A Model-Driven Process Enactment Approach
for Network Service Design

Sadaf Mustafiz!, Navid Nazarzadeoghaz', Guillaume Dupont?,
Ferhat Khendek! ™, and Maria Toeroe?

! ECE, Concordia University, Montreal, Canada
{sadaf .mustafiz,ferhat.khendek}@concordia.ca,
{n-nazarz,gdupont }@encs.concordia.ca
2 Ericsson Inc., Montreal, Canada
maria.toeroe@ericsson.com

Abstract. The development of the Network Functions Virtualisation
(NFV) paradigm has made way for the rapid deployment and manage-
ment of network services. The European Telecommunications Standards
Institute (ETSI) has been actively defining the NFV framework, which
includes functional blocks and artifacts at different levels of abstraction.
As part of the artifacts, various deployment templates have been defined
to drive the deployment and the management of network services (NS)
and Virtual Networks Functions (VNFs). The design of an NS is a com-
plex activity that aims at selecting appropriate VNFs, creating the VNF
forwarding graph (VNFFG), and all the necessary templates for the NS
deployment and management, on the basis of the tenant’s requirements
and existing VNFs. Automating the NS design activity as well as the
NS management process itself is highly desirable and beneficial for NFV
systems. Continuous deployment for NFV with model-driven orchestra-
tion means has been recently advocated.

In this paper, we propose a model-driven process for the design of net-
work services which covers the automatic generation of the NS deploy-
ment template and the associated templates. The core of the process
involves the decomposition of the NS requirements with the help of an
ontology, and the selection of proper network functions based on a cat-
alogue of existing VNFs. Moreover, we provide support for automated
process execution with a model-driven process enactment approach. The
process is modelled as a UML activity diagram. All the artifacts are
models of defined metamodels. Enactment of the NS design process is
carried out by mapping the process model to a model transformation
chain, and executing the chain.

1 Introduction

Network Functions Virtualisation (NFV) is an emerging paradigm that builds on
cloud computing and the virtualisation technology to eliminate the drawbacks
of traditional physical network infrastructure and enables rapid provisioning of
network services (NSs) [11,18]. The use of NFV reduces capital and operating

© Springer International Publishing AG 2017
T. Cséndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 99-118, 2017.
DOI: 10.1007/978-3-319-68015-6_7

100 S. Mustafiz et al.

expenses, since it does not require a wide range of network equipments to be
deployed. The physical devices are remodelled into virtual entities implemented
as software packages, referred to as Virtual Network Functions (VNFs) [18].

The NFV reference architectural framework standardized by ETSI [18] and
adopted by TOSCA [29], defines various functional blocks playing different roles
in the different phases of NS and VNF lifecycle management, from on-boarding
to deployment and management. The ETSI standard specifies the NFV refer-
ence framework, its functional blocks, their roles, their interfaces, and some NS
and VNF-related operational flows [17-19]. An NS and VNF deployment and
management process is implied from these, however the workflow as such is not
defined. Previously, we have proposed a model-based process for network service
design and deployment [28]. The proposed workflow is compliant with the NFV
reference framework. We had also proposed the network service design activity
(which is outside the scope of the standard) as part of the process. NS design
entails the generation of new NS deployment templates, namely NS Descrip-
tors (NSD [17]), based on the tenant’s NS requirements and the provider’s VNF
catalogue [19]. Network service requirements (NSReq) consist of functional and
non-functional characteristics of a service requested by a tenant. Examples of
NSs being requested include VoLTE or VoIP, for instance, with some specific
non-functional characteristics.

This workflow is a first step towards the necessary automation of the NS
design and deployment process for NFV systems. Automating NS management,
in other words, automating the execution of the workflow or process for NS man-
agement without manual intervention is highly desirable in the NFV domain and
remains a major challenge [10,27]. The application of model-driven engineering
(MDE) methods and tools is essential to further such developments in the NFV
domain [6]. MDE advocates the use of models as first class citizens in the engi-
neering process. The models are manipulated with model transformations which
form the backbone for automation in MDE. ETSI has recently released an infor-
mation model for NFV [21]. Leveraging these models can substantially benefit
the NFV systems by reducing their development and management efforts. More-
over, explicit modelling of the process not only allows the automation of the NS
management process but also paves the way for streamlining or optimizing the
process to ultimately speed up deployment time. Such a process model (PM)
can potentially be mapped to model transformation chains hence enabling NS
management and orchestration via model-driven process enactment [5,15,34].

We propose an approach for model-driven enactment of the NS design,
deployment and management process. In this paper, we focus on applying our
approach to the NS design activity only. We model the internal behavior of the
NS design activity by outlining a set of actions that need to be taken to come
up with a deployment template for network services (NSD). The enactment of
the NS design process allows for automatic generation of the NSD. We adapt
the Papyrus [14] environment to provide tool support for process enactment.

This paper is structured as follows: Sect. 2 gives a brief background on the
NFV reference framework and the NFV artifacts. Section 3 proposes a process

A Model-Driven Process Enactment Approach for Network Service Design 101

model for NS design. Section 4 presents our enactment approach. In Sect. 5, we
review the related work. Finally, Sect. 6 concludes with some future work.

2 Background

This section provides a brief introduction to network services and some of the
artifacts and functional blocks in the NFV reference architecture as proposed in
the ETSI standard [16-18].

As stated in [17], a network service (NS) is a composition of network func-
tions (NF) arranged as a set of functions with unspecified connectivity between
them or according to one or more forwarding graphs. ETSI defines the NF for-
warding graph as a graph of logical links connecting NF nodes for the purpose of
describing traffic flow between these network functions [16]. It is essentially the
end-to-end sequence of NF's that packets traverse. Virtualised Network Functions
(VNFs) are the building blocks of an NS in NFV. VNF's are software pieces which
may have the same functionality as their corresponding physical network func-
tions, e.g., a virtual firewall (VFW) vs. a traditional firewall device. A VNF can
be composed of multiple internal components (VNFC). The description of the
deployment behaviour along with the non-functional characteristics of a VNFC
is defined as a Virtual Deployment Unit (VDU) [16]. Virtual links (VLs) are used
to connect VNFs to form a network topology. These are referred to as external
VLs, whereas internal VLs are the links which connect VNFCs within a VNF. A
Connection Point (CP) is the port that an NF exposes to connect to another NF
component via VLs (similar to the ports in a physical network module, such as a
switch). The connection point for an NS to link to the environment is defined as
a Service Access Point (SAP), every VNF Forwarding Graph (VNFFG) is asso-
ciated with one or more pool(s) of connection points (CpPool). The sequence
of connection points inside a VNFFG is referred to as the Network Forwarding
Path (NFP) which is required when different traffic flows exist.

During the lifetime of an NS, various artifacts at various levels of abstrac-
tions are used and produced. The deployment templates, referred to as descrip-
tors, describe the deployment requirements, operational behaviour, and policies
required by the NSs or VNFs. ETSI defines the Network Service Descriptor
(NSD) as a deployment template which consists of information used by the NFV
Orchestrator (NFVO) for lifecycle management of an NS [17]. Descriptors also
exist for VNFs (VNFD) VLs (VLD), and VNFFGs (VNFFGD) among others.
The constituent elements of an NSD are shown are Fig. 1.

Catalogues are defined in the NFV architecture which are part of the NFV
data repositories. The NS Catalogue contains all the on-boarded NSDs, VNF-
FGDs, and VLDs. The VNF Catalogue contains all the on-boarded VNFDs.

Nested NS and Physical Network Functions (PNF) are outside the scope of
this paper. In our process, the artifacts are all considered to be models (instances
which conform to existing meta-models).

The main functional module in the architecture is the NF'V Management and
Orchestration (NFV-MANO), which is in charge of deployment, management,

102 S. Mustafiz et al.

Network Service Descriptor (NSD)

T T
1 1
1 1

€ b= = =

I \ [w | v | w [
VNF Physical Virtual Virtualised
Forwarding Network Link Network Nested
Graph Function . Function NSD
Descriptor Descriptor Descriptor Descriptor
(VLD)
(VNFFGD) (PNFD) (VNFD)
I A L) A
| 1 1 1
e
[V
Network =3 Includes
Forwarding
Path - = = > References
Descriptor
(NFPD)

Fig. 1. NSD Overview (from ETSI NFV IFA014 [17])

and orchestration of NSs. The NS orchestration and lifecycle management which
include onboarding and instantiation of NS is taken care of by the NFV Orches-
trator (NFVO). NFV-MANO also includes managers which are responsible for
the VNF's and the infrastructure, namely VNFM and VIM. Operations Support
Systems and Business Support Systems (OSS/BSS) refer to the operator’s pro-
prietary systems and management applications supporting their business. The
OSS/BSS systems exchange a lot of information with NFV-MANO functional
blocks to provide the desired network service. For details on all the functional
blocks in the NFV framework, the reader can refer to [18].

3 Network Service Design

The NS design entails the definition of deployment templates (namely NSD,
VNFFGD, and VLD). These descriptors include static information elements
related to an NS. The NSD is used by the orchestrator as a template for instan-
tiating the NS.

We propose a method for NS design by taking inspiration from [1]. A ten-
ant may request a new NS by specifying the NS Requirements (NSReq), which
consist of functional and non-functional requirements possibly with some ini-
tial decomposition targeting specific functions. There is a big gap between the
information provided by the tenant and the network service to be deployed. The
tenant has limited knowledge regarding the details of this target network service,
and hence this gap needs to be filled. The knowledge to help in filling this gap
comes from the various architectures and standards existing in the telecommu-
nications and network service domain. It is essential for this knowledge to be
captured and retained for use later when a new network service is required. In
our approach, we propose to define and retain this knowledge in a Network Func-
tion Ontology (NF Ontology). With each new NS design, information about new
architectures and functionalities is gained and this is used to enrich the ontology.

A Model-Driven Process Enactment Approach for Network Service Design 103

NFOntology captures standard network function (de)compositions as defined by
different standardisation bodies such as 3GPP as well as knowledge and experi-
ence from previous decompositions, architectures and network service designers.

In our work, we assume that the OSS/BSS of an NFV provider gets the
NSReq and generates the NSD based on the provider’s VNF Catalogue. The
NS design method involves the decomposition of the NSReq and the selection of
proper network functions, e.g., VNFs (and/or PNFs) from the VNF Catalogue.
The NSReq decomposition is guided by a NFOntology. The NFOntology cap-
tures the decomposition of network functionalities to some level of granularity
where each functionality can be mapped onto some VNF provided functionality.
When the decomposition reaches that level, VNFs from the VNF Catalogue are
matched and selected to compose the network service. During this activity, the
VNF forwarding graph descriptor (VNFFGD) and the virtual link descriptors
(VLD) are also generated. The design phase also takes into account the non-
functional requirements and refines the NSD accordingly by adding deployment
flavours and associating VNF profiles to the NS. It should be noted that our NS
design method does not address the concept of nested NS as yet.

3.1 NS Design Languages

As part of our process, we propose languages for modelling the NSReq and
the NFOntology which are required inputs for the process. We also define a
VNF Catalogue metamodel for modelling a catalogue containing VNF packages
(defined by ETSI in [21]).

NSReq and NFOntology. We have defined an abstract syntax as well as a
concrete syntax for the NSReq and NFOntology languages.

The NSReq contains the hierarchy of requirements for a network service
according to the needs of the tenant. The metamodel of the NSReq lan-
guage is shown in Fig.2. As shown in the figure, an NSReq consists of
the main functional requirement which is the highest level functionality of
the network service. Each functional requirement (identified with an unique
name in FunctionalRequirement) can be decomposed into lower-level func-
tional requirements, and this builds a hierarchy of NS requirements. A func-
tional requirement can be associated with various non-functional requirements
(Non-FunctionalRequirement), such as availability, reliability, and throughput.

The proposed NFOntology language for NFV is an extended variant of a fea-
ture diagram [24]. The metamodel is shown in Fig. 3. The ontology language has
two main components: Functionalities and Architectural Blocks. The Function-
ality part of the Ontology is modelled as a variant of a feature diagram. The
ArchitecturalBlock part has specific syntax and semantics in addition. Essen-
tially, the NFOntology is a hierarchy of (unique) functionalities in the network
service domain where a functionality can have zero to many decompositions.
As in feature diagrams, decomposition relationships between a functionality and
lower-level functionalities can be categorized as: mandatory, optional, alterna-
tive, and OR. A functionality can be dependent on another functionality.

104 S. Mustafiz et al.

NSReq

+ author
+ date Requirement

[]
Root Zli

RelateTo Non-Functional

Functional I *| Requirement
Requirement
q " + type
+ alias + value
+ archConstraint + goal

+ priority

DecomposedTo Dependency

Fig. 2. NS requirements metamodel

<<Enumeration>> <<Data Type>>
<<Data Type>> Plane Context
Interface + DATA + realizedBy
+ name + CONTROL + functionality
+ protocol + MANAGEMENT + archBlock

hasComposition

Arch - ArchBlock

. ! y
Composition + alias RealizedBy Functionality |! isComposedOf
+ standard * 2.* +standard |* *| +alias N
+interface] [

| ComposedOf
X
] |

+ isMandatory

source target source target
e
Service Architectural N
. Functional
Access Point Dependency
Dependency

+ interface + interface

+ plane + maxSource T

+ maxTarget

+ plane Dependency
+ context

Fig. 3. Network function ontology metamodel

The architecture defines possible ways of realizing the functionalities with
established architectures for network services. The architectural blocks in the
ontology are unique blocks detailing specific architectural designs with well-
defined interfaces and protocols. Dependency relationships may exist between
architectural blocks. On the basis of the functionality and the architectural
blocks, a good decomposition of the network service requirements can be
achieved. For example, VoIP service is an essential NS nowadays. While cap-
turing the details required to create such a service can be quite difficult, having
such architectures like IMS (IP Multimedia Subsystem) to cover most of the
requirements for providing VoIP can be very helpful. IMS has a well known archi-
tecture and well known functional components. There is a high possibility of find-
ing VNFs which have been developed for implementing such architectures. IMS

A Model-Driven Process Enactment Approach for Network Service Design 105

blocks include components such as P/S/I-CSCF, HSS, AS. Adding them to the
ontology allows new NS designs (e.g., VoIP service) to reuse these components.

VNFD and NSD (Part of the ETSI Defined Information Model). The
VNFCatalogue includes Onboarded VNF Packages (OnboardedVngPkgInfo as
defined in [21]) which includes references to VNF deployment templates (VNFD).
The metamodel is trivial and is not shown here for space reasons. The VNFD
and NSD metamodels, as well as the metamodels of the other descriptors (VLD,
VNFFGD, SAPD), are defined by ETSI and are available in [21]. For clarity,
simplified VNFD and NSD metamodels are shown in Figs. 4 and 5 which present
the main elements in the descriptors.

3.2 NS Design Process

The high-level NS design and deployment Process Model (PM) was presented in
[28], in which the NS design was shown as a black-box activity. In this paper, we
refine the process and model its behaviour with a UML 2.0 Activity Diagram.
The NS Design PM is shown in Fig. 6.

During the process, we make use of an intermediate model, namely
SolutionMap which conforms to the SolutionMap metamodel (not shown here

Deployment |l-* 1 I
<@
Flavour VNFD
| [[*
L B ’—wVI ! VNF
Vdu |, *1 ') VLD
Profile [7] Vdu Profile oo
|XHI |.% Referenne;
VduCpd [VnfExtCpd [y,
| 0.1 References

Fig. 4. Simplified VNFD metamodel (adapted from ETSI NFV IFA015 [21])

*

'| Deployment |I-* I NSD

’—‘ Flavour :
] |

WNF [v | .

Profile VNF |. T I NSVLDJ
Profile Tk

NFPD & " HasConstituent

HasConstituent

i
o]l ol YNFFGD [

References References

Fig. 5. Simplified NSD metamodel (adapted from ETSI NFV IFA015 [21])

106 S. Mustafiz et al.

G5: NS Design

All steps carried out
by the OSS/BSS -
hence no other
partitions shown.

S

:SM
: NSRe! ZL_| Create Solution Map :]T

: NSReq

o

: SM
H NFOntoIog,‘——;.E Map Ontology :IT

|

—

: NFOntology

SM)
: SM
-

o Select VNF and Genera..| |

~r—1

: VNFCat

——

P4

Catalogue

-
SM, :
Create NSD =

J

: NFOntology

——=>{: NFOntolo

Update Ontology

: NSD

:NSD

Fig. 6. NS design process model (PM)

due to space constraints). This is a combination of the NSReq, NFOntology, and
VNFD metamodels.
The actions which are part of the NS Design PM are outlined here.

— Create Solution Map. This action takes as input an NSReq model (see
Fig.7) and initializes the SolutionMap with the content of the source model.
The SolutionMap is an intermediate artifact created to aid in the NSD gen-
eration process.

— Map Ontology. This action takes as input the SolutionMap model created
in the first step and an existing NFOntology model (see Fig.8). For each func-
tionality in the SolutionMap, the ontology is traversed to find any existing

A Model-Driven Process Enactment Approach for Network Service Design 107

«NSReqg» «Non-FunctionalRe...
£/ NSReq1.0 EINFR1
«NSReq» «Non-FunctionalRequir..
author=Navid type=Throuput
date=6/4/2017 value=500

«RootFunc»

«FunctionalRequirement»
& DynamicServiceChaining

«DecomposedTM Ncomposedm»

«FunctionalRequirement» «FunctionalRequirement»
EINAT E Firewall

Fig. 7. NSReq model

«RealizedBy»

Firewall Caching

4\4\—1)A\

TransparentCaching BranchCaching

ISAP»I nternetAcce... I I SAP2-WebAcc... I SAP3-VideoAcc...

Fig. 8. NFOntology model

knowledge about its composition and dependencies. When a match is found
in the ontology, all the details not available in the SolutionMap are added,
including the architectural blocks and their dependencies. Unmatched func-
tionalities, architectural blocks, and dependency relationships are tagged in
the SolutionMap, and may be used to enrich the ontology later.

— Select VNF and Generate FG. This action takes as input the refined
SolutionMap and the VNFCatalogue (see Fig.9). With the SolutionMap as
a guide, a proper set of VNF's is selected for creating the NS. The functional-
ities of the VNF's found in the catalogue are matched with the architectural
blocks and the functionalities in the SolutionMap. The VNFD (see Fig. 10)
of each of the selected VNF's are added to the SolutionMap. Next, the proper
combination of a set of functionalities is derived, leading to the combination
of a set of architectural blocks, and ultimately to the combination of a set of
VNFs which fulfill the NS requirements. For this purpose, an initial forward-
ing graph (FG) is created which contains the VNFDs, their sequence, and the
details of the interfaces and service access points (SAP). This FG contains
only dependencies but no real virtual links. The created FG becomes part of
the refined SolutionMap.

108 S. Mustafiz et al.

«KeyValuePair»
£ Funcionality_Firewall

|

«OnboardedVnfPkginfo»
E ovPInf-vFW1.0
«Vnfd» K

«VnfPackageAtrtifactinformatio... S vEw
E Artifactinfo_vFw1.0

«VnfPackageSoftwarelmagelnforma...
E swimginfo_vFW1.0

Fig. 9. Part of VNFCatalogue model

— Create NSD. In this action, an NSD model is created and initialized based
on the SolutionMap. VNFDs associated with the VNFs part of the FG are
added to the NSD. The Virtual Link (VL) and Service Access Point (SAP)
descriptors are created from the FG. Pre-defined types (MESH, TREE, LINE)
are used to define a VL type. Finally, the VNFFG deployment template
(VNFFGD) is created which includes the Connection Point(CP) pool(s) and
the Network Forwarding Path(s) (NFP). Till this point, only the functional
aspects of the requirements have been mapped to the NSD.

— Refine NSD. This action involves addressing the non-functional require-
ments in the NSReq and adding to the NSD the relevant details, such as the
deployment flavours and the VNF Profiles. The non-functional requirements
are available in the SolutionMap and so it is used as input here. The other
input is the VNFDs for the VNFs selected from the VNFCatalogue earlier in
the process (see Fig. 10). NS-specific VNF Profiles are defined for the VNFDs
at this stage. This step completes the NSD generation process. This NSD (see
Fig. 11) then can be sent to the NFVO for onboarding,.

— Update Ontology. Once an NSD has been successfully generated, the ontol-
ogy is enriched if applicable. If the NSReq includes functionalities and /or their
decompositions which do not exist in the ontology yet, i.e. those that were
marked as unmatched, these elements are added to the NFOntology as new
functionalities based on the SolutionMap.

— Set Thresholds. This action involves creating initial threshold mod-
els, NSCapacityThreshold and NSPerformanceThreshold, based on the
SolutionMap to define the capacity and performance related thresholds of
an NS.

Each action in the PM is mapped to a model transformation written in the
ATL transformation language.

A Model-Driven Process Enactment Approach for Network Service Design 109

«VnfDf» <

«Vnfd»
\f E vnfDf1 Elvrw
«VduProfile» «VduCpd» \9 «VnfExtCpd»
E vduProfilet E Pkt-in-vduCpd E Pkt-in-extCpd
«VduCpd» «VnfExtCpd»
L «Vdu» E Pkt-out-vduCpd E] Pkt-out-extCpd
E vFwcore
«VnfExtCpd>»
«VduCpd» £ Management-por...
£ Management-interface-...

Fig. 10. VNFD model of a firewall

«NsdHasSapd»

«NsDf» «NsdHasNsDfs Py S " «NsdHasSapds Q/
«Nsd»
= Gold-NsDf] vFirewall-Nsd «NsdHasVirtualLinkDesc Sapd
« »
«NsDHasVnfProfiles «NsDfHasVirtualLinkProfile» J/ J/ & Pkt-in-Sapd
)]
«NsDfHasVnfProfiles Wnfds [&] «Vnfds
COvew C1WNAT - «Sapd»
= = Pkt-out-Sapd
«VnfProfile» «VirtualLinkProfile»
= VFW-profile1 = Main-NsVI-prof... «NsdHaiVnfrgds
‘ ! «NsVirtualLinkD...
. £ Main-NsvI
7<<anProf|!e» «VnffgdHasNfpds
= VNAT-profile1 fad
«Nfpd» eVnffgds VnffgdHasConstituentVirtualLinkDescs
EINfp1-vFW £ vnffgd1 -
kV/ esCpdPool»

«anfgdReferencestde/olv «anfngeferenci/stdPooI»

«CpdPoolReferencesSapd»

«CpdPool» «CpdPool» «CpdPool»
= vFW-CpPool £ VNAT-CpPool | | E Sapds-CpPool

«CpdPoolReferencesSapd»

Fig. 11. Generated NSD model

4 Process Enactment

In this section, we present our approach for model-driven enactment of the NS
design process. Our goal is to provide tool support for process execution by
integrating enactment means with the Papyrus Activity Diagram environment
leading to an integrated environment for process modelling and enactment.

4.1 Enactment Approach

In our approach, process enactment is carried out with the use of transforma-
tion chain orchestration in combination with model management means. Trans-
formation chaining is the preferred technique for modelling the orchestration
of different model transformations [8]. Orchestration languages are used for the
composition of the transformations in order to model the chain as sequential
steps of transformations. Complex chains can incorporate conditional branches

110 S. Mustafiz et al.

and loops, and also can model composite chains (a chain including other trans-
formation chains).

Model management approaches typically use megamodels which provide
structures to avoid the so-called ‘meta-muddle’ [7]. A megamodel contains arti-
facts (which are models), relations between them (which may be transforma-
tions), and other relevant metadata. A megamodel can be seen as a map to find
and link together all involved models. A megamodel forms a repository of models
and transformations (and even tools). It can be used to enforce conformance and
compatibility checks between the various models and transformations. It is also
useful for reusing and composing transformations in transformation chains. The
input and output models which are part of the PM are typed by metamodels
residing in the megamodel. The transformation models that are associated with
the actions in the PM are also known in the megamodel. In case of a transforma-
tion chain with a heterogeneous set of transformations, the megamodel helps in
determining which transformation engine to use for the execution of the trans-
formation. Figure 12 shows the visual representation of a simplified NS design
megamodel (MgM).

We present here the approach we follow for process enactment to automati-
cally execute the NS design process. We begin by mapping the Process Model (in
essence a subset of the UML 2.0 Activity Diagram) to a model transformation
chain. The transformation chain is generated using a higher order transforma-
tion [36] in a manner similar to [26]. An initial megamodel is automatically
derived from the PM and then refined with further details if required. Orches-
tration of the transformation chain is carried out with the use of an orchestration
engine. The workflow execution engine executes the chain of model transforma-
tions to generate the artifacts (the target models). The enactment approach is
outlined in Fig. 13. We intend to apply the method to ultimately orchestrate the
NS Management process presented in [28].

I NFOntology | I NSReq | VNFCatalogue

1 — Create SolutionMap

2 — Map Ontology

3 — Select VNF &
Generate FG

4 — Create NSD

5 — Refine NSD

6 — Update Ontology

VNFD

Fig. 12. NS design megamodel

A Model-Driven Process Enactment Approach for Network Service Design

Create Solution Map

Map Ontology

Select VNF and Gen FFG

HOT

Create NSD

Update NSD

= Update Ontology

Process Model (PM) Tranzfg:i\;ation

| ooy MRy | WeCige

N , Sousonvep | i)

Megamodel

111

Artifacts

Models

Fig. 13. Process enactment approach

4.2 Tool Support in Papyrus

We use Papyrus for both process modelling and enactment. Papyrus is NFV’s
tool of choice. The NFV information model [21] released uses Papyrus as the
modelling tool. We have extended the activity diagram environment in Papyrus
to incorporate enactment means. The activity diagram contextual menu was
adapted to include the Enactment option as shown in Fig. 14. The user has the
option of choosing the transformation chain to execute (via run configurations)

or the default chain gets executed.

The execution is carried out in the backend with a workflow execution engine.
We use MoDISCO [9] for orchestrating the transformation chain. MoDISCO is a
framework for model-driven reverse engineering which supports transformation

12 Pacaage o 7

= @B O AW IEE A

7 rsdipm 24

Enactment

New SysML Child

Eractment
New St his

New Chia

ZHE Z T X T -

=7

A | paene

by
&

Action

= Algep vent Acten

@ Testigentty Acion

ax weo B Activity Enactment

2 Activity:

Run configuration:

(0] Common

am-v2.di@NSManagemen:NS Management:NS Design |
NSDesign v

NSDesignAndOnboarding
OnboardingNS

ome |0 Disgram NsDesign

Fig. 14. Papyrus process enactment environment

112 S. Mustafiz et al.

chain execution along with automated discovery of artifacts. The MgM is cre-
ated based on the Papyrus Activity Diagram. The launch configurations for the
orchestration need to be defined prior to the execution. These can be generated
from the information available in the PM and the MgM. Currently, the workflow
is an ATL transformation chain. However with the use of the MgM, it will be
possible to support execution of a chain of transformations in different languages.
This is work in progress at the moment.

The NS Design PM (see Fig. 6) is mapped to a chain of ATL transformations
(see in Fig. 15). In the NS design case, all underlying transformations have been
modelled with the ATL transformation language. The MoDisco workflow for the
NS design is shown in Fig. 16. It should be noted that the chain and the megamodel
does not include the transformation for initializing the threshold models (Set
Threshold action in PM), which is currently work in progress.

Create Solution Map SolutionMap

Z
!(n
Py
@
o

NFOntology [-
Map Ontology SolutionMap

A A 4

SolutionMap "

SolutionMap [
_y Select VNF and Gen FFG SolutionMap

<
4
m
Q
2
=R
5]
Q@
c
®
Z I ‘ '

O

SolutionMap Create NSD S

VNFD
-

A
SolutionMap Update NSD NSD
S

zZ
o

SolutionMap t Update Ontology NFOntology
NSD [

ATL
Papyrus Model Transformation

Fig. 15. NS design transformation chain

The process takes as input the NSReq (Fig. 7), NFOntology (Fig.8), and the
VNFCatalogue (Fig.9). One of the VNFD models which is part of the input cat-
alogue is shown in Fig. 10. The execution of the workflow generates the corre-
sponding NSD (NS Descriptor) and updates the NFOntology model. For space
reasons, we only show the NSD model here (see Fig.11). Papyrus requires all
metamodels to be mapped to Profiles to allow model instances to be created
and to be used as source or target models of the ATL transformations. As per
the NFV modelling guidelines, our models also comply with the Papyrus Open-
ModelProfile [20].

A Model-Driven Process Enactment Approach for Network Service Design 113

© Run Configurations

Create, and run

Build your basic workflow (load existing launch configurations and execute them)

ER M=

type filter text

v @ ATL Transformation
€ NFOAndSM2SM
€ NSD2NSDInfo
€ NSReq2sM
€ SM2NSD
© SMAndNSD2NFOntology
€ SMANndVNFDAndNSD2NSD
€ VNFCAndSM2SM

Name: [NSDesign

522 Workflow 1] Common

Build your basic workflow (load existing launch configurations and execute them)

€ NSReq25M

€ NFOAndSM2SM

€ VNFCAndSM25SM

€ SM2NSD

€ SMAndNSD2NFOntology
€ SMANdVNFDANANSD2NSD

[€] C/C++ Application
5% Callchain Starter ¥ Down
, & Eclipse Application
(Gradle Project
3l Java Applet
» [3] Java Application
Ju JUnit
U JUnit Plug-in Test
@ Launch Group
m2 Maven Build
¥% MoDisco Discovery
2% MoDisco Workflow
=% NSDesign
:z NSDesignAndOnboarding
% OnboardingNS
MWE Workflow v

Filter matched 40 of 43 items

®

<

Revert Apply

Fig. 16. NS design chain in MoDisco

5 Related Work

5.1 NS Design

While there exists work in the literature on service composition and decomposi-
tions, the notion of decomposing network service requirements for NFV systems
has not been proposed to the best of our knowledge. We discuss here some
related work on requirements and service (de)composition. Czarnecki et al. [13]
presents an approach for carrying out staged configuration using specialization
and multi-level configurations of cardinality-based feature models. At an abstract
level, this is similar in concept to our NS requirements decomposition method.
However, their work is applicable for feature models only and the decomposition
technique is not automated. Web service composition is an area where extensive
work has been done on decompositions of goals and functionalities [12,32,33].
These approaches however mostly deploy formal methods and are not model-
driven in nature like our work.

Lin et al. [25] propose using an ontology as part of a requirements manage-
ment process to capture design knowledge to help in concurrent engineering.
Bartsch et al. [4] handles a component service replacement problem in the IT
service domain with the help of ontologies. They do not address decomposition
of user requirements.

114 S. Mustafiz et al.

As mentioned earlier, our work takes inspiration from the method proposed in
[1]. In a similar manner, we carry out user requirements decomposition with the
help of an ontology. However, our approach caters specifically towards network
services. The NSD generation needs to take into account the various constituents
of an NS which makes this a very complex method applicable for NFV systems.

In the NFV domain, Sahhaf et al. [35] consider different service composi-
tions, i.e., VNFs arranged in different ways with different VNFFGs and Vs,
and propose algorithms to select the optimal composition according to some
criteria including resource demands, quality-of-service, and available infrastruc-
ture resources. This work focuses on VNF placement while our concern is the
design of the network service. The Oracle Communications Design Studio [31]
framework allows network services to be designed and also supports NS orches-
tration. However, the NS design requires to create various framework-specific NS
constituent resources and they do not follow the ETSI specifications.

5.2 Process Enactment

We have covered the state of the art with regards to process modelling in the
NFV domain in [28]. Process enactment is a widely adopted method in the busi-
ness process modelling domain. Most of these work however do not follow a
model-driven approach and/or do not provide support for model-driven enact-
ment. Berezin [6] promotes using model-driven orchestration for NFV orchestra-
tion and talks about why this is a more robust method than business process
workflows. BPMN-like workflows are in general implementations of specific task-
oriented cases which are appropriate for immutable business processes as stated
in [6]. In software defined environments which evolve rapidly, such workflows
bring about difficulties and risks.

There has been a lot of work on megamodelling [2,7], transformation chain-
ing [15,30,34,38], and a combination of both [23,37] in the MDE community.
A few MDE-based continuous integration and deployment methods and tools
have been proposed with cloud applications as the target domain [3,22]. While
model-based approaches exist in the NFV domain [10,29], the application of
such advanced MDE techniques is minimal for NFV systems.

6 Conclusion

The two main contributions of this paper are the following: (1) a high-level
process for creating network service deployment templates (referred to as NSD by
ETSI) based on requirements from the tenant, and (2) an integrated environment
for automatically generating the NSD using model-driven process enactment
means.

The process for NS design proposes the use of a network function ontology
to decompose the NS requirements and to select appropriate VNF's for the NS
(from a VNF catalogue or repository). Based on this decomposition and selec-
tion, deployment templates (NSD, VNFFGD, and VLD) are generated. The

A Model-Driven Process Enactment Approach for Network Service Design 115

generation of the descriptors after the receipt of a tenant’s requirements is auto-
mated using a model-driven enactment approach. The process is modelled in
Papyrus as a UML 2.0 Activity Diagram, and can be automatically executed
within Papyrus by orchestrating the workflow. The Process Model is mapped
to a chain of ATL transformations for this purpose. As part of the process,
several domain-specific languages have been proposed to model the associated
artifacts: NS Requirements (NSReq), Network Function Ontology (NFOntol-
ogy), and VNF Catalogue. We have built modelling environments in Papyrus
that allow users to create model instances. The NFV descriptors (NSD, VNF-
FGD, and VLD) have meta-models defined by ETSI [21]. In our process, the
generated models conform to the ETSI-defined meta-models.

This work sets the basis for the enactment of the entire NS design, deploy-
ment and management process. Each activity in the NS life-cycle involves a
complex chain of tasks. We are currently working on modelling the internals of
the other activities, such as NS Instantiation and VNF Instantiation, and writ-
ing model transformations. The entire Process Model can then be mapped on
to a composite chain of transformations along with an extended mega-model to
allow for automated deployment and management of network services.

As future work, we intend to extend our transformation chain orchestration
means to support different transformation languages (such as QVT). Moreover,
we plan on integrating further model management techniques (using the mega-
model) with process enactment. This will allow us to enforce conformance and
compatibility checks between the various models and transformations, and will
also aid in providing end-to-end traceability support.

Acknowledgment. This work is partly funded by NSERC and Ericsson, and car-
ried out within NSERC/Ericsson Industrial Research Chair in Model Based Software
Management.

References

1. Abbasipour, M., Sackmann, M., Khendek, F., Toeroe, M.: A model-based
approach for user requirements decomposition and component selection. In:
Bouabana-Tebibel, T., Rubin, S.H. (eds.) Formalisms for Reuse and Systems
Integration. AISC, vol. 346, pp. 173-202. Springer, Cham (2015). do0i:10.1007/
978-3-319-16577-6_8

2. Allilaire, F., Bézivin, J., Bruneliere, H., Jouault, F.: Global Model Management
in Eclipse GMT/AMS3. In: Eclipse Technology eXchange Workshop (eTX) - A
ECOQOP 2006 Satellite Event. Nantes, France, July 2006

3. Arta¢, M., Borovsak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: Model-driven
continuous deployment for quality DevOps. In: Proceedings of the 2nd Interna-
tional Workshop on Quality-Aware DevOps. QUDOS 2016, pp. 40-41. ACM (2016)

4. Bartsch, C., Shwartz, L., Ward, C., Grabarnik, G., Buco, M.J.: Decomposition
of I'T service processes and alternative service identification using ontologies. In:
NOMS 2008—-2008 IEEE Network Operations and Management Symposium, pp.
714-717, April 2008

http://dx.doi.org/10.1007/978-3-319-16577-6_8
http://dx.doi.org/10.1007/978-3-319-16577-6_8

116

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Mustafiz et al.

Basciani, F., Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of model
transformations with incompatible metamodels. In: Dingel, J., Schulte, W., Ramos,
I., Abrahao, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 602-618.
Springer, Cham (2014). doi:10.1007/978-3-319-11653-2_37

Berezin, A.: Utilizing Declarative Model-Driven TOSCA Orchestration for NFV.
DZone, March 2017. https://dzone.com/articles/utilizing-declarative-model-dri
ven-tosca-orchestration-for-nfv

Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and
modeling in the small. In: ASBmann, U., Aksit, M., Rensink, A. (eds.) MDAFA
2003-2004. LNCS, vol. 3599, pp. 33-46. Springer, Heidelberg (2005). doi:10.1007/
11538097_3

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice, 1st edn. Morgan & Claypool Publishers, San Rafael (2012)

Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model driven reverse
engineering framework. Inf. Softw. Technol. 56(8), 1012-1032 (2014)

Chen, Y., Qin, Y., Lambe, M., Chu, W.: Realizing network function virtualiza-
tion management and orchestration with model-based open architecture. In: 11th
International Conference on Network and Service Management (CNSM 2015), pp.
410-418. IEEE (2015)

Chiosi, M., Clarke, D., Willis, P., Reid, A., Feger, J., Bugenhagen, M., Khan, W.,
Fargano, M., Cui, C., Deng, H., et al.: Network functions virtualisation: an intro-
duction, benefits, enablers, challenges and call for action. In: SDN and OpenFlow
World Congress, pp. 22-24 (2012)

Chung, L., Ma, W., Cooper, K.: Requirements elicitation through model-
driven evaluation of software components. In: Fifth International Conference on
Commercial-off-the-Shelf (COTS)-Based Software Systems, pp. 1-10. IEEE (2006)
Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through special-
ization and multilevel configuration of feature models. Software Process Improv.
Pract. 10(2), 143-169 (2005)

Papyrus, 16 June 2017. https://eclipse.org/papyrus/

Etien, A., Aranega, V., Blanc, X., Paige, R.F.: Chaining model transformations.
In: Proceedings of the 1st Workshop on the Analysis of Model Transformations.
AMT 2012, pp. 9-14. ACM (2012)

ETSI: Network Functions Virtualisation (NFV); Terminology for Main Concepts
in NFV: ETSI GS NFV 003 V1.2.1, December 2014

ETSI: Network Functions Virtualisation; Management and Orchestration; Network
Service Templates Specification: ETSI GS NFV-IFA 014 V2.1.1, October 2016
ETSI: Network Functions Virtualisation; Management and Orchestration; Report
on Architectural Options: ETSI GS NFV-IFA 009 V1.1.1, July 2016

ETSI: Network Functions Virtualisation; Management and Orchestration; VNF
Packaging Specification: ETSI GS NFV-IFA 011 V2.1.1, October 2016

ETSI: Network Functions Virtualisation (NFV) Release 2; Information Modeling;
Papyrus Guidelines: ETST GR NFV-IFA 016 V2.1.1, March 2017

ETSIL: Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Report on NFV Information Model: ETSI GR NFV-IFA 015 V2.1.1,
January 2017

Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: applying
MDE to tame the complexity of managing multi-cloud applications. In: 2014
IEEE/ACM T7th International Conference on Utility and Cloud Computing, pp.
269-277, December 2014

http://dx.doi.org/10.1007/978-3-319-11653-2_37
https://dzone.com/articles/utilizing-declarative-model-driven-tosca-orchestration-for-nfv
https://dzone.com/articles/utilizing-declarative-model-driven-tosca-orchestration-for-nfv
http://dx.doi.org/10.1007/11538097_3
http://dx.doi.org/10.1007/11538097_3
https://eclipse.org/papyrus/

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

A Model-Driven Process Enactment Approach for Network Service Design 117

Fritzsche, M., Gilani, W.: Model transformation chains and model management
for end-to-end performance decision support. In: Fernandes, J.M., Ldmmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 345-363. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-18023-1_9

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report CMU/SEI-
90-TR-021, SEI, arnegie Mellon University, November 1990

Lin, J., Fox, M.S., Bilgic, T.: A requirement ontology for engineering design. Con-
current Eng. 4(3), 279-291 (1996)

Licio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.: FTG+PM: an inte-
grated framework for investigating model transformation chains. In: Khendek, F.,
Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 182-202.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38911-5_11

Mijumbi, R., Serrat, J., Gorricho, J.L., Latre, S., Charalambides, M., Lopez,
D.: Management and orchestration challenges in network functions virtualization.
IEEE Commun. Mag. 54(1), 98-105 (2016)

Mustafiz, S., Palma, F., Khendek, F., Toeroe, M.: A network service design and
deployment process for NFV systems. In: IEEE NCA16: The 15th IEEE Interna-
tional Symposium on Network Computing and Applications, pp. 131-139. IEEE,
October 2016

OASIS: TOSCA Simple Profile for Network Functions Virtualization (NFV)
Version 1.0, March 2016. http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/
tosca-nfv-v1.0.html

Oldevik, J.: Transformation composition modelling framework. In: Kutvonen, L.,
Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 108-114. Springer, Heidel-
berg (2005). doi:10.1007/11498094_10

Oracle: Oracle Communications Network Service Orchestration Solution Imple-
mentation Guide, Release 1.1. White Paper, July 2016. https://docs.oracle.com/
cd/E71075.01/doc.11/e65331 /toc.htm

Oster, Z.J., Santhanam, G.R., Basu, S.: Decomposing the service composition prob-
lem. In: 8th IEEE European Conference on Web Services, pp. 163170, December
2010

Oster, Z.J., Santhanam, G.R., Basu, S.: Identifying optimal composite services by
decomposing the service composition problem. In: IEEE International Conference
on Web Services. ICWS 2011, pp. 267-274. IEEE Computer Society (2011)
Rivera, J.E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., Vallecillo, A.:
Orchestrating ATL model transformations. In: Proceedings of MtATL 2009, pp.
34-46. Nantes, France, July 2009

Sahhaf, S., Tavernier, W., Colle, D., Pickavet, M.: Network service chaining with
efficient network function mapping based on service decompositions. In: 1st IEEE
Conference on Network Softwarization (NetSoft), pp. 1-5, April 2015

Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-
FA 2009. LNCS, vol. 5562, pp. 18-33. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02674-4_3

http://dx.doi.org/10.1007/978-3-642-18023-1_9
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
http://dx.doi.org/10.1007/11498094_10
https://docs.oracle.com/cd/E71075_01/doc.11/e65331/toc.htm
https://docs.oracle.com/cd/E71075_01/doc.11/e65331/toc.htm
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-642-02674-4_3

118

37.

38.

S. Mustafiz et al.

Vanhooff, B., Ayed, D., Baelen, S., Joosen, W., Berbers, Y.: UniTI: a unified
transformation infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 31-45. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-75209-7_3

Wagelaar, D.: Blackbox composition of model transformations using domain-
specific modelling languages. In: 1st European Workshop on Composition of Model
Transformations (CMT), pp. 15-19 (2006)

http://dx.doi.org/10.1007/978-3-540-75209-7_3

	A Model-Driven Process Enactment Approach for Network Service Design
	1 Introduction
	2 Background
	3 Network Service Design
	3.1 NS Design Languages
	3.2 NS Design Process

	4 Process Enactment
	4.1 Enactment Approach
	4.2 Tool Support in Papyrus

	5 Related Work
	5.1 NS Design
	5.2 Process Enactment

	6 Conclusion
	References

