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Abstract This chapter presents the work done in the field of Cartesian Genetic Pro-

gramming evolved Artificial Neural Networks (CGPANN). Three types of CGPANN

are presented, the Feed-forward CGPANN (FFCGPAN), Recurrent CGPANN and

the CGPANN that has developmental plasticity, also called Plastic CGPANN or

PCGPANN. Each of these networks is explained with the help of diagrams. Per-

formance results obtained for a number of benchmark problems using these net-

works are illustrated with the help of tables. Artificial Neural Networks (ANNs) suf-

fer from the dilemma of how to select complexity of the network for a specific task,

what should be the pattern of inter-connectivity, and in case of feedback, what topol-

ogy will produce the best possible results. Cartesian Genetic Programming (CGP)

offers the ability to select not only the desired network complexity but also the inter-

connectivity patterns, topology of feedback systems, and above all, decides which

input parameters should be weighted more or less and which one to be neglected. In

this chapter we discuss how CGP is used to evolve the architecture of Neural Net-

works for optimum network and characteristics. Don’t you want a system that designs

everything for you? That helps you select the optimal network, the inter-connectivity,

the topology, the complexity, input parameters selection and input sensitivity? If yes,

then CGP evolved Artificial Neural Network (CGPANN) and CGP evolved Recur-

rent Neural Network (CGPRNN) is the answer to your questions.
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1 Artificial Neural Networks

Artificial Neural Network (ANN) is a powerful tool for non-linear mapping between

input and output. It is the ultimate solution when all the traditional algorithms fail.

It provides a parametric expression for the system whose mathematical model for

functionality is unknown. Despite successful application of neural networks to a

variety of problems, they still have some limitations. One of the most common lim-

itations is associated with neural network training. The back-propagation learning

algorithm cannot guarantee an optimal solution. Back propagation has the tendency

to get stuck-up at a sub-optimal point, and might never come out of it. Much research

has been done to tackle this problem. Evolutionary methods can provide solution to

this problem. They do so by producing multiple solutions at any one point, thus if

one of them is stuck-up at suboptimal point the other might be in closer vicinity to

the global optimum and will thus cause the network to reach the global optimum.

In real-world applications, the back-propagation algorithm might converge to a set

of sub-optimal weights from which it cannot escape. As a result, the neural network

is often unable to find a desirable solution to a problem at hand. To get the bene-

fits of both ANN and evolutionary methods researchers tried a hybrid of both these

methods [33]. Another difficulty is related to selecting an optimal topology for the

neural network. The right network architecture for a particular problem is often cho-

sen by means of heuristics, and designing a neural network topology is still more

of art than engineering. Genetic algorithm [25] and genetic programming [28] are

effective optimization techniques that can guide both weight and topology selection.

2 Neuro-Evolution

The process of evolving various parameters of neural network is termed Neuro-

evolution. Unlike backpropagation algorithm which is used to train only weights of

the network to obtain the desired optimum characteristics, evolutionary techniques

can train the network topology and even the learning rules. In case of evolving con-

nection weights, we perform the following steps:

1. Encode the connection weights of each individual neural network into chromo-

somes.

2. Calculate the error function and determine the individual‘s fitness.

3. Reproduce children based on selection criteria.

4. Apply genetic operators.

Success or failure of an application is largely determined by the network architecture

(i.e. the number of neurons and their interconnections). As the network architecture

is usually decided by trial and error, a good algorithm is required to automatically

design an efficient architecture for each particular application. Genetic algorithms

may well be suited for this task. The basic idea behind evolving a suitable network
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architecture is to conduct a genetic search in a population of possible architectures.

We must first choose a method of encoding a network’s architecture into a chromo-

some. There are two types of encoding schemes:

Direct Encoding: When all the information of the network is represented directly

by genes in the code, it is referred to as Direct Encoding Scheme. In this case the

network has a one to one relationship between genotype and phenotype.

Indirect Encoding: In this type of encoding the genes don’t represent the network

directly, and show only the indirect function responsible for generation of network

parameters [5]. This is biologically more plausible, as according to the findings of

neuroscience it is impossible for genetic information to be encoded in humans to

specify the whole nervous system directly. It is computationally more expensive,

since it doesn’t have any clue of the targeted application for which the network is

developed.

3 CGP Evolved Artificial Neural Network (CGPANN)

We have used CGP to introduce four different ways of evolving neural networks that

are as follows:

∙ Feed-forward CGP evolved ANN (FCGPANN)

∙ Recurrent CGP evolved ANN (RCGPANN)

∙ Plastic CGP evolved ANN (PCGPANN)

∙ Plastic Recurrent CGPANN (PRCGPANN).

3.1 Feed-Forward CGP Evolved ANN (FCGPANN)

In the first case, CGP is transformed to a feed-forward neural network by considering

each node as a neuron, and providing each connection with a weight. The neurons

of such a network are arranged in Cartesian format with rows and columns inspired

by original CGP architecture, and later on restricted to a single row mostly giving

the network an ability to create infinite graphs/topologies. Each neuron in the net-

work can take connection from either a previous neuron or from the system input.

Not all neurons are necessarily connected with each other or with system inputs,

this provides the network with an ability to continuously evolve its complexity along

with the weights. All the network parameters are represented by a string of numbers

called genotype. The number of active neurons (connected from inputs to outputs)

varies from generation to generation subject to the genotype selection. Output of

any neuron or a system input can be a candidate for the systems output selection.

The ultimate system functionality is identified by interconnecting neurons from out-

put to input. Since CGP works best with mutation, thus only mutation operator is
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Fig. 1 A CGPANN node containing the inputs, weights, switches, summer and activation function

explored in all the variants of neural networks introduced in this work. Mutation

operator specifies the percentage of genes to be mutated during the process of evo-

lution. A gene can be an input connection to a node, a weight, a switch or a neuron

function. These genes for a single node are shown in Fig. 1. An FCGPANN geno-

type for arity 2 (two inputs per node) is represented by the following expression:

FI1W1C1I2W2C2,FI1W1C1I2W2C2 … ,O1,O2 …On. Where F is the activation func-

tion chosen randomly from a list of different type of nonlinear functions. The two

most popular functions, also used in this work are the Log-sigmoid and the tangent

hyperbolic function, I represents output of a node or a system input, connected to

the node under consideration, W is the weight being multiplied with a node input

and C is an optional ON/OFF switch. All these genes can get only certain allowed

values depending on the type of network. The network representation of a genotype

is called a phenotype. Figure 2 shows a typical FCGPANN phenotype with its asso-

ciated genotype. We have the option to evolve, all the parameters, or can fix one or

two and evolve others.

FCGPANN was initially tested for its speed of learning, and evaluated against the

previously introduced neuro-evolutionary techniques on benchmarks such as single

and double Pole balancing [19]. Table 1 shows the superior performance of FCG-

PANN and RCGPANN (see next section) in comparison to the other neuroevolu-

tionary techniques evaluated for speed of learning on single pole balancing prob-

lem. Table 2 shows the performance of FCGPANN and RCGPANN compared to

other techniques, for Markovian and non-Markovian cases of double pole balanc-

ing task, where a Markovian process can be defined as the one in which the condi-

tional probability distribution of the future state depends only on the present state

and not on the past history. The figures show average number of evaluations needed

to achieve the target objective of balancing the poles for a specific bench marked time

interval. FCGPANN is explored in a range of applications including: breast cancer

detection, prediction of foreign currency exchange rates, Load forecasting, Internet

multimedia traffic management, cloud resource estimation, solar irradiance predic-

tion, wind power forecasting and arrhythmia detection [2, 13, 14, 16, 19, 24, 30].

FCGPANN outperformed all the previously introduced techniques as highlighted in
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Fig. 2 A CGPANN phenotype with its corresponding genotype

Table 1 Comparison of CGPANN with other neuro-evolutionary algorithms in terms of average

number of evaluations required to solve the single pole balancing task

Method Markovian Non-Markovian

Conventional Neuro-Evolution (CNE) [36] 352 724

Symbiotic, Adaptive Neural Evolution (SANE) [23] 302 1212

Enforced sub-population (ESP) [7] 289 589

Neuro-Evolution of Augmenting Topologies (NEAT) [35] 743 1523

Cooperative synapse neuroevolution (CoSyNE) [6] 98 127

FCGPANN [19] 21 –

RCGPANN [19] 17 55

the literature. Table 3 shows the comparative results for the mean accuracy in breast

cancer detection with fine needle aspiration (FNA), using different algorithms. It

can be seen that FCGPANN outperformed the other methods [19]. Another impor-

tant area in which FCGPANN was successfully applied is the prediction of foreign

currency exchange rates [24]. Table 4 shows the comparative results for prediction

of foreign currency exchange rates using FCGPANN and other methods.

Marketing a product requires good knowledge about the demands of customers,

especially in the case of food products. FCGPANN provides efficient method to pre-

dict market trends [1].
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Table 2 Comparison of CGPANN with other neuro-evolutionary algorithms in terms of average

number of evaluations required to solve the double pole balancing task

Method Markovian Non-Markovian

Standard fitness Standard fitness Damping fitness

Conventional Neuro-Evolution (CNE)

[36]

22 100 76 906 87 623

Symbiotic, Adaptive Neural Evolution

(SANE) [23]

12 600 262 700 451 612

Enforced sub-population (ESP) [7] 3 800 7 374 26 342

Neuro-Evolution of Augmenting

Topologies (NEAT) [35]

3 600 – 6 929

Cooperative synapse neuroevolution

(CoSyNE) [6]

954 1 294 3416

FCGPANN [19] 77 – –

RCGPANN [19] 129 163 387

Table 3 Comparison of Mean Absolute Percentage Errors (MAPE) obtained using various clas-

sification methods using the processed FNA data from WDBC that contains 30 features

No. Method Mean (MAPE)

1 Multi-Layer Perceptron (MLP) [8] 95.56

2 Fisher Linear Discriminant Analysis

(FLDA)/MLP [8]

90.92

3 Principle Component Analysis (PCA)/MLP [8] 92.02

4 Genetic Programming (GP/MDC) [8] 96.58

5 Evolutionary Neural Network (ENN) [10] 95.6

6 FCGPANN [19] 97 for Type-I and 98.5 for Type-II

Table 4 Comparison between the MAPE of other well known methods and that of FCGPANN,

for predicting foreign exchange rates

Network MAPE (%)

Hidden Markov model (HMM) [29] 1.928

ARIMA [3] 1.6108

Regression model [29] 1.9

CART model 1.62

Neural network model [9] 1.61

FCGPANN [24] 1.148
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3.2 Recurrent CGPANN (RCGPANN)

The second type of CGPANN is the Recurrent CGPANN (RCGPANN). These net-

works are more suitable for modeling systems that are dynamic and nonlinear. This

network is a modification to one of the earliest networks, the Jordan’s network [11].

In the Jordan’s network there are state inputs that are equal in number to the out-

puts. These inputs are fed by the outputs through unit weights. The state inputs are

present only at the input layer. Learning of these networks take place by changing

the weights of connections between input layer and the hidden layer and, the hid-

den and the output layer. In RCGPANN unlike the Jordan’s network the state inputs

can be connected, not necessarily to the first layer but to any layer. These additional

inputs also have the activation functions. Figures 3 and 4 show a typical RCGPANN

neuron, and the RCGPANN genotype and phenotype respectively. Here I1 and I2 are

the normal inputs while R is a state input. Initial value of the R input to the system is

considered zero. Output is taken from Node 6 as evident from genotype and the cor-

responding phenotype, and node 6 takes input from node 3 and input I2 only. Node

4 and 5 do not contribute to the output and are termed inactive nodes, while 3 and 6

are active nodes as they contribute to the output. Following are the outputs of active

nodes:

𝜓3 = tanh(I1 ⋅W13 + I2 ⋅W23 + R ⋅WR3)

𝜓6 = tanh(𝜓3 ⋅W36 + I2 ⋅W26 + R ⋅WR6)

where I1 and I2 are the normal inputs to the system, R is the state input, Wmn is

the weight of connection between system-input/node m and n, 𝜓m is the output of

node m. Figure 5 shows the case when all the outputs are presented as feedback

X 

X 

X 

I1 

W23

W13

I2 

R 

WR3

Activation 
Function 

Output 3 

Fig. 3 A typical RCGPANN neuron
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Fig. 4 Figure showing a RCGPANN genotype, b 2× 2 RCGPANN Network and c corresponding

to the phenotype

inputs to the neurons for selection. The output is averaged to find the desired output

of the system. RCGPANN was also tested initially for its speed of learning similar

to FCGPANN on both single and double pole balancing for both markovian and

nonmorkovian cases. Its performance relative to other neuroevolutionary techniques

for Markovian and non-Markovian cases explored on single pole balancing task is

shown in Table 1 and that on double pole is shown in Table 2. The numbers in the

tables represent the required average number of evaluations to find the desired pole

balancing behaviour. The results in these two tables clearly show the superiority of

FCGPANN and RCGPANN in Markovian case and that of RCGPANN in the non-

Markovian case.

FCGPANN and RCGPANN are also tested for their generalization ability. Table 5

shows generalization of FCGPANN and RCGPANN: average number of random cart

initializations (out of 625) that can be balanced for a desired number (benchmark) of

time-steps. Table 6 presents the generalization ability of various neuroevolutionary

algorithms for the double pole balancing scenario for non-Markovian case using the

damping fitness function. It is observed that the RCGPANN scored 335.84 out of

625 for 50 independently evolved genotypes exhibiting greater generalization ability

as compared to other techniques presented to date. Recurrent CGPANN has been

successfully applied to a number of applications including: Load forecasting, for-

eign currency exchange rates, bandwidth management and estimation [16, 17, 31].

RCGPANN has been successfully applied to electrical load prediction for a com-

plete year and also for different seasons of the year, enabling efficient utilization of
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Fig. 5 RCGPANN phenotype with full feedback having all outputs available for feedback

electricity management [14]. Table 7 compares the performance of RCGPANN with

other contemporary methods in terms of Mean Absolute Percentage Error (MAPE),

for the load forecasting task. Bandwidth allocation for communication channels has

always been a challenge for the engineers. Recurrent CGPANN has been success-

fully applied to predict the size of next MPEG4 video frame based on the estimate

of the last ten frames [16]. Table 8 shows the comparative results of next frame pre-

diction in terms of overall error for RCGPANN and other models. The electric load

prediction discussed earlier was improved to predict very short term (about half an

hour) load [18]. Table 9 shows the performance in terms of MAPE values, for the

proposed RCGPANN in comparison to other methods, for predicting very short term

electric load. Table 10 shows the comparative results for predicting the foreign cur-

rency exchange rate using RCGPANN and other models [31].
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Table 5 Generalization of CGPANN: average number of random cart initializations (out of 625)

that can be solved

Algorithm type Markovian Non-Markovian

Single pole Double pole Single pole Double pole

FCGPANN 590 277.38 – –

RCGPANN 363.94 471.92 294 335.84

Table 6 Comparison of

generalization of CGPANN

with other neuroevolutionary

algorithms for the double

pole balancing scenario for

Non-Markovian case

Method Value

CE 300

ESP 289

NEAT 286

RCGPANN 335.84

Table 7 Comparison of

RCGPANN with other

methods for the load

forecasting task

Method MAPE (%)

Local linear model tree 1.98

Support vector machine 1.93

Autonomous ANN 1.75

Floating search + SVM 1.70

CGPANN 1.71

ANN-back propagation 2.41

GA based adaptive ANN 1.94

RCGPANN 1.56

Table 8 Best overall error

comparison in MPEG4 frame

size prediction

S.no. Scheme Error (%)

1 Recurrent ANN RMSE = 3.0

2 F-CGPANN RMSE = 16

3 Laetitia et al.

model

RPE = 7.30

4 SARIMA MARE = 1.37

5 Kalman filter MARE = 1.4

6 Proposed

(RCGPANN)

RMSE = 2.7

MAPE = 1.2
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Table 9 Comparison of RCGPANN with other methods in terms of MAPE for very short time

electric load forecasting

S.no Model MAPE (%)

1 Self-supervised adaptive ANN 0.91

2 FNN for RTLF 0.88

3 ANNSTLF 2

4 RBF forecaster 1.3393

5 Model in [34] 0.66

6 Multiplicative decomposition

model

0.7601

7 Seasonal ARIMA model 1.6108

8 Model 1 [22] 1.792

9 Model 2 [22] 1.813

10 RCGPANN (proposed model) 0.43

Table 10 Comparison between the accuracy distribution rates and MAPE of RCGPANN and other

models for the foreign currency exchange rate prediction

Network Accuracy (%)

Multi layer perceptron [21] 72

HFERFM [27] 69.9

AFERFM [27] 81.2

Backpropagation with Bayesian regularization

[12]

93.93

RCGPANN (implemented) 98.872

3.3 Plastic CGPANN (PCGPANN)

Plasticity in neural networks has been the characteristic of choice when it comes

to applications in dynamic systems due to its comparatively better performance [4,

26, 32]. The improved performance in Plastic neural networks can be attributed to

the adaptability of its morphology to environmental stimuli. This is similar to the

natural neural system. In this developmental form of CGPANN an additional output

gene provides extra features to the system. PCGPANN has the same basic struc-

ture as that of CGPANN presented previously. With the addition of an extra output

gene, that causes developmental decisions during evaluation process, the CGPANN

achieves its plasticity. The decision is made on the basis of output values. The muta-

tion of the genotype is invoked according to a decision function that decides either

to invoke mutation or not. The decision function in this case is a threshold function

which invokes mutation when the value of output of the CGPANN is higher than

the threshold value. The threshold value is selected based on the performance of the

model. In this way an unlimited number of phenotypes might be generated from a
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single genotype, depending on the system requirement. The network is tested for its

performance in diverse learning domains. The genotypes are modified based on the

defined set of constraints. The plasticity invokes mutation of genotype at runtime,

modifying its genes, producing complex network structures.

3.3.1 PCGPANN Methodology

The PCGPANN generalized approach is demonstrated in Fig. 6. The figure depicts

network topology, its parameters i.e. inputs, connections, outputs, the additional

output gene and the algorithm of PCGPANN. The system consists of the original

CGPANN as explained before. Output from this network is fed into the running sum

block. Based on the evolutionary requirements, the number of outputs fed into the

summation block can vary. Either half or full number of CGPANN outputs are fed

into the summation block. The network is thus named Full Feedback (FFB) or Half

Feedback (HFB) network, based on its architecture. Output of the summation block

is fed to a decision function that generates either a 0 or a 1 so as to invoke the muta-

tion or not. Depending on the value of the summation block the decision function

either invokes mutation or leaves the genotype unchanged. The network is unique in

its ability to invoke mutation during run time. The mutation may take place randomly

in any of the following network genes: node inputs, weights, outputs or activation

functions. The genes are mutated under the given set of constraints.

Decision
Box
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Invoke Mutation
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Fig. 6 A Generalized approach of PCGPANN depicting the network topology, attributes: inputs,

connections, outputs, the additional output gene and the algorithm
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Constraints:

1. If the gene that has to be mutated is the function of a node, then a new function

is randomly selected from a list of functions and assigned to the node.

2. If a weight gene has to be mutated, then it is assigned a random value between

−1 and +1.

3. If the gene to be mutated happens to be a node input, then depending on the

levels-back parameter, output of any randomly selected node on the left of the

node under consideration or a network input is connected to it.

4. If an output gene has to be mutated, then it is connected to the output of a ran-

domly selected node or a system input.

In each iteration genes are mutated, the number of mutations depending on runtime

mutation rate (Developmental index). The possibility of change in genotype at run-

time is dependent on the output from activation function. The decision function is

maintained in accordance to the expected range of output from the activation func-

tion.

3.3.2 Development in PCGPANN

The plasticity in PCGPANN is based on the decision function. Once developmental

index is invoked by the function, the network initiate a step by step process of devel-

opment under the given set of aforementioned constraints. An example of various

possible steps of development in PCGPANN are illustrated in Fig. 7. A change may

be invoked in either the input of a node, a function or a weight gene as shown in the

figure. The process is highlighted both in the genotype and the phenotype. Figure 7a

shows the initial genotype and phenotype. There are two node functions, a sigmoid

and a tangent hyperbolic, in the initial genotype. These are the available functions

that can be randomly assigned to a node when mutation takes place. The 𝜓0s and 𝜓1s

are network inputs and 𝜓2 is the output of the first node and 𝜓3 is the system output,

while the weights have values in the range [−1, 1]. The mathematical representation

of the initial network is given in Eq. 1.

𝜓3 = Sig
[
0.6𝜓1 + 0.2Tanh(0.2𝜓0 + 0.7𝜓1)

]
(1)

In the first case, the function of first node i.e. Tanh is transformed to sigmoid function.

The updated genotype and phenotype are presented in Fig. 7b. The mathematical

expression for the updated genotype is given in Eq. 2.

𝜓3 = Sig
[
0.6𝜓1 + 0.2Sig(0.2𝜓0 + 0.7𝜓1)

]
(2)

In the second case, the weight changes from 0.1 to 0.7 i.e. at the first input of

the second node as shown in Fig. 7c. The mathematical expression for the updated

genotype is given by Eq. 3.
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Fig. 7 Demonstration of real time development in PCGPANN

𝜓3 = Sig
[
0.6𝜓1 + 0.7Sig(0.2𝜓0 + 0.7𝜓1)

]
(3)

In Fig. 7d, the structure is modified when an input to the neuron is altered i.e. the

first input to the second node is disconnected from node 1 and connected to a system

input. The network attains final expression as given by Eq. 4.

𝜓3 = Sig
[
0.6𝜓1 + 0.7𝜓0

]
(4)

Similar to FCGPANN and RCGPANN, PCGPANN is also first evaluated for its

learning ability and then the generalization of performing in an unknown environ-

ment. Table 11 shows the comparative results for PCGPANN and other algorithms,

used for single and double pole balancing tasks. The performance is shown in terms
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Table 11 Comparison of PCGPANN with other neuroevolutionary algorithms applied on single

and double pole balancing task: average number of network evaluations

Method Single pole Double pole

Conventional Neuro-Evolution (CNE) [36] 352 22 100

Symbiotic, Adaptive Neural Evolution (SANE) [23] 302 12 600

Enforced sub-population (ESP) [7] 289 3 800

Neuro-Evolution of Augmenting Topologies (NEAT) [35] 743 3 600

Cooperative synapse neuroevolution (CoSyNE) [6] 98 954

FCGPANN 21 77

PCGPANN 104 1 169

Table 12 Average number of random cart-pole initializations (out of 625) that can be solved

Type Single pole Double pole

FCGPANN 590 277.38

PCGPANN 456 349

Table 13 Comparison of PCGPANN with other ANNS for the prediction of foreign currency

exchange rates

Network Accuracy

AFERFM 81.2

HFERFM 69.9

Multi layer perceptron 72

Volterra network 76

Back propagation network 62.27

Multi neural network 66.82

CGPANN 98.85

PCGPANN [15] 98.8516

of average number of network evaluations [20]. Table 12 shows generalization of

the PCGPANN genotypes in comparison to FCGPANN for both the single and dou-

ble pole balancing scenarios. Plastic CGPANN has also been successfully applied to

evolve a dynamic and robust computational model for efficiently predicting daily for-

eign currency exchange rates in advance based on past data [15]. Table 13 shows the

comparative results of foreign currency exchange rate prediction using PCGPANN

and other contemporary methods.
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3.4 Plastic Recurrent Cartesian Genetic Programming
Evolved Artificial Neural Network (PRCGPANN)

Plastic Recurrent Cartesian Genetic Programming Evolved Artificial Neural Net-

work is an online learning approach that incorporates developmental plasticity in

Recurrent Neural Networks. Recurrent Neural Networks can process arbitrary

sequences of inputs due to their ability to access internal memory. In a Plastic RCG-

PANN the output gene not only forms the system output but also plays a role in the

developmental decision. Output of the system is applied to a decision function to

invoke development of the network. Development in the phenotype takes place with

the mutation of the genotype in runtime. The recurrent CGPANN has a feedback

mechanism in the network, that feeds one or more outputs back to the system. The

general approach of PCGPRNN is depicted in Fig. 8. The figure shows the inputs,

outputs, connections, recurrent inputs and the output gene that invokes development

in the network. The initial network is the original representation of the genotype

that changes in response to the output of the system with the passage of time. The

decision regarding the development is the reflection of output of the system fed into

the sum block and the recurrent paths taken from the CGPANN block associated

with the weights, summation and sigmoid function as shown in the figure. If the

value obtained from the function is less than defined decision value, development is

invoked in the network or otherwise the outputs are monitored without any modifica-

tion. The uniqueness aspect of the approach is that network changes take place in real

time according to the data flow in the network and this provides the plasticity feature

to the network. PRCGPANNs invoke changes in the network by changing (or mutat-

ing) a node function, an input, a weight or by switching an input in the real time. The

learning rules for development in the PCGPRNN are achieved during the process of

evolution. A special case is presented here to describe the developmental mechanism

in PRCGPANN at run time as shown in Figs. 9, 10 and 11. The system has three

inputs (I0, I1 and I2), two recurrent inputs (R0 and R1), five outputs (Y0,Y1,Y2,Y3
and Y4), weights (w0,w1,w2,w3, .....,w11) and the plastic feedback (PF).

Figure 9 shows the original phenotype having the following genotype:

Genotype = f0, I0,w0, I1,w1, I2,w2, f1, I3,w5,R1,w4, I2,w6,

f2, I3,w7,R1,w4,R0,w8, f3, I3,w10, I4,w11, I0,w9, I3, I1, I4, I5, I6

Figure 10 illustrates the change in function as a result of change in function gene

as highlighted in the genotype below:

Genotype = f0, I0,w0, I1,w1, I2,w2, f1, I3,w5,R1,w4, I2,w6,

f0, I3,w7,R1,w4,R0,w8, f3, I3,w10, I4,w11, I0,w9, I3, I1, I4, I5, I6

Figure 11 shows the change in the output connectivity at runtime respectively with

corresponding change in gene highlighted below:
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Fig. 8 Structural view of PRCGPANN

Genotype = f0, I0,w0, I1,w1, I2,w2, f1, I3,w5,R1,w4, I2,w6,

f0, I3,w7,R1,w4,R0,w8, f3, I3,w10, I4,w11, I0,w9, I0, I1, I4, I5, I6

The various cases of genotype and phenotype diagrams above demonstrate the

possible run time modification to the recurrent network, thus adding not only the sig-

nal feedback but also structural feedback through modification in the system architec-

ture and topology at runtime. This is a very interesting system, because it can trans-

form to feedforward and feedback structure from time to time during the processing,

thus giving a unique ability to the system. This architecture is yet to be explored on

various applications.
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Fig. 9 Original PRCGPANN phenotype

Fig. 10 Mutation in the function of the network
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Fig. 11 Mutation in the output gene

4 Concluding Remarks

This chapter provides a detailed overview of how CGP is used to evolve artificial

neural network by finding the proper set of weights and topology for the network.

CGP based ANN provides an ideal platform to all Markovian and non-Markovian,

Linear and non-linear problems that are static or dynamic/plastic. They can help

finding the unknown mathematical model for the problem at hand. The CGPANN

model not only helps in selection of topology and optimum weights for ANNs, but

also helps in identifying the best possible features to be selected amongst many pro-

vided to the network and ignoring the unwanted noise. Various models of CGPANNs

are tested in diverse fields of application for its speed of learning, robustness, and

accuracy. Comparison with other algorithms on same set of problems show encour-

aging results.
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