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Abstract This work investigates the effects of the periodization of local and global

multi-objective search algorithms. We rely on a model for periodization and define a

multi-objective evolutionary algorithm adopting concepts from Evolutionary Strate-

gies and NSGAII. We show that our method excels for the evolution of digital circuits

on the Cartesian Genetic Programming model as well as on some standard bench-

marks such as the ZDT6, especially when periodized with standard multi-objective

genetic algorithms.

1 Introduction

Pareto-based multi-objective genetic algorithms show excellent performance when

optimizing for multiple and often conflicting goals. In our work, we are interested in

multi-criteria optimization of digital hardware [12, 16] using the Cartesian Genetic

Programming model [20] to represent circuits. Experience shows that for this spe-

cific application domain global multi-objective genetic optimizers can be rather slow,

especially when compared with local Evolutionary Strategy (ES) techniques [17].

However, in the presence of multiple objectives local search techniques typically

work with fitness functions that are linear combinations of the single objectives,

rather than with the Pareto-based principle. Linear weighting schemes need to be

balanced by a human designer each time there is a new set of goal functions, in

order to obtain the highest possible performance. The demand for an unsupervised

and preference-free multi-objective method for CGP is a challenge we address in the

presented work.

We describe a periodization technique that alternates the execution of global and

local evolutionary optimizers [13]. The technique relies on a periodized execution
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model that blends algorithm properties, functionalities and convergence behaviors in

a simple and straight-forward way. A typical example is the combination of global

search for the early phase of an optimization run with local search for the final

phase [7, 25].

Additionally, we present a local search algorithm termed hybrid Evolutionary
Strategy (hES), a synthesis of a standard ES and a Pareto set preserving technique,

and investigate its performance when periodized with multi-objective genetic opti-

mizers NSGAII [4] and SPEA2 [29]. The characteristic of hES is that it applies a

𝜇 + 𝜆 ES on the Pareto-dominant individuals obtained by a multi-objective genetic

algorithm while keeping diversity in and avoiding deterioration of the Pareto set.

The remainder of this Chapter is structured as follows: Sect. 2 presents related

work on hybrid evolutionary search techniques. Our periodization model is defined in

Sect. 3, followed by a discussion of the hybrid Evolutionary Strategy (hES) in Sect. 4.

Section 5 defines the fitness metrics used in our experiments and Sect. 6 shows the

benchmarks and presents the results. Finally, Sect. 7 concludes the work.

2 Related Work

Early work on multi-objective optimization of CGP was presented by Kaufmann

and Platzner in [14]. The authors used NSGAII and SPEA2 for the optimization of

Boolean circuits for functional quality, area, and delay. In the following years the

authors have refined their method in [11, 24]. In the meantime, Walker et al. have

also proposed a similar approach for the optimization of digital circuits regarding

multiple objective in [27].

Hernández-Díaz et al. [7] presented a two-stage multi-objective evolutionary

algorithm based on Differential Evolution (DE) and Rough Sets (RS) theory. In the

first stage, the authors employed a fast converging multi-objective DE scheme to

compute an initial Pareto frontier approximation. In the second stage, they improve

the Pareto set diversity using RS theory for detecting loosely-covered regions. The

algorithm’s performance is verified on the standard ZDT{1, . . . , 6} and DTLZ

{1, . . . , 4} benchmarks [6, 19]. To compare the computed Pareto sets, the authors

used three metrics, the unary additive epsilon indicator [32], the standard deviation

of crowding distances (SDC) [5] and the space covered by a Pareto set [31]. The pro-

posed algorithm generally outperformed NSGAII, except on the DTLZ2 and DTLZ4

benchmarks using the SDC metric.

Talbi et al. [25] proposed a similar two-stage approach and used a multi-objective

genetic algorithm (GA) to calculate a first rough Pareto frontier approximation,

followed by a local search technique for refining the approximation. The authors

observed improved behavior to a GA-only approach as soon as the complexity of the

test problems increases.

Zapotecas et al. [30] presented a hybrid approach combining the global opti-

mizer NSGAII with the local optimizers of Nelder and Mead [21] and the golden

section method. The authors enhanced the exploratory NSGAII by local search



Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 177

methods in order to reduce the number of fitness evaluations. The hybrid algorithm

was compared to standard NSGAII on continuous benchmarks ZDT{1, . . . , 4}, ZDT6

and DTLZ{1, 2} using the metrics inverted generational distance [26], spacing [22]

and coverage indicator [28]. With the exception of the ZDT6 and DTLZ{1, 2} bench-

marks in combination with the spacing metric, the hybrid algorithm outperformed

NSGAII.

Harada et al. [8] analyzed GA-and-LS and GA-then-LS schemata in which local

search is applied either after each generation or after a completed run of a genetic

algorithm. The authors concluded thatGA-then-LS is superior toGA-and-LS on mul-

tiple benchmarks and used generational and Pareto-optimal frontier distances [5] for

comparison.

The work of Ishibuchi et al. [9, 10] is close to our approach. The authors discuss

various implementations of standard multi-objective optimizers such as SPEA2 and

NSGAII combined with local search. The key idea of their approach is to periodically

swap between different optimizers during a run. The authors conclude that the per-

formance of such a hybrid optimizer is sensitive to the balance between global and

local search. However, by carefully weighting global and local search strategies the

periodized hybrid optimizer outperformed the standard multi-objective optimizer.

In our work, which base on the work of Kaufmann et al. [13], we investigate

hybrid Evolutionary Strategies (hES) and its periodization with the multi-objective

optimizers NSGAII and SPEA2 in a GA-and-LS manner.

3 The Periodization Model

Let A = (a1, a2,… , an) be the set of algorithms used in the periodization. As an

illustrative example, consider A = {GA1,GA2,LS}. For a hypothetical periodized

algorithm that executes a single step/generation of GA1, followed by two steps of LS,

then a single step of GA2 and two steps of LS, the index sequence I for the algorithm

selection is given by (a1, a3, a2, a3), and the repetition sequence F is (f1, f2, f3, f4) =
(1, 2, 1, 2). While in this specific example, F is a vector of constants, the number of

repetitions can be adaptively adjusted based on the history of the optimization run

H . In particular, global search GAs with fast convergence in the beginning of an

optimization run could be repeated more often in the early search phases, while local

search algorithms that excel at improving nearly optimal nondominated sets could

be used more intensively in the final optimization phase.

With t as the current generation number,H as the history of the current optimiza-

tion run,A = (a1, a2,… , an), n ∈ ℕ as the set of algorithms used in the periodization,

I = (i1, i2,… , im), m ∈ ℕ, ik ∈ (1, 2,… , n) as the set of indices for the selected algo-

rithms in the execution sequence, and F = (f1, f2,… , fm), fk(t,H ) → ℕ as the num-

ber of repetitions for the algorithms in I, the complete periodized execution model P
is defined as:
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P ∶= AF
I = (af1(t,H )

i1
, af2(t,H )

i2
,… , afm(t,H )

im
).

The history H can be large if considering the complete information of an optimiza-

tion run, or more compact if considering, for example, only the dominated space

of the current nondominated set. In our experiments, we choose fk(t,H )) ∶= fk(t) ≡
const. For the general case, however, H changes with each generation. Accordingly,

the number of algorithm repetitions fk(t,Ht) computed in generation t for algorithm

ak may differ from the fk(t + 1,Ht+1) computed in the next generation. Therefore, the

repetition vector F needs to be updated after each generation. An example where this

effect becomes relevant is when some algorithm is iterated until local convergence

occurs. That is, if for l algorithm repetitions the best individual or the nondominated

area does not change, the periodization scheme proceeds with the next algorithm.

However, if the population can be improved, the algorithm is executed again for at

least l generations.

4 Hybrid Evolutionary Strategies

Evolutionary Strategies in their original form rely solely on a mutation operator. The

{𝜇 ,

+
𝜆} ES uses 𝜇 parents to create 𝜆 offspring individuals and selects 𝜇 new parents

from all individuals in case of a ‘+’ variant or from the new individuals in case of

the ‘,’ variant.

hES is a 1 + 𝜆 ES designed for periodization with multi-objective evolutionary

algorithms. In particular, we include two concepts from the Elitist Nondominated

Sorting GA II in hES: fast nondominated sorting and crowding distance as a diver-

sity metric. Fast nondominated sorting calculates nondominated sets for the objective

space points. The crowding distance for a point is defined as the volume of a hyper-

cube bounded by the adjoining points in the same nondominated set. Consequently,

the crowding distance creates an order, denoted by ≺n, on the points of a nondom-

inated set. hES uses fast nondominated sorting to decompose parents and offspring

individuals into nondominated sets, and uses crowding distances to decide which of

the individuals might be skipped in order to keep the nondominated set diverse. In

summary, the key ideas are:

1. A local search style algorithm is executed for every element of a given set of

solutions. Exactly one individual, which is nondominated, from a parent and its

offspring individuals proceeds to the next population.

2. Offspring individuals that are mutually nondominated to their parent but have a

different Pareto vector are skipped. This prevents unnecessary fluctuations in the

nondominated set.

3. Neutral genetic drift, as presented by Miller in [20], is achieved by skipping a

parent if at least one of its offspring individuals holds an equal Pareto vector.

4. Parents and offspring individuals are partitioned into nondominated sets and new

parents are selected using NSGAII’s crowding distance metric.
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Algorithm 1 shows the pseudocode of an hES implementation, hES-step.

The algorithm starts with the creation of offspring individuals in lines 1–4. To

this end, for every individual in the parent population Pt, hES-step executes 1 + 𝜆

ES appending the newly created offspring individuals to Qt. The 1 + 𝜆 ES loop is

implemented by the ES-generate in Algorithm 1. After the offspring individ-

uals are created, hES-step proceeds with the concatenation of parents and off-

spring individuals by calling the add-replace procedure, listed in Algorithm 3.

add-replace clones the parent population and successively adds offspring indi-

viduals that have a unique Pareto vector to this population. An offspring individual

with a Pareto vector identical to its parent replaces the parent. Then, hES-step par-

titions the concatenated set Rt in line 6 into nondominated sets Fi using NSGAII’s

fast-nondominated-sort. After that, starting with the dominant set F1, the

algorithm partitions F1 by the parents into G = {G1,G2,…}. That means all indi-

viduals of Gi have the same parent p. Additionally, if p ∈ F1, then p ∈ Gi. Should a

non-empty set Gi not contain the parent p, one of the least crowded individuals of Gi
is selected to proceed to the next generation. Otherwise, the parent proceeds to the

next generation. Once p or one of its offspring individuals is transferred to the next

generation, p and all of its offspring individuals are skipped by hES-step from

further processing in the currect generation.

Algorithm 1: hES-step(𝜆,Pt)—perform a single hES step

Input: 𝜆, parent population Pt
Output: new archive Pt+1

1 Qt ← ∅
2 foreach p ∈ Pt do
3 Qt ← Qt ∪ ES-generate(p, 𝜆)
4 end
5 Rt ← add-replace(Pt,Qt)
6 F ← fast-nondominated-sort(Rt)
7 Pt+1 ← ∅
8 foreach Fi ∈ F do
9 crowding-distance-assignment(Fi)
10 G ← group-ordered-by-parent(Fi)
11 foreach Gj ∈ G do
12 if parent of Gj not already replaced then
13 if parent(Gj) ∈ Gj then
14 Pt+1 ← Pt+1 ∪ {parent(Gj)}
15 else
16 sort(Gj, ≺n)
17 Pt+1 ← Pt+1 ∪ {Gj[0]}
18 end
19 mark parent of Gj as replaced

20 end
21 end
22 end
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Algorithm 2: ES-generate(p,𝜆)—generate 𝜆 offspring individuals

Input: parent p, number of offspring individuals 𝜆

Output: offspring set Q
1 Q ← ∅
2 for i ← 1 to 𝜆 do
3 p′ ← mutate(p)
4 Q ← Q ∪ {p′}
5 end

Algorithm 3: add-replace(P,Q)—return copy of P joint by Q, replace

parents in P by offspring individuals in Q with equal Pareto vectors, avoid

adding multiple offspring individuals with equal Pareto vectors.

Input: sets P, Q
Output: set R

1 R ← P
2 foreach q ∈ Q do
3 if ∄r ∈ R : r ⪯ q ∧ q ⪯ r then
4 R ← R ∪ {q}
5 end
6 if ∃r ∈ R : r ⪯ q ∧ q ⪯ r ∧ parent({q}) == r then
7 R ← R ∪ {q}
8 R ← R∖{r}
9 end
10 end

5 Performance Assessment

To analyze the performance of multi-objective optimizers, we need to compare the

calculated Pareto sets. In this work we employ two methods: the ranking of Pareto

sets by a quality indicator and the analysis of the mean Pareto set, attained during

multiple runs. Both methods are described by Knowles et al. [18] and are also imple-

mented in the PISA toolbox by Bleuler et al. [1].

5.1 Quality Indicators

To compare Pareto sets, Zitzler et al. [32] introduced the concept of a Quality Indi-

cator (QI) as a function mapping a set of Pareto sets to a set of real numbers. Under

QI, the Pareto sets define a relation on the Pareto set quality. In our work, we use

the unary additive epsilon indicator I1
𝜀+. It is based on the binary additive epsilon

indicator I
𝜀+ which is defined for two Pareto sets A and B as:

I
𝜀+(A,B) = inf

𝜀∈ℝ
{∀b ∈ B ∃a ∈ A ∶ a ⪯

𝜀+ b}.
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Table 1 Interpretation of the Kruskal-Wallis test: given the Kruskal-Wallis test rejects H0, a dot

denotes a p-value higher than 𝛼

A1 A2 A3

A1 – 0.002 0.007

A2 ⋅ – ⋅

A3 ⋅ 0.003 –

Here, the relation⪯
𝜀+ is defined as a ⪯

𝜀+ b ⇔ ∀i ∶ ai ≤ 𝜀 + b. For a reference Pareto

set R, the unary additive epsilon indicator I1
𝜀+ can be now derived as

I1
𝜀+(A) = I

𝜀+(A,R).

Following Knowles et al. [18], we use the non-parametric Kruskal-Wallis (KW)

test [2] to statistically evaluate sequences of quality numbers. The Kruskal-Wallis

test differentiates between the null hypothesisH0 = “The distribution functions of the

sequences are identical” and the alternative hypothesis HA = “At least one sequence

tends to yield better observations than another sequence”. In case the test rejects H0,

we provide for all sequence pairs the one-tailed p-value. Table 1 presents an example:

for an algorithm tuple (A
row

,A
col
) a p-value equal or below 𝛼 indicates a lower mean

for A
row

. Thus, one can conclude for Table 1 that A1 outperforms A2 and A3, and A3
outperforms A2. In our experiments, we configure the significance level 𝛼 to 0.01.

5.2 Empirical Attainment Functions

An additional way of interpreting the results of multi-objective optimizers is to look

at the Pareto points that are covered, i.e., weakly dominated, with a certain proba-

bility during the multiple repetitions of an optimization algorithm. All Pareto points

that have been reached in x% of the runs are referred to as the x%-attainment. The

attainment allows for a direct graphical interpretation as shown in the examples of

Figs. 2 and 3.

In order to statistically compare the attainments we use the two-tailed

Kolmogorov-Smirnov test [23]. It distinguishes between H0= “Sequences A and B

follow the same distribution” and HA= “Sequences A and B follow different distrib-

utions”. Table 2 contains exemplary results for the Kolmogorov-Smirnov (KS) test.

It can be interpreted as: A1 differs significantly from A2 and A3. In our experiments,

we configure the significance level 𝛼 to 0.05.
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Table 2 Interpretation of the Kolmogorov-Smirnov test: A dot denotes an accepted H0 hypothesis

at the given 𝛼

A1 A2 A3

A1 – * *

A2 * – ⋅

A3 * ⋅ –

* indicates significantly different nondominated set distributions

6 Evaluation

We experimented with several benchmarks to compare hES and the periodized vari-

ants of hES, NSGAII and SPEA2. At first, we used the standard benchmarks for

multi-objective algorithms DTLZ{2, 6} and ZDT6. These benchmarks are available

with the PISA toolbox [1] and are described in [19]. Second, we compared our algo-

rithms on the evolution of digital circuits, i.e., even 5- and 7-parity and (2, 2) and

(3, 3) adders and multipliers, using Cartesian Genetic Programming (CGP) [20] as

the hardware representation model. Figure 1 illustrates the CGP phenotype. Besides

the functional quality of the digital circuit, which in this case is set as a constraint,

we select the circuit’s area and speed to define a multi-objective benchmark [15].

In our experiments we executed 20 repetitions for every combination of goal func-

tion and algorithm. For the hES, ES-generate produces 32 offspring individuals

for each parent. For the other benchmarks, Algorithm 1 was configured to have one

offspring individual per parent.

Table 3 presents the configuration of the benchmarks DTLZ{2, 6} and ZDT6.

For these benchmarks, NSGAII and SPEA2 employ the SBX crossover operator [3].

The optimization runs were stopped after 10,000 fitness evaluations. Table 4 shows

for the digital circuit benchmarks the CGP configurations, termination criteria, and

nc

nn

ni nr

f4

f5

f7

f8

f11

f10

f17
f21

f22

f23

f6

f9

f20

pi1

pi2

pi3

pi0

po24

po25

no

Fig. 1 Cartesian Genetic Programming (CGP) encodes a two dimensional grid of functional units

connected by feed forward wires, thus forming a directed acyclic graph. The CGP model is para-

metrized with the number of primary inputs ni and outputs no, number of rows nr and columns nc,
number of functional block inputs nn, the maximal length of a wire l and the functional set F that

can be computed by the nodes
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Table 3 DTLZ2, DTLZ6, and ZDT6 benchmark configurations

Number objectives 2

Number of decision variables 100

Individual mutation probability 1

Individual recombination probability 1

Variable mutation probability 1

Variable swap probability 0.5

Variable recombination probability 1

Eta mutation 20

Eta recombination 15

Use symmetric recombination 1

Table 4 CGP benchmark configurations. S is the termination number, measured in fitness evalu-

ations. |P| and |A| denote the capacity of the parent population and the archive

5-parity 7-parity (2, 2) add (2, 2) mul (3, 3) add (3, 3) mul

S 400, 000 800, 000 400, 000 1, 600, 000 400, 000 160, 000

ni 5 7 4 4 6 6

no 1 1 4 4 6 6

nn 2

l ∞
nc 200

nr 1

|P|/|A| 32/100 for hES, 50/100 else

F see Table 5

P(mut.) 0.1

P(rcmb.) 0.0 for hES, 0.5 else

rcmb. type one-point

population sizes. We limit the functional set to the Boolean functions presented in

Table 5. To simplify the nomenclature, we use the following abbreviations:

hES → h
SPEA2 → s
NSGAII → n
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Table 5 CGP configuration: functional set F
Number Function

0 0

1 1

2 a
3 b
4 a
5 b
6 a ⋅ b
7 a ⋅ b
8 a ⋅ b
9 a ⋅ b
10 a⊕ b
11 a⊕ b
12 a + b
13 a + b
14 a + b
15 a + b
16 a ⋅ c + b ⋅ c
17 a ⋅ c + b ⋅ c
18 a ⋅ c + b ⋅ c
19 a ⋅ c + b ⋅ c

6.1 Periodization of hES for DTLZ2, DTLZ6 and ZDT6

To examine the effect of local search, we first execute the standard NSGAII and

SPEA2 for a given benchmark in order to determine the reference performance.

Then, we increase step by step the influence of local search by periodizing NSGAII

with hES until only hES is executed. In terms of our periodization model (cf. Sect. 3),

we investigate the six periodization schemes: n, s, nh, nh4
, nh10

, and h.

Table 6 shows the results of the KW test applied to the benchmarks DTLZ{2, 6}

and ZDT6 with respect to the unary additive epsilon indicator I1
𝜀+ at the significance

level 𝛼 = 1%. The results of the KS test are omitted as they indicate differences

significant at 𝛼 = 5% between the nondominated sets for almost all combinations of

algorithm and benchmark.

The central observation for the DTLZ2 and DTLZ6 experiments is that the qual-

ity of the nondominated sets degrades with an increasing influence of local search.

Starting with the periodization of NSGAII and hES, the KW test shows falling per-

formance when increasing the number of hES iterations. The hES-only experiment

results in the worst performance of all the algorithms. The KW test results are con-

firmed by the graphical interpretation of the 75% attained nondominated sets in

Fig. 2a, b.
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Table 6 Comparison of the nondominated sets of DTLZ2, DTLZ6, and ZDT6. A dot denotes an

accepted H0. When the KW test rejects H0 for the algorithm pair (arow, acol), a one-tailed p-value

lower than 𝛼 = 0.01 indicates that a
row

evolves significantly better nondominated sets than a
col

regarding I1
𝜀+

n s nh nh4 nh10 h

KW test DTLZ2 n ⋅ 0.0 0.0 0.0 0.0

s ⋅ 0.0 0.0 0.0 0.0

nh ⋅ ⋅ 0.0 0.0 0.0

nh4 ⋅ ⋅ ⋅ 0.0 0.0

nh10 ⋅ ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

DTLZ6 KW test n ⋅ 0.0 0.0 0.0 0.0

s ⋅ 0.0 0.0 0.0 0.0

nh ⋅ ⋅ 0.0 0.0 0.0

nh4 ⋅ ⋅ ⋅ 0.0 0.0

nh10 ⋅ ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

ZDT6 KW test n ⋅ ⋅ ⋅ ⋅ 0.0

s ⋅ ⋅ ⋅ ⋅ 0.0

nh 0.0001 0.0027 ⋅ 0.0001 0.0

nh4
0.0 0.0 0.0014 0.0 0.0

nh10 ⋅ ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

For the ZDT6 benchmark, the influence of hES is not as one-sided as for the

DTLZ{2,6} benchmarks. The nh periodization outperforms SPEA2 and NSGAII.

Further increase in the influence of hES in the nh4
periodization lets it dominate all

other algorithms. The nh10
periodization is on a par with SPEA2 and NSGAII, while

the execution of hES alone, as with DTLZ{2, 6}, falls behind. The 75% attainments

pictured in Fig. 3 confirm this. Interestingly, despite the large gap between nh10
and

the group of SPEA2 and NSGAII, the KW test finds no significant differences at

𝛼 = 1% between the corresponding indicator sequences. The KS test, similar to the

results for the DTLZ{2, 6} benchmarks, reveals significant differences at 𝛼 = 5% for

all algorithm combinations except the NSGAII and SPEA2 pair.

The DTLZ{2,6} and ZDT6 benchmarks demonstrate the various kinds of impact

that local search may have when periodized with global search algorithms. To gain an

insight into whether the order of the algorithms in the periodization sequence influ-

ences the results, and into how an hES-less periodizations of SPEA2 and NSGAII

compares to the regular SPEA2 and NSGAII, we fixate on the ZDT6 benchmark and

apply 2- and 3-tuple permutations of the NSGAII, SPEA2, and hES algorithms. All

the experiments were repeated 100 times and the execution was stopped after 200

generations.
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Fig. 2 75%-attainments for the 2-dimensional DTLZ2 a and DTLZ6 b benchmarks. A hypothetical

optimum is located at 0⃗
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Fig. 3 75%-attainments for the 2-dimensional ZDT6 benchmarks. A hypothetical optimum is

located at 0⃗

Table 7 shows the results for 2-tuple combinations of NSGAII, SPEA2, and hES.

The general observation taken from the KW test is that hES periodized with either

NSGAII or SPEA2 outperforms standard NSGAII, SPEA2, and their combina-

tions. Interestingly, the hES-after-SPEA2 outperforms the hES-after-NSGAII, while

SPEA2-after-hES does not. This shows that the performance of this particular peri-

odization scheme may be sensitive to the initial order of the executed algorithms.

The KS test confirms the results observed before. There are basically two classes

of algorithms, showing significantly different results: the class of algorithms peri-

odized with hES, and the class of NSGAII, SPEA2 and their combinations. In con-

trast to the previous test, the differences between (hs) and (nh) are now identified as

significant.

Next, Table 7 shows also the results of 3-tuple combinations of hES with NSGAII

and SPEA2. Similar to the results achieved for the 2-tuple tests, all the periodized

algorithms outperform (KW) and differ (KS) from NSGAII and SPEA2.

In summary, we can conclude that for the DTLZ{2, 6} benchmarks, an increasing

impact of hES reduces the quality of the nondominated sets evolved, while for the

ZDT6 benchmark, the schemes periodized with hES have the dominating results.

6.2 Periodization of hES for Digital Circuit Design

In contrast to the previous benchmarks, we optimize for three objectives in this

section: the functional quality, the area, and the propagation delay. In total, each
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Table 7 ZDT6 nondominated sets comparison for 2- and 3-tuple combinations of NSGAII, SPEA2

and hES to NSGAII and SPEA2. A dot denotes an accepted H0. When the KW test rejects H0 for

the algorithm pair (arow, acol), a one-tailed p-value lower than 𝛼 = 0.01 indicates that a
row

evolves

significantly better nondominated sets than a
col

regarding I1
𝜀+. A star indicates significantly different

nondominated set distributions at 𝛼 = 0.05 according to the KS test

n s nh hn sh hs ns sn

KW test n ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
s ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
nh 0.0 0.0 ⋅ ⋅ ⋅ 0.0 0.0

hn 0.0 0.0 ⋅ ⋅ ⋅ 0.0 0.0

sh 0.0 0.0 0.0091 ⋅ ⋅ 0.0 0.0

hs 0.0 0.0 ⋅ ⋅ ⋅ 0.0 0.0

ns ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
sn ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

KS test n ⋅ * * * * ⋅ ⋅
s ⋅ * * * * ⋅ ⋅
nh * * ⋅ * * * *

hn * * ⋅ ⋅ ⋅ * *

sh * * * ⋅ ⋅ * *

hs * * * ⋅ ⋅ * *

ns ⋅ ⋅ * * * * ⋅
sn ⋅ ⋅ * * * * ⋅

n s nhs nsh shn snh hns hsn

KW test n ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
s ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
nhs 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
nsh 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
shn 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
snh 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
hns 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
hsn 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅

KS test n ⋅ * * * * * *

s ⋅ * * * * * *

nhs * * ⋅ ⋅ ⋅ ⋅ ⋅
nsh * * ⋅ ⋅ ⋅ ⋅ ⋅
shn * * ⋅ ⋅ ⋅ ⋅ ⋅
snh * * ⋅ ⋅ ⋅ ⋅ ⋅
hns * * ⋅ ⋅ ⋅ ⋅ ⋅
hsn * * ⋅ ⋅ ⋅ ⋅ ⋅

* indicates significantly different nondominated set distributions
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Table 8 The number of circuits with perfect functional quality evolved during 20 runs

(2, 2) add (3, 3) add (2, 2) mul (3, 3) mul 5-parity 7-parity

n 1 0 0 0 0 0

s 6 0 7 0 0 0

nh 7 0 8 0 0 0

nh4
9 0 11 0 0 0

nh10
11 0 14 0 0 0

h 12 1 15 0 0 0

algorithm is executed 20 times for each pair of goal functions. Table 8 summarizes

the number of runs that resulted in functionally correct solutions. The first obser-

vation is that for the parity, the (3, 3) adder, and the (3, 3) multiplier benchmarks,

almost none of the algorithms managed to evolve functionally correct circuits. We

focus therefore on the experiments involving the (2, 2) adder and the (2, 2)multiplier,

when discussing the influence of local search on the evolution of correct circuits.

Despite treating equally all objectives, hES is most effective in finding function-

ally correct solutions. While SPEA2 outperforms NSGAII for this particular CGP

configuration on the (2, 2) adder and multiplier benchmarks, increasing the influence

of hES in the periodization with NSGAII produces even greater success rates. nh4

and especially nh10
periodization schemes reveal only a small gap with the hES-only

performance. This insight is also partly confirmed by the results of the KW and the

KS tests presented in Table 9. For the (2, 2) adder, the KW test finds no significant

differences in nondominated sets at 𝛼 = 1% while the KS test partitions the algo-

rithms into groups of {n}, {s, nh, nh4
, nh10

}, and {h} with significant differences

in the evolved nondominated sets at 𝛼 = 5%. For the (2, 2) multiplier benchmark,

NSGAII is dominated by all, and hES by SPEA2 and nh according to the KW test.

The KS test splits the algorithms, similarly to what happened with the (2, 2) bench-

mark, into groups of {n}, {s, nh, nh4
, nh10

}, and {h}. Additionally, in the group

of {s, nh, nh4
, nh10

} SPEA2 evolves different nondominated sets than it does for

nh4
, nh10

.

The (3, 3) adder and multiplier benchmarks split the algorithms into {n} and {s,

nh, nh4
, nh10

, h} groups with different nondominated sets according to the KW

test. The KS test reveals, similar to what happened with the (2, 2) benchmarks, the

same general tendency of differences between the nondominated sets evolved by the

NSGAII, the hES, and the group of the remaining algorithms.

The general partitioning according to the quality of the evolved nondominated

sets between NSGAII, hES, and the rest of the algorithms, is even more pronounced

for the parity benchmarks, as now the KW test also confirms significant differences

(Table 10). That is, SPEA2, nh, nh4
, and nh10

are better than NSGAII and hES for

5- and 7-parity functions and NSGAII is better than hES for the 7-parity function.
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Table 9 Non-dominated sets comparison: A dot denotes an acceptedH0. When the KW test rejects

H0 for the algorithm pair (arow, acol), a one-tailed p-value lower than 𝛼 = 0.01 indicates that a
row

evolves significantly better nondominated sets than a
col

regarding I1
𝜀+. A star indicates significantly

different nondominated set distributions at 𝛼 = 0.05 according to the KS test

n s nh nh4 nh10 h

(2, 2) add KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s ⋅ ⋅ ⋅ ⋅ ⋅
nh ⋅ ⋅ ⋅ ⋅ ⋅
nh4 ⋅ ⋅ ⋅ ⋅ ⋅
nh10 ⋅ ⋅ ⋅ ⋅ ⋅
h ⋅ ⋅ ⋅ ⋅ ⋅

(2, 2) add KS test n * * * * *

s * ⋅ ⋅ ⋅ *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* ⋅ ⋅ ⋅ *

h * * * * *

(3, 3) add KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s 0.0067 ⋅ ⋅ ⋅ ⋅
nh 0.0004 ⋅ ⋅ ⋅ ⋅
nh4

0.0011 ⋅ ⋅ ⋅ ⋅
nh10

0.0 ⋅ ⋅ ⋅ ⋅
h 0.0 ⋅ ⋅ ⋅ ⋅

(3, 3) add KS test n ⋅ * * * *

s ⋅ ⋅ ⋅ ⋅ *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* ⋅ ⋅ ⋅ *

h * * * * *

(2, 2) mul KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s 0.0 ⋅ ⋅ ⋅ 0.0

nh 0.0 ⋅ ⋅ ⋅ 0.0013

nh4
0.0 ⋅ ⋅ ⋅

nh10
0.0 ⋅ ⋅ ⋅

h 0.0016 ⋅ ⋅ ⋅ ⋅

(2, 2) mul KS test n * * * * *

s * ⋅ * * *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* * ⋅ ⋅ *

h * * * * *

(3, 3) mul KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s 0.0006 ⋅ ⋅ ⋅ ⋅

(continued)
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Table 9 (continued)

n s nh nh4 nh10 h

nh 0.0 ⋅ ⋅ ⋅ ⋅
nh4

0.0 ⋅ ⋅ ⋅ ⋅
nh10

0.0 ⋅ ⋅ ⋅ ⋅
h 0.0002 ⋅ ⋅ ⋅ ⋅

(3, 3) mul KS test n * * * * *

s * ⋅ ⋅ * *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* * ⋅ ⋅ *

h * * * * *

* indicates significantly different nondominated set distributions

Table 10 Non-dominated sets comparison: A dot denotes an accepted H0. When the KW test

rejects H0 for the algorithm pair (arow, acol), a one-tailed p-value lower than 𝛼 = 0.01 indicates

that a
row

evolves significantly better nondominated sets than a
col

regarding I1
𝜀+. A star indicates

significantly different nondominated set distributions at 𝛼 = 0.05 according to the KS test

n s nh nh4 nh10 h

5-parity KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s 0.0 ⋅ ⋅ ⋅ 0.0

nh 0.0 ⋅ ⋅ ⋅ 0.0

nh4
0.0 ⋅ ⋅ ⋅ 0.0

nh10
0.0 ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

5-parity KS test n * * * * *

s * ⋅ ⋅ ⋅ *

nh * ⋅ ⋅ * *

nh4
* ⋅ ⋅ ⋅ *

nh10
* ⋅ * ⋅ *

h * * * * *

7-parity KW test n ⋅ ⋅ ⋅ ⋅ 0.0054

s 0.0 ⋅ ⋅ ⋅ 0.0

nh 0.002 ⋅ ⋅ ⋅ 0.0

nh4
0.0 ⋅ ⋅ ⋅ 0.0

nh10
0.0 ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

7-parity KS test n * * * * *

s * ⋅ ⋅ ⋅ *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* ⋅ ⋅ ⋅ *

h * * * * *

* indicates significantly different nondominated set distributions
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The KS test finds significant differences between the three groups, also finding a

significant difference between nh and nh10
for 5-parity.

In summary, we can state that periodizations of hES with NSGAII, as well as

the non-periodized SPEA2, create, for almost all benchmarks, nondominated sets

which are better than those of the non-periodized hES and NSGAII. Additionally,

with the increasing influence of hES in a periodization scheme, the probability for

the evolution of correct CGP circuits increases.

7 Conclusion

In this work, we investigated the periodization of multi-objective local and global

search algorithms. For this, we relied on a periodized execution model and on the

hybrid Evolutionary Strategies as a local search technique tailored to periodization

with Pareto-based genetic multi-objective optimizers such as NSGAII and SPEA2.

The results show that for the DTLZ{2, 6} benchmarks, hES and its periodization

with NSGAII underperforms. For ZDT6 and, most importantly, for the evolution of

digital circuit benchmarks on the CGP model, hES and its periodizations are sig-

nificantly better than the reference algorithms NSGAII and SPEA2. Furthermore,

the periodized execution model proved to be a simple, fast and flexible approach to

combine multiple optimization algorithms for merging functional and behavior prop-

erties. Thus, blending multi- and single-objective optimizers, local and global search

algorithms and differently converging methods creates a new family of optimization

algorithms.
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