...,0)}

(−1)
∑

i xi vi − (−1)
∑

i xi (1−vi )

2
∑

i xi
(5.5)

Even though theGreenmatrix is a useful tool in constructing the theory, its explicit
computation can be inconvenient. However, one key advantage of the electrical net-
work approach is that there exist simple and powerful techniques to compute voltages
without the need for an explicit computation of the Green matrix. For instance, the
following result collects several useful tools that permit to simplify the computation
of voltages and current flows by replacing a network by an equivalent simpler one.
Preliminarily, notice that also graphs with multiple edges would be appropriate in
this context: Kirchoff’s and Ohm’s law would remain valid and the theory developed
so far would directly extend to this case.

http://dx.doi.org/10.1007/978-3-319-68022-4_1
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Proposition 5.1 Let (G,C) be an electrical network. Let ι ∈ R
V be such that

ι∗1 = 0 and let (W, φ) be the corresponding voltage and current flow.

• Parallel law. Suppose e1 and e2 are two edges insisting on the same two vertices
u and v. Consider the new electrical network (G̃, C̃) where G̃ only differs from G
as the two edges e1 and e2 are replaced by a single edge e with conductance C̃ee =
Ce1e1 + Ce2e2 . Then, the voltage and the current flow in (G̃, C̃), corresponding to
the same exogenous input currents ι, coincide with W, φ.

• Series law. Suppose that v ∈ V is such that ιv = 0 and dv = 2 with neighbors
u1 and u2. Consider (G̃, C̃) where G̃ is a graph on V \ {v} with same undirected
edges as G but {u1, v} and {v, u2} replaced by {u1, u2}, and C̃u1u2 = C̃u2u1 =
(C−1

u1v+C−1
vu2)

−1. The voltage and current flow W̃ , φ̃ in (G̃, C̃) satisfy: W̃w = Ww for

everyw ∈ V \{v}, φ̃w1w2 = φw1w2 for nodes in V \{v} such that {w1,w2} �= {u1, u2},
while φ̃u1,u2 = φu1,v = φv,u2 .

• Glueing. Suppose that Wu = Wv. Consider the new electrical network (G̃, C̃)

where G̃ is obtained from G by glueing together the two nodes u and v, while
C̃ = C maintains the same conductances an all edges, and consider the input
current ι̃ defined by

ι̃w = ιw ∀w ∈ V \ {u, v} , ι̃u+v = ιu + ιv

where u + v denotes the glued node in G̃. Then, the corresponding voltage W̃
and current flow φ̃ on (G̃,C) coincide with (W, φ), with the only change that
W̃u+v = Wu = Wv.

Proof Straightforward check that Kirchoff’s and Ohm’s laws are satisfied in the new
networks. �

Wewill see in Sects. 5.3 and 5.4 that certain applications require to assign voltages
in certain nodes. Below we show how to do it. Notice first of all that (5.3) can be
rewritten as

L(P)W = D−1
C1 ι,

where P = D−1
C1C is the canonical reversible stochastic matrix associated with C .

Componentwise, this reads as

Wu −
∑
v∈V

PuvWv = ιu∑
w
Cuw

In particular, for each u ∈ V such that ιu = 0, it holds that

Wu =
∑
v∈V

PuvWv. (5.6)

A function W ∈ R
V satisfying (5.6) (or equivalently (5.3)) for every u belonging to

a subset Ṽ ⊆ V is said to be harmonic on Ṽ . We have the following result.
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Proposition 5.2 (Harmonic extension) Let Ṽ ⊆ V and let W̃ ∈ R
Ṽ . Then,

(i) There exists exactly one W ∈ R
V harmonic on V \ Ṽ and such that W|Ṽ = W̃ .

(ii) There exists a unique ι ∈ R
V such that ι∗1 = 0 and ιv = 0 for every v /∈ Ṽ such

that W is the voltage generated by the input current ι.

Proof (i) Order vertices of V in such a way that those in V \ Ṽ appear first and
consider the corresponding block decomposition

P =
(
Q R
S T

)
.

Consider a vector of type W = (x, W̃ )∗ and impose it satisfies (5.6) for every
u ∈ V \ Ṽ . This is equivalent to require

Qx + RW̃ = x . (5.7)

Since the graph is strongly connected, it is immediate to check, thanks to Proposition
2.4, that Q is an asymptotically stable sub-stochastic matrix. This implies that I −Q
is invertible, and therefore, (5.7) is solved by

x = (I − Q)−1RW̃ . (5.8)

Consequently, W = ((I − Q)−1RW̃ , W̃ )∗ is the wanted harmonic extension of W̃ .
(ii) It is sufficient to consider ι = L(C)W . �

Remark 5.1 (Harmonic extension is convex combination of assigned voltages) The
matrix (I − Q)−1R that appears in (5.8) has some important properties which we
now discuss. First, notice that the inverse of I − Q can be represented as a series
(I − Q)−1 = ∑∞

n=0 Q
k , and this implies that (I − Q)−1

uv ≥ 0 for all u, v ∈ V \ Ṽ .
Since also R is nonnegative it follows that (I−Q)−1R is also nonnegative.Moreover,
notice that since P is stochastic it holds (I − Q)1 + R1 = 0. But this implies that
(I − Q)−1R1 = 1. In other words, each row of (I − Q)−1R sums to 1. In general,
however, we cannot say that (I −Q)−1R is a stochastic matrix since it is not a square
matrix.

Example 5.5 (Binary trees) Consider a binary tree of depth t (see Fig. 5.1) with
unitary conductances and assume that the root node v0 is at voltage 0, while the 2t

leaves are at voltage 1. For symmetry reasons, all nodes at distance s from the root
node have the same voltage, and thus, we can replace, by the glueing and parallel
laws in Proposition 5.1, the network with an equivalent line graph Lt+1 with set of
nodes {v0, v1, . . . vt } and conductance matrix Cvsvs+1 = 2s+1 for s = 0, . . . , t − 1.
This implies that the total resistance between v0 and vt is given by

t−1∑
s=0

1

2s+1
= 1 − 2−t

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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v0

Fig. 5.1 A binary tree of depth 3: its root is labeled as v0

The current along the line graph is thus by Ohm’s law (1 − 2−t )−1. Voltages at the
various nodes can now be simply obtained by applying again Ohm’s law:

Wvs+1 − Wvs = (1 − 2−t )−12−(s+1)

and thus,

Ws = (1 − 2−t )−1
s−1∑
k=0

2−(k+1) = 1 − 2−s

1 − 2−t

Example 5.6 (Voltages in barbell graphs) Consider two complete graphs Ki =
(Vi , Ei ) (i = 1, 2) on the set of nodes Vi and unitary conductances. Fix two nodes
vi ∈ Vi and consider the barbell graph G = (V, E) where V = V1 ∪ V2 and
E = E1 ∪ E2 ∪ {(v1, v2), (v2, v1)}. Consider two nodes si ∈ (Vi \ vi ) and assign
voltages Ws1 = 0 and Ws2 = 1. We want to compute the harmonic extension of W .
For symmetry reasons,W will be constant at all nodes in Vi \ {si , vi } for i = 1, 2. By
the glueing property and the parallel law, the electrical network can thus be replaced
by a line with six nodes s1,w1, v1, v2,w2, s2 such that

Csi ,wi = Cwi ,vi = Ni − 2 , Cv1,v2 = 1

where Ni = |Vi |. In order to compute the current, we can use the series law further
reducing the electrical network to a single edge between s1 and s2 of conductance
[2(N1 − 2)−1 + 2(N2 − 2)−1 + 1]−1: The current coincides with the conductance.
Using now Ohm’s law we obtain

Ww1 = (N1−2)−1

2(N1−2)−1+2(N2−2)−1+1 , Wv1 = (2(N1−2))−1

2(N1−2)−1+2(N2−2)−1+1

Wv2 = 2(N1−2)−1+1
2(N1−2)−1+2(N2−2)−1+1 , Ww2 = 2(N1−2)−1+(N2−2)−1+1

2(N1−2)−1+2(N2−2)−1+1
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5.2 Effective Resistance in Electrical Networks

Avery useful concept in dealingwith electrical networks is that of effective resistance
between nodes. Formally, given an electrical network (G,C) and two nodes u, v ∈ V ,
we consider the input current ι = eu−ev. The corresponding voltage up to translation
is denoted by W , and the effective resistance between u and v is defined by

R eff(u, v) := Wu − Wv.

The average effective resistance in the network is then defined as

Rave(G,C) := 1

2N 2

∑
u,v∈V

R eff(u, v).

The average effective resistance can be used as a measure of graph connectivity, in
the sense that “well-connected” graphs will have small Rave. We will return to this
interpretation in Sect. 5.4 and in the Exercises.

Effective resistances can be characterized in terms of the Green matrix. Indeed,
recalling that W = ZC ι, it holds

R eff(u, v) = (eu − ev)
∗ZC(eu − ev) = (ZC)uu − 2(ZC)uv + (ZC)vv (5.9)

Therefore, recalling that ZC1 = 0, we also have

Rave(G,C) = 1

2N 2

∑
u,v∈V

R eff(u, v) = 1

N
tr(ZC) = 1

N

∑
i≥2

1

λi
, (5.10)

where 0 = λ1, . . . , λN are the eigenvalues of L(C).

Example 5.7 (Effective resistance on line graphs) Consider the symmetric line graph
G = LN+1 (with vertex set V = {1, . . . , N + 1}) with conductance matrix C ∈
R

V×V . It immediately follows from Example 5.1 that

R eff(1, N + 1) = WN+1 − W1 =
N∑

k=1

Ckk+1.

In the special case when C = AG (all edges have conductance equal to 1), we obtain
R eff(1, N + 1) = N .

Example 5.8 (Effective resistance on trees) Let G = (V, E) be a tree, C a conduc-
tance matrix and ι ∈ R

V an input current such that ιv = 1 = −ιw while ιu = 0 for
every u �= v,w. Consider the only path v = v1, . . . , vN+1 = w connecting v tow inG.
FromExample 5.2 and a repetition of glueing operations, it is immediate to check that
all edges not contained in this path will have a current flow equal to 0. Consequently,
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a current flow equal to 1 will be flowing from v to w along the connecting path as if it
was a line graph. From Example 5.7, it thus follows that R eff(v,w) = ∑N

k=1 Cvkvk+1

In the special case whenC = AG , it follows that the effective resistance between two
nodes coincides with their distance on the tree. Notice that it is also easy to compute
the corresponding voltage at any vertex of the tree. Given a vertex u ∈ V , let vk be
the closest vertex of the path v = v1, . . . , vN+1 = w to u. Then, Wu = Wvk .

Example 5.9 (Effective resistance on cycles) Consider the graph Cn with node set
Zn . By applying the parallel law and Example 5.7, we observe

R eff(u, v) = (|v − u|−1 + (n − |v − u|)−1
)−1 = |v − u| (n − |v − u|)

n
.

For general graphs, the computation of the effective resistance can be a complex
problem and closed formulas can hardly be found. However, there are tools to effi-
ciently estimate it. Before we can illustrate them, we need to introduce a further
concept. Given an electrical circuit (G = (V, E),C), a flow on it is any function
φ ∈ R

E such that φuv = −φvu . As before Ē will denote the set of undirected edges
of G. Given an incidence matrix B of G, we can consider the flow defined on Ē
and denote it by φ̄ (as we did for the current flow above). The energy of a flow φ is
defined as

|φ| = (1/2)
∑

(uv)∈E

φ2
uv

Cuv
=

∑
{uv}∈Ē

φ̄2
{uv}
Cuv

Given ι ∈ R
V such that ι∗1 = 0, we say that a flow φ is compatible with ι if it satisfies

Kirchoff’s law B∗φ̄ = ι. The following variational principle holds true (a proof can
be found in [20, Theorem 9.10]):

Lemma 5.1 (Thomson’s principle) Let (G,C) be an electrical network. Then,

R eff(u, v) = inf{|φ| : φ is a flow compatible with ι = eu − ev}.

Moreover the unique minimizer is the current flow induced by the input current
ι = eu − ev.

An immediate important consequence is the following result.

Corollary 5.1 (Raileigh’s monotonicity law) Let G be a symmetric graph and C ′
and C ′′ two conductance matrices on G such that C ′

uv ≤ C ′′
uv for all u, v ∈ V . Then,

for any pair of vertices the corresponding effective resistances in the two networks
satisfy

R′
eff(u, v) ≥ R′′

eff(u, v).

Glueing nodes in an electrical network is equivalent to put conductance equal to
∞ between certain pairs of nodes. By virtue of Raileigh monotonicity law, this
implies that the effective resistance, in the glueing operation, can never increase.
The following is an example of application of this useful remark.
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Example 5.10 (Effective resistance on grids) Consider a bidimensional grid Ln×Ln

with set of nodes {1, . . . , n}2 and unitary conductances. Suppose wewant to estimate
the effective resistance between (1, 1) and (n, n). Replace the network by a line
network obtained by glueing together all nodes at distance d from (1, 1) (and denote
such super node by vd ). The nodes (1, 1) and (n, n) become v0 and v2n−2 in the new
network. Let nd be the number of nodes at distance d from (0, 0). Since (x, y) is at
distance d from (0, 0) if and only if x + y = d + 2, we have that nd = d + 1 if
d ≤ n − 1. It follows that Cvdvd+1 = 2(d + 1) for all d = 0, . . . , n − 2. Considering
that the new network is specularly symmetric with respect to the node vn−1, we have
that

R eff((1, 1), (n, n)) ≥ R eff(v0, vd) =
n−2∑
d=0

1

d + 1
≥

n∫
1

1

x
d x = log n.

By constructing suitable flows and applying Thompson’s principle, it can be shown
that that it also holds R eff((1, 1), (n, n)) ≤ 2 log n. In case of grids of higher
dimension Ld

n , instead, there exists cd > 0 such that R eff(v,w) ≤ cd for all
v,w ∈ {1, . . . , n}d . More details can be found in [20].

When voltages are imposed at some nodes, all other voltages can be computed in
terms of effective resistances.

Proposition 5.3 (Voltages and effective resistance) Let (G,C) be an electrical net-
work and v0 and v1 two distinct nodes in G. Let W be the voltage satisfying Wv0 = 0
and Wv1 = 1. Then,

Wv = 1

2
+ R eff(v, v0) − R eff(v, v1)

2R eff(v0, v1)
∀v ∈ V . (5.11)

Proof Clearly, we can represent W = ZC ι + c1 where ι is the input current given
by ι = R eff(v0, v1)−1[ev1 − ev0 ] and c a constant. Imposing Wv0 = 0, we obtain that
c = R eff(v0, v1)−1[(ZC)v0v0 − (ZC)v0v1]. For a generic v ∈ V , the voltage can thus
be computed as follows (denoting ZC as Z for conciseness):

Wv = Zvv1 − Zvv0 + Zv0v0 − Zv0v1
R eff(v0, v1)

= (−Zvv + 2Zvv1 − Zv1v1) + (Zvv − 2Zvv0 + Zv0v0 ) + (Zv0v0 − 2Zv0v1 + Zv1v1)

2R eff(v0, v1)
.

The result now follows from relation (5.9). �

We now present a significant example.

Example 5.11 (Harmonic functions on line graphs) Consider the symmetric line
graph G = Ln+1 with vertex set V = {1, . . . , n + 1} and with conductance matrix
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C = AG . Let Ṽ = {1, n+1} and put W̃1 = 0 and W̃n+1 = 1. LetW be the harmonic
extension of W̃ . Using formula (5.11), we immediately obtain

Wk = 1

2

(k − 1) − (n + 1 − k) + n

n
= k − 1

n
, ∀k.

Notice that if the voltage assigned in nodes 1 and n + 1 were different, namely
W̃1 = w̃1 and W̃n+1 = w̃n+1, then using the fact that the harmonic extension is a
linear function of the boundary conditions, we would obtain the new voltage

W̃k = w̃1 + k − 1

n
(w̃n+1 − w̃1).

Furthermore, it is important to be aware that Proposition 5.3 can be applied when
the two nodes v0 and v1 are the outcome of glueing operations. Hence, its scope
of application covers all cases where some nodes are connected to any two voltage
levels.

5.3 Averaging Dynamics with Stubborn Agents

In the examples of consensus models studied so far, we have essentially assumed
that all the agents are implementing the same dynamic law, all of them cooperating
to reach a consensus. Very interesting models can however be obtained considering
instead heterogeneous model where agents have different behaviors. As a special
case, here we investigate the case when some of the agents maintain fixed initial
state. These agents will be called stubborn. Several interpretations are possible. In
robotic networks, these agents can be interpreted as leaders who are trying to keep the
rest of the units within a certain region: In this context, we talk about the containment
problem. In the context of opinion dynamics, stubborn agents play the role of opinion
leaders or influencers.

Let G = (V, E) be a strongly connected aperiodic graph endowed with a sto-
chastic matrix P ∈ R

V×V such that GP = G. Consider the split V = V � ∪ V f

with the understanding that agents in V � are the leaders while those in V f are the
followers. The dynamics we want to consider is given by the modified stochastic
matrix P̃ ∈ R

V×V defined by

P̃uv =
{
Puv if u ∈ V f , v ∈ V
δuv if u ∈ V �

If V � = {v	}, the node v	 will be globally reachable and aperiodic for the graph
GP̃ . Therefore, thanks to Theorem 2.2, there will be convergence to a consensus.
Because of Proposition 2.5, it follows that the corresponding invariant probability
for P will be π = δv	 and therefore

http://dx.doi.org/10.1007/978-3-319-68022-4_2
http://dx.doi.org/10.1007/978-3-319-68022-4_2
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P̃ t x(0) → 1x(0)v	

In other terms, consensus coincides with the initial (unchanged) state of the unique
leader v	. If |V �| > 1, the graph GP̃ will not possess a globally reachable vertex,
and therefore, consensus will not in general be achievable. Nevertheless, we would
like to understand the behavior of P̃ t x(0) for t → +∞.

If we order elements in V in such a way that followers come first, the matrix P̃
will have the block structure:

P̃ =
[
Q R
0 I

]

where Q ∈ R
V f ×V f

, R ∈ R
V f ×V �

, and where I ∈ R
V �×V �

is the identity matrix.
If we split accordingly the state vector x(t) = (x f (t), x�(t) ∈ R

V , we thus have
dynamics

x f (t + 1) = Qx f (t) + Rx�(t)
x�(t + 1) = x�(t)

(5.12)

By the assumption made, it follows that Q is sub-stochastic satisfying the assump-
tions of Proposition 2.4. Hence, Q is asymptotically stable. These dynamics easily
imply that x f (t) converges to x f (∞) ∈ R

V f
determined by the fixed point relation:

x f (∞) = Qx f (∞) + Rx�(0)

which is equivalent to
(I − Q)x f (∞) = Rx�

or since I − Q is invertible, to

x f (∞) = (I − Q)−1Rx� (5.13)

where x� = x�(0). Notice in particular that the initial condition of the state of the
followers, x f (0) does not play any role in the final state. If all the leaders share the
same state, x�

v = c for every v ∈ V �, then it is immediate to check that x f (∞)v = c
for every v ∈ V f , namely, they reach consensus. In general, however, x f (∞) is not a
consensus state. If we confront the formula for x f (∞) above with (5.8), we see that,
indeed, x f (∞) can be interpreted as the harmonic extension of the leader assignment
x�. If the original matrix P is a reversible stochastic matrix, we can then apply all
the machinery from electrical networks for computing the vector x f (∞).

Example 5.12 Consider the graph LN+1 with vertex set {1, . . . , N + 1} and leader
nodes �1 = 1 and �2 = N + 1. Let P be the SRW on the follower nodes. It follows
from Example 5.11 that the followers’ limit state is given by

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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x f
k (∞) = x�

�2
− x�

�1

N
(k − 1) + x�

�1
.

This formula also shows that there is consensus if and only if x�
�1

= x�
�2
.

Remark 5.2 (Connectivity and influence)Notice that
(
(I−Q)−1R

)
hk = ∑

n

(
QnR

)
hk

is not equal to 0 if and only if there exists a path in the graph connecting the follower
h to the leader k. This implies that if a follower h can reach leader k only, then
x f
h (∞) = x�

k (0).

Remark 5.3 (Multi-dimensional case) If the evolving state of each unit xv(t) is a vec-
tor (e.g., in R2 or R3) possibly indicating positions, the considerations above remain
valid with the usual interpretation of the matrix multiplications done in previous
chapter. Relation (5.13), in this case, has an even more vivid geometric representa-
tion. It says that the asymptotic state of each follower is a convex combination of the
state of the leaders, in other words, each follower will eventually stay in the convex
polyhedron whose vertices are the states of the leaders.

5.4 Estimation from Relative Measurements

Consider a set of agents V and a symmetric connected graphG = (V, E). Each agent
v possesses an attribute x̄v ∈ R

q (to be interpreted as position or quality, for instance)
which is unknown to the agent itself. Any pair of agents v,w ∈ V , connected by an
edge in G, make a cooperative measurements of their relative position

b{v,w} = x̄v − x̄w + n{v,w}, (5.14)

where n{v,w} is a random variable modeling the measurement noise. We will assume
that random variables are independent and identically distributed with mean 0 and
variance σ 2. Also, we will assume that q = 1: This choice does not entail any loss
of generality as the case of q > 1 can be captured working componentwise.

Notice that the measurements and the noises are naturally defined on the set of
undirected edges Ē of the graph b, n ∈ R

Ē . However, also notice that the measure-
ment model (5.14) assumes that a direction has been decided at the level of each
pair v,w. If we consider the incidence matrix B of G corresponding to such chosen
directions (e.g., B{v,w}v = 1 in reference to (5.14)), then we can rewrite relations
(5.14) in a more compact form as

b = Bx̄ + n. (5.15)

On the basis of the available measurements b, the goal is to obtain an estimate x̂ of
x̄ . A classical solution is the so called least squares estimator, defined as

x̂ := argminx∈RV ||Bx − b||22 (5.16)
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Notice that for sure the above minimum is not unique as B1 = 0. Indeed, notice
that any translation of all real positions x̄ of a vector c1 would not change the vector
b: In other terms, estimation can only be achieved modulo a translation addend. We
will see below that this is the only “freedom” in the system so that (5.16) is uniquely
defined up to this translation.

Remark 5.4 (Maximum likelihood interpretation) In the case when the variables
n{v,w} are Gaussian, the least squares estimator coincide with the classical Maximum
Likelihood (ML) estimator. Indeed, the density function of b = Bx + n assuming x
to be a parameter is given by

f (b|x) = 1

(2πσ 2)|Ē |/2 e
− ||b−Bx ||22

(2σ2)|Ē |

and therefore, the ML estimator is given by

x̂ML:=argmaxx∈RV f (b|x) = argminx∈RV ||Bx − b||22
Consider the functional

J (x) = ||Bx − b||22, (5.17)

which is what we want to minimize. Notice that J (x) = x∗B∗Bx − 2b∗Bx + ||b||22
is indeed a convex quadratic function and its minima coincide with its stationary
points. Since its gradient is given by ∇ J (x) = 2B∗Bx − 2B∗x , its minima are the
solutions of the equation LGx = B∗b (recall that B∗B = LG). This equation is the
voltage equation in the electrical network (G, AG) and with input current ι = B∗b
(notice that ι∗1 = b∗B1 = 0 as required). Solutions are then given by

x̂ = ZGB
∗b + c1, (5.18)

provided we denote ZG = ZAG . Notice that, since 1∗ZG = 0, it follows that the
solution x̂ = ZGB∗b is the (only) one satisfying 1∗ x̂ = 0 (barycenter in the origin).

Remark 5.5 (Trees) In the special case when G is a tree, notice that B is an (N −
1)× N -matrix having rank equal to N −1. Therefore, B is onto and there must exist
x̂ satisfying Bx̂ = b; this is for sure a minimizer of J (x), hence it must coincide
with the solution (5.18). This implies that must hold BZGB∗ = I .

We now want to study the performance of the least squares estimator. Particu-
larly, we are interested in evaluating the effects of the noise and the topology of the
graph. A natural performance measure is the minimum mean quadratic error, which
considering the nonuniqueness of the solution, takes the form

Jrel = 1

N
E‖x̂ − x̄‖22 := 1

N
min
c∈R

E||(ZGB
∗b + c1) − x̄‖22, (5.19)
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where the expectation is taken over the noise n. Notice that the optimal c is given by
c = N−11∗ x̄ , which corresponds to the estimate x̂ having the same barycenter of x̄ .

The following simple result shows that the mean-square error of the least squares
solution depends only on the variance of the noise and on the topology of the graph
through the Green matrix of the graph:

Proposition 5.4 (MSE formula) Provided the undirected graph G is connected,
cost (5.19) can be computed as

Jrel = σ 2

N
tr(ZG). (5.20)

Proof We compute as follows

Jrel = 1
N min

c∈R E||(ZG B∗b + c1) − x̄‖22
= 1

N min
c∈R E||ZGLG x̄ − x̄ + c1 + ZG B∗n||22

= 1
N min

c∈R E||1(−N−11∗ x̄ + c) + ZG B∗n||22
= 1

N min
c∈R E

[
N (−N−11∗ x̄ + c) + n∗BZ2

G B∗n
]

= 1
N E[n∗BZ2

G B∗n] = 1
N E tr[ZG B∗nn∗BZG ] = 1

N tr[ZG B∗
E[nn∗]BZG ] = σ 2

N tr(ZG),

by using (5.4) and recalling N−11∗ x̄ = c. �

It follows from (5.10) that
Jrel = σ 2Rave(G, AG).

Whenever we are able to compute or estimate the effective resistance in a graph, we
will be able to estimate the performance of the mean-square position estimator. In
particular, it follows from Examples 5.7 and 5.10 that for d-dimensional grids

Jrel =
⎧⎨
⎩

Θ(N ) for d = 1
Θ(log N ) for d = 2
Θ(1) for d > 2

(5.21)

as N → ∞. We thus have strikingly different behaviors of the algorithm for d ≤ 2
and d > 2, as in the first case performance degrades as N increases. A similarly poor
performance affects trees: Example 5.8 implies that Jrel is linear in the diameter on
trees with bounded degrees. This fact means that, even though the tree structure is
sufficient to estimate absolute distances (as explained in Remark 5.5), the availability
of additional measurements is essential to obtain good performance.

As shown by (5.18), the solution to the optimization problem (5.16) is easily
obtained analytically. However, it is not immediately clear whether in practice such
a solution can be computed in a distributed fashion by the nodes. We show now that
the answer is positive, by presenting a distributed algorithm that allows each node v
to compute its own component of the estimate x̂v.
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Let us recall that J (x) as defined in (5.17) is a convex function: Then its minima
can be found by an iterative gradient descent algorithm. Let x(t) ∈ R

V be the vector
of node estimates at iteration t . Then, we consider the following algorithm

x(t + 1) = x(t) − τ∇ J (x(t)),

with τ > 0 to be determined in order to ensure convergence. The recursive law can
be rewritten as:

x(t + 1) = x(t) − τ(LGx(t) − B∗b)
= (I − τ LG)x(t) + τ B∗b

Defining P := I − τ LG ∈ R
V×V and y := τ B∗b ∈ R

I , we obtain the compact form

x(t + 1) = Px(t) + y. (5.22)

It is of note that the matrix P is inherently adapted to the measurement graph G,
in the sense that Puv > 0 only if (u, v) is an edge in G. This observation is key as it
implies that the algorithm is naturally distributed over the graph which describes the
problem, that is, there is no need for communication between agents which do not
share a measurement.

The convergence properties of the algorithm are summarized in the next result.

Proposition 5.5 (Convergence)Let G be symmetric and strongly connected. Choose
τ such that 0 < τ < 1

dmax
, where dmax denotes the largest degree in G. Then, the

algorithm (5.22) is such that
lim

t→+∞ x(t) = x̂,

where x̂ is the solution in (5.18) characterized by the condition 1
N 1

∗ x̂ = 1
N 1

∗x(0).

Proof From the assumption on τ it follows that P is a symmetric, irreducible, ape-
riodic stochastic matrix. Then, we know from Chap.2 that 1 is a simple eigenvalue
whose eigenspace is spanned by 1, while all other eigenvalues are, in modulus,
strictly less than 1. Since 1∗y = 0, it easily follows that x(t) converges to a solution
of the equation x = Px + y. Substituting the expression of P , we immediately get
the result. Invariance of the barycenter simply follows by applying 1∗ to both sides
of (5.22). �

We observe that, given an initial condition x(0), the algorithm converges to a
corresponding solution x̂ , specifically that one with the same average as x(0). Then,
in order to converge to the best solution, it is necessary to impose the same average
of x̄ to the initial condition x(0).

http://dx.doi.org/10.1007/978-3-319-68022-4_2
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Fig. 5.2 Graphs G1 and G2 for Exercise 5.2

Exercises

Electrical Networks

Exercise 5.1 (Notions of incidence matrix) Compare the definition of incidence
matrix given at the beginning of this chapter for undirected graphs and the notion
defined in Exercise 1.12 for general weighted graphs.

Exercise 5.2 (Potentials on small graphs) Consider the graphs is Fig. 5.2. Compute
the voltages

(i) W ′ defined on G1 such that W ′
0 = 0 and W ′

1 = 1;
(ii) W ′′ defined on G1 such that W ′′

0 = 3 and W ′′
1 = 1;

(iii) W ′′′ defined on G2 such that W ′′′
0 = 0 and W ′′′

3 = 1 and W ′′′
6 = 2.

Exercise 5.3 (Voltages on a hypercube) Consider the hypercube graph Hn having
node set V = {0, 1}n , defined in Example 1.3, with unitary conductances. Consider
an input current ι = e(0,0,...,0) − e(1,1,...,1). Voltages at various nodes can be computed
using the following method which is alternative to Example 5.4. First notice that for
symmetry reasons, nodes at a certain distance d from (0, 0, . . . 0) will all have the
same voltage. Transform consequently the electrical network into an equivalent line
and compute voltages. Show that you obtain the same result as formula (5.5).

Exercise 5.4 (Effective resistance is a distance) Verify that the effective resistance
satisfies the axioms (recalled in Exercise 1.11) to be a metric on the set of nodes of
an electrical network.

Exercise 5.5 (Average effective resistance) Using either (5.20) or an “electrical”
argument, compute Rave(G) of the following graphs (assume for simplicity to have
unitary conductances):

(i) complete graph KN ;
(ii) cycle graph CN ;
(iii) complete bipartite graph KN1,N2 ;

http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
http://dx.doi.org/10.1007/978-3-319-68022-4_1
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(iv) hypercube graph Hk ;
(v) barbell graph as defined in Example 5.6;
(vi) (toroidal) grid of dimension d, thereby proving (5.21).

Exercise 5.6 (Effective resistance on binary tree) Consider a binary tree of depth n
with edges of unit conductance. Compute the effective resistance between the root
and the leaves (glued together).

Exercise 5.7 (Foster’s equality) Let the conductance matrix C have unit entries.
Show that

∑
{u,v}∈Ē R eff(u, v) = |V | − 1.

Exercise 5.8 (Green matrix of a stochastic matrix) For any aperiodic irreducible
stochastic matrix P having invariant probability π , the Green matrix can be defined
as

ZP :=
+∞∑
t=0

(Pt − 1π∗).

Show that ZP L(P) = L(P)ZP = I − 1π∗ and (ZP + 1π∗) = (L(P) + 1π∗)−1.

Exercise 5.9 (Jx cost on symmetric matrices) Let the N -dimensional stochastic
irreducible aperiodic matrix P be symmetric and recall the cost

Jx (P) = 1

N
tr

∑
t≥0

(P2t − 1

N
11∗)

defined in (4.7). Verify that, following the notation from Exercise 5.8,

Jx (P) = 1

N
tr ZP2 = 1

N

N∑
i=2

(
1 − μi (P

2)
)−1

,

and thus by virtue of (5.10)

Jx (P) = Rave(GP2 , P2).

Exercise 5.10 (Jx cost on reversible matrices) This exercise extends Exercise 5.9
to reversible irreducible aperiodic matrices. In that case, the cost takes the form
Jx (P) = 1

N

∑
t≥0

||Pt − 1π∗||2F . For a reversible P , we can define the associated

conductance matrix as
Φ(P) = N diag(π)P.

(i) Verify that Φ(P) is symmetric and 1∗Φ(P)1 = N .
(ii) Verify that if C is a conductance matrix, then Φ(D−1

C1C) = (1∗C1)−1N C .
(iii) [22, Theorems 3.1 and 3.2] If we assume that P is reversible and irreducible

with positive diagonal, we let D = Φ(P2) and we denote by A the adjacency
matrix of GP , then

http://dx.doi.org/10.1007/978-3-319-68022-4_4
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N 2π3
min

πmax
Rave(GD, D) ≤ Jx (P) ≤ N 2π3

max

πmin
Rave(GD, D),

and

Nπ3
min

8p2maxd
2
maxπ

2
max

Rave(GP , A) ≤ Jx (P) ≤ Nπ3
max

8p2minπ
2
min

Rave(GP , A),

whereπmin ≤ πv ≤ πmax anddv ≤ dmax for every node v and pmin ≤ Puv ≤ pmax

for every Puv > 0.

Exercise 5.11 (Jx cost on example graphs) Derive the scaling of Jx for the symmet-
ric random walk matrix on the graphs of Exercise 5.5. To this goal, you can apply
Exercises 5.9 or 5.10 depending on the graph.

Consensus with stubborn agents

Exercise 5.12 (Asymptotic followers state) Consider the two graphs (with leader and
follower nodes) in Fig. 5.3, and the matrices corresponding to the Simple Random
Walks on them.

(i) Referring to the graph in Fig. 5.3 (left), compute the limit states of the followers
as a function of the states of the leaders l0, l1, l2, l3, l4, as time goes to infinity.

(ii) Referring to the graph in Fig. 5.3 (right), compute the limit states of the followers
as a function of the states of the leaders l0 and l1 = l2 = l3 = l4. (Hint: take
advantage of the symmetries to reduce the number of unknowns).

Exercise 5.13 (Asymptotic followers state on trees) Compute x f (∞) as a function
of x�(0) for the SRW on the trees with stubborn nodes in Fig. 5.4 Generalize the
second graph when the lines departing from the common central node have any
length n.

l0 l1

l2

l3

l4

1

2

3

4

56

7 8

l0 l1

l2

l3

l4

1

2

3

4

56

7 8

Fig. 5.3 Leader agents are represented by diamonds, follower agents by circles
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Fig. 5.4 Trees with stubborn agents (filled in black)

Exercise 5.14 (Leaders in barbell graphs I) Consider the graph G = (V, E) where
V = V ′ ∪ V ′′ with V ′ = {v′

1, . . . , v
′
N } and V ′′ = {v′′

1, . . . , v
′′
M } and

E := {(v′
i , v

′
k) | i, k = 1, . . . , N } ∪ {(v′′

i , v
′′
k ) | i, k = 1, . . . , M} ∪ {(v′

1, v
′′
1), (v

′′
1, v

′
1)}

Assume that v′
a and v′′

a are two leaders having opinion, respectively, equal to 0 and
1. Assume for the remaining nodes the consensus dynamics induced by the natural
SRW and consider the asymptotic opinions as time goes to infinity.

(i) Compute the asymptotic opinions of the followers.
(ii) Compute the limits of such asymptotic opinions in the case when N = M →

+∞.
(iii) Compute the limits of such asymptotic opinions in the case when N = M2 →

+∞.

Exercise 5.15 (Leaders in barbell graphs II) Consider the graphG = (V, E)where
V = V ′ ∪ V ′′ with V ′ = {v′

1, . . . , v
′
N } and V ′′ = {v′′

1, . . . , v
′′
N } and

E := {(v′
i , v

′
k) | i, k = 1, . . . , N } ∪ {(v′′

i , v
′′
k ) | i, k = 1, . . . , M}

∪ {(v′
h, v

′′
h), (v

′′
h, v

′
h) | h = 1, . . . r}

Assume that {v′
r+1, . . . v

′
r+s} and {v′′

r+1, . . . v
′′
r+s} are two set of leaders having opin-

ion, respectively, equal to 0 and 1. Consider for the remaining nodes the consensus
dynamics induced by a SRW on this graph.

(i) Compute the asymptotic opinions of the followers as functions of r and s.
(ii) Compute the limits of such asymptotic opinions in the case when N → +∞

and r, s are kept constant.
(iii) Compute the limits of such asymptotic opinions in the case when �r = αN�,

�s = βN�, and N + ∞.

Exercise 5.16 (Optimal leader selection) Let x denote the harmonic extension on a
graph when V � = {v0, v1} and xvi = i . We think of the two leaders as competing to
maximize their own influence. We define
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H(v0, v1) = 1

N

∑
v∈V

xv.

Note that H(v0, v1) ∈ (0, 1).

(i) Show that

H(v0, v1) = 1

2
−

1
N

∑
v R eff(v, v0) − 1

N

∑
v R eff(v, v1)

2R eff(v0, v1)

(ii) Consider the optimization problem

min
v0∈V

max
v1∈V \{v0}

H(v0, v1).

Show that the optimal value is not larger than 1
2 and the optimal solution is the

optimal solution of minw
∑

v R eff(v,w).

Bibliographical Notes

Themost influential works for our treatment of electrical networks in connectionwith
reversible stochastic matrices are the classical monograph [11] and the textbook [20],
where the reader can find a more comprehensive treatment. A detailed analysis of the
average resistance on d-dimensional graphs, which refines and extends Example 5.10
and Eq. (5.21), has been provided in various papers [2, 8, 31, 33]: For instance, it is
known that the average resistance decreases with increasing d. The optimal choice of
how to distribute conductances to minimize the average resistance is studied in [17].

Consensus with stubborn agents has attracted significant attention, in view of dif-
ferent applications. In robotic networks, it can be seen as a containment problem [19].
In social networks, stubborn agents that do not change their opinions are present,
explicitly or implicitly, in a variety of models of opinion dynamics [1, 14, 16, 23,
25]. A recent survey of related literature has been given in [26]. Electrical networks
have been used as a tool in this context by [10, 34]. Recently, the problem of the
optimal placement of stubborn agents has recently attracted significant attention, also
in relation with classical problems of actuator selection in control theory: Various
objective functions have been considered, see [9, 12, 21]. The formulation used in
Exercise 5.16 derives from [34, 35]. The paper [34] proposes a message-passing
algorithm to effectively solve the placement problem for v1 (after v0 is in place). The
algorithm was deduced within the electrical framework but has now been extended
to nonreversible update matrices [29].

The problem of estimation from relative measurements studied in Sect. 5.4 has
been brought to our attention by reading [3–5]. The electrical framework is a useful
tool for its analysis [4, 32]. This estimation problem relates to various streams of
applied research: It can be interpreted as a problem of relative localization between
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mobile robots [3], sensor calibration for wireless sensor networks [6], statistical
ranking in machine learning [24], clock synchronization [18], or voltage estimation
in power networks [13].

The simple distributed gradient algorithm is analyzed in [30], but several more
sophisticated solutions have been proposed since at least [3]. We note that also ran-
domized dynamics have been studied,which extend the ideas ofChap. 3 to consensus-
like dynamics with inputs [7, 15, 27]. A general convergence analysis of such affine
consensus-like randomized dynamics is given in [28].
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Adjacency matrix AG , 10
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Asymptotic notation, 48

B
Bézout’s identity, 7
Big O notation, 48

C
Canonical basis, 18, 38, 78, 112
Cartesian product, 15
Cheeger bound, 51
Circuit, 5
Clusters, 77
Complex network, 30
Condensation graph, 5, 73
Conductance matrix, 109
Consensus

applications, 63
continuous-time, 64
convergence rate, 40
convergence time, 49
finite-time, 64
randomized, 78
symmetric regular graph, 33
time-dependent graph, 71
time-dependent symmetric graph, 76
time-invariant graph, 33, 37

Containment problem, 119, 129
Contraction principle, 36

Current flow φ, 109
Cut-balance, 74

D
Degree (of a node), 2
Democracy, 46, 49, 57, 59
Detailed balance, 50
Dirichlet form, 12, 50
Distributed inference, 101

E
Eulerian graph, 22

F
Flow, 117
Fourier transform, 19
Frobenius norm, 94

G
Gershgorin’s Lemma, 98
Gradient descent, 124
Graph
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adapted matrix, 11
algebraic connectivity, 24, 28
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circulant, 14
complete, 1
complete bipartite, 8, 60
connectivity, 3, 4, 38
cycle, 3
De Bruijn, 20, 63, 64
geometric, 29
hypercube, 9, 17, 18, 105, 112
incidence matrix, 23, 110, 121, 125
k-torus, 17
Laplacian matrix, 11, 25
line, 3
path (on a graph), 3
periodicity, 7
random geometric, 29
regular, 2, 18, 24, 34, 44
star, 25, 46, 49, 58, 87
strongly connected component, 5
2-torus, 17
(weakly) connected component, 4
weighted, 11
wheel, 61

Green matrix Z , 111, 123

H
Harmonic extension, 114

I
Incidence matrix, 23, 110, 121, 125
Induced subgraph, 2
Input current ι, 109
Invariant measure, 40

J
Jensen’s inequality, 81

K
Kirchoff’s law, 110
Krause’s dynamics, 77, 86
Kronecker product, 15, 26

L
Laplacian matrix, 11, 12, 25
Least squares, 102
Limit graph, 74

M
Majority computation problem, 57
Markov chain, 36
Matrix

circulant, 14
doubly stochastic, 42
irreducible, 38
reversible, 49, 109, 113
stochastic, 35, 36

invariant measure, 40
lazy simple random walk, 44
Metropolis random walk, 44
simple random walk, 44

substochastic, 42
Message passing, 62, 64

N
Neighborhood (of a node), 2
Normal matrix, 60, 105

O
Ohm’s law, 110

P
Permutation matrix, 46
Pigeonhole principle, 72

R
Raileigh’s monotonicity law, 117
Random walk, 36

lazy simple random walk, 44
Metropolis random walk, 44
simple random walk, 44

Rendezvous problem, 31
Riemann sum, 97
Rooted tree, 22

S
Second eigenvalue, 41, 63, 93
Spectral gap, 41, 48, 51, 63
Stubborness, 129
Subgraph, 2
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T
Thomson’s principle, 117
Tree, 6, 62, 116, 122, 127

binary, 114, 126

U
Undirected graph, 29, 110

V
Voltage W , 109

W
Wisdom of crowds, 57, 107
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