
Tibor Csöndes
Gábor Kovács
György Réthy (Eds.)

 123

LN
CS

 1
05

67

18th International SDL Forum
Budapest, Hungary, October 9–11, 2017
Proceedings

SDL 2017: Model-Driven
Engineering
for Future Internet

Lecture Notes in Computer Science 10567

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Tibor Csöndes • Gábor Kovács
György Réthy (Eds.)

SDL 2017: Model-Driven
Engineering
for Future Internet
18th International SDL Forum
Budapest, Hungary, October 9–11, 2017
Proceedings

123

Editors
Tibor Csöndes
Ericsson Hungary
Budapest
Hungary

Gábor Kovács
Budapest University of Technology
and Economics

Budapest
Hungary

György Réthy
Ericsson Hungary
Budapest
Hungary

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-68014-9 ISBN 978-3-319-68015-6 (eBook)
DOI 10.1007/978-3-319-68015-6

Library of Congress Control Number: 2017953428

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The System Design Languages Forum (SDL Forum) is an international conference held
every two years and is one of the most important open events in the calendar for anyone
from industry and academia involved in system design languages and modelling
technologies. Originally focusing on the Specification and Description Language –

standardized and further developed by the International Telecommunications Union
(ITU) over a period of nearly four decades – the SDL Forum has broadened its topics in
the course of time. It is a primary conference for the presentation and discussion of the
most recent innovations, trends, experiences, and concerns in system and software
modelling, specification, and analysis of distributed systems, embedded systems,
communication systems, and real-time systems.

The SDL Forum Society that runs the SDL Forum conferences series is a non-profit
organization established in 1995 by language users and tool providers to promote the
ITU Specification and Description Language (SDL) and related system design lan-
guages including, for instance, Message Sequence Charts (MSC), Abstract Syntax
Notation One (ASN.1), Testing and Test Control Notation (TTCN-3), Systems
Modeling Language (SysML), Unified Modeling Language (UML), and User
Requirements Notation (URN). The aim of the society is to provide and disseminate
information on the development and use of the languages, to support education on the
languages, and to plan and organize the “SDL Forum” series and events to promote the
languages.

The 18th edition of the SDL Forum conference (SDL 2017) was held in Budapest,
Hungary, October 9–11, 2017. The co-organizers of conference were the Budapest
University of Technology and Economics, Ericsson Hungary Ltd., and the Scientific
Association for Infocommunications Hungary (HTE). The special focus of SDL 2017
was on the model-driven engineering for the future Internet. In the past few years, we
have witnessed a new level of convergence in the networked digital ecosystem. A large
variety of embedded devices are becoming connected. The ever-growing number of
heterogeneous devices connected demands highly available, scalable, secure, and
mobile services from the telecommunications and computer networks side. The com-
plexity of network services on the other side is increasing at the same time. There are
several emerging standards on this field, followed by numerous implementations. This
results in time pressure both in standard implementations and product development
cycles. Therefore, specification, design, validation, configuration, deployment, and
maintenance of such products are complex tasks, and thus high-quality modeling
of these new systems with system design languages is essential.

This volume contains the papers selected for presentation at SDL 2017: 10
high-quality papers selected from 17 submissions. Each paper was peer reviewed by at
least three Program Committee members and discussed during the online Program
Committee meeting. The selected papers cover a wide spectrum of topics related to
system design languages ranging from: the System Design Language usage to UML

and GRL models; model-driven engineering of database queries, network service
design and regression testing; and modelling for Internet of Things (IoT) data pro-
cessing. The papers are grouped into four technical sessions. The first section focuses
on software technology aspects, the seconds section targets IoT, the third section
provides an insight into model-driven engineering, and the fourth section discusses
system design language development.

The 18th edition of the SDL Forum was made possible by the dedicated work and
contributions of many people and organizations. We thank the authors of submitted
papers, the 41 members of the Program Committee, and the members of the SDL
Forum Society Board. We are grateful for the organization and conference services of
HTE and the infrastructure and information technology services of Ericsson. The
submission and review process was run with the EasyChair conference system (http://
www.easychair.org). We thank the sponsors of SDL 2017, the Budapest University of
Technology and Economics, Ericsson, and HTE.

October 2017 Tibor Csöndes
Gábor Kovács
György Réthy

VI Preface

http://www.easychair.org
http://www.easychair.org

SDL Forum Society

The SDL Forum society is a nonprofit organization that in addition to running the
System Design Languages Forum (SDL Forum) conference series of events once in
every two years also:

– Runs the System Analysis and Modelling (SAM) workshop series, organized every
two years between SDL Forum years

– Is a body recognized by ITU-T as co-developing System Design Languages in the
Z.100 series (Specification and Description Language), Z.120 series (Message
Sequence Chart), Z.150 series (User Requirements Notation), and other language
standards

– Promotes the ITU-T System Design Languages

For more information on the SDL Forum Society, please visit http://www.sdl-forum.
org.

http://www.sdl-forum.org
http://www.sdl-forum.org

Organization

Chairs

Tibor Csöndes Ericsson, Hungary
Gábor Kovács Budapest University of Technology and Economics,

Hungary
György Réthy Ericsson, Hungary

SDL Forum Society

Reinhard Gotzhein
(Chairman)

University of Kaiserslautern, Germany

Jens Grabowski (Treasurer) Georg-August-Universität Göttingen, Germany
Ferhat Khendek (Secretary) Concordia University, Canada
Rick Reed (Non-voting

board member)
TSE, UK

Program Chairs

Tibor Csöndes Ericsson, Hungary
Gábor Kovács Budapest University of Technology and Economics,

Hungary
György Réthy Ericsson, Hungary

Program Committee

Shaukat Ali Simula Research Laboratory, Norway
Daniel Amyot University of Ottawa, Canada
Árpád Beszédes University of Szeged, Hungary
Francis Bordeleau Ericsson, Canada
Rolv Braek Norwegian University of Science and Technology,

Norway
Reinhard Brocks HTW des Saarlandes, Germany
Joachim Fischer Humboldt University of Berlin, Germany
Pau Fonseca I Casas Universitat Politècnia de Catalunya, Spain
István Forgács 4D Soft, Hungary
Emmanuel Gaudin PragmaDev, France
Abdelouahed Gherbi Université du Quebec, Canada
Reinhard Gotzhein University of Kaiserslautern, Germany
Jens Grabowski University of Göttingen, Germany
Jameleddine Hassine KFUPM, Saudi Arabia
Øystein Haugen Østfold University College, Norway

Steffen Herbold University of Göttingen, Germany
Peter Herrmann NTNU Trondheim, Norway
Dieter Hogrefe University of Göttingen, Germany
Khendek, Ferhat Concordia University, Canada
Attila Kovács Eötvös Loránd University, Hungary
Alexander Kraas University of Bamberg, Germany
Finn Kristoffersen Cinderella ApS, Denmark
Bruno Legeard Smartesting, France
Anna Medve University of Pannonia, Hungary
Zoltán Micskei Budapest University of Technology and Economics,

Hungary
Birger Møller-Pedersen University of Oslo, Norway
Gunter Mussbacher McGill University, Canada
Ileana Ober University of Toulouse, France
Iulian Ober University of Toulouse, France
Dorina Petriu Carleton University, Canada
Andrej Pietschker Giesecke & Devrient, Germany
Rick Reed TSE, UK
Manuel Rodríguez University of Valladolid, Spain
Markus Scheidgen Humboldt University of Berlin, Germany
Ina Schieferdecker FOKUS, Germany
Edel Sherratt University of Wales Aberystwyth, UK
Maria Toeroe Ericsson, Canada
Andreas Ulrich Siemens AG, Germany

X Organization

Contents

Interactive Visualization of Software . 1
Markus Scheidgen, Nils Goldammer,
and Joachim Fischer

Static Syntax Validation for Code Generation with String Templates 18
Dorian Weber and Joachim Fischer

On the Impact of the SDL Forum Society Conferences on Academic
Research . 30

Daniel Amyot, Abdelwahab Hamou-Lhadj, and Jameleddine Hassine

Intelligent Resilience in the IoT . 46
Edel Sherratt

An Ontology-Based Approach for IoT Data Processing
Using Semantic Rules . 61

Ahmed Bali, Mahmud Al-Osta, and Gherbi Abdelouahed

Model-Driven Engineering of an OpenCypher Engine:
Using Graph Queries to Compile Graph Queries . 80

József Marton, Gábor Szárnyas, and Márton Búr

A Model-Driven Process Enactment Approach
for Network Service Design . 99

Sadaf Mustafiz, Navid Nazarzadeoghaz, Guillaume Dupont,
Ferhat Khendek, and Maria Toeroe

Model-Based Regression Testing of Autonomous Robots 119
Dávid Honfi, Gábor Molnár, Zoltán Micskei,
and István Majzik

Automated Tooling for the Evolving SDL Standard:
From Metamodels to UML Profiles . 136

Alexander Kraas

An Automated Change Impact Analysis Approach to GRL Models 157
Hasan Salim Alkaf, Jameleddine Hassine, Abdelwahab Hamou-Lhadj,
and Luay Alawneh

Author Index . 173

http://dx.doi.org/10.1007/978-3-319-68015-6_1
http://dx.doi.org/10.1007/978-3-319-68015-6_2
http://dx.doi.org/10.1007/978-3-319-68015-6_3
http://dx.doi.org/10.1007/978-3-319-68015-6_3
http://dx.doi.org/10.1007/978-3-319-68015-6_4
http://dx.doi.org/10.1007/978-3-319-68015-6_5
http://dx.doi.org/10.1007/978-3-319-68015-6_5
http://dx.doi.org/10.1007/978-3-319-68015-6_6
http://dx.doi.org/10.1007/978-3-319-68015-6_6
http://dx.doi.org/10.1007/978-3-319-68015-6_7
http://dx.doi.org/10.1007/978-3-319-68015-6_7
http://dx.doi.org/10.1007/978-3-319-68015-6_8
http://dx.doi.org/10.1007/978-3-319-68015-6_9
http://dx.doi.org/10.1007/978-3-319-68015-6_9
http://dx.doi.org/10.1007/978-3-319-68015-6_10

Interactive Visualization of Software

Markus Scheidgen(B), Nils Goldammer, and Joachim Fischer

Department of Computer Science, Humboldt Universität zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany

{scheidge,goldammer,fischer}@informatik.hu-berlin.de

Abstract. To understand more and more complex software systems and
the rules that govern their development, software visualization uses more
and more complex, but static visual representations (charts) to allow
computer scientists to analyze complex multi-modal, multi-variant, and
potentially temporal data gathered from software artifacts. Data scien-
tist however, use interactive visual analysis to not only visualize data
but to explore and understand data via interactive visualizations.

In this paper, we present a language that allows us to quickly create
such interactive visualizations for software. We present a process to mea-
sure software and gather data, a common data meta-model, four principal
ways to combine individual charts into an interactive visualization, the
language constructs needed to specify interactive visualizations, and a
working implementation and examples for this language.

1 Introduction

Understanding software systems and learning the underlying rules that govern
their development is an important goal of many software engineering related
fields such as software re-engineering, software evolution, or mining software
repositories. Furthermore understanding their own software systems becomes a
more and more relevant problem for software engineering practitioners as the
systems they develop become more and more complex.

One way to tackle these problems is to govern complexity with data that com-
prises abstractions such as component hierarchies, dependencies between com-
ponents, and software metrics. The resulting data is complex and covers different
sources (e.g. different artifacts and different components; multi-modal data), cov-
ers many properties (e.g. different dependency types and metrics; multi-variant
data), and in case of evolving software covers multiple revisions (temporal data).

Traditionally, we use software visualization to visualize such data about a
software system with static charts, diagrams, and graphs. The goal is to facilitate
the human eye’s broad bandwidth pathway into the mind to gain knowledge from
complex data intuitively [2,11]. While simple visualizations are only capable to
carry information that might cover an isolated aspect of a software systems, visu-
alizations of different types and of different parts of an investigated system can
be combined to form complex visualizations that allow to explore complex rela-
tions and greater knowledge from otherwise isolated pieces of information [30].
c© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 1–17, 2017.
DOI: 10.1007/978-3-319-68015-6 1

2 M. Scheidgen et al.

While researches in software visualization already try to show relations in com-
plex data-sets with more and more complex visualizations [17], the static nature
of visualizations limits the effectiveness of software visualization.

In other fields, data scientists use a process called visual analytics [14] to
explore complex (multi-modal, multi-variant, temporal) data-sets with tasks
executed alternately by machine and human via interactive visual analysis and
interactive visualizations. Interactive visual analysis [20] (sometimes described
as the seeable iceberg tip of visual analytics) allows users to not only see, but
to explore and understand data. One particular form of interaction is machines
allowing users to select data-points in one representation and highlighting or
showing them related data-points in different representations. This is known
as brushing (creating a selection) and linking (establishing a visual connection
between representations) [20].

In this paper, we want to bring interactive visual analysis and especially
brushing and linking to software visualization. Users should be able to explore
the relations between data represented in different traditional software visual-
izations (i.e. charts) through interaction. This paper is not about measuring
software, but about the interactive analysis of respective measurements. We
therefore separate the process of gathering data (i.e. the automated analysis of
software artifacts) from the visualization of this data (i.e. the interactive analy-
sis of software measurements). While we briefly address the measuring step in
Sect. 3, we generally assume that this process is well researched within the fields
of reverse engineering [9], knowledge discovery models [24], software metrics, and
mining software repositories [13].

We formally defined and implemented a language that allows users to build
interactive visualizations from existing chart types. The language entails a com-
mon data meta-model as an interface to the data gathering process, an extend-
able set of predefined chart types, and the language constructs necessary to com-
bine charts and to show relations through interaction. We designed the language
around four principal ways to combine charts through brushing and linking.

Figure 1 shows an example for an interactive software visualization build
with this language. This visualization shows package-class composition, class
dependencies, and different class metrics with 7 different charts in 5 different
chart types. The example allows us to perform an interactive visual analysis in
three steps/tasks. First, you can select interesting packages based on package
dependencies and relative complexity. Then you filter classes based on their
metrics and dependency patterns to remove outlier and unusual classes. And
finally, you explore the relations between different class metrics. The language
implementation, in the form of a web-component library and a browser-based UI
called d3ng (pronounced: dee-three-en-gee) as well as all examples can be found
and tried in [28].

Throughout the paper, we use the following nomenclature. A chart refers to
all visual data representations that cannot be separated into multiple visualiza-
tions in a meaningful manner. A visualization refers to either a chart or a com-
bination of charts (i.e. complex visualization). All systematic machine responses

Interactive Visualization of Software 3

Fig. 1. An example of an interactive and complex software visualization based on
different chart types depicting different aspect of the software on different levels of
abstraction.

to events caused by human users are referred to as interactions. The terms data
meta-models or data structures are used to refer to the definition of possible
data models or simply data (instances of meta-models) by means of classifiers
and properties. We often use the word type to refer to a class of similar instances,
like in charts of the same chart type or combinations of the same combination
type.

4 M. Scheidgen et al.

The paper is organized as follows. In the following section on related work, we
summarize the conceptual and technical work that our approach is based on as
well as other approaches to visualizing software systems. We then briefly describe
methods for gathering data from software systems (i.e. measuring software) in
Sect. 3, before we describe the data meta-model that we use to organize data.
This is followed by a section on the identified types of chart combination as well
as a description of the abstract syntax and formal semantics of our language.
Section 6 describes our implementation of the proposed language. We close the
paper with conclusions and a set of points for future work.

2 Related Work

Munzner describes a conceptional language of data abstractions, tasks, and
actions to describe concrete visual analytics processes [19]. She focuses on pro-
viding the vocabulary to document and reason about visual analytics. However,
our language can be interpreted as a partial implementation of her ideas. Espe-
cially actions like brushing and linking (as described by Hauser [20]) to aid in
tasks such as understanding relationships can be technically realized with our
work.

There are a plethora of frameworks, libraries, languages, and other forms of
tools that facilitate the technical realizations of data analytics and visualiza-
tions (independent from a certain domain, e.g. software visualization). We want
to give four examples here to describe four possible categories of such tools.
First, we have low level libraries that facilitate the imperative programming
of visualizations. A very popular example is D3 [4] itself, a Javascript library
that allows to generate SVG-based graphics from data. Second, we have declar-
ative description languages for data visualizations on various levels of abstrac-
tion. Vega [1], which describes itself as a visualization grammar is such a low
level language (incidentally build on top of D3). Vega draws from the grammar
idea [31]: visualizations are made from certain well known and understood ele-
ments, such as scales, axis, marks, etc. On top of Vega for example, we have the
more abstract language Vega-lite [25], that operates on the assumption of reason-
able customizable defaults for visualization elements (e.g. standard configuration
of axis, legends, and scales). Based on this, Vega-lite is more restrictive but also
allows more concise visualization descriptions. Vega-Lite also introduces inter-
activity between charts, including brushing and linking [25,26]. In this sense,
Vega-Lite does for Vega, what we try to achieve for D3. Beyond tools that focus
on visualization only, there are also tools that accommodate complete analytics
workflows including data (pre-)processing, transformation, and reasoning. Here,
we can also find tools on different abstraction levels. Third example: Caleydo [30]
based on the Eclipse platform. Caleydo assumes that visualization data already
exists and concentrates on describing the relationship between data sets and
on linking respective visualizations. In Caleydo, clients can model their analysis
process and Caleydo produces corresponding complex visualizations. Caleydo
aims for all possible visual analytics tasks and idioms. It therefore works on a

Interactive Visualization of Software 5

rather low level of abstraction and requires intensive programming work to create
concrete visualizations, but allows for a very high degree of freedom. Examples
for complex visualizations with this approach can be found in the domains of
clinical [18,22] and biological [23] data analysis. As a last example, KNIME [3],
also an Eclipse based framework, KNIME operates on a high-level of abstraction,
including a formal data analytics workflow language and a library of predefined
chart types.

The work of Khan et al. [15] applies KNIME to software visualization. Similar
to our work, they identified structure (hierarchies), dependencies, and metrics as
the most important aspects to visualize. Unfortunately, interactivity is limited
to chart configuration and therefore does not allow to visually reason about rela-
tions via charts being connected through tasks like brushing and linking. While
all these approaches are independent from the used source artifact language,
there are no processes that allow to use these approaches in a language indepen-
dent manner. All existing implementations for these approaches are implemented
for a certain programming language or require otherwise acquired data sets.

As software visualization is an established research field many visualiza-
tions and chart types for different requirements and goals have been proposed.
Ball et al. [2] and Gracanin et al. [11] provide an overview over the field. Some of
the work in software visualization targets visualizations that combine multiple
data dimensions and aspects into single static charts with goals similar to ours.
Lanza for example introduced the concept of polymetric views [17]. Polymet-
ric views depict structural information with trees and graphs, where the nodes
encode metrical data with node dimensions or colors. Holten et al. [12] extends
this approach to explore the limits of human comprehensibility by adding shades
and textures as possible dimensions. Of course this polymetric view approach
can be used in 3D [6,8] or even virtual reality [7]. These 3D visualizations lead to
the often used metaphor of software maps [16] with software components taking
the shape of geographic features like buildings or mountains. Extreme forms of
this metaphor use real world events to depict certain conditions in a software
system, e.g. use fire to visualise problematic components [32].

Regarding model-based development of software visualization, a couple of
approaches comparable to ours exist. The framework ELVIZ [21] uses model
queries in source artifacts to acquire metrics data that can be visualized in a
fixed set of statistics charts. The use of queries limits this approach to metri-
cal data and it also only supports a fixed meta-model for such data. Therefore,
ELVIZ is a rather monolithic approach that is hard to extend with other visu-
alization types and that does not allow to combine visualizations. In [10] the
authors describe the framework SAMPLER that allows to create abstractions
from model-based source artifacts. SAMPLER allows to implement and use fil-
ters that reduces source artifacts to those elements that are instances of certain
meta-model classes and features. SAMPLER uses traditional means for repre-
senting models graphically (e.g. graphs and trees) to visualize the filtered models.
MoDisco [5] provides a similar approach for MoDisco models.

6 M. Scheidgen et al.

3 Measuring Software

When we say measuring software, we actually want to measure the artifacts that
constitute or otherwise represent a piece of software or some static or dynamic
aspects of this piece of software. Common artifact types include source-code files
(compilation units), all kinds of software models, execution traces, or revision
histories (e.g. in source-code repositories).

In order to measure those artifacts, we need formally defined measures. The
most commonly known type of such measures are software metrics: well defined
abstractions that assign numbers (metric values) to a piece of software or a
software component. Metrics are calculated based on the artifacts that describe
the measured software or component. Depending on the metric, either instances
of formal language constructs of the artifact language (e.g. programming or
modeling language) or language independent artifact properties (e.g. lines of
code) are used.

Besides metrics, one should also be interested in information about the struc-
ture of a piece of software by means of software components and their relation-
ships. The most important of these relationships are composition hierarchies and
dependencies. Note that these relationships can either be directly found within a
software artifact by means of a corresponding language construct (e.g. a method
call represents a dependency between two classes) or can be derived from the
relationships of contained components (e.g. two package are depended when they
have depended classes). Furthermore, such relationships can have their own met-
rics. We distinguish between relationships that form trees (e.g. containment or
inheritance hierarchies) and those that form graphs (e.g. call graphs, general
dependency graphs).

The technical application of measures depends on the corresponding artifacts
and artifact languages. A well understood, researched, and standardized app-
roach that can be used to measure software in a generalized manner is reverse
engineering. The goal of reverse engineering is to gain knowledge about existing
software by deriving models on a higher and higher level of abstraction. Begin-
ning with language dependent models that represent software artifact as a direct
one-to-one model (usually in the form of abstract syntax trees/graphs), ending
with language independent models solely comprised of highly aggregated struc-
tures and metrics (e.g. knowledge discovery models or software metric models).
Model transformation and query languages can be used to describe the applied
measures in a formal manner.

To create example data and corresponding visualizations, we use the MoDisco
reverse engineering framework to derive AST-models from existing Java source-
code. We use an OCL inspired internal DSL in Xtend to describe and execute
software measures based on MoDisco models. We use this approach to measure
the McCabe and Halstead complexity for all methods, the set of CK-metrics for
all classes, all method-call and field-access based dependencies between classes,
corresponding aggregations for all packages, and all containment’s between pack-
ages, classes, and methods. The measured data is then represented in a model
based on the data meta-model described in the next section. We describe details

Interactive Visualization of Software 7

about this process for gathering data from the Eclipse source code and its full
revision history in [27,29].

4 A Meta-Model for Software Data

In the previous section, we established certain types of measures: metrics, hier-
archies, and dependencies. This leaves us with data in the form of tables, trees,
and graphs. We refer to the entirety of all data to be analyzed as data-set ; to all
data that represents an individual software component (e.g. package, class, or
method) as a data-point ; and to a single datum that represents a certain char-
acteristic of a software component as a property. Properties are either attributes
with a nominal, ordinal, or metric value or they describe a reference to other
data-points. References are either compositions (they form trees) or not (they
can form graphs). Data-points have a type and a label. Types are used to iden-
tify data-points that exhibit the same properties (e.g. all classes have values for
the same metrics attached).

Figure 2 (a) shows the meta-model that we use for the measured data.
Figure 2 (b) depicts a sample data-set comprising a hierarchy of packages (M),
classes (C), and methods (M) with metrics for classes and methods and depen-
dencies (with metrics) between classes. We omitted constraints here, but it is
reasonable to assume that rules for type consistency, composition are trees, etc.
can be formally defined by means of OCL or similar languages.

type:String
label:String

DataPoint

name:String
Property

isComposite:Boolean
Reference

value:any
Attribute

properties *

properties *

dataPoints

{ WMC: 3,
 LOC: 43,
 RFC: 15, ... }

classes

packages

 *

any

Nominal

Ordinal

Number

methods

{ halstead: 23,
 mccabe: 12,

P

P

P

C

C

C

C

M

M

a)

b)

Fig. 2. Common data meta-model (a) and an example data-set comprised of packages,
classes, and methods, their metrics and dependencies (b).

8 M. Scheidgen et al.

5 A Language for Interactive Visualizations

In the last sections, we described how software can be measured and how the
resulting data can be organized. In this section, we want to describe a language
that can be used to create interactive visualizations for the gathered data. There
are three things that we need to address: (1) the set of chart types that can be
used as building blocks, (2) how to project parts of our data to individual charts,
(3) how to combine charts and let users interact with the relations between
charts. Due to space restrictions, we will only briefly address the first two points,
and we will focus on the combination of charts, which constitute the larger
contribution of this paper.

Figure 5 shows types of charts (simple visualizations) that can be used to
describe common software data such as composition hierarchies, dependencies
between components, and software metrics. The type of used charts does not
really matter for the combination of charts, as long as each of the following is
available for all chart types. First, a clear definition of the data structure that
charts can visualize, e.g. pairs of metric values for scatter plots, or trees with
a metric values on each leaf for tree maps. Second, the user can interact with
all charts by means of selecting visualized data-points (brushing). Third, each
chart can highlight selected data-points based on shared styles (e.g. colors or
symbols). Refer to the implementation section for more details.

Since each chart type expects data in a different structure, a structure that
is usually distinct from the data-set as a whole, we need a way to project data
from a given data-set to the data structures that individual charts require. We
achieve this with a simple pattern language to describe projections based on
data-point type, properties, labels, and composition. We took inspiration from
XML’s XPath, which serves a similar purpose, for XML-data, which is itself
similar to our data-model. Refer to the implementation section for more details.

Based on the assumption that each chart depicts a subset of the same data-
set, the fact that each chart allows users to select data-points, and each chart
can highlight selected data-points, we identified four principle ways to combine
charts. Figure 3 shows these combination types, each with a brief description,
schematic, and an example visualization based on scatter plots.

All these chart combination types are based on charts, selection groups, data
sources, and the data flow between these elements. Figure 4 (a) shows the cor-
responding meta-model. A Chart has a type and can have a configuration, a
pattern, and chart type specific properties. The type refers to the used chart
type; configuration is reserved for chart type specific configuration (e.g. axis
labels, ranges, ticks, chart titles, etc.); the pattern and other type specific prop-
erties specify how input data is projected on the chart. All charts must refer to a
Data instance as input. Data is either coming from a Group or a Source. Source
refers to an arbitrary data source identified via URI (e.g. a web resource, JSON
file, etc.). Groups have two functions. First, they allow to combine selected data-
points from multiple charts. Second, they can feed such combined selections to
other charts as input data. Each group comes with a certain style (i.e. color).
The derived property all input groups denotes all groups that provide the input

Interactive Visualization of Software 9

A

r

B

A

r

B

a) Selection Group:
Interactive selection
in one chart is reflect-
ed in the selection of
other charts. Charts
that interact via
selections form
selection groups.

b) Overlapping Selection Groups: Each selection group is associated with a
color to distinguish selection groups and selections belonging to different
groups.

c) Mixed Hierarchy Levels: If data is hierarchical, charts might represent
data on different hierarchy levels. In this case, a data point (parent) in one
chart can represent multiple data points (children) in another chart.

d) Input from
Selections: Often
we want to use a
chart or selection
group to select the
input data for
other charts.

A

r

B C

b

r

A

B

Fig. 3. Informal depiction of the four chart combination types based on selections and
selection groups.

10 M. Scheidgen et al.

A

r

B

iSr

iSA
r

iSr

iSB
r

dSA
r dSB

r

iSr = dSA
r ∪ dSB

r

I I

IA IB

type: String

pattern: String

Chart

color: RGB
Group

Data

uri: URI
Source

groups *

* charts

input

1

context Chart::allInputGroups
query: if (input.isInstanceOf(Group))

roups)
 input.charts
 ->collect(allInputG
 ->union(#{input})

else #{}

// Charts cannot take input that is based on their
// own selection
context Chart
inv: not allInputGroups->collect(charts)->contains(self)

/allInputGroups

*

iSr ⊆ DI

C

iSC
r ⊆ IC ⊆ D

prC(iSC
r)

IC = selC(I)

prC(IC)

SC
r ⊆ DC

IC ⊆ children�(I) ⊆ D

prC(IC) ⊆ DC

D = pr−1(SC
r) ⊆dSC

r = pr−1(SC
r) ⊆ IC

http://somewhere.com/data.jsona) b)

c)

Fig. 4. Selection and group based interactions between charts: meta-model with con-
straints (a) and data flow depiction for simple charts (b) and charts with projection (c).

either directly or indirectly (via other groups). A chart must not get input data
from a group that it is part of. Otherwise its own selection would determine its
input. The schematics used in Fig. 3 and Fig. 4 (b) represent instances of this
meta-model. Boxes depict charts, circles groups, and dots symbolize sources.

The meta-model establishes the abstract syntax for how to combine charts
and groups to more complex visualization. But what does a group actually mean,
how does data flow, and when do charts share selections and how? In the fol-
lowing, we use simple set-theory to describe the semantics of the language more
formally.

Based on our data meta-model, we assume a data-set D with data-points
D = {d1, . . . , dn}. We also assume trees within D and a corresponding function
parent : D → D ∪{ε} with a path to the root for all data-points (1); a root node
for each data-point (2); parents form indeed a tree (3); and we can define the
set of all children within a subset of our data-set D (4):

parent�(d1) = {dn|∃d2, . . . , dn−1 : parent(di) = parent(di+1)} (1)
root(d) = r with r ∈ parent�(d) ∧ parent(r) = ε (2)
∀d ∈ D : d /∈ parent�(d) (3)

children�(I ⊆ D) = {e|∃d ∈ I : e ∈ parent�(d)} (4)

Interactive Visualization of Software 11

rcier

ount

eville

sette

abois

thieu

revet

ildieu

paille

uelle

elma

essT

ferre

horel

ssuet

abet

sous

hild1
hild2

rujon

C
ou

nt
es

C
ha

m
pt

C
ou

nt

B
la

ch
ev

i

C
os

et
te

B
am

at
a

C
ha

m
p

B
re

ve
t

C
he

ni
ld

i

C
oc

he
p

B
ou

la
tr

u

A
nz

el
m

a

B
ar

on
es

C
om

be
f

B
ah

or
el

B
os

su
et

B
ab

et

C
la

qu
es

C
hi

ld
1

C
hi

ld
2

B
ru

jo
n

74

53

50
50

58

46
38

25

9

62

72
66
65

56
53

47

21
14

A

A
B

B
C

C

D

D

E

E

F

F

G

G

H
H

I
I

(g) slopechart (h) parallel coordinates (i) scatter plot matrix

(d) chord chart (e) dependency matrix (f) radar chart

(a) polymetric graph (b) tree map (c) sunburst chart

Fig. 5. Suitable chart types for hierarchies (a,b,c), dependencies (d,e,f), and metrics
(g,h,i).

Each chart C gets some I ⊆ D as input. Each chart can define a pattern that
specifies two functions: a selection function and a projection function. A selection
function selC : I → P(D) selects a set of data-points IC =

⋃
i∈I selC(i) ⊆ D

within the children of the input I: IC ⊆ children�(I). Charts do not visualize
their input I directly, but rather the selected data-points in IC . A chart without
pattern implicitly gets the identity id(d) = d as its selection function.

Each chart can be part of a selection group and therefore can highlight data-
points selected within itself (direct selection) or selected within other charts of
the same group (indirect selection). There are different selections for each group

12 M. Scheidgen et al.

that the chart is a member of. Each chart can have additional inputs for indirect
selections iS1, . . . , iSn taken from selection groups 1, . . . , n. But charts do not
highlight all iSi directly, but rather highlights data-points in iSC

i with

iSC
i = {iC ∈ IC |∃i ∈ iSi : i ∈ parent�(iC) ∨ iC ∈ parent�(i)}

Therefore, charts either highlight the selected elements directly, or any par-
ents or children of selected data-points that are part of the visualized data-points
IC . This is necessary, because not all charts in a group do necessarily visual-
ize the same data-points, but they might visualize related (via child/parent)
data-points. The interaction type (c) in Fig. 3 is an example.

Each chart can provide a direct selection dSC ⊆ IC as output. A selection
group g takes the direct selections of all charts in that group dSC1 , . . . , dSCn

as
input and provides the indirect selection iSg for all charts in that group as the
union of all inputs:

iSg =
⋃

C∈{C1,...,Cn}
dSC

Figure 4 (b) depicts all these sets in relation to an example selection group r
with two charts A,B.

Please note that based on our definitions, each set I, IC , dSC , iSg, iS
C
g is a

subset of children�(I) ⊆ D. We can say all involved sets are made from data-
points of the same data-set and all charts operate within the same domain. This
common domain property is important, since otherwise sharing selections via
groups and computing local selections form parent relationships is nonsensical,
since the data visualized in different charts might well be completely disjoint from
each other. However, it is still possible that users choose patterns selA, selB for
charts A,B both in group g that result in IA ∩ IB = ∅. But in this case, it was
the user’s choice to choose nonsensical patterns that result in a selection group
that shows disjoints data-sets.

What if a common domain is not possible, because each chart C needs to
visualize aggregated or otherwise derived data from different domains DC ∩D =
∅? A common example are histograms. Histograms do not visualize data-points
directly; they aggregate data-points in bins and visualize the amount of data-
points in each bin. These bins represent data-points that are not part of D and
therefore cannot be highlighted in any other chart directly.

In these cases, each chart needs to define a projection function prC : P(D) →
P(DC). The function prC operates on subsets of D rather than on elements of
D to allow aggregation, i.e. the mapping of multiple elements of the co-domain
D to one element of the domain DC . Since the projections prA, prB of multiple
charts A,B (e.g. within the same group) can be independent, we have to assume
DA ∩ DB = ∅. Since each chart shows data-points from prC(IC) rather than IC

the projected user’s selection prSC can be prSC ⊆ prC(IC) and prSC �⊆ IC .
To maintain dSC ⊆ IC , each chart needs to define the reverse projection pr−1

C :
P(DC) → P(D) in order to define dSC = pr−1(prSC) and maintain dSC ⊆
IC . Furthermore, charts also need to apply the projection function to indirect

Interactive Visualization of Software 13

selections from each group in order to display the selected elements within the
projection domain. Similar to pattern functions, we can assume id(d) = d as the
default projection for each chart. Figure 4 (c) depicts the data-flow with respect
to distinct selection and projection functions.

In practice, we can mostly find projection functions that depend only on the
chart type (e.g. histograms) and many chart types do not need a real projec-
tion (e.g. scatter plots). Therefore, projections can be encapsulated within the
implementation of chart types and users usually only have to describe selections.
Such selections can be described with before mentioned pattern language. Pro-
jection can be more difficult (especially the reverse projections). There are best
implemented in a general purpose programming language, hidden from language
users. Their reverse can be realized via traces or similar techniques.

6 Implementation

A typical implementation platform would be a combination of Eclipse, EMF,
and a Java/SWT-based chart library, such as JChart. Other frameworks, like
Caleydo, went this route. But, the problem with typical chart libraries is that
they treat charts as write/generate only entities, where provided data is simply
drawn as graphical elements and then forgotten about. As a result, support for
selecting data-points is limited. Even if one would implement such functional-
ity, there are no traces between data and graphical elements, hence reversing
projections is difficult.

The web-based library D3.js works differently. Instead of a simple drawing
tool, D3.js is a transformation language that allows us to transform data mod-
els into document object models (DOM). Graphical elements are not simply
drawn on a canvas, but rather kept within a DOM tree. Furthermore, traces
between data-points and representing DOM-elements are kept. Therefore, pro-
jections are easily reversible. Additionally, each DOM-element allows to handle
user events and stylization of graphical elements with a unified programming
interface. Therefore, common tasks, such as highlighting elements or reacting to
selection events, can be handled uniformly and independent from chart types or
concrete graphical elements. Figure 6 depicts the interplay between data, DOM,
and graphical elements.

We implemented the previously described language as a library of web-
components within the Angular-2 framework. We provide an abstract component
for charts, with concrete derivations for scatter plots, parallel coordinates, tree
maps, collapsible trees, force graphs, chord diagrams, edge bundled dependency
charts, simple list, and histograms. Of course this list is growing and users can
provide their own chart components. We furthermore have components to specify
input patterns and groups. We use Angular-2’s double data-bindings to describe
the data-flow between charts and groups. Therefore, users do not have to handle
selection events themselves. The different chart-components are realized with
D3.js. If users want to create their own chart components, they have to imple-
ment three things. First, the projection from selected data-points to the DOM.

14 M. Scheidgen et al.

Fig. 6. Realization of chart interactions with web technologies: D3.js, DOM, events,
and styles.

Second, the highlighting of directly or indirectly selected data-points. Third, a
selection mechanism that is suitable to the chart type and fires corresponding
selection events.

If users want to create an interactive visualization, they can describe it with
HTML using our components (components can be instantiated via HTML-tags).
Our library also provides a workbench, that allows users to compose visualization
via a web-UI interactively.

7 Conclusions

We conceptualized, specified, and implemented a language for interactive soft-
ware visualizations that focuses on the combination of known chart types rather
than inventing new chart types. The relationship between data visualized in dif-
ferent charts can be explored through interactions that are based on selecting
data-points in one chart and observing corresponding changes in other charts.
Users can compose complex visualizations from existing chart types via sim-
ple HTML-code or interactively via UI. In contrast to other frameworks, users

Interactive Visualization of Software 15

can create visualization without many programming efforts. The relationships
between charts are established via simple patterns over a common data model.
Programming effort is required however, if new chart types or more complex
projections are needed. We only focus on interactive visualizations and not on
other tasks, such as gathering data, cleaning data, aggregating data, conduction
statistical tests, etc.

The presented work has some limitations that should be addressed in future
work. First, we allow users to specific selection functions with a simple pattern
language. Since we use hierarchical JSON data in a standard way and our data
meta-model is compatible with many other data representations (e.g. XML), it
should be possible to replace this pattern language with an existing more com-
plex and feature rich pattern/query language. Second, we only use parent/child
relationships to highlight indirectly selected data-points. Users might want to
customize this for their visualizations, especially when more complex projec-
tions are involved. Third, selection groups always form the union over all direct
selections to form the set of indirect selections. Users might want to customize
this behavior. Fourth, we assume that projections only depend on the chart type,
but it might be possible that users want to use two different projections for the
same type. Custom projections would also increase the re-usability of chart types.
Fifth, we always represent data in the form of collections over data-points. Each
selection, group, chart maintains its own collections and produces the associated
memory consumption. Instead of representing sets as collections of data-points,
in many cases, we should describe sets with predicates and expressions. When
one uses a scatter plot to select all data-points within some boundaries, we can
represent this set via those boundaries instead of a collection with a possibly
very large number of data-points. This would also allow to work with partial
data. The browser only needs to maintain the data that is currently visualized.
If user interaction requires additional children to be loaded, some client-server
architecture could be facilitated to query the respective additional data from a
server.

References

1. Vega: A visualization grammar, November 2016. https://vega.github.io/vega/
2. Ball, T., Eick, S.G.: Softw. Vis. Large. East 29(4), 33–43 (1996)
3. Berthold, M.R., et al.: KNIME: the Konstanz information miner. In: Preisach,

C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis,
Machine Learning and Applications. Studies in Classification, Data Analysis, and
Knowledge Organization, pp. 319–326. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78246-9 38

4. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents.
IEEE Trans. Visual Comput. Graphics 17(12), 2301–2309 (2011).
http://dx.doi.org/10.1109/TVCG.2011.185

5. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: Modisco: a generic and extensible
framework for model driven reverse engineering. In: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, pp. 173–174. ASE
2010, NY (2010). http://doi.acm.org/10.1145/1858996.1859032

https://vega.github.io/vega/
http://dx.doi.org/10.1007/978-3-540-78246-9_38
http://dx.doi.org/10.1007/978-3-540-78246-9_38
http://dx.doi.org/10.1109/TVCG.2011.185
http://doi.acm.org/10.1145/1858996.1859032

16 M. Scheidgen et al.

6. Dal Sasso, T., Minelli, R., Mocci, A., Lanza, M.: Blended, not stirred: multi-concern
visualization of large software systems. In: 2015 IEEE 3rd Working Conference on
Software Visualization (VISSOFT), pp. 106–115. IEEE (2015)

7. Fittkau, F., Krause, A., Hasselbring, W.: Exploring software cities in virtual reality.
In: 2015 IEEE 3rd Working Conference on Software Visualization (VISSOFT), pp.
130–134. IEEE (2015)

8. Gall, H., Jazayeri, M., Riva, C.: Visualizing software release histories: the use of
color and third dimension. In: Proceedings IEEE International Conference on Soft-
ware Maintenance 1999 (ICSM 1999). ‘Software Maintenance for Business Change’
(Cat. No. 99CB36360) (1999)

9. Gannod, G.C., Cheng, B.H.: A framework for classifying and comparing software
reverse engineering and design recovery techniques. In: 1999 Proceedings of the
Sixth Working Conference on Reverse Engineering, pp. 77–88. IEEE (1999)

10. Garmendia, A., Jim, A., Lara, J.D.: Scalable model exploration through abstrac-
tion and fragmentation strategies. In: BigMDE 2015 Workshop at STAF 2015
(2015)

11. Gračanin, D., Matković, K., Eltoweissy, M.: Software visualization. Innovations
Syst. Softw. Eng. 1(2), 221–230 (2005)

12. Holten, D., Vliegen, R., Van Wijk, J.J.: Visual realism for the visualization of soft-
ware metrics. In: Proceedings of VISSOFT 2005: 3rd IEEE International Workshop
on Visualizing Software for Understanding and Analysis, pp. 27–32 (2005)

13. Kagdi, H., Collard, M.L., Maletic, J.I.: Towards a taxonomy of approaches for
mining of source code repositories. In: ACM SIGSOFT Software Engineering Notes,
vol. 30, pp. 1–5. ACM (2005)

14. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.:
Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T.,
Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp.
154–175. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70956-5 7

15. Khan, T., Barthel, H., Ebert, A., Liggesmeyer, P.: Visual analytics of software
structure and metrics. In: 2015 IEEE 3rd Working Conference on Software Visu-
alization (VISSOFT), pp. 16–25, September 2015

16. Kuhn, A., Loretan, P., Nierstrasz, O.: Consistent layout for thematic software
maps. In: Proceedings of Working Conference on Reverse Engineering, WCRE,
pp. 209–218 (2008)

17. Lanza, M., Ducasse, S.: Polymetric views - a lightweight visual approach to reverse
engineering. IEEE Trans. Software Eng. 29(9), 782–795 (2003)

18. Lex, A., Streit, M., Schulz, H.J., Partl, C., Schmalstieg, D.: StratomeX:
visual analysis of large-scale heterogeneous genomics data for cancer sub-
type characterization. Comput. Graph. Forum 31(3pt3), 1175–1184 (2012).
http://doi.wiley.com/10.1111/j.1467-8659.2012.03110.x

19. Munzner, T.: Visualization Analysis and Design. CRC Press, Boca Raton (2014)
20. Oeltze, S., Doleisch, H., Hauser, H., Weber, G.: Interactive visual analysis of

scientific data. Tutorial at the IEEE VisWeek, October 2012. http://www.
vismd.de/lib/exe/fetch.php?media=teaching tutorials:ieeevisweektutorial 2012
iva proposal.pdf

21. Ostendorp, M.C., Jelschen, J., Winter, A.: Elviz: a query-based approach to model
visualization. In: Modellierung, pp. 105–120 (2014)

22. Partl, C., Lex, A., Streit, M., Strobelt, H., Wassermann, A., Pfister, H., Schmal-
stieg, D.: ConTour: data-driven exploration of multi-relational datasets for drug
discovery. IEEE Trans. Vis. Comput. Graph. 20(12), 1883–1892 (2014)

http://dx.doi.org/10.1007/978-3-540-70956-5_7
http://doi.wiley.com/10.1111/j.1467-8659.2012.03110.x
http://www.vismd.de/lib/exe/fetch.php?media=teaching_tutorials: ieeevisweektutorial_2012_iva_proposal.pdf
http://www.vismd.de/lib/exe/fetch.php?media=teaching_tutorials: ieeevisweektutorial_2012_iva_proposal.pdf
http://www.vismd.de/lib/exe/fetch.php?media=teaching_tutorials: ieeevisweektutorial_2012_iva_proposal.pdf

Interactive Visualization of Software 17

23. Partl, C., Kalkofen, D., Lex, A., Kashofer, K., Streit, M., Schmalstieg, D.: EnRoute:
dynamic path extraction from biological pathway maps for in-depth experimental
data analysis. In: Proceedings of IEEE Symposium on Biological Data Visualiza-
tion 2012, BioVis 2012, pp. 107–114 (2012)

24. Pérez-Castillo, R., De Guzman, I.G.R., Piattini, M.: Knowledge discovery
metamodel-iso/iec 19506: a standard to modernize legacy systems. Comput. Stand.
Interfaces 33(6), 519–532 (2011)

25. Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-lite: a grammar
of interactive graphics. IEEE Trans. Vis. Comp. Graph.(Proc. InfoVis) 23(1), 341–
350 (2017). http://idl.cs.washington.edu/papers/vega-lite

26. Satyanarayan, A., Wongsuphasawat, K., Heer, J.: Declarative interaction design for
data visualization. In: ACM User Interface Software & Technology (UIST) (2014).
http://idl.cs.washington.edu/papers/reactive-vega

27. Scheidgen, M., Fischer, J.: Model-based mining of source code repositories. In:
Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS, vol.
8769, pp. 239–254. Springer, Cham (2014). doi:10.1007/978-3-319-11743-0 17

28. Scheidgen, M., Goldammer, N.: D3ng: D3 and angular2 based interactive visual-
izations of complex data (2017). http://github.com/markus1978/d3ng

29. Scheidgen, M., Schmidt, M., Fischer, J.: Creating and analyzing source code repos-
itory models - a model-based approach to mining software repositories. In: Pro-
ceedings of the 5th International Conference on Model-Driven Engineering and
Software Development MODELSWARD, vol. 1, pp. 329–336 (2017)

30. Streit, M., Schulz, H.J., Lex, A., Schmalstieg, D., Schumann, H.: Model-driven
design for the visual analysis of heterogeneous data. IEEE trans. vis. comput.
graph. 18(6), 998–1010 (2012). http://www.ncbi.nlm.nih.gov/pubmed/21690642

31. Sugimoto, A.: Vega: a visual modeling language for digital systems. IEEE Des.
Test Comput. 3(3), 38–45 (1986)

32. Würfel, H., Trapp, M., Limberger, D., Döllner, J.: Natural phenomena as
metaphors for visualization of trend data in interactive software maps. In: CGVC,
pp. 69–76 (2015)

http://idl.cs.washington.edu/papers/vega-lite
http://idl.cs.washington.edu/papers/reactive-vega
http://dx.doi.org/10.1007/978-3-319-11743-0_17
http://github.com/markus1978/d3ng
http://www.ncbi.nlm.nih.gov/pubmed/21690642

Static Syntax Validation for Code Generation
with String Templates

Dorian Weber(B) and Joachim Fischer

Institut für Informatik, Humboldt-Universität zu Berlin, Berlin, Germany
{weber,fischer}@informatik.hu-berlin.de

Abstract. Many applications of model-based techniques ultimately
require a model-to-text transformation to make practical use of the infor-
mation encoded in meta-model instances. This step requires a code gen-
erator that has to be validated in order to ensure that the translation
doesn’t alter the semantics of the model. Validation is often test-based,
i.e. the code generator is executed on a wide range of inputs in order
to verify the correctness of its output. Unfortunately, tests generally
only prove the presence of errors, not their absence. This paper identi-
fies the common core of string template implementations that are often
used in the description of code generators, deriving a formal model that
is suitable for mathematical reasoning. We provide a formal proof of
the equivalence in expressiveness between string templates and context
free grammars, thereby allowing the application of formal results from
language theory. From there, we derive a scheme that would allow the
verification of syntactical correctness for generated code before the trans-
lation of any model-instance is attempted, at the expense of freedom in
the variability of the description.

Keywords: Code generation · Language theory · String template ·
Meta language · Domain-specific language

1 Introduction

The core tenet of model-driven engineering is the use of domain models to repre-
sent abstract knowledge about a particular application domain. These models are
used to connect different problem sets through a shared information base which
helps to reduce redundancy, increase modularity and facilitate the creation of
less verbose programs through the use of domain-specific languages. In order to
use a domain model for a particular problem set, it is often necessary to vary
its representation, e.g. by applying a model-to-model or model-to-text transfor-
mation. The focus of this paper is on model-to-text transformations using string
templates and it deals with the sub-problem on how to ensure the syntactical
correctness of the generated text as a sentence of the output language. In other
words, prior to seeing any meta-model instance under which circumstances can
we guarantee that a string template will expand to syntactically correct code?

c© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 18–29, 2017.
DOI: 10.1007/978-3-319-68015-6 2

Static Syntax Validation for Code Generation with String Templates 19

1 '''
2 <body>
3 <h2>«module.name»</h2>
4 «FOR expr: module.member»
5 <h3>«expr.name»</h3>
6 <dl>
7 «FOR it: expr.member»
8 «IF it.univerval»
9 <dt>«it.name»</dt>

10 <dd>=«it.value»</dt>
11 «ELSEIF it.extensible»
12 <dt/>
13 <dd><i>Enumeration is extensible</i></dd>
14 «ENDIF»
15 «ENDFOR»
16 </dl>
17 «ENDFOR»
18 </body>
19 '''

The ability to guarantee the syntactical correctness for generated code has
applicability in a wide range of related topics, e.g. in traditional compiler con-
struction for specification-type languages (e.g. ASN.1), languages featuring syn-
tax extension mechanisms (e.g. SLX), or languages that support string templates
for code generation (e.g. Xtend). As a result, this area has been studied exten-
sively with promising theoretical results but severe technological prerequisites.
The goal of this paper is to provide a formal foundation for novel techniques
addressing this problem with the expectation that the derived solutions will be
simpler in terms of implementation and maintenance.

The paper is organized as follows. We begin by providing an instance of the
problem we are attempting to solve, followed by taking a look at related work
and discussing the relationship to this paper. We continue in Sect. 2 by formally
defining string templates and providing a proof establishing their equivalence to
context free grammars. Section 3 outlines a potential solution that would allow
automatic proof-based verification for syntax of the generated language. Finally,
Sect. 4 contains conclusion and outlook.

1.1 Brief Example

Listing 1 shows an example of a string template in Xtend that seems to generate
HTML code. In line 10, we notice that the opening <dd> is closed by </dt> .
Therefore, without knowing the concrete value of module, we deduce that the
output can be invalid HTML. We can do so by analyzing the algorithm used to
generate the code. Compare and contrast with listing 2 that seems to generate
an enumeration in C. Here, the output looks like it should be syntactically valid,

20 D. Weber and J. Fischer

but we cannot be sure since we don’t know whether for example expr.name in line
2 will expand into a valid identifier or not.

Given the context free grammar for the syntax of a target language (e.g.
HTML, C), this paper attempts to identify the circumstances under which it
would be possible to decide whether all value configurations (i.e. meta-model
instances) lead to syntactically correct code.

1 '''
2 typedef enum «expr.name» {
3 «FOR it: expr.member»
4 «IF it.univerval»
5 «it.name» = «it.value»,
6 «ELSEIF it.extensible»
7 /*
8 * Enumeration is extensible
9 */

10 «ENDIF»
11 «ENDFOR»
12 } e_«expr.name»;
13 '''

1.2 Related Work

Parr discusses the relationship between string templates and context free lan-
guages in a semi-formal manner that includes an informal sketch for a proof [6].
Our paper provides formal answers for that topic.

Wachsmuth describes an algorithm to mechanically derive a code template
language based on the grammar of an output language that guarantees syn-
tax correctness [9]. While the paper contains a complete syntax and semantics
description, no proof of correctness is offered. Dynamically evaluated expressions
embedded in string templates fall outside of the scope of the paper as well.

Arnoldus deals with syntax safe templates in his PhD thesis [1], which con-
stitute a language that is the result of augmenting a specific notation for string
templates with the grammar of the target language, providing a proof-of-concept
for the aforementioned paper by Wachsmuth. Using a parser for that grammar,
the static parts of an interconnected set of string templates can be verified to
be syntactically correct fragments of the output language. In order to guarantee
full syntax correctness, one must also ensure that dynamic expressions embed-
ded within the string template are validated, for which the author proposes a
runtime scheme. This step changes the validation from proof to test based. The
advantages are tangible nonetheless, since the static parts of string templates
can be verified statically. The author makes no attempt to identify common fea-
tures with other kinds of string template languages beyond his own. Our paper
attempts to derive more general truths about this issue, as well as proposing a
mechanism to capture dynamic expressions in the automated proof.

Static Syntax Validation for Code Generation with String Templates 21

2 Relationship between Context Free Grammars
and String Templates

In this section, we provide a formal proof showing that string template languages
are alternative notations of context free grammars. This allows us to conclude
that the general problem of deciding whether a set of string templates gener-
ate a subset of a context free language is undecidable. We begin by defining
mathematical structures for the representation of context free grammars and
string templates, outlining the latter’s connection to the string template nota-
tion featured in Xtend as a representation of string template notations used in
industrial strength languages. We continue with a constructive proof that maps
context free grammars to string templates and vice versa while preserving the
generated language. Finally, we discuss the consequences of this result.

2.1 Basic Definitions

Definition 1. A Context Free Grammar (CFG) is defined by the tuple
(V,Σ, P, V0) where

– V is a finite set of meta characters,
– Σ is a finite set of symbols, disjoint from V ,
– P ⊆ V × (Σ ∪ V)∗ is a finite relation,
– V0 ∈ V is the start symbol.

We denote the production rule (S, α) ∈ P as S → α.

Definition 2. A Context Free Language (CFL) is the set of all strings that can
be produced by a CFG through application of a sequence of production rules via
substitution of a meta character by the rule’s right-hand-side.

For μ, ν ∈ (Σ ∪ V)∗ we write that μ =⇒
C

ν iff μ = μ1Sμ2 and ν = μ1αμ2

and S → α. Let μ
∗=⇒
C

ν denote that operation’s reflexive, transitive closure. Then

L =
{

ω ∈ Σ∗|V0
∗=⇒
C

ω
}

defines the context free language.

Example 1. A CFG (V,Σ, P, V0) for arithmetic expressions can be defined by

– V = {E, T, F}
– Σ = {�,�, (,), f}
– V0 = E
– P defined as

E → T � E

E → T

T → F � T

T → F

F → (E)
F → f

An example for a valid sentence is (f � f) � f � f .

22 D. Weber and J. Fischer

Definition 3. A String Template System (STS) can be defined as a tuple
(T,Σ,R, T0) where

– T is a finite set of string templates,
– Σ is a finite set of symbols, disjoint from T ,
– R : T → (Σ ∪ T ∪ P(T))∗ is a function with P(T) = {U | U ⊆ T} being the

power set,
– T0 ∈ T is the expanded string template.

The symbol E is used to denote a string template with an empty right-hand-side,
i.e. R(E) = ε. We denote the mapping R(A) = α as A �→ α.

Definition 4. A String Template Language (STL) is the set of all strings that
can be produced by a STS through recursive substitution of string templates with
their mapping. For sets of string templates, any member may be expanded.

For A ∈ T, α ∈ P(T), β, μ, ν ∈ (Σ ∪ T ∪ P(T))∗ we write

μ =⇒
S

ν ⇔ (μ = μ1Aμ2 ∧ ν = μ1βμ2 ∧ A �→ β)

∨ (μ = μ1αμ2 ∧ ν = μ1Bμ2 ∧ B ∈ α)

We denote applications of the first alternative as μ
1=⇒
S

ν, of the sec-

ond alternative μ
2=⇒
S

ν and the reflexive, transitive closure as μ
∗=⇒
S

ν. Then

L =
{

ω ∈ Σ∗| T0
∗=⇒
S

ω
}

denotes the string template language.

Example 2. A STS (T,Σ,R, T0) for tuples can be defined by

– T = {S, F,C,E,D}
– Σ = {p, |, (,)}
– T0 = S
– R defined as

S �→ (F)
F �→ E {C, E}
C �→ |F
E �→ {S,D}
D �→ p

An example for a valid sentence is (p|((p|p)|p)).

Remark 1. The key difference between the structures for CFG and STS is found
in the notation of alternatives. CFGs allow alternative definitions for meta sym-
bols, but only a single definition on the right-hand-side of a rule, while STSs
allow only a single definition for each string template but with multiple possible
expansions.

Static Syntax Validation for Code Generation with String Templates 23

2.2 Relation to Real-World String Templates

String templates typically feature embedded control structures for branch-
ing, looping and recursion as well as embedded variable references in expres-
sions. During interpretation, the textual output is determined by evaluating the
dynamic expressions and inserting their string representations into the output
stream in sequence. Conditions attached to the control structures are evaluated
as well and used to adjust the control flow accordingly. Examples for string
template engines that function as described include String Template [7], rich
strings in Xtend [2], and Cheetah for Python [8]. Both the evaluation of dynamic
expressions and the selection of the applicable expansion are done referencing a
meta-model instance.

Since the point of static analysis is to abstract from meta-model instances,
Definition 3 captures the control structures with the power set for string tem-
plates and Definition 4 allows the control flow to pass to any of the included
string templates within a power set. This arrangement allows the modeling of
control structures as well as arbitrary other forms of selecting alternative expan-
sions. Loops are a special case of recursion (tail-recursion) and can therefore also
be expressed within the structure. The mathematical structure doesn’t capture
dynamic expressions; we will disregard them until the relationship to context
free grammars is understood more clearly.

24 D. Weber and J. Fischer

Listings 3 and 4 provide examples for mapping between the specific Xtend
notation for string templates and the structure from Definition 3. In the set of
string template mappings in listing 4 all whitespace is omitted for brevity. The
attribute references represented by D1 to D4 cannot be expressed as STS yet
and therefore have an undefined mapping. We revisit dynamic expressions in
Sect. 3.

2.3 Mappings

With the definitions in place, we can now ask the formal question: given a CFG
G = (V,Σ, P, V0) describing the target language and a STS S = (T,Σ,R, T0)
describing the code generator, can we decide if LS ⊆ LG?

Definition 5. STS �→ CFG can be defined as follows: Define a function that
takes the right-hand-side of a string template definition and expands it into a set
of right-hand-sides with no alternatives. Use it for the definition of productions,
since these allow multiple definitions but no alternative expansions.

Formally, let f : (Σ ∪ T ∪ P(T))∗ → P (
(Σ ∪ T)∗) be

f(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{ε} for ω = ε

{ω} for ω ∈ Σ ∪ T

{S ∈ ω} for ω ∈ P (T)
{σb| b ∈ f(β)} for ω = σβ, σ ∈ Σ ∪ T, β ∈ (Σ ∪ T ∪ P(T))+

{Ab| A ∈ α, b ∈ f(β)} for ω = αβ, α ∈ P(T), β ∈ (Σ ∪ T ∪ P(T))+

Then (V,Σ, P, V0) = (T,Σ, {S → α| S ∈ T, α ∈ f (R (S))} , T0).

Lemma 1. Every STS can be expressed as a CFG such that their respective
languages are equal.

Proof. Let LS be the language of the STS S = (T,Σ,R, T0) and LG the language
of the CFG G = (V,Σ, P, V0) defined as outlined in Definition 5.

LS ⊆ LG Let T0
∗=⇒
S

ω, i.e. there is a sequence T0 =⇒
S

ω1 =⇒
S

. . . =⇒
S

ωn = ω

with ω1, . . . , ωn ∈ (Σ ∪ T ∪ P(T))∗. Without loss of generality, let
the sequence be ordered such that for every application of the form
μ1Sμ2 = ωi

1=⇒
S

ωi+1 = μ1αμ2, there is an immediate sequence of

derivation steps ωi+1
2=⇒
S

. . .
2=⇒
S

ωi+j = μ1α
′μ2 with α′ ∈ (Σ ∪ T)∗.

We can now rewrite the sequence as

T0�

1=⇒
S

ω1
2=⇒
S

. . .
2=⇒
S

ωj2�

1=⇒
S

. . .
2=⇒
S

ωj3�

1=⇒
S

. . .
2=⇒
S

ωjk−1�

1=⇒
S

ωjk�
= ω

χ1
∗=⇒
S

χ2
∗=⇒
S

χ3
∗=⇒
S

. χk−1
1=⇒
S

χk

Static Syntax Validation for Code Generation with String Templates 25

Selecting an arbitrary step χi
∗=⇒
S

χi+1, we reason:

⇒ χi = μ1Sμ2 ∧ χi+1 = μ1α
′μ2 ∧ S

1=⇒
S

α
2=⇒
S

. . .
2=⇒
S

α′

⇒ α′ ∈ f(R(S))
⇒ S → α′

⇒ χi =⇒
C

χi+1

We conclude that T0
∗=⇒
C

ω.

LS ⊇ LG Let T0
∗=⇒
C

ω, i.e. there is a sequence T0 = χ1 =⇒
C

. . . =⇒
C

χn = ω with

χ1, . . . , χn ∈ (Σ ∪ T)∗. Selecting an arbitrary step μ1Sμ2 = χi =⇒
C

χi+1 = μ1αμ2, we conclude that S → α. Therefore α ∈ f(R(S)) and
S

∗=⇒
S

α. It follows that χi
∗=⇒
S

χi+1. Since all steps have analogous

derivations, we conclude T0
∗=⇒
S

ω.

Example 3. Given the STS (T,Σ,R, T0) defined in Example 2 and following the
construction in Definition 5, an equivalent CFG (V,Σ, P, V0) is

– V = T
– V0 = T0

– P defined as

S → (F)
F → E

F → EC

C → |F
E → S

E → D

D → p

Definition 6. CFG �→ STS can be defined as follows: Define a function that
takes a meta character from the left-hand-side of a production rule and defines
the set of all possible expansions. Use it to add an indirection to the rules in R,
using the mechanism of selecting an alternative during an expansion and adding
new string templates as targets.

Formally, let g : V → P (
(Σ ∪ V)∗) be defined as g(S) = {α| S → α}. Then

(T,Σ,R, T0) can be defined as

– T = V ∪ {ASi
| S ∈ V, i ∈ {1, . . . , |g(S)|}}

– T0 = V0

– R = {S �→ {ASi
} , ASi

�→ α| i ∈ {1, . . . , |g(S)|} , α ∈ g(S)}
Lemma 2. Every CFG can be expressed as a STS such that their respective
languages are equal.

26 D. Weber and J. Fischer

Proof. Let LG be the language of the CFG (V,Σ, P, V0) and LS the language of
the STS (T,Σ,R, T0) defined according to Definition 6.

LG ⊆ LS Let T0
∗=⇒
C

ω, i.e. there is a sequence T0 =⇒
C

ω1 =⇒
C

. . . =⇒
C

ωn = ω with

ω1, . . . , ωn ∈ (Σ ∪ V)∗. Selecting an arbitrary step μ1Sμ2 = ωi =⇒
C

ωi+1 = μ1αμ2, we conclude S → α. By construction, the derivation
sequence S

1=⇒
S

{ASi
} 2=⇒

S
ASj

1=⇒
S

α is possible. Therefore ωi
∗=⇒
S

ωi+1 is

valid as well. Since all steps have analogue derivation steps, we can
conclude that T0

∗=⇒
S

ω.

LG ⊇ LS Let T0
∗=⇒
S

ω, i.e. there is a sequence T0 =⇒
S

ω1 =⇒
S

. . . =⇒
S

ωn = ω with

ω1, . . . , ωn ∈ (Σ ∪ T ∪ P(T))∗. By construction of R, we observe that
the sequence for expanding any S ∈ V must be S

1=⇒
S

{ASi
} 2=⇒

S
ASj

1=⇒
S

α. This sub-sequence has an analogue in S =⇒
C

α. Since T0 ∈ V and

ω ∈ Σ∗, i.e. all symbols have been expanded, we conclude T0
∗=⇒
C

ω.

Example 4. Given the CFG (V,Σ, P, V0) defined in Example 1 and following the
construction in Definition 6, an equivalent STS is

– T = V ∪ {AE1 , AE2 , AT1 , AT2 , AF1 , AF2}
– T0 = V0

– R defined as

E �→ {AE1 , AE2}
AE1 �→ T � E

AE2 �→ T

T �→ {AT1 , AT2}
AT1 �→ F � T

AT2 �→ F

F �→ {AF1 , AF2}
AF1 �→ (E)
AF2 �→ f

Corollary 1. Given Lemmas 1 and 2, STS and CFG are interchangeable nota-
tions for the same set of languages.

Theorem 1. Given an arbitrary STS S and an arbitrary CFG G, the problem
LS ⊆ LG is undecidable.

Proof. The containment-problem is undecidable for context free languages [3].
Since the two formalisms have the same expressive power, this result applies.

Corollary 2. Given an arbitrary CFG G, we can derive an equivalent STS S
with LS = LG. Any subset S′ ⊆ S fulfills LS′ ⊆ LG.

Static Syntax Validation for Code Generation with String Templates 27

3 Discussion

The equivalence in expressiveness between context free grammars and string tem-
plates established in Corollary 1 helps to explain the latter’s popularity within
the domain of code generation, since string templates are essentially context free
grammars with imperative execution semantics and code generators are typically
written in an imperative programming style.

Theorem 1 of the previous section also shows that even though arbitrary
problem instances are undecidable, we can guarantee the syntactical correctness
of the generated language by restricting the allowed set of string templates to
subsets and language invariant transformations of the target language’s associ-
ated STS (see Corollary 2). This provides a formal explanation for the results
in Wachsmuth’s paper [9] and their subsequent adaptation as part of Arnoldus’
PhD thesis [1].

3.1 Capturing Dynamic Expressions

In order to capture dynamic expressions we can extend the structure in Defin-
ition 3 to support variable references with an associated mapping into strings.
The interpretation from Definition 4 can then be adjusted to evaluate these newly
allowed expressions through substitution with their image. This prompts the fol-
lowing changes to Definitions 3 and 4:

Definition 7. A String Template System with Expressions (STSE) can be
defined as a tuple (T,E,Σ, F,R, T0) where

– T is a finite set of string templates,
– E is a finite set of expressions, disjoint from T ,
– Σ is a finite set of symbols, disjoint from T and E,
– F : E → Σ∗ is a function,
– R : T → (Σ ∪ T ∪ E ∪ P(T))∗ is a function,
– T0 ∈ T is the expanded string template.

Definition 8. A String Template Language with Expressions (STLE) is the
set of all strings that can be produced by a STSE through recursive substitution
of string templates with their mapping and substitution of expressions with their
mapping. For sets of string templates, any member may be expanded.

For A ∈ T, α ∈ P(T), β, μ, ν ∈ (Σ ∪ T ∪ E ∪ P(T))∗ we write

μ =⇒
S

ν ⇔ (μ = μ1Aμ2 ∧ ν = μ1βμ2 ∧ R(A) = β)

∨ (μ = μ1Eμ2 ∧ ν = μ1γμ2 ∧ F (E) = γ)
∨ (μ = μ1αμ2 ∧ ν = μ1Bμ2 ∧ B ∈ α)

Then L =
{

ω ∈ Σ∗| T0
∗=⇒
S

ω
}

denotes the string template language with
expressions.

28 D. Weber and J. Fischer

Unfortunately, as Parr points out in [6], this makes the interpretation much more
expressive, allowing for the generation of type 0 languages since F essentially
introduces a Turing machine and is therefore impossible to verify statically [4].
In other words, allowing arbitrary strings in the image of F can invalidate any
formal syntax.

However, restricting the image to regular expressions instead of arbitrary
strings would continue to allow for static validation. In addition, unlike for con-
text free grammars the containment problem is decidable for regular expressions,
allowing us to assign arbitrary regular expressions to dynamic components with-
out losing the ability to statically verify their correctness.

We would like to propose the addition of a dedicated regular expression type
to the type system of domain-specific languages for code generation as a subclass
of the generic string type in order to allow the static type-checker to verify the
correctness of a dynamic expression with regards to the syntax of the target
language in the context of a string template. Since grammars for real-world
languages typically describe their terminals using regular expressions already, it
would be feasible to support dynamic expressions at exactly these points in the
associated STSE without sacrificing any static guarantees.

4 Conclusions and Outlook

We have formally defined sets of interconnected string templates and have shown
their equivalence to context free grammars using a constructive proof that maps
one onto the other. From this, we were able to conclude the undecidability of the
general version of the problem to statically decide whether the language gener-
ated by a set of string templates is a subset of the target language. However, the
construction has also allowed us to identify the conditions under which a static
guarantee for syntactical correctness can be provided: if we prevent arbitrary sets
of string templates to be used in the code generation and instead only allow those
that can be proven to have an analogue derivation for the grammar of the target
language. We have connected these results to previous literature and outlined a
scheme to include support for dynamically evaluated expressions as well.

It remains to be seen if the proposed restrictions with regards to allowing typed
dynamic expressions only at specific points in string templates will be acceptable
to programmers or not. If not, an easy workaround for programmers would be a
dynamic cast from an unrestricted string into a string with a compatible regular
expression, restoring the test-based verification outlined by Arnoldus [1].

References

1. Arnoldus, B.J.: An illumination of the template enigma: software code generation
with templates. Ph.D. thesis, Technische Universiteit Eindhoven (2010)

2. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing, Birmingham (2013)

Static Syntax Validation for Code Generation with String Templates 29

3. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, Chap. 8, p. 203. In: [5] (1979)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation, Chap. 8, pp. 185–192. In: [5] (1979)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

6. Parr, T.J.: Enforcing strict model-view separation in template engines. In: Proceed-
ings of the 13th International Conference on World Wide Web, pp. 224–233. ACM
(2004)

7. Parr, T.J.: A functional language for generating structured text (2006). http://
www.cs.usfca.edu/∼parrt/papers/ST.pdf

8. Rudd, T., Orr, M., Bicking, I., Esterbrook, C.: Cheetah: the python-powered tem-
plate engine. In: 10th International Python Conference-2002 (2007)

9. Wachsmuth, G.: A formal way from text to code templates. In: Chechik, M., Wirsing,
M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 109–123. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00593-0 8

http://www.cs.usfca.edu/~parrt/papers/ST.pdf
http://www.cs.usfca.edu/~parrt/papers/ST.pdf
http://dx.doi.org/10.1007/978-3-642-00593-0_8

On the Impact of the SDL Forum Society
Conferences on Academic Research

Daniel Amyot1(&), Abdelwahab Hamou-Lhadj2,
and Jameleddine Hassine3

1 University of Ottawa, Ottawa, ON, Canada
damyot@uottawa.ca

2 Concordia University, Montréal, Québec, Canada
wahab.hamou-lhadj@concordia.ca

3 King Fahd University of Minerals and Petroleum,
Dhahran, Kingdom of Saudi Arabia
jhassine@kfupm.edu.sa

Abstract. The SDL Forum Society exists since the early 1990’s and has led the
organization of numerous conferences and workshops over the years. This paper
performs a citation analysis of 491 papers published in 22 SDL/SAM pro-
ceedings published between 1991 and 2016 in order to assess the impact of these
events on academic research. Through the use of common metrics, the most
influential papers and authors are identified. Common languages and topics
discussed in the papers are also highlighted. This paper finally identifies several
strengths and challenges of the SDL Forum Society as a research community.

Keywords: SDL forum � SAM � Publications � Researchers � Citations �
Metrics

1 Introduction

The SDL Forum Society [41] is a not-for-profit organization that aims to promote
System Design Languages, especially those developed by the International Telecom-
munication Union (ITU-T). In addition to providing information on the development,
use, and education of System Design Languages, the Society helps organizing con-
ferences and workshops that lead to proceedings containing scientific contributions.
The Society was formally established in 1995 as a not-for-profit organization, but it has
existed informally since June 1990. Many researchers and practitioners from academic
and industrial organizations around the world have contributed to the Society’s success
over the years. Many Society members have led the standardization and revisions of
ITU-T languages, and the Society has created a community of academic and industrial
experts that shared their experiences using these languages and their supporting tools.

From an academic research perspective, it is also important to reflect on the impact
of the events organized by an organization such as the SDL Forum Society. This paper
attempts to do so by answering questions about:

© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 30–45, 2017.
DOI: 10.1007/978-3-319-68015-6_3

1. Which papers published at events organized by the Society had the highest aca-
demic impact?

2. Which authors of papers published at events organized by the Society had the
highest academic impact and the largest number of contributions?

3. What are the topics and system design languages explored in the Society’s papers?

Answering such questions is often done using citation analysis [32], which refers to
systematic methods for measuring the importance of authors, articles, conferences,
journals, and institutions by counting citations in the published literature. Citation
analysis has the benefit of being simple to perform and is well supported by tools and
common publication search engines. As this approach is known to be imperfect (e.g.,
the semantics of the citations in a paper is seldom taken into account [43]), often
several metrics are used to provide different perspectives during the impact assessment.

This paper hence contributes a citation-based assessment of the impact of the SDL
Forum Society on academic research since the beginning of its informal existence,
27 years ago. Section 2 describes the methodology used to collect papers, authors, and
citations, and to support their analysis. Sections 3 and 4 report on our findings
regarding the most influential papers and authors, respectively. Section 5 provides
simple observations on common topics and languages studied in these papers. Then,
Sect. 6 discusses limitations of this study and some observations about the community
as a whole, while Sect. 7 provides conclusions.

2 Methodology

The methodology involves selecting the relevant event proceedings, selecting the rel-
evant papers, collecting citation counts, and computing relevant metrics.

2.1 Selection of Event Proceedings

The first event that was organized by the SDL Forum Society is the 5th SDL confer-
ence, in 1991, where “SDL” at the time referred (and refers in the rest of this paper) to
ITU-T’s Specification and Description Language (Rec. Z.100) [20]. The first four
conferences on SDL are hence outside the scope of this study. In 1998, a workshop
called SAM (for SDL and MSC, where MSC referred to ITU-T’s Message Sequence
Chart language, Rec. Z.120 [22]) was introduced. SAM was later renamed System
Analysis and Modeling, to become more encompassing. In addition, in 2014, SAM
became a full conference of its own.

Table 1 lists the events that are within the scope of the current study. Note that
there was no SAM workshop in 2008. More informal one-day workshops such as the
Integrated-reliability with Telecommunications and UML Languages (ISSRE04:
WITUL)1 in Rennes in 2004 and the Joint ITU-T and SDL Forum Society workshop on
“ITU System Design Languages”2 in Geneva in 2008 were also excluded. The former

1 http://sdl-forum.org/issre04-witul/.
2 http://www.itu.int/ITU-T/worksem/sdlsmc/2008/programme.html.

On the Impact of the SDL Forum Society Conferences 31

http://sdl-forum.org/issre04-witul/
http://www.itu.int/ITU-T/worksem/sdlsmc/2008/programme.html

workshop had its papers resubmitted to a journal [17] while the latter workshop had no
peer-reviewed publications. Finally, journal special issues such as [6, 17, 37] are also
not included because they were not directly under the control of the Society.

Note that the years in Table 1 reflect the years when the events where held; several
SAM workshops had post-event proceedings published early the following year.

2.2 Selection of Relevant Papers

The proceedings of the 22 events in Table 1 contain several types of papers. This study
focuses on scientific and industrial contributions. Several categories of short papers
such as prefaces and extended abstracts (for posters, tool demos, and tutorials) were
excluded from the dataset. This resulted in a collection of 491 papers, whose list and
other raw details from this study are available online at https://goo.gl/ZFNfhc.

In order to minimize having multiple author entries for the same author, names
were cleaned up by removing all dots, dashes, and extra spaces, leading to a uniform
representations uniform. For example, “Bochmann GV”, “V Bochmann G”, and “van
Bochmann G” were all replaced by “von Bochmann G”, “Haugen O” was replaced by
“Haugen Ø”, etc. One name, “Ober I”, was handled manually as two different people
share the same name and initial. 790 unique authors were identified for these papers.

Table 1. Selected conferences and workshops.

Year SDL/SAM Title Editors Location
1991 5th SDL Evolving Methods O. Færgemand, R. Reed Glasgow, Scotland
1993 6th SDL Using Objects O. Færgemand, A. Sarma Darmstadt, Germany
1995 7th SDL With MSC in CASE R. Bræk, A. Sarma Trondheim, Norway
1997 8th SDL Time for Testing, SDL, MSC and Trends A.R. Cavalli, A. Sarma Evry, France
1998 1st SAM SDL and MSC Y. Lahav, A. Wolisz, J. Fischer, E. Holz Berlin, Germany
1999 9th SDL The Next Millennium R. Dssouli, G. von Bochmann, Y. Lahav Montréal, Canada
2000 2nd SAM SDL and MSC S. Graf, C. Jard, Y. Lahav Grenoble, France
2001 10th SDL Meeting UML R. Reed, J. Reed Copenhagen, Denmark
2002 3rd SAM Telecommunications and beyond: The

Broader Applicability of SDL and MSC
E. Sherratt Aberystwyth, Wales

2003 11th SDL System Design R. Reed, J. Reed Stuttgart, Germany
2004 4th SAM System Analysis and Modeling D. Amyot, A.W. Williams Ottawa, Canada
2005 12th SDL Model Driven A. Prinz, R. Reed, J. Reed Grimstad, Norway
2006 5th SAM Language Profiles R. Gotzhein, R. Reed Kaiserslautern, Germany
2007 13th SDL Design for Dependable Systems E. Gaudin, E. Najm, R. Reed Paris, France
2009 14th SDL Design for Motes and Mobiles R. Reed, A. Bilgic, R. Gotzhein Bochum, Germany
2010 6th SAM About Models F.A. Kraemer, P. Herrmann Oslo, Norway
2011 15th SDL Integrating System and Software Modeling I. Ober, I. Ober Toulouse, France
2012 7th SAM Theory and Practice Ø. Haugen, R. Reed, R. Gotzhein Innsbruck, Austria
2013 16th SDL Model-Driven Dependability Engineering F. Khendek, M. Toeroe, A. Gherbi,

R. Reed
Montréal, Canada

2014 8th SAM Models and Reusability D. Amyot, P. Fonseca i Casas,
G. Mussbacher

Valencia, Spain

2015 17th SDL Model-Driven Engineering for Smart Cities J. Fischer, M. Scheidgen,
I. Schieferdecker, R. Reed

Berlin, Germany

2016 9th SAM Technology-Specific Aspects of Models J. Grabowski, S. Herbold Saint-Malo, France

32 D. Amyot et al.

https://goo.gl/ZFNfhc

2.3 Collection of Citation Counts

In order to collect citations, threemain sourceswere exploited over two days (June 22–23,
2017). First, Google Scholar3 was used for all 491 papers. Harzing’s Publish or Perish
tool [16] was used as a front end to facilitate the collection of most citations. This tool was
reliable for proceedings published by Springer (since 2001), but for older proceedings
published by Elsevier (before 2000) or simply made available online (2000), this was
supplemented by manual searches on Google Scholar based on paper titles. When there
were two reference counts reported (e.g., because a citing paper made a mistake on the
year of a reference), these were simply summed up as there was no overlap in the lists of
citing papers.

As a second source of citations, Elsevier’s Scopus4, a comprehensive engine that
indexes 67 million records, was used for Springer’s proceedings. Scopus indexes
high-quality publications and excludes non-peer-reviewed papers, theses, white papers,
and low-quality papers (e.g., from so-called predatory publishers). The number of
citations for a paper is lower with Scopus than with Google Scholar, as the later does
not discriminate papers based on quality, leading to some questionable citations.

Unfortunately (and surprisingly), Scopus did not have citation counts for the SDL
Forum proceedings prior to 2000. We hence used a third comprehensive engine,
namely Clarivate Analytics’s Web of Science (WoS)5, which stores 100 million
records. This enabled the gathering of citation counts from high-quality publications for
the SDL papers between 1991 and 1999. Note however that the SAM 1998 and SAM
2000 workshops were neither covered by Scopus nor by WoS because their pro-
ceedings were not provided by a recognized publisher.

2.4 Computation of Metrics

For each paper, we have two basic citation counts: one from Google Scholar, and
another one from Scopus (2001–2016) or WoS (1991–1997 and 1999). Having two
sources allows us to reason about each individually, but also in combination. Some of
our metrics use, for instance, a combined count for each paper that is the sum of the two
basic counts. Such combined count can be used to rank papers and authors by placing
more weight on high-quality citations (essentially counted twice) while not forgetting
other less reliable citations (counted only once). The next sections provide more details
about the nature of the concrete metrics used, with answers to our research questions.

3 Most Influential Papers

The first results of our analysis, which answer the first question in the introduction, are
reported in the next three tables.

3 https://scholar.google.com/.
4 https://www.elsevier.com/solutions/scopus/content.
5 http://clarivate.com/?product=web-of-science.

On the Impact of the SDL Forum Society Conferences 33

https://scholar.google.com/
https://www.elsevier.com/solutions/scopus/content
http://clarivate.com/%3fproduct%3dweb-of-science

Table 2 identifies the 25 papers that represent the 15 most influential papers
according to three different metrics: combined citation counts (where more weight is
given to high-quality citations), Google Scholar-based citation counts, and combined
citation counts per year (as older publications are more likely to have more citations).
For each paper, the table shows the values for each metrics as well as the corresponding

Table 2. Fifteen most influential papers according to combined citation counts, Google Scholar
citation counts, and combined citations per year, with corresponding global ranks for each.

Authors Title Y
ea

r

C
om

bi
ne

d

C
om

bi
ne

d
R

an
k

Sc
ho

la
r

Sc
ho

la
r

R
an

k
C

om
bi

ne
d/

Y
ea

r
C

om
bi

ne
d/

Y
ea

r R
an

k

Mauw S, Reniers MA High-level Message Sequence Charts 1997 145 1 137 1 7.25 6
Eichner C, Fleischhack
H, Meyer R, et al.

Compositional semantics for UML 2.0 sequence
diagrams using Petri nets 2005 124 2 84 5 10.33 1

Grabowski J, Hogrefe D,
Nahm R

Test Case Generation with Test Purpose Specification
by MSCs 1993 110 3 110 2 4.58 17

Graubmann P, Rudolph
E, Grabowski J

Towards a Petri Net Based Semantics Definition for
Message Sequence Charts 1993 109 4 109 3 4.54 18

Amyot D, Farah H, Roy
JF

Evaluation of development tools for domain-specific
modeling languages 2006 94 5 69 8 8.55 3

Bozga M, Fernandez JC,
Ghirvu L, Graf S, et al.

IF: An intermediate representation for SDL and its
applications 1999 90 6 87 4 5.00 12

Amyot D, Mussbacher G URN: Towards a new standard for the visual
description of requirements 2002 87 7 68 9 5.80 9

Kerbrat A, Jeron T,
Groz R

Automated test generation from SDL specifications 1999 84 8 78 6 4.67 16

Roy JF, Kealey J,
Amyot D

Towards integrated tool support for the User
Requirements Notation 2006 81 9 60 12 7.36 4

Baker P, Bristow P,
Jervis C, King D, et al.

Automatic generation of conformance tests from
message sequence charts 2002 80 10 63 11 5.33 11

Katoen JP, Lambert L Pomsets for message sequence charts 1998 73 11 73 7 3.84 31
Miga A, Amyot D,
Bordeleau F, et al.

Deriving message sequence charts from use case
maps scenario specifications 2001 69 12 52 14 4.31 22

Algayres B, Lejeune Y,
Hugonnet F

GOAL: Observing SDL behaviors with GEODE 1995 66 13 66 10 3.00 41

Bozga M, Graf S,
Mounier L, et al.

Timed extensions for SDL 2001 63 14 50 15 3.94 30

Haugen Ø Comparing UML 2.0 interactions and MSC-2000 2004 56 15 47 17 4.31 23
Mauw S, van Wijk M,
Winter T

A Formal semantics of Synchronous Interworkings 1993 55 16 55 13 2.29 61

Mansurov N, Zhukov D Automatic synthesis of SDL models in use case
methodology 1999 53 17 50 15 2.94 47

Kraemer FA, Bræk R,
Herrmann P

Synthesizing components with sessions from
collaboration-oriented service specifications 2007 48 20 36 24 4.80 15

Lúcio L, Mustafiz S,
Denil J, et al.

FTG+PM: An integrated framework for investigating
model transformation chains 2013 37 30 21 55 9.25 2

Genon N, Amyot D,
Heymans P

Analysing the cognitive effectiveness of the UCM
visual notation 2010 35 36 23 49 5.00 12

Fleurey F, Haugen Ø,
Møller-Pedersen B et al.

Standardizing variability - Challenges and solutions 2011 29 52 17 75 4.83 14

Denil J, Jukss M,
Verbrugge C, et al.

Search-based model optimization using model
transformations 2014 22 74 16 81 7.33 5

Hackenberg G,
Campetelli A, et al.

Formal technical process specification and verification
for automated production systems 2014 19 91 12 118 6.33 7

Haugen Ø, Øgård O BVR – better variability results 2014 18 99 12 118 6.00 8
Duran MB, Mussbacher
G, et al.

On the reuse of goal models 2015 11 162 8 168 5.50 10

34 D. Amyot et al.

rank amongst the 491 papers. The work of Mauw and Reniers on High-level Message
Sequence Charts in 1997 [31] and of Eichner et al. on a Petri net-based composition
semantics for UML 2.0 sequence diagrams in 2005 [7] are certainly the most influential
papers from the Society’s community on academic research so far.

Table 3. Most cited paper(s) per year, excluding 2016.

Year Authors Title

Sc
op

us
 /

W
oS

Sc
ho

la
r

C
om

bi
ne

d

2015 Duran MB, Mussbacher G,
Thimmegowda N, Kienzle J

On the reuse of goal models 3 8 11

2014 Denil J, Jukss M, Verbrugge C,
Vangheluwe H

Search-based model optimization using model transformations 6 16 22

2013 Lúcio L, Mustafiz S, Denil J,
Vangheluwe H, Jukss M

FTG+PM: An integrated framework for investigating model
transformation chains

16 21 37

2012 Schneider M, Großmann J,
Tcholtchev N, et al.

Behavioral fuzzing operators for UML sequence diagrams 8 13 21

2011 Perrotin M, Conquet E, Delange J,
Schiele A, Tsiodras T

TASTE: A real-time software engineering tool-chain overview,
status, and future

6 20 26

2011 Fleurey F, Haugen Ø,
MøllerPedersen B, et al.

Standardizing variability - Challenges and solutions 12 17 29

2010 Genon N, Amyot D, Heymans P Analysing the cognitive effectiveness of the UCM visual
notation

12 23 35

2009 Mussbacher G, Amyot D Extending the User Requirements Notation with aspect-
oriented concepts

12 20 32

2007 Kraemer FA, Bræk R, Herrmann P Synthesizing components with sessions from collaboration-
oriented service specifications

12 36 48

2006 Amyot D, Farah H, Roy JF Evaluation of development tools for domain-specific modeling
languages

25 69 94

2005 Eichner C, Fleischhack H, Meyer
R, Schrimpf U, Stehno C

Compositional semantics for UML 2.0 sequence diagrams
using Petri nets

40 84 124

2004 Haugen Ø Comparing UML 2.0 interactions and MSC-2000 9 47 56
2003 Petriu D, Amyot D, Woodside M Scenario-based performance engineering with UCMNAV 9 25 34
2003 He Y, Amyot D, Williams AW Synthesizing SDL from use case maps: An experiment 11 23 34
2002 Amyot D, Mussbacher G URN: Towards a new standard for the visual description of

requirements
19 68 87

2001 Miga A, Amyot D, Bordeleau F,
Cameron D, Woodside M

Deriving message sequence charts from use case maps
scenario specifications

17 52 69

2000 Hélouët L, Le Maigat P Decomposition of Message Sequence Charts 0 38 38
2000 Bozga M, Graf S, Kerbrat A,

Mounier L, Ober I, Vincent D
SDL for real time: What is missing ? 0 37 37

2000 Schmitt M, Grabowski J, Ebner M Test Generation with Autolink and Testcomposer 0 37 37
1999 Bozga M, Fernandez JC, Ghirvu L,

Graf S, Krimm JP, et al.
IF: An intermediate representation for SDL and its applications 3 87 90

1998 Katoen JP, Lambert L Pomsets for message sequence charts 0 73 73
1997 Mauw S, Reniers MA High-level Message Sequence Charts 8 137 145
1995 Algayres B, Lejeune Y, Hugonnet

F
GOAL: Observing SDL behaviors with GEODE 0 66 66

1993 Grabowski J, Hogrefe D, Nahm R Test Case Generation with Test Purpose Specification by
MSCs

0 110 110

1993 Graubmann P, Rudolph E,
Grabowski J

Towards a Petri Net Based Semantics Definition for Message
Sequence Charts

0 109 109

1991 Luo G, Das A, von Bochmann G Test selection based on SDL specifications with save 1 12 13

On the Impact of the SDL Forum Society Conferences 35

Table 3 reports on the most influential papers for each of the selected proceedings
between 1991 and 2015. Year 2016 is not included as only three papers had one
citation each, so it is too soon to identify any trend for the SAM’2016 papers.

Table 3 reports on the two individual citation counts (Scopus/WoS and Google
Scholar) and their sum (Combined). A clear leader was easily identifiable for most
years; however, years 2003, 2000, and 1993 include multiple papers each as the scores
were very close (i.e., a difference of 0 or 1 citation).

In terms of the academic impact of the proceedings themselves, Table 4 reports on
the citation counts (Scopus/WoS, Scholar, Combined) for the papers of each pro-
ceedings. The table also reports on common metrics such as the number of citations per
paper (on average), this average per year since the publication of the proceedings, the
H-index (the number n of papers in the proceedings that have at least n citations), and
the H-index per year. The best value for each of these metrics is highlighted in the
table. The last row reports on the same metrics, but for the 22 proceedings taken
together. The 491 papers resulted in 4775 citations on Google Scholar so far, including
over a thousand citations in Scopus or Web of Science. Collectively, these papers have
a global H-index of 32.

Table 4. Proceeding-level metrics for each year, with best values highlighted.

Year

Su
m

 o
f

Sc
op

us
/W

oS

Su
m

 o
f

Sc
ho

la
r

Su
m

 o
f

C
om

bi
ne

d

N
um

be
r o

f
Pa

pe
rs

C
ita

tio
ns

 p
er

Pa

pe
r

C
ita

tio
ns

 p
er

Pa

pe
r /

 Y
ea

r

H
-in

de
x

(S
ch

ol
ar

)

H
-in

de
x

/
Y

ea
r

R
ef

er
en

ce

1991 11 126 137 38 3.32 0.13 7 0.27 [8]
1993 0 462 462 37 12.49 0.52 8 0.33 [9]
1995 8 241 249 30 8.03 0.37 9 0.41 [3]
1997 45 517 562 35 14.77 0.74 13 0.65 [4]
1998 0 228 228 27 8.44 0.44 8 0.42 [30]
1999 37 443 480 30 14.77 0.82 11 0.61 [5]
2000 0 307 307 23 13.35 0.79 11 0.65 [14]
2001 102 348 450 26 13.38 0.84 12 0.75 [38]
2002 81 264 345 15 17.60 1.17 9 0.60 [42]
2003 102 235 337 23 10.22 0.73 11 0.79 [39]
2004 68 201 269 19 10.58 0.81 9 0.69 [2]
2005 138 352 490 24 14.67 1.22 10 0.83 [36]
2006 82 244 326 14 17.43 1.58 8 0.73 [12]
2007 74 179 253 17 10.53 1.05 8 0.80 [11]
2009 62 119 181 15 7.93 0.99 8 1.00 [40]
2010 61 115 176 15 7.67 1.10 7 1.00 [29]
2011 66 127 193 18 7.06 1.18 6 1.00 [35]
2012 40 82 122 14 5.86 1.17 6 1.20 [15]
2013 50 79 129 16 4.94 1.23 5 1.25 [27]
2014 42 80 122 21 3.81 1.27 5 1.67 [1]
2015 8 23 31 19 1.21 0.61 3 1.50 [10]
2016 0 3 3 15 0.20 0.20 1 1.00 [13]
TOTAL 1077 4775 5852 491 9.73 — 32 — —

36 D. Amyot et al.

4 Most Influential Authors

In order to answer the second research question from the introduction, citations were
also counted of each of the 790 unique authors of research papers identified in the
proceedings. Table 5 identifies the 20 authors with the highest numbers of combined
citation (where more weight is given to citations from high-quality peer-reviewed
papers). The citation counts for Google Scholar are also included to document that
additional perspective.

Another interesting answer to the most influential author question comes from a
simple measure: the number of papers published. Table 6 shows the 20 authors with
the highest numbers of publications in the 22 SDL/SAM proceedings used in this
study. The remaining authors all had 6 or fewer papers. In particular, 588 authors, i.e.,
74.4% of the 790 unique authors, had only one paper each.

Table 5. Top-20 authors with the highest numbers of combined citations.

Author Combined
Citations

Scholar
Citations Author Combined

Citations
Scholar

Citations
Amyot D 675 489 Fischer J 197 147
Grabowski J 516 485 Bozga M 190 174
Gotzhein R 330 257 Mounier L 190 174
Mauw S 290 271 Graubmann P 185 175
Hogrefe D 251 236 Baker P 183 140
Bræk R 250 178 Khendek F 161 135
Graf S 243 216 Reniers MA 161 153
Rudolph E 241 223 Mansurov N 154 133
Roy JF 227 168 Haugen Ø 150 119
Mussbacher G 200 142 Kerbrat A 148 139

Table 6. Top-20 authors with the highest numbers of publications in SDL/SAM proceedings.

Author Count Author Count
Fischer J 22 Mansurov N 9
Gotzhein R 22 Rudolph E 9
Amyot D 19 Mauw S 8
Grabowski J 19 Møller-Pedersen B 8
Khendek F 18 Mussbacher G 8
Bræk R 13 Scheidgen M 8
Haugen Ø 12 Weigert T 8
Prinz A 12 Christmann D 7
Hassine J 10 Floch J 7
Hogrefe D 9 Graubmann P 7

On the Impact of the SDL Forum Society Conferences 37

5 Observations on Languages and Topics

Peripheral to the impact on academic research, the third question in the introduction
targets the identification of system design languages and related topics addressed in the
491 papers of the selected 22 proceedings. A systematic literature review or a sys-
tematic literature mapping could be used to inspect each paper, collect keywords and
concepts, infer appropriate categories, and report on frequencies and trends over time
[28]. However, as this would require work well beyond a typical citation analysis, a
simpler, alternative approach is used here, based on word frequencies in titles and
keywords only. Although this could be seen as a gross approximation of the reality, we
believe that SDL/SAM authors tend to choose their titles and keywords carefully,
especially in terms of technologies they cover. The keywords were obtained auto-
matically from Scopus and Web of Science. However, only 133 out of 491 papers had
user-provided keywords, especially in the more recent proceedings.

Regarding languages, each of the 491 titles and keyword sets were automatically
searched in Microsoft Excel for the following system and design languages (see the
spreadsheets in https://goo.gl/ZFNfhc for details):

• “SDL” or “Specification and Description Language” [20].
• “MSC” or “Message Sequence Chart” [22]. This covers High-level MSCs as well.
• “TTCN” or “Testing and Test Control Notation” or “Tree and Tabular Combined

Notation” [25]. We made no attempt to distinguish TTCN-3 from its predecessors.
• “ASN.1” or “Abstract Syntax Notation One” or “ASN 1”. There was no ASN1 in

the titles [19].
• “ODL” or “Object Description Language”. This covers eODL as well [23]. Note

that eODL is no longer an ITU-T Recommendation.
• “CHILL”, for the ITU-T CHILL programming language [26].
• “UML” or “Unified Modeling Language” [34]. This was sufficient to cover class,

sequence, state, activity, and use case diagrams as well (as UML was next to them
whenever they were used).

• “OCL” or “Object Constraint Language” [33].
• “Petri”, for Petri nets [18].
• “Profil”, to cover UML profiles and profiling approaches [21].
• For the User Requirements Notation [24], which contains two sub-languages, we

counted three sets of terms:
– “GRL” or “Goal-oriented Requirement Language”
– “UCM” or “Use Case Map”
– “URN” or “User Requirements Notation” or one of the four above terms.

Finally, an “Others” category was used to count the number of papers that had none
of the above terms in their title or user-provided keywords.

The word cloud in Fig. 2 graphically shows which language categories (represented
by their acronyms) were the most frequent among the 491 papers. Unsurprisingly, SDL
was the most common language with 51% of the papers mentioning it, followed by
Others (25%) and MSC (16%).

38 D. Amyot et al.

https://goo.gl/ZFNfhc

19
91

19
93

19
95

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

SD
L

30
27

23
27

17
26

9
14

6
17

7
11

4
4

5
5

5
3

3
4

5
2

M
SC

4
6

7
10

9
7

11
8

4
6

3
1

1
0

1
0

1
0

1
0

0
0

TT
CN

0
0

0
1

1
2

1
3

1
0

0
1

1
3

0
0

1
0

1
1

1
1

AS
N
.1

0
1

2
1

0
2

0
1

0
0

2
0

0
0

1
0

1
0

0
0

0
1

U
RN

0
0

0
0

0
0

0
1

2
2

1
2

2
2

3
2

1
2

2
1

5
0

U
M
L

0
0

0
0

1
2

2
3

1
2

1
3

2
2

4
4

1
1

0
3

1
0

Pr
ofi

le
0

0
1

0
0

0
0

0
0

1
0

0
2

1
1

2
1

0
0

1
0

0
O
th
er
s

9
7

2
2

3
1

5
2

3
4

9
8

4
7

5
6

11
8

9
14

8
12

05101520253035
SD

L
M
SC

TT
CN

AS
N
.1

U
RN

U
M
L

Pr
ofi

le
O
th
er
s

F
ig
.
1.

L
an
gu

ag
es

m
en
tio

ne
d
in

th
e
pa
pe
r
tit
le
s
an
d
ke
yw

or
ds

ov
er

th
e
ye
ar
s.

On the Impact of the SDL Forum Society Conferences 39

All of the other terms had less than 7%, and the lowest count was 1 for CHILL.
Note that the sum of percentages is higher than 100% as some titles and keywords
covered multiple languages (e.g. “The SDL-UML profile revisited”).

Counts and trends over time for the main terms are illustrated in Fig. 1. In order to
simplify this diagram, “Others” also includes ODL, CHILL, and Petri Nets, as their
counts are very low. This diagram shows clearly the decline of the Specification and
Description Language over time as the main research topic of SDL/SAM proceedings.
The other important trend is the increased interest in non-ITU-T languages, which
reflects the diversification of the SDL Forum Society as a community.

There are many concepts targeted by this community beyond languages. The word
cloud in Fig. 3 highlights the 100 more frequent words found in titles of the selected
491 papers. Simple words (“a”, “the”, “in”, etc.) were removed from that dataset.
Common composite words linked by a dash were also converted to single words;
object-oriented hence became “ObjectOriented”, so they are not counted as separate
words. Languages such as “Specification and Description Language” were converted to
their acronyms (e.g., SDL).

Figure 3 shows that SDL and MSC were again the most common words, but this
time they are accompanied by important terms such as systems, generation, testing,
specification, using, development, language, and modeling. This figure summarizes
well the fields of interest of the SDL Forum Society community since 1991.

Fig. 2. Word cloud of the languages mentioned in the paper titles and keywords, with font sizes
proportional to word (or expanded acronym) frequencies, out of a total of 611 words.

40 D. Amyot et al.

6 Discussion

This section provides some observations about the Society’s community and discusses
several limitations and threats to the validity of this work.

6.1 Observations

Sections 3 and 4 report on many success stories of individual authors and publications.
The Society can indeed be proud of its champions and their impact on academic
research. As a whole, Table 4 highlights that over 4775 citations (on Google Scholar)
resulted from these 22 proceedings, and this does not even cover the impact of other
publications in which the Society had a role, albeit more modest (e.g., [6, 17, 37]).
With an average of nearly 278 citations per year, an average 9.7 citations per paper, and
a global H-index of 32, the SDL Forum and SAM conferences continue to deliver
impactful research results.

What is less obvious from the data presented so far is that 91 out of the 491 papers
(18.6%) have not been cited at all. These include 12 papers from 2016 without citations
(the latter had little opportunity to get cited at this time). This means that the Society’s
conference organizers still accept a sizable proportion of papers that have little mea-
surable impact on academic research. These papers come from 119 authors out of 790
(15%) who have no citations. It would be interesting to study the topics of these papers
and other potential causes for this situation, and perhaps to consider potential corre-
lations with acceptance rates.

Fig. 3. Top-100 most frequent words in paper titles, with sizes proportional to the square root of
word frequencies.

On the Impact of the SDL Forum Society Conferences 41

Another major concern visible in Table 4 relates to the numbers of papers pub-
lished per year, where all proceedings in the last decade have fewer papers than the
average (22.7), with a clear negative trend whatever the regression model used. On the
other hand, the same table suggests that the popularity of these papers is higher as the
H-index per year is consistently higher than the average (0.84) since 2009, and con-
sistently lower before that.

From Sect. 5 we observe that ITU-T’s Specification and Description Language is
by far the most popular topic of the 22 events. However, Fig. 1 shows that this
language’s popularity as a paper topic has been steadily declining since the beginning
of the new millennium. Similarly, papers on ITU-T’s Message Sequence Charts have
basically disappeared in the past decade, in part because most of their concepts have
been integrated to UML 2. On the other hand, the SDL Forum and SAM conferences
have shown their openness to other system design languages; on average 24% of the
491 papers are about “other” languages and concepts, with 2004 being a pivotal point
(“others” vary between 3% and 21% before 2004, and between 25% and 75% since
2004).

6.2 Threats to Validity

There are several threats to the validity of our analysis. Citation analysis measures only
one type of impact on academic research. Others could be studied in the future,
including impact on research projects, on academia-industry partnerships, and on
course content. Citations themselves have often been criticized as a means of mea-
suring impact, especially as not all citations are equal (some are core to a paper’s topic
whereas others are just mentioned in passing or convey a negative sentiment) [43].
The sources of citations themselves have different levels of quality and research value,
and Google Scholar is unfortunately known to index many of them. This last threat was
mitigated in part by using two large, comprehensive, and reputable search engines
(Scopus and Web of Science) in order to put more weight on citations coming from
quality sources. Still, involving other search engines could influence some of the
rankings and metrics.

As mentioned previously, other threats target the completeness of the dataset,
limited to a subset of the papers influenced by the Society (e.g., journal special issues
were not included in the analysis). Also, neither Scopus nor WoS had indexed SAM
1998 and 2000, so only Google Scholar citations were counted for their papers. This
was however anticipated as proceedings of these workshops were published by
Humboldt University Berlin (SAM 1998 [30]) and by Verimag/IRISA and the SDL
Forum Society (SAM 2000 [14]).

Other threats also exist with regards to the construction and conclusions related to
the third research question, addressed in Sect. 5. As we did not have the resources to
perform a rigorous systematic literature review of the selected 491 papers, we relied on
frequency analysis based on words found in titles and keywords, whenever available.
Although this analysis was automated, the conclusions certainly lack precision. In
particular, the “others” category likely contains several papers that focus on some of the
other categories. Yet, although we believe the score of the “others” category to be

42 D. Amyot et al.

higher than it should be, even a strong correction would not invalidate the trends we
have observed about the popularity of the SDL and MSC languages.

To help minimize the risks of mistakes and to help avoid bias and opacity, we have
also made our datasets freely available online as Excel spreadsheets.

7 Conclusion

It is important for a research community such as the SDL Forum Society to be able
measure its success and reflect on its impact. This paper used citation analysis to
answer two important questions:

1. Which papers published at events organized by the Society had the highest aca-
demic impact? This was answered with Table 2 for the fifteen most influential
papers according to three different metrics. In addition, the most influential papers
for each event between 1991 and 2015 were reported in Table 3, for three types of
citation counts. Finally, Table 4 reports on the impact of the event proceedings
themselves through 8 different metrics.

2. Which authors of papers published at events organized by the Society had the
highest academic impact and the largest number of contributions? The first part of
this question is answered by Table 5, which reports the top-20 authors according to
two types of citation counts. The second part is answered by Table 6, which lists the
top-20 authors in terms of contributed papers.

The third question was answered with an analysis of word frequencies based on
paper titles and keywords:

3. What are the topics and system design languages explored in the Society’s papers?
The answer to the language part is provided in Fig. 2 with a global ranking visu-
alized as a word cloud, and in Fig. 1 with trends for different languages over time.
The topic part is simply shown as another word cloud (based on titles) in Fig. 3.

These contributions, together with the discussion in Sect. 6.1, represent
evidence-based metrics and observations that we hope will trigger a reflection about
who the Society is, what its successes are (so they can be built on), and where it could
go from here to address emerging challenges.

In terms of future work, many limitations discussed in Sect. 6.2 can be turned into
action or research items so that remaining threats can be further mitigated. In addition,
a similar exercise could be envisioned beyond the scope of “academic research” in
order to assess the impact of the SDL Forum Society on industry, on tool development,
and on standards development.

References

1. Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.): SAM 2014. LNCS, vol. 8769.
Springer, Cham (2014). doi:10.1007/978-3-319-11743-0

2. Amyot, D., Williams, A.W. (eds.): SAM 2004. LNCS, vol. 3319. Springer, Heidelberg
(2005). doi:10.1007/b105884

On the Impact of the SDL Forum Society Conferences 43

http://dx.doi.org/10.1007/978-3-319-11743-0
http://dx.doi.org/10.1007/b105884

3. Bræk, R., Sarma, A.: SDL’95 with MSC in Case. Elsevier, Amsterdam (1995)
4. Cavalli, A.R., Sarma, A.: SDL’97 Time for Testing, SDL, MSC and Trends. Elsevier,

Amsterdam (1997)
5. Dssouli, R., von Bochmann, G., Lahav, Y.: SDL’99 the Next Millennium. Elsevier Science,

Amsterdam (1999)
6. Dssouli, R., Lahav, Y.: MSC and SDL in project life cycles. Comput. Netw. 35(6), 611–612

(2001)
7. Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., Stehno, C.: Compositional semantics

for UML 2.0 sequence diagrams using petri nets. In: Prinz, A., Reed, R., Reed, J. (eds.) SDL
2005. LNCS, vol. 3530, pp. 133–148. Springer, Heidelberg (2005). doi:10.1007/11506843_9

8. Færgemand, O., Reed, R.: SDL’91 Evolving Methods. North Holland, Amsterdam (1991)
9. Færgemand, O., Sarma, A.: SDL’93 Using Objects. North Holland, Amsterdam (1993)
10. Fischer, J., Scheidgen, M., Schieferdecker, I., Reed, R. (eds.): SDL 2015. LNCS, vol. 9369.

Springer, Cham (2015). doi:10.1007/978-3-319-24912-4
11. Gaudin, E., Najm, E., Reed, R. (eds.): SDL 2007. LNCS, vol. 4745. Springer, Heidelberg

(2007). doi:10.1007/978-3-540-74984-4
12. Gotzhein, R., Reed, R. (eds.): SAM 2006. LNCS, vol. 4320. Springer, Heidelberg (2006).

doi:10.1007/11951148
13. Grabowski, J., Herbold, S. (eds.): SAM 2016. LNCS, vol. 9959. Springer, Cham (2016).

doi:10.1007/978-3-319-46613-2
14. Graf, S., Jard, C., Lahav, Y.: 2nd Workshop on SDL and MSC. VERIMAG, IRISA, and

SDL Forum (2000). https://goo.gl/11S5Jn
15. Haugen, Ø., Reed, R., Gotzhein, R. (eds.): SAM 2012. LNCS, vol. 7744. Springer,

Heidelberg (2013). doi:10.1007/978-3-642-36757-1
16. Harzing, A.-W.: The Publish or Perish Book – Your Guide to Effective and Responsible

Citation Analysis. Tarma Software Research Pty Ltd., Melbourne (2010)
17. Hogrefe, D., Reed, R.: Telecommunications and UML languages. Comput. Netw. 49(5),

622–626 (2005)
18. ISO/IEC: ISO/IEC 15909-1:2004 Systems and software engineering - High-level Petri nets -

Part 1: Concepts, definitions and graphical notation (2004). https://www.iso.org/standard/
38225.html

19. ITU-T: Rec. X.680-X.693 (08/2015) Information Technology - Abstract Syntax Notation
One (ASN.1) & ASN.1 encoding rules (2015). https://www.itu.int/rec/T-REC-X.680/

20. ITU-T: Rec. Z.100 (04/16) Specification and Description Language - Overview of
SDL-2010 (2016). https://www.itu.int/rec/T-REC-Z.100/

21. ITU-T: Rec. Z.119 (02/07) Guidelines for UML profile design (2007). https://www.itu.int/
rec/T-REC-Z.119/

22. ITU-T: Rec. Z.120 (02/11) Message Sequence Chart (MSC) (2011). https://www.itu.int/rec/
T-REC-Z.120/

23. ITU-T: Rec. Z.130 (07/03) Extended Object Definition Language (eODL): Techniques for
distributed software component development - Conceptual foundation, notations and
technology mappings; (deleted standard) (2003). https://www.itu.int/rec/T-REC-Z.130

24. ITU-T: Rec. Z.151 (10/12) User Requirements Notation (URN) - Language definition
(2012). https://www.itu.int/rec/T-REC-Z.151/

25. ITU-T: Rec. Z.161 (10/16) Testing and Test Control Notation version 3: TTCN-3 core
language (2016). https://www.itu.int/rec/T-REC-Z.161/

26. ITU-T: Rec. Z.200 (11/99) CHILL - The ITU-T Programming Language (1999). https://
www.itu.int/rec/T-REC-Z.200/

27. Khendek, F., Toeroe, M., Gherbi, A., Reed, R. (eds.): SDL 2013. LNCS, vol. 7916.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38911-5

44 D. Amyot et al.

http://dx.doi.org/10.1007/11506843_9
http://dx.doi.org/10.1007/978-3-319-24912-4
http://dx.doi.org/10.1007/978-3-540-74984-4
http://dx.doi.org/10.1007/11951148
http://dx.doi.org/10.1007/978-3-319-46613-2
https://goo.gl/11S5Jn
http://dx.doi.org/10.1007/978-3-642-36757-1
https://www.iso.org/standard/38225.html
https://www.iso.org/standard/38225.html
https://www.itu.int/rec/T-REC-X.680/
https://www.itu.int/rec/T-REC-Z.100/
https://www.itu.int/rec/T-REC-Z.119/
https://www.itu.int/rec/T-REC-Z.119/
https://www.itu.int/rec/T-REC-Z.120/
https://www.itu.int/rec/T-REC-Z.120/
https://www.itu.int/rec/T-REC-Z.130
https://www.itu.int/rec/T-REC-Z.151/
https://www.itu.int/rec/T-REC-Z.161/
https://www.itu.int/rec/T-REC-Z.200/
https://www.itu.int/rec/T-REC-Z.200/
http://dx.doi.org/10.1007/978-3-642-38911-5

28. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic
literature reviews in software engineering – a systematic literature review. Inf. Softw.
Technol. 51(1), 7–15 (2009)

29. Kraemer, F.A., Herrmann, P. (eds.): SAM 2010. LNCS, vol. 6598. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21652-7

30. Lahav, Y., Wolisz, A., Fischer, J., Holz, E.: Proceedings of the 1st Workshop of the SDL
Forum Society on SDL and MSC. Informatik-Bericht, Nr. 104, Humboldt University Berlin,
Germany (1998). https://goo.gl/pevzJZ

31. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL’97 Time for Testing,
SDL, MSC and Trends, pp. 291–306. Elsevier (1997)

32. Meho, L.I.: The rise and rise of citation analysis. Phys. World 20(1), 32 (2007)
33. Object Management Group: Object Constraint Language (OCL) Version 2.4.

Formal/2014-02-03 (2014). http://www.omg.org/spec/OCL/2.4/PDF
34. Object Management Group: Unified Modeling Language (OMG UML) Version 2.5.

Formal/15-03-01 (2015). http://www.omg.org/spec/UML/2.5/PDF
35. Ober, I., Ober, I. (eds.): SDL 2011. LNCS, vol. 7083. Springer, Heidelberg (2012). doi:10.

1007/978-3-642-25264-8
36. Prinz, A., Reed, R., Reed, J. (eds.): SDL 2005. LNCS, vol. 3530. Springer, Heidelberg

(2005). doi:10.1007/b137793
37. Reed, R.: ITU-T System Design Languages (SDL). Comput. Netw. 42(3), 283–284 (2003)
38. Reed, R., Reed, J. (eds.): SDL 2001. LNCS, vol. 2078. Springer, Heidelberg (2001). doi:10.

1007/3-540-48213-X
39. Reed, R., Reed, J. (eds.): SDL 2003. LNCS, vol. 2708. Springer, Heidelberg (2003). doi:10.

1007/3-540-45075-0
40. Reed, R., Bilgic, A., Gotzhein, R. (eds.): SDL 2009. LNCS, vol. 5719. Springer, Heidelberg

(2009). doi:10.1007/978-3-642-04554-7
41. SDL Forum Society. http://sdl-forum.org. Accessed 24 June 2017
42. Sherratt, E. (ed.): SAM 2002. LNCS, vol. 2599. Springer, Heidelberg (2003). doi:10.1007/3-

540-36573-7
43. Zhu, X., Turney, P.D., Lemire, D., Vellino, A.: Measuring academic influence: not all

citations are equal. JASIST 66(2), 408–427 (2015)

On the Impact of the SDL Forum Society Conferences 45

http://dx.doi.org/10.1007/978-3-642-21652-7
https://goo.gl/pevzJZ
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/UML/2.5/PDF
http://dx.doi.org/10.1007/978-3-642-25264-8
http://dx.doi.org/10.1007/978-3-642-25264-8
http://dx.doi.org/10.1007/b137793
http://dx.doi.org/10.1007/3-540-48213-X
http://dx.doi.org/10.1007/3-540-48213-X
http://dx.doi.org/10.1007/3-540-45075-0
http://dx.doi.org/10.1007/3-540-45075-0
http://dx.doi.org/10.1007/978-3-642-04554-7
http://sdl-forum.org
http://dx.doi.org/10.1007/3-540-36573-7
http://dx.doi.org/10.1007/3-540-36573-7

Intelligent Resilience in the IoT

Edel Sherratt(B)

Department of Computer Science, Aberystwyth University,
Aberystwyth, UK
eds@aber.ac.uk

http://users.aber.ac.uk/eds

Abstract. Failing or hostile elements are normal in the public Internet
of Things (IoT). Resilient IoT systems are engineered to fail safely and
recover gracefully in the face of challenges presented by their environ-
ment. Approaches to ensuring resilient behaviour include intrusion detec-
tion, redundancy and self-healing. Adaptive, anomaly-based defence
mechanisms are particularly well-suited to systems that are deployed
in the public internet. This paper discusses the use of SDL+ (SDL with
MSC and ASN.1) to generate simulation results for training anomaly-
based defence mechanisms for smart systems. It outlines an approach
based on the SDL+ methodology to create resilient IoT systems.

Keywords: SDL(Z.100) · Internet ofThings (IoT) ·Resilience ·Anomaly
detection ·Machine learning

1 Introduction

When new systems are deployed on the public Internet, they are subject to a vari-
ety of accidental and deliberate threats [1]. A resilient smart system deals with
these threats safely, and quickly recovers to provide normal service. Self-healing
systems go further, not only recovering normal behaviour, but also addressing
the vulnerability that led to faulty behaviour [2].

Because IoT systems share the public Internet with so many different sys-
tems, new kinds of threat emerge frequently and unpredictably [1]. Resilience is
essential to any new smart IoT system where reliable behaviour is important,
and anomaly detection is key to achieving resilience.

Anomaly detection based on machine learning has the potential to identify
new kinds of event that have not previously been encountered, which makes it
particularly suitable for IoT systems. However, obtaining useful data to train
and evaluate machine learning systems can be problematic [3–5].

SDL-2010 and MSC, with ASN.1 [6], collectively known as SDL+, with their
well-established modelling and simulation tools1,2,3, represent a highly promis-
ing source of training data for anomaly detection in new smart, connected
systems.
1 PragmaDev Studio.
2 Cinderella.
3 IBM Rational Tau.

c© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 46–60, 2017.
DOI: 10.1007/978-3-319-68015-6 4

http://www.pragmadev.com/
http://www.cinderella.dk/
http://www-03.ibm.com/software/products/en/ratitau

Intelligent Resilience in the IoT 47

Following a brief overview of anomaly detection, this paper outlines some
IoT scenarios in which anomaly detection would be beneficial. A methodological
approach adds anomaly detection to each activity in the SDL+ methodology [7],
showing how those activities are well suited to the task of engineering intelli-
gent resilience in IoT systems. An important element of this approach is the
extraction of training data as a by-product of the SDL+ process, leading to a
practical approach to creating intelligent IoT systems that can recognise previ-
ously unknown threats, and mount an effective response to those threats.

2 Anomaly Detection

Anomaly detection means identifying unexpected patterns in data [3]. Anomaly
detection has applications in many fields, including detection of behaviour in
networked computer systems that may indicate security violations [8]. This is of
particular concern with the emergence of the Internet of Things, where smart
systems are vulnerable to a variety of accidental and deliberate threats [1].

Techniques for detecting anomalies in distributed systems include statisti-
cal approaches, support vector machines, Bayesian networks, neural networks
and more [3]. Classification based anomaly detection uses labelled training data
to learn to distinguish between normal and anomalous behaviour, and then to
classify live data as normal or anomalous. This approach, based on machine
learning, has the potential to identify the new kinds of threat that are likely
to be encountered in the Internet of Things. However, obtaining data sets for
training and subsequent evaluation can present a significant challenge [3,5].

To address this challenge, several data sets have been made publicly available
for evaluation of intrusion detection. Some of the best known are the DARPA
Intrusion Detection Data Sets4. Several more recent datasets are listed on Quora
by Scully5.

Amongst the many benefits offered by public data sets is the ability to com-
pare the relative effectiveness of different learning and classification algorithms.
However, because new kinds of threat are emerging all the time, it is essential
to supplement existing data sets with new information. Moreover, for new kinds
of system, high quality data typifying normal behaviour is needed.

The following sections explore the potential of SDL simulation to deliver
training data for new IoT systems. The aim is to create smart systems with
inbuilt anomaly detection, and so to lay the foundation for effective response
and overall resilience.

3 Anomaly Detection in IoT Systems

How and where anomaly detection takes place depends on the kind of system
that is developed. The following three scenarios outline how anomaly detection
4 https://www.ll.mit.edu/ideval/data/.
5 https://www.quora.com/Where-can-I-get-the-latest-dataset-for-a-network-

intrusion-detection-system.

https://www.ll.mit.edu/ideval/data/
https://www.quora.com/Where-can-I-get-the-latest-dataset-for-a-network-intrusion-detection-system
https://www.quora.com/Where-can-I-get-the-latest-dataset-for-a-network-intrusion-detection-system

48 E. Sherratt

may be a subsystem of an IoT system, or may be external to the IoT system,
how the data available for anomaly detection is constrained by the IoT system,
and how requirements for anomaly detection depend on potential threats to the
IoT system.

3.1 Environmental Monitoring

Figure 1 illustrates an environmental monitoring system, similar to that devel-
oped by [9]. The system comprises a number of devices that collect sensor data
and send it to a central location for analysis. Threats to the system include data
contamination and failure of the devices themselves. Battery life is limited, so
processing in the field is limited to data collection and transmission.

A machine-learning based anomaly detection system is likely to be co-located
with the central analysis software. Data available to the anomaly detection sys-
tem is the same sensor data as is available to the analysis system. The content
of the data, together with its pattern of arrival form patterns that enable clas-
sification into normal and anomalous activity.

Fig. 1. Remote sensors transmit environmental data to central system for analysis

3.2 Smart Fridge

A smart fridge [10] captures information about fridge contents and uploads that
information to a website. The website sends messages to the fridge owner recom-
mending recipes based on fridge content and reminding them when items need to
be re-stocked (Fig. 2). Threats to the website and threats to the integrity of the
data that is sent from the fridge should be addressed by the anomaly detection
system.

Data for anomaly detection consists of the data arriving from the fridge and
the requests and responses that form the pattern of website usage. Anomaly
detection is likely to consist of generic anomaly detection for the web server,
with a bespoke system to classify the content of the fridge data as normal or
anomalous.

Intelligent Resilience in the IoT 49

Fig. 2. Smart fridge sends data to website; web server sends recipes and suggestions
to fridge owner.

3.3 Railway Crossing

The railway crossing scenario [11], is more complex than the previous two sys-
tems. It involves tracks, trains, a variety of sensors and signals, and a public
highway, with signals and the crossing gates all managed by a central controller.

Threats to the system include failure of any of the components, deliberate
injection of false sensor data, and malicious manipulation of gates or signals.
Various problem scenarios are considered in [11] with detailed documentation
available on the SDL forum website6.

Anomaly detection is likely to form part of the central controller for the
railway crossing. It has access to sensor data from which it can infer patterns
of road and rail traffic, as well as patterns of usage for opening and closing the
crossing gates and for activating the crossing signals.

4 Building Intelligent Resilience into Smart Systems

SDL [6], with its established track record in telecommunications and embedded
systems, and its emphasis on modelling and simulation, has the potential to
support development of robust, reliable IoT systems [1]. This section discusses
how the SDL+ methodology [7] can be used to create smart systems with the
capacity to identify and respond to previously unknown threats (Fig. 3).

Before proceeding, it is reasonable to ask how an IoT system differs from any
other distributed, embedded system, and, if there is any significant difference,
whether or not the existing SDL+ methodology is also suitable for developing
an IoT system? An IoT system is a distributed embedded system, but with the
key feature that an IoT system typically exposes low level elements, such as

6 http://www.sdl-forum.org/SAM contest/Li Probert Williams/Railway doc.pdf.

http://www.sdl-forum.org/SAM_contest/Li_Probert_Williams/Railway_doc.pdf

50 E. Sherratt

Fig. 3. Railway crossing challenge

sensors, to the public Internet. An IoT system is also likely to include elements
that collect raw, un-validated data via the public Internet. As a distributed,
embedded system, an IoT system is amenable to development using the SDL+
methodology [7]. As a system whose internal communications are exposed to
unwanted external interference, an IoT system needs the kind of resilience that
an integral anomaly detection system can provide.

The following sections present the SDL+ methodology [7] and indicate how
each of the different SDL+ activities can be adapted to include anomaly detec-
tion as an integral component of the emerging IoT system. Of particular interest
is the opportunity to use the results of simulation to accelerate initial training
of bespoke anomaly detection systems for new networked smart things.

4.1 The SDL+ Methodology

SDL-2010 [6] refers to the ITU system design language documented in the
Z.100 series of recommendations. SDL-2010 is normally used in conjunction with
ASN.1 for describing data7 and the message sequence chart (MSC) notation
(Recommendation Z.120 from [6].) SDL+ refers to the use of SDL-2010 with
ASN.1 and the MSC notation.

The SDL+ methodology [7] focuses on three core activities: analysis, design
and formalization, illustrated in Fig. 4. The three core activities interact with
four further activities: requirements capture, validation, documentation and
implementation. The SDL+ methodology is not restricted to any particular soft-
ware development process, but its activities can be included in different plan-
driven or agile processes.

If the proposed system is to include an anomaly detection system, then that
fact should be recorded in the classified requirements, and formalized in the
SDL+ description.
7 https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx.

https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx

Intelligent Resilience in the IoT 51

Fig. 4. Requirements for resilience are included amongst the requirements used by the
SDL+ core activities

4.2 Resilience and the SDL+ Core Activities

Requirements capture results in a statement of requirements, preferably
expressed using the User Requirements Notation (URN) [12]. If resilience is
important, then requirements for resilient behaviour should be included with
the other requirements on the proposed system.

Analysis results in a model of concepts with names and definitions. This
essentially ontological structure facilitates discovery of similar concepts in previ-
ous systems whose components can be reused. This means that it also supports
discovery of previous threats and countermeasures that also apply to the current
system.

Draft design results in partial specifications that explore different designs for
the proposed system. Draft design for a resilient IoT system includes exploration
of different options for anomaly detection, diagnosis and recovery. This activity

52 E. Sherratt

Fig. 5. Temperature and wind-speed sensors with data aggregation, data analysis and
anomaly detection.

is also where vulnerabilities associated with different system designs can be
explored, and costs and relative effectiveness of different countermeasures can
be evaluated.

Formalization results in a formal SDL+ definition, expressed in SDL-2010
with MSC and ASN.1. The behaviour specified by the formal specification is
fully specified by the SDL formal semantics. If, as is likely, an external anom-
aly detection system is used, the formal SDL+ specification will include calls
to the external system. For example, the system illustrated in Fig. 5 includes
anomaly detection.

The anomaly detection block contains a process which calls an externally
defined procedure to perform anomaly detection, illustrated in Fig. 6. The system
also includes signals to indicate detection of anomalous behaviour. To complete
the description, the actions taken by the system to respond to threats and to
make itself more resistant to future threats should also be specified. This is why

Intelligent Resilience in the IoT 53

Fig. 6. An external classification (machine learning) procedure signals an alert when
it detects abnormal traffic conditions.

alerts are made available to the data aggregation and data analysis blocks in
Fig. 5.

Anomaly detection in the smart fridge system is modelled in a similar way.
For the railway crossing, a more complex model, reflecting the variety and

distribution of the different sensors, as well as the physical actuation involved in
changing the states of gates and light signals would be needed. An outline SDL
system diagram, derived from [11], is illustrated in Fig. 7.

Anomaly detection could be incorporated in the controller, but there would
also be benefits in providing different system elements with their own anomaly
detection and recovery systems.

4.3 Validation, Testing and Anomaly Detection

Model validation aims to determine whether or not a simulation model provides
and adequate representation of a system being modelled [15], where adequacy
depends on the purpose of the model. A formal SDL+ model is usually created
with the ultimate aim of generating code that will behave correctly when it is
deployed in a live embedded system.

54 E. Sherratt

Fig. 7. Railway crossing system (cf. [11])

In the context of the SDL+ methodology, the formal SDL+ definition is
subject to validation and testing (Fig. 8) with a view to correcting mistakes
and omissions in the specification before any code is generated or deployed.
This is necessary because specifications are created by people, and people make
mistakes, even when working at the level of specifications rather than code [7].

Validation is like test execution, with similar test cases being used for both
activities. The main difference between validation and testing is that valida-
tion compares the SDL+ model with the classified requirements and concepts
produced by analysis, while testing compares the SDL+ specification with an
executable implementation.

Validation entails checking the syntax and semantic consistency of the SDL+
description, and checking that requirements are met by the proposed system.
While different strategies are available for validating a simulation model [15],
validating an SDL+ description against requirements is typically achieved by
executing the SDL+ description in different environmental contexts. Environ-
mental conditions are represented as combinations of events that are specified
using TTCN-3 [13], or MSC ([6], Z.120) or SDL-2010. Validation is performed
with the help of automated tool support, which also makes it possible to extract
training data for anomaly detection.

Intelligent Resilience in the IoT 55

Fig. 8. Validating and testing a formal SDL+ description

Validation makes use of a formal validation model, which models parts of the
environment. For example, the validation model for the environmental sensing
application, illustrated in Fig. 8, and specified in SDL-2010, includes a special
process, RTDS env, used by PragmaDev Studio8 to simulate different environ-
mental conditions, and so to explore the behaviour of a new system in the context
of different combinations of external events.

While the primary purpose of validation is to provide reasonable confidence
that a validated system will meet its requirements when it is deployed in a live
environment, the products of simulation also have the potential to serve as data
sets to train classification systems to recognize normal behaviour and to identify
abnormal behaviour. That is, SDL simulation has the potential to provide high-
quality, labelled data for training an anomaly detection system.

4.4 Training the Anomaly Detection System

The results of validation depend on the kinds of simulation performed. Typical
validation results from Cinderella9 and PragmaDev Studio (see Footnote 8) con-
sist of execution traces in the form of message sequence charts. These results can
be used to train a classification system as illustrated in Fig. 10. In other words,
training data for anomaly detection can be generated as a by-product of system
development with SDL+.

Before validation results can be used in this way, they must be transformed to
form usable by a machine-learning classification system. This is not difficult. The
textual form of an execution trace [14], is readily expressed as an XML document,
which in turn can be transformed, for example, to Attribute Relation File Format
(ARFF) or any other input format required by a classification system.
8 http://pragmadev.com/product/index.html.
9 http://www.cinderella.dk/.

http://pragmadev.com/product/index.html
http://www.cinderella.dk/

56 E. Sherratt

Fig. 9. The SDL+ validation model includes a special tool-dependent process,
RTDS Env, to simulate different environmental conditions.

Execution traces that show acceptable system behaviour, without unwanted
interference by other systems or other problems, represent normal behaviour, and
traces representing unacceptable behaviour, or including unwanted interference,
represent anomalous behaviour.

As well as execution traces, signal payloads can also be analysed. This is
important for systems such as the environmental monitoring system described
above, where contamination of the sensor data has the potential to lead to incor-
rect inferences and poor policy decisions. It is critical for safety in the case of
the railway crossing. Again, the formality of the data definitions means that it
is relatively straightforward to re-cast signal content in a form that is accessible
to machine-learning based classification systems.

Intelligent Resilience in the IoT 57

Fig. 10. Execution traces and signal payload are converted to training data for anomaly
detection

4.5 Testing the Anomaly Detection System

The anomaly detection subsystem is tested as part of the overall testing
process (Fig. 11). An established data set, such as one of the well established
DARPA/KDD data sets or more recent data sets such as the CSIC 2010 HTTP
Dataset or the ECML/PKDD 2007 data set, is re-framed as events to be fed
in to the system under simulation. Test results in the form of execution traces
can be then be evaluated for effectiveness and accuracy of anomaly detection.

Responses to threats are tested in a similar way, to increase confidence in the
resilience of the system before it is deployed.

Post deployment monitoring should also be performed, particularly if the
anomaly detection system includes the capacity to learn from events encoun-
tered in the target environment. Post deployment monitoring can also feed back
to model validation, revealing new kinds of situation to be simulated, and so
improving future simulations of new systems (Fig. 9).

58 E. Sherratt

Fig. 11. SDL signal indicates that an anomaly has been detected

4.6 Summary of the Methodological Approach

The SDL+ methodology supports design, modelling and simulation of IoT sys-
tems that include adaptive anomaly detection and intelligent response to varied
and previously unknown threats.

Requirements capture provides a statement of the expected behaviour of the
proposed IoT system, including behaviour in the face of threats caused by failure
or malicious agents.

Analysis results in an ontology that names and defines the concepts embodied
in the requirements. This facilitates discovery of usable components, and also
discovery of threats to the proposed system.

Draft design is where different options can be explored. Amongst these
options are different anomaly detection systems. There are several key factors
involved in choosing software to identify anomalous behaviour. These include

– the questions the classification will be expected to resolve;
– the data that will be available;
– whether the data will be batched or streamed;
– the kind of adaptive behaviour that will be needed to deal with new kinds of

threat;
– scalability in terms of the number and kinds of component in the IoT system

and the quantity of data the anomaly detection system will have to process.

Intelligent Resilience in the IoT 59

Formalization results in a formal SDL+ description that can be simulated
and validated. Validation has the well-established purpose of helping ensure that
a new system meets its requirements, but the execution traces produced in the
course of SDL+ validation can also serve as labelled training data for an integral
anomaly detection system.

The trained system is tested using one or more of the established data sets,
possibly leading to further development or modification.

Documentation should also include decisions about choice of anomaly detec-
tion system, and about various validation and test activities that the IoT system
has undergone.

5 Next Steps

SDL+ with its associated tools provides a promising source of training data
for anomaly detection. An engineering process for developing IoT systems with
integral anomaly detection provides a secure foundation for creating smart sys-
tems that will be resilient in the face of the many and varied threats they will
encounter in the public Internet.

The SDL+ methodology provides a framework that readily includes activ-
ities related to creating intelligent IoT systems with in-build anomaly detec-
tion, response and recovery. In particular, SDL+ validation results in execution
traces that provide a source of training data for machine-learning based anomaly
detection.

Further work is needed to specify the kinds of questions an anomaly detec-
tion system should resolve in a resilient IoT system. The starting point is to
use execution traces from SDL+ simulation to represent normal behaviour, and
to classify other behaviour as abnormal. But more investigation is needed to
identify, for example, what represents an acceptable level of false positives.

Appropriate response to threats is also an area that needs work. Distribut-
ing threat detection and resolution presents a promising approach to creating
reliable, resilient IoT systems. However, the nature of fault resolution, and the
scalability of self-healing systems is an area of ongoing research [2].

Investigative development is also needed to recreate existing IoT systems,
but this time with inbuilt adaptive anomaly detection, and to evaluate their
behaviour in the field.

This paper discusses the case for incorporating anomaly detection into new
IoT systems, and outlines how SDL+ provides a promising way to make that
a practicable proposition. In particular, its validation activity provides training
data for anomaly detection as a by-product. Given the pressing need for intelli-
gent, adaptive, resilient IoT systems, and the fact that the SDL+ activities are
adaptable to different software engineering processes, this approach is likely to
deliver significant value to IoT systems developers.

60 E. Sherratt

References

1. Sherratt, E., Ober, I., Gaudin, E., Fonseca i Casas, P., Kristoffersen, F.: SDL
- the IoT language. In: Fischer, J., Scheidgen, M., Schieferdecker, I., Reed, R.
(eds.) SDL 2015. LNCS, vol. 9369, pp. 27–41. Springer, Cham (2015). doi:10.1007/
978-3-319-24912-4 3

2. Scully, P.M.D.: CARDINAL- Vanilla: immune system inspired prioritisation and
distribution of security information for industrial networks, Aberystwyth Univer-
sity, Ph.D. thesis (2014). http://cadair.aber.ac.uk/dspace/handle/2160/43304

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM
Comput. Surv. 41(3), 58 (2009). Article 15. ACM. http://doi.acm.org/10.1145/
1541880.1541882

4. Garćıa-Teodoro, P., Dı́az-Verdejo, J., Maciá-Fernándeza, G., Vázquez, E.: Add
to E-shelf anomaly-based network intrusion detection: techniques, systems and
challenges. Comput. Secur. 28(1–2), 18–28 (2009). Elsevier

5. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly
detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016). Elsevier.
http://dx.doi.org/10.1016/j.jnca.2015.11.016

6. ITU-T: Z.100 series Recommendations for SDL 2010, International Telecom-
munications Union 2011–2016. ITU-T (2011–2016). https://www.itu.int/rec/
T-REC-Z/en

7. ITU-T: Z-series Recommendations Supplement 1, International Telecommunica-
tions Union 2015 (2015). https://www.itu.int/rec/T-REC-Z.Sup1/en

8. Song, J., Zhu, Z., Scully, P., Price, C.: Selecting features for anomaly intrusion
detection: a novel method using fuzzy C means and decision tree classification. In:
Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds.) CSS 2013. LNCS, vol. 8300, pp.
299–307. Springer, Cham (2013). doi:10.1007/978-3-319-03584-0 22

9. Blanchard, T.: Endocrine inspired control of wireless sensor networks: deployment
and analysis. Aberystwyth University, Ph.D. thesis (2016)

10. Alolayan, B.: Toward sustainable households: passive context-aware intervention
to promote reduction in food waste. Aberystwyth University, Ph.D. thesis (2016)

11. Williams, A.W., Probert, R.L., Li, Q., Kim, T.-H.: The winning entry of the SAM
2002 design contest. In: Reed, R., Reed, J. (eds.) SDL 2003. LNCS, vol. 2708, pp.
387–403. Springer, Heidelberg (2003). doi:10.1007/3-540-45075-0 23

12. ITU-T: Recommendation ITU-T Z.151, User Requirements Notation (URN)
Language definition ITU-T (2012). https://www.itu.int/rec/T-REC-Z.150-201
102-I/en

13. TTCN-3 standards, ETSI - European Telecommunications Standards Institute.
http://www.ttcn-3.org/index.php/downloads/standards

14. ITU-T: Recommendation ITU-T Z.120, Message Sequence Chart (MSC). ITU-T
(2011). https://www.itu.int/rec/T-REC-Z.120-201102-I/en

15. Sargent, R.G.: Verification and Validation of Simulation Models. In: Henderson,
S.G., Biller, B., Hsieh, M.-H., Shortle, J., Tew, J.D., Barton, R.R. (eds.) Proceed-
ings of WSC 2007, Winter Simulation Conference (2007). http://www.informs-sim.
org/wsc07papers/014.pdf

http://dx.doi.org/10.1007/978-3-319-24912-4_3
http://dx.doi.org/10.1007/978-3-319-24912-4_3
http://cadair.aber.ac.uk/dspace/handle/2160/43304
http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.jnca.2015.11.016
https://www.itu.int/rec/T-REC-Z/en
https://www.itu.int/rec/T-REC-Z/en
https://www.itu.int/rec/T-REC-Z.Sup1/en
http://dx.doi.org/10.1007/978-3-319-03584-0_22
http://dx.doi.org/10.1007/3-540-45075-0_23
https://www.itu.int/rec/T-REC-Z.150-201102-I/en
https://www.itu.int/rec/T-REC-Z.150-201102-I/en
http://www.ttcn-3.org/index.php/downloads/standards
https://www.itu.int/rec/T-REC-Z.120-201102-I/en
http://www.informs-sim.org/wsc07papers/014.pdf
http://www.informs-sim.org/wsc07papers/014.pdf

An Ontology-Based Approach for IoT Data
Processing Using Semantic Rules

Ahmed Bali(B), Mahmud Al-Osta, and Gherbi Abdelouahed

Department of Software and IT Engineering,
École de technologie supérieure, Montreal, Canada

{ahmed.bali.1,mahmud.al-osta.1}@ens.etsmtl.ca,
abdelouahed.gherbi@etsmtl.ca

Abstract. Internet of Things (IoT) applications rely on a network of
heterogeneous devices including sensors and gateways. These devices are
endowed with the capacity to continuously sense the environment and
collect data, which can be further transfered through gateway devices to
the cloud. The generated data by IoT systems is often massive. There-
fore, the communication gateways might become a bottleneck affecting
the system performance due to their resources constraints. This is fur-
ther exacerbated in the case of bandwidth limitation. The huge amount
of data generated increases also the cost associated with data storage
and processing at the cloud level. Edge computing, which is a recent
IoT trend can contribute to addressing these issues by delegating data
processing task to the edges (e.g. gateway devices). In this paper, we
propose an approach, which aims at supporting the data processing and
minimizes the size of the transferred data to the cloud side. To this end,
our approach is based on the notion of rules used to filter the collected
data. In order to support the principle of sharing and reusing the rules
and the domain knowledge, we propose a Platform Independent Model
(PIM) to specify this knowledge independently from the used platform
(gateway node). In particular, we define a rule meta-model to support the
creation of the model that captures the domain rules. Furthermore, we
use Web semantic techniques to represent the knowledge at the semantic
level. This representation facilitates the instantiation of these rules and
domain knowledge to obtain the Platform Specific Model (PSM) at the
gateway level to process and filter the data.

Keywords: Semantic web · Internet of Things · Ontology · Semantic
rules · Platform independent model · Platform specific model

1 Introduction

Internet of Things (IoT) is an emerging paradigm that promotes the integration
between objects in the real world and services in the digital world. This inte-
gration paves the way toward the development of innovative applications, which
have an impact on many aspects of our life. According to Cisco [1], tens of bil-
lions of devices are anticipated to connect to the Internet by 2020. These devices
c© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 61–79, 2017.
DOI: 10.1007/978-3-319-68015-6 5

62 A. Bali et al.

will be deployed to observe the surroundings and collect data that represent
real world phenomenas. These data will be further transmitted to diverse cloud
platforms for aggregation, analyze, and storage processes. Typically, the data
generated by IoT systems is massive and heterogeneous. Consequently, the task
of IoT applications in interpreting and efficiently using this data is increasingly
complex. To reap the value from this data, conveying it to high-level knowledge
is a vital step, which in turn, promotes the development of interoperable and
smarter IoT applications [1,2].

In addition to the heterogeneity of data generated by IoT systems, in this
paper we target another challenge, which is the huge amount of data transmit-
ted from IoT gateway devices to the cloud platforms. Although, the latter have
the potential to handle such amount of data, this process requires a consider-
able amount of resources, where in some cases users would have to expand their
infrastructure to cope with the increasing amount of data. Furthermore, con-
tinually transferring data forth and back between the cloud and IoT gateways
has lead to network traffic overloading and latency issues that might influence
time-sensitive services [3].

Inspired by success that Semantic Web (SW) technologies have conveyed to
the data integration process on the Web, a recent trend to extend them to the
IoT domain have been widely accepted. SW technologies have the potential to
alleviate the data heterogeneity issue and promote interoperability between IoT
systems [4]. This could be achieved by modeling IoT data based on shared vocab-
ularies that can be interpreted by different software agents. This process is called
semantic annotation, which requires using several SW standards such as: OWL,
RDFs, and RDF to construct conceptual models (i.e. Ontology) to describe the
application domain concepts and the relationships between them [5]. Resource
Definition Framework (RDF) is a standard language for representing informa-
tion about Web resources as XML format. It provides a unified framework for
exchanging information between applications without loss of meaning. Data in
RDF are stored in the form of triples; each triple is consisted of (subject, prop-
erty, and object).

In order to reduce the volume of data uploaded to the cloud, gateway devices
can be increasingly used to perform data processing at the edge level. Recently,
these devices have witnessed a significant improvement in terms of computing
and communication capabilities, which enable them to carry out data processing
algorithms taking in consideration the limited number of sensor nodes connected
to them. Since the gateway nodes work closely to sensor nodes, it could achieve
faster response times, and provide processing capabilities for filtering out useless
data. Thus reducing the amount of data volumes transferred to the cloud, which
in turn, enhances the network performance and minimizes the latency. Also,
it provides more flexibility since it could be deployed everywhere. Moreover,
networks and cloud platforms could benefit from edge devices by reducing the
results delivery time; which in turn, save the bandwidth [6].

In this paper, we propose a semantic-based approach, to support at the edge
side, the data processing and minimizes the size of the transferred data to the

An Ontology-Based Approach for IoT Data Processing Using Semantic Rules 63

cloud side. To this end, our approach is based on the notion of rules used to filter
the collected data. Our approach enables the principle of sharing and reusing
the rules and the domain knowledge. For this reason, we propose a Platform
Independent Model (PIM) to specify this knowledge independently from the
used platform (gateway node). In particular, we define a rule meta-model to
support the creation of the model that captures the domain rules. Furthermore,
we use Web semantic techniques to represent the knowledge at the semantic
level. This representation facilitates the instantiation of these rules and domain
knowledge to obtain the Platform Specific Model (PSM) at the gateway level to
process and filter the data.

The reminder of this paper is organized as follows: Sect. 2 discusses the related
work presenting their advantages and limitations. The overall architecture of our
proposed approach is presented in Sect. 3 followed by a detailed description about
ontologies and semantic rules metamodel in Sect. 4. A prototype implementation
and evaluation are presented in Sect. 5 while Sect. 6 concludes the paper.

2 Related Work

Several research works on IoT related issues using SW technologies are reported
in the literature. In this section, we discuss briefly some of these that either
integrate SW technologies at the edge of IoT networks or use the semantic rule
notion.

In [7], the author designed an architecture to annotate heterogeneous data
captured using sensor measurements (sensor gateways) and aggregation gate-
ways which convert sensed data into semantic measurements using semantic
web technologies. A sensor measurement ontology (SenMESO) was designed to
automatically convert heterogeneous sensor measurement to semantic data. In
the same topic, the authors of [8], propose an annotation architecture mainly
targeting virtualized wireless sensor networks. The architecture consists of two
overlays namely: data annotation and ontology storing. Our approach takes into
consideration, the sensors description and it is open to use any sensor ontologies
like Semantic Sensor Network ontology (SSN) [9] and SenMESO. The sensor
description is used, through the models mapping, to annotate the data using
the instantiation of domain ontologies. Moreover, our approach reasons on the
annotated data by applying the filtering rules.

In [10] the authors propose an approach for mapping heterogeneous sensor
data to a formal (ontology-based) model in Ambient Assisted Living (AAL) envi-
ronments. A proposed Senior core ontology is divided into Core part (sen core),
which presents the sensor description model and Sense part (sen sense), which
presents the sensor data as instances of the description model. We see that the
description model is not sufficient to describe all aspects of data, which are nec-
essary to reason about the data as their filtering. In [11] the authors design a
data semantic fusion model based on a smart home domain ontology, to facilitate
capturing the domain knowledge by defining a set of concepts that represent dif-
ferent abstraction levels of the data generated in the smart homes. The authors

64 A. Bali et al.

designed the semantic matching rule for user behavior reasoning, in an attempt
to provide accurate and personalized home services. The SWRL [12] is used for
the representation of the matching rule. In our approach, taking into account the
resource constrained gateway, we have proposed a specialized rule model (based
on rule metamodel) that requires only limited resource to reason on rather than
using of general rule model as SWRL. Moreover, in order to widen the usage of
our data filtering, we proposed a rule model in the form of an ontology.

3 The Overall Approach Architecture

The architecture of an IoT system is in general composed of three categories of
components, namely the sensor nodes, the gateways, and the cloud platforms.
Typically, sensor nodes are the lowest level and consist of a set of resource-
constrained sensors. The main task of sensors nodes is only to collect data and
send it to the gateways. The Devices in the gateway category have more com-
puting resources compared to the sensor nodes. A gateway device acts as a hub
by aggregating sensory data and bridging the connection between sensor nodes
and IoT cloud services.

In our work, we focus on the data processing while minimizing the size of the
data to be actually sent to the cloud level. Our proposed approach is based on
using the ontologies for the annotation of the collected data and the modeling of
the rules to be used for their filtering, which is the step required for the data size
minimization. This approach, as illustrated in Fig. 1, is organized also around of
three levels, namely: Sensor Node, Gateway, and Cloud level.

In our approach the data processing step is agnostic to the type of gateway
and sensor used. This is achieved through the semantic description of the knowl-
edge at the cloud level. This allows reusing the knowledge independently from
the platform deployed. At the gateway level, specific knowledge instantiations
are then used. In our approach, we apply the instantiated rules to minimize the
data to be sent by filtering those that are not significant. Moreover, in our app-
roach we take into consideration the resource limitations of the gateway devices
as the filtering of rules and concepts for each gateway allows to instantiate only
those relevant for the data collected by the sensors connected to the gateway.

The following subsections describe the two main levels of our approach and
their structures in more detail.

3.1 Cloud Level

In this level, we have the different domain ontologies that are required for the
data modeling at semantic level. The rules of data filtering are defined using
the different elements of the domain ontologies (i.e. concepts and properties).
The application of these rules allows to judge whether a value of a given data is
significant or not. The end-user (i.e. the data consumer) can not only view the
data collected but can also configure according to his needs the filtering rules,
which are defined by the system administrator.

An Ontology-Based Approach for IoT Data Processing Using Semantic Rules 65

Sensor Node
Level

Gateway
Level

Cloud Level

Data fi lter

Cloud Interface

Data
Aggrega on

Local instan ated
rules

Instan ated domain
ontologies

..

Rules
Configura on

Data

User/Developer

Domain ontologies

Rules

Rule ontology

Fig. 1. The proposed gateway architecture.

In the remainder of this subsection, we provide further details about the
notion of rules in our approach. We use the rules to identify whether a data
value is significant to be sent to the cloud. The general form of a rule is as
follows: IF (Precondition) THEN Postcondition.

The Precondition(v) presents the condition to apply the rule. It is a conjunc-
tion and/or disjunction of the predicates on the data values (v) in order to judge
whether the value is significant to be sent. In our approach, we propose three
categories of data processing rules, namely:

– Rules based on a specific data value:
In this category of rules, the preconditions of the rule are based on a basic
comparison (i.e., <,<=,=, >=, >) of the data value to a predefined specific
value (by the user, the administrator or the system).
Example: IF(Temperature.hasValue >= 20) & (Temperature.hasValue < 30)
THEN Significatif(Temperature.hasValue)

66 A. Bali et al.

This rule models that the user (or the system) is interested only by the
temperature having a value between 20 and 30 C.

– Rules based on the old data value:
In this rules category, the precondition of the rule is based on a comparison
of the current value with the one previously sent.
Example: A rule to filter the duplicate data. IF (Temperature.hasV alue! =
Temperature.oldV alue)THENSignificatif(Temperature.hasV alue)
In order to specify, that we send the data only if the difference is significant
such as more than 5◦:
IF(Temperature.hasValue-Temperature.oldValue >= 5) V
((Temperature.hasValue-Temperature.oldValue <= −5))
THEN Significatif(Temperature.hasValue)

– Rules based on the classification of data values:
In this category, the data are classified according to their values and are sent
only if there is a change in their classification. Therefore, there are two types
of rules, one that classifies the data according to their values and the other
that infer that the new values are significant according to changes in their
classifications. Example: The CO gas value is considered unsafe if it exceeds
the value of 50 Parts Per Million (PPM).
IF(CO.hasValue < 50) THEN (CO.inClass = Safe)
IF(CO.hasValue >= 50) & (CO.hasValue < 1200)
THEN (CO.inClass = Unsafe)
For simplicity, we presented only two general classes namely, Safe and Unsafe.
While there are other classes like Dangerous and Dangerous Flammable and
in each class there are other subclasses. For example, in the Dangerous
class (between 1200PPM and 12800PPM), there are subclasses like “Death
or irreversible damage 1 h”(1200–2000PPM), “Dizziness & Headache 5–10
mins” (2000–3200) and “Death Gold irreversible damage 10–15mins (5000–
6400PPM) [13].

Given the high importance of some data such as those presented in the pre-
vious example, we have proposed a fourth level of rules concerning the security,
performance and maintenance aspects. For example, the system must send the
data in a time interval even if the rules of the previous levels are not applica-
ble (e.g. data is duplicated). This makes it possible to distinguish between the
case of the failure of a sensor and the case where there is no need to send the
data (because of the rules of three previous levels). However, we do not focus on
this type of rules in this work because we are interested in data processing by
minimizing its sent size.

3.2 Gateway Level

In our approach shown in Fig. 1, the main role of the Gateway is to collect the
data from the sensors and send them to the cloud after processing (filtering)
in order to minimize their size. The gateway level in our approach consists of
three basic modules, namely Cloud Interface, Data Filter and Data Aggregation.

An Ontology-Based Approach for IoT Data Processing Using Semantic Rules 67

These modules are shown in Fig. 2 in more details. The ‘Data aggregation’ mod-
ule collects the raw data from the sensors and passes them to the ‘Data filter’
module, which filters and sends them to the cloud via the ‘Cloud Interface’ mod-
ule. In the following sub-sections, we explain the two modules ‘Cloud Interface’
and ‘Data Filter’.

Gateway
Level

Data fi lter

Cloud Interface

Data Aggrega on

Local instan ated
rules

Instan ated domain
ontologies

Data Transfer Ontology Elements &
rules filter

Rules
Update

Rules
Engine

Data
processing

Update
Instances

rules

Update
Instances
elements

Sensor
descrip on

Collect raw data Sonsor ontologies
(SSN)

Fig. 2. Gateway level architecture

Cloud Interface Module: This module supports the communication with the
cloud. It is further composed of the Data Transfer module, which provides one
of the basic functionality of the gateway, namely the data transmission after
processing (in our case is filtering). In our approach, we take into account the
capacity constraints of gateway. To this end, we propose the ‘Ontology Elements
& rules filter’ module. This module selects only the concepts and properties
that have a link to the data types processed by the gateway, and therefore it
selects the rules relevant for these elements. In our approach, this module is
automatic thanks to the semantic description of the sensors which represent the
data source.

68 A. Bali et al.

Data Filter Module: This module plays the essential role of our proposal,
namely data filtering. This functionality is implemented by the sub-module
“Data processing”, which is based on the sub-module ‘Rules engine’ in order
to know the data having significant new values and therefore it is necessary to
send them. The Rules Engine sub-module applies the rules in the following order
of priority: First, the rules based on the classification of data values; Second, the
rules based on the old data value; and Finally, the rules based on a direct data
value. This order of priority is justified by the fact that the highest priority
category is that which brings more constraints on the data to be selected, there-
fore it provides more filtering and minimization of data. The two sub-modules
‘Update instances Rules’ and ‘Update instances elements’ manage the instances
of the elements obtained by the ‘Ontology elements & rules filter’ sub-module.
The instances of the rules apply to the instances of ontological elements that are
updated from the values captured by the sensors. The correspondence between
the sensors and the instances of the ontological elements is obtained automati-
cally based on a mapping between the ontologies of the domains and the semantic
description of the sensors (sub-module ‘Sensor Description’). In the next section,
we will introduce our semantic rules metamodel and the ontologies used to sup-
port our approach.

4 Our Approach Ontologies and Semantic Rules
Metamodel

Our approach described and shown in the previous section is based on the prin-
ciple of sharing and reusing the knowledge which is represented and maintained
at the cloud level while multiple gateways in the IoT system connected to the
cloud share the same knowledge including the different filtering rules.

Therefore, a platform independent model (PIM) support at the cloud level
which consists of a metamodel of the filtering rules and the ontologies used to
model and representing the shared knowledge. However, at the gateway level,
we use specific instances of the knowledge relevant for the mission and the types
of handled data. This specific representation specific to the gateway can be
designated as a Platform specific model (PSM).

In the following subsections, we will explain how we used these two levels of
representation.

4.1 Platform Independent Model for the Cloud Level

In our work, the use of a platform independent model (PIM) is motivated by the
need to support sharing cloud-based knowledge between different gateways (seen
as different platforms). It should be possible to reuse the knowledge by different
users and even other clouds. Using this PIM, the description of the domain
knowledge (including the rules) will be independent of the gateway level. We
propose to use a semantic model of knowledge based on the domain ontologies
and an ontology of the rules domain that we have developed. This choice is

An Ontology-Based Approach for IoT Data Processing Using Semantic Rules 69

motivated by the consideration of ontologies as the key to the representation of
knowledge at the semantic level. Moreover, the wide use of ontology in several
domains such as shared specifications of knowledge offered us a wide variety of
different domains modeling, which are ready to be reused.

Using our ontology of rules of data filtering, the rules will also be defined
in a semantic way which has the advantage of allowing their independence from
any specific use and consequently support also their reuse. In addition, semantic
modeling helps to represent all types of rules that will be used.

As shown in Fig. 1 at the cloud level, there are two basic elements, namely
domain ontologies and rules. In the following we present their modeling.

Domain Ontologies: The ontology which semantically describes a domain of
knowledge defines the concepts of the domain and the different relations between
them. Thus, it is widely used for communication, interoperability and reuse [14].
Moreover, to support the machine processing of the ontologies, these should
be coded in standard formats and languages such as RDF (S) and OWL. The
OWL is characterized by its rich expressiveness. However, the RDF(S) is more
appropriate when the modeled knowledge is less complicated.

Example: In approach evaluation section (Sect. 5), we assume to use a domain
ontology of gas. This ontology will be used in a scenario of an IoT system that
controls the air gases of an area (eg. industrial zone), by using electrochemical
sensors connected to the gateways that collect the data captured by these sensors
and send them to the cloud. Table 1, for example, shows an extract of the gas
domain ontology. The concept CO (Carbon monoxide) is a subclass of the class
oxide (which means a chemical compound that contains at least one oxygen atom
and one other element).

The unit of measure of the gases is of the Literal type which designates Parts-
per notation, for example we will use the PPM (parts-per-million) for the value
of CO presented by the hasValue property. For the sake of simplicity, we have
not presented these different details and the modeling of the different chemical
characteristics of the different types of gas.

Ontology of the Rules: In Sect. 3.1, we have proposed the notion and dif-
ferent categories data processing rules that we use in our approach. Using this
notion and categories, we have defined the rule metamodel represented by the
class diagram in Fig. 3. This metamodel supports the specification, modeling and
validation of the rules. Using this metamodel of the rules, we define the language
which we use to describe the filtering rules. The class diagram in Fig. 3 shows
that a rule applies to the values of the concept properties relevant for the rule
which are described in a domain ontology (the URI property). We specified the
cardinality “1–1” for the relations between the two classes Attribute and Value,
to express that we are only interested in the old value (hasOldValue) and the
new value (hasValue). The old value is the last one sent to the cloud and the
new value is the current value received from the sensor. In this way, we avoid
recording unnecessary data.

70 A. Bali et al.

Table 1. Example of gas domain ontology

<?xml version=1.0?>

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

<owl:Ontology rdf:about="Gaz"/>

<owl:Class rdf:ID="CO">

<rdfs:comment>Carbon monoxide</rdfs:comment>

<rdfs:subClassOf rdf:resource="#oxide"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="hasValue">

<rdfs:domain rdf:resource="#CO"/>

<rdfs:range rdf:resource="&xsd;positiveInteger"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Ci2"/>

...

<owl:Class rdf:ID="Gas">

<owl:unionOf rdf:parseType="collection">

<owl:Class rdf:about="#CO"/>

<owl:Class rdf:about="#Ci2"/>

...

</owl:Class>

<owl:DatatypeProperty rdf:ID="measureUnit">

<rdfs:domain rdf:resource="#Gas"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

...

</rdf:RDF>

In addition, the application of the rule updates the value of the ‘isSignificant’
attribute of the data value. For the application of a rule, its preconditions should
be verified. The preconditions are expressed in terms of comparisons which have
three types (Direct, Old and Comparative Classification) corresponding to the
three types of rules (the DirectValue, OldValue and Classification rule classes).
A comparison can be made using conjunction and/or disjunction operations
with other comparisons. In addition, a comparison may be composed of other
comparisons. We defined a ‘Class’ class to define different intervals in which the
classification comparison is based.

For the specification of the rules model which is an instance of the meta-model
(from the modeling point of view), we propose to use a semantic language to
ensure their re-use and understanding by the machine. To do this, we transform
the meta-model of the rules to an ontology of the rules in order to be instantiated
during the description of the rules.

An Ontology-Based Approach for IoT Data Processing Using Semantic Rules 71

Fig. 3. Metamodel of filtering rules

The level of modeling in which we use this ontology is the metalevel (called
also as High Level [15]). Thus, the proposed rules ontology is a meta-ontology
type [16] (it can be called also meta-model ontology [17] or foundational ontology
[18]) i.e., an ontology that gives the meaning of the meta model elements. Thus,
it is a domain independent ontology and it can be seen as representational ontol-
ogy [19]. The representational feature of our proposed ontology means that it
provides the representational primitives of the representation language of knowl-
edge. In our case, the knowledge is the domain rules model which is domain
specific (eg. the rules of the gas domain).

Therefore, this ontology of rules is used to describe the rules semantically,
by declaring it to the header of the rule description document as a namespace
(vocabulary). Table 2 shows an extract from the OWL document of our rules
ontology.

In the following subsection, we will present how we use this ontology for the
definition of data filtering rules.

Rules Model: We specify the rules also using a semantic model in order to
ensure its independence from the platform and to benefit from the advantages
of semantic representation, namely the automatic processing of knowledge and

72 A. Bali et al.

Table 2. Ontology of the rules

<rdf:RDF

xmlns:owl="http://www.w3.org/2002/07/owl#"

....>

<owl:Ontology rdf:about="Filtering Rule model"/>

<owl:Class rdf:ID="Rule"/>

<owl:Class rdf:ID="DirectValue Rule">

<rdfs:subClassOf rdf:resource="#Rule"/>

</owl:Class>

...

<owl:Class rdf:ID="Classification Rule">

<rdfs:subClassOf rdf:resource="#Rule"/>

</owl:Class>

<owl:Class rdf:ID="Concept"/>

<owl:ObjectProperty rdf:ID="about">

<rdfs:domain rdf:resource="#Rule"/>

<rdfs:range rdf:resource="#Concept"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="OntologyURL">

<rdfs:domain rdf:resource="#Concept"/>

<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Attribute"/>

<owl:ObjectProperty rdf:ID="hasAttribut">

<rdfs:domain rdf:resource="#Concept"/>

<rdfs:range rdf:resource="#Attribute"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Value"/>

<owl:ObjectProperty rdf:ID="hasValue">

<rdfs:domain rdf:resource="#Attribute"/>

<rdfs:range rdf:resource="#Value"/>

</owl:ObjectProperty>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasValue"/>

<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>

....

</rdf:RDF>

its reuse. Consequently, the semantic description of a rule is an instantiation
of our ontology of the rules. In the description of the rule, we also use other
domain ontologies to describe the domain elements relevant for the rule. For
example, Table 3 presents an extract from the description of the rules (referred
to in Subsect. 3.1) that are relevant for the CO concept of the gas domain ontol-
ogy (referenced by the GasO namespace in the Table 3). This utilization leads

An Ontology-Based Approach for IoT Data Processing Using Semantic Rules 73

Table 3. Example of rule

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:GasO="http://localhost/GasOntology#"

xmlns:MMR="http://localhost/MetaModelRules\#">

<MMR:Class rdf:ID="Safe">

<MMR:minLimit rdf:datatype="&xsd;nonNegativeInteger">0</MMR:minLimit>

<MMR:maxLimit rdf:datatype="&xsd;positiveInteger">50</MMR:maxLimit>

</MMR:Class>

<MMR:Class rdf:ID="UnSafe">

<MMR:minLimit rdf:datatype="&xsd;positiveInteger">50</MMR:minLimit>

<MMR:maxLimit rdf:datatype="&xsd;positiveInteger">1200</MMR:maxLimit>

</MMR:Class>

<MMR:Value rdf:ID="oldValue"/>

<MMR:Value rdf:ID="currentValue"/>

<MMR:Attribute rdf:ID="attribut">

<MMR:hasOldValue rdf:resource="#oldValue"/>

<MMR:hasValue rdf:resource="#currentValue"/>

</MMR:Attribute>

<MMR:Concept rdf:ID="CO">

<MMT:hasAttribut rdf:resource="#attribut"/>

</MMR:Concept>

<MMR:ClassificationRule rdf:ID="CRuleCO1">

<MMR:about rdf:resource="#CO"/>

<MMR:applyOn rdf:resource="#attribut"/>

</MMR:ClassificationRule>

<MMR:ClassificationComparaison rdf:ID="ClassificationComp">

<MMR:usedBy rdf:resource="#CRuleCO1"/>

<MMR:use rdf:resource="#Safe"/>

...

</MMR:ClassificationComparaison>

...

</rdf:RDF>

to create an RDF document which contains the instances of the defined con-
cepts and their values as well as their links. It is worth to mention that at this
level of instantiation, certain property values (attributes and links) are not yet
defined, for example, the ‘val’ and ‘isSignificant’ attributes in the instances of
the ‘Value’ concept, namely ‘oldValue’ and ‘currentValue’, and also the ‘inClass’
link between these two instances and instances of the class ‘Class’. The values
of this kind of properties will be defined at the level of the gateway where are
the sources of these values (i.e. sensors). In our approach, we have called this
an instantiation of the rule (of the rule model), as we will show in the following
section.

74 A. Bali et al.

4.2 Platform Specific Model for the Gateway Level

At the gateway level, the concepts of domain ontologies and rules are instanti-
ated. The choice of concepts and rules is based on the mission of the gateway, i.e.
based on the types of data to be collected by the sensors. In this step we need,
then, to use the description of the sensors using ontologies like SSN. Moreover,
the data obtained by the sensors will be annotated using (i.e. instantiation of)
the domain ontologies.

We instantiate the concepts and connect these instances to the sensors (to
update their values). We can then apply the rules on these instances (i.e. instanti-
ation of the rules). To this end, we have defined a mapping between the different
used models so that we can link these instances, as shown in Fig. 4.

The sign ‘≡’ denotes the equivalence relation. More specifically, the value
captured by the sensor is assigned in the instance whose concept (defined by
rdfs: instanceOf or rdf: type) is the same as the sensor observes (SSN: observes).
And in the same way we apply on this instance the rules having the value of
“MMR: about” as the concept of the domain concept instance. The knowledge
PIM models are customized and instantiated for each gateway (i.e. the sensors
connected to the gateway). Therefore, we designate them as platform specific
models (PSM) for the gateway level.

Table 4, shows an example of instantiation of the gas domain ontology (its
namespace is GasO). It describes an instance of the CO concept (CO inst1)
having a value of 60PPM.

Table 5 shows an instantiation of the model of the “CRuleCO1” rule pre-
sented in Table 3. As discussed earlier, this instantiation is to define and update
the elements related to the platform (gateway), like the new value “currentValue”
and its meaning “isSignificant”, and the addition of link “inClass” between the
instances of classes “Value” and “Class”.

Rule Model Domain
Ontology SSN Ontology

Instance of Instance of Instance of

Instance of role Instance of domain
ontology elements

Sensor descrip on

Instance level

Model level

MMR:about Rdf:type or Rdfs:instanceOf Rdf:type or Rdfs:instanceOf SSN:observes

Fig. 4. Models mapping

An Ontology-Based Approach for IoT Data Processing Using Semantic Rules 75

Table 4. Example of instantiation of domain concept

Table 5. Example of rule instantiation

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:GasO="http://localhost/GasOntology#"

xmlns:MMR="http://localhost/MetaModelRules#">

...

<MMR:Value rdf:ID="oldValue">

<MMR:val rdf:datatype="&xsd;positiveInteger">40</MMR:val>

<MMR:inClass rdf:resource="#Safe"/>

</MMR:Value>

<MMR:Value rdf:ID="currentValue">

<MMR:val rdf:datatype="\&xsd;positiveInteger">60</MMR:val>

<MMR:inClass rdf:resource="#UnSafe"/>

<MMR:isSignificant rdf:datatype="&xsd;boolean">true</MMR:isSignificant>

</MMR:Value>

...

<MMR:ClassificationComparaison rdf:ID="ClassificationComp">

<MMR:usedBy rdf:resource="#CRuleCO1"/>

...

<MMR:classChanged rdf:datatype="&xsd;boolean">true</MMR:classChanged>

</MMR: ClassificationComparaison>

...

</rdf:RDF>

5 Implementation and Evaluation of the Proposed
Approach

In this section we present the prototype implementation and evaluation of the
proposed approach. To test our approach, we have launched a set of experimen-
tations using a test bed consists of three parts: sensor nodes, middleware, and
the gateway.

76 A. Bali et al.

We have created set of virtual electrochemical sensors (60 sensors) for gas
detection such as CO, NH3, and NO2. These sensors are configured to periodi-
cally (after each 1 ms) send data to the implemented middleware. The middle-
ware is intended to perform the data filtering process following the architecture
presented in Fig. 1. We have used Java JDK 1.8.0 2 for implementing the proto-
type. For parsing the semantic documents, the infrastructure Jena 2.12.1 is used.
The prototype is tested under Raspbian a lightweight Linux-based OS deployed
on Raspberry pi3 model B which has a Quad-core 1.2 GHz Cortex-A53 CPU, 1
GB RAM, and 16 GB SD card.

We performed our experimentations to process sensor data in two cases
namely: Without data filtering rules, and with data filtering rules. Two test
criteria are considered as follows:

Fig. 5. Result of data size experimentation

– Data size: we measure the overall size of data generated in both aforemen-
tioned cases. The goal of this test is to identify how much data have been
reduced using our rule-based filter module. Reducing the data size implies
that our approach contributes at reducing the network traffic between the
gateway and the cloud. Figure 5 depicts the size measurement of data to be
sent to cloud using the data filter module (filtering) (in solid line) versus the
data sending without filtering (in dashed line) where the X-axis represents
sending file numbers (this number is incremented after each data file gen-
eration) and the Y-axis the size of data file in bytes. This result shows the
obtained gain in information size when we use our filter based on rules. In this
experiment, we have obtained 2850 KB as a total gap (the difference between
the sum of the sizes of the data files) was obtained between the two above
mentioned cases after 20 min of execution. This gap of data size increases if

An Ontology-Based Approach for IoT Data Processing Using Semantic Rules 77

Fig. 6. Result of time consumption experimentation

more sensors are used, i.e. more raw data are generated. Figure 5 depicts the
size measurement of data to be sent to cloud using the data filter module
(filtering) (in solid line) versus the data sending without filtering (in dashed
line) where the X-axis represents sending file numbers (this number is incre-
mented after each data file generation) and the Y-axis the size of data file in
bytes. This result shows the obtained gain in information size when we use
our filter based on rules. In this experiment, we have obtained 2850 kbytes as
a total gap (the difference between the sum of the sizes of the data files) was
obtained between the two above mentioned cases after 20 min of execution.
This gap of data size increases if more sensors are used, i.e. more raw data
are generated.

– Processing time: In this category, we evaluate time needed for data filtering
process. More specifically, we measure the response time starting from gen-
erating the raw data from sensors till receiving a response from the gateway
that the data file is ready to send. This category of experimentation has been
imposed by the addition of our filtering module. So we seek to identify until
when this raw data filtering can influence the total execution time of the data
collection. Figure 6 shows the results of these experimentation. The X-axis is,
like in the previous test criterion, sent file number while the Y-axis is the
time in milliseconds. We notice that the whole time with filtering is, in most
cases, better than without filtering. This is explained by the time gained for
the data generation process (due to data minimization) recover the time lost
in the filtering process.

78 A. Bali et al.

6 Conclusion

The delegation of the data processing task to the edge of an IoT system enables
carrying out intelligent functions close to the sensor sinks such as processing
semantic models and undertaking reasoning. In this paper, we have presented
our approach which leverages semantic models and rules to enable being selective
in sending only significant data to the cloud side. To facilitate sharing and reusing
semantic rules among IoT gateways, we have proposed a Platform Independent
Model, based on semantic web technologies, to define the rules and domain
concepts at the cloud level. While at the gateway level, a Platform Specific
Model is instantiated, which encompasses a set of rules and concepts that match
the specific features and functionalities of sensor nodes, and used to perform data
filtering process. We have evaluated the feasibility of the proposed approach by
means of several experimentations based on simulated environment. The results
of the implementation have shown the potential of our approach in reducing the
amount of data sent the cloud, which in turn, enhances the overall performance
of the system, and reduce the cost in terms of resources required to process and
store data on the cloud. As future perspective, we plan to enrich our meta-model
rule to support other aspects such as security, performance and maintenance.
Moreover, we will consider studying the load balancing issue to manage the
distribution of edge computing tasks based on resources available at the gateway
level.

Acknowledgements. This work is partially supported the Nature Sciences and Engi-
neering Research Council of Canada (NSERC).

References

1. Evans, D.: The internet of things: how the next evolution of the internet is changing
everything. CISCO (2015)

2. Manyika, J., Michael, C., Peter, B., Jonathan, W., Richard, D., Jacques, B., Dan,
A.: The internet of things: mapping the value beyond the hype. McKinsey Global
Institute (2015)

3. Borgia, E.: The internet of things vision: key features, applications and open issues.
Comput. Commun. 54, 1–31 (2014)

4. Dillon, T., Chang, E., Singh, J., Hussain, O.: Semantics of cyber-physical sys-
tems. In: Shi, Z., Leake, D., Vadera, S. (eds.) IIP 2012. IAICT, vol. 385, pp. 3–12.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32891-6 3

5. Aggarwal, C.C., Ashish, N., Sheth, A.: The internet of things: a survey from the
data-centric perspective. In: Aggarwal, C. (ed.) Managing and Mining Sensor Data.
Springer, Boston (2013). doi:10.1007/978-1-4614-6309-2 12

6. Li, P.: Semantic reasoning on the edge of internet of things (2016)
7. Gyrard, A.: An architecture to aggregate heterogeneous and semantic sensed data.

In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC
2013. LNCS, vol. 7882, pp. 697–701. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38288-8 54

http://dx.doi.org/10.1007/978-3-642-32891-6_3
http://dx.doi.org/10.1007/978-1-4614-6309-2_12
http://dx.doi.org/10.1007/978-3-642-38288-8_54
http://dx.doi.org/10.1007/978-3-642-38288-8_54

An Ontology-Based Approach for IoT Data Processing Using Semantic Rules 79

8. Khan, I., Jafrin, R., Errounda, F.Z., Glitho, R., Crespi, N., Morrow, M., Polakos,
P.: A data annotation architecture for semantic applications in virtualized wire-
less sensor networks. In: 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 27–35. IEEE (2015)

9. Compton, M., Barnaghi, P., Bermudez, L., Garćıa-Castro, R., Corcho, O., Cox, S.,
Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The SSN ontology of
the W3C semantic sensor network incubator group. Web Semant. Sci. Serv. Agents
World Wide Web 17, 25–32 (2012)

10. Buchmayr, M., Kurschl, W., Küng, J.: A rule based approach for mapping sensor
data to ontological models in AAL environments. In: Castano, S., Vassiliadis, P.,
Lakshmanan, L.V., Lee, M.L. (eds.) ER 2012. LNCS, vol. 7518, pp. 3–12. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33999-8 2

11. Tao, M., Ota, K., Dong, M.: Ontology-based data semantic management and appli-
cation in IoT-and cloud-enabled smart homes. Future Gener. Comput. Syst. 76,
528–539 (2016)

12. Ian, H., Peter, F.P.S., Harold, B., Said, T., Benjamin, G., Mike, D.: SWRL: a
semantic web rule language combining OWL and RuleML. https://www.w3.org/
Submission/SWRL/. Accessed 30 October 2010

13. Callan: CO Poison line. http://hazmatcentral.com/. Accessed 30 October 2010
14. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications.

Knowl. Eng. Rev. 11(02), 93–136 (1996)
15. Ruiz, F., Hilera, J.R.: Using ontologies in software engineering and technology. In:

Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering and
Software Technology. Springer, Heidelberg (2006). doi:10.1007/3-540-34518-3 2

16. Henderson-Sellers, B.: Bridging metamodels and ontologies in software engineering.
J. Syst. Softw. 84(2), 301–313 (2011)

17. Saeki, M., Kaiya, H.: On relationships among models, meta models and ontologies.
In: Proceedings of the Proceedings of the 6th OOPSLA Workshop on Domain-
Specific Modeling (DSM 2006) (2006)

18. Guizzardi, G.: Ontological foundations for structural conceptual models. CTIT,
Centre for Telematics and Information Technology (2005)

19. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic-
Commerce. Springer, Heidelberg (2004). doi:10.1007/978-3-662-09083-1

http://dx.doi.org/10.1007/978-3-642-33999-8_2
https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/
http://hazmatcentral.com/
http://dx.doi.org/10.1007/3-540-34518-3_2
http://dx.doi.org/10.1007/978-3-662-09083-1

Model-Driven Engineering of an OpenCypher
Engine: Using Graph Queries
to Compile Graph Queries

József Marton1(B) , Gábor Szárnyas2,3 , and Márton Búr2,3

1 Database Laboratory, Budapest University of Technology and Economics,
Budapest, Hungary
marton@db.bme.hu

2 Fault Tolerant Systems Research Group,
Budapest University of Technology and Economics, Budapest, Hungary

3 MTA-BME Lendület Research Group on Cyber-Physical Systems,
Budapest, Hungary

{szarnyas,bur}@mit.bme.hu

Abstract. Graph database systems are increasingly adapted for storing
and processing heterogeneous network-like datasets. Many challenging
applications with near real-time requirements—such as financial fraud
detection, on-the-fly model validation and root cause analysis—can be
formalised as graph problems and tackled with graph databases effi-
ciently. However, as no standard graph query language has yet emerged,
users are subjected to the possibility of vendor lock-in.

The openCypher group aims to define an open specification for a
declarative graph query language. However, creating an openCypher-
compatible query engine requires significant research and engineering
efforts. Meanwhile, model-driven language workbenches support the cre-
ation of domain-specific languages by providing high-level tools to create
parsers, editors and compilers. In this paper, we present an approach to
build a compiler and optimizer for openCypher using model-driven tech-
nologies, which allows developers to define declarative optimization rules.

1 Introduction

Context. Graphs provide an intuitive formalism for modelling real-world sce-
narios, as the human mind tends to interpret the world in terms of objects
(vertices) and their respective relationships to one another (edges) [30].

The property graph data model [33] extends graphs by adding labels/types
and properties for vertices and edges. This gives a rich set of features for users to
model their specific domain in a natural way. Graph databases are able to store
property graphs and query their contents by matching complex graph patterns,
which would otherwise be cumbersome to define and/or inefficient to evaluate
on traditional relational databases [39].

Neo4j, a popular NoSQL property graph database, offers the Cypher query
language to specify graph queries. Cypher is a high-level declarative query lan-
guage, detached from the query execution plan, which allows the query engine
c© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 80–98, 2017.
DOI: 10.1007/978-3-319-68015-6_6

http://orcid.org/0000-0003-4752-4234
http://orcid.org/0000-0001-8233-4431
http://orcid.org/0000-0003-2702-6174

Model-Driven Engineering of an OpenCypher Engine 81

to use sophisticated optimisation techniques. The openCypher project [25] aims
to deliver an open specification of Cypher.

Problem and Objectives. Even though the openCypher specification was
released more than 1.5 years ago, there are very few open implementations avail-
able and even those offer limited support for the more advanced language con-
structs. Besides the novelty of the openCypher specification, the primary reason
for the lack of open implementations is the complexity of the language. Even
with the artifacts provided by the openCypher project—including the specifica-
tion, the language grammar and a set of test cases—implementing a compiler
is a non-trivial task and requires significant engineering efforts. Our goal is to
deliver a reusable compiler that can be extended with transformation rules for
query optimisation.

Contributions. In this paper, we use graph queries defined on a cyber-physical
system to demonstrate the key challenges in compiling openCypher queries. We
present an approach for implementing an openCypher query compiler including
a model-based parser generator and a set of model transformation rules built on
a modern language workbench based on Eclipse technologies. We released the
compiler as part of the open-source ingraph project, where it is used as part
of an incremental graph query engine, released under the commercially-friendly
Eclipse Public License.1

Structure of the Paper. We first introduce the running example in Sect. 2
and the concepts of graph queries and model transformations in Sect. 3. We give
an overview of the compiler in Sect. 4 and use example queries to elaborate the
details of query compilation in Sect. 5. We discuss related research in Sect. 6 and
conclude the paper in Sect. 7.

2 Running Example

To demonstrate our approach, we use a cyber-physical system demonstrator,
MoDeS3 [7], which stands for Model-Based Demonstrator for Smart and Safe
Systems. It is an educational platform of a model railway system that prevents
trains from collision and derailment using runtime verification techniques based
on safety monitors. The railway track is instrumented with several sensors, such
as cameras and shunt detectors capable of sensing trains on a particular segment
of a track, connected to computing units. In addition to collecting data, these
computing units also control the trains to guarantee safe operation. In this paper,
we will only introduce a small self-contained fragment of the demonstrator in
order to keep the example compact.

1 Available at http://docs.inf.mit.bme.hu/ingraph/.

http://docs.inf.mit.bme.hu/ingraph/

82 J. Marton et al.

Figure 1(a) depicts a snapshot of the simplified system in operation, where
trains are located at different parts of the railway. The railway network itself
consists of two types of railway elements: segments and turnouts. Segments are
selected tracks of the railway network with one entry and exit points individually,
they are approximately of same lengths, and they have no intermediate branches
between the entry and exit points. As opposed to segments, turnouts allow trains
to change tracks. A turnout can either be in divergent or straight state. A station
can represent a railway station with an arbitrary purpose, and they can include
any number of railway elements.

Fig. 1. The running example.

We introduce the following example monitoring objectives that are evaluated
continuously by graph queries:

– Close proximity identifies trains on consecutive segments with only a limited
distance between each other (train tr9 on seg1 and tr12 on seg2 in the
example).

– Station with free track monitoring objective finds stations that have at least
one free track available (station st14 in the example).

– Busy station identifies stations with at least two trains residing on its corre-
sponding tracks (station st13 in the example).

3 Preliminaries

In this section, we present the theoretical and practical foundations for com-
piling openCypher queries. This includes the notion of property graphs, a brief

Model-Driven Engineering of an OpenCypher Engine 83

description of the openCypher language and the relational algebraic foundations
for formalising graph queries. We also discuss model-driven engineering (MDE)
along with the MDE tools used in our work.

3.1 Property Graphs and the OpenCypher Query Language

The property graph data model [32] extends typed graphs with properties on the
vertices and edges. This data model is used in NoSQL graph database systems
such as Neo4j [24], OrientDB [27], SparkSee [36], and Titan [40]. Graph data-
bases provide no or weak metamodeling capabilities. Hence, models can either
be stored in a weakly typed manner or the metamodel must be included in the
graph (on the same metalevel as the instance model). The property graph of the
running example is shown in Fig. 1(b).

Cypher is a high-level declarative graph query language used in the Neo4j
graph database [29]. It allows users to specify graph patterns with a syntax
resembling an actual graph, which makes the queries easy to comprehend. The
goal of the openCypher project [25] is to provide a standardised specification of
the Cypher language.

Listing 3.1 shows a query that returns all tr, seg pairs, where a particular
train tr is ON a particular segment seg.

1 MATCH (tr:Train)-[:ON]->(seg:Segment)
2 RETURN tr, seg

Listing 3.1. Example openCypher query.

3.2 Relational Graph Algebra

We gave a formal specification for the core subset of the openCypher language
in [23] using relational graph algebra, which extends relational algebra with
graph-specific operators. Here, we give a brief summary of the operators in rela-
tional graph algebra, which operates on multisets (bags) [15] of tuples, that form
graph relations. We refer to named elements of a tuple as attributes.

Notation. Graph relations, schemas and attributes are typeset in italic (r, R,
A1), variable names set in monospace (x1), while labels, types and constants are
set in sans-serif (min, l1, tk). The NULL value is represented as ε.

Nullary Operators. The get-vertices [18] nullary operator ©(v:l1∧...∧ln) returns
a graph relation of a single attribute v that contains vertices that have all of
labels l1, . . . , ln.

Additionally to our previous work, we introduce Dual , which is a relation with
no columns and a single (empty) tuple, i.e. Dual = {〈〉}.2 The Dual relation is
2 The Dual relation is inspired by the DUAL table in the Oracle database [6].

84 J. Marton et al.

the identity element of the Cartesian product and the natural join operators.
We also introduce Singular , which denotes the empty relation {} and is the zero
element of the Cartesian product and the natural join operators.

Unary Operators. The projection operator π keeps the specified set of
attributes of the relation: πA1,...,An

(r) . The projection operator can also rename
attributes, e.g. πx1→x2 (r) renames x1 to x2. Note that tuples are not dedupli-
cated, i.e. the result has the same number of tuples as the input relation r.

As relational graph algebra operates on multisets, there is a bespoke operator
for removing duplicate tuples. The duplicate-elimination operator δ takes a
multiset of tuples on its input, performs deduplication and returns a set of tuples.

The selection operator σ filters the incoming relation according to some
criteria: σθ (r) , where predicate θ is a propositional formula. The operator selects
all tuples in r for which θ holds.

The expand-out unary operator ↑ (w:l1∧...∧ln)
(v) [e : t1 ∨ . . . ∨ tk] (r) adds new

attributes e and w to each tuple iff there is an outgoing edge e from v to w,
where e has any of types t1, . . . , tk, while w has all labels l1, . . . , ln. Similarly,
the expand-in operator ↓ uses incoming edges, while the expand-both operator �
uses both incoming and outgoing edges. An extended version of this operator,
↑ (w)

(v) [e∗max
min] may use any number of hops between min and max.

Binary Operators. The result of the natural join operator �� is determined
by creating the Cartesian product of the relations, then filtering for those tuples
which are equal on the attributes that share a common name. The combined
tuples are projected: for input relations r and s (with schemas R and S, respec-
tively), we only keep the attributes in r and drop the ones in s. Hence,

r �� s = πR∪S σ(r.A1=s.A1 ∧ ... ∧ r.An=s.An) (r × s) ,

where {A1, . . . , An} = R ∩S is the set of attributes that occur both in R and S.
The antijoin operator � (also known as left anti semijoin) collects the tuples

from the left relation r that have no matching pair in the right relation s:

r � s = r \ πR (r �� s) ,

where πR denotes a projection operation, which only keeps the attributes of the
schema over relation r.

The left outer join �� pads tuples from the left relation that did not match
any from the right relation with ε values and adds them to the result of the
natural join [35].

Table 1 shows a concise set of rules for mapping openCypher expressions to
relational graph algebra [23].

3.3 Model-Driven Engineering

Model-driven engineering (MDE) is a development paradigm, used in many areas
of software and system engineering, such as designing safety-critical systems.

Model-Driven Engineering of an OpenCypher Engine 85

Table 1. Mapping from openCypher constructs to relational algebra [23]. Variables,
labels, types and literals are typeset as «v». The notation �p� represents patterns
resulting in a relation p, while �r� denotes previous query fragment resulting in a
relation r. To avoid confusion with the “..” language construct (used for ranges), we
use ··· to denote omitted query fragments.

MDE focuses on creating and analyzing models at different levels of abstraction
during the engineering process. Model transformations are used to process mod-
els, e.g. to convert models between different modeling languages and to generate
code.

Domain-Specific Languages. While there are some extensible formalisms
intended as a general-purpose way of representing models (such as UML), indus-
trial practice often prefers domain-specific languages (DSLs) for describing mod-
eling languages instead. These can be designed and modified to the needs of
application domains and actual design processes. On the other hand, developing
such a DSL (and providing tool support) is an expensive task.

The Eclipse Modeling Framework (EMF) is a domain-specific modeling tech-
nology, built on the Eclipse platform. A DSL development process with EMF
starts with the definition of a metamodel, from which several components of the
modeling tool can be automatically derived. The metamodel is defined in Ecore,
the metamodeling language of EMF [37].

86 J. Marton et al.

Language Workbenches. Model-driven language workbenches [13] support
the creation of domain-specific languages by providing high-level tools to cre-
ate parsers, editors and compilers. Xtext [14] is an EMF-based framework for
development of programming languages and DSLs. Xtend is a general-purpose
programming language (implemented with an Xtext-based parser), which is tran-
spiled to Java source code. Xcore [12] is an extended textual syntax for Ecore
and provides an Xtext-based language for defining EMF metamodels.

Model Transformations. Viatra [43] is an open-source Eclipse project writ-
ten in Java and Xtend [11]. Viatra builds on the Eclipse Modeling Framework
and provides the following main features:

– The Viatra Query Language, a declarative language for writing queries over
models, which are evaluated once or incrementally upon each model change.

– An internal domain-specific language over the Xtend language to specify both
batch and event-driven, reactive transformations.

– A rule-based design space exploration framework [17] to explore design can-
didates with transformation rules where the design candidates must satisfy
multiple criteria.

4 Overview of the Approach

The high-level workflow of our openCypher query engine is shown in Fig. 2. A
domain expert first formulates the query using the openCypher language, which
serves as the input for our engine. The query is then parsed and transformed into
the query syntax graph using the openCypher grammar (created by the Slizaa
project3). It is then compiled to our relational graph algebra model. This pro-
duces a canonical relational graph algebra representation to keep compiler code
simple. The relational graph algebra representation is modified by the relational
algebra optimizer. The resulting relational algebra model is then passed on to the
query execution engine.

openCypher
query

query
syntax
graph

query parser
Cypher to

relational algebra
compiler

relational
graph

algebra
model

relational
algebra

optimizer

query execution
engine query result

Fig. 2. Workflow of the query engine: compiler and execution engine.

3 https://github.com/slizaa/slizaa-opencypher-xtext, released under EPL v1.0.

https://github.com/slizaa/slizaa-opencypher-xtext

Model-Driven Engineering of an OpenCypher Engine 87

Relational Graph Algebra Metamodel. The metamodel of the relational
graph algebra operators introduced in Sect. 3.2 is shown in Fig. 3. An openCypher
query is represented by a rooted tree having nullary operators as its leaves and
unary or binary operators as its non-leaf nodes.

Fig. 3. Operator metamodel of the relational graph algebra.

Nullary operators. The GetVertices and GetEdges operators retrieve vertices and
edges of the graph, respectively. SingularObjectSource and DualObjectSource emit
the Singular and the Dual relation, respectively.

Unary operators. Projection and Selection work as given in Sect. 3.2. Exact
semantics of the other unary operators are given in [23]. DuplicateElimination,
Grouping, Sort and Top operators work like their corresponding SQL clauses.4
Expand is a graph-specific operation to traverse one or a sequence of edges from a
source to a given target vertex, while AllDifferent is specific to openCypher’s edge
uniqueness semantics. The Unwind operator is the inverse of the list-constructing
collect() aggregation function.

Binary operators. The Union operator creates the set or multiset union of its
inputs. Join, LeftOuterJoin and AntiJoin operators, based on the joinVariable list
declared in AbtractJoin creates the natural join, antijoin and left outer join oper-
ations on their inputs, respectively, as given in Sect. 3.2.

4 In the order of appearance: DISTINCT, GROUP BY, ORDER BY and SKIP ... LIMIT

88 J. Marton et al.

Relational Algebra Optimizer. The relational algebra optimizer has two main
tasks. It removes idempotent operations from the relational graph algebra model
and identifies combinations of operations that could be expressed using advanced
operations. The relational graph algebra model is also a graph, so both of these
tasks are graph manipulation tasks which we have implemented using graph
pattern matches using the Viatra model transformation framework (Sect. 3.3).

5 Elaboration

We have shown the overview of our approach in Sect. 4. In this section we present
our approach in detail, driven by examples of the MoDeS3 system (Sect. 2). We
focus on the relational algebra optimizer, and introduce the compiler to the
extent needed to put the optimizations in context.

5.1 Compilation of a Multipart Query

In openCypher, queries are composed as a sequence of query parts. Details are
given in [23], but essentially a query part contains clauses up to the next WITH
or RETURN clause and defines a result set of the attributes listed, which is then
fed into the next query part as its input. For example, the query in Listing 5.1 is
composed of two query parts: first query part spans lines 3–5 and feeds its result
set of the schema 〈s, countTrains〉 into the second query part listed in line 6.

Variable chaining refers to the fact that attributes of the resulting schema
are available in the subsequent query part, i.e. s and countTrains are available.

1 // identifies stations with at least two trains residing on its
2 // corresponding tracks
3 MATCH (s:Station)-[:INCL]->(:Element)<-[:ON]-(tr:Train)
4 WITH s, count(tr) AS countTrains
5 WHERE countTrains >= 2
6 RETURN s

Listing 5.1. Busy station.

Compilation of each query part starts from the Dual relation. Each pattern
given in a MATCH clause is then compiled and joined to the previous patterns: for
MATCH clauses we use the natural join operator and for OPTIONAL MATCH, we use
left outer join. Possible projection, grouping and duplicate-elimination operators
are appended above as required by the WITH or RETURN clauses.

Query parts are compiled one by one and combined together using the natural
join operator as follows. The natural join is injected into the compiled form of the
current query part just below the possible projection, grouping and duplicate-
elimination operators populating its right input with the descendants. Its left
input is the compiled form of the query parts processed so far.

Each query part that begins with a non-optional MATCH clause, like the first
query part in Listing 5.1 is joined with Dual . As the second query part has no

Model-Driven Engineering of an OpenCypher Engine 89

patterns, its inputs are the first query part’s result set and the Dual relation. The
raw compiled form of this query is shown in Fig. 4(a), which contains two joins
having Dual , its identity operand as one of its operands. Thus these natural join
operations along with Dual should be removed, which we implemented using a
Viatra graph transformation rule (see Sect. 5.4). Applying this transformation,
we get the simplified form shown in Fig. 4(b).

Fig. 4. Query plans for Busy station.

5.2 Compilation of Variable Length Path Patterns

The query in Listing 5.2 features a variable length path pattern stating that two
segments, seg1 and seg2 are connected through one to two edges of type NEXT.
A variable length path pattern is compiled to an expand-both operator given
in Sect. 3.2. The raw compiled form of this query is shown in Fig. 5(a), which
is simplified to Fig. 5(b) using the transformation rule described in Sect. 5.1 to
remove a join having Dual on one of its inputs.

90 J. Marton et al.

Fig. 5. Query plans for Close proximity.

1 // identify trains on consecutive segments with only a limited distance
2 // between each other
3 MATCH
4 (t1:Train)-[:ON]->(seg1:Element)-[:NEXT*1..2]-
5 (seg2:Element)<-[:ON]-(t2:Train)
6 RETURN t1, t2, seg1, seg2

Listing 5.2. Close proximity.

5.3 Identifying Antijoin Operators

The query in Listing 5.3 uses negative pattern match on line 4 to express that
track element re does not have a train on it. This is essentially an antijoin
operation. In order to keep compiler simple, the query is compiled in the raw
form to the left outer join of the two pattern matches and a negated selection
stating that edge and vertex variables of the pattern condition are all non-null
(�= ε). We highlighted the corresponding operator nodes with dotted lines in the
raw compiled form of this query, shown in Fig. 6(a). These are transformed by an
other Viatra rule to the antijoin operator, also highlighted using dotted lines
in Fig. 6(b).

Model-Driven Engineering of an OpenCypher Engine 91

1 // monitoring objective finds stations that have at least one free track
2 // available
3 MATCH (s:Station)-[:INCL]->(re:Element)
4 WHERE NOT (re)<-[:ON]-(:Train)
5 RETURN DISTINCT s

Listing 5.3. Station with free track.

The simplification of this query again shows the removal of an unused join (in
dashed lines). The dash-dotted box in Fig. 6(a) shows the all-different operator
which states that the listed edge variables match unique edges. This is specified
by openCypher’s edge uniqueness semantics. As a single edge is always unique,
we added another transformation rule to remove this operator from the tree.

Fig. 6. Query plans for Station with free track.

5.4 Formalisation as Graph Transformation Rules

Based on the previous examples, we introduce generic transformation rules for
query optimization.

Removing Unnecessary Joins. Figure 7 shows the transformation rule for
detecting and removing unnecessary join operators. It looks for natural join
operators that have a Dual operator on one of their inputs and another child

92 J. Marton et al.

Fig. 7. Transformation for removing unnecessary join operators.

operator on their other inputs. If a match is found, it is removed and the child
operator is connected directly to the parent operator of the removed join oper-
ator. There are no restrictions on the arity of the parent, i.e. it can be either a
unary operator or a binary operator.

1 pattern parentOperator(op : Operator, parentOp : Operator) {
2 UnaryOperator.input(parentOp, op);
3 } or {
4 BinaryOperator.leftInput(parentOp, op);
5 } or {
6 BinaryOperator.rightInput(parentOp, op);
7 }

Listing 5.4. Query for determining the parent of an operator.

To implement this rule in Viatra, we first define a rule that allows us to han-
dle the parent operator in a uniform way. The parentOperator pattern in Listing
5.4 returns the parent operator parentOp of operator op. The Xtend code for the
transformation rule, which replaces a given child operator currentOp of a certain
parent operator parentOp to a new operator newOp, is shown in Listing 5.5.

1 def changeChildOperator(Operator parentOp, Operator currentOp, Operator
newOp) {

2 switch parentOp {
3 UnaryOperator:
4 parentOp.input = newOp
5 BinaryOperator: {
6 if (parentOp.getLeftInput.equals(currentOp))
7 parentOp.leftInput = newOp
8 if (parentOp.getRightInput.equals(currentOp))
9 parentOp.rightInput = newOp

10 }
11 }
12 }

Listing 5.5. Change child operator.

Model-Driven Engineering of an OpenCypher Engine 93

1 pattern unnecessaryJoin(childOp: Operator, joinOp: JoinOperator, parentOp:
Operator) {

2 find parentOperator(joinOp, parentOp);
3 DualObjectSourceOperator(dualOp);
4 JoinOperator.leftInput(joinOp, dualOp);
5 JoinOperator.rightInput(joinOp, childOp);
6 } or {
7 find parentOperator(joinOp, parentOp);
8 DualObjectSourceOperator(dualOp);
9 JoinOperator.leftInput(joinOp, childOp);

10 JoinOperator.rightInput(joinOp, dualOp);
11 }

Listing 5.6. Determine unnecessary joins. The parentOperator pattern is defined in
Listing 5.4.

1 def removeUnnecessaryJoinOperator() {
2 createRule()
3 .precondition(UnnecessaryJoinMatcher.querySpecification)
4 .action [
5 changeChildOperator(parentOp, joinOp, otherInputOp)
6].build
7 }

Listing 5.7. Rule for removing unnecessary joins.

The unnecessaryJoin pattern in Listing 5.6 uses the parentOperator rule to
find the parent operator of a certain join operator, checks whether there is a
DualObjectSource operator on either the left or the right input of the join oper-
ator. The Viatra transformation rule for removing unnecessary joins is shown
in Listing 5.7.

Fig. 8. Transformation for introducing antijoin operators.

94 J. Marton et al.

Introducing Antijoins. In order to evaluate negative conditions efficiently, the
optimizer tries to introduce antijoin operators where possible. Figure 8 shows
the transformation rule for detecting antijoins. The rule looks for left outer join
operators that:

– have a selection operator as their parent, which defines a condition that is
satisfied iff ¬ (v1 �= ε ∧ . . . ∧ vn �= ε) and

– v1, . . . , vn are the variables of the right input of the left outer join operator
(see Sect. 5.3).

If there is a match, the left outer join operator is replaced by a single antijoin
operator (shown in dotted lines) and the selection operator is removed.

6 Related Work

6.1 Graph Query Languages

As graph queries are increasingly used in industry, graph query languages are
available across different technological spaces. Here, we discuss related query
languages and compilers.

Property Graphs. The Cypher language was originally designed as the pri-
mary query language of the Neo4j graph database system [24,29]. The grammar
specification and the language behaviour of openCypher was defined to match
those of Neo4j. Consequently, the compiler and query engine of Neo4j form
the most complete openCypher implementation available, and is dual licensed
(GPLv3/AGPLv3 for compatible projects and custom licensing for commercial
applications).

The authors of [18] studied the Cypher query language and defined graph-
specific relational algebra operators, such as get-vertices and expand-out
(Sect. 3.2). While their work focused on optimisation, our work aims to provide a
mapping and compilation steps for transforming openCypher to relational graph
algebra.

In [19], graph queries were defined in a Cypher-like language and evaluated
in the Apache Flink-based Gradoop framework. However, formalisation and
compilation of the queries was not discussed in detail.

TinkerPop. The TinkerPop framework aims to define a standard data model
for property graphs. For graph queries, it provides the Gremlin Structure API, a
low-level programming interface and the Gremlin language, a high-level imper-
ative graph traversal language [31]. The latter is implemented as a Groovy
DSL [20].

Model-Driven Engineering of an OpenCypher Engine 95

EMF. Eclipse Modeling Framework (Sect. 3.3) is an object-oriented modelling
framework widely used in model-driven engineering. Henshin [3] provides a visual
language for defining patterns, while Epsilon [21] and Viatra Query [5] provide
high-level declarative (textual) query languages, the Epsilon Pattern Language
and the Viatra Query Language (Sect. 3.3), respectively. Viatra Query sup-
ports both incremental and search-based queries [9].

RDF. Widely used in semantic technologies, SPARQL is a standardised declar-
ative graph pattern language for querying RDF [47] graphs. SPARQL bears close
similarity to Cypher queries, but targets a different data model and requires users
to specify the query as triples instead of graph vertices/edges. A formal definition
of the language is given in [28]. Apache Jena ARQ [2] and Eclipse RDF4J [10]
are open-source compilers and query engines for the SPARQL language.

Comparing Graph Query Engines. The Train Benchmark is a framework
for comparing graph query frameworks across different technological spaces, such
as property graphs, EMF, RDF and SQL [39].

6.2 Query Compilation in Graph Transformation Systems

The authors of [8] adapted the Rete algorithm originally developed in the domain
of production rule systems for pattern matching in a GT engine. The presented
solution supported a simple core graph pattern language.

The Fujaba [26] graph transformation tool fixes a single, breadth-first traver-
sal strategy at compile-time, using simple heuristics, e.g. that navigation along
an edge with an at most one multiplicity constraint precedes navigations along
edges with arbitrary multiplicity. PROGRES [34] uses a sophisticated cost model
for basic operations and generates the search plan at compile-time by a greedy
algorithm.

An algorithm to produce a high-quality (e.g. compact) Rete network from a
pattern specification was proposed in [44]. Paper [45] presented an algorithm to
define efficient search plans on EMF models. These approaches are used in the
eMoflon system [22]. The approach of [46] uses both metamodel- and instance
model-level information to adaptively optimize graph queries based on statistical
data collected from the current instance model. GrGen.NET provides a dynamic,
runtime optimization engine, which uses a mix of heuristical and cost-based
techniques [16].

The first Viatra prototype, which was capable of generating Prolog code
from metamodels and model transformations defined in XMI (XML Metadata
Interchange) format, was presented in [42].

The IncQuery-D [38] system is an incremental graph query engine, built
on top of the components of the Viatra Query framework [43] (later known
as EMF-IncQuery [41]). IncQuery-D reused the query parser and compiler
of EMF-IncQuery, but used a different query engine, tailored for scalable
distributed query evaluation and operating on RDF data sets.

96 J. Marton et al.

7 Conclusion and Future Work

In this paper, we presented an approach to design and implement a query engine
for the openCypher graph query language. We implemented this approach based
on a language workbench built on EMF-based technologies, such as Xcore, Xtext,
Xtend and Viatra. The resulting prototype is part of the ingraph project, an
openCypher-compatible incremental graph query engine.

In the future, we plan to enhance a query optimizer. A possible approach
is to use search-based optimization techniques using model transformations, also
known as planning by rewriting [1]. As our solution already utilizes the Via-
tra query engine, the optimizer can be based on the Viatra-DSE design-space
exploration framework [17] without a significant integration overhead. Another
feasible approach is to use Catalyst, a state-of-the-art extensible optimizer frame-
work developed as part of the Apache Spark SQL project [4].

Acknowledgements. The second and third authors of this work were partially sup-
ported by the MTA-BME Lendület Research Group on Cyber-Physical Systems. We
would like to thank János Maginecz and Dávid Szakállas for their contributions to
the relational graph algebra model. We are also grateful to András Vörös and Gábor
Bergmann for their suggestions and comments on the draft of this paper.

References

1. Ambite, J.L., Knoblock, C.A.: Planning by rewriting. J. Artif. Intell. Res. 15,
207–261 (2001)

2. Apache Software Foundation. Apache Jena. https://jena.apache.org/
3. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced

concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2_9

4. Armbrust, M., et al.: Spark SQL: relational data processing in Spark. In: SIGMOD,
pp. 1383–1394 (2015)

5. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,
A.: Incremental evaluation of model queries over EMF models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 76–90.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2_6

6. Bryla, B., Loney, K.: Oracle Database 12C The Complete Reference, 1st edn.
McGraw-Hill Osborne Media, USA (2013)

7. Budapest University of Technology and Economics, Department of Measurement
and Information Systems. Model-based Demonstrator for Smart and Safe Systems
(2015). https://modes3.inf.mit.bme.hu/

8. Bunke, H., Glauser, T., Tran, T.-H.: An efficient implementation of graph gram-
mars based on the RETE matching algorithm. In: Ehrig, H., Kreowski, H.-
J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 174–189.
Springer, Heidelberg (1991). doi:10.1007/BFb0017389

9. Búr, M., Ujhelyi, Z., Horváth, Á., Varró, D.: Local search-based pattern match-
ing features in EMF-IncQuery. In: Parisi-Presicce, F., Westfechtel, B. (eds.)
ICGT 2015. LNCS, vol. 9151, pp. 275–282. Springer, Cham (2015). doi:10.1007/
978-3-319-21145-9_18

https://jena.apache.org/
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-642-16145-2_6
https://modes3.inf.mit.bme.hu/
http://dx.doi.org/10.1007/BFb0017389
http://dx.doi.org/10.1007/978-3-319-21145-9_18
http://dx.doi.org/10.1007/978-3-319-21145-9_18

Model-Driven Engineering of an OpenCypher Engine 97

10. Eclipse Foundation. RDF4J. http://rdf4j.org/
11. Eclipse Foundation. Xtend - Modernized Java. https://www.eclipse.org/xtend/
12. Eclipse Foundation. Xcore (2017). http://wiki.eclipse.org/Xcore
13. Erdweg, S., et al.: The state of the art in language workbenches - conclusions

from the language workbench challenge. In: Erwig, M., Paige, R.F., Wyk, E. (eds.)
SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer, Cham (2013). doi:10.1007/
978-3-319-02654-1_11

14. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: SIGPLAN, SPLASH/OOPSLA, pp. 307–309 (2010)

15. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems - The Complete
Book, 2nd edn. Pearson Education, London (2009)

16. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast SPO-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006). doi:10.1007/11841883_27

17. Hegedüs, Á., Horváth, Á., Varró, D.: A model-driven framework for guided design
space exploration. Autom. Softw. Eng. 22(3), 399–436 (2015)

18. Hölsch, J., Grossniklaus, M.: An algebra and equivalences to transform graph pat-
terns in Neo4j. In: GraphQ at EDBT/ICDT (2016)

19. Junghanns, M., et al.: Cypher-based graph pattern matching in Gradoop. In:
GRADES at SIGMOD (2017)

20. Koenig, D., Glover, A., King, P., Laforge, G., Skeet, J.: Groovy in Action. Manning
Publications Co., Greenwich (2007)

21. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69927-9_4

22. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Ruscio,
D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer, Cham
(2014). doi:10.1007/978-3-319-08789-4_10

23. Marton, J., Szárnyas, G., Varró, D.: Formalising openCypher graph queries in
relational algebra. In: Martite, K., Kjetil, N., George, A.P. (eds.) Advances in
Databases and Information Systems: 21st European Conference on Advances
in Databases and Information Systems. Conference location and date: Nicosia,
Ciprus, 2017-09-24-2017-09-27. LNCS. Springer (2017). http://dx.doi.org/10.1007/
978-3-319-66917-5_13. ISBN: 978-3-319-66916-8

24. Neo Technology. Neo4j. http://neo4j.org/
25. Neo Technology. openCypher project (2017). http://www.opencypher.org/
26. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: ICSE, pp. 742–

745. ACM (2000)
27. OrientDB LTD. OrientDB graph-document NoSQL DBMS. http://www.orientdb.

org/
28. Pérez, J., et al.: Semantics and complexity of SPARQL. ACM TODS 34(3), 16

(2009)
29. Robinson, I., Webber, J., Eifrém, E.: Graph Databases, 2nd edn. O’Reilly Media,

Sebastopol (2015)
30. Rodriguez, M.A.: A collectively generated model of the world. In: Collective Intel-

ligence: Creating a Prosperous World at Peace, pp. 261–264 (2008)
31. Rodriguez, M.A.: The Gremlin graph traversal machine and language (invited

talk). In: DBPL, pp. 1–10 (2015)
32. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc.

Inform. Sci. Technol. 36(6), 35–41 (2010)

http://rdf4j.org/
https://www.eclipse.org/xtend/
http://wiki.eclipse.org/Xcore
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/11841883_27
http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-319-08789-4_10
http://dx.doi.org/10.1007/978-3-319-66917-5_13
http://dx.doi.org/10.1007/978-3-319-66917-5_13
http://neo4j.org/
http://www.opencypher.org/
http://www.orientdb.org/
http://www.orientdb.org/

98 J. Marton et al.

33. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. In: Graph Data Man-
agement: Techniques and Applications, pp. 29–46 (2011)

34. Schürr, A., et al.: Handbook of graph grammars and computing by graph trans-
formation, pp. 487–550. World Scientific Publishing Co., Inc. (1999)

35. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 5th edn.
McGraw-Hill Book Company, Boston (2005)

36. Sparsity-technologies. Sparksee high-performance graph database. http://www.
sparsity-technologies.com/

37. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Amsterdam (2009)

38. Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., Varró, D.: IncQuery-
D: a distributed incremental model query framework in the cloud. In: Dingel, J.,
Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol.
8767, pp. 653–669. Springer, Cham (2014). doi:10.1007/978-3-319-11653-2_40

39. Szárnyas, G., et al.: The Train Benchmark: Cross-technology performance eval-
uation of continuous model validation. Softw. Syst. Model. (2017). https://link.
springer.com/article/10.1007/s10270-016-0571-8

40. ThinkAurelius. Titan. https://github.com/thinkaurelius/titan
41. Ujhelyi, Z., et al.: EMF-IncQuery: an integrated development environment for live

model queries. Sci. Comput. Program. 98, 80–99 (2015)
42. Varró, D.: Automated program generation for and by model transformation sys-

tems. In: AGT, pp. 161–174 (2002)
43. Varró, D., et al.: Road to a reactive and incremental model transformation plat-

form: three generations of the VIATRA framework. Softw. Syst. Model. 15(3),
609–629 (2016)

44. Varró, G., Deckwerth, F.: A rete network construction algorithm for incremental
pattern matching. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909,
pp. 125–140. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38883-5_13

45. Varró, G., et al.: An algorithm for generating model-sensitive search plans for
pattern matching on EMF models. Softw. Syst. Model. 14(2), 597–621 (2015)

46. Varró, G., Friedl, K., Varró, D.: Adaptive graph pattern matching for model trans-
formations using model-sensitive search plans. Electron. Notes Theor. Comput.
Sci. 152, 191–205 (2006)

47. W3C. Resource Description Framework (2014). https://www.w3.org/RDF/

http://www.sparsity-technologies.com/
http://www.sparsity-technologies.com/
http://dx.doi.org/10.1007/978-3-319-11653-2_40
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10270-016-0571-8
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10270-016-0571-8
https://github.com/thinkaurelius/titan
http://dx.doi.org/10.1007/978-3-642-38883-5_13
https://www.w3.org/RDF/

A Model-Driven Process Enactment Approach
for Network Service Design

Sadaf Mustafiz1, Navid Nazarzadeoghaz1, Guillaume Dupont1,
Ferhat Khendek1(B), and Maria Toeroe2

1 ECE, Concordia University, Montreal, Canada
{sadaf.mustafiz,ferhat.khendek}@concordia.ca,

{n nazarz,gdupont}@encs.concordia.ca
2 Ericsson Inc., Montreal, Canada

maria.toeroe@ericsson.com

Abstract. The development of the Network Functions Virtualisation
(NFV) paradigm has made way for the rapid deployment and manage-
ment of network services. The European Telecommunications Standards
Institute (ETSI) has been actively defining the NFV framework, which
includes functional blocks and artifacts at different levels of abstraction.
As part of the artifacts, various deployment templates have been defined
to drive the deployment and the management of network services (NS)
and Virtual Networks Functions (VNFs). The design of an NS is a com-
plex activity that aims at selecting appropriate VNFs, creating the VNF
forwarding graph (VNFFG), and all the necessary templates for the NS
deployment and management, on the basis of the tenant’s requirements
and existing VNFs. Automating the NS design activity as well as the
NS management process itself is highly desirable and beneficial for NFV
systems. Continuous deployment for NFV with model-driven orchestra-
tion means has been recently advocated.

In this paper, we propose a model-driven process for the design of net-
work services which covers the automatic generation of the NS deploy-
ment template and the associated templates. The core of the process
involves the decomposition of the NS requirements with the help of an
ontology, and the selection of proper network functions based on a cat-
alogue of existing VNFs. Moreover, we provide support for automated
process execution with a model-driven process enactment approach. The
process is modelled as a UML activity diagram. All the artifacts are
models of defined metamodels. Enactment of the NS design process is
carried out by mapping the process model to a model transformation
chain, and executing the chain.

1 Introduction

Network Functions Virtualisation (NFV) is an emerging paradigm that builds on
cloud computing and the virtualisation technology to eliminate the drawbacks
of traditional physical network infrastructure and enables rapid provisioning of
network services (NSs) [11,18]. The use of NFV reduces capital and operating
c© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 99–118, 2017.
DOI: 10.1007/978-3-319-68015-6 7

100 S. Mustafiz et al.

expenses, since it does not require a wide range of network equipments to be
deployed. The physical devices are remodelled into virtual entities implemented
as software packages, referred to as Virtual Network Functions (VNFs) [18].

The NFV reference architectural framework standardized by ETSI [18] and
adopted by TOSCA [29], defines various functional blocks playing different roles
in the different phases of NS and VNF lifecycle management, from on-boarding
to deployment and management. The ETSI standard specifies the NFV refer-
ence framework, its functional blocks, their roles, their interfaces, and some NS
and VNF-related operational flows [17–19]. An NS and VNF deployment and
management process is implied from these, however the workflow as such is not
defined. Previously, we have proposed a model-based process for network service
design and deployment [28]. The proposed workflow is compliant with the NFV
reference framework. We had also proposed the network service design activity
(which is outside the scope of the standard) as part of the process. NS design
entails the generation of new NS deployment templates, namely NS Descrip-
tors (NSD [17]), based on the tenant’s NS requirements and the provider’s VNF
catalogue [19]. Network service requirements (NSReq) consist of functional and
non-functional characteristics of a service requested by a tenant. Examples of
NSs being requested include VoLTE or VoIP, for instance, with some specific
non-functional characteristics.

This workflow is a first step towards the necessary automation of the NS
design and deployment process for NFV systems. Automating NS management,
in other words, automating the execution of the workflow or process for NS man-
agement without manual intervention is highly desirable in the NFV domain and
remains a major challenge [10,27]. The application of model-driven engineering
(MDE) methods and tools is essential to further such developments in the NFV
domain [6]. MDE advocates the use of models as first class citizens in the engi-
neering process. The models are manipulated with model transformations which
form the backbone for automation in MDE. ETSI has recently released an infor-
mation model for NFV [21]. Leveraging these models can substantially benefit
the NFV systems by reducing their development and management efforts. More-
over, explicit modelling of the process not only allows the automation of the NS
management process but also paves the way for streamlining or optimizing the
process to ultimately speed up deployment time. Such a process model (PM)
can potentially be mapped to model transformation chains hence enabling NS
management and orchestration via model-driven process enactment [5,15,34].

We propose an approach for model-driven enactment of the NS design,
deployment and management process. In this paper, we focus on applying our
approach to the NS design activity only. We model the internal behavior of the
NS design activity by outlining a set of actions that need to be taken to come
up with a deployment template for network services (NSD). The enactment of
the NS design process allows for automatic generation of the NSD. We adapt
the Papyrus [14] environment to provide tool support for process enactment.

This paper is structured as follows: Sect. 2 gives a brief background on the
NFV reference framework and the NFV artifacts. Section 3 proposes a process

A Model-Driven Process Enactment Approach for Network Service Design 101

model for NS design. Section 4 presents our enactment approach. In Sect. 5, we
review the related work. Finally, Sect. 6 concludes with some future work.

2 Background

This section provides a brief introduction to network services and some of the
artifacts and functional blocks in the NFV reference architecture as proposed in
the ETSI standard [16–18].

As stated in [17], a network service (NS) is a composition of network func-
tions (NF) arranged as a set of functions with unspecified connectivity between
them or according to one or more forwarding graphs. ETSI defines the NF for-
warding graph as a graph of logical links connecting NF nodes for the purpose of
describing traffic flow between these network functions [16]. It is essentially the
end-to-end sequence of NFs that packets traverse. Virtualised Network Functions
(VNFs) are the building blocks of an NS in NFV. VNFs are software pieces which
may have the same functionality as their corresponding physical network func-
tions, e.g., a virtual firewall (vFW) vs. a traditional firewall device. A VNF can
be composed of multiple internal components (VNFC). The description of the
deployment behaviour along with the non-functional characteristics of a VNFC
is defined as a Virtual Deployment Unit (VDU) [16]. Virtual links (VLs) are used
to connect VNFs to form a network topology. These are referred to as external
VLs, whereas internal VLs are the links which connect VNFCs within a VNF. A
Connection Point (CP) is the port that an NF exposes to connect to another NF
component via VLs (similar to the ports in a physical network module, such as a
switch). The connection point for an NS to link to the environment is defined as
a Service Access Point (SAP), every VNF Forwarding Graph (VNFFG) is asso-
ciated with one or more pool(s) of connection points (CpPool). The sequence
of connection points inside a VNFFG is referred to as the Network Forwarding
Path (NFP) which is required when different traffic flows exist.

During the lifetime of an NS, various artifacts at various levels of abstrac-
tions are used and produced. The deployment templates, referred to as descrip-
tors, describe the deployment requirements, operational behaviour, and policies
required by the NSs or VNFs. ETSI defines the Network Service Descriptor
(NSD) as a deployment template which consists of information used by the NFV
Orchestrator (NFVO) for lifecycle management of an NS [17]. Descriptors also
exist for VNFs (VNFD) VLs (VLD), and VNFFGs (VNFFGD) among others.
The constituent elements of an NSD are shown are Fig. 1.

Catalogues are defined in the NFV architecture which are part of the NFV
data repositories. The NS Catalogue contains all the on-boarded NSDs, VNF-
FGDs, and VLDs. The VNF Catalogue contains all the on-boarded VNFDs.

Nested NS and Physical Network Functions (PNF) are outside the scope of
this paper. In our process, the artifacts are all considered to be models (instances
which conform to existing meta-models).

The main functional module in the architecture is the NFV Management and
Orchestration (NFV-MANO), which is in charge of deployment, management,

102 S. Mustafiz et al.

Fig. 1. NSD Overview (from ETSI NFV IFA014 [17])

and orchestration of NSs. The NS orchestration and lifecycle management which
include onboarding and instantiation of NS is taken care of by the NFV Orches-
trator (NFVO). NFV-MANO also includes managers which are responsible for
the VNFs and the infrastructure, namely VNFM and VIM. Operations Support
Systems and Business Support Systems (OSS/BSS) refer to the operator’s pro-
prietary systems and management applications supporting their business. The
OSS/BSS systems exchange a lot of information with NFV-MANO functional
blocks to provide the desired network service. For details on all the functional
blocks in the NFV framework, the reader can refer to [18].

3 Network Service Design

The NS design entails the definition of deployment templates (namely NSD,
VNFFGD, and VLD). These descriptors include static information elements
related to an NS. The NSD is used by the orchestrator as a template for instan-
tiating the NS.

We propose a method for NS design by taking inspiration from [1]. A ten-
ant may request a new NS by specifying the NS Requirements (NSReq), which
consist of functional and non-functional requirements possibly with some ini-
tial decomposition targeting specific functions. There is a big gap between the
information provided by the tenant and the network service to be deployed. The
tenant has limited knowledge regarding the details of this target network service,
and hence this gap needs to be filled. The knowledge to help in filling this gap
comes from the various architectures and standards existing in the telecommu-
nications and network service domain. It is essential for this knowledge to be
captured and retained for use later when a new network service is required. In
our approach, we propose to define and retain this knowledge in a Network Func-
tion Ontology (NF Ontology). With each new NS design, information about new
architectures and functionalities is gained and this is used to enrich the ontology.

A Model-Driven Process Enactment Approach for Network Service Design 103

NFOntology captures standard network function (de)compositions as defined by
different standardisation bodies such as 3GPP as well as knowledge and experi-
ence from previous decompositions, architectures and network service designers.

In our work, we assume that the OSS/BSS of an NFV provider gets the
NSReq and generates the NSD based on the provider’s VNF Catalogue. The
NS design method involves the decomposition of the NSReq and the selection of
proper network functions, e.g., VNFs (and/or PNFs) from the VNF Catalogue.
The NSReq decomposition is guided by a NFOntology. The NFOntology cap-
tures the decomposition of network functionalities to some level of granularity
where each functionality can be mapped onto some VNF provided functionality.
When the decomposition reaches that level, VNFs from the VNF Catalogue are
matched and selected to compose the network service. During this activity, the
VNF forwarding graph descriptor (VNFFGD) and the virtual link descriptors
(VLD) are also generated. The design phase also takes into account the non-
functional requirements and refines the NSD accordingly by adding deployment
flavours and associating VNF profiles to the NS. It should be noted that our NS
design method does not address the concept of nested NS as yet.

3.1 NS Design Languages

As part of our process, we propose languages for modelling the NSReq and
the NFOntology which are required inputs for the process. We also define a
VNF Catalogue metamodel for modelling a catalogue containing VNF packages
(defined by ETSI in [21]).

NSReq and NFOntology. We have defined an abstract syntax as well as a
concrete syntax for the NSReq and NFOntology languages.

The NSReq contains the hierarchy of requirements for a network service
according to the needs of the tenant. The metamodel of the NSReq lan-
guage is shown in Fig. 2. As shown in the figure, an NSReq consists of
the main functional requirement which is the highest level functionality of
the network service. Each functional requirement (identified with an unique
name in FunctionalRequirement) can be decomposed into lower-level func-
tional requirements, and this builds a hierarchy of NS requirements. A func-
tional requirement can be associated with various non-functional requirements
(Non-FunctionalRequirement), such as availability, reliability, and throughput.

The proposed NFOntology language for NFV is an extended variant of a fea-
ture diagram [24]. The metamodel is shown in Fig. 3. The ontology language has
two main components: Functionalities and Architectural Blocks. The Function-
ality part of the Ontology is modelled as a variant of a feature diagram. The
ArchitecturalBlock part has specific syntax and semantics in addition. Essen-
tially, the NFOntology is a hierarchy of (unique) functionalities in the network
service domain where a functionality can have zero to many decompositions.
As in feature diagrams, decomposition relationships between a functionality and
lower-level functionalities can be categorized as: mandatory, optional, alterna-
tive, and OR. A functionality can be dependent on another functionality.

104 S. Mustafiz et al.

Fig. 2. NS requirements metamodel

Fig. 3. Network function ontology metamodel

The architecture defines possible ways of realizing the functionalities with
established architectures for network services. The architectural blocks in the
ontology are unique blocks detailing specific architectural designs with well-
defined interfaces and protocols. Dependency relationships may exist between
architectural blocks. On the basis of the functionality and the architectural
blocks, a good decomposition of the network service requirements can be
achieved. For example, VoIP service is an essential NS nowadays. While cap-
turing the details required to create such a service can be quite difficult, having
such architectures like IMS (IP Multimedia Subsystem) to cover most of the
requirements for providing VoIP can be very helpful. IMS has a well known archi-
tecture and well known functional components. There is a high possibility of find-
ing VNFs which have been developed for implementing such architectures. IMS

A Model-Driven Process Enactment Approach for Network Service Design 105

blocks include components such as P/S/I-CSCF, HSS, AS. Adding them to the
ontology allows new NS designs (e.g., VoIP service) to reuse these components.

VNFD and NSD (Part of the ETSI Defined Information Model). The
VNFCatalogue includes Onboarded VNF Packages (OnboardedVngPkgInfo as
defined in [21]) which includes references to VNF deployment templates (VNFD).
The metamodel is trivial and is not shown here for space reasons. The VNFD
and NSD metamodels, as well as the metamodels of the other descriptors (VLD,
VNFFGD, SAPD), are defined by ETSI and are available in [21]. For clarity,
simplified VNFD and NSD metamodels are shown in Figs. 4 and 5 which present
the main elements in the descriptors.

3.2 NS Design Process

The high-level NS design and deployment Process Model (PM) was presented in
[28], in which the NS design was shown as a black-box activity. In this paper, we
refine the process and model its behaviour with a UML 2.0 Activity Diagram.
The NS Design PM is shown in Fig. 6.

During the process, we make use of an intermediate model, namely
SolutionMap which conforms to the SolutionMap metamodel (not shown here

Fig. 4. Simplified VNFD metamodel (adapted from ETSI NFV IFA015 [21])

Fig. 5. Simplified NSD metamodel (adapted from ETSI NFV IFA015 [21])

106 S. Mustafiz et al.

Fig. 6. NS design process model (PM)

due to space constraints). This is a combination of the NSReq, NFOntology, and
VNFD metamodels.

The actions which are part of the NS Design PM are outlined here.

– Create Solution Map. This action takes as input an NSReq model (see
Fig. 7) and initializes the SolutionMap with the content of the source model.
The SolutionMap is an intermediate artifact created to aid in the NSD gen-
eration process.

– Map Ontology. This action takes as input the SolutionMap model created
in the first step and an existing NFOntology model (see Fig. 8). For each func-
tionality in the SolutionMap, the ontology is traversed to find any existing

A Model-Driven Process Enactment Approach for Network Service Design 107

Fig. 7. NSReq model

Fig. 8. NFOntology model

knowledge about its composition and dependencies. When a match is found
in the ontology, all the details not available in the SolutionMap are added,
including the architectural blocks and their dependencies. Unmatched func-
tionalities, architectural blocks, and dependency relationships are tagged in
the SolutionMap, and may be used to enrich the ontology later.

– Select VNF and Generate FG. This action takes as input the refined
SolutionMap and the VNFCatalogue (see Fig. 9). With the SolutionMap as
a guide, a proper set of VNFs is selected for creating the NS. The functional-
ities of the VNFs found in the catalogue are matched with the architectural
blocks and the functionalities in the SolutionMap. The VNFD (see Fig. 10)
of each of the selected VNFs are added to the SolutionMap. Next, the proper
combination of a set of functionalities is derived, leading to the combination
of a set of architectural blocks, and ultimately to the combination of a set of
VNFs which fulfill the NS requirements. For this purpose, an initial forward-
ing graph (FG) is created which contains the VNFDs, their sequence, and the
details of the interfaces and service access points (SAP). This FG contains
only dependencies but no real virtual links. The created FG becomes part of
the refined SolutionMap.

108 S. Mustafiz et al.

Fig. 9. Part of VNFCatalogue model

– Create NSD. In this action, an NSD model is created and initialized based
on the SolutionMap. VNFDs associated with the VNFs part of the FG are
added to the NSD. The Virtual Link (VL) and Service Access Point (SAP)
descriptors are created from the FG. Pre-defined types (MESH, TREE, LINE)
are used to define a VL type. Finally, the VNFFG deployment template
(VNFFGD) is created which includes the Connection Point(CP) pool(s) and
the Network Forwarding Path(s) (NFP). Till this point, only the functional
aspects of the requirements have been mapped to the NSD.

– Refine NSD. This action involves addressing the non-functional require-
ments in the NSReq and adding to the NSD the relevant details, such as the
deployment flavours and the VNF Profiles. The non-functional requirements
are available in the SolutionMap and so it is used as input here. The other
input is the VNFDs for the VNFs selected from the VNFCatalogue earlier in
the process (see Fig. 10). NS-specific VNF Profiles are defined for the VNFDs
at this stage. This step completes the NSD generation process. This NSD (see
Fig. 11) then can be sent to the NFVO for onboarding.

– Update Ontology. Once an NSD has been successfully generated, the ontol-
ogy is enriched if applicable. If the NSReq includes functionalities and/or their
decompositions which do not exist in the ontology yet, i.e. those that were
marked as unmatched, these elements are added to the NFOntology as new
functionalities based on the SolutionMap.

– Set Thresholds. This action involves creating initial threshold mod-
els, NSCapacityThreshold and NSPerformanceThreshold, based on the
SolutionMap to define the capacity and performance related thresholds of
an NS.

Each action in the PM is mapped to a model transformation written in the
ATL transformation language.

A Model-Driven Process Enactment Approach for Network Service Design 109

Fig. 10. VNFD model of a firewall

Fig. 11. Generated NSD model

4 Process Enactment

In this section, we present our approach for model-driven enactment of the NS
design process. Our goal is to provide tool support for process execution by
integrating enactment means with the Papyrus Activity Diagram environment
leading to an integrated environment for process modelling and enactment.

4.1 Enactment Approach

In our approach, process enactment is carried out with the use of transforma-
tion chain orchestration in combination with model management means. Trans-
formation chaining is the preferred technique for modelling the orchestration
of different model transformations [8]. Orchestration languages are used for the
composition of the transformations in order to model the chain as sequential
steps of transformations. Complex chains can incorporate conditional branches

110 S. Mustafiz et al.

and loops, and also can model composite chains (a chain including other trans-
formation chains).

Model management approaches typically use megamodels which provide
structures to avoid the so-called ‘meta-muddle’ [7]. A megamodel contains arti-
facts (which are models), relations between them (which may be transforma-
tions), and other relevant metadata. A megamodel can be seen as a map to find
and link together all involved models. A megamodel forms a repository of models
and transformations (and even tools). It can be used to enforce conformance and
compatibility checks between the various models and transformations. It is also
useful for reusing and composing transformations in transformation chains. The
input and output models which are part of the PM are typed by metamodels
residing in the megamodel. The transformation models that are associated with
the actions in the PM are also known in the megamodel. In case of a transforma-
tion chain with a heterogeneous set of transformations, the megamodel helps in
determining which transformation engine to use for the execution of the trans-
formation. Figure 12 shows the visual representation of a simplified NS design
megamodel (MgM).

We present here the approach we follow for process enactment to automati-
cally execute the NS design process. We begin by mapping the Process Model (in
essence a subset of the UML 2.0 Activity Diagram) to a model transformation
chain. The transformation chain is generated using a higher order transforma-
tion [36] in a manner similar to [26]. An initial megamodel is automatically
derived from the PM and then refined with further details if required. Orches-
tration of the transformation chain is carried out with the use of an orchestration
engine. The workflow execution engine executes the chain of model transforma-
tions to generate the artifacts (the target models). The enactment approach is
outlined in Fig. 13. We intend to apply the method to ultimately orchestrate the
NS Management process presented in [28].

Fig. 12. NS design megamodel

A Model-Driven Process Enactment Approach for Network Service Design 111

Fig. 13. Process enactment approach

4.2 Tool Support in Papyrus

We use Papyrus for both process modelling and enactment. Papyrus is NFV’s
tool of choice. The NFV information model [21] released uses Papyrus as the
modelling tool. We have extended the activity diagram environment in Papyrus
to incorporate enactment means. The activity diagram contextual menu was
adapted to include the Enactment option as shown in Fig. 14. The user has the
option of choosing the transformation chain to execute (via run configurations)
or the default chain gets executed.

The execution is carried out in the backend with a workflow execution engine.
We use MoDISCO [9] for orchestrating the transformation chain. MoDISCO is a
framework for model-driven reverse engineering which supports transformation

Fig. 14. Papyrus process enactment environment

112 S. Mustafiz et al.

chain execution along with automated discovery of artifacts. The MgM is cre-
ated based on the Papyrus Activity Diagram. The launch configurations for the
orchestration need to be defined prior to the execution. These can be generated
from the information available in the PM and the MgM. Currently, the workflow
is an ATL transformation chain. However with the use of the MgM, it will be
possible to support execution of a chain of transformations in different languages.
This is work in progress at the moment.

The NS Design PM (see Fig. 6) is mapped to a chain of ATL transformations
(see in Fig. 15). In the NS design case, all underlying transformations have been
modelled with the ATL transformation language. The MoDisco workflow for the
NS design is shown in Fig. 16. It should be noted that the chain and the megamodel
does not include the transformation for initializing the threshold models (Set
Threshold action in PM), which is currently work in progress.

Fig. 15. NS design transformation chain

The process takes as input the NSReq (Fig. 7), NFOntology (Fig. 8), and the
VNFCatalogue (Fig. 9). One of the VNFD models which is part of the input cat-
alogue is shown in Fig. 10. The execution of the workflow generates the corre-
sponding NSD (NS Descriptor) and updates the NFOntology model. For space
reasons, we only show the NSD model here (see Fig. 11). Papyrus requires all
metamodels to be mapped to Profiles to allow model instances to be created
and to be used as source or target models of the ATL transformations. As per
the NFV modelling guidelines, our models also comply with the Papyrus Open-
ModelProfile [20].

A Model-Driven Process Enactment Approach for Network Service Design 113

Fig. 16. NS design chain in MoDisco

5 Related Work

5.1 NS Design

While there exists work in the literature on service composition and decomposi-
tions, the notion of decomposing network service requirements for NFV systems
has not been proposed to the best of our knowledge. We discuss here some
related work on requirements and service (de)composition. Czarnecki et al. [13]
presents an approach for carrying out staged configuration using specialization
and multi-level configurations of cardinality-based feature models. At an abstract
level, this is similar in concept to our NS requirements decomposition method.
However, their work is applicable for feature models only and the decomposition
technique is not automated. Web service composition is an area where extensive
work has been done on decompositions of goals and functionalities [12,32,33].
These approaches however mostly deploy formal methods and are not model-
driven in nature like our work.

Lin et al. [25] propose using an ontology as part of a requirements manage-
ment process to capture design knowledge to help in concurrent engineering.
Bartsch et al. [4] handles a component service replacement problem in the IT
service domain with the help of ontologies. They do not address decomposition
of user requirements.

114 S. Mustafiz et al.

As mentioned earlier, our work takes inspiration from the method proposed in
[1]. In a similar manner, we carry out user requirements decomposition with the
help of an ontology. However, our approach caters specifically towards network
services. The NSD generation needs to take into account the various constituents
of an NS which makes this a very complex method applicable for NFV systems.

In the NFV domain, Sahhaf et al. [35] consider different service composi-
tions, i.e., VNFs arranged in different ways with different VNFFGs and VLs,
and propose algorithms to select the optimal composition according to some
criteria including resource demands, quality-of-service, and available infrastruc-
ture resources. This work focuses on VNF placement while our concern is the
design of the network service. The Oracle Communications Design Studio [31]
framework allows network services to be designed and also supports NS orches-
tration. However, the NS design requires to create various framework-specific NS
constituent resources and they do not follow the ETSI specifications.

5.2 Process Enactment

We have covered the state of the art with regards to process modelling in the
NFV domain in [28]. Process enactment is a widely adopted method in the busi-
ness process modelling domain. Most of these work however do not follow a
model-driven approach and/or do not provide support for model-driven enact-
ment. Berezin [6] promotes using model-driven orchestration for NFV orchestra-
tion and talks about why this is a more robust method than business process
workflows. BPMN-like workflows are in general implementations of specific task-
oriented cases which are appropriate for immutable business processes as stated
in [6]. In software defined environments which evolve rapidly, such workflows
bring about difficulties and risks.

There has been a lot of work on megamodelling [2,7], transformation chain-
ing [15,30,34,38], and a combination of both [23,37] in the MDE community.
A few MDE-based continuous integration and deployment methods and tools
have been proposed with cloud applications as the target domain [3,22]. While
model-based approaches exist in the NFV domain [10,29], the application of
such advanced MDE techniques is minimal for NFV systems.

6 Conclusion

The two main contributions of this paper are the following: (1) a high-level
process for creating network service deployment templates (referred to as NSD by
ETSI) based on requirements from the tenant, and (2) an integrated environment
for automatically generating the NSD using model-driven process enactment
means.

The process for NS design proposes the use of a network function ontology
to decompose the NS requirements and to select appropriate VNFs for the NS
(from a VNF catalogue or repository). Based on this decomposition and selec-
tion, deployment templates (NSD, VNFFGD, and VLD) are generated. The

A Model-Driven Process Enactment Approach for Network Service Design 115

generation of the descriptors after the receipt of a tenant’s requirements is auto-
mated using a model-driven enactment approach. The process is modelled in
Papyrus as a UML 2.0 Activity Diagram, and can be automatically executed
within Papyrus by orchestrating the workflow. The Process Model is mapped
to a chain of ATL transformations for this purpose. As part of the process,
several domain-specific languages have been proposed to model the associated
artifacts: NS Requirements (NSReq), Network Function Ontology (NFOntol-
ogy), and VNF Catalogue. We have built modelling environments in Papyrus
that allow users to create model instances. The NFV descriptors (NSD, VNF-
FGD, and VLD) have meta-models defined by ETSI [21]. In our process, the
generated models conform to the ETSI-defined meta-models.

This work sets the basis for the enactment of the entire NS design, deploy-
ment and management process. Each activity in the NS life-cycle involves a
complex chain of tasks. We are currently working on modelling the internals of
the other activities, such as NS Instantiation and VNF Instantiation, and writ-
ing model transformations. The entire Process Model can then be mapped on
to a composite chain of transformations along with an extended mega-model to
allow for automated deployment and management of network services.

As future work, we intend to extend our transformation chain orchestration
means to support different transformation languages (such as QVT). Moreover,
we plan on integrating further model management techniques (using the mega-
model) with process enactment. This will allow us to enforce conformance and
compatibility checks between the various models and transformations, and will
also aid in providing end-to-end traceability support.

Acknowledgment. This work is partly funded by NSERC and Ericsson, and car-
ried out within NSERC/Ericsson Industrial Research Chair in Model Based Software
Management.

References

1. Abbasipour, M., Sackmann, M., Khendek, F., Toeroe, M.: A model-based
approach for user requirements decomposition and component selection. In:
Bouabana-Tebibel, T., Rubin, S.H. (eds.) Formalisms for Reuse and Systems
Integration. AISC, vol. 346, pp. 173–202. Springer, Cham (2015). doi:10.1007/
978-3-319-16577-6 8

2. Allilaire, F., Bézivin, J., Brunelière, H., Jouault, F.: Global Model Management
in Eclipse GMT/AM3. In: Eclipse Technology eXchange Workshop (eTX) - A
ECOOP 2006 Satellite Event. Nantes, France, July 2006

3. Artač, M., Borovšak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: Model-driven
continuous deployment for quality DevOps. In: Proceedings of the 2nd Interna-
tional Workshop on Quality-Aware DevOps. QUDOS 2016, pp. 40–41. ACM (2016)

4. Bartsch, C., Shwartz, L., Ward, C., Grabarnik, G., Buco, M.J.: Decomposition
of IT service processes and alternative service identification using ontologies. In:
NOMS 2008–2008 IEEE Network Operations and Management Symposium, pp.
714–717, April 2008

http://dx.doi.org/10.1007/978-3-319-16577-6_8
http://dx.doi.org/10.1007/978-3-319-16577-6_8

116 S. Mustafiz et al.

5. Basciani, F., Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of model
transformations with incompatible metamodels. In: Dingel, J., Schulte, W., Ramos,
I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 602–618.
Springer, Cham (2014). doi:10.1007/978-3-319-11653-2 37

6. Berezin, A.: Utilizing Declarative Model-Driven TOSCA Orchestration for NFV.
DZone, March 2017. https://dzone.com/articles/utilizing-declarative-model-dri
ven-tosca-orchestration-for-nfv

7. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and
modeling in the small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA
2003-2004. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005). doi:10.1007/
11538097 3

8. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice, 1st edn. Morgan & Claypool Publishers, San Rafael (2012)

9. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model driven reverse
engineering framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014)

10. Chen, Y., Qin, Y., Lambe, M., Chu, W.: Realizing network function virtualiza-
tion management and orchestration with model-based open architecture. In: 11th
International Conference on Network and Service Management (CNSM 2015), pp.
410–418. IEEE (2015)

11. Chiosi, M., Clarke, D., Willis, P., Reid, A., Feger, J., Bugenhagen, M., Khan, W.,
Fargano, M., Cui, C., Deng, H., et al.: Network functions virtualisation: an intro-
duction, benefits, enablers, challenges and call for action. In: SDN and OpenFlow
World Congress, pp. 22–24 (2012)

12. Chung, L., Ma, W., Cooper, K.: Requirements elicitation through model-
driven evaluation of software components. In: Fifth International Conference on
Commercial-off-the-Shelf (COTS)-Based Software Systems, pp. 1–10. IEEE (2006)

13. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through special-
ization and multilevel configuration of feature models. Software Process Improv.
Pract. 10(2), 143–169 (2005)

14. Papyrus, 16 June 2017. https://eclipse.org/papyrus/
15. Etien, A., Aranega, V., Blanc, X., Paige, R.F.: Chaining model transformations.

In: Proceedings of the 1st Workshop on the Analysis of Model Transformations.
AMT 2012, pp. 9–14. ACM (2012)

16. ETSI: Network Functions Virtualisation (NFV); Terminology for Main Concepts
in NFV: ETSI GS NFV 003 V1.2.1, December 2014

17. ETSI: Network Functions Virtualisation; Management and Orchestration; Network
Service Templates Specification: ETSI GS NFV-IFA 014 V2.1.1, October 2016

18. ETSI: Network Functions Virtualisation; Management and Orchestration; Report
on Architectural Options: ETSI GS NFV-IFA 009 V1.1.1, July 2016

19. ETSI: Network Functions Virtualisation; Management and Orchestration; VNF
Packaging Specification: ETSI GS NFV-IFA 011 V2.1.1, October 2016

20. ETSI: Network Functions Virtualisation (NFV) Release 2; Information Modeling;
Papyrus Guidelines: ETSI GR NFV-IFA 016 V2.1.1, March 2017

21. ETSI: Network Functions Virtualisation (NFV) Release 2; Management and
Orchestration; Report on NFV Information Model: ETSI GR NFV-IFA 015 V2.1.1,
January 2017

22. Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: applying
MDE to tame the complexity of managing multi-cloud applications. In: 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp.
269–277, December 2014

http://dx.doi.org/10.1007/978-3-319-11653-2_37
https://dzone.com/articles/utilizing-declarative-model-driven-tosca-orchestration-for-nfv
https://dzone.com/articles/utilizing-declarative-model-driven-tosca-orchestration-for-nfv
http://dx.doi.org/10.1007/11538097_3
http://dx.doi.org/10.1007/11538097_3
https://eclipse.org/papyrus/

A Model-Driven Process Enactment Approach for Network Service Design 117

23. Fritzsche, M., Gilani, W.: Model transformation chains and model management
for end-to-end performance decision support. In: Fernandes, J.M., Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 345–363. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-18023-1 9

24. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report CMU/SEI-
90-TR-021, SEI, arnegie Mellon University, November 1990

25. Lin, J., Fox, M.S., Bilgic, T.: A requirement ontology for engineering design. Con-
current Eng. 4(3), 279–291 (1996)

26. Lúcio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.: FTG+PM: an inte-
grated framework for investigating model transformation chains. In: Khendek, F.,
Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 182–202.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38911-5 11

27. Mijumbi, R., Serrat, J., Gorricho, J.L., Latre, S., Charalambides, M., Lopez,
D.: Management and orchestration challenges in network functions virtualization.
IEEE Commun. Mag. 54(1), 98–105 (2016)

28. Mustafiz, S., Palma, F., Khendek, F., Toeroe, M.: A network service design and
deployment process for NFV systems. In: IEEE NCA16: The 15th IEEE Interna-
tional Symposium on Network Computing and Applications, pp. 131–139. IEEE,
October 2016

29. OASIS: TOSCA Simple Profile for Network Functions Virtualization (NFV)
Version 1.0, March 2016. http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/
tosca-nfv-v1.0.html

30. Oldevik, J.: Transformation composition modelling framework. In: Kutvonen, L.,
Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 108–114. Springer, Heidel-
berg (2005). doi:10.1007/11498094 10

31. Oracle: Oracle Communications Network Service Orchestration Solution Imple-
mentation Guide, Release 1.1. White Paper, July 2016. https://docs.oracle.com/
cd/E71075 01/doc.11/e65331/toc.htm

32. Oster, Z.J., Santhanam, G.R., Basu, S.: Decomposing the service composition prob-
lem. In: 8th IEEE European Conference on Web Services, pp. 163–170, December
2010

33. Oster, Z.J., Santhanam, G.R., Basu, S.: Identifying optimal composite services by
decomposing the service composition problem. In: IEEE International Conference
on Web Services. ICWS 2011, pp. 267–274. IEEE Computer Society (2011)

34. Rivera, J.E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., Vallecillo, A.:
Orchestrating ATL model transformations. In: Proceedings of MtATL 2009, pp.
34–46. Nantes, France, July 2009

35. Sahhaf, S., Tavernier, W., Colle, D., Pickavet, M.: Network service chaining with
efficient network function mapping based on service decompositions. In: 1st IEEE
Conference on Network Softwarization (NetSoft), pp. 1–5, April 2015

36. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-
FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02674-4 3

http://dx.doi.org/10.1007/978-3-642-18023-1_9
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
http://dx.doi.org/10.1007/11498094_10
https://docs.oracle.com/cd/E71075_01/doc.11/e65331/toc.htm
https://docs.oracle.com/cd/E71075_01/doc.11/e65331/toc.htm
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/978-3-642-02674-4_3

118 S. Mustafiz et al.

37. Vanhooff, B., Ayed, D., Baelen, S., Joosen, W., Berbers, Y.: UniTI: a unified
transformation infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-75209-7 3

38. Wagelaar, D.: Blackbox composition of model transformations using domain-
specific modelling languages. In: 1st European Workshop on Composition of Model
Transformations (CMT), pp. 15–19 (2006)

http://dx.doi.org/10.1007/978-3-540-75209-7_3

Model-Based Regression Testing
of Autonomous Robots

Dávid Honfi, Gábor Molnár, Zoltán Micskei(B), and István Majzik

Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

{honfi,micskei,majzik}@mit.bme.hu

Abstract. Testing is a common technique to assess quality of systems.
Regression testing comes into view, when changes are introduced to the
system under test and re-running all tests is not practical. Numerous
techniques have been introduced to select tests only relevant to a given
set of changes. These are typically based on source code, however, model-
based development projects use models as primary artifacts described in
various domain-specific languages. Thus, regression test selection should
be performed directly on these models. We present a method and a case
study on how model-based regression testing can be achieved in the con-
text of autonomous robots. The method uses information from several
domain-specific languages for modeling the robot’s context and configu-
ration. Our approach is implemented in a prototype tool, and its scala-
bility is evaluated on models from the case study.

1 Introduction

Nowadays quality is a crucial aspect of software systems development. The
employment of different verification and validation techniques is a possible way
of achieving higher quality. One of the most commonly used techniques is test-
ing, which intends to evaluate whether the behavior of the system under test
meets its requirements. As the system develops, changes are introduced, which
may require re-testing functions of the system. In these cases regression testing
could be used as a solution.

Regression testing is the “selective re-testing of a system or component to
verify that modifications have not caused unintended effects and that the system
or component still complies with its specified requirements” [22]. Regression
testing can be performed on any testing level (i.e., module, integration, etc.),
and it can cover both functional and non-functional requirements. Re-running
every test after each modification is resource and time-consuming. Thus a trade-
off must be made between the confidence gained from regression testing and
resources used. For this reason, several techniques were proposed over the years,
particularly to select only a subset of the test suite, what is relevant for the
current change, or to identify those new parts of the system, which are not
covered by existing tests. To discuss test selection and identification, in this
paper we use the categorization of tests introduced by Leung and White [26]:
c© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 119–135, 2017.
DOI: 10.1007/978-3-319-68015-6 8

120 D. Honfi et al.

– Re-usable tests that exercise unmodified parts of the system.
– Re-testable tests that are changed or are able to cover changed parts in the

system.
– Obsolete tests that cannot be used anymore due to changed specification or

system structure.
– New structure tests that contribute to the overall coverage of the current,

new system structure.
– New specification tests that verify new elements in the current specification.

Three common approaches exist for regression testing. Test Prioritization
[27,37] is usually applied, when the total execution time of tests is not rele-
vant, however discoverable errors shall be highlighted as soon as possible. When
using Test Suite Minimization (TSM) [20,24] or Regression Test Selection (RTS)
[21,35] the goal is to reduce the number of executed tests, especially when re-
testing the whole system requires significant amount of time. Moreover, RTS
uses optimization for selecting the minimal subset of these tests that have max-
imal test coverage with a minimal associated execution cost. Our paper focuses
on RTS, which uses the actual changes as an input to identify re-testable tests.

One testing criteria of RTS is reaching the maximal coverage possible. In the
domain of RTS for source code, numerous approaches have been presented that
define various coverage metrics: code executed by tests [1], dynamic slicing [2],
graph-based representation [21]. Several tools exist implementing RTS for source
code. For example, SoDA [40] is a tool for C/C++ repositories, while ChOPSJ
[38] is available for code written in Java.

In the past decade, the increasing adoption of models as development artifacts
led to the birth of a new approach called Model-Driven Development (MDD).
MDD is “a development paradigm that uses models as the primary artifact of the
development process” [7]. These models are commonly composed using domain-
specific languages (DSL). DSLs are special languages for a particular problem
domain. The model artifacts describe the system itself and could also serve as
inputs for the testing process. As MDD is conducted in an incremental manner,
model artifacts – similarly to the source code – tend to change in time. The
changes in the model artifacts influence the system functions and properties (as
models drive the synthesis of software, hardware, configuration, parameterization
etc. of the system), this way these changes can be used to trigger re-testing the
influenced parts of the system. In an MDD setting, having the relation between
(changed) model artifacts and system parts, regression test selection can be
applied on model level rather than on the generated code.

We encountered this situation in the context of the Reconfigurable ROS-
based Resilient Reasoning Robotic Cooperating Systems (R5-COP) project1. The
project worked with several industrial demonstrators: autonomous robots that
need to be re-tested after reconfigurations due to changes in their functionality
or their components. We developed a model-based approach that uses several
domain-specific languages to model the capabilities of the robots and their tests

1 http://www.r5-cop.eu.

http://www.r5-cop.eu

Model-Based Regression Testing of Autonomous Robots 121

contexts, and created an RTS model to represent the artifacts of the regression
testing domain, among others the tests, testables, and coverage relations. The
specific input models and artifacts as well test elements (e.g., test cases, test
setups) can be mapped to this representation, and the test classification and
regression test selection algorithms can be implemented uniformly on the basis
of this model. The approach was implemented in a prototype tool using the
Eclipse framework and its various modeling components.

The rest of the paper is structured as follows. Section 2 details the
autonomous robot case study. Section 3 presents the approach that was devel-
oped to support regression test selection. Section 4 presents the implementation
of the approach in a prototype tool. Section 5 evaluates the scalability of the
approach and the implemented tool.

2 Presentation of the Case Study

An autonomous system can be defined as one that makes and executes decisions
to achieve a goal without full, direct human control [12]. Notable characteristics
shared by the different kinds of autonomous systems include reasoning, learning,
adaptation and context-awareness. A typical example of an autonomous system
is an autonomous robot, which is working in a real, uncontrolled environment,
possibly in the presence of humans.

The autonomous robots case study was performed in the R5-COP project.
The project focused on reconfigurable robots coping with quickly changing envi-
ronments and conditions. The verification of autonomous robot systems is an
essential part of their development process due to their safety-critical nature.
Thus testing and regression testing are crucial tasks during their development.

Testing autonomous systems is particularly challenging due to the facts that
their behavior is highly context-aware and their context contains a large num-
ber of possible situations [39]. Full behavior specification can be impractical
due to the complexity of the behavior and the diversity of the system envi-
ronments. Therefore a typical solution is to specify high-level properties and
scenarios and evaluate these to detect violations of (safety) requirements [18].
Robots are placed in different situations (either in physical test environment or
simulator), and properties are checked at runtime using monitors or off-line via
trace analysis.

One of the industrial demonstrators of the project was an emergency response
robot, a special type of mobile robots that is capable of performing certain
activities in an environment that may possess the risk of human injury (e.g.,
critical tasks in handling explosives). The verification process of the completely
built robots is usually conducted in special test rooms. These rooms are able to
pose challenges for different capabilities of the robot through different terrain
and obstacle types. The rooms use standardized elements (e.g., alleys, ramps)
[5,23,29] that can be assembled in different configurations, and several tasks can
be performed on each element (just crossing it, crossing it by following a line,
reading a sign, etc.).

122 D. Honfi et al.

The changes in the requirements of the robots may trigger modifications
in the configuration (replacing a component) or the test rooms (using a new
element for testing a new functionality). This is very similar to the maintenance
of the test suites of software, hence regression testing could be applied also in
this domain: the robot can be thought as the system under test, while a layout
of test room or a particular element of a test room is a test case for the robot.

Our testing approach [28] used a model-based, system-level black-box testing
method. We modeled both the capabilities of the robots and the test rooms. Based
on the NIST guidelines [29], we defined the following main types of model elements
for test rooms: (1) mobility terrain, (2) obstacle, (3) visual target. The capabili-
ties of the robot are also captured in a model that describes both hardware and
software elements and the dependencies amongst them. According to the model
a robot has slots where hardware elements (e.g., sensor, actuator, motor) can be
mounted. Robots also have several different software elements installed that con-
trol hardware elements. Due to space constraints the full meta-models are not
included, but they can be found in the project’s deliverables [33,34].

r2d2:Robot

leftSlot:Slot rightSlot:SlotmotorSlot:Slot

gripper:ActuatorcamArm:Actuator motor:Motorcamera:Sensor

camDriver:SW

imgRecognizer:SW

moveDriver:SW

moveCtrl:SW

Ha
rd
w
ar
e

So
w
ar
e

equipSlot:Slot

(a) The robot instance

room1:TestRoom

leftWall:Wall rightWall:Wall

sand:Sand

:FlammableSign :RadioactivitySign

room2:TestRoom

ramp:Rampgravel:Gravel

Room
1

Room
2

(b) The test room instances

Fig. 1. Example instance models for robot configuration and test context

Figure 1a shows the simplified capability model of a sample robot, while
Fig. 1b presents two sample test room instances. The robot model used in this
example contains both hardware and software elements. The robot itself has four
slots (left, right, motor, equipment). The motor slot is connected to the motor,
which enables the robot to move. The right slot is connected to an arm that has
a gripper to grasp objects. The left slot has an arm connected, which holds a
camera. The camera is plugged into the equipment slot. Both actuators (camera
arm, gripper) and the motor are controlled by a movement controller through a
movement driver software. The camera has an image recognition software that
communicates with the sensor using a special driver software. The terrain in the
first room (room1) is sand, which is located between two walls (left and right).
The left wall has a flammable warning sign, while the right one has a radioactivity
sign on it. The second room (room2) has a gravel terrain and contains a ramp.

Let us consider the situation, when the specification of the robot is modified: a
new camera is designed for the robot. Without any regression test selection, this

Model-Based Regression Testing of Autonomous Robots 123

change would trigger re-execution of all tests in both rooms. In a real scenario
this may take high amount of time as the same room is used often with different
layouts, thus would require multiple rearrangements. However, if only the camera
is changed, it may be enough to the test the robot in room1.

To perform regression test selection it is crucial to have a mapping of cov-
erage, which connects the test rooms with the capabilities of the robot. For
example, the image recognizer component can be tested by the signs on the
walls and the motor can be tested by the different terrain types. An RTS algo-
rithm would be able to identify the minimal number of tests that are required
to re-run to cover the modified parts of the system.

Selecting the right level of abstraction for the models and the goal of the
testing was a non-trivial design decision. We performed multiple iterations with
the industrial partners and designed several versions of the system and test
models. Some models captured multiple possible configurations of the test rooms
with different elements and selected tests based on which test room or which
test room element is relevant for a given robot skill or component. Other models
worked with a small, fixed number of test setups that were actually assembled
at the partner’s location, and varied what combinations of exercises should the
robot perform in each test room. Therefore we needed an approach that can work
with different input modeling languages and can be quickly adapted to new ones,
without having to re-implement the whole regression testing algorithm.

The next section presents the approach we developed for the case study.
Regression test selection was performed on similar domain-specific models by
1) defining an RTS model and 2) mapping the elements of the domain-specific
inputs models to the elements of this RTS model. This approach was able to
support regression testing in the presented setting.

3 Approach

RTS algorithms usually employ the following common concepts: (1) testable, (2)
test and (3) coverage to handle the system under test (testables like elements
of source code, model, etc.) and the tests that cover elements of the system.
However, creating a compound representation is far from trivial and can be
accomplished in various ways [43]. The forthcoming part of this section defines
a representation that can be used for model-based regression test selection.

Several typical ways exist to define the coverage model. The most simple one
is a binary matrix with program elements in its rows and tests in the columns.
The matrix has 1 in cell (i, j) if the ith program element is covered by the jth
test. However, if our inputs are DSL models and not just program lines or list
of methods, a different, model-based representation is more suitable.

The main requirements of the RTS model were the followings. The RTS
model shall (1) be easily extensible for different artifacts of various models and
DSLs, and (2) separate the RTS algorithm from the core RTS concepts. To fulfill
these requirements we developed an RTS model, which represents the generic
concepts of RTS that can be mapped from the concrete artifacts (models and

124 D. Honfi et al.

tests) of the input domain. The RTS model represents the data model that is
required to conduct test selection for different models as input artifacts.

3.1 RTS Model

An RTS algorithm uses three main concepts: (1) elements in the system, (2)
tests that exercise parts of the system and (3) a coverage relation that drives
the selection process. Our proposed RTS metamodel contains four main concepts
that is eligible to describe the underlying artifacts for the RTS algorithm.

– Testable: an abstract element that is verified by tests.
– Component: a type of Testable that supports dependencies; changing a com-

ponent triggers all dependents to be re-tested.
– Conditional: a special type of Testable that represents a conditional element

in the system (e.g., a branch or a condition in a decision), which requires
individual handling during the RTS process (e.g., each value of the condition
must be tested with a specific test case).

– Test: represents an executable test case in the system.

System

TestSuiteCoverage
Group

Conditional
Coverage

Test
Coverage

testables testSuites

tests

dependencies

coverageGroups

condition

test

covRels

dependants
covRelstestable

0..* 0..* 0..*

1..*

1
0..*

0..*

1

1

0..*

0..*

covRels
0..*

Fig. 2. The structure of the RTS metamodel

The full RTS metamodel is shown in Fig. 2. The main component of the model
is the system. A system consists of testables, test suites and coverage groups. A
testable instance could be a component or a conditional element, which were
already presented. Components can depend on each other, thus there is a self-
association defined. A test suite consists of tests connected to testables through
coverage relations of coverage groups. A coverage relation connects a testable
and a test (denoted with association). An instance of the coverage relation could
be conditional coverage or simple test coverage. Simple test coverage defines no
special conditions on the notion of coverage, thus can be fulfilled by simply cov-
ering an element. On the contrary, conditional coverage also covers elements but

Model-Based Regression Testing of Autonomous Robots 125

uses additionally a conditional element (marked with association), that requires
individual handling of condition values during regression test selection (e.g.,
covering both the inclusion and the absences of an input model element in the
tests). A coverage group holds together relations that have similar meaning in
the domain being used, which alleviates their handling. Furthermore, testables,
test suites, tests and coverage relations are modifiable meaning that they store
whether the given element in the system has been changed since the last run or
not. This change is represented in the RTS model using a special attribute.

3.2 Mapping of Input Models

In order to produce an instance of this metamodel a mapping is needed where the
inputs are the system and test models, and the result is an instance of the RTS
model itself. The transformations should use unique identifiers to trace back ele-
ments to the original models. These transformations are specific to the domain-
specific models used as inputs. By using the mapping, the selection becomes
independent from the input models. The implementation of the RTS is bound
to the RTS model this way it is not necessary to (re-)implement it on the basis
of the specific model artifacts and coverage models.

TestsCoverageComponents

:System

room1:TestSuite

rightWall:Test

leftWall:Test

sand:Test

r2d2:Component

imgRecognizer:ComponentmoveDriver:Component

camDriver:Component

camArm:Component motor:Component

camera:Component

gripper:Component

moveCtrl:Component

mapping:CoverageGroup

:TestCoverage :TestCoverage

room2:TestSuite

gravel:Test

ramp:Test

:TestCoverage :TestCoverage

Fig. 3. The transformed sample RTS instance model

Notice that changes in the original models shall be represented in the RTS
model. To tackle this question, our approach employs checkpointing of models,
which is a common model versioning technique [4]. Hence, when a checkpoint
during the model development is reached, the automatic mapping to the com-
mon RTS model is triggered with calculating the changes between checkpoints.
These changes are applied to the RTS model incrementally and indicated on
each modifiable element using the according attribute automatically.

Figure 3 depicts how this mapping was defined for the robot case study exam-
ple presented on Fig. 1. One transformation was defined for the model of robot
capabilities, which transformed every element into a Component in the opti-
mization model. The approach supports dependencies between components, and
these dependencies are used to find affected components transitively during the
regression test selection for a given change. Additionally, the test rooms were

126 D. Honfi et al.

transformed into test suites and tests. One may notice that we used TestRooms
as test suites and elements as Tests, though they can be handled differently as
the level of abstraction is changed (e.g., using the whole room as a test). Finally,
a third, simple model (not shown on Fig. 3) was used to describe the mapping
between robot capabilities and test room elements. This mapping model is trans-
lated into coverage elements in the RTS model.

Note that even the RTS model uses simple and compact concepts, these were
enough to represent the regression testing problem in the current case study. For
other case studies, the RTS model could be extended with other concepts.

3.3 Usage Scenarios

The approach can be used in two phases of an MDD development. First, the
approach is intended to be used by Test Engineers during the development
and maintenance phase of models as their common tasks are (1) identifying
untested elements in the system, (2) performing impact analysis to identify the
effects of particular changes, (3) re-testing the system after changes have been
applied. Re-testing time should be reduced along with maintaining the same
fault-detection capability of the test suite. This is where the presented approach
emerges by (1) highlighting untested parts of the system calculated from the
coverage relationships (2) detecting changes and impacts through dependencies
of components and (3) selecting tests to re-run. Test engineers only employ the
approach and do not develop or extend it.

Second, the presented approach shall also be used by developers of domain-
specific languages as their tasks include (1) identifying elements of the DSL
that correspond to tests and testables, (2) identifying how test coverage could
be defined from elements and (3) implementing a transformation to a specific
test model. These tasks are supported by providing the definition of the main
concepts in the presented approach for generic regression test selection. In an
MDD setting, developers of DSLs shall define the mappings and transformations
to the RTS model, that can be used later by the test engineers.

4 Implementation

The approach is implemented in RtsMoT (Rts MOdeling Tool), a tool using
the Eclipse Modeling Framework. To be able to handle several, different input
models, the tool was given a layered architecture as shown in Fig. 4.

As the input models can be different domain-specific models, adapters are
required for defining the mapping to the RTS model. A Model Adapter consists of
transformations that map the domain models to the RTS model. RtsMoT pro-
vides interfaces for these transformations, hence only the knowledge of domain
models is enough to implement them. For transformations, the adapters use Via-
tra, a state-of-the-art incremental model transformation framework [6]. Using
Viatra requires the definition of patterns that can be matched to different
domain model elements. Then, a transformation with Viatra can be defined

Model-Based Regression Testing of Autonomous Robots 127

Input

System
models

Test
models

Tool

M
od

el
 A

da
pt

er
s

Ch
ec

kp
oi

n
ng

an

d
Ch

an
ge

de

te
ct

or

RT
S

en
gi

ne

Output

Grouping
of tests

Uncovered
elements

Fig. 4. Architecture and workflow of the prototype tool

for each match of the patterns, hence making able to map input model elements
to new elements of the RTS model.

The model checkpointing technique, which is used in the presented approach
demands for another layer in the architecture; the Checkpointing and Change
Detector component provides the ability to create checkpoints during model
development. At each checkpoint, this layer is also responsible for detecting
changes in input models and indicating them on elements of the generic RTS
model. The change detector marks all changes, i.e. all differences between the two
versions of the model in the checkpoints. This process is performed with unique
identifiers of elements that allows tracing between the input models and the
generic RTS model. The prototype implementation currently uses the file system
with time stamps for model versioning. However, this layer can be developed
further to collaborate with well-known version control systems like Git and SVN.

The third layer of the RtsMoT tool is the RTS engine. This layer per-
forms the actual test selection by using a replaceable algorithm subcomponent
making the prototype tool more flexible. The algorithm yields the identification
of elements in the RTS model, which are affected by changes in a checkpoint.
Then, the algorithm selects test cases that are able to cover changed parts in
the system. Also, the layer reports the uncoverable (but changed) and uncovered
elements. The tool currently uses a simple greedy approximation algorithm for
Minimal Set Cover as the problem of RTS can be reduced to this [19]. Further
details of the implementation can be found in the project’s deliverable [33].

5 Evaluation

We evaluated the applicability of the approach and the capabilities of RtsMoT
to answer the following research question: Could the prototype of the approach
scale up to models found in the case study domain?

128 D. Honfi et al.

5.1 Study Design

Method. In order to measure the scalability, the change detection and test
selection capabilities are evaluated. Evaluating the change detection requires the
input models to change between two checkpoints. The evaluation of test selection
also uses the RTS model, which can be extended and scaled up in three ways: (1)
components, (2) tests and (3) coverage. Moreover, the RTS evaluation demands
for creating elements with predefined connections (coverage), thus making it a
more complex scenario. We used upscaled model instances of models presented
in Sect. 2.

Setup for Change Detection. The change detection can be evaluated from
two aspects: (1) size of the input models to compare, (2) size of the change. Six
different sizes of input models are defined for the evaluation: 16, 32, 64, 128,
256 and 512. These models were created by adding new component instances
to the robot. Note that these sizes are the numbers of newly added components
to the original robot instance model seen on Fig. 1a. Additionally sizes of the
changes are defined in a smaller scale for this experiment: 1, 2, 4, 8, 16 and 32.
According to the industrial partners in the R5-COP research project, these model
sizes can be relevant in the autonomous robot domain. A significant aspect of the
scalability is that how much time it takes to detect changes with different sizes of
models and changes. Hence the evaluation addresses the following comparisons:
(1) execution time with different sizes of inputs (number of changes here is 1),
(2) execution time with different number of changes between checkpoints (size
of input models here is set to 512).

Setup for RTS. The time that RTS takes during the test selection is a crucial
part of the approach as it should not take unfeasible amount of time (e.g. running
RTS and the selected tests should not take longer than re-running the whole
test suite). Thus, the RTS model with 512 elements is used in this part of the
evaluation with various amount of changes ranging from 1 to 512 on a logarithmic
scale. Furthermore the number of dependencies to a changed component may
affect the time required for running the RTS. This analysis also uses the model
with 512 elements with the number of changes tied to one. However, the number
of dependants to a single component is modified on a logarithmic scale from 1
to 512.

5.2 Results

The values presented in this section were obtained from executing RtsMoT on
a notebook with a 2-core CPU running at 3.0 GHz and 8 GBs of RAM. During
the evaluation, every measurement was repeated 30 times and the average values
are presented here. Before each measurement a warm-up session was conducted
in order to avoid outlier values caused by initialization processes in the Eclipse
framework. The data analysis was performed using R [32], while execution times
were measured by using stopwatches in code. In order to use statistical measures,

Model-Based Regression Testing of Autonomous Robots 129

0

10

20

30

40

50

100 200 300 400 500
Model size [# of elements]

Ex
ec

ut
io

n
tim

e
[m

s]

Fig. 5. Execution time of change detec-
tion with various model sizes

Table 1. Change detection times with dif-
ferent model sizes

Size [#] Avg. time [ms] CI

16 12.56 [10.3, 14.83]

32 12.7 [10.38, 15.02]

64 13.33 [11.48, 15.18]

128 20.73 [14.93, 26.53]

256 25.7 [22.3, 29.1]

512 48.23 [43.69, 52.78]

the normality of the results for each repetition was checked. All check yielded
that the 30-times repeated results follows a normal distribution.

Figure 5 presents the relationship between the number of model elements on a
logarithmic scale and the change detection time in milliseconds. The results show
that as the size of the model is incremented, the detection time also increases.
Table 1 summarizes these values including a confidence interval (CI) on 95%
confidence level obtained using the one-sample t-test. The confidence intervals
do not show large deviations, and the border values of the CIs grow with the
average times. The presented change detection times may be thought feasible
in the domain of the study. We also measured change detection time on larger
models in order to determine the effects on practical applicability. We used two
models containing 8192 and 16384 elements, from which the results were 5,59
and 22,02 s respectively, which are still convenient response times.

In terms of the relationship between the size of changes and the execution
time of change detection, the results are promising. Figure 6 shows that there is a
clear linear correlation between the number of changed elements and the related
execution time. This is due to the linear search algorithm used in the back-
ground. Changing this algorithm to a model pattern detection-based technique
may improve the performance.

Table 2 presents the results from the analysis of the relationship between the
number of changes and the detection time. Note that the values are increasing
linearly with the number of changes. Moreover the confidence intervals (CI) also
show this relationship. The intervals were obtained again on 95% confidence level
using the one-sample t-test. To sum up, these results show a clearly identifiable
linear relationship between the number of changes and the change detection
time. The maximum value was slightly more than one second even on the largest
models used, thus can be thought as a promising and feasible result.

As mentioned earlier, the RTS execution time is also a crucial part of the
process. To evaluate its performance the execution time was measured with
different number of changes on a previously used model in the case study (con-
taining 512 elements). Figure 7 depicts the results from this evaluation with the

130 D. Honfi et al.

0

500

1000

1500

0 10 20 30
Change size [# of changed elements]

Ex
ec

ut
io

n
tim

e
[m

s]

Fig. 6. Execution time of change detec-
tion with various number of changes

Table 2. Change detection times with dif-
ferent sizes of changes

Size [#] Avg. time [ms] CI

1 45.67 [41.70, 49.63]

2 78.53 [75.6, 81.46]

4 148.17 [144.82, 151.51]

8 304.27 [285.24, 323.3]

16 608.83 [584.84, 632.82]

32 1196.53 [1151.51, 1241.56]

sizes of changes on a logarithmic scale. It can be seen that no dependency exists
between the number of changes and the RTS execution time because even when
all the model elements were changed the time remained almost the same.

Table 3 reveals the details of this evaluation containing the average times
and their confidence intervals (CI) with the previously used one-sample t-test
on 95% level of confidence. The values are almost equal in all cases and do not
show large deviations. However larger CIs exists, which is due to the first and
second measurements that had longer execution times as the modeling framework
did not cache the required model elements until the third run (though a warm-
up run was conducted to avoid this effect). In brief, these execution times are
acceptable for the domain of autonomous robots even on relatively large models.

As described in Sect. 5.1 we also analyzed how the RTS execution time is
affected by the number of dependencies belonging to a changed component.
Based on the results, the pattern-based dependency analysis that is implemented
in RtsMoT turned out to be effective: the execution times were roughly the same
that were presented in Table 3. Thus the execution time of RTS can be thought
as independent from the number of dependencies to a component.

0

10

20

30

40

50

10
0

20
0

30
0

40
0

50
0

Change size [# of changed elements]

R
TS

 ti
m

e
[m

s]

Fig. 7. Execution time of RTS with var-
ious number of changes

Table 3. RTS execution times with differ-
ent sizes of changes

Size [#] Avg. time [ms] CI

1 16.9 [10.63, 23.17]

2 14.73 [10.78, 18.68]

8 14.33 [10.12, 18.55]

32 16.73 [12.1, 21.38]

128 14.87 [10.2, 19.53]

512 16.8 [9.12, 24.48]

Model-Based Regression Testing of Autonomous Robots 131

The evaluation of these complex cases was performed to answer the RQ. The
results produced by RtsMoT that implements the generic RTS approach are
promising and scale up without significant increase of execution time even for
these larger model sizes. Hence the presented approach and the prototype tool
can scale to real models used in the autonomous robot domain.

6 Related Work

Regression test selection has a very broad area of research as it can be executed
in numerous ways [17,36]. Engström et al. conducted a survey [13], where the
regression test selection techniques for source code are gathered and assessed
based on their evaluations. They had two conclusions to emphasize: (1) empirical
evidence is not very strong on evaluating RTS techniques, (2) RTS techniques
have to be tailored to the given context as no generic technique can be found.

Yoo et al. [43] also conducted a survey on regression test selection techniques,
and identified new trends in the research of this area. According to them, model-
based RTS techniques emerge for two reasons: (1) the higher level of regression
testing and (2) the easier scalability. Some of these techniques use EFSM or
UML, however some use other approaches like graphs or a specific internal model.

Methods Using EFSM. EFSMs add variables and conditional execution to the
basic FSM semantics. This enables them to model software behavior better.
Chen et al. [11] provide a way to use regression testing on EFSM models. The
changes (elementary modifications) they cover are defined on a transition of
the state machine; either addition, deletion or a change. Korel et al. also use
the EFSM semantics in their work [24]. They also use the notion of elementary
modification to describe changes on the input models. Vaysburg et al. presented
a technique [41] that uses dependency analysis on EFSM system models. Their
approach is able to capture various kind of interaction between elements, which is
used as an input for the regression test selection process. Almasri et al. employed
EFSMs to conduct impact analysis in model-based systems [3] in order to reduce
maintenance costs and to identify critical parts of the system. They also defined
model and data density metrics, which are found to be major influencing factors
to the number of components involved in a change.

Methods using UML. Wu and Offut [42] provide an approach for regression
testing component-based software based on their UML diagrams. The diagrams
applied are class diagrams, collaboration diagrams and statecharts. Somewhat
similarly Briand et al. [8,9] provide another approach that classifies test cases
into the usual categorization; obsolete, re-testable or re-usable. They have also
implemented a tool (RTSTool) to evaluate it. Farooq et al. propose an approach
for UML state machines [15] and an Eclipse-based tool as well [14]. From these
papers we have seen that UML diagrams are already used for regression testing
purposes, there are even some tools implemented. Pilskalns et al. propose [31]
an incremental test generation method for UML diagrams that transforms the

132 D. Honfi et al.

input to a graph, on which then a test selection algorithm is run to identify re-
testable test cases. Traon et al. [25] also use an internal model (test dependency
graph) to represent the input towards the test selection algorithm. They are also
mapping UML class diagrams to this graph. It is not clearly expressed, whether
these techniques can be used for another model inputs (apart from UML) as
well. Chen et al. use [10] UML activity diagrams to identify test cases that
are affected by the modifications in release of a software. They employ activity
diagrams as the specification and only separate two different types of regression
tests (targeted and safety) unlike other, more generic approaches.

Generic approaches. A closely related approach for model-based RTS is pre-
sented by Zech et al. in [44,45]. Their approach uses the generic MoVe model
versioning platform and calculates deltas from changes between model versions.
The difference between the approaches is that theirs employs a domain-specific
model obtained from the expanded delta, while our approach uses a generic RTS
model. Fourneret et al. presented a generalized model-based regression testing
technique in [16]. They extract behavior from the input models to supply impact
analysis during the RTS process. These behaviors are extracted from guards or
actions when using state charts, and from Object Constraint Language con-
straints in case of class diagrams. This process is clearly similar to the approach
presented by Zech, although behavioral extraction is made additionally. Orso et
al. provides an approach [30] on how to use metadata from external components
to supply regression test selection process both on code and model.

7 Conclusions

This paper presented a model-based regression test selection (RTS) approach
that was developed for the system-level testing of reconfigurable, autonomous
robots. This technique uses an RTS model to enable the handling of multiple
input models specified in different domain-specific languages. In order to use
the approach on different input domains, simple transformations are needed,
which can be defined by the potential users of the approach. This includes test
engineers and domain-specific language developers.

The paper also introduced the architecture of a prototype tool called
RtsMoT that implements the approach using the Eclipse framework and its
modeling platform EMF. The scalability of the approach was evaluated on mod-
els from the case study. The results showed that the tool can scale to larger
models and even after several changes the test selection is performed quickly.

The developed approach was able to capture the regression testing problem
of the case study. However, an important lesson was that it required numerous
iterations with the industrial partners to find the right level of abstraction of
the models representing the capabilities, context and test setups of the robots.
Several versions of the input model languages were developed targeting different
testing goals (e.g. testing using rooms with different configurations, testing using

Model-Based Regression Testing of Autonomous Robots 133

different exercises in a fixed test room). In these iterations the layered architec-
ture of the tool and the usage of small model adapters that can be quickly
developed proved to be a really useful design decision.

Future work includes several directions. For example, the approach is able
identify elements in the models for which no test exists, but offers no solution
for the user. We are working on to automatically generate test setups including
the missing elements using search-based techniques.

Acknowledgment. This work was partially supported by the ARTEMIS JU and the
Hungarian National Research, Development and Innovation Fund in the frame of the
R5-COP project.

References

1. Aggrawal, K., Singh, Y., Kaur, A.: Code coverage based technique for prioritizing
test cases for regression testing. ACM Softw. Eng. Notes 29(5), 1–4 (2004)

2. Agrawal, H., Horgan, J.R., Krauser, E.W., London, S.: Incremental regression test-
ing. Int. Conf. Softw. Maintenance 93, 348–357 (1993)

3. Almasri, N., Tahat, L., Korel, B.: Toward automatically quantifying the impact of
a change in systems. Softw. Qual. J., 1–40 (2016)

4. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning
approaches. Int. J. Web Inform. Syst. 5(3), 271–304 (2009)

5. ASTM International: Standard Terminology for Evaluating Response Robot Capa-
bilities E2521–16 (2016)

6. Bergmann, G., Dávid, I., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z., Varró, D.:
Viatra 3: a reactive model transformation platform. In: Kolovos, D., Wimmer, M.
(eds.) ICMT 2015. LNCS, vol. 9152, pp. 101–110. Springer, Cham (2015). doi:10.
1007/978-3-319-21155-8 8

7. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice, 1st edn. Morgan & Claypool Publishers, Williston (2012)

8. Briand, L., Labiche, Y., He, S.: Automating regression test selection based on UML
designs. Inf. Softw. Technol. 51(1), 16–30 (2009)

9. Briand, L., Labiche, Y., Soccar, G.: Automating impact analysis and regression
test selection based on UML designs. In: International Conference on Software
Maintenance, pp. 252–261 (2002)

10. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regression test selection
with risk analysis. In: Conference of the Centre for Advanced Studies on Collabo-
rative Research, pp. 1–14 (2002)

11. Chen, Y., Probert, R.L., Ural, H.: Regression test suite reduction using extended
dependence analysis. In: 4th International Workshop on Software Quality Assur-
ance, SOQUA 2007, pp. 62–69. ACM (2007)

12. Connelly, J., Hong, W., Mahoney, R., Sparrow, D.: Challenges in autonomous sys-
tem development. In: Proceedings of Performance Metrics for Intelligent Systems
Workshop (PerMIS 2006) (2006)

13. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Inf. Softw. Technol. 52(1), 14–30 (2010)

14. Farooq, Q., Iqbal, M., Malik, Z., Riebisch, M.: A model-based regression testing
approach for evolving software systems with flexible tool support. In: IEEE Inter-
national Conference on Engineering of Computer Based Systems, pp. 41–49 (2010)

http://dx.doi.org/10.1007/978-3-319-21155-8_8
http://dx.doi.org/10.1007/978-3-319-21155-8_8

134 D. Honfi et al.

15. Farooq, Q.u.a., Iqbal, M.Z.Z., Malik, Z.I., Nadeem, A.: An approach for selective
state machine based regression testing. In: Proceeding of the 3rd International
Workshop on Advances in Model-based Testing, A-MOST, pp. 44–52. ACM (2007)

16. Fourneret, E., Cantenot, J., Bouquet, F., Legeard, B., Botella, J.: SeTGaM: gen-
eralized technique for regression testing based on UML/OCL models. In: Inter-
national Conference on Software Security and Reliability, pp. 147–156. IEEE, US
(2014)

17. Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., Rothermel, G.: An empirical
study of regression test selection techniques. ACM TOSEM 10(2), 184–208 (2001)

18. Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: a sur-
vey. Robot. Auton. Syst. 94, 43–52 (2017)

19. Harman, M.: Making the case for MORTO: multi objective regression test opti-
mization. In: ICST Workshops, pp. 111–114 (2011)

20. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM TOSEM 2(3), 270–285 (1993)

21. Harrold, M.J., Jones, J.A., Li, T., Liang, D., Orso, A., Pennings, M., Sinha, S.,
Spoon, S.A., Gujarathi, A.: Regression test selection for Java software. ACM SIG-
PLAN Not. 36(11), 312–326 (2001)

22. IEEE: Systems and software engineering - Vocabulary, standard 24765:2010 (2010)
23. Jacoff, A., Huang, H.M., Messina, E., Virts, A., Downs, A.: Comprehensive stan-

dard test suites for the performance evaluation of mobile robots. In: Proc of the
10th Performance Metrics for Intelligent Systems Workshop, PerMIS 2010, pp.
161–168. ACM (2010)

24. Korel, B., Tahat, L., Vaysburg, B.: Model based regression test reduction using
dependence analysis. In: International Conference on Software Maintenance, pp.
214–223 (2002)

25. Le Traon, Y., Jeron, T., Jezequel, J., Morel, P.: Efficient object-oriented integration
and regression testing. IEEE Tran. Reliab. 49(1), 12–25 (2000)

26. Leung, H., White, L.: Insights into regression testing. In: International Conference
on Software Maintenance, pp. 60–69, October 1989

27. Malishevsky, A.G., Ruthruff, J.R., Rothermel, G., Elbaum, S.: Cost-cognizant test
case prioritization. Technical report, Department of Computer Science and Engi-
neering, University of Nebraska-Lincoln (2006)

28. Micskei, Z., Szatmári, Z., Oláh, J., Majzik, I.: A concept for testing robustness and
safety of the context-aware behaviour of autonomous systems. In: Jezic, G., Kusek,
M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol.
7327, pp. 504–513. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30947-2 55

29. NIST: Guide for Evaluating, Purchasing, and Training with Response Robots using
DHS-NIST-ASTM International Standard Test Methods (2014). https://www.nist.
gov/el/intelligent-systems-division-73500/response-robots

30. Orso, A., Do, H., Rothermel, G., Harrold, M.J., Rosenblum, D.S.: Using component
metadata to regression test component-based software. Softw. Testing Verification
Reliab. 17(2), 61–94 (2007)

31. Pilskalns, O., Uyan, G., Andrews, A.: Regression testing UML designs. In: Inter-
national Conference on Software Maintenance, pp. 254–264 (2006)

32. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing (2013). http://www.R-project.org/

33. R5-COP: Incremental testing of behaviour (2016). http://www.r5-cop.eu/media/
cms page media/35/R5-COP D34.20 v1.0 BME.pdf, d34.20 deliverable

http://dx.doi.org/10.1007/978-3-642-30947-2_55
https://www.nist.gov/el/intelligent-systems-division-73500/response-robots
https://www.nist.gov/el/intelligent-systems-division-73500/response-robots
http://www.R-project.org/
http://www.r5-cop.eu/media/cms_page_media/35/R5-COP_D34.20_v1.0_BME.pdf
http://www.r5-cop.eu/media/cms_page_media/35/R5-COP_D34.20_v1.0_BME.pdf

Model-Based Regression Testing of Autonomous Robots 135

34. R5-COP: Assessment of the On-line Verification and Incremental Testing
(2017). http://www.r5-cop.eu/media/cms page media/35/R5-COP D34.50 v1.1
BME.pdf, d34.50 deliverable

35. Rothermel, G., Harrold, M.J.: Selecting regression tests for object-oriented soft-
ware. In: International Conference on Software Maintenance, pp. 14–25. IEEE
(1994)

36. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE
Tran. Softw. Eng. 22(8), 529–551 (1996)

37. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Tran. Softw. Eng. 27(10), 929–948 (2001)

38. Soetens, Q.D., Demeyer, S.: ChEOPSJ: change-based test optimization. In: Euro-
pean Conference on Software Maintenance and Reengineering, pp. 535–538 (2012)

39. de Sousa Santos, I., de Castro Andrade, R.M., Rocha, L.S., Matalonga, S., de
Oliveira, K.M., Travassos, G.H.: Test case design for context-aware applications:
are we there yet? Inf. Softw. Technol. 88, 1–16 (2017)

40. Tengeri, D., Beszedes, A., Havas, D., Gyimothy, T.: Toolset and program reposi-
tory for code coverage-based test suite analysis and manipulation. In: 14th IEEE
International Working Conference on Source Code Analysis and Manipulation, pp.
47–52 (2014)

41. Vaysburg, B., Tahat, L.H., Korel, B.: Dependence analysis in reduction of require-
ment based test suites. In: Proceeding of the International Symposium on Software
Testing and Analysis, pp. 107–111 (2002)

42. Wu, Y., Offutt, J.: Maintaining evolving component-based software with UML. In:
European Conference on Software Maintenance and Reengineering, pp. 133–142
(2003)

43. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Testing Verification Reliab. 22(2), 67–120 (2012)

44. Zech, P., Felderer, M., Kalb, P., Breu, R.: A generic platform for model-based
regression testing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 112–126. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34026-0 9

45. Zech, P., Kalb, P., Felderer, M., Atkinson, C., Breu, R.: Model-based regression
testing by OCL. Int. J. STTT 19, 115–131 (2015)

http://www.r5-cop.eu/media/cms_page_media/35/R5-COP_D34.50_v1.1_BME.pdf
http://www.r5-cop.eu/media/cms_page_media/35/R5-COP_D34.50_v1.1_BME.pdf
http://dx.doi.org/10.1007/978-3-642-34026-0_9

Automated Tooling for the Evolving SDL
Standard: From Metamodels to UML Profiles

Alexander Kraas(B)

Software Technologies Research Group, University of Bamberg, Bamberg, Germany
Alexander.Kraas@swt-bamberg.de

Abstract. The past decade has seen much research on a model-based
language development of the Specification and Description Language
(SDL) and a corresponding Unified Modeling Language (UML) profile.
However, as far it is still not possible to derive a UML profile for SDL
automatically; instead it has to be created by hand, which is error-prone
and time-consuming.

To remedy this limitation, we present a publicly available metamodel
for SDL, which was semi-automatically generated based on SDL’s syn-
tax rules. In addition, we automatically derive a UML profile in a novel
way so that SDL’s static semantics is automatically transferred from the
metamodel.

Keywords: Metamodel · SDL · UML · Profile · Transformation

1 Introduction

Over three decades, the Specification and Description Language (SDL) [9] is
employed in the telecommunications sector for specifying communication pro-
tocols and distributed systems. With the increasing interest for Model-Driven
Engineering (MDE) approaches, several activities have been started to specify
a metamodel for SDL (e.g., [3,20]). Because a metamodel defines the syntax
and semantics of a computer language, an existing SDL metamodel would be an
important prerequisite for the model-driven language development of SDL. To
the best of our knowledge, no publicly available metamodel that embraces all
language features of SDL exists.

With the increasing popularity of the Unified Modeling Language (UML) [17],
not only has the number of available UML tools but also the size of the commu-
nity increased. In contrast to UML, however, only a small number of SDL tools
exists. Thus, the possibility of using UML tools for modelling SDL specifications
would be an asset. This can be realized by means of a so-called UML profile,
which is a standardized extension mechanism of the UML. Accordingly, the first
version of a UML profile for SDL (SDL-UML) was published by the International
Telecommunication Union (ITU) as Rec. Z.109 already in 1999 [7]. This version
only supported the specification of structural aspects, whereas the most recent
version of the profile [10] also captures the modelling of behavioural aspects and a
c© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 136–156, 2017.
DOI: 10.1007/978-3-319-68015-6_9

Automated Tooling for the Evolving SDL Standard 137

dedicated action language. However, constraints that define the static semantics
of the profile are specified in natural language only. Therefore, additional effort
is required to specify them via the Object Constraint Language (OCL) [18], so
as to enable an automatic validation of the static semantics. A further drawback
of the SDL-UML profile is that ‘Stereotypes’ 1 are only mapped to corresponding
constructs of SDL’s abstract syntax, but not to a corresponding metamodel. In
addition, this mapping is only specified in natural language, too.

This paper presents a (semi-)automatically generated and publicly avail-
able metamodel for SDL so that a model-based language development of SDL
becomes possible in the future. Apart from syntactic aspects, our metamodel
also captures the static semantics of SDL and is based on the language concepts
provided by the Meta Object Facility (MOF) [15]. Based on this foundation,
we employ our recent approach [12] for automatically deriving a UML profile
for SDL. Since the syntactic structure is preserved during profile derivation,
OCL constructs of the metamodel are transferred to the derived profile without
any manual rework. In addition, our approach can also derive Model-to-Model
(M2M) transformations that transform a domain model to a corresponding UML
model and visa versa. Hence, on the basis of our SDL metamodel we obtain, in
a highly automated manner, a UML profile for SDL as well as associated M2M
transformations, thus enabling model-based language development of SDL.

The remainder of this paper is structured as follows. The next section intro-
duces our derivation approach at an abstract level, while its details are presented
in Sects. 3 to 5. The results of our approach and related work are discussed in
Sects. 6 and 7. Finally, our conclusions and suggestions for future work are given
in Sect. 8.

2 Background: Derivation Approach in a Nutshell

We recently developed a new approach for the automatic derivation of UML
profiles, additional metaclasses and model transformations based on a single
metamodel [12]. Before we discuss the application of our approach to SDL, this
section gives a brief overview of our overall approach.

The central artefact for all derivations is a MOF-based metamodel for SDL
(MMSDL in Fig. 1), which is generated in Step (A) based on SDL’s abstract
syntax rules. To reduce the effort for a manual refinement of MMSDL, we reuse
‘Abstract Concepts’ defined by the metamodel MMAC . These concepts define
basic language features, for instance ‘inheritance’ and ‘namespaces’, so that they
can be considered as common building blocks of many different computer lan-
guages. In contrast to [3], we use annotated syntax rules to generate the meta-
model.

Since we create MOF-based metamodels, we define a dedicated annotation
type for each language concept (e.g., ‘Generalization’) of the MOF, whereby each
annotation triggers a specific mapping action when generating our metamodel.
1 Names within quotation marks and written in italic style refer to UML elements or

attributes as specified by the UML Superstructure [17].

138 A. Kraas

Fig. 1. Transformations and their derived artefacts.

Among other purposes, the annotations are employed for defining inheritance
relationships to the ‘Abstract Concepts’, because each concept is represented by
a particular metaclass of MMAC . Thereby, we obtain more sophisticated meta-
models when compared to pure syntax rules without any additional mapping
information.

Before the generated MMSDL can be used as input for Steps (B)–(E), it has
to be manually refined. In particular, we have to specify OCL constraints to meet
SDL’s static semantics. Thereafter, we automatically derive the UML Profile
for SDL (UPSDL) and additional metaclasses (MMV S) in Steps (B) and (C).
The derivation of such metaclasses may be an option if stereotypes cannot be
utilized due to their restrictions as defined by the UML [17]. We employ the
additional metaclasses contained in MMV S to represent SDL’s expression and
value specifications. In the present case, these kind of metaclasses extend the
‘ValueSpecification’ metaclass of UML. Since the input and output artefacts of
Steps (B) and (C) are models, we realize both derivations by two Model-to-Model
(M2M) transformations, which are implemented using the operational language
of the Query/View/Transformation (QVT) specification [14].

In Steps (D) and (E), QVT operational code for the M2M transformations
TUML-to-SDL and TSDL-to-UML is generated; this transforms a UML model to
an SDL model and vice versa. We utilize two dedicated Model-to-Text (M2T)
transformations that are implemented with the MOF M2T Language (MTL) [13]
to generate the QVT code.

3 A New Metamodel for SDL

In this section, we explain the semi-automatic generation of a metamodel for
SDL, which is a prerequisite for the derivation of a corresponding UML profile.
This metamodel is generated based on the abstract syntax rules of SDL.

Automated Tooling for the Evolving SDL Standard 139

3.1 The ‘Abstract Concepts’ Used for the SDL Metamodel

The metamodel MMAC holds a key role for our entire derivation approach,
because generated metaclasses of MMSDL inherit from the ‘Abstract Concepts’.
An important prerequisite for MMAC is that it has to ‘match’ with a subset of
MMUML. Otherwise, a mapping of MMSDL to a UML profile is impossible. We
consider a metamodel MMAC to be ‘matching’ with MMUML, if for each meta-
class of MMAC , a corresponding UML metaclass is present. Furthermore, it is
required that each attribute of a metaclass in MMAC has a corresponding UML
metaclass attribute. However, since we assume that only required features are
employed to define a metamodel for a DSL of interest, an MMAC metaclass can
have an equal or lesser number of attributes than its matching UML counter-
part. Our language-specific selection of MMAC metaclasses and of their features
prevents the creation of syntactically invalid models; for the same reason, the
entire UML metamodel should never be used instead of a customized MMAC .

Because MMAC shall ‘match’ with MMUML, we consider the creation of
MMAC from scratch to be too error-prone and expensive. Another option is
to use the MOF or the UML Infrastructure Library [16]. As their metaclasses
are primarily employed in MMUML to define the ‘Kernel’ package, they could
also be reused to create an MMAC that only supports ‘structural’ language
concepts. Because of SDL’s different state machine types for the behavioural
modelling, a generic concept for specifying state machines should be present
as an ‘Abstract Concept’. Hence, we considered the reuse of some metaclasses
contained in MMUML as the most appropriate option for manually creating
MMAC for SDL. Apart from this approach, the ‘package merge’ mechanism of
UML could be utilized for an automatic generation. We have not employed this
mechanism because not every feature of a UML metaclass is required for defining
the SDL metamodel.

In our MMAC for SDL, we reuse some metaclasses of the ‘Classes’ package
of MMUML to support the modelling of structural aspects. In addition, we
employ metaclasses of the ‘State Machines’, the ‘Activities’ and the ‘Common
Behaviors’ packages of MMUML to facilitate the specification of behavioural
aspects. In total, we utilize 43 metaclasses of MMUML to define the ‘Abstract
Concepts’.

An example of the employed ‘Abstract Concepts’ for SDL is given in Fig. 2,
which shows a modified UML ‘StateMachine’ in [17]. This ‘Abstract Concept’
specifies the basic language concepts required for defining the SDL Procedure-
definition and Composite-statetype-definition. To obtain this ‘StateMa-
chine’ variant, we have removed all language features that are not required for
SDL. An example for this is the metaclass AC_State, which has a lower number
of features compared to its corresponding UML metaclass State. An SDL state
only supports the invocation of an activity when it is entered or exited, but not
when the state machine remains in the state. Thus, among other features, we
have removed the doActivity feature from the AC_State metaclass.

140 A. Kraas

Fig. 2. The ‘Abstract Concept’ for a state machine in SDL. Details concerning attribute
subsetting and redefinition are omitted here.

3.2 From Syntax Rules to an ‘Initial’ Metamodel

Because we use SDL’s abstract syntax rules to generate an ‘initial’ metamodel,
our employed notation for syntax rules is aligned to that specified in ITU-T Rec.
Z.111 [8]. In addition, this notation is supplemented with particular annotations
that are aligned to language concepts provided by the MOF [15]. The concrete
syntax of our notation is shown in Fig. 3, where we distinguish between two differ-
ent kinds of syntax rules: a Definition-rule defines a particular non-terminal
node, whereas an Equivalence-rule is used to introduce an alias definition. If
an Equivalence-rule is referenced on the right-hand side of another rule, this
reference is replaced by the content of the Equivalence-rule. Apart from the
Name, each Rule may consist of an Expression and a set of Annotations. A
RuleAnnotation is applicable to syntax rules, whereas an ExpAnnotation can
be employed to Expression nodes.

Automated Tooling for the Evolving SDL Standard 141

Fig. 3. Concrete syntax of the syntax rule notation.

On a high level of abstraction, a Rule is mapped to a corresponding metaclass
(i.e., ‘Class’) of a metamodel. The ‘name’ of the metaclass is derived from
the Name of a Rule. Furthermore, an Expression of a Rule is mapped to an
‘ownedAttribute’ (i.e., a ‘Property’) of the generated metaclass. The ‘type’ and
the multiplicity of a ‘Property’ depends on the employed Expression type. Apart
from these mappings, also different kinds of Annotations are evaluated, because
they trigger particular mapping actions during the metamodel generation.

To make our mapping more comprehensible, we illustrate it on the example
of an annotated syntax rule for the SDL Procedure-definition. As shown
in Fig. 4, this rule has a ‘generalized class’ annotation, specifying that the
generated metaclass shall inherit from AC_StateMachine. The two ‘constraint’
annotations are mapped to corresponding ‘Constraint’ elements of the generated
metaclass ProcedureDefinition. Furthermore, all Expression items of the rule
are mapped to corresponding ‘ownedAttributes’ of the generated metaclass. Each
Expression with a ‘redefined property’ or ‘subsetted property’ annotation
is mapped to an ‘ownedAttribute’ that redefines/subsets the attribute specified
by the annotation. For instance, the mapped procedureIdentifier redefines
the superClass attribute of AC_Class.

Although the ‘type’ of an ‘ownedAttribute’ depends on the Expression, this
can explicitly be overridden by the ‘compositetype’ and ‘referenced rule’
annotations. Such an annotation is always required when an Expression repre-
sents an SDL identifier that refers to a type definition. This is because identifiers
in SDL’s abstract syntax are handled as simple strings, whereas they can be real-
ized as references in metamodels.

142 A. Kraas

Fig. 4. Annotated abstract syntax rule of SDL’s Procedure-definition and its cor-
responding metaclass in MMSDL.

Automated Tooling for the Evolving SDL Standard 143

Based on 180 syntax rules of SDL, which consist of 93 DefinitionRules and
87 EquivalenceRules, we generated 102 metaclasses. The lower number of meta-
classes in comparison to the number of syntax rules is caused by the fact that
some EquivalenceRules only represent alias definitions that are removed auto-
matically. Since not only generated metaclasses but also metaclasses of MMAC

are contained in MMSDL, our SDL metamodel consists in total of 145 meta-
classes.

3.3 Steps Towards the Final Metamodel

Although many aspects of a metamodel for SDL can be derived automatically
by our approach, this does not apply for ‘constraint’ annotations. This anno-
tation type can only be specified in terms of plain text that is copied to a corre-
sponding ‘Constraint’ element. Hence, the OCL specification of a ‘Constraint’
has to be implemented manually. In the case of SDL, the static semantics is
defined in terms of a first-order predicate logic that can be translated manu-
ally to OCL as proposed in [20]. We employ a similar approach to implement
the OCL ‘Constraints’ for our SDL metamodel. However, a simplification of the
OCL specifications can be achieved due to the use of inherited helper operations
and attributes of the ‘Abstract Concepts’. For instance, consider Constraint_1
(see Fig. 4) that is translated to OCL as follows:

self.specification <> null implies
self.allOwnedElements()->select(oclIsKindOf(StateNode))->isEmpty()

In the first line of the OCL constraint, we determine whether a ProcedureDefi-
nition defines the behaviour of an SDL operation. Instead of a complex OCL
expression, we can employ the inherited specification attribute for this pur-
pose. Furthermore, we use the inherited operation allOwnedElements() to
retrieve all elements owned by a ProcedureDefinition. Then, we only have
to check whether these members do not contain any StateNode. In total, we
have manually specified 204 OCL ‘Constraints’ to capture the static semantics
of SDL. According to the same approach, we have also implemented several OCL
helper operations and the ‘defaultValues’ of derived attributes.

Apart from OCL specifications, another refinement of the generated meta-
model concerns the ‘opposite’ feature of an ‘ownedAttribute’ that is defined in
terms of an ‘Association’. In this case, the ‘opposite’ feature is derived from
the opposite end of an ‘Association’. In case of an ‘ownedAttribute’ redefines or
subsets another ‘Property’, the ‘opposite’ feature also has to redefine or subset
another ‘Property’ in an appropriate manner. Although this kind of refinement
could be implemented by our notation, it is a design decision that a manual
refinement shall be done in MMSDL. Because in this case, we can utilize the
build-in functionalities of a modelling tool to evaluate constraints of the MOF
concerning ‘Associations’.

144 A. Kraas

4 The Automatically Derived UML Profile for SDL

In this section, we discuss the application of our approach to automatically derive
a UML profile for SDL based on our finalized SDL metamodel.

4.1 Enrichment of the SDL Metamodel

Our UML profile derivation of UPSDL is based on the assumption that meta-
classes of a source metamodel (MMSDL) can be categorized into three disjoint
sets of metaclasses. The first set consists of the ‘Abstract Concept’ metaclasses
MCAC , which can be identified by the common name prefix ‘AC_’. Because these
metaclasses have a ‘matching’ counterpart in MMUML, they are not mapped to
any other kind of element during the profile derivation. The second set embraces
all metaclasses that are mapped to ‘Stereotypes’ of UPSDL, and which are
marked with a «ToStereotype» stereotype. We use the term MCSt to refer to
a metaclass of this set. Finally, the third set consists of all metaclasses that are
mapped to ‘additional metaclasses’ contained in the derived metamodel MMV S ,
and which have a «ToMetaclass» stereotype applied. We refer to a metaclass of
this set by using the term MCAMC .

After the classification, our metamodel MMSDL is partitioned in 71 MCSt,
35 MCAMC and 43 MCAC metaclasses. We utilize the MCAMC metaclasses
to represent SDL’s value and expression specifications. Even though stereotypes
could be used for this purpose, we employ the same approach as applied in
Z.109 [10] so as to preserve the comparability.

4.2 Automatic Derivation of the UML Profile

Stereotype derivation: According to our approach, each of the 71 MCSt meta-
classes of MMSDL is mapped to a corresponding ‘Stereotype’ contained in the
UML profile UPSDL. In addition, if an MCSt directly inherits from a MCAC ,
we introduce an ‘Extension’ relationship between a derived ‘Stereotype’ and a
metaclass of MMUML. For example, see the ProcedureDefinition metaclass
shown in Fig. 4 and its mapped «ProcedureDefinition» ‘Stereotype’ depicted
in Fig. 5. When an MCSt inherits from another MCSt, we introduce a ‘Gener-
alization’ instead of an ‘Extension’. For example, see the DataTypeDefinition
metaclass and its derived «DataTypeDefinition» ‘Stereotype’.

Mapping of attributes: Each ‘ownedAttribute’ of an MCSt metaclass is
mapped to a corresponding ‘ownedAttribute’ of a ‘Stereotype’. During this map-
ping, the ‘type’ property of an attribute is recomputed so that it never refers to
a ‘Stereotype’ of UPSDL. Instead, the recomputed ‘type’ of a mapped attribute
refers to a metaclass or data type contained in MMUML or MMV S . Hence,
the ‘type’ properties of all ‘ownedAttributes’ of the «ProcedureDefinition»
‘Stereotype’ shown in Fig. 5 are recomputed. Apart from the ‘type’ property,
all other properties of an ‘ownedAttribute’ of a MCST metaclass are usually
mapped unchanged.

Automated Tooling for the Evolving SDL Standard 145

According to the UML [17], a ‘Stereotype’ is not permitted to inherit from
a UML metaclass. Therefore, ‘ownedAttributes’ of a UML metaclass cannot be
subsetted or redefined by ‘Stereotype’ attributes. Hence, when the ‘redefined-
Property’ or ‘subsettedProperty’ of an ‘ownedAttribute’ of a MCST refers to an
attribute of an MCAC , we map this ‘ownedAttribute’ to a read-only and derived
‘ownedAttribute’ of a ‘Stereotype’. In addition, we generate OCL expressions
that define the ‘defaultValue’ properties of these attributes, so that their val-
ues can be computed at runtime. For instance, the procedureIdentifier and
the procedureDefinition attributes of the «ProcedureDefinition» ‘Stereotype’
shown in Fig. 5 are mapped in this way.

OCL Expressions: The generated OCL expressions for the ‘defaultValue’ prop-
erties always consist of three different parts. The first part is used for navigating
to the source attribute. Then, the required items are selected in the second part
of the expression. Finally, we type-cast the selected items to match the ‘type’
and the cardinality of a ‘Stereotype’ attribute. For instance, the ‘defaultValue’
of the «ProcedureDefinition» ‘Stereotype’ is defined as follows:

self.base_StateMachine.ownedBehavior
->select(isStereotypedBy(’SDLUML::ProcedureDefinition’))
.oclAsType(UML::StateMachine)->asSet()

OCL Constraints: We introduce an OCL ‘Constraint’ for each ‘ownedAt-
tribute’ of a UML metaclass that is used as source for a value computation,
as discussed before. The aim is to ensure that the content of these attributes

Fig. 5. The derived «ProcedureDefinition» stereotype.

146 A. Kraas

is compliant to the static semantics as defined by the SDL metamodel. The
first part of such a ‘Constraint’ consists of a navigation to the attribute under
consideration. In the second part, we test that only expected items can be
contained in the attribute. For instance, the following ‘Constraint’ ensures
that the ownedBehaviour attribute of a StateMachine instance only contains
«CompositeStateTypeDefinition» and «ProcedureDefinition» items.

self.base_StateMachine.ownedBehavior->notEmpty() implies
self.base_StateMachine.ownedBehavior->forAll(
isStereotypedBy(’SDLUML::CompositeStateTypeDefinition’)
or isStereotypedBy(’SDLUML::ProcedureDefinition’))

In total, 139 OCL expressions for ‘defaultValues’ and 73 additional ‘Con-
straints’ are introduced during our derivation of the UML profile for SDL.
Additional metaclasses: In addition to the UML Profile for SDL, we also
derive ‘Additional Metaclasses’ that are contained in the MMV S metamodel.
These metaclasses are derived based on the 35 MCAMC metaclasses of the
MMSDL metamodel. A high-level overview of the derived metaclasses is
given in Fig. 6. As shown, all metaclasses of MMV S inherit from the UML
ValueSpecification metaclass. The UML profile for SDL cannot be used with-
out these metaclasses, because their instances are employed to specify concrete
values and expressions.

4.3 Update of Existing OCL Expressions

As explained in Sect. 3.3, we have introduced OCL expressions to define ‘Con-
straints’, the behaviour of ‘Operations’, and the ‘defaultValue’ of ‘Properties’.
These OCL expressions cannot be transferred one-to-one from MMSDL to its
corresponding UML profile UPSDL because, according to the UML [17], a
stereotype and its extended metaclass exist as separate instances in a UML

Fig. 6. High level overview of the ‘Additional Metaclasses’ for representing SDL’s values
and expressions.

Automated Tooling for the Evolving SDL Standard 147

model. Hence, the UML provides two implicitly defined properties to navigate
between metaclass and stereotype instances: the ‘extension_<stereotype>’ prop-
erty is used to navigate from a metaclass to an applied stereotype, whereas the
‘base_<metaclass>’ property is used for the opposite direction. Accordingly,
OCL expressions of MMSDL have to be updated before UPSDL can be derived.

Since OCL expressions are only present as textual notations, they cannot be
processed by the M2M-transformation that implements Step (B) of our overall
approach. Instead, we implement the update by using an OCL parser and a
pretty printer. Before UPSDL is derived from MMSDL, an Abstract Syntax Tree
(AST) is generated by the parser for each OCL expression in MMSDL. This AST
consists of different types of nested OCL expressions, as specified in [18]. Every
OCL expression of an AST is then visited by the pretty printer in order to
perform the update. During this visit, the AST is converted back to its textual
notation and the update is performed. Because OCL was specified by means of a
metamodel, someone could argue that the ‘update’ of OCL expressions could also
be realized by employing an M2M transformation. Before we implemented the
current approach, we analysed such a solution, and evaluated it as infeasible. Due
to an existing problem of OCL Pivot, parsed OCL expressions can be stored as an
OCL model, but when this model is loaded afterwards, not all referenced classes
and data types can be resolved; however, this is a prerequisite for processing
models by an M2M transformation.

In the following, we explain the OCL update on the example of Constraint_1
(see Sect. 3.3), which is introduced for the ProcedureDefinition metaclass
of MMSDL. After the profile derivation, the «ProcedureDefinition» stereotype
extends the StateMachine of MMUML as shown in Fig. 5. In addition, this
stereotype owns the updated Constraint_1, and the StateMachine metaclass
of MMUML owns the specification attribute and the allOwnedElements()
operation. Since the «ProcedureDefinition» stereotype does not inherit features
of the StateMachine metaclass, the property navigation ‘base_StateMachine’
has to be introduced during the update. This is used to navigate from the stereo-
type instance to the metaclass instance. After the update, Constraint_1 of the
«ProcedureDefinition» stereotype is defined as follows:

self.base_StateMachine.specification <> null implies
self.base_StateMachine.allOwnedElements()
->select(isStereotypedBy(‘SDLUML::StateNode’))->isEmpty()

Apart from the additional navigations as argued above, also other OCL
expression types have to be updated. In the last line of the constrained shown
above, the isStereotypedBy() operation replaces the predefined OCL operation
oclIsKindOf(). However, the update is only performed if the oclIsKindOf()
operation is used to determine whether the result type of an OCL expression
matches a given MCST metaclass, e.g., StateNode. In the same manner, we
replace the oclIsTypeOf() operation with the isStrictStereotypedBy() oper-
ation. Because both introduced operations are custom-specific, they have to be
implemented by the employed OCL tool.

148 A. Kraas

5 Derivation of M2M Transformations

As argued in Sect. 2, we cannot only derive a UML profile for SDL but also
M2M transformations that can be employed to transform an SDL model to a
corresponding UML model (TSDL-to-UML) and vice versa (TUML-to-SDL). How-
ever, an important prerequisite is that MMSDL is created by reusing ‘Abstract
Concepts’; otherwise, the transformations could not be derived based on a sin-
gle metamodel. We utilize two M2T transformations to generate source code for
QVT’s operational language [14].

5.1 Common Concepts

In general, both derived transformations TSDL-to-UML and TUML-to-SDL shall
implement a rewrite system so that an entire input model can be mapped to a
corresponding output model. Therefore, based on each metaclass of MMSDL,
we generate a dedicated mapping operation for both transformations. In detail,
the following kinds of mapping operations are introduced for each abstract and
non-abstract metaclass:

– A disjunct mapping operation is introduced for each abstract metaclass. Such
an operation consists of an ordered list of operation calls for all mapping
operations introduced for subclasses of the abstract metaclass.

– A mapping operation with a specific operation body is generated for each
non-abstract metaclass. The body contains the rules for the mapping of all
owned and inherited metaclass attributes.

5.2 Transformation for Mapping a SDL to a UML Model

An important requirement for the mapping of elements of an SDL model (MSDL)
to corresponding elements of a UML model (MUML) is that also ‘Stereotypes’
have to be applied during the transformation. Therefore, we generate an opera-
tion that implements the mapping of a metaclass instance, and another operation
that creates and applies a ‘Stereotype’ instance (see Fig. 7).
Mapping to a UML element: Only a particular set of attributes is processed
by a mapping operation that maps a model element of MSDL to a corresponding
element of MUML. We determine this set (Attrel) from the sets of inherited
attributes (Attinh) and owned attributes (AttOwned) of an MCSt in MMSDL as
follows:

– Take those attributes of Attinh that are not specified as ‘read-only’ and that
are not redefined or subsetted by any other attribute.

– In addition, take those attributes of Attinh that are redefined or subsetted by
at least one attribute contained in AttOwned.

We have to take into account the last mentioned attribute category for the
element mapping, because these attributes are employed to compute the values

Automated Tooling for the Evolving SDL Standard 149

Fig. 7. Example mapping operations for mapping an SDL ProcedureDefinition to a
UML ‘StateMachine’ having applied the «ProcedureDefinition» stereotype.

of ‘derived’ stereotype attributes at runtime. After having determined Attrel
according to the above rules, an assignment statement in the operation body
is generated for each attribute of Attrel. An example of a generated mapping
operation is given in Fig. 7. The shown toStateMachine() operation is used to
map a ProcedureDefinition instance to a corresponding UML ‘StateMachine’
instance.
Mapping to a ‘Stereotype’ : Because most of the attributes of an element in
MDomain are processed by the mapping operations discussed before, only a small
set of attributes remains. These attributes are mapped by a stereotype-specific
mapping operation, because first a ‘Stereotype’ instance has to be created before
values can be assigned to stereotype attributes.

We determine the set of relevant attributes Attrel based on the set of owned
attributes AttOwned of an MCSt metaclass in MMSDL. As argued before, an

150 A. Kraas

attribute att’ of a ‘Stereotype’ is defined as ‘read-only’ and ‘derived’, if the
corresponding attribute att of an MCSt redefines or subsets an attribute of an
MCAC . As no values can be assigned to ‘read-only’ attributes, such attributes
have not to be regarded for the mapping of a ‘Stereotype’ instance. Therefore,
the Attrel set only consists of AttOwned attributes that do not redefine or subset
any attribute of an MCSt.

The body of a mapping operation for a ‘Stereotype’ comprises two parts, see
the applyStereotypeForProcedureDefinition() operation of Fig. 7 as exam-
ple. The first part is utilized to create the stereotype instance, while the second
part consists of value assignments that are generated based on Attrel. Because
the derived «ProcedureDefinition» stereotype shown in Fig. 5 has only one ‘read-
only’ attribute, exactly one attribute is mapped in the body of the applyStereo-
typeForProcedureDefinition() operation.

5.3 Transformation for Mapping a UML Model to a SDL Model

The common concepts discussed before also apply with regard to the generated
transformation TUML-to-SDL. However, an important difference to TSDL-to-UML

is that only one mapping operation for a particular MCSt in MMSDL is gen-
erated (see Fig. 8). This is because a ‘Stereotype’ instance that is associated
with a particular UML element instance already exists. Thus, both instances
are directly accessible from the same mapping operation, which consists of the
following two parts:
Mapping of stereotype attributes: The attribute values of a ‘Stereotype’
instance are mapped in the first part of the mapping operation. The set of
relevant attributes Attrel is determined based on the set of owned attributes
AttOwned of an MCSt metaclass in MMSDL. As a value assignment to ‘read-
only’ attributes is impossible, we take only those attributes of AttOwned that are
not specified as ‘read-only’. The generated code for Attrel is shown in the upper
part of Fig. 8, where all attributes of the «ProcedureDefinition» stereotype are
mapped to their corresponding attributes of an SDL ProcedureDefinition.
Mapping of metaclass attributes: Attribute values of an element of MUML

towards a corresponding attribute of an element of MDomain are processed in the
second part of the mapping operation. We determine the set of relevant attributes
Attrel from the set of inherited attributes Attinh of an MCSt in MMSDL by
taking only those attributes into account that are not mapped to attributes of a
‘Stereotype’. Then, all those attributes that are redefining or subsetting an MCSt

attribute are removed from Attrel, because these attributes are already processed
in the first part of the mapping operation. Finally, an assignment statement is
generated for each attribute in Attrel.

Automated Tooling for the Evolving SDL Standard 151

Fig. 8. Example operation that maps a UML ‘StateMachine’ and its associated «Pro-
cedureDefinition» instance to a corresponding SDL ProcedureDefinition.

6 Discussion

The above has discussed how to employ our most recent approach [12] to derive a
metamodel and a corresponding UML profile for a computer language. Since the
metamodel and the profile exist only in terms of UML class models, we cannot
utilize them for a modelling tool without an implementation. Thanks to the
code generation facilities of the Model Development Tools (MDT)2 for Eclipse,
we could generate the required code automatically. Thus, we have executable
Eclipse plug-ins that provide a tree-based editor for SDL models and a runnable
version of the UML profile. This profile can be applied to UML models that are
created with the tree-based UML editor of Eclipse or with Papyrus3, which is
an Eclipse-based graphical UML modelling tool.

An example of the previously discussed SDL ‘Procedure Definition’ is given
in Fig. 9. It shows the SDL model (Part A) and a corresponding UML model
(Parts B/C). Although the presentation form is different, Parts B and C repre-
sent the same UML model. We have created the UML model with Papyrus in a
graphical manner, and the outcome is represented by Part C. Due to the graph-
ical representation, not all model parts can be displayed so that we additionally
provide the tree-based representation, which is depicted as Part B in Fig. 9. Our
2 https://eclipse.org/modeling/mdt/.
3 https://eclipse.org/papyrus/.

https://eclipse.org/modeling/mdt/
https://eclipse.org/papyrus/

152 A. Kraas

Fig. 9. SDL model and a corresponding UML model with applied UML profile for
SDL. Both models represent the same SDL procedure definition.

example implements a trivial operation for accumulating two integer numbers.
Thus, the procedure graph only consists of a ‘Procedure Start Node’ with a
‘Transition’ to a terminating ‘Value Return Node’. The effect of the ‘Transition’
is an ‘Assignment’ statement, which assigns the calculated value to a result vari-
able. Even though we are able to create an SDL specification by means of a UML
model, the definition of expressions is currently tedious, because each expression
instance has to be modelled explicitly. Hence, a dedicated textual notation would
be much better suited for this purpose. An example for such an expression is the
‘OperationApplication’ shown in Part B of Fig. 9.

As discussed, we apply a particular mapping for redefined or subsetted meta-
class attributes, so that the values for their corresponding stereotype attributes
can be computed at runtime. For example, this applies for all attributes of the
«ProcedureDefinition» stereotype shown in Part D of Fig. 9. Thanks to our auto-
matic derivation approach, we can also transfer all OCL constraints and expres-
sions of our SDL metamodel to the derived UML profile for SDL. Thus, we
are able to directly validate the static semantics of an SDL specification with
Papyrus or with the tree-based UML editor. Hence, we do not have to trans-
form the UML model to a corresponding SDL model before it can be validated.
Another advantage of our UML profile for SDL is that we do not have to imple-
ment SDL-specific diagrams, because we can use those of the UML. Even though

Automated Tooling for the Evolving SDL Standard 153

we see advantages in a UML-based modelling of SDL specifications, this does
not apply for the generation of executable code or the model export. In our point
of view, this should always be based on SDL models, which could be obtained
by applying the transformation TUML-to-SDL (see Sect. 5).

We have made the discussed SDL metamodel, the derived UML profile,
the associated M2M transformations, and the components that implement our
derivation approach publicly available [22]. Thus, these artefacts can serve as
input for future standardization activities. Even though a SDL metamodel is
not of interest, an automatic derivation of a future UML profile for SDL would
be an asset for standardization, because it is less error-prone and much more
efficient than a manual specification.

7 Related Work

In the first part of this section, related works concerning metamodels and UML
profiles for SDL are discussed. Generic derivation approaches for UML profiles
are treated in the second part.
Metamodels and UML profiles for SDL. The general relation between
context-free grammars and metamodels is studied by Alanen and Porres in [1].
By applying their algorithm, an ‘initial’ metamodel can be automatically derived
from the syntax rules of a computer language. The Text-to-Model transforma-
tion framework XText4 implements a similar approach [2]. Yet another approach
is introduced by Fischer et al. in [3,21], where ‘Abstract Concepts’ are employed
to reduce the effort for a manual rework of the generated metamodel for SDL.
However, the relations between ‘Abstract Concepts’ and generated metaclasses
have to be modelled by hand. As points for further improvements, Fischer et al.
identify the usage of concepts provided by the UML and of behavioural concepts,
which we do here. Among other aspects, the static and dynamic semantics of
a SDL metamodel is analysed by Prinz et al. [20] and by Scheidgen [21]. Both
propose to define the static semantics in terms of OCL constraints, whereas the
ASM formalism [20] or a dedicated action language [21] are used to formalize the
dynamic semantics. Although many aspects are covered, the automatic deriva-
tion of a UML Profile for SDL is not considered in [20,21]. This gap is closed by
our research.

A formalization of the existing UML profile for SDL, as specified in Z.109 [10],
is analysed by Grammes in [6]. He proposes to create OCL constraints to cap-
ture the static semantics which is currently specified in natural language only.
However, this approach does not ensure that the given descriptions match with
the static semantics of SDL. Furthermore, Grammes proposes to formalize the
relation between UML and SDL elements by a mapping to the abstract syntax of
SDL. Because this is not based on a metamodel, standardized MDE technologies
such as M2M transformations are not applicable. As an alternative to the stan-
dardized UML profile for SDL, the UML profile for ‘communicating systems’ is

4 https://eclipse.org/Xtext/.

https://eclipse.org/Xtext/

154 A. Kraas

proposed by Werner in [23]. The static semantics of this UML profile is defined
in terms of OCL constraints, and a mapping to the abstract syntax of SDL is
specified by employing eXtensible Stylesheet Language Transformations (XSLT).
However, the same restrictions as for [6] apply.

The identified limitations concerning the formalisation of a UML profile for
SDL can be remedied by applying our derivation approach as presented here.
Instead of manually creating a UML profile for SDL, we can automatically derive
this profile. Based on this foundation, we can also automatically transfer the
OCL-defined static semantics from the source metamodel to the derived UML
profile. In addition, we can derive M2M transformations that transform an SDL
domain model to a corresponding UML model and vice versa.
Generic approaches to deriving UML profiles. The most closely related
approaches to ours are [4,5,19,24], which also derive a UML profile from an
existing metamodel for a DSL. Their commonality is that, in addition to the
metamodel, mapping rules have to be provided as input for the profile deriva-
tion. Depending on the approach, this is realized in terms of so called ‘Inte-
gration Metamodels’ or ‘Mapping Models’. In contrast, our approach expects
metamodels as input for the derivation of UML profiles, which enable the reuse
of ‘Abstract Concepts’ as proposed in [3,21]. Since ‘Abstract Concepts’ are a
subset of the metaclasses contained in the UML metamodel, not all aspects of
a computer language have to be modelled from scratch. Furthermore, due to
the correlation between ‘Abstract Concepts’ and UML metaclasses, no mapping
rules must explicitly be defined in our approach. Equally important and in con-
trast to us, the related works do not treat the generation of OCL expressions
and constraints for ‘subsetted’ or ‘redefined’ attributes, and do not address an
automated transfer of the static semantics towards a UML profile.

8 Conclusions and Future Work

This paper presented our semi-automatically generated SDL metamodel and a
corresponding automatically derived UML profile. Whereas we spent months
to generate previous versions of SDL’s UML profile by hand [10], our new and
highly automated approach required only some weeks. Since our metamodel,
UML profile and our employed tool-chain are publicly available [22], they can
be used as input for future standardization activities so that a model-driven lan-
guage development of SDL can finally become reality. Due to space constraints,
we could not present more details concerning the derived M2M transformations
here, but the interested reader can download them from [22], too.

Regarding future work we wish to use our SDL metamodel and UML pro-
file for implementing a new version of our SDL-UML Modeling and Validation
(SUMoVal) framework [11].

Acknowledgments. We thank Gerald Lüttgen of the Software Technologies Research
Group at the University of Bamberg, Germany, for several discussions and comments
on the paper’s topic. Furthermore, we also thank the reviewers for their many valuable
remarks.

Automated Tooling for the Evolving SDL Standard 155

References

1. Alanen, M., Porres, I.: A relation between context-free grammars and meta object
facility metamodels, Turku Centre Comput. Sci., Finland, Technical report 606
(2004)

2. Efftinge, S., Völter, M.: oAW xText: a framework for textual DSLs. In: Modeling
Symposium at Eclipse Summit, vol. 32, pp. 118–121 (2006). eclipsecon.org

3. Fischer, J., Piefel, M., Scheidgen, M.: A metamodel for SDL-2000 in the context of
metamodelling ULF. In: Amyot, D., Williams, A.W. (eds.) SAM 2004. LNCS, vol.
3319, pp. 208–223. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31810-1_14

4. Giachetti, G., Marín, B., Pastor, O.: Integration of domain-specific modelling lan-
guages and UML through UML profile extension mechanism. Int. J. Comput. Sci.
Applicat. 6(5), 145–174 (2009)

5. Giachetti, G., Marín, B., Pastor, O.: Using UML as a domain-specific model-
ing language: a proposal for automatic generation of UML profiles. In: van Eck,
P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 110–124.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02144-2_13

6. Grammes, R.: Syntactic and semantic modularisation of modelling languages.
Ph.D. thesis, Department of Computer Science, TU Kaiserslautern, Germany
(2007)

7. ITU-T: Recommendation Z.109: Specification and Description Language - SDL
combined with UML. International Telecommunication Union (1999)

8. ITU-T: Recommendation Z.111: Notations and guidelines for the definition of ITU-
T languages. International Telecommunication Union (2008)

9. ITU-T: Recommendation Z.100: Specification and Description Language -
Overview of SDL-2010. International Telecommunication Union (2016)

10. ITU-T: Recommendation Z.109: Specification and Description Language - Unified
Modeling Language profile for SDL-2010. International Telecommunication Union
(2016)

11. Kraas, A.: Towards an extensible modeling and validation framework for SDL-
UML. In: Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS,
vol. 8769, pp. 255–270. Springer, Cham (2014). doi:10.1007/978-3-319-11743-0_18

12. Kraas, A.: On the automated derivation of domain-specific UML profiles. In:
Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol. 10376, pp. 3–19.
Springer, Cham (2017). doi:10.1007/978-3-319-61482-3_1

13. OMG: MOF Model to Text Transformation Language - Version 1.0. Object Man-
agement Group (2008)

14. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
- Version 1.1. Object Management Group (2011)

15. OMG: OMG Meta Object Facility (MOF) Core Specification - Version 2.5. Object
Management Group (2011)

16. OMG: OMG Unified Modeling Language (OMG UML), Infrastructure, Version
2.4.1. Object Management Group (2011)

17. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1. Object Management Group (2011)

18. OMG: Object Constraint Language - Version 2.4. Object Management Group
(2014)

19. Pastor, O., Giachetti, G., Marín, B., Valverde, F.: Automating the interoperability
of conceptual models in specific development domains. Domain Engineering: Prod-
uct Lines. Languages, and Conceptual Models, pp. 349–373. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36654-3_14

http://eclipsecon.org/
http://dx.doi.org/10.1007/978-3-540-31810-1_14
http://dx.doi.org/10.1007/978-3-642-02144-2_13
http://dx.doi.org/10.1007/978-3-319-11743-0_18
http://dx.doi.org/10.1007/978-3-319-61482-3_1
http://dx.doi.org/10.1007/978-3-642-36654-3_14

156 A. Kraas

20. Prinz, A., Scheidgen, M., Tveit, M.S.: A model-based standard for SDL. In: Gaudin,
E., Najm, E., Reed, R. (eds.) SDL 2007. LNCS, vol. 4745, pp. 1–18. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74984-4_1

21. Scheidgen, M.: Description of languages based on object-oriented meta-modelling.
Ph.D. thesis, Math.-Natural Sci. Dept. II, HU Berlin, Germany (2009)

22. SDL-UML Modeling and Validation (SU-MoVal) framework homepage. http://
www.su-moval.org/. Accessed 24 Feb 2017

23. Werner, C., Kraatz, S., Hogrefe, D.: A UML profile for communicating systems.
In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, pp. 1–18. Springer,
Heidelberg (2006). doi:10.1007/11951148_1

24. Wimmer, M.: A semi-automatic approach for bridging DSMLs with UML. Int. J.
Web Inform. Sys. 5(3), 372–404 (2009)

http://dx.doi.org/10.1007/978-3-540-74984-4_1
http://www.su-moval.org/
http://www.su-moval.org/
http://dx.doi.org/10.1007/11951148_1

An Automated Change Impact Analysis
Approach to GRL Models

Hasan Salim Alkaf1, Jameleddine Hassine1(B), Abdelwahab Hamou-Lhadj2,
and Luay Alawneh3

1 Department of Information and Computer Science, King Fahd University
of Petroleum and Minerals, Dahran, Saudi Arabia

{g201201840,jhassine}@kfupm.edu.sa
2 Electrical and Computer Engineering Department,

Concordia University, Montréal, Canada
abdelw@ece.concordia.ca

3 Department of Software Engineering,
Jordan University of Science and Technology, Irbid, Jordan

lmalawneh@just.edu.jo

Abstract. Goal-oriented approaches to requirements engineering have
gained momentum with the development of many frameworks, meth-
ods, and tools. As stakeholders’ needs evolve, goal models evolve quickly
and undergo many changes in order to accommodate the rapid changes
of stakeholders’ goals, technologies, and business environments. There-
fore, there is a need for mechanisms to identify and analyze the
impact of changes in goal models. In this paper, we propose a Change
Impact Analysis (CIA) approach to Goal-oriented Requirements Lan-
guage (GRL), part of ITU-T’s User Requirement Notation (URN) stan-
dard. Given a suggested modification within a given GRL model, our
approach allows for the identification of all impacted GRL elements
within the targeted model as well as across all GRL models that are
linked to it through URN Links. Furthermore, the proposed approach
allows for the identification of the potentially impacted GRL evaluation
strategies. The developed GRL-based CIA approach is implemented as a
feature within the Eclipse-based jUCMNav framework. We demonstrate
the applicability of our approach using two real-world GRL specifica-
tions.

1 Introduction

Goal-oriented requirements engineering (GORE) is concerned with helping stake-
holders understand, elaborate, analyze, and document their requirements. Goal
modeling is becoming a popular way for describing and connecting stakeholders’
intentions and goals with technical requirements. Goals are used to capture, at
different levels of abstraction (ranging from high-level strategic mission state-
ments to low-level operational tasks), the various objectives the system under
development should accomplish or the concerns that stakeholders may have with
it. The growing popularity of goal-oriented modeling, and its adoption by a large
c© Springer International Publishing AG 2017
T. Csöndes et al. (Eds.): SDL 2017, LNCS 10567, pp. 157–172, 2017.
DOI: 10.1007/978-3-319-68015-6 10

158 H.S. Alkaf et al.

international community, led to the development of many goal-oriented model-
ing languages and notations, e.g., i* [1], TROPOS [2], and the Goal-oriented
Requirements Language (GRL) [3], part of ITU-T’s User Requirements Nota-
tion (URN) standard.

Although, goals are supposed to be more stable than the requirements that
helped model them [4], due to continuous changes in the business environment and
to the sustained technological advances, goal models are deemed to change accord-
ingly. Commonly, when a change is made, there is often a ripple effect through the
goal model. Hence, there is a need to trace such ripple effects across the goal model
and identify the potential consequences of such impact on stakeholders’ goals.
Change Impact Analysis (CIA) is defined by Bohner and Arnold [5] as “identifying
the potential consequences of a change, or estimating what needs to be modified
to accomplish a change”. Although change impact analysis techniques have been
mostly used at lower levels of abstractions (e.g., code level [6]), many techniques
have been developed to target other software artifacts, such as architectural mod-
els, software specifications, data sources, configuration files, etc.

The main motivation of this research is to apply change impact analy-
sis to goal-oriented models. In particular, we are interested in understanding
and capturing how changes propagate through GRL models. In this paper, we
extend and build upon our preliminary work [7]. The paper serves the following
purposes:

– It provides a GRL-based approach to Change Impact Analysis (CIA). The
proposed CIA approach allows maintainers and analysts to understand how
a change in a GRL model is propagated within the model itself (e.g., between
actors of the model) and across other GRL models (i.e., GRL to GRL propa-
gation) through URN Links. Furthermore, the proposed approach allows for
the identification of the potentially impacted GRL evaluation strategies as a
result of a proposed change.

– It provides a prototype tool that automates the proposed GRL-based change
impact analysis approach. The prototype is implemented as a feature within
the jUCMNav [8] tool and is publicly available.

– It demonstrates the applicability of our approach and tests our prototype
tool, using two real-world GRL specifications presenting different constructs
and features, namely, Adverse Event Management System (AEMS) and a
commuting system.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of the Goal-Oriented Language (GRL). In Sect. 3, we present our pro-
posed GRL-based Change Impact Analysis (CIA) approach along with the proto-
type tool. The applicability of the proposed approach is demonstrated in Sect. 4.
A discussion of the related work, the benefits and limitations of our approach is
provided in Sect. 5. Finally, conclusions and future work are presented in Sect. 6.

An Automated Change Impact Analysis Approach to GRL Models 159

2 GRL in a Nutshell

The Goal-oriented Requirement Language (GRL) [3], part of ITU-T’s User
Requirement Notation (URN) standard, is a visual modeling notation that is
used to model intentions, business goals, functional and non-functional require-
ments (NFR). A GRL goal model is a graph of intentional elements, that option-

ally reside within an actor. Actors (illustrated as) are holders of intentions;
they are the active entities in the system or its environment who want goals
to be achieved, tasks to be performed, resources to be available, and softgoals
to be satisfied [3]. Actor definitions are often used to represent stakeholders as
well as systems. A GRL actor may contain intentional elements and indicators
describing its intentions, capabilities and related measures.

Softgoals (illustrated as) differentiate themselves from goals (illustrated
as) in that there is no clear, objective measure of satisfaction for a soft-
goal whereas a goal is quantifiable, often in a binary way. Tasks (illustrated as

) represent solutions to (or operationalizations of) goals or softgoals. In order
to be achieved or completed, softgoals, goals, and tasks may require resources
(illustrated as) to be available. A GRL indicator (illustrated as) is a
GRL element that is used to represent some real-world measurements. An indica-
tor usually convert real-world values in user-defined units into GRL satisfaction
values on a standard scale (e.g. [–100, 100]).

Various kinds of links connect the elements in a goal graph. Decomposi-
tion links (illustrated as) allow an element to be decomposed into sub-
elements (using AND, OR, or XOR). Contribution links (illustrated as)
indicate desired impacts of one element on another element. A contribution link
has a qualitative contribution type (e.g., Make, Help, SomePositive, Unknown,
SomeNegative, Break, Hurt) and/or a quantitative contribution (e.g., an integer
value within [–100, 100]). Correlation links (illustrated as) describe side
effects rather than desired impacts. Dependency links (illustrated as)
model relationships between actors, where intentional elements inside actor def-
initions can be used as source and/or destination of a dependency link. In this
research, we adopt the classification of GRL dependencies introduced in [9] that
considers contributions, correlations and decompositions links as implicit depen-
dencies, and dependency links as explicit dependencies.

Initial satisfaction levels, which can be quantitative (e.g., within [–100, 100]),
or qualitative (e.g., Satisfied, Weakly Satisfied, Denied, Weakly Denied, etc.) of
some of the intentional elements constitute a GRL strategy. These initial val-
ues (emanating from a contextual or a future situation) propagate to the other
intentional elements of the model through the various model links, allowing for
the assessment of how high-level goals are achieved and may reveal more appro-
priate alternative strategies. Finally, URN Links (illustrated as a black triangle
symbol (source) (target)) are used to connect a source URN model element
with a target URN model element. URN Links model user-defined relationships
such as traceability, refinement, implementation, etc. For a detailed description
of the GRL language, the reader is invited to consult [3].

160 H.S. Alkaf et al.

3 GRL Change Impact Analysis (CIA) Approach

Figure 1 describes the proposed GRL-based change impact analysis approach. To
identify the impact of a change in a GRL model under maintenance, an analyst
may select a GRL construct (i.e., an intentional element, an indicator, or a link)
to be changed, then specify the type of change (e.g., addition, modification, dele-
tion). Next, the GRL Model Dependency Graph (GMDG) is constructed (see
Sect. 3.1), then sliced according to the specified slicing criterion (see Sect. 3.2).
GMDG impacted nodes are then identified, mapped back to the original GRL
model, and marked with a different color. Finally, impacted evaluation strate-
gies and impacted URN Links are displayed as a GRL Comment construct (see
Sect. 3.5).

Intentional
Element

/Indicator/Link

GRL Model GMDG
Graph

Type of
Change

Sliced
GMDG
Graph

Marked GRL
Model

Impacted
Strategies and

URN Links

Input
Output

Slicing
Criterion

Change Impact Identification

Fig. 1. GRL CIA approach

In what follows, we provide some necessary definitions (adopted and modified
from [7]) that are used in the subsequent sections.

Definition 1 (GRL Model). We assume that a GRL model GRLM is denoted
by a 3-tuple: (Actors, Elements, Links), where:

– Actors is the set of actor references in the GRL model.
– Elements is the set of intentional elements (i.e., tasks, goals, softgoals,

resources) and indicators in the GRL model.
– Links is the set of links in the GRL model.

It is worth noting that we don’t consider collapsed actors (although they are
described in the URN standard [3]), since they are not supported in jUCMNav [8].

Definition 2 (GRL Link). We define a GRL link as (type, src, dest): Link-
Types × Elements × Elements, where LinkTypes = {contribution, correlation,
dependency, decomposition}, src and dest are the source and destination of the
link, respectively.

Definition 3 (GRL Link Access Functions). Let l = (type, src, dest) be a
GRL link. We define the following access functions over GRL links:

An Automated Change Impact Analysis Approach to GRL Models 161

– TypeLink: Links → LinkTypes, returns the link type (i.e., TypeLink(l) =
type).

– Source: Links → Elements, returns the intentional element source of the link
(i.e., Source(l) = src).

– Destination: Links → Elements, returns the intentional element destination
of the link (i.e., Destination(l) = dest).

3.1 GRL Model Dependency Graph (GMDG)

In this section, we define the GMDG graph and present the algorithm (Algo-
rithm1) to construct it.

Definition 4 (GRL Model Dependency Graph (GMDG)). A GRL Model
Dependency Graph (GMDG) is defined as a directed graph GMDG = (N, E),
where:

– N is a set of nodes. Each GRL intentional element, indicator, or a link is
mapped to a node n ∈ N.

– E is a set of directed edges. An edge e ∈ E represents a dependency between
2 nodes in GMDG and it is illustrated as a solid arrow (−→).

First, for each intentional element, indicator, or a link a new GMDG node
is created. Next, depending on the type of the GRL links, GMDG dependency
links are created between GMDG nodes (i.e., CreateDependencyLinkGMDG (e1,
e2) creates a GMDG dependency link from e1 to e2).

Algorithm 1. Constructing a GRL Model Dependency Graph (GMDG)
Procedure Name: ConstructGMDG
Input : A GRL Model: (Actors, Elements, Links)
Output: A GRL Model Dependency Graph (GMDG)
foreach e ∈ Elements do

n= createGMDGNode(e);
end
foreach e ∈ Links do

n= createGMDGNode(e);
if (TypeLink(e) == contribution or TypeLink(e) == correlation or
TypeLink(e) == decomposition) then

CreateDependencyLinkGMDG(Destination(e), Source(e)) ;
CreateDependencyLinkGMDG(Destination(e), n);

else
� TypeLink(e) == Dependency

CreateDependencyLinkGMDG(Source(e), Destination(e)) ;
CreateDependencyLinkGMDG(Source(e), n);

end

end

162 H.S. Alkaf et al.

Figure 2 illustrates a generic GRL model along with its corresponding GMDG
graph. Each goal/contribution/decomposition/dependency is represented as a
GMDG node. The satisfaction of G2 depends on the satisfaction of G5 and the
contribution type (help in this case), hence, two GMDG links are created: (1)
between G2 and G5 and (2) between G2 and Contrib-G5G2. Since G1 is decom-
posed into G3 and G4 (using AND-decomposition), four GMDG dependency
links are created: (1) one between G1 and G3, (2) one between G1 and G4, (3)
one between G1 and AND-Decomp-G3G1, and (4) one between G1 and AND-
Decomp-G4G1. Finally, G1 depends on G2, which is mapped as two GMDG
links: (1) one between G1 and G2, and (2) one between G1 and depend-G1G2.

(a) Generic GRL Model

G1

G3

G2

AND-
Decomp
-G3G1

Contrib
-G5G2

G4

AND-
Decomp
-G4G1

G5
Depend
-G1G2

(b) Generic GMDG Graph

Fig. 2. A Generic GRL model and its corresponding GMDG

3.2 Slicing the GRL Model Dependency Graph

Program Slicing, introduced by Weiser [10] in the early 1980’s, is a reduction
technique used to decrease the size of a program source code by keeping only
the lines within a program that are related to the execution of a specific slicing
criterion specified by the user. In order to perform a change impact analysis on
GRL models, we extend the concept of program slicing to GMDG graphs. In
what follows, we introduce the notion of GRL slicing criterion, then we present
the GMDG slicing algorithm (see Algorithm2).

Definition 5 (GRL Slicing Criterion). Let GRLM be a GRL model. A slic-
ing criterion SC for GRLM may be either a GRL intentional element/Indicators
or a GRL link.

The slicing of the GMDG (see Algorithm 2) is based on a backward traversal
of the GMDG. It requires as input the GMDG graph and the GMDG node
that corresponds to the slicing criterion SC. The algorithm starts by adding
the GMDG node (called ImpactedGMDGNode) to the set of impacted nodes
(i.e., SetGMDGImpactedNodes). Next, it follows each incoming link leading to
ImpactedGMDGNode and add its source to SetGMDGImpactedNodes. Finally, a
recursive call is made by passing the GMDG and the new reached GMDG node.

An Automated Change Impact Analysis Approach to GRL Models 163

Algorithm 2. GMDG Backward Slicing Algorithm
Function Name: SlicingGMDG
Input : A GMDG + GMDG node corresponding to SC

(LocationInGMDG(SC))
Output: SetGMDGImpactedNodes
ImpactedGMDGNode = LocationInGMDG(SC);
if ImpactedGMDGNode /∈ SetGMDGImpactedNodes then

AddToImpactedNodes(ImpactedGMDGNode, SetGMDGImpactedNodes);
if hasIncomingLinks(ImpactedGMDGNode) then

foreach incomingLink do
AddToImpactedNodes(Source(incomingLink),
SetGMDGImpactedNodes);

GMDGslicingAlg(GMDG, ImpactedGMDGNode);

end

end

end

The resulting set of impacted GMDG nodes (i.e., SetGMDGImpactedNodes)
is then mapped back to SetGRLImpactedElements, the set of the original GRL
model elements. The elements within SetGRLImpactedElements, along with the
impacted elements emanating from following the URN Links (see Sect. 3.3), are
then marked in purple color (see examples in Sect. 4).

3.3 Impact Through URN Links

This step aims at identifying other potential GRL impacted elements by follow-
ing existing URN Links. A URN Link is used to create a connection between
any two URN elements, e.g., intentional element reference/definition, actor ref-
erence/definition, link, etc. A URN Link may be defined as follows:

Definition 6 (URN Links). A URN Link is defined as urnl = (type, from,
to), where (1) type denotes a user-defined URN Link type, (2) from denotes
the ID of source URN element, and (2) to denotes the ID of the target URN
element.

Algorithm 3 iterates through the set of impacted elements (i.e., SetGR-
LImpactedElements) and checks whether these elements are involved in any
URN Link, as source (i.e., from field) or as a target (i.e., to field). Since an
impacted element can serve as a source or a target in a URN Link and since
one source element can be linked to many target elements and vice versa, we
have used two search functions to retrieve the set of elements IDs depending
whether we are looking for source or target IDs. (i.e., searchSourceURNLinks
and searchTargetURNLinks). The new identified elements are then add to the
set SetGRLImpactedElements.

164 H.S. Alkaf et al.

Algorithm 3. Excerpt of the algorithm to identify impacted elements ema-
nating from URN Links
Function Name: IdentificationOfOverallImpactedElements
Input : GRL Model + SetGRLImpactedElements
Output: SetGRLImpactedElements
URNLinksList = getAllURNLinks();
foreach e ∈ SetGRLImpactedElements do

� Search for target elements IDs when e is defined as source;
ToElementList = searchTargetURNLinks(e,from,URNLinksList);
AddToGRLImpactedElements(ToElement, SetGRLImpactedElements);

� Search for source elements IDs when e is defined as target
FromElementList = searchSourceURNLinks(e, URNLinksList);

AddToGRLImpactedElements(FromElement, SetGRLImpactedElements);

end

3.4 Identification of the Impacted GRL Strategies

Once the set of impacted GRL model elements (i.e., SetGRLImpactedElements)
is identified, we have to spot all impacted evaluation strategies. Algorithm 4
accepts as input a GRL model and the set of impacted GRL elements (SetGR-
LImpactedElements resulting from applying the GMDG slicing algorithm), and
produces the set of impacted GRL strategies (i.e., SetImpactedStrategies).

Algorithm 4. Identification of the impacted GRL evaluation strategies
Function Name: IdentificationOfImpactedStrategies
Input : GRL Model + SetGRLImpactedElements
Output: SetImpactedStrategies
SetImpactedStrategies = ∅;
StrategiesList = getAllStrategies();
foreach strategy ∈ StrategiesList do

foreach impactedElement ∈ SetGRLImpactedElements do
if PartOfStrategy(impactedElement, strategy) then

AddToImpactedStrategies(strategy, SetImpactedStrategies) ;
end

end

end

3.5 JUCMNav GRL-Based Change Impact Analysis Feature

Our proposed change impact analysis approach is implemented as a feature1

within the jUCMNav framework [8], a full graphical editor and analysis tool for
GRL models developed as an Eclipse-based plug-in.
1 The CIA feature is publicly available and can be downloaded from https://github.

com/JUCMNAV/projetseg/tree/grl.

https://github.com/JUCMNAV/projetseg/tree/grl
https://github.com/JUCMNAV/projetseg/tree/grl

An Automated Change Impact Analysis Approach to GRL Models 165

To exercise this feature, the user starts by selecting a GRL intentional ele-
ment, an indicator or a link, then right-clicks to choose from three sub-menu
commands: Addition, Deletion, or Modification (see Fig. 3). For the addition
option, it is required that the analyst adds the GRL construct first then call
the feature. The deletion is provided as a separate option because there will be
impacted elements due to the loss of connectivity caused by the deletion. It is
worth noting that this CIA menu is activated for the supported GRL constructs
only.

Fig. 3. GRL CIA included in command menu of jUCMNav framework (Color figure
online)

If any of the impacted element (marked in purple color (see Fig. 6)), is part
of a GRL evaluation strategy, the details of the impacted element will appear
as a GRL Comment (in gray color) with its name, ID, and the name of strate-
gies it belongs to (see Fig. 8(a)). Similarly, information about impacted URN
Links, such as SourceID, TargetID, and Type, are also shown in the same GRL
Comment box (see Fig. 7).

4 Experimental Evaluation

In this section, we evaluate our proposed GRL change impact analysis approach
using two real-world GRL case studies of different sizes, complexity, and features.
Table 1 provides some characteristics of the used case studies.

4.1 Case Study 1: Adverse Event Management System (AEMS)

This case study describes an adverse event management system (AEMS) for a
hospital. Figure 4 illustrates one of the five GRL models constituting the case
study.

The first CIA task aims to identify potential impacted elements if we modify
softgoal FastProcess (i.e., the GMDG node corresponding to FastProcess is used
as slicing criterion to execute Algorithm 2). The produced GMDG is shown in
Fig. 5, while the impacted GRL elements are shown in Fig. 6. Since the goal

166 H.S. Alkaf et al.

Table 1. Case studies characteristics

GRL Spec. Nb. of
GRL
Models

Nb. of
Intentional
Elements

Nb. of GRL
Links

Nb. of URN
Links

Nb. of GRL
Actors

Adverse event
management
system
(AEMS)

5 30 27 6 9

Commuting
system

4 19 37 10 3

Fig. 4. AEMS GRL model

High Data
Quality

High
Completeness

High
Accuracy

AND-Decomp-
HighAccuracy

Make
Appropriate

Decisions
Fast

Process

Depend-
MakeAppropriate

Decisions-
FastProcess

Depend-
MakeAppropriate

Decisions-
HighDataQuality

Low Data
Duplication

AND-Decomp-
HighCompleteness

AND-Decomp-
LowDataDuplication

Depend-
GoodResearch-

HighDataQuality

Good
Research

Fig. 5. GMDG graph corresponding to the AEMS GRL model of Fig. 4

An Automated Change Impact Analysis Approach to GRL Models 167

Fig. 6. Impacted elements of the first AEMS CIA task (Color figure online)

comply with Privacy Laws is only linked to the rest of the model through a URN
Link, called trace (having its source at softgoal High Data Quality), there is no
GMDG node associated with it.

The second CIA task aims to identify potential impacted elements once
we modify the softgoal High Data Quality. Three elements are impacted (i.e.,
goal Make Appropriate Decisions, and softgoals High Data Quality and Good
Research) as a result of slicing the GMDG graph with the GMDG node that
corresponds to High Data Quality as slicing criterion. In addition, goal Comply
with Privacy Law is impacted since it is the target of the URN Link trace, hav-
ing its source at softgoal High Data Quality. Finally, one evaluation strategy is
identified, called AsIsAnalysis-Summer2010, involving both softgoals High Data
Quality and Good Research. Figure 7 illustrates the impacted elements.

Fig. 7. Impacted elements of the second AEMS CIA task

168 H.S. Alkaf et al.

4.2 Case Study 2: Commuting System

The second case study is a GRL specification describing a commuting system.
Figure 8 shows the impact (in purple) of changing the task Take own car, on both
models Commuting-Time (Fig. 8(a)) and Stakeholders (Fig. 8(b)). The impacted
elements are part of a strategy, called Take own car, Alarm, Stairs only.

(a) Impacted elements in the Commuting-Time Model

(b) Impacted elements in the Stakeholders Model

Fig. 8. Identification of impacted elements in two GRL models of the commuting case
study

An Automated Change Impact Analysis Approach to GRL Models 169

5 Discussion

In what follows, we discuss the benefits and limitations of the proposed approach,
then we compare it with related work.

5.1 General Benefits of the GRL-based CIA Approach

The presented GRL-based change impact analysis approach presents the follow-
ing advantages:

– It helps maintainers and analysts answer “what if... ?” questions, and assess
the consequences of changes in GRL specifications. Indeed, our approach pro-
vides an insight into how changes propagate within a GRL model, and across
models (i.e., from GRL to GRL) through URN Links. In addition, it allows for
the identification of the impacted GRL strategies, if any. This would allow for
reasoning about different alternatives, when it comes to implement changes
in GRL models.

– Our approach is fully automated and covers the full GRL language constructs.
– We have chosen GRL as target language, given its status as an international

standard, but our proposed approach can likely be adapted and applied to
other goal-oriented languages such as i* [1] and TROPOS [2].

5.2 Limitations

The proposed CIA approach is subject to the following limitations:

– Our approach supports the evaluation of the impact of a single change at a
time. Assessing the impact of simultaneous changes is left for future work.

– We perform a single iteration to follow the involved URL links. The poten-
tially impacted GRL elements are not used as a source/target to explore more
URN connections, if any. However, we believe that implementing a transitive
chain should take into account the semantics of the URN Links (i.e., there
should be a strong dependency that justifies the capture of the full ripple
effect). This is out of the scope of this research.

– The applicability of our approach was demonstrated using two case studies
and a mock system (not presented in this paper) only. Bigger case studies
should provide a better assessment of the effectiveness of our proposed app-
roach.

5.3 Comparison with Related Work

Change impact analysis [5] techniques have focused mainly on source code level
[6] in order to help developers understand and maintain their programs. Less
work has been devoted to change impact analysis in other software artifacts
such as requirements and design models [11]. In what follows, we survey and
compare existing goal-oriented CIA techniques with our proposed approach.

170 H.S. Alkaf et al.

In a closely related work, Hassine [7] proposed a preliminary (and manual)
CIA approach based on slicing GRL Model Dependency Graphs (GMDG). In
this paper, we extend the approach by considering inter model propagation,
GRL evaluation strategies, and URN Links. We have also fully automated it.
Cleland-Huang et al. [12] introduced a probabilistic approach for managing the
impact of a change using a Softgoal Interdependency Graph (SIG) that describes
non-functional requirements and their dependencies. This technique allows for
the analysis of the impact of changes by retrieving links between classes affected
by changes in the SIG graph. Our approach is bases on the GRL graph structure
and does not distinguish between functional and non-functional requirements.

Tanabe et al. [13] introduced a change management technique in AGORA.
The technique aims at detecting conflicts when a new goal is added and checks
the satisfaction of the parent goal, when a goal is deleted. Semantic information,
described as goal characteristics such as security or usability, should be attached
to goals to allow for the detection of conflicts. Our approach considers structural
change (both addition and deletion) propagation within the same model and
across many models, regardless the semantic aspect of the impacted goals. Lee
et al. [14] proposed a goal-driven traceability technique for analyzing require-
ments, which connects goals and use cases through three different traceabil-
ity relations (evolution, dependency, and satisfaction), which are stored as a
matrix. Impacted entities can then be identified by applying a reachability analy-
sis on the matrix. Our GRL-based approach builds a GRL model dependency
graph (GMDG) to represent explicit and implicit, e.g., contribution, dependen-
cies between model elements. In addition, our approach identifies the potential
changes in other model elements that are linked through user-defined URN Links.

Ernst et al. [15] proposed an approach to find suitable solutions (that minimize
the effort required to implement new solutions) as requirements change. Their
approach [15] explores a Requirements Engineering Knowledge Base (REKB),
describing goals, tasks, refinements, and conflicts, in order to find new operations
that are additionally required as a result of an unanticipated modification such as
the addition of a new feature or the introduction of a new law. Our approach does
simply spot potential impacted elements based on the GRL model structure and
does not propose a solution to implement the change. In order to help developers
identify where changes are required, Nakagawa et al. [16] proposed an approach
based on the extraction of control loops, described as independent components
that prevent the impact of a change from spreading outside them.

More recently, Grubb and Chechik [17] proposed an i*-based method to
model the evolution of goal evaluations over time. Their proposed method inte-
grates variability in intentions’ satisfaction (using qualitative values) over time
allowing the stakeholders to understand and consider alternatives over time. In
a closely related work to [17], Aprajita and Mussbacher [18] introduced Timed-
GRL, an extension of the GRL standard, allowing for the capture and analysis
of a set of changes to a goal model over time (using quantitative values such as
concrete dates). Both the goal model and the expected changes are represented
in one model. However, both approaches described in [17,18] focus only on the

An Automated Change Impact Analysis Approach to GRL Models 171

evolution of satisfactions values (qualitative and quantitative) and they do not
consider the evolution of the goal model structure over time.

6 Conclusions and Future Work

In this paper, we have presented an automated GRL-based approach to change
impact analysis. The proposed CIA approach allows maintainers and analysts
understand how a change is propagated within a GRL model and across related
GRL models (i.e., from GRL to GRL), linked using URN Links. In addition,
the approach allows for the identification of the potentially impacted GRL eval-
uation strategies. The approach has been implemented as a feature within the
jUCMNav [8] tool.

As a future work, we plan to extend our approach to cover simultaneous
GRL changes, and to assess the impact of such changes on related Use Case
Maps (UCM) functional models.

Acknowledgment. The authors would like to acknowledge the support provided by
the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals
for funding this work through project No. FT151004.

References

1. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the Third IEEE International Symposium on Engi-
neering, Requirements, pp. 226–235. IEEE (1997)

2. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the tropos methodology. Eng. Appl. Artif. Intell. 18, 159–171
(2005)

3. ITU-T: Recommendation Z.151 (10/12), User Requirements Notation (URN) lan-
guage definition, Geneva, Switzerland (2012)

4. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Trans. Softw. Eng. 26(10), 978–1005 (2000)

5. Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. IEEE Computer
Society Press, Los Alamitos (1996)

6. Li, B., Sun, X., Leung, H., Zhang, S.: A survey of code-based change impact analysis
techniques. Softw. Testing Verification Reliabil. 23(8), 613–646 (2013)

7. Hassine, J.: Change impact analysis approach to GRL models. In: SOFTENG
2015: The First International Conference on Advances and Trends in Software
Engineering, pp. 1–6. IARIA (2015)

8. jUCMNav v7.0.0: jUCMNav Project (tool, documentation, and meta-model)
(2016). http://softwareengineering.ca/∼jucmnav. Accessed June 2017

9. Hassine, J., Alshayeb, M.: Measurement of actor external dependencies in GRL
models. In: Dalpiaz, F., Horkoff, J. (eds.) Proceedings of the Seventh International
i* Workshop Co-Located with the 26th International Conference on Advanced
Information Systems Engineering (CAiSE 2014), Thessaloniki, Greece, 16–17 June
2014, vol. 1157 of CEUR Workshop Proceedings, CEUR-WS.org (2014)

http://softwareengineering.ca/~jucmnav

172 H.S. Alkaf et al.

10. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering (ICSE 1981), Piscataway, NJ, USA, pp. 439–449. IEEE
Press (1981)

11. Lehnert, S.: A taxonomy for software change impact analysis. In: Proceedings of
the 12th International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution, pp. 41–50. ACM (2011)

12. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.:
Goal-centric traceability for managing non-functional requirements. In: Proceed-
ings of the 27th International Conference on Software Engineering, pp. 362–371.
ACM (2005)

13. Tanabe, D., Uno, K., Akemine, K., Yoshikawa, T., Kaiya, H., Saeki, M.: Sup-
porting requirements change management in goal oriented analysis. In: 16th IEEE
International Requirements Engineering (RE 2008), pp. 3–12. IEEE (2008)

14. Lee, W.T., Deng, W.Y., Lee, J., Lee, S.J.: Change impact analysis with a goal-
driven traceability-based approach. Int. J. Intell. Syst. 25(8), 878–908 (2010)

15. Ernst, N.A., Borgida, A., Jureta, I.: Finding incremental solutions for evolving
requirements. In: 19th IEEE International Requirements Engineering Conference
(RE 2011), pp. 15–24. IEEE (2011)

16. Nakagawa, H., Ohsuga, A., Honiden, S.: A goal model elaboration for localizing
changes in software evolution. In: 21st IEEE International Requirements Engineer-
ing Conference (RE 2013), pp. 155–164. IEEE (2013)

17. Grubb, A.M., Chechik, M.: Looking into the crystal ball: requirements evolution
over time. In: 24th IEEE International Requirements Engineering Conference (RE
2016), pp. 86–95, September 2016

18. Aprajita, M.G.: TimedGRL: specifying goal models over time. In: 24th IEEE Inter-
national Requirements Engineering Conference Workshops (REW), pp. 125–134,
September 2016

Author Index

Abdelouahed, Gherbi 61
Alawneh, Luay 157
Alkaf, Hasan Salim 157
Al-Osta, Mahmud 61
Amyot, Daniel 30

Bali, Ahmed 61
Búr, Márton 80

Dupont, Guillaume 99

Fischer, Joachim 1, 18

Goldammer, Nils 1

Hamou-Lhadj, Abdelwahab 30, 157
Hassine, Jameleddine 30, 157
Honfi, Dávid 119

Khendek, Ferhat 99
Kraas, Alexander 136

Majzik, István 119
Marton, József 80
Micskei, Zoltán 119
Molnár, Gábor 119
Mustafiz, Sadaf 99

Nazarzadeoghaz, Navid 99

Scheidgen, Markus 1
Sherratt, Edel 46
Szárnyas, Gábor 80

Toeroe, Maria 99

Weber, Dorian 18

	Preface
	SDL Forum Society
	Organization
	Contents
	Interactive Visualization of Software
	1 Introduction
	2 Related Work
	3 Measuring Software
	4 A Meta-Model for Software Data
	5 A Language for Interactive Visualizations
	6 Implementation
	7 Conclusions
	References

	Static Syntax Validation for Code Generation with String Templates
	1 Introduction
	1.1 Brief Example
	1.2 Related Work

	2 Relationship between Context Free Grammars and String Templates
	2.1 Basic Definitions
	2.2 Relation to Real-World String Templates
	2.3 Mappings

	3 Discussion
	3.1 Capturing Dynamic Expressions

	4 Conclusions and Outlook
	References

	On the Impact of the SDL Forum Society Conferences on Academic Research
	Abstract
	1 Introduction
	2 Methodology
	2.1 Selection of Event Proceedings
	2.2 Selection of Relevant Papers
	2.3 Collection of Citation Counts
	2.4 Computation of Metrics

	3 Most Influential Papers
	4 Most Influential Authors
	5 Observations on Languages and Topics
	6 Discussion
	6.1 Observations
	6.2 Threats to Validity

	7 Conclusion
	References

	Intelligent Resilience in the IoT
	1 Introduction
	2 Anomaly Detection
	3 Anomaly Detection in IoT Systems
	3.1 Environmental Monitoring
	3.2 Smart Fridge
	3.3 Railway Crossing

	4 Building Intelligent Resilience into Smart Systems
	4.1 The SDL+ Methodology
	4.2 Resilience and the SDL+ Core Activities
	4.3 Validation, Testing and Anomaly Detection
	4.4 Training the Anomaly Detection System
	4.5 Testing the Anomaly Detection System
	4.6 Summary of the Methodological Approach

	5 Next Steps
	References

	An Ontology-Based Approach for IoT Data Processing Using Semantic Rules
	1 Introduction
	2 Related Work
	3 The Overall Approach Architecture
	3.1 Cloud Level
	3.2 Gateway Level

	4 Our Approach Ontologies and Semantic Rules Metamodel
	4.1 Platform Independent Model for the Cloud Level
	4.2 Platform Specific Model for the Gateway Level

	5 Implementation and Evaluation of the Proposed Approach
	6 Conclusion
	References

	Model-Driven Engineering of an OpenCypher Engine: Using Graph Queries to Compile Graph Queries
	1 Introduction
	2 Running Example
	3 Preliminaries
	3.1 Property Graphs and the OpenCypher Query Language
	3.2 Relational Graph Algebra
	3.3 Model-Driven Engineering

	4 Overview of the Approach
	5 Elaboration
	5.1 Compilation of a Multipart Query
	5.2 Compilation of Variable Length Path Patterns
	5.3 Identifying Antijoin Operators
	5.4 Formalisation as Graph Transformation Rules

	6 Related Work
	6.1 Graph Query Languages
	6.2 Query Compilation in Graph Transformation Systems

	7 Conclusion and Future Work
	References

	A Model-Driven Process Enactment Approach for Network Service Design
	1 Introduction
	2 Background
	3 Network Service Design
	3.1 NS Design Languages
	3.2 NS Design Process

	4 Process Enactment
	4.1 Enactment Approach
	4.2 Tool Support in Papyrus

	5 Related Work
	5.1 NS Design
	5.2 Process Enactment

	6 Conclusion
	References

	Model-Based Regression Testing of Autonomous Robots
	1 Introduction
	2 Presentation of the Case Study
	3 Approach
	3.1 RTS Model
	3.2 Mapping of Input Models
	3.3 Usage Scenarios

	4 Implementation
	5 Evaluation
	5.1 Study Design
	5.2 Results

	6 Related Work
	7 Conclusions
	References

	Automated Tooling for the Evolving SDL Standard: From Metamodels to UML Profiles
	1 Introduction
	2 Background: Derivation Approach in a Nutshell
	3 A New Metamodel for SDL
	3.1 The `Abstract Concepts' Used for the SDL Metamodel
	3.2 From Syntax Rules to an `Initial' Metamodel
	3.3 Steps Towards the Final Metamodel

	4 The Automatically Derived UML Profile for SDL
	4.1 Enrichment of the SDL Metamodel
	4.2 Automatic Derivation of the UML Profile
	4.3 Update of Existing OCL Expressions

	5 Derivation of M2M Transformations
	5.1 Common Concepts
	5.2 Transformation for Mapping a SDL to a UML Model
	5.3 Transformation for Mapping a UML Model to a SDL Model

	6 Discussion
	7 Related Work
	8 Conclusions and Future Work
	References

	An Automated Change Impact Analysis Approach to GRL Models
	1 Introduction
	2 GRL in a Nutshell
	3 GRL Change Impact Analysis (CIA) Approach
	3.1 GRL Model Dependency Graph (GMDG)
	3.2 Slicing the GRL Model Dependency Graph
	3.3 Impact Through URN Links
	3.4 Identification of the Impacted GRL Strategies
	3.5 JUCMNav GRL-Based Change Impact Analysis Feature

	4 Experimental Evaluation
	4.1 Case Study 1: Adverse Event Management System (AEMS)
	4.2 Case Study 2: Commuting System

	5 Discussion
	5.1 General Benefits of the GRL-based CIA Approach
	5.2 Limitations
	5.3 Comparison with Related Work

	6 Conclusions and Future Work
	References

	Author Index

