
Emergence, Complexity and Computation ECC

Susan Stepney
Andrew Adamatzky Editors

Inspired by
Nature
Essays Presented to Julian F. Miller
on the Occasion of his 60th Birthday

Emergence, Complexity and Computation

Volume 28

Series editors

Ivan Zelinka, Technical University of Ostrava, Ostrava, Czech Republic
e-mail: ivan.zelinka@vsb.cz

Andrew Adamatzky, University of the West of England, Bristol, UK
e-mail: adamatzky@gmail.com

Guanrong Chen, City University of Hong Kong, Hong Kong, China
e-mail: eegchen@cityu.edu.hk

Editorial Board

Ajith Abraham, MirLabs, USA
Ana Lucia C. Bazzan, Universidade Federal do Rio Grande do Sul, Porto
Alegre, RS, Brazil
Juan C. Burguillo, University of Vigo, Spain
Sergej Čelikovský, Academy of Sciences of the Czech Republic, Czech Republic
Mohammed Chadli, University of Jules Verne, France
Emilio Corchado, University of Salamanca, Spain
Donald Davendra, Technical University of Ostrava, Czech Republic
Andrew Ilachinski, Center for Naval Analyses, USA
Jouni Lampinen, University of Vaasa, Finland
Martin Middendorf, University of Leipzig, Germany
Edward Ott, University of Maryland, USA
Linqiang Pan, Huazhong University of Science and Technology, Wuhan, China
Gheorghe Păun, Romanian Academy, Bucharest, Romania
Hendrik Richter, HTWK Leipzig University of Applied Sciences, Germany
Juan A. Rodriguez-Aguilar, IIIA-CSIC, Spain
Otto Rössler, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Vaclav Snasel, Technical University of Ostrava, Czech Republic
Ivo Vondrák, Technical University of Ostrava, Czech Republic
Hector Zenil, Karolinska Institute, Sweden

The Emergence, Complexity and Computation (ECC) series publishes new
developments, advancements and selected topics in the fields of complexity,
computation and emergence. The series focuses on all aspects of reality-based
computation approaches from an interdisciplinary point of view especially from
applied sciences, biology, physics, or chemistry. It presents new ideas and
interdisciplinary insight on the mutual intersection of subareas of computation,
complexity and emergence and its impact and limits to any computing based on
physical limits (thermodynamic and quantum limits, Bremermann’s limit, Seth
Lloyd limits…) as well as algorithmic limits (Gödel’s proof and its impact on
calculation, algorithmic complexity, the Chaitin’s Omega number and Kolmogorov
complexity, non-traditional calculations like Turing machine process and its
consequences,…) and limitations arising in artificial intelligence field. The topics
are (but not limited to) membrane computing, DNA computing, immune
computing, quantum computing, swarm computing, analogic computing, chaos
computing and computing on the edge of chaos, computational aspects of dynamics
of complex systems (systems with self-organization, multiagent systems, cellular
automata, artificial life,…), emergence of complex systems and its computational
aspects, and agent based computation. The main aim of this series it to discuss the
above mentioned topics from an interdisciplinary point of view and present new
ideas coming from mutual intersection of classical as well as modern methods of
computation. Within the scope of the series are monographs, lecture notes, selected
contributions from specialized conferences and workshops, special contribution
from international experts.

More information about this series at http://www.springer.com/series/10624

http://www.springer.com/series/10624

Susan Stepney ⋅ Andrew Adamatzky
Editors

Inspired by Nature
Essays Presented to Julian F. Miller
on the Occasion of his 60th Birthday

123

Editors
Susan Stepney
Department of Computer Science
University of York
York
UK

Andrew Adamatzky
Unconventional Computing Centre
University of the West of England
Bristol
UK

ISSN 2194-7287 ISSN 2194-7295 (electronic)
Emergence, Complexity and Computation
ISBN 978-3-319-67996-9 ISBN 978-3-319-67997-6 (eBook)
https://doi.org/10.1007/978-3-319-67997-6

Library of Congress Control Number: 2017952894

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Julian Francis Miller

This book is a tribute to Julian Francis Miller’s breadth of ideas and achievements in
computer science, evolutionary algorithms and genetic programming, electronics,
unconventional computing, artificial chemistry, and theoretical biology. Well-known
for both Cartesian Genetic Programming and evolution in materio, Julian has further
interests from quantum computing to artificial chemistries. He has over 200 refereed
publications (http://www.cartesiangp.co.uk/jfm-publications.html); here, we high-
light just a few of his major accomplishments.

Julian started his life in science as mathematical physicist working on the
interaction of solitons in various nonlinear partial differential equations such as the
sine-Gordon equation [3, 5], and the modified Korteweg-de Vries equation [4]. He
entered classical computer science with his paper on synthesis and optimisation of
networks implemented with universal logic modules [1, 16, 30]. Julian’s interest in
optimisation led him to genetic algorithms, which he employed for optimisation of
field-programmable arrays [26], Reed-Muller logical functions [15], finite-state
machines [2], and evolving combinatorial logic circuits [18, 22, 23] and
non-uniform cellular automata [27, 28].

v

http://www.cartesiangp.co.uk/jfm-publications.html

Julian combined his interests in physics and computer science in work on
constant complexity algorithm for solving Boolean satisfiability problems on
quantum computers, and quantum algorithm for finding multiple matches [31].
Julian’s ideas in optimisation of circuits and quantum computing are reflected in
Younes’ Chapter “Using Reed-Muller Expansions in the Synthesis and
Optimization of Boolean Quantum Circuits”.

Julian’s interest in combining natural processes and computation expanded from
physics to include the exciting world of biological processes, such as evolution and
morphogenesis. He used principles of morphogenesis to evolve computing circuits
and programs [14, 17, 19]. These aspects of Julian’s work are reflected in Chapters
“Evolvable Hardware Challenges: Past, Present and the Path to a Promising Future”
by Haddow and Tyrell, “Artificial Development” by Kuyucu et al., and
Banzhaf’s “Some Remarks on Code Evolution with Genetic Programming”.

In 2000, Julian, together with Peter Thomson, presented a fully developed
concept of Cartesian Genetic Programming (CGP) [24]. There, a program is
genetically represented as a directed graph, including automatically defined func-
tions [29] and self-modifying operators [10]. This approach has become very
popular, because it allows the discovery of efficient solutions across a wide range of
mathematical problems and algorithms. Several chapters of the book manifest the
success of CGP in diverse application areas: “Designing Digital Systems Using
Cartesian Genetic Programming and VHDL” by Henson et al.; “Breaking the
Stereotypical Dogma of Artificial Neural Networks with Cartesian Genetic
Programming” by Khan and Ahmad; “Approximate Computing: An Old Job for
Cartesian Genetic Programming?” by Sekanina; “Medical Applications of Cartesian
Genetic Programming” by Smith and Lones; “Multi-step Ahead Forecasting Using
Cartesian Genetic Programming” by Dzalbs and Kalganova; “Cartesian Genetic
Programming for Control Engineering” by Clarke; “Bridging the Gap Between
Evolvable Hardware and Industry Using Cartesian Genetic Programming” by
Vasicek; “Combining Local and Global Search: A Multi-objective Evolutionary
Algorithm for Cartesian Genetic Programming” by Kaufmann and Platzner.

In 2001, Miller and Hartman published “Untidy evolution: Evolving messy gates
for fault tolerance” [21]. Their ideas of exploiting of “messiness” to achieve
“optimality”—“natural evolution is, par excellence, an algorithm that exploits the
physical properties of materials”—gave birth to a new field of unconventional
computing: evolution in materio [7, 12, 20]. The evolution in materio approach has
proved very successful in discovering logical circuits in liquid crystals [11–13],
disordered ensembles of carbon nanotubes [6, 7, 25] (and Chapter “Evolution in
Nanomaterio: The NASCENCE Project” by Broersma), slime mould (Chapter
“Discovering Boolean Gates in Slime Mould” by Harding et al.), living plants
(Chapter “Computers from Plants We Never Made: Speculations” by Adamatzky
et al.), and reaction-diffusion chemical systems (“Chemical Computing Through
Simulated Evolution” by Bull et al.).

Julian’s inspiration from nature has not neglected the realm of chemistry: he has
exploited chemical ideas in the development of a novel form of artificial chemistry,

vi Preface

used to explore emergent complexity [8, 9]. Chapter “Sub-Symbolic Artificial
Chemistries” by Faulkner et al. formalises this approach.

The book will be a pleasure to explore for readers from all walks of life, from
undergraduate students to university professors, from mathematicians, computers
scientists, and engineers to chemists and biologists.

York, UK Susan Stepney
Bristol, UK Andrew Adamatzky
June 2017

References

1. Almaini, A.E.A., Miller, J.F., Xu, L.: Automated synthesis of digital multiplexer networks. IEE
Proc. E (Comput. Dig. Tech.) 139(4), 329–334 (1992)

2. Almaini, A.E.A., Miller, J.F., Thomson, P., Billina, S.: State assignment of finite state machines
using a genetic algorithm. IEE Proc. Comp. Dig. Tech. 142(4), 279–286 (1995)

3. Bryan, A.C., Miller, J.F., Stuart, A.E.G.: A linear superposition formula for the sine-Gordon
multisoliton solutions. J. Phys. Soc. Japan 56(3), 905–911 (1987)

4. Bryan, A.C., Miller, J.F., Stuart, A.E.G.: Superposition formulae for multisolitons. II.—The
modified Korteweg-de Vries equation. Il Nuovo Cimento B 101(6), 715–720 (1988)

5. Bryan, A.C., Miller, J.F., Stuart, A.E.G.: Superposition formulae for sine-Gordon multisolitons.
Il Nuovo Cimento B 101(6), 637–652 (1988)

6. Dale, M., Miller, J.F., Stepney, S.: Reservoir computing as a model for in materio computing.
In: Advances in Unconventional Computing, pp. 533–571. Springer, Berlin (2017)

7. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: Evolving carbon nanotube reservoir com-
puters. In: International Conference on Unconventional Computation and Natural Computa-
tion, pp. 49–61. Springer, Berlin (2016)

8. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.: RBN-world: The hunt for a rich AChem.
In: ALife XII, Odense, Denmark, August 2010, pp. 261–268. MIT Press, Cambridge (2010)

9. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.S.D.: RBN-World: A sub-symbolic
artificial chemistry. In: ECAL 2009, Budapest, Hungary, September 2009, vol. 5777 of LNCS,
pp. 377–384. Springer, Berlin (2011)

10. Harding, S., Miller, J.F., Banzhaf, W.: Developments in Cartesian Genetic Programming:
Self-modifying CGP. Genet. Program. Evolvable Mach. 11(3/4), 397–439 (2010)

11. Harding, S., Miller, J.: Evolution in materio: Initial experiments with liquid crystal. In: Pro-
ceedings of NASA/DoD Conference on Evolvable Hardware, 2004, pp. 298–305. IEEE
(2004)

12. Harding, S., Miller, J.F.: A scalable platform for intrinsic hardware and in materio evolution.
In: Proceedings of NASA/DoD Conference on Evolvable Hardware, 2003, pp. 221–224. IEEE
(2003)

13. Harding, S., Miller, J.F.: Evolution in materio: Evolving logic gates in liquid crystal. In: Proc.
Eur. Conf. Artif. Life (ECAL 2005), Workshop on Unconventional Computing: From Cellular
Automata to Wetware, pp. 133–149. Beckington, UK (2005)

14. Liu, H., Miller, J.F., Tyrrell, A.M.: A biological development model for the design of robust
multiplier. In: Workshops on Applications of Evolutionary Computation, pp. 195–204.
Springer, Berlin, Heidelberg (2005)

15. Miller, J., Thomson, P., Bradbeer, P.: Ternary decision diagram optimisation of reed-muller
logic functions using a genetic algorithm for variable and simplification rule ordering. In:
Evolutionary Computing, pp. 181–190 (1995)

Preface vii

16. Miller, J.F., Thomson, P.: Highly efficient exhaustive search algorithm for optimizing
canonical Reed-Muller expansions of boolean functions. Int. J. Electr. 76(1), 37–56 (1994)

17. Miller, J.: Evolving a self-repairing, self-regulating, french flag organism. In: Genetic and
Evolutionary Computation—GECCO 2004, pp. 129–139. Springer, Berlin, Heidelberg (2004)

18. Miller, J., Thomson, P.: Restricted evaluation genetic algorithms with tabu search for opti-
mising boolean functions as multi-level and-exor networks. In: Evolutionary Computing,
pp. 85–101 (1996)

19. Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-repair.
In: European Conference on Artificial Life, pp. 256–265. Springer, Berlin, Heidelberg (2003)

20. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Pro-
ceedings of NASA/DoD Conference on Evolvable Hardware, pp. 167–176. IEEE (2002)

21. Miller, J.F., Hartmann, M.: Untidy evolution: evolving messy gates for fault tolerance. In:
International Conference on Evolvable Systems, pp. 14–25. Springer, Berlin, Heidelberg
(2001)

22. Miller, J.F., Job, D., Vassilev, V.: Principles in the evolutionary design of digital circuits—
part I. Genetic Prog. Evolvable Mach. 1(1–2), 7–35 (2000)

23. Miller, J.F., Thomson, P.: Combinational and sequential logic optimisation using genetic
algorithms. In: GALESIA. First International Conference on Genetic Algorithms in Engi-
neering Systems: Innovations and Applications, 1995 (Conf. Publ. No. 414), pp. 34–38. IET
(1995)

24. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: European Conference on
Genetic Programming, pp. 121–132. Springer, Berlin Heidelberg (2000)

25. Mohid, M., Miller, J.F., Harding, S.L., Tufte, G., Massey, M.K., Petty, M.C.:
Evolution-in-materio: solving computational problems using carbon nanotube–polymer
composites. Soft Comput. 20(8), 3007–3022 (2016)

26. Thomson, P., Miller, J.F.: Optimisation techniques based on the use of genetic algorithms
(gas) for logic implementation on fpgas. In: IEE Colloquium on Software Support and CAD
Techniques for FPGAs, pp. 4–1. IET (1994)

27. Vassilev, V., Miller, J., Fogarty, T.: The evolution of computation in co-evolving demes of
non-uniform cellular automata for global synchronisation. In: Advances in Artificial Life,
pp. 159–169 (1999)

28. Vassilev, V.K., Miller, J.F., Fogarty, T.C.: Co-evolving demes of non-uniform cellular
automata for synchronisation. In: Proceedings of the First NASA/DoD Workshop on
Evolvable Hardware, 1999, pp. 111–119. IEEE (1999)

29. Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and re-use of modules in
Cartesian genetic programming. IEEE Trans. Evol. Comput. 12, 397–417 (2008)

30. Xu, L., Almaini, A.E.A., Miller, J.F., McKenzie, L.: Reed-Muller universal logic module
networks. IEE Proc. E-Computers Dig. Tech. 140(2), 105–108 (1993)

31. Younes, A., Rowe, J., Miller, J.: A hybrid quantum search engine: A fast quantum algorithm
for multiple matches. arXiv preprint quant-ph/0311171 (2003)

viii Preface

Contents

Part I Evolution and Hardware

Evolvable Hardware Challenges: Past, Present and the Path to a
Promising Future . 3
Pauline C. Haddow and Andy M. Tyrrell

Bridging the Gap Between Evolvable Hardware and Industry Using
Cartesian Genetic Programming . 39
Zdenek Vasicek

Designing Digital Systems Using Cartesian Genetic Programming and
VHDL . 57
Benjamin Henson, James Alfred Walker, Martin A. Trefzer
and Andy M. Tyrrell

Evolution in Nanomaterio: The NASCENCE Project 87
Hajo Broersma

Using Reed-Muller Expansions in the Synthesis and Optimization of
Boolean Quantum Circuits . 113
Ahmed Younes

Part II Cartesian Genetic Programming Applications

Some Remarks on Code Evolution with Genetic Programming 145
Wolfgang Banzhaf

Cartesian Genetic Programming for Control Engineering 157
Tim Clarke

Combining Local and Global Search: A Multi-objective Evolutionary
Algorithm for Cartesian Genetic Programming 175
Paul Kaufmann and Marco Platzner

ix

Approximate Computing: An Old Job for Cartesian Genetic
Programming? . 195
Lukas Sekanina

Breaking the Stereotypical Dogma of Artificial Neural Networks with
Cartesian Genetic Programming . 213
Gul Muhammad Khan and Arbab Masood Ahmad

Multi-step Ahead Forecasting Using Cartesian Genetic
Programming . 235
Ivars Dzalbs and Tatiana Kalganova

Medical Applications of Cartesian Genetic Programming 247
Stephen L. Smith and Michael A. Lones

Part III Chemistry and Development

Chemical Computing Through Simulated Evolution 269
Larry Bull, Rita Toth, Chris Stone, Ben De Lacy Costello
and Andrew Adamatzky

Sub-Symbolic Artificial Chemistries . 287
Penelope Faulkner, Mihail Krastev, Angelika Sebald and Susan Stepney

Discovering Boolean Gates in Slime Mould . 323
Simon Harding, Jan Koutník, Júrgen Schmidhuber
and Andrew Adamatzky

Artificial Development . 339
Tüze Kuyucu, Martin A. Trefzer and Andy M. Tyrrell

Computers from Plants We Never Made: Speculations 357
Andrew Adamatzky, Simon Harding, Victor Erokhin, Richard Mayne,
Nina Gizzie, Frantisek Baluška, Stefano Mancuso
and Georgios Ch. Sirakoulis

x Contents

Part I
Evolution and Hardware

Evolvable Hardware Challenges: Past,
Present and the Path to a Promising
Future

Pauline C. Haddow and Andy M. Tyrrell

Abstract The ability of the processes in Nature to achieve remarkable examples of
complexity, resilience, inventive solutions and beauty is phenomenal. This ability
has promoted engineers and scientists to look to Nature for inspiration. Evolvable
Hardware (EH) is one such form of inspiration. It is a field of evolutionary com-
putation (EC) that focuses on the embodiment of evolution in a physical media.
If EH could achieve even a small step in natural evolution’s achievements, it would
be a significant step for hardware designers. Before the field of EH began, EC had
already shown artificial evolution to be a highly competitive problem solver. EH
thus started off as a new and exciting field with much promise. It seemed only a
matter of time before researchers would find ways to convert such techniques into
hardware problem solvers and further refine the techniques to achieve systems that
were competitive (better) than human designs. However, almost 20 years on, it
appears that problems solved by EH are only of the size and complexity of that
achievable in EC 20 years ago and seldom compete with traditional designs.
A critical review of the field is presented. Whilst highlighting some of the suc-
cesses, it also considers why the field is far from reaching these goals. The chapter
further redefines the field and speculates where the field should go in the next
10 years.

P.C. Haddow (✉)
CRAB Lab, Department of Computing and Information Science,
Norwegian University of Science and Technology, Trondheim, Norway
e-mail: pauline@ntnu.no

A.M. Tyrrell
Intelligent Systems & Nano-Science Group, Department of Electronic Engineering,
University of York, York, UK
e-mail: andy.tyrrell@york.ac.uk

© Springer International Publishing AG 2018
S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,
Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_1

3

1 Introduction

Yao and Higuchi published a paper in 1999 entitled “Promises and Challenges of
Evolvable Hardware” which reviewed the progress and possible future direction of
what was then a new field of research, Evolvable Hardware [1]. A little more than
ten years on, this chapter1 considers the progress of this research field, both in terms
of the successes achieved to date and also the failure to fulfil the promises of the
field highlighted in the 1999 paper. Through a critical review of the field, the
authors’ intention is to provide a realistic status of the field today and highlight the
fact that the challenges remain, to redefine the field (what should be considered as
Evolvable Hardware) and to propose a revised future path.

In the mid 1990s, researchers began applying Evolutionary Algorithms (EAs) to
a computer chip that could dynamically alter the hardware functionality and
physical connections of its circuits [2–10]. This combination of EAs with pro-
grammable electronics—e.g. Field Programmable Gate Arrays (FPGAs) and Field
Programmable Analogue Arrays (FPAAs)—spawned a new field of EC called
Evolvable Hardware.

The EH field has since expanded beyond the use of EAs on simple electronic
devices to encompass many different combinations of EAs and biologically inspired
algorithms (BIAs) with various physical devices or simulations thereof. Further, the
challenges inherent in EH have led researchers to explore new BIAs that may be
more suitable as techniques for EH.

In this chapter we define the field of EH and split the field into the two related
but different sub-fields: Evolvable Hardware Design (EHD) and Adaptive Hardware
(AH).

Evolvable Hardware, as the name suggests, should have a connection to
embodiment in a real device. However, in a number of EH papers, results produced
are interpreted as hardware components e.g. logic gates, illustrated as a circuit
diagram and justified as a hardware implementation, despite the lack of a realistic
hardware simulator. In this chapter such work is not considered as Evolvable
Hardware. The lack of grounding in real hardware, either physical or through
realistic simulators, defies their inclusion in the field of EH. In other cases, authors
attempt to speed up their EC process by implementing part or all of the BIA in
hardware. In other words, hardware accelerators are certainly not, as defined in this
chapter, Evolvable Hardware.

In this chapter we define the field of Evolvable Hardware (EH) as the design
or application of EAs and BIAs for the specific purpose of creating2 physical
devices and novel or optimised physical designs.

1This chapter is a revised and updated version of: Pauline C. Haddow, Andy M. Tyrrell (2011)
Challenges of evolvable hardware: past, present and the path to a promising future. Genetic
Programming and Evolvable Machines 12(3):183–215.
2
“creating” refers to the creation of a physical entity.

4 P.C. Haddow and A.M. Tyrrell

With this in mind, there are some successes in the field including analogue and
digital electronics, antennas, MEMS chips, optical systems as well as quantum
circuits. Section 3 presents an overview of some of these successes.

However, let us step back for a minute and consider what evolving hardware
should consist of. Figure 1 illustrates an example of EH where an accurate model of
the device physics is applied to produce the fitness function used to evaluate the
efficacy of the circuits. So while the evolutionary loop is using no hardware, the
simulation models used are very accurate with respect to the final physical system
(in this case transistors with variable characteristics). Other forms of realistic
hardware designs may include device simulators, as in [11], or actual physical
devices, as in [12].

Such work can be classed under the subfield of Evolvable Hardware Design. The
goal is novel or optimised non-adaptive hardware designs, either on physical
hardware or as solutions generated from realistic simulators.

The sub-field of Adaptive Hardware can be defined as the application of BIAs to
endow real hardware, or simulations thereof, with some adaptive characteristics.
These adaptive characteristics enable changes within the EH design/device, as
required, so as to enable them to continue operating correctly in a changing envi-
ronment. Such environmental pressure may consist of changes in the operational
requirements i.e. functionality change requirements, or maintenance of functionality
e.g. robustness, in the presence of faults. Examples of such Adaptive Hardware
include an FPAA that can change its function as operational requirements change or
a circuit on an FPGA that can “evolve” to heal from radiation damage.

The remainder of the chapter is structured as follows: Sect. 2 provides a defi-
nition of the field together with the inherent advantages one can expect from such a
field. Some actual success stories are reviewed in a little more detail in Sect. 3.

Fig. 1 An evolvable hardware cycle, for circuit design where high-fidelity simulation is used [13]

Evolvable Hardware Challenges: Past, Present and the Path … 5

Section 4 considers many of the challenges that still face the community. Some
newer approaches that are, or might be, applied to evolvable hardware are discussed
in Sect. 5. Section 6 provides some thoughts on the future of evolvable hardware
and Sect. 7 concludes with a short summary.

2 Defining Evolvable Hardware

2.1 Evolvable Hardware Characteristics

In the literature, it is difficult to find a set of characteristics that the community has
agreed upon for what characterises an EH system should have. Indeed most work
does not address this issue at all. However, there are a number of fundamental
characteristics that should be included in such a definition:

• The system will be evolved not designed (an obvious one, but worth pointing
out) N.B.: The term “evolved” is used to encompass any BIA and does not
assume that an EA is used.

• It is often not an optimal design, but will be fit for the purpose (typical of
biological systems in general—due to the evolution process).

• Typically, evolved systems do show levels of fault tolerance not seen in
designed systems (again typical of biological systems).

• They may be designed to be adaptable to environment change.
Such adaptivity is dependent upon when the evolutionary cycle stops. This is
not necessarily true for all evolved systems, for example those that stop once the
goal has been reached (again this is a characteristic of all biological systems).

• They produce systems that are most often unverifiable formally; indeed in many
cases it is difficult to analyze the final system to see how it performs the task.

What is EH?

From considering the characteristics involved in EHone can start to bemore precise as
to what is and is not EH. Evolvable hardware will include a form of evolutionary loop,
a population (even very small ones), variation operators and selection mechanisms.
These will vary from one implementation to another but will be present. In addition to
this, there are a number of other characteristics that are important to consider:

• The final embodiment of the evolutionary process (the final phenotype) should
be hardware, or at least have the potential to be implemented in hardware. An
obvious example would be evaluating the evolving design on a given FPGA
device and for the evolved design to be implemented on that FPGA. A less
obvious example might be the evolution of part or all of a VLSI device where
the fabrication of such a device may not be feasible at that point in time i.e. in
terms of cost, but could later be fabricated.

6 P.C. Haddow and A.M. Tyrrell

• The evolutionary process may be applied to the investigation of some future
technology medium (non electronics).

• The evolution can be either intrinsic (“on-chip”) or extrinsic (“off-chip”,
applying a realistic simulator).

• The evolved design should solve or illustrate a viable approach to solving a
“useful” problem—application or device—not one that could be solved by
traditional means e.g. n-bit multipliers.

• The final embodied implementation includes features that traditional designs
could not produce e.g. inherent fault-tolerance.

What is not EH?

The following are not considered to be evolvable hardware in this chapter:

• Simple optimisation processes (where “simple” refers to nothing more than
when the optimization process itself is trivial).

• Where there is never any intension or reason ever to embed the final solution
into hardware (whatever the platform).

• Where there are no benefits from evolving a solution.

• Where hardware is applied purely as an accelerator.

Taking a few examples from the literature and placing these into this context, we
can summaries these in Table 1.

2.2 Possible Advantages of Evolvable Hardware

Evolvable Hardware is a method for circuit or device design (within some media)
that uses inspiration from biology to create techniques that enable hardware designs
to emerge rather than be designed. At first sight, this would seem very appealing.
Consider two different systems, one from nature and one human engineered: the
human immune system (nature design) and the computer that we are writing this
chapter on (human design). Which is more complex? Which is most reliable?
Which is optimised the most? Which is most adaptable to change?

The answer to almost all such questions is the human immune system. This is
usually the case when one considers most natural systems. Possibly the only winner
from the engineered side might be the question, “Which is optimised the most?”
However, this will depend on how you define optimised. While this is appealing,
anyone who has used any type of evolutionary system knows that it is not quite that
straightforward. Nature has a number of advantages over current engineered sys-
tems, not least of which are time (most biological systems have been around for

Evolvable Hardware Challenges: Past, Present and the Path … 7

T
ab

le
1

C
om

pa
ri
so
n
of

di
ffe

re
nt

pr
op

os
ed

ev
ol
va
bl
e
ha
rd
w
ar
e
sy
st
em

s

A
na
lo
gu

e/
D
ig
ita
l

In
tr
in
si
c/
E
xt
ri
ns
ic

R
ea
l

ha
rd
w
ar
e

R
ea
lis
tic

si
m
ul
at
or

H
ar
dw

ar
e

ac
ce
le
ra
to
r?

E
H
?

H
ig
uc
hi
’s

te
am

e.
g.

(2
,
11

,5
2)

D
ig
ita
l

In
tr
in
si
c

Y
es

N
o

N
o

Y
es

JP
L
te
am

e.
g.

(1
6,

32
,4

7)
A
na
lo
gu

e
In
tr
in
si
c

Y
es

N
o

N
o

Y
es

N
-b
it
di
gi
ta
l
ci
rc
ui
t
ev
ol
ut
io
n
e.
g.

(3
9,

48
,
71

)
D
ig
ita
l

E
xt
ri
ns
ic

N
o

N
o

N
o

N
o

L
oh

n’
s
te
am

e.
g.

(3
4,

83
,9

1)
A
na
lo
gu

e
E
xt
ri
ns
ic

Y
es

Y
es

N
o

Y
es

N
an
oC

M
O
S
pr
oj
ec
t
e.
g.

(1
3)

A
na
lo
gu

e
(f
or

di
gi
ta
l)

E
xt
ri
ns
ic

Po
te
nt
ia
lly

Y
es

N
o

Y
es

E
vo

D
ev
o
w
or
k
e.
g.

(5
9,

69
,
73

)
D
ig
ita
l

B
ot
h

Y
es

N
o

N
o

Y
es

K
oz
a’
s
te
am

e.
g.

(2
3,

26
,
28

)
A
na
lo
gu

e
E
xt
ri
ns
ic

N
o

Y
es

N
o

Y
es

Se
ka
ni
na
’s

te
am

e.
g.

(1
01

)
D
ig
ita
l

B
ot
h

Y
es

N
o

N
o

Y
es

N
eu
ra
ln

et
w
or
k
(N

N
)
pr
oj
ec
ts
e.
g.

(5
,6

,
61

)
B
ot
h

B
ot
h

So
m
et
im

es
So

m
et
im

es
Y
es

N
o

L
iq
ui
d
cr
ys
ta
le
vo

lu
tio

n
e.
g.

(8
4,
85

,8
6)

A
na
lo
gu

e
In
tr
in
si
c

Y
es

N
o

N
o

Y
es

If
th
e
st
ru
ct
ur
e
an
d
co
nn

ec
tio

ns
of

an
N
N

pr
oj
ec
t
ar
e
ac
tu
al
ly

ev
ol
ve
d
an
d
m
ay

be
de
ve
lo
pe
d
th
en

it
co
ul
d
be

co
ns
id
er
ed

as
E
H

8 P.C. Haddow and A.M. Tyrrell

quite a long time) and resources (most biological systems can produce new
resources as they need them, e.g. new cells). In addition, we need to be very careful
as practitioners of bio-inspired techniques that we pay due regard to the actual
biological systems and processes. All too often researchers read a little of the
biology and charge in applying this to an engineering system without really
understanding the biology or the consequences of the simplifications they make. On
the other hand, we are not creating biological systems but rather artificial systems.
An exact replication of a complex biological process may be neither needed nor
appropriate for the hardware design in question. Improvements in BIAs for EH
cannot be justified purely by their “improvements in biological realism”, as may be
seen in the literature. Such improvements should be reflected in improvements in
the efficiency of the BIA or/and the hardware solutions achievable.

It is important to note that biological-like characteristics will be observed in an
engineering system that is referred to as bio-inspired but that has in fact little or no real
resemblance to the biology that “inspired” it. It is thus important to have a proper
framework when using bio-inspired techniques. A framework for such systems is
suggested in [14] and illustrated in Fig. 2.We are, however, not suggesting that every
EH researcher needs to turn to biological experimentation. However, the biological
inspiration and validation does need to come from real biological knowledge.

To summarise, use evolvable hardware where appropriate, associate evolution
with something that has some real connection with the hardware and if using a
simulator, make sure the simulator is an accurate one for the technology of choice
and ensure that your biological inspiration is not only biologically inspired but also
beneficial to the evolved hardware.

3 Platforms for Intrinsic EH

Evolvable hardware has, on the whole, been driven by the hardware/technology
available at a particular time, and usually this has been Electronic hardware. While
this chapter does not go into great detail on the different hardware platforms, it is at

Fig. 2 Conceptual framework [14]

Evolvable Hardware Challenges: Past, Present and the Path … 9

least an important enough driver for the subject to mention a few of the main
platforms/devices. These are presented under Analogue and Digital Devices.

(A) Analogue Devices

Field Programmable Analogue Arrays (FPAA)

The Lattice Semiconductor ispPAC devices are typical of what is currently avail-
able from manufacturers that allow reconfiguration of “standard” analogue blocks
(in this case based around OpAmps). The isp family of programmable devices
provide three levels of programmability: the functionality of each cell; the perfor-
mance characteristics for each cell and the interconnect at the device architectural
level. Programming, erasing, and reprogramming are achieved quickly and easily
through standard serial interfaces. The device is depicted in Fig. 3. The basic active
functional element of the ispPAC devices is the PACell, which, depending on the
specific device architecture, may be an instrumentation amplifier, a summing
amplifier or some other elemental active stage. Analogue function modules, called
PACblocks, are constructed from multiple PACells to replace traditional analogue
components such as amplifiers and active filters, eliminating the need for most
external resistors and capacitors. Requiring no external components, ispPAC
devices flexibly implement basic analogue functions such as precision filtering,

Fig. 3 PACell structure [15]

10 P.C. Haddow and A.M. Tyrrell

summing/differencing, gain/attenuation and conversion. An issue for someone
wishing to undertake evolution on these devices is that the changes that can be
made are at a relatively high functional level i.e. at the OpAmp level. This, together
with the overhead for changing functionality, have limited their use in the EH field.

JPL Field Programmable Transistor Array

The Field Programmable Transistor array, designed by the group at NASA, was the
first such analogue device specifically designed with evolvable hardware in mind.
The FPTA has transistor level reconfigurability and supports any arrangement of
programming bits without danger of damage to the chip (as is the case with some
commercial devices). Three generations of FPTA chips have been built and used in
evolutionary experiments. The latest chip, the FPTA-2, consists of an 8 × 8 array
of reconfigurable cells (see Fig. 4). The chip can receive 96 analogue/digital inputs
and provide 64 analogue/digital outputs. Each cell is programmed through a 16-bit
data bus/9-bit address bus control logic, which provides an addressing mechanism
to download the bit-string of each cell. Each cell has a transistor array (reconfig-
urable circuitry shown in Fig. 4), as well as a set of other programmable resources
(including programmable resistors and static capacitors). The reconfigurable cir-
cuitry consists of 14 transistors connected through 44 switches and is able to
implement different building blocks for analogue processing, such as two- and
three-stage Operational Amplifiers, logarithmic photo detectors and Gaussian
computational circuits. It includes three capacitors, Cm1, Cm2 and Cc, of 100 fF,
100 fF and 5 pF respectively.

Heidelberg Field Programmable Transistor Array (FPTA)

The FPTA consists of 16 × 16 programmable transistor cells. As CMOS transis-
tors come in two types, namely N- and P-MOS, half of the transistor cells are
designed as programmable NMOS transistors and half as programmable PMOS

Fig. 4 The FPTA2 architecture. Each cell contains additional capacitors and programmable
resistors (not shown) [16]

Evolvable Hardware Challenges: Past, Present and the Path … 11

transistors. P- and N-MOS transistor cells are arranged in a checkerboard pattern, as
depicted in Fig. 5. Each cell contains the programmable transistor itself, three
decoders that allow the three transistor terminals to be connected to one of the four
cell boundaries, Vdd or Gnd and six routing switches. Width W and Length L of the
programmable transistor can be chosen to be 1, 2, … 15 μm and 0.6, 1, 2, 4, or
8 μm respectively. The three terminals—Drain, Gate and Source—of the pro-
grammable transistor can be connected to either of the four cell edges (N, S, E, W),
as well as to Vdd or Gnd. The only means of routing signals through the chip is via
the six routing switches that connect the four cell borders with each other. Thus, in
some cases, it is not possible to use a transistor cell for routing and as a transistor.

(B) Digital Devices

Field Programmable Gate Arrays (FPGA)

The FPGA is a standard digital device and is organised as an array of logic blocks,
as shown in Fig. 6. Devices from both Xilinx and Alter a have been applied to EH.
Programming an FPGA requires programming three tasks: (1) the functions
implemented in logic blocks, (2) the signal routing between logic blocks and (3) the
characteristics of the input/output blocks i.e. a tri-state output or a latched input. All
of these, and hence the complete functionality of the device (including intercon-
nect), are defined by a bit pattern. Specific bits will specify the function of each
logic block, other bits will define what is connected to what. To date FPGAs have
been the workhorse of much of EH that has been achieved in the digital domain.

The CellMatrix MOD 88

As with analogue devices, the other path to implement evolvable hardware is to
design and build your own device, tuned to the needs of Evolvable Hardware. The
Cell Matrix, illustrated in Fig. 7, is a fine-grained reconfigurable device with an
8 × 8 array of cells, where larger arrays may be achieved by connecting multiple

Fig. 5 Schematic diagram of the FPTA [17]

12 P.C. Haddow and A.M. Tyrrell

8 × 8 arrays. Unlike most other reconfigurable devices, there is no built-in con-
figuration mechanism. Instead, each cell is configured by its nearest neighbour, thus
providing a mechanism not only for configuration but also for self-reconfiguration
and the potential for dynamic configuration. Further, the Cell matrix cannot be
accidently damaged by incorrect configurations, as is the case for FPGAs if the
standard design rules are not followed.

Fig. 6 Generic FPGA block diagram [18]

Fig. 7 The cellmatrix MOD 88, 8 × 8 Array [19]

Evolvable Hardware Challenges: Past, Present and the Path … 13

The POEtic Device

The goal of the “Reconfigurable POEtic Tissue” (“POEtic”) [20], completed under
the aegis of the European Community, was the development of a flexible compu-
tational substrate inspired by the evolutionary, developmental and learning phases
in biological systems. POEtic applications are designed around molecules, which
are the smallest functional blocks (similar to FPGA CLBs). Groups of molecules
are put together to form larger functional blocks called cells. Cells can range from
basic logic gates to complete logic circuits, such as full-adders. Finally, a number of
cells can be combined to make an organism, which is the fully functional appli-
cation. Figure 8 shows a schematic view of the organic subsystem.

The organic subsystem is constituted from a regular array of basic building
blocks (molecules) that allow for the implementation of any logic function. This
array constitutes the basic substrate of the system. On top of this molecular layer
there is an additional layer that implements dynamic routing mechanisms between
the cells that are constructed from combining the functionality of a number of
molecules. Therefore, the physical structure of the organic subsystem can be con-
sidered as a two- layer organization (at least in the abstract), as depicted in Fig. 8.

The RISA Device

The structure of the RISA cell enables a number of different system configurations
to be implemented. Each cell’s FPGA fabric may be combined into a single area
and used for traditional FPGA applications. Similarly, the separate microcontrollers
can be used in combination for multi-processor array systems, such as systolic
arrays [10]. However, the intended operation is to use the cell parts more locally,
allowing the microcontroller to control its adjoining FPGA configuration. This cell
structure is inspired by that of biological cells. As illustrated in Fig. 9, the
microcontroller provides functionality similar to a cell nucleus. Each cell contains a
microcontroller and a section of FPGA fabric. Input/output (IO) Blocks provide
interfaces between FPGA sections at device boundaries. Inter-cell communication
is provided by dedicated links between microcontrollers and FPGA fabrics.

Fig. 8 Organic subsystem, schematic and organic views [21]

14 P.C. Haddow and A.M. Tyrrell

4 Success Stories

There have been some real successes within the community over the past 15 years.
This section gives a short review of some of these.

Extrinsic Analogue

Some of the earliest work on using evolutionary algorithms to produce electronic
circuits was performed by Koza and his team [23–27]. The majority of this work
focuses on using Genetic Programming (GP) to evolve passive, and later active,
electronic circuits for “common” functions such as filters and amplifiers. All of this
work is extrinsic, that is, performed in software with the results generally presented
as the final fit individual. Much of the early work considers the design of passive
filters with considerable success [25]. Figure 10 illustrates such results. The
interesting aspect in that particular paper (which is carried on and developed in
subsequent work) is the use of input variables (termed free variables) and condi-
tional statements to allow circuit descriptions to be produced that are solutions to
multiple instances of a generic problem, in this case filter design. In Fig. 10 this is
illustrated by specifying, with such input variables, whether a low-pass or high-pass
filter is the required final solution of the GP.

A more sophisticated example of evolving electronic circuits is shown in Fig. 11
[28]. Here the requirement is to create a circuit that mimics a commercial amplifier
circuit (and even improve on it). There are a number of both subtle and complex
points that come out of that paper that are of interest and use to others trying to use
evolvable hardware. The paper illustrates how the use of domain knowledge, both
general and problem-specific, is important as the complexity of the problem
increases. New techniques, or improvements in actual GP techniques, are developed
to solve this problem. Finally, and potentially most important, the use of
multi-objective fitness measures are shown to be critical for the success of
evolution.

Fig. 9 The RISA
architecture comprising an
array of RISA Cells [22]

Evolvable Hardware Challenges: Past, Present and the Path … 15

In that case, 16 objective measures are incorporated into the evolutionary pro-
cess, including: gain, supply current, offset voltage, phase margin and bias current.
When evolving for real systems in real environments the use of multi-objective
fitness criteria is shown to be extremely important.

Koza and his group continue to evolve electronic circuits in an extrinsic manner,
and have many results where the evolutionary process has replicated results of
previously patented human designs.

High pass filter Low pass filter

Fig. 10 Examples of filter circuits and frequency plots obtained by evolutionary processes [25]

Fig. 11 Best run of an amplifier design [28]

16 P.C. Haddow and A.M. Tyrrell

Intrinsic Digital

One of the very first research teams to apply evolvable hardware in an intrinsic
manner was Higuchi and his group in Japan [1, 2, 29–31]. Their work includes
applying evolvable hardware (almost always intrinsically) to myoelectric hands,
image compression, analogue IF filters, femto-second lasers, high-speed FPGA I/O
and clock-timing adjustment. Here we give a little more detail on the application of
clock-timing adjustment as an illustration of the work conducted by Higuchi and his
group.

As silicon technology passed the 90 nm process size new problems in the fab-
rication of VLSI devices started to appear. One of these is the fact that, due to
process variations cause by the fabrication process, the clock signals that appear
around the chip are not always synchronised with each other. This clock skew can
be a major issue in large complex systems. This is a difficult issue for chip designers
since it is a post-fabrication problem where there is a significant stochastic nature to
the issues. One solution would, of course, be to slow the clocks down, but that is
generally an unacceptable solution. Another possibility is to treat this as a
post-fabrication problem, where actual differences in paths and actual speeds can be
measured.

Figure 12 illustrates the basic philosophy behind the idea of using evolution to
solve the problem. Typically, clock signals are transmitted around complex VLSI
devices, in a hierarchical form, often known as clock-trees, as illustrated in the
left-hand picture in Fig. 12. At the block level (middle picture), sequential circuits
should receive clock signals at the same time for the circuit to perform correctly.
The idea behind this work is to introduce programmable delay circuits (right-hand
picture) that are able to fine-tune the delay on all the critical path lengths that the
clock propagates. The issue is, what delay should be programmed into each indi-
vidual path on each individual VLSI device? Each device is likely to be different
due to the fabrication process and we will not know what this is until after fabri-
cation. However, the delay can be controlled (programmed) by a short bit pattern

Fig. 12 Basic process of clock skew adjustment using evolvable hardware [29]

Evolvable Hardware Challenges: Past, Present and the Path … 17

stored in a register, on-chip. This bit pattern can form part of a genome that is used
within an evolutionary loop that is using a Genetic Algorithm (GA) to optimise the
delay in each of the critical paths in the circuit. Figure 13 illustrates in more detail
the actual circuit elements required, and the final chip design, to achieve the
required functionality for this evolvable chip. The results suggest that not only can
the clock skew be optimised, and consequently the frequency that the device can
run at be increased (in the paper by 25%) but that also the supply voltage can be
reduced while maintaining a functioning chip (in some cases by more than 50%).

Intrinsic Analogue

Section 3 has given a brief outline of the work performed by the team at NASA JPL
on the design and manufacture of a number of analogue programmable devices
aimed at assisting with intrinsic analogue evolution, Field Programmable Transistor
Arrays (FPTAs) [16]. Here, one of these devices is presented to illustrate, not only
the evolution of useful circuits (in real environments), but that through the con-
tinued use of evolution throughout the lifetime of the system, fault tolerance is
increased. In this case, the functionality considered is that of a 4-bit
digital-to-analogue converter (4-bit DAC). The basic evolvable block used in
these experiments is shown in Fig. 4, and the results obtained in the work are
summarised in Fig. 14.

Hardware experiments use the FPTA-2 chip, with the structure illustrated in
Fig. 4. The process starts by evolving first a 2-bit DAC—a relatively simple circuit.
Using this circuit as a building block, a 3-bit DAC is then evolved and, again
reusing this, a 4-bit DAC is evolved. The total number of FPTA cells used is 20.
Four cells map a previously evolved 3-bit DAC (evolved from a 2-bit DAC), four

Fig. 13 Realisation of clock skew adjustment on VLSI device [29]

18 P.C. Haddow and A.M. Tyrrell

cells map a human designed Operational Amplifier (buffering and amplification)
and 12 cells have their switches’ states controlled by evolution. When the fault is
injected into the operating circuit, the system opens all the switches of the 2 cells of
the evolved circuit.

Figure 14 (top-left) shows the faulty cells in black. In these cells all switches are
opened (stuck-at-0 fault). The 3-bit DAC, cells ‘0’, ‘1’, ‘2’ and ‘3’ map the pre-
viously evolved 3-bit DAC, whose output is O3. The Operational Amplifier cell
(Label ‘A’) is constrained to OpAmp functionality only. The evolved cell (in grey)
switches’ states are controlled by evolution. O4 is the final output of the 4-bit DAC.

The top-right plot in Fig. 14 illustrates the initial evolved 4-bit DAC with inputs
1, 2 and 3 (4 is missing due to number of oscilloscope channels) and output O4
which can be seen to be functioning correctly. The bottom left plot in Fig. 14 shows
the response of the 4-bit DAC when two cells are made faulty. Finally, the plot at
the bottom-right of Fig. 14 illustrates the response of the DAC after further evo-
lution (after fault injection) has taken place. This response is achieved after only 30
generations of evolution. Again, the only cells involved in the evolutionary process
are those in grey in Fig. 14. This example shows very well that recovery by
evolution, in this case for a 4-bit DAC, is possible. The system makes available 12
cells for evolution. Two cells are constrained for the implementation of the
OpAmp. Four cells are constrained to implement the simpler 3-bit DAC. Two faulty
cells are implemented by placing all their switches to the open position.

Fig. 14 FPTA topology (top-left), evolved 4-bit DAC response (top-right), evolved 4-bit DAC
response with two faulty cells (bottom-left) and recovered evolved 4-bit DAC response with two
faulty cells (bottom-right) [32]

Evolvable Hardware Challenges: Past, Present and the Path … 19

Extrinsic and Intrinsic Analogue

As a final example in this section, the domain of evolved antenna design [33] is
presented. In the work presented in [34], a GA is used in conjunction with the
Numerical Electromagnetic Code, Version 4 (NEC, standard code within this area)
as the simulator to create and optimise wire antenna designs. These designs not only
produce impressive characteristics, in many cases similar or better to those pro-
duced by traditional methods, but their structure is often very different from tra-
ditional designs (see Fig. 15). The ‘crooked-wire’ antennas consist of a series of
wires joined at various locations and with various lengths (both these parameters
determined by the GA). Such unusual shapes, unlikely to be designed using con-
ventional design techniques, demonstrate excellent performance both in simulation
and physical implementation [34].

Apart from the difference in domain, an interesting feature of this application of
EH is the relatively large number of constraints (requirements) that such systems
impose on a design. Requirements of a typical antenna include [34]: Transmit
Frequency; Receive Frequency; Antenna RF Input; VSWR; Antenna Gain Pattern;
Antenna Input Impedance, and Grounding. From this list, which is not exhaustive,
it can be seen that this is certainly a non-trivial problem requiring a complex
objective function to achieve appropriate results.

Given the nature of the problem and the solution (wire antenna), a novel rep-
resentation and construction method is chosen. The genetic representation is a small
“programming language” with 3 instructions: place wire, place support, and branch.
The genotype specifies the design of one arm in a 3D-space. The genotype is a
tree-structured program that builds a wire form. Commands to undertake this
process are: Forward (length radius); rotate_x (angle); rotate_y (angle) and rotate_z
(angle). Branching in genotype equates to branching in wire structure. The results
are very successful (see Fig. 15) and the characteristics (electrical and mechanical)
of the final antenna more than meet the requirements list.

Fig. 15 Prototype evolved
antenna, which on March 22,
2006 was successfully
launched into space [34]

20 P.C. Haddow and A.M. Tyrrell

The previous example is situated within the extrinsic world, that is, evolution
runs within a simulation environment and only when a successful individual is
found, is a physical entity built. Those authors then went on to consider how you
might do evolution intrinsically. The goal now is to explore the in situ optimisation
of a reconfigurable antenna. One motivation behind this work is to consider how a
system might adapt to changes in spacecraft configuration and orientation as well as
to cope with damage. A reconfigurable antenna system (see Fig. 16) is constructed.
The software evolves relay configurations. In the initial stages of this work, the user
subjectively ranks designs based on signal quality, but the plan is to automate this
process in future work. In the system shown in Fig. 16-left, the system consists of
30-relays that are used to create the antenna designs. It has been shown that the
system is able to optimise effectively for frequencies in the upper portion of the
VHF broadcast TV band (177–213 MHz). A simple binary chromosome is used,
with 1s and 0s corresponding to closed and open switches respectively. The con-
nections between the Pads and the switches define the chromosome mapping
(Fig. 16-right). The antenna is able to automatically adapt to different barriers,
orientations, frequencies, and loss of control, and in a number of cases shows
superior performance over conventional antennas.

5 Challenges

The previous section has considered a range of successes for evolvable hardware.
While these are not the only successes, they do represent a fair range of achieve-
ments: from analogue to digital electronics and from extrinsic to intrinsic evolution.
However, these successes have been few relative to the efforts put into the field so
far. So where, if anywhere, does evolvable hardware go from here? The rest of this
chapter gives some speculative suggestions to the answer to this question.

Fig. 16 Reconfigurable antenna platform (left) and mapping of chromosome to structure (right)
[33]

Evolvable Hardware Challenges: Past, Present and the Path … 21

5.1 From Birth to Maturity

There are many fundamental challenges in the field but one major challenge, which
is perhaps rarely mentioned, is the challenge of any field: the need to publish. In the
early stages of a new field, there is much uncertainty but at the same time there are
many ways to achieve simple exciting results, raising the field’s prominence
quickly. Although publishing is a challenge in a new area, there is also the
excitement of a new venture. As the newness wears off, without realistic results
matching the more traditional field, you need to rely on specialised workshops or
conferences. Such specialised workshops and conferences do provide a valuable
venue for development of the field. Specialised researchers are able to recognise
more subtle, but important, contributions and their value to the field. Unfortunately,
this can often lead to over-acceptance of small advancements whilst the main goal
is forgotten. That is, EH needs to one day compete with traditional electronic design
techniques, either in general or for specific sub-areas of electronics or other
mediums. As the field becomes more mature, special sessions/tracks become easier
to establish. However, if the results are not there, such sessions begin to disappear
and the numbers at conferences begin to wane.

Such a process is quite typical of a new field, and EH is no exception. The main
challenges have either not been solved, or perhaps even addressed, so as to enable
the field to take the bigger steps forward.

Neural networks provide us with a sub-field of AI that almost died out in the late
60s—in fact for a decade. Here it was the work of Minsky and Papert [35] that
highlighted a major non-solvable challenge to the field. Although in the early 70s,
the work of Stephen Grossberg [36] showed that multi-layered networks could
address the challenge, and the work of Bryson and Ho [37] solved the challenge
through the introduction of back-propagation, it was not until the mid 80s, and the
work of Rumelhart et al. [38], before back-propagation gained acceptance and the
field was revived. However, in the mean-time, a significant decline in interest and
funding resulted from the publishing of the Minsky and Papert’s 1969 book.
A further relevant example is that of the field of AI itself. The field paid a high price
due to the over hype in the mid 80s to mid 90s.

We do not consider that EH is dying out, but the field is in a critical stage. There
is certainly no argument to suggest that the field cannot go forward. However, it is
also not clear that there is a path forward that will allow the field to progress in the
way that neural networks have progressed. Also, is the field suffering from over-
hype, similar to that of AI?

Section 3, highlights a number of success stories. However, as stated, this far
from represents the vast research that has gone on in the field. In the early stages of
a new field, results are simply that—results, enabling the field to take some small
steps forward. In theory, small steps should enable researchers to build on these
results and take bigger and bigger steps. However, on the whole, this has not been
the case with EH. Bigger steps have proven to be hard to achieve, and fewer
researchers have been willing to push the boundaries and use the time to achieve

22 P.C. Haddow and A.M. Tyrrell

such steps. The reality is that small steps give results and publications, bigger steps
are much more uncertain, and research is becoming more and more publishing
driven.

In our view, this focus on smaller steps has not only hampered progress in the
field, but also caused industry and traditional electronics to turn away from EH. In
general, one can say that industry is fed-up of seeing results from “toy problems”.
They want results that will make a difference to them. Further, funding challenges
in many countries means that research fields have to rely more and more on
industrial funding, providing more pressure to take the bigger steps towards EH
becoming a viable alternative to traditional electronics so as to secure funding for
further development of the field.

5.2 Scalability

One of the goals of the early pioneers of the field was to evolve complex circuits, to
push the complexity limits of traditional design and, as such, find ways to exploit
the vast computational resources available on today’s computation mediums.
However, the scalability challenge for Evolvable Hardware continues to be out of
reach.

Scalability is a challenge that many researchers acknowledge [49, 53, 59] but it
is also a term widely and wrongly used in the rush to be the one to have solved it.
Evolving an (n + 1)-bit adder instead of a previously evolved n-bit adder is not
solving the scalability challenge (it is simply iteration), especially when one con-
siders the fact that traditional electronics can already design such circuits. Scaling
up structures alone, i.e. the number of gates, without a corresponding scaling of
functionality, is also not solving the scalability challenge.

The scalability challenge for Evolvable Hardware may be defined as finding a
refinement of bio-inspired techniques that may be applied in such a way to achieve
complex functions without a corresponding scaling up of resource requirements
(number of physical components, design time and/or computational resources
required).

Examples of one-off complex designs may be seen, such as Koza’s analogue
circuits [28]. However, here functionality is scaled up at the expense of huge
computational resources—clusters of computers (a brute force solution). Although
such work provides a proof of concept that complex designs are possible, much
refinement is needed to the techniques to provide a truly scalable technique for
designs of such complexity.

So if incrementally increasing complexity, i.e. from an n-bit adder to an (n + 1)-
bit adder, is not the way forward, how should we approach solving this challenge
that has evaded EH researchers for 15 years?

Evolvable Hardware Challenges: Past, Present and the Path … 23

The goal of much EH is to evolve digital and analogue designs (at least if we
stick to electronic engineering applications). Little is known about the phenotypic
search space of digital and analogue designs. Since any search algorithm provides
implicit assumptions about the structures of the search space, our lack of knowledge
of the phenotypic space suggests these assumptions and how they match the
problem in hand, i.e. electronic circuits, and whether the problem is effectively
represented gives us little chance of efficiently solving the problem.

Evolvable Hardware, has suffered from the lack of theoretical work on the
evolutionary techniques applied to this particular problem to provide stronger
guidelines for how the field might approach the achievement of a scalable tech-
nique. Hartmann et al. [39] studied the Kolmogorov complexity (complexity of a bit
string) of evolved fault tolerant circuits through the application of Lempel-Ziv
complexity [40] to these circuits. The complexity analysis involves analysing the
compressibility of strings (representing circuits), and comparison of such analysis to
the complexity spectrum (simple to highly complex strings). The complexity of the
circuits analysed has a significantly smaller region of complexities than that covered
by the evolutionary search, indicating that it would be beneficial to bias the search
towards such areas of the complexity search space.

It should be borne in mind that Kolmogorov complexity may or may not be the
most suitable theoretical measure for the analysis of EH complexity and that this is
just one example of a possible approach. However, that work is presented to
highlight how theoretical approaches to EH can help us to understand our appli-
cation area and help us refine our techniques to such applications.

5.3 Measurements

Measurement refers to the metric used to evaluate the viability of a given solution
for the problem in hand. In traditional electronics, for example, terms such as
functional correctness (which may involve many sub-functions) as well as area and
power costs are general metrics applied. Other metrics applied may relate to the
issue being resolved e.g. reliability.

Although power issues are important in traditional electronics, such metrics are
only starting to appear in EH work [41]. However, the application of area metrics,
especially gate counts, is often applied, but may be questioned. There are two key
issues here: The majority of EH solutions are intended for reconfigurable tech-
nology and this focus on evolving small circuits is in contrast to the relatively large
resources available. Further, although area count may show the efficiency of EH
compared to a traditional technique, for a given generalised solution, one can easily
say that a good traditional designer can often match the evolved solution given such
an optimisation task. It should be borne in mind, therefore, that the power of
evolution as an optimisation technique is when the search space is very large, when
the number of parameters is large, and when the objective landscape is
non-uniform. Thus for such small evolved circuits, gate area—although possibly

24 P.C. Haddow and A.M. Tyrrell

interesting—is not a metric that should be used to illustrate the viability of the
solution.

A further challenge with metrics, highlighted in the above description, is the
ability to compare solutions between traditional and evolved designs. A traditional
designer needs to know whether a given evolved solution is comparable to the
traditional designs in terms of the particular evaluation criteria the designer is
interested in. A criticism of EH may certainly thus be directed to the use of “number
of generations” as a metric, which has no relevance to any performance metric in
traditional design.

A common design feature addressed in EH, and also part of the grand challenges
described by the ITRS roadmap 2009 [42], is fault tolerance, i.e. reliability. Tra-
ditionally, the reliability metric measures the probability that a circuit is 100%
functional, and thus says nothing about how dis-functional the circuit is when it is
not 100% functional. To apply such a metric as a fitness criterion to EH would not
provide sufficiently fine-grained circuit feedback needed to separate potential
solutions and, therefore, limits evolution’s search to a rougher search. More com-
monly in EH, reliability is expressed in terms of how correct a solution is, on
average, across a spectrum of faults, where the faults may be explicitly defined [43]
or randomly generated [39]. Such a metric provides evolution with more infor-
mation about practical solutions and thus supports evolution of solutions. However,
as shown in [44], since the traditional metric is designed with traditional design
techniques in mind and the EH metric is designed with evolution in mind, the
metrics favour the design technique for which the metric was designed. As such, a
comparison is difficult. It is thus important to find metrics that cross the divide
between traditional and evolved designs.

5.4 Realistic Environments or Models

One area of interest for EH is device production challenges. Defects arising during
production lead to low yield i.e. fewer “correct devices” and thus more faulty
devices—devices that pass the testing process, but where undetected defects lead to
faults during the device’s lifetime. There are many ways that evolution may be
applied in an attempt to correct or tolerate such defects. However, the challenge
remains: a need for real defect data or realistic models. Fault models are difficult to
define due to the strong dependence between the design itself and the actual pro-
duction house due to the complex physical effects that lead to defects.

It should be noted, however, that this challenge is being faced by the traditional
design community too. Closer collaboration with industry, illustrating the power of
EH is needed to secure realistic data and thus provide the basis for further research
interest in this area and more realistic results.

In addition, application areas may be found where EH can solve issues with
limited data where traditional techniques struggle. In [45] a future pore-network CA

Evolvable Hardware Challenges: Past, Present and the Path … 25

machine is discussed. The machine would apply an EA to the sparse and noisy data
from rock samples, evolving a CA to produce specified flow dynamic responses.

Rather than relying on models, EH can be applied to the creation of robust
designs where realistic faults may be applied to the actual hardware and evolution
enabled to create robust designs. Zebulum et al. [46] address the issue of envi-
ronmental models. Although such models have become more refined, design and
environmental causes are significant sources of failure in today’s electronics. The
work addresses the space environment and focuses on improvements in design and
recovery from faults, without the need for detection, through the application of EH.
In this case, the underlying hardware is the FPTA, described in Sect. 3, and faults
are injected through opening switches to simulate the stuck-at fault model.

A further example may be seen in Thomson’s work [12] on evolving robust
designs in the presence of faulty FPGAs where the extreme conditions are physi-
cally imposed on the actual chips. The goal is to create robust designs that tolerate
elements in the “operational envelope”—variations in temperature, power-supply
voltages, fabrication variances and load conditions—by exposing the circuits to
elements of such an operational window during fitness evaluations. Similarly, the
work of [47] involves placing an FPGA and a Reconfigurable Analogue Array
(RAA) chip in an extreme temperature chamber to investigate fault recovery in a
realistic extreme temperature scenario.

6 Newer Approaches

For the last 10 years a number of researchers have been addressing the scalability
problem, focusing on finding ways to simplify the task for evolution in terms of
finding more effective ways to explore the search space for more complex
applications.

Divide and Conquer

The first set of approaches build on the traditional notion of divide and conquer,
providing evolution with simpler sub-problems to solve at a time, reducing the
search space for evolution. There are two driving forces behind such approaches in
terms of resource usage: (a) reduction in the number of evaluations needed to find a
solution, and (b) reduction of evaluation time to evaluate a single individual. The
latter point has strong consequences for intrinsic evolvable hardware, as the eval-
uation time to fully test a design grows exponentially with the number of inputs
tested.

Various alternatives may be found in the literature, including Function-level
Evolution [30, 48], Increased Complexity Evolution [49, 50] and Bidirectional
Evolution [51].

Function-level evolution [30, 48, 52] does not require a specific division of the
problem domain. Instead, the focus is on the selection of larger basic units, i.e.
adders or multipliers, enabling a scaling up of potential evolved solutions. A study

26 P.C. Haddow and A.M. Tyrrell

of fitness landscapes by Vassilev and Miller [53] illustrates that by using
sub-circuits as building blocks, rather than using simple gates, speed-up of the
evolutionary process can be achieved, but at the cost of an increased number of
gates. Further, the selection of appropriate components is domain specific and
limiting evolution to larger components does limit the search space available to
evolution.

In Increased Complexity Evolution (ICE) [49, 50] (also termed Divide and
Conquer and Incremental Evolution), each basic unit may be a simple gate or
higher-level function. These blocks from the units for further evolution, incre-
mentally increasing the complexity of the task at each evolutionary run, i.e. the
block evolved in one run can be applied as a basic block in a subsequent run. As
such, it is a bottom-up approach to increasing complexity, and can be said to build
on the work of Gomex and Miikulainen [54] on incremental evolution and the
biological fact that humans perform more and more difficult tasks on route to the
adult state [55]. However, it is quite a challenge to find ways in which an EH design
may be split into simple tasks that can be incrementally increased, and also to find
suitable fitness measures for each stage. A possible solution is to divide the
application based on the number of outputs [56]. However, such a solution is only
advantageous in the case of multiple outputs.

Bidirectional Evolution (BE) [51] is similar to increased complexity evolution
except that incremental evolution is applied both to decompose the problem into the
sub tasks and then to incrementally make the tasks more challenging. That is, an
automatic identification of sub-tasks is provided for through the application of
output and Shannon decomposition.

In both ICE and BE, dividing the application by the number of outputs does not
reduce the number of test vectors required to fully test the circuits since the number
of inputs is unchanged. As such, although a reduction in the number of evaluations
may be obtained, the challenge of fitness evaluation remains. Generalised
Disjunction Decomposition [57, 58] is a method that can be applied to improve BE
by decomposing the problem based on inputs rather than outputs.

Development and Modularisation

A second set of approaches are inspired by nature’s way of handling complexity,
i.e. that of artificial development. Here a genome is more similar to DNA, far from a
blueprint of the organism to be developed, rather a somewhat dynamic recipe for
the organism that can be influenced by external factors in the growth and spe-
cialisation of the cells of the organism. Evolution operates on the DNA-like circuit
description of the genome, and in the evaluation phase, each individual DNA is
developed into a fully-grown phenotype (a circuit in electronics). The introduction
of development to an EA, provides a bias to modular iterative structures that already
exist in real-world circuit designs whilst allowing evolution to search innovative
areas of the search space [59]. Further, introducing development to an evolutionary
process may be said to enhance exploration, rather than optimisation of solutions
[60].

Evolvable Hardware Challenges: Past, Present and the Path … 27

Although the idea of artificial development already existed in the literature [61–
66] when the field of evolvable hardware picked up this attractive notion for
improving scalability, algorithms for development were few and far between, and
far from thoroughly researched. A number of EH research groups are involved in
developmental approaches to EH [20, 59, 67–73], including theoretical and prac-
tical investigations into the feasibility of development as an EH technique [74–77].
However, there is much research to be conducted before such a technique can be
said to really be moving along the path towards an efficient technique for EH.

The concept of iterative structures need not just be obtained through develop-
mental approaches but, similar to Koza and Rice’s Automatically Defined Programs
(ADFs) [23], EAs for EH may be designed in a way so as to protect partial solutions
that may contribute to the final solution. In this way, instead of defining the
functions, as in Function-level evolution, such functions are generated by evolution
and protected and encapsulated as a function for re-use. The importance of such
reuse in EH is discussed in [70]. Embedded Cartesian Genetic Programming
(ECGP) [78, 79] is an EA that may be applied to EH enabling modularisation.

Fitness Evaluation Improvements

The third set of approaches address the evaluation of individuals, a key concern in
intrinsic evaluation. From the earliest days of EH, filtering of signals has been
shown to be a successful application area. Here, only a single fitness test is required
for each individual where the frequency characteristics of the evolved system are
compared to the test signals. However, in many applications involving multiple
input circuits, the number of evaluations per individual is exponentially related to
the number of inputs.

One approach to this issue is to focus on ways to reduce the number of test
vectors required whilst being able to provide a reliable evaluation method that
allows for prioritising of individuals. Such an approach is not new in that it is an
approach commonly applied in neural networks and classification systems. That is,
the set of input vectors are divided into a set of training vectors and a set of test
vectors. Creating EH through the application of Neural Networks may use a similar
process, verifying the evolved circuits by applying the test vectors.

In [80] a random sample of input vector tests for digital truth tables is applied to
assess the evolvability of functionality with such limited evaluations. Unfortunately,
the results show that with the setup involved, little merit is found in such an
approach, and it is clear that the EA needed the complete truth table to provide
sufficiently detailed information to evolve a 100% fit individual.

Instead of considering an incomplete search, another possibility is to identify
applications that require a single evaluation similar to that of signal filtering. In [81]
it is shown that if the circuit sought could be interpreted as a linear transformation,
i.e. that the basic elements are linear operators (add, shift, subtract etc.), then only a
single test vector is needed. The work investigates a multiple constant multiplier.
Although not a complex application in its own right, it is a useful component in
more complex circuits. Further investigation is needed to identify more complex
applications for such a technique.

28 P.C. Haddow and A.M. Tyrrell

Newer Materials

As discussed in Sect. 2, various digital and electronic platforms have provided the
basis for EH research. Specialised devices have on the one hand provided devices
more tuned to the needs of BIAs, whilst on the other hand provided an experimental
platform and results with very limited access and applicability to the broader
community, except in the case of Cell Matrix where both the device and supporting
software are available.

In general, non-specialized devices have provided a more common platform,
enabling more exchange of knowledge between different research groups and dif-
ferent experiments. However, today’s technology is far from suitable for BIAs. The
early work of Thompson [82] has already shown that evolution is capable of not
only exploiting the underlying physics of FPGAs, and has further shown that
evolution creates a design solution for a task that the chip was not designed to
handle—that of a tone discriminating circuit [83]. That is, evolution explores areas
of the design space beyond that which the device is designed for. However, as may
be seen from the success stories highlighted in Sect. 4, where all the experiments
are based on non-standard devices, there are many challenges to be faced in
achieving EH on standard components.

The seminal work of [82] does, however, provide a proof of concept that BIAs
may be applied to search areas of the design space beyond that which today’s
electronic technology is designed to meet. Similarly, the work of Harding and
Miller applied evolution to liquid crystal, exploiting the underlying physics [84] to
achieve various functions (a tone discriminator [85] and a robot controller [86]).
Here, evolution is applied to an unconventional computation medium treated as a
black box, causing functionality to emerge from within the liquid crystal. That is,
evolution exploits the structure and inherent dynamics of the liquid crystal to
achieve functionality.

Under the realms of the MOBIUS project, Mahdavi and Bentley [87] have
investigated Smart materials for robotic hardware. Nitonal Wires (an alloy made up
of Nickel and Titanium) are used as the muscle hardware of a robotic snake,
applying an EA to evolve the activations for the wires controlling the snake-like
movement. Further, inherent adaptation to failure is seen after one of the wires
broke during experimentation. Nitonal is a shape memory alloy that has two forms
depending on temperature, such that changing from one temperature to the other
causes a phase transformation and the alloys are super elastic and have shape
memory. Such an adaptive solution (EA + shape memory alloy) may be useful not
only for snake-like robots but for devices in varying environments that may need to
change their morphology accordingly.

A further medium suggested by Olteam [88] is Switchable Glass (smart win-
dows), controlling the transmission of light through windows by the application of
variable voltages. Included under such a classification is liquid crystal. Other
possibilities include Electrochromic devices and suspended particle devices—rods
(particles) suspended in a fluid. The former relies on chemical reactions where the

Evolvable Hardware Challenges: Past, Present and the Path … 29

translucency (visibility) of the glass may be adjusted through the application of
various voltages. The latter relies on field effects where the rods align to a given
electric field and varying the voltage can control the amount of light transmitted.

7 The Future

Although the newer approaches described in Sect. 6 are still facing many chal-
lenges, these illustrate that benefits can be gained by looking again at biology and
even combining both traditional and biologically-inspired techniques. Nature does
not have all the answers for us since we are in fact designing an artificial organism,
i.e. a hardware device/circuit.

In Sect. 4, the scalability challenge is discussed. It is important that researchers
continue to reach out to both natural and artificial inspirations for solutions to our
challenges. However, for real progress it is important that researchers address the
fundamental issues with any new technique and keep the scalability issue in mind.
A new technique may be interesting to work with, but the real issues to be solved
and how these should be approached to scale up the technique are critical for the
future of the field.

Applications

Looking to potential applications has always been a fundamental issue for the EH
community. One possible approach is to turn the attention away from complex
applications to applications that may not necessarily be inherently complex but in
some way provide challenges to more traditional techniques. There are many
opportunities within design challenges that should be given further attention,
including fault tolerance [89] and fault detection and repair [90–92]. Although
already a focus in EH, such challenges provide many opportunities for further
discoveries. Moving from faults to testing—a significant challenge facing the
electronic industry—provides many opportunities such as in test generation [93]
and testing methodology benchmark circuits [94, 95]. Surprisingly, although a
major focus within the electronic industry, power usage [96] is only recently
gaining attention in the EH field. A further increasing challenge in industry is yield
due to the challenge of production defects [78, 97].

Within such design challenges, certain application areas provide further chal-
lenges. For example, in space, manned and unmanned vehicles will require not only
to tolerate single faults—a traditional fault tolerance scenario—but also multiple
faults [98]. Space provides hard application areas for any technique whether tra-
ditional or non-traditional, especially with respect to robustness and adaptivity
requirements. Here the EH approach is not being applied to “reinvent the wheel”
but rather applied in the search for novel or more optimal solutions where tradi-
tional techniques have either failed or are still challenged. Of course, the inherent
real-time constraints are inherently hard for such stochastic search algorithms.

30 P.C. Haddow and A.M. Tyrrell

One area that is still relatively untouched, but where EH has a real future, is in
adaptive systems. Such adaptivity may be seen in the light of failures, i.e. adaption
to faults or adaptive functionality. The goal is to adapt in real time to environmental
changes requiring changes in functionality and/or stability of functionality. Two key
application areas already in focus are both digital and analogue challenges in space
applications, where access to reconfiguration is limited, and also in autonomous
robots reacting in real time to environmental influences. There are many challenges
facing the field within true adaptive design, i.e. evolving a new design and replacing
the old design in real time.

Instead of focusing on the challenge of achieving adaption “on-the fly”, another
option is to adapt to pre-defined solutions. A newer approach to adaptive solutions
that may be said to capture some of the features of EH together with more tradi-
tional approaches to adaptive design is Metamorphic solutions proposed by
Greenwood and Tyrrell [99]. Such an approach borrows the key elements from
evolvable design with the exception that many of the adaptive solutions are
pre-designed. Similar to more traditional adaptive design, real-time adaptivity is
sought through the process of selection from a pool of pre-designed solutions.
However, Metamorphic Systems extends the concept of pre-defined solutions by
allowing for components implemented in various technologies.

Platforms

Evolvable Hardware has mainly focused on digital and analogue electronic plat-
forms that may be far from the most suitable medium for BIAs. Other mediums are
of course viable candidates for EH. Miller and Downing [100] propose that the
effectiveness of EAs can be enhanced when the underlying medium has a rich and
complicated physics. Further, such new technologies and even new ways to com-
pute may be devised, possibly even at the molecular level, providing many
advantages over conventional electronic technology.

It is important to note from the work of Harding and Miller [85, 86] that (a) a
black box approach can achieve computation, (b) the choice of material was biased
by the commercial availability of the material and that electrical contacts were
present, (c) the liquid crystal in fact stopped working, possibly indicating limited
reconfigurability and (d) it is still a black box: how it worked no one knows.

Such black box approaches will always be limited due to natural scepticism to
the application of BIAs, exploiting materials of any kind, where verification of the
functionality achieved is all but impossible. Conventional design starts with an
abstract computation model or framework for the design and a technology is created
to meet the requirements of the model, enabling a simple transformation from
design to implementation. On the other hand, an evolved design is focused on a
different mapping: that is a mapping between inputs and outputs of the design itself
and pays little attention to either the computation model or the technology in hand
(except where some form of optimization of the design is required). Thus, the
difficulty of identifying the computational model behind an evolved design is
perhaps not so surprising. One approach to address such an understanding is to
study the computational properties of the design through theoretical approaches as

Evolvable Hardware Challenges: Past, Present and the Path … 31

in [101]. A further approach suggested by Stepney is that evolutionary techniques
may be applied, not only to achieving functionality from a black box but also as a
technique to identify such computational characteristics of the underlying material
[102].

Looking to the ITRS Roadmap 2009 [42] we see that possible future materials
for mainstream electronics include materials such as carbon-based nano-electronics,
spin-based devices and ferromagnetic logic. Investigation of the suitability of such
materials for the application of BIAs would be well worth investigation.

A further medium, not currently being investigated within the field of Evolvable
Hardware, but highly relevant, is the within the field of synthetic biology where
synthetic DNA is being generated to form logical functions. Further, libraries of
such functions are under construction, with the goal of creating biological circuits.
BIAs may be able to play a key role in solving some of the challenges ahead. Rather
than following the synthetic biology approach to achieving computation in a
fashion similar to today’s electronics, a different approach would be to apply BIAs
directly to the DNA substrate to enable computation to emerge.

Other possible platforms include molecular computing, optical systems and
mixed mechanical-electrical systems. However, to really succeed in many such
areas we need collaborators: (a) to help identify the problems, and (b) help in the
subject specific issues (for example what wet-ware is and is not possible).

8 Summary

While evolvable hardware does have its place, we now know that, at least in terms
of silicon design, it is much more limited than was previously suggested. However,
we still have a research area that is full of possibilities and potential. Turning the
lessons learnt and technological advances made into real progress is still a
challenge.

One thing is certain: if we want to keep the field of evolvable hardware pro-
gressing for another 15 years, we need to take a fresh look at the way we think
about evolvable hardware: about which applications we should be applying it to;
about where it will actually be of real use; about where it might finally be accepted
as a valid way of creating systems; and about what medium it should be based in.

We wish us all luck in this, the second generation of evolvable hardware.

References

1. Yao, X., Higuchi, T.: Promises and challenges of evolvable hardware. IEEE Trans. Syst.
Man Cybern. Part C 29(1), 87–97 (1999)

2. Higuchi, T., Iwata, M., Kajitani, I., Iba, H., Furuya, T., Manderick, B.: Evolvable hardware
and its applications to pattern recognition and fault tolerant systems. Towards Evol.
Hardware Evol. Eng. App. LNCS 1052, 118–135 (1996)

32 P.C. Haddow and A.M. Tyrrell

3. Scott, S.D., Samal, A., Seth, S.: HGA: a hardware based genetic algorithm. In: Proceedings
of ACM/SIGDA 3rd International symposium on FPGA’s, pp. 53–59 (1995)

4. Salami, M., Cain, G.: Implementation of genetic algorithms on reprogrammable architec-
tures. In: Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence
(AI’95), pp. 121–128, (1995)

5. Yao, X.: Evolutionary artificial neural networks. Int. J. Neural Syst. 4(3), 203–222 (1993)
6. Yao, X., Liu, Y.: Evolving artificial neural networks for medical applications. In:

Proceedings of 1995 Australia-Korea Joint Workshop on Evolutionary Computation,
pp. 1–16, (1995)

7. Yao, X., Liu, Y.: Towards designing artificial neural networks by evolution. In: Proceedings
of International Symposium. on Artificial Life and Robotics (AROB), pp. 265–268, 18–20
Feb (1996)

8. Yao, X., Liu, Y.: Evolving artificial neural networks through evolutionary programming. In:
The Fifth Annual Conference on Evolutionary Programming, pp. 257–266. MIT Press
(1996)

9. Rosenman, M.A.: An evolutionary model for non-routine design.In: Proceedings of the
Eighth Australian Joint Conference on Artificial Intelligence (AI’95), pp. 363–370. World
Scientific Publ. Co., Singapore (1995)

10. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, NY 10003
(1991)

11. Higuchi, T. et al.: Real-world applications of analog and digital evolvable hardware. IEEE
Trans. Evol. Comput. 3(3), 220–235 (1999)

12. Thompson, A.: On the automatic design of robust electronics through artificial evolution. In:
Proceedings of the International Conference on Evolvable Systems: From Biology to
Hardware, pp. 13–24 (1998)

13. Walker, J.A., Hilder, J.A., Tyrrell, A.M.: Evolving variability-tolerant CMOS designs. In:
International Conference on Evolvable Systems: From Biology to Hardware, pp. 308–319
(2008)

14. Stepney, S., Smith, R.E., Timmis, J., Tyrrell, A.M.: Towards a conceptual framework for
artificial immune systems. Artif. Immune Syst. LNCS 3239(2004), 53–64 (2004)

15. ispPAC30 Data Sheet, Lattice Semiconductor Corporation. (2001). http://www.latticesemi.
com/lit/docs/datasheets/pac/pacover.pdf

16. Stoica, A., Keymeulen, D., Thakoor, A., Daud, T., Klimech, G., Jin, Y., Tawel, R., Duong,
V.: Evolution of analog circuits on field programmable transistor arrays. In: Proceedings of
NASA/DoD Workshop on Evolvable Hardware (EH2000), pp. 99–108 (2000)

17. Langeheine, J., Becker, J., Folling, F., Meier, K., Schemmel, J.: Initial studies of a new VLSI
field programmable transistor array. In: Proceedings 4th Int’l. Conference on Evolvable
Systems: From Biology to Hardware, pp. 62–73 (2001)

18. Virtex Field Programmable Gate Arrays Data Book Version 2.5, Xilinx Inc. (2001)
19. User manual and Tutorials for the CELL MATRIX MOD 88
20. Sanchez, E., Mange, D., Sipper, M., Tomassini, M., Perez-Uribe, A., Stauffer, A.:

Phylogeny, ontogeny, and epigenesis: three sources of biological inspiration for softening
hardware. Evol. Syst. Biol. Hardw. ICES 96, 35–54 (1996)

21. Tyrrell, A.M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.M.,
Rosenberg, J., Villa, A.E.P.: POEtic tissue: an integrated architecture for bio-inspired
hardware. In: Proceedings of 5th International Conference on Evolvable Systems, pp. 129–
140. Trondheim (2003)

22. Tyrrell, A.M., Greensted, A.J.: Evolving dependability. ACM J. Em. Technol. Comput. 3(2),
Article 7, 1–20 (2007)

23. Koza, J.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press,
Cambridge, MA (1994)

24. Koza, J., Keane, M., Streeter, M.: What’s AI done for me lately? genetic programming’s
human-competitive results. IEEE Intell. Syst. 18(3), 25–31 (2003)

Evolvable Hardware Challenges: Past, Present and the Path … 33

http://www.latticesemi.com/lit/docs/datasheets/pac/pacover.pdf
http://www.latticesemi.com/lit/docs/datasheets/pac/pacover.pdf

25. Koza, J., Yu, J., Keane, M.A., Mydlowec, W.: Use of conditional developmental operators
and free variables in automatically synthesizing generalized circuits using genetic
programming. In: Proceedings of the Second NASA/DoD Workshop on Evolvable
Hardware, pp. 5–15 (2000)

26. Keane, M., Koza, J., Streeter, M.: Automatic synthesis using genetic programming of an
improved general-purpose controller for industrially representative plants. In: Stoica,A. (ed.)
Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, pp. 113–122
(2002)

27. Streeter, M., Keane, M., Koza, J.: Routine duplication of post-2000 patented inventions by
means of genetic programming. In: Foster, J. et al. (eds.) Genetic Programming: 5th
European Conference, EuroGP 2002, pp. 26–36 (2002)

28. Koza, J., Jones, L.W., Keane, M.A., Streeter, M.J., Al-Sakran, S.H.: Toward automated
design of industrial-strength analog circuits by means of genetic programming. In: Genetic
Programming Theory and Practice II, Chap. 8, pp. 121–142 (2004)

29. Takahashi, E., Kasai, Y., Murakawa, M., Higuchi, T.: Post fabrication clock-timing
adjustment using genetic algorithms. In: Evolvable Hardware, pp. 65–84. Springer (2006)

30. Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.: Hardware
evolution at function level. Int. Conf. Parallel Problem Solv. Nature PPSN 1996, 62–71
(1996)

31. Kajitani, I., Hoshino, T., Kajihara, N., Iwata, M., Higuchi, T.: An evolvable hardware chip
and its application as a multi-function prosthetic hand controller. In: Proceedings of 16th
National Conference on Artificial Intelligence (AAAI-99), pp. 182–187 (1999)

32. Stoica, A., Arslan, T., Keymeulen, D., Duong, V., Gou, X., Zebulum, R., Ferguson, I.,
Daud, T.: Evolutionary recovery of electronic circuits from radiation induced faults. CEC
2004, 1786–1793 (2004)

33. Linden, D.: Optimizing signal strength in-situ using an evolvable antenna system. In:
Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware, pp. 147–151
(2002)

34. Lohn, J.D., Hornby, G., Rodriguez-Arroyo, A., Linden, D., Kraus, W., Seufert, S.:
Evolutionary design of an X-Band antenna for NASA’s space technology 5 mission. In: 3rd
NASA/DoD Conference on Evolvable Hardware, pp. 1–9 (2003)

35. Minsky, M.L., Papert, S.A.: Perceptrons. MIT Press, Cambridge, MA (1969)
36. Grossberg, S.: Contour enhancement, short-term memory, and constancies in reverberating

neural networks. Stud. Appl. Math. 52 213–257 (1973)
37. Bryson, E., Ho, Y.C.: Applied optimal control: optimization, estimation, and control.

Blaisdell Publishing Company (1969)
38. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by

back-propagating errors. Lett. Nature Nature 323, 533–536 (1986)
39. Hartmann, M., Lehre, P.K., Haddow, P.C.: Evolved digital circuits and genome complexity.

NASA Int. Conf. Evol. Hardw. 2005, 79–86 (2005)
40. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf.

Theory IT-23(3), 337–343 (1977)
41. Kobayashi, K., Moreno, J.M., Madrenas, J.: Implementation of a power-aware dynamic fault

tolerant mechanism on the ubichip platform. In: International Conference on Evolvable
Systems: From Biology to Hardware (ICES10), pp. 299–399 (2010)

42. International Technology RoadMap for Semiconductors (2009)
43. Thompson, A.: Evolutionary techniques for fault Tolerance. In: International Conference on

Control, pp. 693–698 (1996)
44. Haddow, P.C., Hartmann, M., Djupdal, A.: Addressing the metric challenge: evolved versus

traditional fault tolerant circuits. In: The 2nd NASA/ESA Conference on Adaptive Hardware
and Systems, pp. 431–438 (2007)

45. Yu, T., Lee, S.: Evolving cellular automata to model fluid flow in porous media. In: 2002
NASA/DoD Conference on Evolvable hardware, pp. 210–217 (2002)

34 P.C. Haddow and A.M. Tyrrell

46. Zebulum, R.S., et al.: Experimental results in evolutionary fault recovery for field
programmable analogue devices. In: Proceedings of the NASA/DOD International
Conference on Evolvable Hardware, pp. 182–186 (2003)

47. Stoica, A., et al.: Temperature-adaptive circuits on reconfigurable analog arrays. IEEE
Aerospace Conf. 2007, 1–6 (2007)

48. Kalganova, T.: An extrinsic function-level evolvable hardware approach. Genetic Program.
Lect. Notes Comput. Sci. 1802, 60–75 (2004)

49. Torresen, J.: A scalable approach to evolvable hardware. In: The International Conference on
Evolvable Systems: From Biology to Hardware, (ICES98), pp. 57–65 (1998)

50. Torresen, J.: Scalable evolvable hardware applied to road image recognition. In: The second
NASA International Conference on Evolvable Hardware, pp. 245–252 (2000)

51. Kalganova, T.: Bidirectional incremental evolution in extrinsic evolvable hardware. In: The
second NASA/DoD Workshop on Evolvable Hardware, pp. 65–74 (2000)

52. Liu, W., Murakawa, M., Higuchi, T.: ATM cell scheduling by functional level evolvable
hardware. In: Proceedings of the First International Conference on Evolvable Systems,
pp. 180–192 (1996)

53. Vassilev, V.K.: Scalability problems of digital circuit evolution: evolvability and efficient
design. In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 55–
64 (2000)

54. Gomaz, F., Miikulainen, R.: Incremental evolution of complex general behaviour. In:
Special Issue on Environment Structure and Behaviour, Adaptive Behaviour, vol. 5, Issue 3,
4, pp. 317–342. MIT Press (1997)

55. Brooks, R.A., et al.: Alternative essences of intelligence. In: Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-98), pp. 961–967. AAAI Press (1998)

56. Hong, J.H., Cho, S.B.: MEH: modular Evolvable Hardware for designing complex circuits.
In: IEEE Congress on Evolutionary Computation, pp. 92–99 (2003)

57. Stomeo, E., Kalganova, T., Lambert, C.: Generalized decomposition for evolvable hardware.
IEEE Trans. Syst. Man Cybern. Part B 36(5), 1024–1043 (2006)

58. Stomeo, E., Kalganova, T.: Improving EHW performance introducing a new decomposition
strategy. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, pp. 439–444
(2004)

59. Gordon, T., Bentley, P.J.: Towards development in evolvable hardware. In: Proceedings of
the NASA/DoD Conference on Evolvable Hardware, pp. 241–250 (2002)

60. Bentley, P.J.: Exploring component-based representations? The secret of creativity by
evolution. In: Fourth International Conference on Adaptive Computing in Design and
Manufacture, pp. 161–172 (2000)

61. Gruau, F.: Neural network synthesis using cellular encoding and the genetic algorithm. PhD
Thesis, France (1994)

62. Kitano, H.: Designing neural networks using genetic algorithm with graph generation
system. Complex Syst. 4, 461–476 (1990)

63. Bentley, P.J., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an
evolutionary design problem. In: Genetic and Evolutionary Computation Conference
(GECCO 99), pp. 35–43 (1999)

64. Kitano, H.: Building complex systems using development process: an engineering approach.
In: Evolvable Systems: From Biology to Hardware, ICES. Lecture Notes in Computer
Science, pp. 218–229. Springer (1998)

65. Siddiqi, A.A., Lucas, S.M.: A comparison of matrix rewriting versus direct encoding for
evolving neural networks. In: Proceedings of the 1998 IEEE International Conference on
Evolutionary Computation, pp. 392–397 (1998)

66. Eggenberger, P.: Creation of neural networks based on development and evolutionary
principles. In: Proceedings of the International Conference on ANNs, pp. 337–342 (1997)

67. Hemmi, H., Mizoguchi, J., Shimohara, K.: Development and evolution of hardware
behaviours. Towards Evol. Hardw. LNCS 1062–1996, 250–265 (1996)

Evolvable Hardware Challenges: Past, Present and the Path … 35

68. Ortega, C., Tyrrell, A.M.: A hardware implementation of an embyonic architecture using
virtex FPGAs. In: Evolvable Systems: From Biology to Hardware, ICES. Lecture Notes in
Computer Science, pp. 155–164 (2000)

69. Haddow, P.C., Tufte, G., ven Remortel, P.: Shrinking the genotype: L-systems for EHW? In:
International Conference on Evolvable Systems: From Biology to Hardware, pp. 128–139
(2001)

70. Koza, J., Keane, M.A., Streeter, M.J.: The importance of reuse and development in
evolvable hardware. In: Proceedings of the 2003 NASA/DoD Conference on Evolvable
Hardware, pp. 33–42 (2003)

71. Miller, J.F., Thomson, P.: A developmental method for growing graphs and circuits. In:
Proceedings of the 5th International Conference on Evolvable Systems (ICES03), pp. 93–
104 (2003)

72. Tufte, G., Haddow, P.C.: Towards development on a silicon-based cellular computing
machine. J. Natural Comput. 4(4), 387–416 (2005)

73. Liu, H., Miller, J.F., Tyrrell, A.M.: Intrinsic evolvable hardware implementation of a robust
biological development model for digital systems. In: Proceedings of the 2005 NASA/DoD
Conference on Evolvable Hardware, pp. 87–92 (2005)

74. van Remortel, P., Ceuppens, J., Defaweux, A., Lenaerts, T., Manderick, B.: Developmental
effects on tunable fitness landscapes. In: Proceedings of the 5th International Conference on
Evolvable Systems, ICES2003, pp. 117–128 (2003)

75. Roggen, D., Federici, D.: Multi-cellular development: is there scalability and robustness to
gain? In: Proceedings of Parallel Problem Solving from Nature 8, PPSN2004, pp. 391–400
(2004)

76. Lehre, P.K., Haddow, P.C.: Developmental mappings and phenotypic complexity. In:
Proceedings of the Congress on Evolutionary Computation (CEC2003), pp. 62–68 (2003)

77. Tufte, G.: Phenotypic developmental and computation resources: scaling in artificial
development. Genetic Evol. Comput. Conf. 2008, 859–866 (2008)

78. Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and re-use of modules in
Cartesian genetic programming. IEEE Trans. Evol. Comput. 12(4), 1–21 (2008)

79. Walker, J.A., Miller, J.F.: Evolution and acquisition of modules in Cartesian genetic
programming. In: Proceedings of 7th European Conference on Genetic Programming
(EuroGP 2004). Lecture Notes in Computer Science, vol. 3003, pp. 187–197 (2004)

80. Miller, J.F., Thomson, P.: Aspects of digital evolution: geometry and learning. In:
Proceedings of the International Conference on Evolvable Systems: From Biology to
Hardware, pp. 25– 35 (1998)

81. Vazilicek, Z., et al.: On Evolutionary synthesis of linear transforms in FPGA. In:
International Conference on Evolvable Systems: From Biology to Hardware 2008. LNCS,
vol. 5216, pp. 141–152 (2008)

82. Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: 1st
International Conference on Evolvable Systems 1996, Springer, pp. 390–405 (1996)

83. Lohn, J., Hornby, G.: Evolvable hardware using evolutionary computation to design and
optimize hardware systems. IEEE Comput. Intel. Mag. 19–27 (2006)

84. Harding, S.L., Miller, J.F., Rietman, E.A.: Evolution in materio: exploiting the physics of
materials for computation. Int. J. Unconv. Comput. 4(2), 155–194 (2008)

85. Harding, S.L., Miller, J.F.: Evolution in materio: a tone discriminator in liquid crystal.
Congress Evol. Comput. 2004, 1800–1807 (2004)

86. Harding, S.L., Miller, J.F.: Evolution in Materio: investigating the stability of robot
controllers evolved in liquid crystal. In: The International Conference on Evolvable Systems:
From Biology to Hardware, pp. 155–164 (2005)

87. Mahdavi, S.H., Bentley, P.: Evolving motion of robots with muscles. In: Applications of
Evolutionary Computing. LNCS 2003, vol. 2611, pp. 149–155 (2003)

88. Oteam, M.: Switchable glass: a possible medium for evolvable hardware. In: First
NASA/ESA Conference on Adaptive Hardware and Systems, pp. 81–87 (2006)

36 P.C. Haddow and A.M. Tyrrell

89. Thompson, A.: Hardware evolution: automatic design of electronic circuits in reconfigurable
hardware by artificial evolution. Distinguished Dissertation Series. Springer (1998)

90. Garvie, M., Thompson, A.: Evolution of combinational and sequential on-line self
diagnosing hardware. In: Proceedings of the 5th NASA/DoD Workshop on Evolvable
Hardware, pp. 177–183 (2003)

91. Lohn, J.D., Larchev,G.V., Demara, R.F.: A genetic representation for evolutionary fault
recovery in Virtex FPGAs. In: Proceedings of the 5th International Conference on Evolvable
Systems: From Biology to Hardware (ICES), pp. 47–56 (2003)

92. Zhang, K., Demara, R.F., Sharma, C.A.: Consensus-based evaluation for fault isolation and
on-line evolutionary regeneration. In: Proceedings of the 6th International Conference on
Evolvable Systems: From Biology to Hardware (ICES05), pp. 12–24 (2005)

93. Corno, F., Cumani, G., Reorda, M.S., Squillero, G.: Efficient machine-code test-program
induction. In: Proceedings of the Congress on Evolutionary Computation (CEC), IEEE,
pp. 1486–1491 (2002)

94. Pecenka, T., Kotasek, Z., Sekanina, L., Strnadel, J.: Automatic discovery of RTL benchmark
circuits with predefined testability properties. In: Proceedings of the NASA/DoD Conference
on Evolvable Hardware, pp. 51–58 (2005)

95. Pecanka, T., Sekanina, L., Kotasek, Z.: Evolution on synthetic RTL benchmark circuits with
predefined testability. ACM Trans. Design Auto. Electron. Syst. 13(3), 1–21 (2008)

96. Kobayashi, K., Moreno, J.M., Madreas, J.: Implementation of a power-aware dynamic fault
tolerant mechanism on the Ubichip platform. In: International Conference on Evolvable
Systems: From Biology to Hardware, pp. 299–309 (2010)

97. Djupdal, A., Haddow, P.C.: Evolving efficient redundancy by exploiting the analogue nature
of CMOS transistors. In: Fourth International Conference on Computational Intelligence,
Robotics and Autonomous Systems (CIRAS), pp. 81–86 (2007)

98. Keymeulen, D., Zebulum, R.S., Jin, Y., Stoica, A.: Fault-tolerant evolvable hardware using
field-programmable transistor arrays. IEEE Trans. Reliab. 49(3), 305–316 (2000)

99. Greenwood, G., Tyrrell, A.M.: Metamorphic systems: a new model for adaptive systems
design. In: Proceedings of the Congress on Evolutionary Computation, pp. 3261–3268
(2010)

100. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In:
NASA/DoD Conference on Evolvable Hardware (EH’02), pp. 167–178 (2002)

101. Sekanina, L.: Evolvable hardware: from applications to implications for the theory of
computation. Unconv. Comput. LNCS 5715, 24–36 (2009)

102. Stepney, S.: The neglected pillar of material computation. Physica D 237(9), 1157–1164
(2008)

Evolvable Hardware Challenges: Past, Present and the Path … 37

Bridging the Gap Between Evolvable
Hardware and Industry Using Cartesian
Genetic Programming

Zdenek Vasicek

Abstract Advancements in technology developed in the early nineties have enabled

researchers to successfully apply techniques of evolutionary computation in various

problem domains. As a consequence, a new research direction referred to as evolv-

able hardware (EHW) focusing on the use of evolutionary algorithms to create spe-

cialized electronics has emerged. One of the goals of the early pioneers of EHW was

to evolve complex circuits and overcome the limits of traditional design. Unfortu-

nately, evolvable hardware found itself in a critical stage around 2010 and a very

pessimistic future for EHW-based digital circuit synthesis was predicted. The prob-

lems solved by the community were of the size and complexity of that achievable

in fifteens years ago and seldom compete with traditional designs. The scalability

problem has been identified as one of the most difficult problems that researchers are

faced with and it was not clear whether there existed a path forward that would allow

the field to progress. Despite that, researchers have continued to investigate how to

overcome the scalability issues and significant progress has been made in the area

of evolutionary synthesis of digital circuits in recent years. The goal of this chapter

is to summarize the progress in the evolutionary synthesis of gate-level digital cir-

cuits, and to identify the challenges that need to be addressed to enable evolutionary

methods to penetrate into industrial practice.

1 Introduction

Advancements in technology developed in the early 1990s have enabled researchers

to successfully apply techniques of evolutionary computation in various problem

domains. Higuchi et al. [11] and Thompson [30] demonstrated that evolutionary

algorithms (EAs) are able to solve non-trivial hardware-related problems. The

achievements presented in the seminal paper of Higuchi et al. motivated other scien-

tists to intensively explore a new and promising research topic. As a consequence, a

Z. Vasicek (✉)

Faculty of Information Technology, Centre of Excellence IT4Innovations,

Brno University of Technology, Brno, Czech Republic

e-mail: vasicek@fit.vutbr.cz

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_2

39

40 Z. Vasicek

new research direction referred to as Evolvable hardware (EHW) has emerged [6].

Evolvable hardware, a field of evolutionary computation, focuses on the use of evo-

lutionary algorithms to create specialized electronics without manual engineering.

The vision of EHW is to replace expensive and sometimes unreliable designers and

develop robust, flexible and survivable autonomous systems. EHW draws inspiration

from three fields: biology, computer science and electronic engineering.

Several schemes have been developed for classifying EHW [6]. Usually, two

research areas are distinguished: evolutionary circuit design and evolvable circuits.
In the first case, evolutionary algorithms are used as a tool employed to design a sys-

tem that meets a predefined specification. For example, genetic programming can

be used to discover an area-efficient implementation of a circuit whose function is

specified by a truth table. In the second case, an evolutionary algorithm represents an

inherent part of an evolvable circuit. The resulting adaptive system is autonomously

reconfigured to provide a degree of self-adaptive and self-repair behaviour.

In the context of the circuit design, EHW is an attractive approach as it provides

another option to the traditional design methodology: to use evolution to design cir-

cuits for us. Moreover, a key strength of the EHW approach is that it can be applied

to designing the circuits that cannot be fully specified a priori, but where the desired

behaviour is known. Another often emphasized advantage of this approach is that

circuits can be customized and adapted for a particular environment. For example, if

we know that some input combinations in our target application occur with relatively

low probability, we can take this information into account and evolve a circuit that

shows better parameters such as reduced size, delay or power consumption.

There are several works devoted mainly to the evolvable circuits and adaptive

systems [7, 12, 25, 31]. However, there is no similar work systematically mapping

the history and progress of evolutionary circuit design. Such a situation may suggest

that evolutionary circuit design represents an area in which only marginal results

have been achieved. Let us restrict ourselves to the evolution of digital circuits rep-

resented at the gate-level, i.e. circuits implemented using common (typically two-

input) gates. Considering the complexity of circuits routinely used in industry, we

have to admit that only little was done before 2010 even if many novel and promis-

ing approaches were published, as surveyed in Sect. 2.1. However, this area has been

undergoing a substantial development in the last five years, and many competitive

and real-world results have been obtained (Sect. 2.3).

Before we proceed further, it is necessary to clarify what we mean by a com-

plex circuit, as researchers in EC usually have a somewhat illusory notion about

circuit complexity. In theoretical computer science, the complexity of Boolean func-

tions is expressed as the size or depth of corresponding combinational circuits that

compute them. The size of a circuit is the number of gates it contains; its depth is

the maximal length of a path from an input gate to the output gate. In evolution-

ary computation, complexity is typically assessed according to the number of input

variables, because the number of variables significantly impacts the scalability. In

practice, the number of gates is usually considered as a complexity measure. Since

the goals of the early pioneers of EHW were to evolve complex circuits and over-

come the limits of traditional design, it is necessary to take the parameters of real cir-

Bridging the Gap Between Evolvable Hardware and Industry . . . 41

cuits into account. The electronic design automation (EDA) community relies heav-

ily on public benchmarks to evaluate the performance of academic and commercial

design tools, because benchmarking is essential to develop effective methodologies.

Hence we can analyse characteristics of benchmark circuits to provide a real picture

regarding the circuit complexity. The first widely accepted benchmark suite ISCAS-

85 consisting of ten industrial designs was introduced by Brglez and Fujiwara [3].

The circuits included in this benchmark set contain from 32 to 207 inputs and were

originally implemented using 160–3512 logic gates. With advancements in technol-

ogy, several updates have been introduced. The most recent updates are LGSynth93

[17] and IWLS 2005 [1]. LGSynth93 consists of 202 circuits with up to 24,658 gates

and 1,465 registers; IWLS2005 contains 84 designs with up to 185,000 registers and

900,000 gates collected from different websites with open-source IP cores. A combi-

national benchmark suite was introduced by Amaru et al. [2]. This suite is designed

to challenge modern logic optimization tools, and consists of 23 natively combina-

tional circuits that are divided into three classes: arithmetic circuits, random/control

circuits, and difficult benchmarks. The arithmetic benchmarks have up to 512 inputs

and more than a thousand gates; the difficult benchmark set consists of circuits with

more than million gates and more than 100 inputs. As is evident, a complex circuit
is a circuit having at least a hundred inputs and consisting of thousands of gates.

The goal of this chapter is to summarize the progress in the evolutionary synthesis

of gate-level digital circuits, and to identify the challenges that need to be addressed

to enable evolutionary methods to penetrate into industrial practice. The rest of this

chapter is organized as follows. Section 2 briefly maps the history of evolutionary

circuit design. Among others, it summarizes the key results that have been achieved

in the area of evolutionary design of digital circuits for the whole existence of EHW.

Then, challenges identified in recent years and that should be addressed in near future

are mentioned in Sect. 3. Concluding remarks are given in Sect. 4.

2 Evolutionary Design of Digital Circuits

2.1 First Generation EHW

Gate-level evolution was addressed only rarely before 2000. The first results in the

area of digital circuit synthesis were reported by Koza [15], who investigated the

evolutionary design of the even-parity problem in his extensive discussions of the

standard genetic programming (GP) paradigm. Although the construction of an opti-

mal parity circuit is a straightforward process, parity circuits are considered to be an

appropriate benchmark problem within the evolutionary computation community

when a small set of gates (AND, OR, NOT) is used.

Thompson [30] used a form of direct encoding loosely based on the structure of

an FPGA in his experiment with evolution of a square wave oscillator. A genetic

algorithm was employed by Coello et al. [4], to evolve various 2-bit adders and mul-

42 Z. Vasicek

tipliers. Miller demonstrated that evolutionary design systems are not only able to

rediscover standard designs, but they can, in some cases, improve them [18, 22]; he

was interested in the evolutionary design of arithmetic circuits and digital filters.

A new evolutionary algorithm, Cartesian genetic programming (CGP), was intro-

duced by Julian F. Miller in 2000.
1

Miller designed this approach to address two

issues related to the efficiency of common genetic programming: poor ability to rep-

resent digital circuits, and the presence of bloat. This variant of GP is called ‘Carte-

sian’ because it represents a program using a two-dimensional grid of nodes. The

genotypes are encoded as lists of integers of fixed length that are mapped to directed

acyclic graphs (DAGs) rather than the usual trees. For more details about CGP and

its applications, we refer the reader to the collection edited by Julian F. Miller [20].

CGP has been used to demonstrate that evolutionary computing can improve

results of conventional circuit synthesis and optimization algorithms. As a proof

of concept, small arithmetic circuits were considered originally. A 4-bit multiplier

is the most complex circuit evolved in this category [38]. However, the problems

addressed by the EHW community have remained nearly of the same complexity

since then. The most complex combinational circuit directly evolved during the first

two decades of EHW consists of tens of gates and has around 20 inputs [29]. It is

clear that those results could barely compete with conventional circuit design tools

producing circuits counting thousands of gates and hundreds of inputs.

One of the goals of the early pioneers of EHW was to evolve complex circuits,

overcome the limits of traditional design, and find ways how to exploit the vast

computational resources available in today’s computation platforms. Unfortunately,

nobody has been able to approach this goal, except Koza [16], who reports tens

of human-competitive analogue circuits obtained automatically using genetic pro-

gramming. Since 2000, many researchers have invested enormous effort in propos-

ing new ways to simplify the problem for evolution in terms of finding more effec-

tive approaches to explore the search space for more complex applications. Many

novel techniques, including decomposition, development, modularisation and even

new representations, have been proposed [20, 27, 29, 40]. Despite this, only a lit-

tle progress has been achieved and the gap between the complexity of problems

addressed in industry and EHW continues to widen as the advancements in technol-

ogy develop. This further supports the belief that evolutionary search works better

for analogue circuits than for digital circuits, possibly due to the fact that analogue

behaviours provide relatively smoother search spaces [28].

In order to address the increasing complexity of real-world designs, some authors

escape from the gate-level representation and use function-level evolution. Instead

of simple gates, larger building blocks such as adders and multipliers are employed.

Many and even patentable digital circuits have been discovered, especially in the area

of digital signal processing [20, 25, 37]. One of the most complex circuits evolved

by means of the function-level approach is a random shot noise image filter with

1
Cartesian genetic programming grew from a method of evolving digital circuits developed by

[22]. However the term Cartesian genetic programming first appeared in [19], and was proposed as

a general form of genetic programming in [21].

Bridging the Gap Between Evolvable Hardware and Industry . . . 43

25 inputs consisting of more than 1,500 two-input gates when synthesised as 8-bit

circuit [37]. Despite this work, EHW found itself in a critical stage around the year

2010, and it was not then clear whether there existed a path forward that would allow

the field to progress [8]. The scalability problem has been identified as one of the

most difficult problems that researchers are faced with in the EHW field and one that

should be, among others, addressed by the second generation of EHW.

2.2 Scalability Issues

Poor scalability typically means that evolutionary algorithms are able to provide

solutions to small problem instances only, and a partially working solution is usually

returned in other cases. The scalability problem can primarily be seen from two per-

spectives: scalability of representation and scalability of fitness evaluation. From the

viewpoint of the scalability of representation, the problem is that long chromosomes

are usually required to represent complex solutions. Long chromosomes, however,

imply large search spaces that are typically difficult to search. The scalability of fit-

ness evaluation represents another big challenge. The problem is that complex can-

didate solutions might require a lot of time to be evaluated. As a consequence, only

a small fraction of the search space may be explored in a reasonable time. This prob-

lem is especially noticeable in the case of the evolutionary design of digital circuits

where the time required to evaluate a candidate circuit grows exponentially with

the increasing number of inputs. One possibility how to overcome this issue is to

reduce the number of test cases utilised to determine the fitness value. However, this

approach is not applicable in the case of gate-level evolution [14]. There is a high

chance that a completely different circuit violating the specification is evolved even

if only a single test case is omitted.

Both mentioned scalability issues have independent effects that are hard to predict

in practice. Consider, for example, the evolutionary design of gate-level multipliers

from scratch. It is relatively easy to evolve a 4-bit (i.e. 8-input) multiplier, yet a huge

computational effort is required to discover a 5-bit multiplier, even though the time

required to evaluate a candidate solution increases only 4-fold and the number of

gates is approximately doubled. Experiments with various accelerators have revealed

that the number of evaluations has to be increased more than 170-fold to discover a

valid 5-bit multiplier [13].

It is believed that the scalability of representation is the root cause that prevents

evolutionary algorithms from handling complex instances. This hypothesis is sup-

ported mainly by the fact that the number of evaluations needed to discover a digital

circuit is significantly higher compared to Koza’s experiments with analogue circuits.

In addition, the community has been unable to substantially improve the scalability

of gate-level evolutionary design, even when various FPGA-based, GPU-based and

CPU-based accelerators have been employed [13, 20, 36]. There is no doubt that the

size of the search space grows enormously as the complexity of problem instances

increases. On the other hand, only little is known about the phenotypic search space

44 Z. Vasicek

of digital circuits. It may be possible, for example, that the number of valid solutions

proportionally increases with the increasing size of search space.

In addition to the previously discussed scalability issues, scalability of specifi-
cation is sometimes mentioned [35]. Let us assume that the previously mentioned

problems do not exist. Even then, we will not be able to design complex circuits in

reasonable time. The problem is that the frequently used specification in the form of

truth table does not itself scale. The amount of memory required to store the whole

truth table grows exponentially with the increasing number of variables.

2.3 Second Generation EHW

Despite pessimism of the EHW community, its researchers have continued to investi-

gate how to overcome the scalability issues. Vasicek and Sekanina [34] demonstrate

that it is feasible to optimize complex digital circuits when the common truth-table-

based fitness evaluation procedure is replaced with formal verification. The method

exploits the fact that efficient algorithms have been developed in the field of for-

mal verification that enable us to relatively quickly decide whether two circuits are

functionally equivalent. Compared to the state-of-the-art synthesis tools, the authors

reported a 37.8% reduction in the number of gates (on average) across various bench-

mark circuits having 67–1408 gates and 22–128 inputs.

An interesting feature of the approach is that it focuses solely on the improvement

of fitness evaluation efficiency. In order to reduce the time needed to determine the

fitness value, a method routinely used in the area of logic synthesis known as com-

binational equivalence checking is employed. But it is not the equivalence checking

alone that enables speedups of several orders of magnitude. The approach bene-

fits from a tight connection between the evolutionary algorithm and combinational

equivalence checking. Since every fitness evaluation is preceded by a mutation, a list

of nodes that are different for the parent and its offspring can be calculated. This list

can be used to determine a cone of influence (COI)—the set of outputs and gates that

have to be compared with the reference circuit—and only these outputs and gates are

checked. In addition to that, a parental circuit serves simultaneously as a reference.

The efficiency of the proposed method has been further improved by Vasicek

[33], who combines a circuit simulator with formal verification in order to detect the

functional non-equivalence of the parent and its offspring. In contrast with previously

published work, an extensive set of 100 real-world benchmarks circuits is used to

evaluate the performance of the method. The least complex circuit has 106 gates, 15

primary inputs, and 38 outputs. The most complex circuit, an audio codec controller,

has 16,158 gates, 2,176 inputs, and 2,136 outputs. Half of the benchmark circuits

have more than 50 primary inputs and more than a thousand gates. On average, the

method enables a 34% reduction in gate count, and the evolution is executed for only

15 min.

A very pessimistic future for EHW-based digital circuit synthesis was predicted

by Greenwood and Tyrrell [7]. Despite that, five years later and after little more than

Bridging the Gap Between Evolvable Hardware and Industry . . . 45

15 years of EHW, Vasicek and Sekanina [34] proposed an approach easily overcom-

ing the previous empirical limitation of evolutionary design represented by a digital

circuit having about twenty inputs and up to hundred gates. At the same time, sev-

eral doubts and questions emerged. Since only the scalability of fitness evaluation

was addressed, it is questionable whether the scalability of representation is really

the key issue preventing the handling of complex instances. We believe that this

is not the case for at least the evolutionary optimization of digital circuits. Hence,

addressing the problem of scalability of representation in the context of evolutionary

optimization of digital circuits seems not to be urgent. The extensive experimental

evaluation presented by Vasicek [33] has revealed another and probably more severe

issue of evolutionary optimization of digital circuits: the enormous inefficiency of

the evolutionary algorithm itself. The ratio between the number of acceptable can-

didate solutions and invalid candidate solutions is worse than 1:180 in average. A

candidate solution is invalid if it is functionally incorrect, i.e. violates the require-

ments given by the specification. So approximately 99.5% of the runtime is wasted

by generating and evaluating invalid candidate circuits that lie beyond the desired

space of potential solutions.

If we want to keep the EHW field progressing, it seems that the researchers should

firstly turn their attention away from tweaking the parameters of various evolution-

ary algorithms, and begin to combine evolutionary approaches with state-of-the-art

methods routinely used in the field that is addressed with evolution. This claim is

based mainly on the fact that the results reported by Vasicek [33] were obtained by

means of the standard variant of genetic programming and standard settings recom-

mended in the literature. Although CGP is considered as one of the most efficient

methods for evolutionary design and optimization of digital circuits [20], there is no

guarantee that it offers the best possible convergence. It is not even clear whether

the poor efficiency discussed in the previous paragraph is caused by CGP, or if it is

a common problem of all evolutionary approaches. It is unfortunately nontrivial to

point out the algorithm that achieves the best performance. Firstly, many authors are

evaluating algorithms using artificial problems such as simple parity circuits instead

of real benchmark circuits. Secondly, only evolutionary design of simple circuits has

been addressed. Hence, the efficiency of the evolutionary algorithm and its improve-

ment represents an open question for future investigations.

The approach of [34] has sometimes been criticised that it has to be seeded with

an already working circuit. and thet it cannot be used to evolve digital circuits from

scratch. At first sight, this objection seems to be legitimate. However, it is impor-

tant to realise and accept how circuits are specified in conventional tools. Conven-

tional circuit synthesis and optimization usually starts from an unoptimized fully

functional circuit supplied by a designer. Such a circuit is specified in the form of

a netlist, typically using low-level (e.g. BLIF specification) or high-level (e.g. Ver-

ilog or VHDL language) hierarchical description. In some cases, truth tables are

directly used, but to specify only simple circuits. So the seed required by evolution

can easily be obtained from the specification, for example by transforming the Sum-

of-Products representation into a logic network or synthesizing Verilog description

to a gate-level netlist.

46 Z. Vasicek

An interesting question, at least from the theoretical point of view, is whether

complex digital circuits can be evolved from randomly seeded initial populations, i.e.

whether a truly evolutionary circuit design is possible for complex circuits. Firstly,

it is necessary to accept the fact that this approach can hardly compete with conven-

tional state-of-the-art synthesis tools if the time of synthesis is considered. Obtaining

a fully functional solution from a randomly seeded population consumes a consider-

able time because the approach exploits the generate-and-test principle, and no addi-

tional knowledge about the problem is available. However, there are reasons why it

makes sense to develop the aforementioned evolutionary approach. Firstly, the cir-

cuit design problem can serve as a useful test problem for the performance evaluation

and comparison of genetic programming systems. Secondly, the approach seems to

be suitable for adaptive embedded systems, because running standard circuit design

packages is usually infeasible on such systems.

In order to address the evolution of complex circuits from scratch, Vasicek and

Sekanina [35] propose a method that exploits the fact that the specification can be

given in the form of binary decision diagram (BDD). Although there are some patho-

logical cases of circuits for which BDDs do not scale well, BDDs are known to be an

efficient tool for representation and manipulation with digital circuits. Vasicek and

Sekanina [35] use BDDs to determine Hamming distance between a candidate cir-

cuit and specification. This requires only a few milliseconds, even for circuits having

more than 40 inputs. Compared to the well-optimized common CGP, the proposed

method achieves a speedup of four to seven orders of magnitude when circuits hav-

ing from 23 to 41 inputs are considered. As a proof of concept, 16 nontrivial cir-

cuits outside of the scope of well-optimized standard CGP are considered. Correctly

evolved circuits are reported in twelve cases. In addition, evolution is able to improve

the results of conventional synthesis tools. For example, evolution discovered a 28-

input circuit having 57% fewer gates than the result obtained from the state-of-the-art

synthesis tool. An average gate reduction of 48.7% is reported for all evolved circuits.

We can conclude that it has been experimentally confirmed that it is beneficial

to employ EAs even in the evolution of digital circuits from scratch. In many cases,

more compact solutions may be obtained, because the EA is not biased to the initial

circuits that must be provided in the case of conventional synthesis. However, we

have to accept and tolerate the overhead of evolution manifesting itself in the higher

demand for computational resources. For example, at most three hours are required to

evolve the circuits investigated by Vasicek and Sekanina [35]. On the other hand, this

represents an unimportant problem when a theoretical point of view is considered.

There are more fundamental questions that we should deal with.

Firstly, how is it possible that evolution successfully discovered a 28-input circuit

(frg1), yet no solution was provided for 23-input circuit (cordic)? Since the 23-input

circuit consists of fewer gates than the 28-input circuit, this issue is evidently not

connected with poor scalability of representation. We can exclude even the problem

of scalability of fitness evaluation, because the time required to evaluate the can-

didate solutions is nearly the same in both cases. Hence, there must be some other

issue that prevents the discovery of some circuits. Secondly, the notion of circuit

complexity remains an open question. Computation effort (derived from the num-

Bridging the Gap Between Evolvable Hardware and Industry . . . 47

ber of input combinations and the number of gates) is used to measure the circuit

complexity. Some of the circuits that are not evolved, however, exhibit a lower com-

plexity value compared to the successfully evolved circuit. Thirdly, the paper does

not offer an answer to the question related to the most complex circuit that could

be directly evolved. The work was intended as a proof-of-concept only. Finally, it is

worth noting that only the scalability of fitness evaluation is targeted. Does it mean

that the scalability of representation is an unimportant problem, at least to some

circuit size? [9] state that it is becoming generally accepted that there needs to be

a move away from a direct, or one-to-one, genotype-phenotype mapping to enable

evolution of large complex circuits. This conjecture seems to be wrong at least for

the evolutionary optimisation of existing gate-level circuits, because large genotypes

encoding circuits with thousands of gates can be directly optimised using CGP [33].

3 Open Challenges

Significant progress has been made in the area of evolutionary synthesis of digital

circuits in recent years. Despite that, we are still facing many challenges that need

to be properly addressed in order to enable evolutionary circuit design to become a

competitive and respected synthesis method.

3.1 Evolutionary Synthesis and Hardware Community

One of the problems with the EHW community is that the practical point of view

is usually in second place. The typical goal is to evolve some circuit and nobody

questions whether there is a real need to do so. Although there is no doubt that much

work has been done in the last more than two decades of EHW, there is a barrier

preventing EHW being fully accepted by hardware community. Let us mention the

main aspects that are usually criticised by the “traditional” circuit design community.

The evolutionary design of digital circuits is sometimes criticised due to its inher-

ently non-deterministic nature. To understand this, it is necessary to realize how the

conventional synthesis tools are implemented. The tools typically start with a netlist

represented using a network, for example in the form of and-inverter graph (AIG).

Then, deterministic transformations are performed over the AIG. Since the transfor-

mations are local in nature, the network may be refined by their repeated application.

The solution quality can be improved in this way at the expense of run-time. Design-

ers have a guarantee that the optimisation process ends. In addition, they have a

certain degree of guarantee that a circuit of some quality will be obtained when, say,

one hundred iterations are employed.

Another handicap of the evolutionary approaches is that they are time consuming

and generally not scalable when compared with methods of logic synthesis. While

the problem of scalability of evaluation has been partly eliminated, the method still

48 Z. Vasicek

suffers from long execution times due to the inefficiency of the generate-and-test

approach. Even though the recent results indicate that more complex circuits may be

evolved, it will probably be necessary to accompany the proposed methods with a

suitable partitioning in order to reduce the problem complexity. It makes no sense to

optimize complex netlists describing the whole processors or other complex circuits

at the gate-level. The conventional tools usually benefit from a hierarchical descrip-

tion of a given digital circuit.

Another issue is the relevance of the chosen optimisation criteria for industrial

practice. Originally, the number of gates was the only criterion that was optimized

within the evolutionary community. In many cases, not only the number of gates, but

also delay and area on a chip, play an important role. In addition, power efficiency

has emerged as one of the most critical goals of hardware design in recent years [10].

Logic synthesis is a complex process that has to consider several aspects that are in

principle mutually dependent. Two basic scenarios are typically conducted in prac-

tice: optimizing the power and/or area under some delay constraints, or optimizing

the delay possibly under some power and/or area constraints. In order to efficiently

determine the delay, area and power dissipation of a given circuit, so as to avoid

running of time-consuming SPICE simulator and yet obtain results exhibiting a rea-

sonable accuracy, several algorithms have been developed to estimate the delay as

well as power dissipation of digital circuits [10]. The evolutionary community should

adopt them and combine them with evolution.

Although the attitude of hardware community to evolutionary techniques seems

to be a rather sceptical, it does not mean that evolutionary synthesis has no chance to

be accepted at hardware conferences. Interestingly, there is a new research area—

approximate computing—in which evolutionary approaches seem to be accepted

[26]. Conventional synthesis tools are not constructed to perform the synthesis of

approximate circuits, and no golden design exists for an approximate circuit. In the

case of approximate synthesis, it is sufficient to design a circuit that responds cor-

rectly for a reasonable subset of input vectors, provided that the worst-case (or aver-

age) error is under control. Because of the nature of approximate circuits (in fact,

partially working circuits are sought) and principles of evolutionary circuit design

(evolutionary-based improving of partially working circuits), evolutionary comput-

ing seems to be the approach of the first choice.

3.2 Efficiency of Cartesian Genetic Programming

Some problems, such as adopting relevant optimisation criteria, are a matter of time,

but there are fundamental issues that need to be addressed. Since its introduction,

CGP has been considered to be one of the most efficient methods for evolution-

ary design and optimization of digital circuits. However, the experiments with com-

plex Boolean problems revealed that the evolutionary mechanisms of CGP should

be revised, because there are cases for which CGP performs poorly.

Bridging the Gap Between Evolvable Hardware and Industry . . . 49

It seems that the evolutionary optimization of digital circuits exhibits a completely

different behaviour when compared to the evolutionary design of digital circuits.

Let us give one example supporting this claim. Redundancy is believed to play an

important role in evolutionary computation, as it represents a powerful mechanism

for searching the fitness landscape. Two forms of redundancy have been identified

in CGP [32]. Firstly, CGP employs a genotype-phenotype mapping that removes the

genes coding the nodes that are inactive, i.e. the nodes that do not participate in cre-

ating the output values. This form of redundancy is referred to as explicit genetic
redundancy. Secondly, there is implicit genetic redundancy. This refers to the sit-

uation when there active genes, ones that are decoded into the phenotype, that do

not contribute to the behavior of the phenotype under common fitness functions that

measure the distance between a candidate circuit and its specification. Both forms

of genetic redundancy, together with the replacement strategy, encourages genetic

drift, as individuals can be mutated without affecting their fitness. The replacement

strategy in CGP enables these individuals to replace the old parent. It is believed that

genetic drift strongly aids the escape from local optima. Recently, the theory that the

effectiveness of evolutionary search is correlated with the number of available nodes

has been disproved [32]. Despite that, it has been shown that explicit genetic redun-

dancy offers a significant advantage. Vasicek [33] reports extensive experimental

evaluation that reveals, however, that neutral mutations and redundancy surprisingly

offer no advantage when using CGP to optimise complex digital circuits. This result

does not mean that neutral mutations are of no significance generally, but they are

less important in the case of circuit optimisation. Hence, the role of neutrality and

redundancy in CGP represents still an open problem that it is not well understood,

especially in the context of evolutionary synthesis of complex circuits.

CGP was originally designed to evolve digital circuits represented using a two-

dimensional array of nodes. An open question is whether there is an evidence that this

representation improves the efficiency of the evolutionary algorithm. Nowadays, this

limitation seems to be an unnecessary constraint [32] and many researchers prefer to

represent the circuits by means of a linear array of nodes. While both arrangements

have the ability to represent any DAG, the main advantage of the linear encoding

is that it substantially reduces the number of nodes required to encode a circuit,

because the number of columns and rows of the two-dimensional array must respect

circuit parameters such as the circuit depth and width. On the other hand, the two-

dimensional array of nodes has the ability to explicitly limit the circuit depth. DAGs

are encoded in a linear genome of integer values in CGP. Each node in the DAG

is represented by a tuple of genes. One gene specifies the function that the node

applies to its inputs, and the remaining genes encode where the node takes inputs

from. Nodes can take input from primary circuit inputs or any node preceding them

in the linear genome. This restriction prevents the creation of cycles and offers sev-

eral advantages compared to the genetic programming (e.g. it allows CGP to reuse

sub-circuits), but it introduces a positional bias that has a negative impact on CGP’s

ability to evolve certain DAGs [5]. Nodes that could be connected without creating

a cycle may still be prevented from forming that connection because of the given

genome ordering. This effect has been investigated only on the evolutionary design

50 Z. Vasicek

of few small circuits, and it will be necessary to perform an additional study focused

on the evolutionary optimization. Vasicek [33] did not register any significant degra-

dation in performance of the evolutionary optimisation process related to the posi-

tional bias during the experiments with complex circuits. The manifestation of CGP’s

positional bias thus remains in this context an open question. Goldman and Punch [5]

show that this bias is connected with an inherent pressure in CGP that makes it very

difficult to evolve individuals with a higher number of active nodes. Such a situation,

called the length bias, is prevalent as the length of an individual increases. We have

not explicitly investigated this problem in the context of evolutionary design of com-

plex circuits, however, this conclusion seems to be valid. The most complex circuit

that has been evolved using BDDs consists of around 155 gates [35]. Fortunately, the

length bias is related to evolutionary design only, and does not affect evolutionary

optimization.

It is natural to expect that the previously mentioned issues can degrade the per-

formance of CGP in some way. We are convinced, however, that the most critical

part of CGP is the process of generating candidate solutions. In order to generate a

new population, CGP utilizes a single genetic operator, point mutation. This oper-

ator modifies a certain number of randomly chosen genes in such a way that the

value of a selected gene is replaced with a randomly generated, yet valid, new one.

The range of valid values depends on the gene position and can be determined in

advance. This scheme seems to be extremely inefficient. Let us give two facts sup-

porting our claim. Firstly, a population containing only two individuals (i.e. parent

and a candidate solution) provides the best convergence when a fixed number of eval-

uations is considered [34]. Secondly, Vasicek [33] observes that approximately 180

candidate solutions need to be generated to obtain a single valid candidate solution,

i.e. an individual with the same or better fitness. Both observations suggest that the

evolutionary-based approach requires the generation of a large number of candidate

solutions to compensate the poor performance of the mutation operator. The poor

ability to generate an acceptable candidate circuit is emphasised by the fact that the

smallest possible population size exhibits the best performance. Assuming that our

claims are correct, we could also explain why we have pushed forward the limits of

evolution when we focus only on the improvement of the scalability of fitness eval-

uation. The reason is that formal methods such as BDD and SAT achieve speedup

of a few orders of magnitude compared to standard CGP. We believe that this part

of CGP offers a great potential to significantly improve not only the convergence but

also scalability of evolutionary synthesis. It is clear that a form of informed muta-

tions benefiting from problem domain knowledge should be employed, instead of

blind random changes. The question is how we should accomplish that.

3.3 Deceptive Fitness Landscape

The notion of a fitness landscape has become an important concept in evolution-

ary computation. It is well known that the nature of a fitness landscape has a strong

Bridging the Gap Between Evolvable Hardware and Industry . . . 51

relationship with the effectiveness of the evolutionary search. There are three aspects

forming the structure of the fitness landscape: the encoding scheme, the fitness func-

tion, and the connectivity determined by the genetic operators. The structure can be

specified in terms of two characteristics: ruggedness and neutrality of landscapes.

Ideally, small gene changes should lead to small changes in the phenotype and, con-

sequently, a small change in fitness value. A landscape exhibiting such a behaviour is

said to be smooth. In contrast, if small movements result in large changes in fitness,

then the landscape is considered rugged.

[39] study the structure of the fitness landscape by evolving 2-bit multipliers rep-

resented at the gate level. The landscape is modelled as a composition of three sub-

landscapes as discussed above. The experiments reveal not only that the landscapes

are irregular but also that their ruggedness is very different. The conclusion is that

the fitness landscapes of digital circuits are quite challenging for evolutionary search.

Unfortunately, only a little is known about the phenotypic search space of digital

circuits, despite the fact that every search algorithm provides implicit assumptions

about the search space [8].

If we ignore the problematic scalability issue, it is fair to say that CGP performs

very well in general. However, our experiments with evolution of circuits having

more than 15 inputs reveals that there are instances that are extremely hard to evolve.

What is even worse, there are trivial problems for which the evolutionary search com-

pletely fails. One of them is the well-known and well-studied evolutionary design of

parity circuits. In the case of the 30-input parity circuit, for example, the evolution-

ary search is stuck, and no correct circuit is evolved, provided that a complete set of

gates (including XOR gate) is employed. To understand this phenomenon, the fitness

landscape needs to be investigated. Under common conditions, there is nearly 100%

probability that a randomly generated individual receives a high fitness score whose

value equals HD(F) = 229 (i.e. 50% of the worst-case Hamming distance between

the correct solution and individual capturing a Boolean function F). Among many

others, constant value (i.e. F = 0), identities (i.e. F = xi), or XOR of two input vari-

ables (i.e. F = xi ⊕ xj) represent Boolean functions exhibiting HD(F) = 229. Even

XOR over 29 input variables (i.e. F = x1 ⊕…⊕ x29) has the same Hamming dis-

tance. In fact, every Boolean functionF implemented as k-input XOR (k = 2,… , 29)

exhibits HD(F) = 229. Considering phenotypic space, there is a huge disproportion

between the number of Boolean functions with Hamming distance equal to 229 and

the rest. Hence there is a high chance that such a candidate solution is produced by

mutation. In addition to that, it is necessary to consider also the complexity of the

correct and a partially working solution. While the correct parity circuit consists of

29 XOR gates, a circuit with Hamming distance equal to 1, for example, consists of

a significantly larger number of gates.
2

It is then no surprise that it is extremely hard

to generate a Boolean function consisting of more gates yet having better fitness. It

2
Such a circuit can be implemented using a 2-input multiplexer that provides the correct output

value for all input combinations except of a single combination for which the inverse output value

is given. The implementation consisting of two-input gates evidently requires more gates than com-

mon parity circuit.

52 Z. Vasicek

can be argued that evolution is an incremental process utilising neutral genetic drift

that can help build a circuit consisting of more gates. Of course, but there is no pres-

sure that helps to escape from this trap. If we analyse the number of gates during

evolution, it oscillates around a few gates only.

One of the possibilities for how to eliminate this problem is to disable XOR gates.

The presence of XOR gates in the function set, however, represents the main benefit

for the evolutionary approach. While the conventional circuit synthesis approaches

are not fully capable to perform the XOR decomposition, evolution is surprisingly

able to do that very well. This is typically the main reason why such a huge reduction

in the gate count is achieved in comparison with state-of-the-art synthesis tools [34].

Hence, it seems to be more beneficial to combine the Hamming distance with some

additional metric (e.g. the number of used variables) to encourage the selection pres-

sure and smooth the fitness landscape.

Evidently, a fitness function based solely on the Hamming distance produces a

really deceptive fitness landscape. The question is whether parity represents a sin-

gularity or whether there exist a whole class of problems with similar behaviour.

It is known that parity is a typical example of symmetric Boolean functions. The

symmetric functions are Boolean functions whose output value does not depend on

the permutation of the input variables. It means that the output depends only on the

number of ones in the input. A unique feature of this class of Boolean functions is

that a more compact representation can be utilized instead of the truth table having

2n rows. Each symmetric Boolean function with n inputs can be represented using

the (n + 1)-tuple, whose i-th entry (i = 0,… , n) is the value of the function on an

input vector with i ones.

4 Final Remarks

When Julian F. Miller, the (co)inventor of Cartesian genetic programming, pub-

lished his paper devoted to the evolutionary design of various gate-level circuits

such as adders and multipliers where he demonstrated the strength of evolution-

ary approach [23]
3
, he not only motivated researchers around the world to fur-

ther develop their investigations of evolutionary design of digital circuits, but also

inspired many others to engage in a relative young and promising research area:

evolvable hardware. Julian brought the evolvable hardware community an efficient

method for modelling and evolution of digital circuits. Despite the fact that CGP

has been evaluated on small problem instances only and there is no guarantee that

it will work on different problems, CGP has become very popular in EHW. Since

its introduction, CGP is still considered to be one of the most efficient methods for

evolutionary design and optimization of digital circuits.

3
This paper is currently the most cited paper in the journal of Genetic Programming and Evolvable

Machines.

Bridging the Gap Between Evolvable Hardware and Industry . . . 53

We can say without any exaggeration that Julian gave rise to a problem that seems

to be an endless source of research opportunities, challenges and questions. After

little more than 15 years of CGP’s existence, there exist many open questions that

are still waiting to be addressed. While there are questions, such as the role of neu-

trality and importance of redundancy, that accompany CGP since its introduction,

progress in various areas, such as evolutionary synthesis of logic circuits, has grad-

ually revealed further questions that were not properly addressed in the past. Many

problems have emerged within the last five years, during the experiments with evo-

lutionary synthesis of complex gate-level circuits. The primary reason is that many

researchers dealt only with small circuit instances in the past. Also, circuit opti-

mization was originally out of the main focus of EHW community, because the

researchers addressed the problem of circuit design.

Cartesian genetic programming, and its variants, is not the only contribution of

Julian F. Miller. He is also a pioneer of an unconventional computing paradigm

known as evolution-in-materio [24]. Julian is still providing us with revolutionary

and inspiring ideas.

Acknowledgements This work was supported by The Ministry of Education, Youth and Sports of

the Czech Republic from the National Programme of Sustainability (NPU II); project

IT4Innovations excellence in science - LQ1602.

References

1. Albrecht, C.: IWLS 2005 benchmarks. Technical Report, published at 2005 International

Workshop on Logic Synthesis (June 2005)

2. Amaru, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark suite. In:

24th International Workshop on Logic & Synthesis (2015)

3. Brglez, F., Fujiwara, H.: A neutral netlist of 10 combinational benchmark circuits and a target

translator in Fortran. In: Proceedings of IEEE International Symposium Circuits and Systems

(ISCAS 85), pp. 677–692. IEEE Press, Piscataway, N.J. (1985)

4. Coello, C.A.C., Christiansen, A.D., Aguirre, A.H.: Automated design of combinational logic

circuits by genetic algorithms. In: Artificial Neural Nets and Genetic Algorithms: Proceedings

of the International Conference in Norwich, U.K., 1997, pp. 333–336. Springer, Vienna (1998).

doi:10.1007/978-3-7091-6492-1_73. ISBN 978-3-7091-6492-1

5. Goldman, B.W., Punch, W.F.: Analysis of Cartesian genetic programming’s evolutionary

mechanisms. IEEE Trans. Evol. Comput. 19(3):359–373 (2015). doi:10.1109/TEVC.2014.

2324539. ISSN 1089-778X

6. Gordon, T.G.W., Bentley, P.J.: On evolvable hardware. In: Soft Computing in Industrial Elec-

tronics, pp. 279–323. Physica-Verlag, London, UK (2002)

7. Greenwood, G.W., Tyrrell. A.M.: Introduction to evolvable hardware: a practical guide for

designing self-adaptive systems. In: IEEE Press Series on Computational Intelligence. Wiley-

IEEE Press (2006). ISBN 0471719773

8. Haddow, P.C., Tyrrell, A.: Challenges of evolvable hardware: past, present and the path to a

promising future. Genet. Progr. Evol. Mach. 12, 183–215 (2011)

9. Haddow, P.C., Tufte, G., van Remortel, P.: Shrinking the genotype: L-systems for EHW? In:

Proceedings of the 4th International Conference on Evolvable Systems: From Biology to Hard-

ware. LNCS, vol. 2210, pp. 128–139. Springer (2001)

http://dx.doi.org/10.1007/978-3-7091-6492-1_73
http://dx.doi.org/10.1109/TEVC.2014.2324539
http://dx.doi.org/10.1109/TEVC.2014.2324539

54 Z. Vasicek

10. Hassoun, S., Sasao, T. (eds.): Logic Synthesis and Verification. Kluwer Academic Publishers,

Norwell, MA, USA (2002)

11. Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving hardware with

genetic learning: a first step towards building a Darwin machine. In: Proceedings of the 2nd

International Conference on Simulated Adaptive Behaviour, pp. 417–424. MIT Press (1993)

12. Higuchi, T., Liu, Y., Yao, X. (eds.): Evolvable Hardware. Springer Science+Media LLC, New

York (2006)

13. Hrbacek, R., Sekanina, L.: Towards highly optimized Cartesian genetic programming: from

sequential via SIMD and thread to massive parallel implementation. In: Proceedings of 2014

Annual Conference on Genetic and Evolutionary Computation, pp. 1015–1022. ACM, New

York, NY, USA (2014). doi:10.1145/2576768.2598343

14. Imamura, K., Foster, J.A., Krings, A.W.: The test vector problem and limitations to evolving

digital circuits. In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp.

75–79. IEEE Computer Society Press (2000)

15. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA (1992)

16. Koza, J.R.: Human-competitive results produced by genetic programming. Genet. Progr. Evol.

Mach. 11(3–4), 251–284 (2010)

17. McElvain, K.: LGSynth93 benchmark set version 4.0 (1993)

18. Miller, J.F.: Digital filter design at gate-level using evolutionary algorithms. In: Proceedings of

the Genetic and Evolutionary Computation Conference, GECCO 1999, pp. 1127–1134. Mor-

gan Kaufmann (1999a)

19. Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a Carte-

sian Genetic Programming approach. In Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H.,

Honavar, V., Jakiela, M., Smith, R.E. (Eds), Proceedings of the Genetic and Evolutionary Com-

putation Conference, vol. 2, pp. 1135–1142. Morgan Kaufmann, Orlando, Florida, USA. 13–17

July (1999b). ISBN 1-55860-611-4

20. Miller, J.F.: Cartesian Genetic Programming, Springer (2011)

21. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proceedings of the 3rd European

Conference on Genetic Programming EuroGP2000. LNCS, vol. 1802, pp. 121–132. Springer

(2000)

22. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algo-

rithms. arithmetic circuits: a case study. In: Genetic Algorithms and Evolution Strategies in

Engineering and Computer Science, pp. 105–131. Wiley (1997)

23. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits—

part I. Genet. Progr. Evol. Mach. 1(1), 8–35 (2000)

24. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materials.

Evol. Intell. 7(1):49–67 (2014). doi:10.1007/s12065-014-0106-6. ISSN 1864-5917

25. Sekanina, L.: Evolvable components: from theory to hardware implementations. In: Natural

Computing Series. Springer (2004)

26. Sekanina, L., Vasicek, Z.: Evolutionary computing in approximate circuit design and optimiza-

tion. In: 1st Workshop on Approximate Computing (WAPCO 2015), pp. 1–6 (2015)

27. Shanthi, A.P., Parthasarathi, R.: Practical and scalable evolution of digital circuits. Appl. Soft

Comput. 9(2), 618–624 (2009)

28. Stoica, A., Keymeulen, D., Tawel, R., Salazar-Lazaro, C., Li, W.-T.: Evolutionary experiments

with a fine-grained reconfigurable architecture for analog and digital CMOS circuits. In: Pro-

ceedings of the 1st NASA/DOD workshop on Evolvable Hardware, EH 1999, pp. 76–84. IEEE

Computer Society, Washington, DC, USA (1999)

29. Stomeo, E., Kalganova, T., Lambert, C.: Generalized disjunction decomposition for evolvable

hardware. IEEE Trans. Syst. Man Cybern. Part B 36(5), 1024–1043 (2006)

30. Thompson, A.: Silicon evolution. In: Proceedings of the First Annual Conference on Genetic

Programming, GECCO ’96, pp. 444–452. MIT Press, Cambridge, MA, USA (1996)

31. Trefzer, M.A., Tyrrell, A.M.: Evolvable Hardware: From Practice to Application. Springer,

Berlin, Heidelberg (2015)

http://dx.doi.org/10.1145/2576768.2598343
http://dx.doi.org/10.1007/s12065-014-0106-6

Bridging the Gap Between Evolvable Hardware and Industry . . . 55

32. Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using Cartesian genetic pro-

gramming. Genet. Progr. Evol. Mach. 16(4):531–558 (2015). doi:10.1007/s10710-015-9244-

6. ISSN 1573-7632

33. Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of inputs

and thousands of gates. In: Proceedings of the 18th European Conference on Genetic

Programming—EuroGP. LCNS 9025, pp. 139–150. Springer International Publishing (2015)

34. Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-synthesis evolu-

tionary optimization in evolvable hardware. Genet. Progr. Evol. Mach. 12(3), 305–327 (2011)

35. Vasicek, Z., Sekanina, L.: How to evolve complex combinational circuits from scratch? In:

Proceedings of the 2014 IEEE International Conference on Evolvable Systems, pp. 133–140.

IEEE (2014)

36. Vasicek, Z., Slany, K.: Efficient phenotype evaluation in Cartesian genetic programming. In:

Proceedings of the 15th European Conference on Genetic Programming. LNCS 7244, pp. 266–

278. Springer (2012)

37. Vasicek, Z., Bidlo, M., Sekanina, L.: Evolution of efficient real-time non-linear image filters for

fpgas. Soft Comput. 17(11):2163–2180 (2013). doi:10.1007/s00500-013-1040-8. ISSN 1433-

7479

38. Vassilev, V., Job, D., Miller, J.F.: Towards the automatic design of more efficient digital cir-

cuits. In: Lohn, J., Stoica, A., Keymeulen, D., Colombano, S. (eds.) Proceedings of the 2nd

NASA/DoD Workshop on Evolvable Hardware, pp. 151–160. IEEE Computer Society, Los

Alamitos, CA, USA (2000)

39. Vassilev, V.K., Miller, J.F., Fogarty, T.C.: Digital circuit evolution and fitness landscapes. In:

Proceedings of the Congress on Evolutionary Computation, vol. 2. IEEE Press, 6-9 July (1999)

40. Zhao, S., Jiao, L.: Multi-objective evolutionary design and knowledge discovery of logic cir-

cuits based on an adaptive genetic algorithm. Genet. Progr. Evol. Mach. 7(3), 195–210 (2006)

http://dx.doi.org/10.1007/s10710-015-9244-6
http://dx.doi.org/10.1007/s10710-015-9244-6
http://dx.doi.org/10.1007/s00500-013-1040-8

Designing Digital Systems Using Cartesian
Genetic Programming and VHDL

Benjamin Henson, James Alfred Walker, Martin A. Trefzer
and Andy M. Tyrrell

Abstract This chapter describes the use of biologically inspired Evolutionary Algo-

rithms (EAs) to create designs for implementation on a reconfigurable logic device.

Previous work on Evolvable Hardware (EHW) is discussed with a focus on timing

problems for digital circuits. An EA is developed that describes the circuit using a

Hardware Description Language (HDL) in a Cartesian Genetic Programming (CGP)

framework. The use of an HDL enabled a commercial hardware simulator to be used

to evaluate the evolved circuits. Timing models are included in the simulation allow-

ing sequential circuits to be created and assessed. The aim of the work is to develop

an EA that is able to create time dependent circuity using the versatility of a HDL

and a hardware timing simulator. The variation in the circuit timing from the place-

ment of the logic components, led to an environment with a selection pressure that

promoted a more robust design. The results show the creation of both combinatorial

and sequential circuits.

B. Henson

Communication Technologies Group, Department of Electronic Engineering,

University of York, York YO10 5DD, UK

e-mail: bth502@york.ac.uk

J.A. Walker (✉)

The Digital Centre, School of Engineering and Computer Science,

University of Hull, Hull HU6 7RX, UK

e-mail: j.a.walker@hull.ac.uk

M.A. Trefzer ⋅ A.M. Tyrrell

Intelligent Systems and Nanoscience Group, Department of Electronic Engineering,

University of York, Heslington, York YO10 5DD, UK

e-mail: martin.trefzer@york.ac.uk

A.M. Tyrrell

e-mail: andy.tyrrell@york.ac.uk

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_3

57

58 B. Henson et al.

1 Introduction

Evolution has become the focus of attention for engineers looking for a way of opti-

mising a solution given a very large problem space. This is akin to a life form being

adapted to an environment with many external factors affecting the ability of the

organism to survive.

Genetic Algorithms (GAs): GAs generally take the form of an optimisation algo-

rithm where the input is represented as a “chromosome” or “genotype” which is

often an abstraction of the parameters for the system. The representation is critical

because it sets out the problem space, with the permissible chromosome alterations

dictating how it is searched.

Genetic Programming (GP): GPs differ from Genetic Algorithms as they not only

evolve the parameters, but also the method for solving a problem. The idea with a

GP is to evolve a program that is able to run and produce more complex behaviour.

The parameters to run the program are inherent in the evolutionary process.

Evolvable Hardware (EHW): is the application of evolutionary principles to the

development, calibration, and maintenance of electronic hardware.

Developments in EHW may be considered in two main areas. Extrinsic, where

electronic hardware design parameters are optimised with the use of an Evolutionary

Algorithm (EA), these values are then used to either calibrate an existing design or

create a design that is later fabricated to the specification. Intrinsic, where EAs are

used to adapt hardware to create new designs and/or new conditions, this might be

a change in the requirements for a device or new operating conditions for a piece of

equipment.

With the advent of reconfigurable logic devices there became a new avenue for

intrinsic EHW [33]. These devices are made up of a large array of basic logic func-

tions, often described in terms of a configurable look up table (LUT). Circuits are

created by not only defining the LUT entries but also the connections between them.

A Field Programmable Gate Array (FPGA) is one such reconfigurable device which

consist of many blocks with LUTs and latch elements which may be programmed

along with the connections between them.

Figure 1, shows a configurable block (slice) from a Xilinx Virtex 5 device, it is a

collection of blocks such as these that make the logic expressions. The configuration

for the LUTs and the connections are loaded into the FPGA with a binary config-

uration file. In early devices, the configuration and the corresponding effect in the

hardware was documented. This meant that it was possible to perform genetic algo-

rithm operations directly on the configuration bit string; allowing a close relation-

ship between the genotype (the configuration bit string) and the phenotype (the resul-

tant logic). As technology progressed more complex devices became available. Also,

there was a requirement for FPGA manufacturers to make the devices more secure

for the increasingly complex and expensive intellectual property that was embod-

ied in the firmware. Therefore, the configuration streams became encrypted and the

relationship between the HDL and the logic that was created was obscured. As the

devices became more complex, the rules for a permissible configuration became

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 59

Fig. 1 A slice (Xilinx reconfigurable element) from a Xilinx Virtex 5 device [40]. The slice con-

tains four 5-input LUTs, these can be seen on the left. The flip-flops that can be used are shown on

the right

stricter. Again many of these rules were obscured by synthesis tools. Despite these

problems, commercial FPGAs are still a viable platform for research, as they offer a

relatively cheap and reliable reconfigurable device. Later generation FPGAs also had

more resources available not only in terms of reconfigurable logic but also embed-

ded processors. This not only enabled an FPGA to implement a solution found using

60 B. Henson et al.

an EA but also the evolutionary loop, including evaluation and generation of new

candidate solutions [22, 44].

Thompson et al. [32] used an FPGA in his work, however, he considered the

analogue characteristic of the device and how they changed with different config-

urations. Using different configurations, Thompson was able to exploit the device

characteristics to build a tone discriminator [30]. One of the aims for their work

was to remove “design abstractions and the accompanying constraints” [32]. How-

ever as Thompson et al. point out “The exploitation of all of the hardware’s physical

properties must be traded against sensitivity to variations in them” [31]. In other

words there is a danger of optimising too much for a particular device, meaning that

a design could not be transferred to another device because of the fabrication varia-

tions between them. This is difficult to guard against for true intrinsic EHW where

each candidate is tested on the hardware to implement it. Variation may be intro-

duced in the stimulus to allow for the selection to create some tolerance to changing

conditions. Indeed this is an argument in favour of simulation in that idealised com-

ponents may be modelled with variation within tolerances. In some applications it

is correcting for variation in devices that is the subject for the EA. Takahashi et

al. [29] for example, used a GA to adjust for clock skew. They evolved the values

for clock delay lines within the integrated circuit, improving the overall delay (and

hence throughput) for specific circuits such as a multiplier. This idea of calibration,

or selection of components using EAs is being investigated further as a solution to

the problems associated with the increased miniaturisation of silicon devices. As

devices get smaller there can be significant variation in the characteristic individual

transistors. A layered approach is the aim of the PAnDA project [35, 37], using evo-

lutionary techniques the underlying transistors will be optimised to build an FPGA.

In support of this project, a timing simulation was developed from a model of the

physics of the transistors and incorporated in to a HDL representation [2]. A more

generalised form of single device adaptation has been examined for deep space mis-

sions, where the circuity available is fixed at launch. Evolution in this context could

be ongoing as the aim would be to adapt to things such as changing characteristics of

the components as they aged, or environmental conditions such as extreme temper-

atures. For greater flexibility, analogue reconfigurable devices have been designed.

These devices are Field Programmable Analogue Arrays (FPAAs) [5, 13] and Field

Programmable Transistor Arrays (FPTAs) [17, 28]. Each contain analogue compo-

nents, such as op-amps or transistors with firmware controlled switches connecting

them to the circuit. Experiments by NASA use the devices to adapt to changing con-

ditions, in particular the extreme temperature variations found in space environments

[28].

2 Evolving Circuits

Broadly speaking digital circuits may be classified into two groups; combinator-
ial, where the output is derived from the inputs only, and once the transitions have

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 61

propagated through the circuit then the output is stable. The second is sequential,
this is where a circuit transitions from one stable state to another and it is this state

that determines the output. There have been attempts to evolve circuits for each of

these two areas. Using genetic programming, Koza [15] developed boolean func-

tions to build behavioural circuit designs. He showed that it was possible to evolve

binary circuit with a GP representation, with a logic function at each of the nodes and

binary inputs at the leaves of the tree. However, this approach did not transfer well

to the intrinsic evolution of circuits due to the varying size of the tree that could be

created. This lead to structures that were better suited to a hardware representation

with a fixed size of phenotype [19, 23]. Representations such as Cartesian Genetic

Programming proposed by Miller [19] where there is a grid of functions that is of a

fixed size with configurable connections made between them. In this way the prob-

lem of an expansion in the size of a GP tree representation was avoided and there

could be a predictable mapping onto hardware [20].

These approaches were able to evolve circuits, and by examination, features could

be extracted such as a carry chain in an adder. One of the major challenges is in the

scaling of problems [8]. As a problem becomes more complex, the logic resources

required to solve it becomes greater. With more resources comes a large number of

potential configurations in a larger search space. For complex problems, the eval-

uation of the result and therefore the fitness may also become more complex and

therefore use more resources. For digital logic circuits, the evaluation time grows

exponentially with the number of inputs to the circuit, and has recently seen the

adoption of formal equivalence checking methods using SAT solvers to manage the

circuit complexity and minimise runtime [25].

2.1 Combinatorial

To try to alleviate the scaling problem one avenue of research is to divide the problem

up into smaller circuit to evolve. A strategy by Kalganova [12], uses a system where

a limited attempt is made to evolve the desired circuit. From this an analysis is made

and a new problem created based on parts of the truth table that is not yet solved. This

process is then repeated, decomposing the problem into smaller simpler parts. Once

a functioning circuit exists then it is optimised further. The method allowed more

complex circuits to be evolved by having a reduced search space for each partition.

However, to some extent the method for dividing the problem will guide any search,

constraining it and reducing the ability of the algorithm to find a novel solution for

the circuit as a whole. An alternative method is to try to select reusable parts of the

genotype and use them as modules. Koza [15] proposed this as a way of reusing GP

tree sections terming them Automatically Defined Functions (ADFs). This idea has

also been developed for other forms of Genetic Programming, such as Embedded

Cartesian Genetic Programming [36]. The portion of the genotype selected can be

made at random, this maintains the simplicity of an evolutionary algorithm in that

62 B. Henson et al.

no special knowledge of the problem is required.Use of this method has shown an

improvement in performance for more complex problems [36].

Instead of evolving a circuit directly another type of EA evolves rules for building

circuits. This can be seen in natural systems where things are built up of arrays of

smaller components such as cells. DNA contains information on the type of cells but

also rules as to how to arrange them to make more complex structures. Developmen-

tal systems is where there is a rule based mapping between genotype and phenotype.

It is this expression of evolved rules that Gordon et al. sought to emulate mapping

rules into an FPGA cell representation [6]. The rules associated with Lindenmayer

systems can also be the basis for EAs. L-systems have been used to build a network

of logic functions and interconnects, as demonstrated in the work of Haddow et al.

[7].

2.2 Sequential

Sequential circuits need to have memory element incorporated into the circuit to

record the state. Work by Soliman and Abbas [27], constructed a grid layout for func-

tions allowing a single level of connection. The last layer of the grid was allocated

to have flip-flop elements, the output from the grid was then fed back as the inputs.

The fitness was with reference to the correct output of the circuit at each of the sta-

ble states. Creating the circuit in this manner means the circuit style is prescribed in

the layout with a register element before each output. This would, however, be more

in keeping with the registered style of a more conventional FPGA design. Soliman

et al. then compared to evolving the elements of each combinatorial section of the

circuit independently. This was a viable strategy, however, some knowledge of the

circuit is needed to translate a design into combinatorial elements, more specifically,

what would be expected at each stage of a pipeline. This could be easy to determine

if all of the registered signals formed part of the output, however for more complex

circuits this could prove more of a challenge.

Soleimani et al. [26] used a similar idea of evolving the combinatorial sections

of the circuit, with a D-type flip-flop storing the result as either an output or a value

that would be feed back into the circuit. However, unlike Soliman et al. the fitness

function did not just assess the outputs from the combinatorial circuits or the final

output, but looked at the state transitions for the circuit as a whole.

2.3 HDLs in the Evolutionary Loop

One difficulty with intrinsic evolution of hardware is framing the problem in a way

that may be physically realised while providing enough flexibility so that a large

enough search space can be explored, thus finding a solution.

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 63

For the evolution of digital circuits there is the possibility of using commercially

available parts. Reconfigurable devices such as FPGAs are very versatile, however,

they are designed for a more conventional circuit design techniques. This means

that any EHW system needs to fit within these available capabilities. One way in

which hardware has been placed in the evolutionary loop is to translate any candidate

solution into a Hardware Description Language (HDL) and use the tools supplied by

the FPGA manufacturers to build the design. A HDL is often used as the intermediate

step between a more abstract representation of the problem which can be used in a

Evolutionary Algorithm (EA). Figure 2 illustrates the different evolutionary loops

incorporating HDLs.

One example of loop 1 (Fig. 2) implementation is work by Damavandi and

Mohammadi [4] who used an EA to create a serial counter. VHDL code was created

that was then tested using a ModelSim simulator [18]. The VHDL implementation

was a way to simulate a circuit and not targeted at an eventual implementation in

hardware. This means that the EA was constrained to use an idealised discrete time.

Tree representations for GP have also been used with HDLs [9, 24], however, the

implementations suffer with problems of creating a valid tree structure that can be

implemented in the fixed structure of a reconfigurable device. Cullen [3] used Verilog

for Grammatical Evolution. This is where each decision based on the grammar of the

language is represented as a tree of choices. For example, a two input AND might

be selected out of a set of logical operators as the basis for a statement. Given that

operator, three additional selections need to be made to complete the statement, these

being the signals for the two inputs and the connection for the output. These state-

ments then form the genotype with the genes directly represented in the language

with only valid statements being created. Another representation for an EA using

VHDL statements was presented by Kojima and Watanuki [14] in their work creat-

ing system controllers. There are many similarities to Cullen’s grammatical approach

in that the VHDL language was used directly as the genotype. The language was fur-

ther encoded with reference to statement constructs but the elements such as signal

declaration or process statement each formed part of the genotype. The Kojima et al.

Loop 1
Loop 2
Loop 3

Results

Simulation
Simulation program

e.g. ModelSim HDL simulation and timing annotation

HDL rep. of CGP grid

Control Program
This is the EA and

population manipulation
Procedural code, e.g.
MATLAB, Java etc.

HDL Translation
The genetic

representation is
converted to HDL

Synthesis
Configurable hardware
specific tools e.g. Xilinx
XST, Place and Route.

Hardware
Physical hardware

implementation e.g. an
FPGA

Hardware Interface
A method for recovering
and formatting results

from the hardware.

Fig. 2 The different evolutionary loops encompassing HDLs

64 B. Henson et al.

representation also had additional rules about connections that ensured that feedback

loops were not created, this way information only moved in one direction though the

circuit.

Loop 3 (Fig. 2) is implemented in the work of [24], Popp et al. where a GP was

used to create the candidate solution which was then synthesised for evaluation. It

was found that the time taken to synthesise the design made it impractical as a design

tool. Although computing power has increased since publication, the complexity

and capabilities of the target devices has also increased making for a more complex

synthesis process. Later work by Chu et al. [11], used a full Altera FPGA tool chain

and FPGA [1] to create a DC motor controller. The feedback in the evolutionary

loop was provided by a microcontroller monitoring the motor’s movements. Two of

the authors of this paper developed the system further using a grid representation

of functions for the genotype. They use this evolutionary loop to investigate fault

recovery and tolerance for evolved designs [39].

2.4 Development of GA and CGP Representations

The original form of Genetic Programming (GP) used a tree based graph to repre-

sent the program. A function such as add or divide would be placed at a node and the

operands would be the terminals of the tree. Tree based GP has been successfully

used to evolve electronic circuits [15], however this representation has difficulties

that need to be considered. Firstly, in order to evaluate an individual the evolved

program must be executed, therefore care must be taken to ensure that an individual

is viable in terms of creating a valid program. This problem is addressed with Gram-

matical Evolution (GE) where the rules for the grammar of a language determine the

things that are permissible in crossover and mutation [3]. Another problem is that

the size of the GP tree tends to grow as the evolution continues, this is commonly

termed bloat. This can lead to a very large structure to be evaluated. This can be prob-

lematic in the fixed physical resources of a hardware implementation. Strategies can

be adopted to reduce bloat, either pruning the tree at evaluation or introducing neg-

ative evolutionary pressure, however, the size of the finished solution can still be

difficult to estimate. An additional consideration of a pruned tree structure is that

all of the sections of the tree contribute to the result, that is there are no redundant

sections. It is suggested by Miller [20] that having redundant or inactive sections of

the genotype allow the algorithm to move around the search space more effectively

and prevent stagnation in the search. This is termed neutral drift, when there are dif-

ferent genotypes (although not necessarily phenotypes) that can produce the same

fitness score. Indeed Miller goes on to say that bloat in the GP tree representation is

a manifestation of neutral drift in the search [20].

Cartesian Genetic Programming (CGP) is based on a grid structure of functions

with input and output that can be connected together to form circuits. Figure 3 shows

the basic form of a CGP representation. Each node has a function which can be one

of a set (or alleles) that will be used for the evolution. For example, an evolutionary

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 65

I/P O/P

f0

i/p0,0
i/p0,1

i/p0,a

o/p0,0

f1

i/p1,0
i/p1,1

i/p1,a

o/p1,0

fr-1

i/pr-1,0
o/pr-1,0i/pr-1,1

i/pr-1,a

r rows

I/P

I/P

I/P0

I/P1

I/Pn-1

n inputs

O/P

O/P

O/P0

O/P1

O/Pm-1

m outputs

fr

i/pr,0
i/pr,1

i/pr,a

o/pr,0

fr+1

i/pr+1,0
i/pr+1,1

i/pr+1,a

o/pr+1,0

f2r-1

i/p2r-1,0
o/p2r-1,0i/p2r-1,1

i/p2r-1,a

f(c-1)r

i/p(c-1)r,0
i/p(c-1)r,1

i/p(c-1)r,a

o/p(c-1)r,0

f(c-1)r+1

i/p(c-1)r+1,0
i/p(c-1)r+1,1

i/p(c-1)r+1,a

o/p(c-1)r+1,0

fcr-1

i/pcr,0
o/pcr,0i/pcr,1

i/pcr,a

c columns

levels back

Fig. 3 The basic structure of a CGP grid. Diagram redrawn from [34]

I/P O/P

f0

i/p0,0
i/p0,1

i/p0,a

o/p0,0

f1

i/p1,0
i/p1,1

i/p1,a

o/p1,0
I/P

I/P

I/P0

I/P1

I/Pn-1

n inputs

O/P

O/P

O/P0

O/P1

O/Pm-1

m outputs

fr

i/pr,0
i/pr,1

i/pr,a

o/pr,0

f0 i/p0,0, i/p0,1, ..., i/p0,a f1 i/p1,0, i/p1,1, ..., i/p1,a fr i/pr,0, i/pr,1, ..., i/pr,a O/P0, O/P1, ..., O/Pm-1

r rows

c columns

Genotype

Fig. 4 The basic structure of a CGP genotype. Diagram redrawn from [34]

experiment to derive a logic circuit could use the logical operators AND, OR, NOT

as the function set. Each node has a set of inputs and outputs and these would be

connected in accordance with rules set out for the experiment. There are also a set

of inputs and outputs to the grid as a whole, these would be the interface to the

environment. The nodes are numbered from 0 starting in the top left corner and

then down the rows and along the columns. Levels are the number of columns away

from the current column and it is used to define the range the connections can make.

The outputs of the grid may connect to the output of any function or directly to

an input. The CGP grid can have any shape in terms of the numbers of rows and

columns, however it is common for there to be a single row with the number of

columns being the estimate of the number of functions required to fulfil the task.

This is an important consideration because the larger the grid the larger the search

space with the corresponding increase in computational effort. Figure 4 shows a grid

encoded as a genotype in a general form.

An important aspect to recognise in CGP representation is that although all of

the inputs to a function need to be connected the output does not, that is, there are

66 B. Henson et al.

inactive functions that do not contribute to the output [34]. This means that there can

be parts of the genotype that can hold information about how to process the input

that are not used, however, they can become active with the simple reconnection

of the functions output. These non-active regions are still subject the evolutionary

process of crossover and mutation although they may not affect the output, and hence

the fitness. This is an example of neutral drift [20, 21]. The fixed size of the CGP

genotype makes it ideal for hardware implementation.

3 Proposed Method

The system described here uses an evolutionary cycle to derive digital circuits that

may be realised in electronic hardware. The intention is to use VHDL as a practical

method for using commercial FPGAs and the tool chain that accompany them. Also,

to include a timing model as part of the environment that the design evolves in. The

aim initially is to evolve combinatorial circuit and then to evolve timing dependent

sequential circuits. The intention being to investigate the effect of timing variation

on the type of circuit evolved.

The evolutionary loop, illustrated in Fig. 2 consists of a controlling program that

builds an initial population, where each individual is a candidate circuit and has a

Cartesian Genetic Programming (CGP) representation. This population is then trans-

lated into a Hardware Description Language (HDL). In this form it can be submit-

ted to hardware specific tools that allow the circuit to be simulated to a given level

of detail (loop 1, Fig. 2). Alternatively, the representation may be synthesised into

firmware for a reconfigurable device (loop 2, Fig. 2). The candidate solution is eval-

uated and a fitness value obtained. The results from the evaluation are then passed

back to the controlling program where they are used to create the next generation,

at which point the cycle begins again. The process is stopped when a solution is

reached or some other stopping criterion is met; for example a generation limit or,

an unchanging fitness for a number of generations.

3.1 Physical Representation

Although a Hardware Description Language (HDL) is able to have a degree of

abstraction, there is a point, if a design is to be realised, that it must be specific

about the details of the implementation. Field Programmable Gate Arrays (FPGAs)

are reconfigurable devices that are able to implement logic expressions directly in

hardware. FPGAs have their origins in Programmable Logic Devices which, in their

simplest form had a switch matrix that connected a Sum Of Products (SOP) boolean

equation, consisting of AND and OR gates. This interconnection developed further

to allow more complexity, but also RAM was used to allow the logic functions to be

programmed via a look up table (LUT) element.

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 67

The difficulty for modern commercial FPGA devices when used for evolution-

ary algorithms is how to represent a circuit, it is here that using a HDL provides

an intermediate step. The level of abstraction means that components (in the HDL

sense) could be instantiations of manufacturer specific logic such as a LUT, or it

could be an adder that would be built by the synthesiser later in the process. Alter-

natively, pre-evolved sections could be placed as components. This does mean that

the synthesis tools are included in the environment that the GA is evolved in; this

being to a greater or lesser degree depending on the abstraction. Depending on the

settings, the synthesis tools have rules about placement, routing etc., that would also

effect an individuals fitness, for example if the timing was a major consideration.

For EHW a simulation could be as simple as the calculation of logic functions,

giving a behavioural description. Alternatively, it could be a much more sophisti-

cated simulation of physical parameters such as propagation delay given a specific

temperature of the silicon. Within the field of EHW, simulations are a useful tool for

extrinsic evolution. They may be used where the physical realisation and testing of

hardware is not practical for each individual. In addition to this there is an ability

within a simulator to control some of the parameters that are of interest and may be

difficult to reproduce in physical experiments. A simulator could also be used to con-

trol the environment that an EA evolves within. For example a simpler environment

model could be used at first, with the corresponding improvement in evaluation time,

moving to more complex world models as the fitness improved. Simulators are the

basis for extrinsic EHW in that they are the means of evaluating a candidate solu-

tion without using the physical hardware. This could be potentially useful where the

system may be damaged by the testing of poor solutions, one example of this is the

evolution of motor controllers, where a poor solution could easily damage not only

the motor but any components it drives. Of course one of the features of intrinsic

EHW, particularly concerning fault tolerance, is that it can potentially cope with

unforeseen faults, or faults that may be difficult to identify or measure. If a simula-

tion was easy to create under these circumstances then it could be easier to correct a

fault using more conventional means.

3.2 Hardware Description Language and VHDL

Hardware Description Languages are used to convey in a concise text based format

the function of a digital, and more recently analogue and mixed signal circuit. Very

high speed integrated circuit Hardware Description Language (VHDL) is one such

language where the intention is to describe circuits that may be implemented in many

different ways. VHDL is designed to be a way of comprehensively describing a cir-

cuit. Not only the behaviour of the circuit is described but also certain aspects of the

implementation, such as the time delay associated with physical components. It is

this generality that makes VHDL a good candidate as an intermediate language for

evolutionary designs.

68 B. Henson et al.

Listing 3.1 VHDL listing showing the instantiation of a LUT primitive [42]. The connections

show two input and an output. The INIT value implements an AND function.

1 -- LUT5: 5-input Look -Up Table with general output
2 -- Virtex -5/6, Spartan -6
3 -- Xilinx HDL Libraries Guide , version 11.2
4 LUT5_inst : LUT5
5 generic map (
6 INIT => X"00000008") -- Specify LUT Contents
7 port map (
8 O => output0 ,
9 I0 => input0 ,

10 I1 => input1 ,
11 I2 => ’0’,
12 I3 => ’0’,
13 I4 => ’0’);
14 -- End of LUT5_inst instantiation

Listing 3.2 VHDL listing showing the implementation of the AND function but leaving the syn-

thesis tool to infer the correct implementation

1 output0 <= input0 AND input1;

3.2.1 VHDL and FPGAs

VHDL has been adopted as a method of describing the circuit that would be imple-

mented in a FPGA [1, 43]. The circuit can be represented on different levels of

abstraction with a greater or less influence of the synthesis tools on the implemen-

tation. These levels can be very specific, controlling the individual components that

are manufactured into the fabric of the integrated circuit. For instance specifying the

contents of a particular Look Up Table (LUT), or instantiating a larger block such

as a multiplier. On another level a circuit can be specified on the behavioural level,

with state machines and boolean expressions.

Listing 1 shows a fragment of VHDL code that could be used to instantiate a LUT

within a slice. It can be seen that control can be at a very low level. Listing 2 illus-

trates a fragment of code that has a boolean expression that, depending on the exact

synthesiser implementation, could be used to infer the same logic as Listing 1. The

LUT is a common way to built logic expressions in FPGAs, however there are other

components, such as multipliers and large RAM elements, that are more manufac-

turer specific. Again, these can be instantiated and configured directly or they can be

inferred from a different abstraction level.

3.2.2 VITAL and Specific Hardware Description

A fundamental aspect of FPGA design is the ability to simulate the behaviour and

physical implementation of a circuit. For simulation, FPGA manufacturers provide

a set of libraries that conform to the IEEE VHDL Initiative Towards ASIC Libraries

(VITAL) standard. These libraries are designed to promote the development of

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 69

I/P O/P

f0
i/p0,0
i/p0,1

o/p0,0

f1
i/p1,0
i/p1,1

o/p1,0

fr-1
i/pr-1,0 o/pr-1,0
i/pr-1,1

r rows

I/P

I/P

I/P-1

I/P-2

I/P-n

n inputs

O/P

O/P

O/P0

O/P1

O/Pm-1

m outputs

fr
i/pr,0
i/pr,1

o/pr,0

fr+1
i/pr+1,0
i/pr+1,1

o/pr+1,0

f2r-1
i/p2r-1,0 o/p2r-1,0
i/p2r-1,1

f(c-1)r
i/p(c-1)r,0
i/p(c-1)r,1

o/p(c-1)r,0

f(c-1)r+1
i/p(c-1)r+1,0
i/p(c-1)r+1,1

o/p(c-1)r+1,0

fcr-1
i/pcr,0 o/pcr,0
i/pcr,1

c columns

levels-back levels-forward

col1col0 col2 colc colc+1

i/px,0 o/px,0
i/px,1

AND
i/px,0 o/px,0
i/px,1

OR
i/px,0 o/px,0
i/px,1

XOR

i/px,0
o/px,0

i/px,1

NOT

NC

i/px,0
o/px,0

i/px,1 NC

D Q

rst

Inputs have a -ve
connection index
in the genotype

Fig. 5 The structure of a CGP grid for the implementation. There is the addition of forward levels

that allowed the feedback required for sequential circuits. Also, the labelling of the columns and

inputs are shown as they are represented in the genotype. The diagram also shows the available

functions and the connections within the nodes. Each node has two inputs, however for the NOT

gate and D-type flip-flop the second input is Not Connected (NC). Diagram modified from [34]

accurate simulation models for VHDL [10] and provide both behavioural and timing

models for specific silicon circuits within the device.

For combinatorial circuits, which do not have the potential for feedback loops,

there is no need to simulate the timing. This makes the simulation loop much faster.

For sequential circuits, where there is potential for feedback loops that do not contain

any flip-flop elements, the propagation delay of the signals must be modelled.

3.3 CGP Representation and Evolutionary Strategies

For experimentation a CGP grid is constructed with a set of nodes that map onto

a specific function. For the combinatorial circuit experiments the functions are the

boolean operators; AND, OR, NOT, XOR. The connections can only be made back-

wards through the levels. For the sequential circuit experiments the extra function of

a D-type flip-flop (DFF) is added. Also, connections can be made forward through

the levels, thus it is possible to create feedback loops. For the input and output con-

nections, the inputs are considered to be in column 0, and the outputs are consid-

ered to be in column c + 1, where c is the total number of CGP columns. They then

followed the rules for the levels of connection forwards and backwards for those

columns. Figure 5 shows the structure of the CGP implementation.

70 B. Henson et al.

3.3.1 Fitness Calculation

The fitness calculations for the candidate solutions are based on bitwise summation

and the Hierarchical If and only If (HIFF) [16, 38]. The HIFF fitness measure uses

a set weighted bitwise comparisons to give a single fitness value. The comparisons

are made over blocks of bits the size which is a 2n where n ∈ (0, log2 K) is the level

in the hierarchy, and K total number of output bits.

Algorithm 1 Hierarchical If and only If (HIFF)

Input: A = {a1,… , aK}, K length bit string as output by candidate individual, B = {b1,… , bK},

K length target bit string

Initialise: F−1 = 0
1: for n = 0 to K do
2: l = 2n
3: M−1 = 0
4: for p = 0 to K∕l do
5: Mp = Mp−1 + g{al(p−1)+1,… alp; bl(p−1)+1,… blp}
6: end for
7: Fn = Fn−1 + lMp
8: end for
g{a, b} is a comparison operator returning 1 if a = b, else 0. Fn is the final fitness value.

One issue with the HIFF function however, is that the solution to the problem

needs to have a number of bits that is a power of 2. Dsepending on the problem,

adding dummy bits to the target bit pattern leads to a much larger search space. An

alternative is to pack the output from the EWH before the fitness is calculated. This

is the strategy used for the experiments with uneven outputs.

3.3.2 Level of Detail

One of the features of VHDL with FPGAs, is the ability to use components that can

describe the desired hardware at different levels of detail. For this system, illustrated

in Fig. 6, the structure is as follows: A top level component holds the whole popula-

tion. This is convenient primarily for the synthesis of the components; most designs

require a top level to specify the connections to the pins. This module consisted of a

top interface to the outside world and a list of the individuals, with their connections

bringing the signals to the outside. The next level is the individual in the population.

Within this each of the genes are represented, that is, the connections and the func-

tions at each node. The final level is the implementation of the functions themselves.

Within VHDL this may be specified as boolean expression leaving the synthesiser

to create the appropriate logic. Alternatively, a device specific component may be

instantiated and configured to give the appropriate output, in a Xilinx FPGA this

would use one or more LUTs and a flip-flip element if required. The implementa-

tion could be defined further by specifying the precise placement of the components

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 71

entity
cgp_top_lvl

entity
cgp_0

entity
cgp_1

entity
cgp_population size

population size

entity
cgp_0

entity
cgp_0_0_function

entity
cgp_1_0_function

entity
cgp_r_c_function

number of nodes in grid

entity
cgp_1

entity
cgp_0_0_function

entity
cgp_1_0_function

entity
cgp_r_c_function

number of nodes in grid

population size

entity
cgp_population size

entity
cgp_0_0_function

entity
cgp_1_0_function

entity
cgp_r_c_function

number of nodes in grid

entity
node_AND

entity
node_OR

entity
node_XOR

entity
node_NOT

entity
node_DFF

C-code
monitor.c

Top level VHDL entity

Population of
candidate solutions

Library of functions

Testbench entity
cgp_tb

entity
cgp_top_lvl

entity
monotor

Fig. 6 The structure of the VHDL implementation

within the device. It is the level of specification for how the design is created, that,

to a greater or lesser extent, means that the FPGA synthesis tools become part of

the environment that a designed individual needed to be successful in. A example of

what this could mean is that for a design that very loosely defines component place-

ment, the place and route (P&R) tools would have a large effect on the environment.

Each compile would place components in a different position and change the tim-

ing. This would mean that individuals with marginal timing would not maintain a

consistent fitness, giving them a poorer average fitness for this varying environment.

The experiments detailed in this chapter use two input logic gates AND, OR, XOR,

an inverter and a D-type flip-flop. These are relatively simple functions, however,

if an interface can be defined then there is no reason that these could not be more

complex expressions. The flexibility of the CGP layout means that the functions can

have any number of connections, therefore other functions can incorporated, such

things as multipliers that are provided as set blocks from the manufacturer. It could

also mean that smaller evolved blocks could be incorporated as functions within the

same VHDL structure.

72 B. Henson et al.

3.3.3 Intrinsic, Extrinsic, Hardware and Simulators

To create an evolutionary loop a simulator was used as the means of evaluating the

circuits. Figure 2, show three workflows. The first shows the combinatorial evolution,

with the simulator simply evaluating the logic expressions. Provided a circuit can

accommodate any propagation delay and any glitches can be tolerated, then it may

be expected that this design will work if implemented in hardware.

For the second, workflow timing is a critical part of the correct function of the

circuit, therefore the simulation needs to be more detailed. The FPGA synthesis tools

need to be incorporated into the evolutionary loop and an estimate of operating tem-

perature and voltage need to be put into the model. The FPGA tools report worst

case timing models [41] whereas absolute timing would be needed to describe the

correct operation of a combinatorial loop.

Finally, loop three is the workflow that incorporates the physical FPGA into the

loop. This involves the full FPGA tool chain, the FPGA to implement the design

and support hardware to generate inputs and evaluate the output from the candidate

solution. This would create a design optimised for that particular device, under the

particular conditions. If the solution needed to be tolerant to changing conditions

then these would need to be present during the evolution.

4 Experimental Setup

4.1 Environment

The experiments were performed using a PC; Intel Core i5 CPU 650, 3.20 GHz with

3 GB of RAM. The software version for the main tools are; Linux version 2.6.34.1

(gcc version 4.4.4 (GCC)), Xilinx ISE Linux 13.2 (Xilinx ISE Linux 11.3, used for

the 4 bit counter), Mentor Graphics ModelSim SE 6.5c. The 4 bit counter experi-

ment used Xilinx ISE Linux 11.3 and targeted Xilinx Virtex 5 LX 50—speed grade 1

(xc5vlx50t-ff1136-1). All of the other evolutions used Xilinx ISE Linux 13.2 and tar-

geted Xilinx Virtex 6 LX 75—speed grade 1 (xc6vlx75t-1-ff784). The target device

is important for the type of primitives used and the models used to build the simula-

tion. The speed grade effects the timing models for the device. The time mentioned

for each run is simply the wall clock time, and is included to give an indication of

the time needed for simulation or synthesis and simulation.

4.2 CGP Parameters

The general parameters used for all experiments are shown in Table 1. The problem

specific parameters where extra resources were required either in the CGP genotype

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 73

Table 1 General parameters

for CGP
Parameter Value

No. of rows in CGP grid 1

No. of individuals in a

population

96

No. of elite individuals 1

Tournament size for selection 5

No. of mutations

(% genotype length)

5

Maximum no. of generations 10 000

Simulation clock period (ns) 10

or in the evaluation process, are described in Table 2. The function set used in the

evolution of the Combinatorial circuits is AND, OR, XOR and NOT. The function

set used for evolving the sequential circuits uses a D-type Flip-Flop in addition to the

four functions from the Combinatorial function set. The sampling frequency for the

output is 100 MHz. The output samples are taken at the falling edge of the clock and

the input vectors are changed at the rising edge. This gave 5 ns of propagation time.

Table 2 Problem specific parameters for CGP

Parameter Combinatorial Sequential

4-bit parity 2-bit adder 3-bit adder 3-bit counter 4-bit counter

No. of

columns in

CGP grid

20 50 80 50 50

No. of levels

forward

(columns)

– – – 50 50

No. of levels

back

(columns)

20 50 80 50 50

No. of inputs

to the CGP

design

4 4 6 1 1

No. outputs

from the CGP

design

1 3 4 3 4

No. of test

vectors to be

generated

16 16 64 16 32

74 B. Henson et al.

For each circuit a single run of the algorithm is shown with the fitness-generation

plots being of the best individual.

5 Combinatorial Circuit Results

5.1 4-Bit Even Parity Generator

For the initial experiment a relatively simple problem is chosen, this was to find

the even parity of four inputs with the functions AND, OR, XOR and NOT. The

inclusion of XOR makes a solution easier to find, as even parity may be generated

by the XORing of all of the inputs.

The maximum fitness possible using the HIFF measure is 64. A solution was

found after only 8 generations and the time taken was 10 min, 28 s. Figure 7 shows

the expressed phenotype of the evolved circuit, which is identical to the conventional

design.

5.2 2-Bit Adder

A 2 bit adder was evolved as the second combinatorial circuit. The HIFF function

was used as the fitness measure, as the circuit output only three bits a zero is prefixed

to each output to make the total number of output bits a power of 2.

The maximum fitness with the HIFF measure was 384. The number of mutation

cycles for the circuit were 7. The final generation was 1526 and the time taken was

9 h 17 min 54 s.

Figure 8 shows the final evolved circuit. In group A the OR and the two NOT gates

can be removed leaving just the XOR adding the LSB. The carry can be seen as the

AND gate labelled C. Group B shows the logic for the second bit. Finally, the gates

labelled C and D make up the one path of logic for the third bit. There was some

extra logic generated, 5 extra gates, however there wasn’t any evolutionary pressure

Fig. 7 The circuit diagram

for and evolved 4-bit even

parity, using the logic

function set AND, OR,

XOR, NOT

XOR

XOR

XOR O/P

I/P

I/P

I/P

I/P

-1

-2

-3

-4

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 75

I/P

I/P

I/P

I/P

-1

-2

-3

-4

O/P

O/P

O/P

1

2

3

NOT

OR

AND

NOT

XOR

OR

XOR

XOR

NOT
OR

AND

A

B

C

D D

Fig. 8 The circuit diagram for an evolved 2 bit adder, using the logic function set AND, OR, XOR,

NOT

to evolve smaller circuits simply to create a complete solution, which is achieved.

Figure 9 shows the number of generations against the best fitness for the evolution.

0 200 400 600 800 1000 1200 1400 1600
100

150

200

250

300

350

400

Generations

Be
st

 F
itn

es
s

Plot charting the evolution of a 2 bit adder

Fig. 9 Plot showing the number of generations against best fitness; the final generation was 1526

76 B. Henson et al.

O
/P

O
/P

O
/P

I/P

X
O

R

A
N

D

X
O

R

X
O

R

X
O

R

A
N

D

X
O

R

A
N

D

N
O

T

X
O

R

A
N

D

N
O

T

X
O

R

A
N

D

O
R

X
O

R

X
O

R

A
N

D

I/P I/P

I/P

I/P I/P

-1 -2 -3

-4 -5 -6

O
/P

310 2

A

In
pu

t A
-1

 L
S

B
-2

 ..
-3

 M
S

B

In
pu

t B
-4

 L
S

B
-5

 ..
-6

 M
S

B

B

D

Fi
g.
10

T
h
e

c
ir

c
u
it

d
ia

g
r
a
m

fo
r

a
n

e
v
o
lv

e
d

3
b
it

a
d
d
e
r,

u
s
in

g
th

e
lo

g
ic

f
u
n
c
ti

o
n

s
e
t

A
N

D
,

O
R

,
X

O
R

,
N

O
T

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 77

Fig. 11 The circuit diagram

showing the conventional

design for a half and full

adder with ripple carry

O/P

I/P

I/P

A

B

SumXOR

AND O/P

O/P

I/P

I/P

A

B Sum

XOR

AND

O/P

I/PCarryin

Carryout

XOR

AND

OR Carryout

Half adder

Full adder

5.3 3-Bit Adder

The maximum fitness with the HIFF measure was 2048. The number of mutation

cycles for the circuit were 71. The final generation was 4562 and the time taken was

1 days 7 h 3 min 25 s.

The final evolved circuit for the 3 bit adder is shown in Fig. 10. Similarities can be

seen between the evolved circuit and a conventional design for a ripple adder shown

in Fig. 11. In group A a half adder can be seen summing the two LSBs, the following

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Generations

Be
st

 F
itn

es
s

Plot charting the evolution of a 3 bit adder

Fig. 12 Plot showing the number of generations against best fitness. The final generation was 4562

78 B. Henson et al.

NOT and AND gates before Output 0 are not required. Group B shows elements of

the full adder with the carry in from group A being accommodated. In addition half

of the carry out signal is generated, with the other carry being generated with Gate

D. For output bit 2 there is again a XOR tree combining the carry in signals. The

final output bit being generated from the MSBs and a calculated value from Output

3. An observation from this circuit is that although there were 80 nodes that could

have been used, the final circuit only had 18 gates, this is because previous result

from less significant bits are reused. Also, there are modules such as group B that

could conceivably be used again. Figure 12 shows the number of generations against

the best fitness for the evolution.

6 Sequential Circuits Results

In order to evolve sequential circuits a D-type flip-flop (DFF) was added to the func-

tion set. All of the DFF are clocked at the same time at a clock frequency of 100 MHz,

in this case. Although the DFF should start in a state specified (given that FPGAs

have a defined startup state), a asynchronous reset signal was also added. In the sim-

ulation a short pulse is applied before the clock started, this guaranteed that all of the

DFF outputs were cleared. Combinatorial loops are allowed (and preserved through

synthesis) and no restrictions are made as to where the DFFs are placed. Each of

the candidate solutions, including the elite were re-synthesised every generation.

This means that there was some variation in the placement and therefore the timing

between runs. This variation in the implementation can be considered as part of the

environment that the design evolved in.

6.1 3-Bit Counter

A counter was chosen as a sequential circuit to evolve. Although an input is added

to the circuit it is held high for all of the test vectors, this means that effectively a

pattern generator was evolved. The HIFF function was used as the fitness measure,

again the output was prefixed to make the total number of output bits a power of 2.

The maximum fitness with the HIFF measure (packed) was 384. The number of

mutation cycles for the circuit were 52. The final generation was 85 and the time

taken was 5 h 36 min 12 s.

The final evolved circuit is shown in Fig. 13. The input is always held high so point

A would be high allowing the circuit to run. The final circuit is a pattern generator,

with delay loops and the initial conditions generating the sequence. Group B toggles

the output with a single clock delay and group C toggles the output with a clock delay

of 2. A more interesting interaction can be seen between the 2nd and 3rd bits with

the circuit in group D. This uses only three more DFF to toggle the 3rd output with a

period of 4 clocks. The evolution was performed comparing the circuit output with

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 79

XOR

AND

D Q

rst

OR

D Q

rst

D Q

rst

D Q

rst

NOT

AND NOT D Q

rst

D Q

rst

O/P

O/P

O/P

I/P

1

2

3

A

B

C

D

Fig. 13 The circuit diagram for an evolved 3 bit counter, using the logic function set AND, OR,

XOR, NOT, DFF. NOTE: the clock and reset connections have been removed for clarity

two cycles of counting (0–15). It can be seen the final circuit will continue to cycle.

Another point to notice is that although combinatorial loops were allowed, none

exist in the final circuit. Having DFFs in the circuit led to a more stable solution, and

given the few levels of logic between flip-flops the circuit is likely to meet the desired

timing regardless of the layout. This is important given that there was variation in

the timing for the circuit due to changes in the placement of components within

the device. This variation in timing can be seen in the evolution. Figure 14 shows

0 10 20 30 40 50 60 70 80 90
50

100

150

200

250

300

350

400

Generations

Be
st

 F
itn

es
s

Plot charting the evolution of a 3 bit counter

Fig. 14 Plot showing the number of generations against best fitness for the evolved 3 bit counter

80 B. Henson et al.

Table 3 Table showing the variation in output from the 3 bit counter

Target Generation

30 31 32

000 000 000 000

001 001 001 001

010 010 010 110

011 111 011 011

100 100 100 100

101 101 101 101

110 110 110 110

111 111 111 111

000 100 100 100

001 101 101 101

010 110 110 110

011 111 111 111

100 100 100 100

101 101 101 101

110 110 110 110

111 111 111 111

Fitness 229 292 229

the best fitness for the population through the evolution. Even though the algorithm

implemented elitism there is variation in the best fitness. Table 3 shows the output

from the circuit for generations 30, 31 and 32, the variation is in the 3rd bit (lines 3–

4). The results are created from the same individual and the genotype is unchanged.

Figure 15 shows the circuit for this individual. Similarities with the final circuit can

be seen; point A is constant and groups B and C are the final implementation. The

3rd bit does contain DFF in some loops driving it, however there are combinatorial

loops also contributing to it making it susceptible to timing changes. Indeed in a real

implementation the timing would be susceptible to environmental aspects such as

temperature and voltage. This feature is not very useful in this instance, which is

perhaps why it disappeared, however if the aim was to monitor the environment then

this sort of circuit timing would show a change.

6.2 4-Bit Counter

The maximum fitness with the HIFF measure was 896. The number of mutation

cycles for the circuit were 297. The final generation was 1264 and the time taken

was 2 days 20 h 13 min 28 s.

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 81

O
/P

O
/P

O
/P

I/P

O
R

N
O

T

O
R

X
O

R

A
N

D

X
O

R

A
N

D

X
O

R

D
Q

rs
t

N
O

T

X
O

R

A
N

D

A
N

D

X
O

R

O
R

O
R

D
Q

rs
t

O
R

D
Q

rs
t

D
Q

rs
t

X
O

R

A
N

D

O
R

O
R

O
R

X
O

R

N
O

T

X
O

R

A
N

D
N

O
T

X
O

R
N

O
T

A
N

D

D
Q

rs
t

D
Q

rs
t

O
R

D
Q

rs
t

O
R

N
O

T

A
B

C

Fi
g.
15

T
h
e

c
ir

c
u
it

d
ia

g
r
a
m

fo
r

a
n

e
li

te
in

d
iv

id
u
a
l

fo
r

th
e

e
v
o
lv

e
d

3
b
it

c
o
u
n
te

r
a
t

g
e
n
e
r
a
ti

o
n

3
0
,
3
1

a
n
d

3
2
.
T

h
e

lo
g
ic

f
u
n
c
ti

o
n

s
e
t
A

N
D

,
O

R
,
X

O
R

,
N

O
T

,
D

F
F

is
u
s
e
d
.

N
O

T
E

:
th

e
c
lo

c
k

a
n
d

re
s
e
t

c
o
n
n
e
c
ti

o
n
s

h
a
v
e

b
e
e
n

r
e
m

o
v
e
d

fo
r

th
e

c
la

r
it

y
o
f

th
e

d
ia

g
ra

m

82 B. Henson et al.

0 200 400 600 800 1000 1200 1400
100

200

300

400

500

600

700

800

900

Generations

Be
st

 F
itn

es
s

Plot charting the evolution of a 4 bit counter

Fig. 16 Plot showing the number of generations against best fitness for the evolved 4 bit counter

The change in the best fitness through the evolution of the 4 bit counter is shown

Fig. 16. Again, the instability of the best fitness can be seen in the earlier generations

and then later becoming more stable. Examining the circuit shown in Fig. 17 again

there aren’t any combinatorial loops that contribute to the output. With reference to

the circuit in Fig. 17. In this design the input is left out completely (point A), there-

fore the counter simply runs from the initial conditions, this would seem reasonable

since the input did not change. Group B show the toggling circuit for the LSB, how-

ever unlike the three bit counter, the 2nd bit is dependent on the 1st. This can be

seen in group C. The 3rd bit is again independent with a 4 bit shift register running

correctly from the initial conditions, this can be seen in group D. The final 4th bit

has a more complex relationship with the rest of the circuit, however, it is also a

fully synchronous circuit. For the first three bits it can be seen that the pattern would

repeat. For the final bit it is not immediately clear that the pattern would repeat over

more than two count cycles. Group E show an example of a combinatorial loop that

only drove itself and is therefore superfluous to the circuit for the output bits.

7 Conclusion

The developed system produced viable combinatorial and sequential circuits, with

all the experiments able to produce the defined truth table. However, for sequen-

tial circuits there is a need for a target output that is better able to encapsulate the

intention of the circuits. For instance, the counters required two count cycles for the

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 83

D
Q

rs
t

X
O

R

O
R

D
Q

rs
t

A
N

D

D
Q

rs
t

O
R

O
R

O
R

N
O

T

N
O

T

O
R

D
Q

rs
t

D
Q

rs
t

D
Q

rs
t

N
O

T
N

O
T

X
O

R

X
O

R

D
Q

rs
t

O
R

D
Q

rs
t

A
N

D

N
O

T

D
Q

rs
t

D
Q

rs
t

X
O

R

A
N

D

N
O

T

D
Q

rs
t

X
O

R

A
N

D

D
Q

rs
t

D
Q

rs
t

O
R

N
O

T X
O

R

A
N

D

X
N

O
R

O
/P

O
/P

O
/P

O
/P

I/P
A

B

C

D

E

Fi
g.
17

T
h
e

c
ir

c
u
it

d
ia

g
r
a
m

fo
r

a
n

e
v
o
lv

e
d

4
b
it

c
o
u
n
te

r,
u
s
in

g
th

e
lo

g
ic

f
u
n
c
ti

o
n

s
e
t
A

N
D

,
O

R
,
X

O
R

,
N

O
T

,
D

F
F

.
N

O
T

E
:
th

e
c
lo

c
k

a
n
d

re
s
e
t
c
o
n
n
e
c
ti

o
n
s

h
a
v
e

b
e
e
n

r
e
m

o
v
e
d

fo
r

th
e

c
la

r
it

y
o
f

th
e

d
ia

g
ra

m

84 B. Henson et al.

target output, but with so many flip-flop memory elements, only sequence genera-

tors for those two specific outputs were produced with no guarantee (or evolutionary

pressure) that this sequence would continue to repeat. Further work may be the devel-

opment of a fitness that promotes dependency of one output on another where it is

appropriate; for the example of a counter, making a design have a higher fitness if

the more significant bits are dependent on the lower ones.

The evolution of sequential circuits in an environment with simulated timing gave

interesting results as to the stability of the final circuits. The use of flip-flops in

sequential circuits appeared to remove less stable combinatorial loops even though

there was no explicit evolutionary pressure to do so; purely the variation in the timing

meant that more stable circuits were maintained in the gene pool.

Using a hardware description language was a useful tool to gain access to the full

range of simulation software available for FPGA design, in particular detailed timing

models. In addition, the use of VHDL gave a practical means of implementation that

fitted well with the CGP architecture.

Acknowledgements This work is part funded by the EPSRC PAnDA project (EP/I005838/1) and

the EPSRC Platform Grant: Bio-inspired Adaptive Architectures and Systems (EP/K040820/1).

References

1. Altera corp. website. http://www.altera.com (2011). Accessed 5 March 2011

2. Campos, P.B., Trefzer, M.A.,Walker, J.A., Bale, S.J., Tyrrell, A.M.: Optimising ring oscillator

frequency on a novel FPGA device via partial reconfiguration. In: 2014 IEEE International

Conference on Evolvable Systems (ICES), pp. 93–100. IEEE (2014)

3. Cullen, J.: Evolving digital circuits in an industry standard hardware description language. In:

Simulated Evolution and Learning, pp. 514–523 (2008)

4. Damavandi, Y., Mohammadi, K.: Co-evolution for communication: an EHW approach. J. Univ.

Comput. Sci. 13(9), 1300–1308 (2007)

5. Dmello, D.R., Gulak, P.G.: Design approaches to field-programmable analog integrated cir-

cuits. In: Field-Programmable Analog Arrays, pp. 7–34. Springer (1998)

6. Gordon, T., Bentley, P.: Towards development in evolvable hardware. In: Proceedings of the

NASA/DoD Conference on Evolvable Hardware 2002, pp. 241–250. IEEE (2002)

7. Haddow, P., Tufte, G., Van Remortel, P.: Shrinking the genotype: L-systems for EHW? In:

Evolvable Systems: From Biology to Hardware, pp. 128–139 (2001)

8. Haddow, P.C., Tyrrell, A.M.: Challenges of evolvable hardware: past, present and the path to

a promising future. Genet. Program. Evolvable Mach. 12(3), 183–215 (2011)

9. Hemmi, H., Mizoguchi, J., Shimohara, K.: Development and evolution of hardware behaviors.

In: Towards Evolvable Hardware, pp. 250–265 (1996)

10. IEEE: IEEE standard for VITAL ASIC (application specific integrated circuit) modeling spec-

ification. IEEE Std 1076.4-2000, pp. 0_1–420 (2001). doi:10.1109/IEEESTD.2001.93351

11. Jie, C., Qiang, Z., Guo-liang, D., Liang, Y.: The implementation of evolvable hardware closed

loop. In: 2008 International Conference on Intelligent Computation Technology and Automa-

tion (ICICTA), vol. 2, pp. 48–51. IEEE (2008)

12. Kalganova, T.: Bidirectional incremental evolution in extrinsic evolvable hardware. In: Evolv-

able Hardware 2000, pp. 65–74. IEEE (2000)

13. Kemerling, J.C., Greenwell, R., Bharath, B.: Analog-and mixed-signal fabrics. Proc. IEEE

103(7), 1087–1101 (2015)

http://www.altera.com
http://dx.doi.org/10.1109/IEEESTD.2001.93351

Designing Digital Systems Using Cartesian Genetic Programming and VHDL 85

14. Kojima, K., Watanuki, K.: Supporting VHDL design for air-conditioning controller using evo-

lutionary computation. In: Proceedings of the 17th IFAC World Congress (IFAC’08), pp. 12,

318–312, 323 (2008)

15. Koza, J.: On the programming of computers by means of natural selection, vol. 1. MIT Press

(1996)

16. Kuyucu, T., Trefzer, M., Greensted, A., Miller, J., Tyrrell, A.: Fitness functions for the uncon-

strained evolution of digital circuits. In: 2008 IEEE Congress on Evolutionary Computation

(IEEE World Congress on Computational Intelligence), pp. 2584–2591. IEEE (2008)

17. Langeheine, J., Becker, J., Fölling, S., Meier, K., Schemmel, J.: Initial studies of a new VLSI

field programmable transistor array. In: International Conference on Evolvable Systems, pp.

62–73. Springer (2001)

18. Mentor graphics corporation ModelSim website. http://www.mentor.com (2011). Accessed 26

Aug 2011

19. Miller, J.: An empirical study of the efficiency of learning Boolean functions using a Cartesian

genetic programming approach. In: Proceedings of the Genetic and Evolutionary Computation

Conference, vol. 2, pp. 1135–1142. Citeseer (1999)

20. Miller, J.: What bloat? Cartesian genetic programming on Boolean problems. In: 2001 Genetic

and Evolutionary Computation Conference Late Breaking Papers, pp. 295–302. Citeseer

(2001)

21. Miller, J., Smith, S.: Redundancy and computational efficiency in Cartesian genetic program-

ming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006). doi:10.1109/TEVC.2006.871253

22. Mrazek, V., Vasicek, Z.: Acceleration of transistor-level evolution using Xilinx Zynq platform.

In: 2014 IEEE International Conference on Evolvable Systems (ICES), pp. 9–16. IEEE (2014)

23. Poli, R.: Evolution of graph-like programs with parallel distributed genetic programming. In:

Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 346–353.

Citeseer (1997)

24. Popp, R., Montana, D., Gassner, R., Vidaver, G., Iyer, S.: Automated hardware design using

genetic programming, VHDL, and FPGAs. In: 1998 IEEE International Conference on Sys-

tems, Man, and Cybernetics, 1998, vol. 3, pp. 2184–2189. IEEE (1998)

25. Sekanina, L., Vasicek, Z.: Functional equivalence checking for evolution of complex digital

circuits. In: Trefzer, M., Tyrrell, A. (eds.) Evovable Hardware: From Practice to Application,

Chap. 6, pp. 175–190. Springer (2015)

26. Soleimani, P., Sabbaghi-Nadooshan, R., Mirzakuchaki, S., Bagheri, M.: Using evolutionary

strategies algorithm in the evolutionary design of sequential logic circuits. Int. J. Comput. Sci.

Issues (2011)

27. Soliman, A., Abbas, H.: Synchronous sequential circuits design using evolutionary algorithms.

In: Canadian Conference on Electrical and Computer Engineering 2004, vol. 4, pp. 2013–2016.

IEEE (2004)

28. Stoica, A., Keymeulen, D., Zebulum, R., Thakoor, A., Daud, T., Klimeck, Y., Tawel, R., Duong,

V.: Evolution of analog circuits on field programmable transistor arrays. In: Proceedings of the

Second NASA/DoD Workshop on Evolvable Hardware 2000, pp. 99–108. IEEE (2000)

29. Takahashi, E., Kasai, Y., Murakawa, M., Higuchi, T.: Post-fabrication clock-timing adjustmen-

tusing genetic algorithms. IEEE J. Solid State Circuits 39(4), 643–650 (2004)

30. Thompson, A.: Exploring beyond the scope of human design: automatic generation of FPGA

configurations through artificial evolution. In: 8th Annual Advanced PLD and FPGA Confer-

ence, pp. 5–8 (1998)

31. Thompson, A., Harvey, I., Husbands, P.: Unconstrained evolution and hard consequences. In:

Towards Evolvable Hardware, pp. 136–165 (1996)

32. Thompson, A., Harvey, I., Husbands, P.: The natural way to evolve hardware. In: 1996 IEEE

International Symposium on Circuits and Systems ISCAS’96, ‘Connecting the World’, vol. 4,

pp. 37–40. IEEE (2002)

33. Trefzer, M.A., Tyrrell, A.M.: Evolvable Hardware: From Practice to Application. Springer

(2015)

http://www.mentor.com
http://dx.doi.org/10.1109/TEVC.2006.871253

86 B. Henson et al.

34. Tyrrell, A., Walker, J., Trefzer, M., Lones, M., Tempesti, G.: Evolvable Hardware (EHW) Lec-

ture Course and Assessment (2011)

35. Walker, J.: Overcoming variability through transistor reconfiguration: evolvable hardware on

the PAnDA architecture. In: Trefzer, M., Tyrrell, A. (eds.) Evolvable Hardware: From Practice

to Application, Chap. 5, pp. 153–174. Springer (2015)

36. Walker, J., Miller, J.: The automatic acquisition, evolution and reuse of modules in Cartesian

genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417 (2008)

37. Walker, J., Trefzer, M., Bale, S., Tyrrell, A.: PAnDA: a reconfigurable architecture that adapts

to physical substrate variations. IEEE Trans. Comput. 62, 1584–1596 (2013)

38. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdependency. In: Inter-

national Conference on Parallel Problem Solving from Nature, pp. 97–106. Springer (1998)

39. Wu, H., Chu, J., Yuan, L., Zhao, Q., Liu, S.: Fault-tolerance simulation of brushless motor

control circuits. In: Applications of Evolutionary Computation, pp. 184–193 (2011)

40. Xilinx: Virtex-5 FPGA User Guide—UG190 (2010)

41. Xilinx: Synthesis and Simulation Design Guide—UG626 (2011)

42. Xilinx: Virtex-5 Libraries Guide for HDL Designs—UG621 (2011)

43. Xilinx inc. website. http://www.xilinx.com (2011). Accessed 5 March 2011

44. Zhang, Y., Smith, S.L., Tyrrell, A.M.: Digital circuit design using intrinsic evolvable hardware.

In: 2004 NASA/DoD Conference on Evolvable Hardware, pp. 55–62. IEEE (2004)

http://www.xilinx.com

Evolution in Nanomaterio: The NASCENCE
Project

Hajo Broersma

Abstract This chapter describes some of the work carried out by members of the

NASCENCE project, an FP7 project sponsored by the European Community. After

some historical notes and background material, the chapter explains how nanoscale

material systems have been configured to perform computational tasks by finding

appropriate configuration signals using artificial evolution. Most of this exposition

is centred around the work that has been carried out at the MESA+ Institute for

Nanotechnology at the University of Twente using disordered networks of nanopar-

ticles. The interested reader will also find many pointers to references that contain

more details on work that has been carried out by other members of the NASCENCE

consortium on composite materials based on single-walled carbon nanotubes.

1 A Bit of History

This chapter describes parts of the research that was carried out within the frame-

work of the FP7 project NASCENCE (Nanoscale Engineering for Novel Computa-

tion Using Evolution) [4], funded by the European Community and running from 1

November 2012 to 31 October 2015.

This research was motivated by earlier work of Julian F. Miller and his coworkers

(See, e.g., [17–19, 34, 35]), and Julian was also involved as one of the very active

partners within the project. He was the major inspirer of the ideas that led to the

birth of the NASCENCE project; he also invented the acronym. In my role as the

coordinator of the project it is with great pleasure that I contribute to this volume on

the occasion of Julian’s 60th birthday.

The title of this chapter is a slight (nano)variation on the term evolution-in-
materio (EIM) that was coined by Miller and Downing in [34]. The birth of the

NASCENCE project originates from an inspiring seminar talk entitled “Evolution

H. Broersma (✉)

Faculty of Electrical Engineering, Mathematics and Computer Science,

CTIT Institute for ICT Research, MESA+ Institute for Nanotechnology,

University of Twente, Enschede, The Netherlands

e-mail: h.j.broersma@utwente.nl

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_4

87

88 H. Broersma

in materio: Using evolution to get matter to compute” that Julian F. Miller gave at

Durham University, UK, on 2 March 2010. Almost at the same time, a “Big Ideas”

project proposal entitled “Computational Carbon” on this topic was composed by

members of two Durham research groups, one in Electronics led by Mike Petty, and

the other one in Algorithms and Complexity led by myself. The purpose of these “Big

Ideas” was to stimulate collaboration within the School of Engineering and Comput-

ing Sciences, a merger between the School of Engineering and the Department of

Computer Science. Although our “Big Ideas” project did not get funded, it formed

the basis for the NASCENCE proposal. The latter was submitted to the European

Community at the time I had already left Durham to return to my former employer,

the University of Twente in The Netherlands. Apart from the group at Durham led

by Mike Petty and the group led by me in Twente, the NASCENCE project also

involved groups led by Julian F. Miller in York, by Gunnar Tufte in Trondheim, and

by Jürgen Schmidhuber in Lugano.

2 A Bit of Background

The key idea behind the NASCENCE project was to use nanoscale materials as a

black-box for computation, and to apply artificial evolution in the form of genetic

algorithms to control the external configuration stimuli on the material in order to

find configurations that would enable the material to perform certain computational

tasks. More details on the essential concepts follow in the next section, but they

are basically the same as in the earlier works of Julian F. Miller and his coworkers

mentioned above, except for the down-scaling to nanoscale materials.

The advancement of nanotechnology offers promising opportunities for alterna-

tives to digital computation. These alternatives might be one of the solutions to cope

with the possible problems that have been identified with respect to the further minia-

turisation and increasing energy consumption of digital circuitry and transistors.

Current digital computers are based on Turing’s abstract model of computation

that has been around since the 1930s [52], together with a computer architecture

described as an outline of a machine to perform this type of computation proposed

by Von Neumann in [44]. The latter formed the foundation of modern stored program

computers. This type of computation is possible at the scales we see today through

the invention of the transistor, and the miniaturisation, integration and cheap produc-

tion techniques enabled by the advancement of nanotechnology. Since the computa-

tions are based on the abstraction to strings of zeros and ones that are realised by low

and high valued electrical signals, the common term for this type of computation is

digital computation. Although there existed forms of analogue computation before

the introduction of digital computation, the latter is usually also referred to as clas-

sical or conventional computation. It reflects a top down approach: first designing

an architecture and the functionality of a computational device on a drawing board,

and then realising it by building it from purpose-built components.

Evolution in Nanomaterio: The NASCENCE Project 89

The approach of EIM is more bottom up, as we explain shortly, and this EIM is one

of many different alternative approaches that are gathered under the umbrella term

“unconventional computing”. Since one of the key ingredients of EIM is the use of

artificial, computer-controlled evolution, it is also part of a wide research area known

as bio-inspired computation. It is inspired by the many complex processes that take

place in living systems, and that can be seen as computations. These processes have

been enabled through a long adaptive, selective and uncontrolled procedure of Dar-

winian evolution. The key ingredients of this evolution, like cross-over, mutation,

natural selection and survival of the fittest have been mimicked in computer sci-

ence and operations research, and led to an optimisation technique that we refer to

as computer-controlled evolution. This concept of computer-controlled evolution

is known under a variety of other terms, e.g., evolutionary algorithms [13], genetic

algorithms [20], and genetic programming [24, 47]. Before addressing more details

about the use of computer-controlled evolution in this particular setting, it is conve-

nient to first give a brief overview of the NASCENCE project.

3 NASCENCE in a Nutshell

The conceptual ideas and ingredients of the NASCENCE project are illustrated in

Fig. 1. The key idea is to use a sample of nanomaterial on a micro-electrode array (the

Material Disc in Fig. 1) as a black-box for computational tasks. The way to manipu-

late the black-box is to change the state of the material, by using the micro-electrode

array to interact with the matter through programmable external stimuli, usually con-

sisting of analogue signals, like voltages or currents. These signals are supplied by

and read out by a purpose-built interface (as shown in the middle of Fig. 1). This

interface is equipped with analogue-digital converters and connected to a digital

computer (a laptop or PC) to enable computer-controlled evolution. The computer

program that is executed on this digital device acts as a discovery engine (see Fig. 1)

for finding configurations of the external stimuli that cause the material to perform

the target computational task. Once suitable configurations have been determined

for certain specified tasks, the given sample of nanomaterial on the micro-electrode

array should be capable to function as a stand-alone reconfigurable device for these

tasks.

Apart from the experimental work, another aim of the NASCENCE project was

to model, simulate and explore this way of unconventional computation, and analyse

and explain the observed phenomena.

This set-up led to a natural breakdown of the project work within NASCENCE

into the following nine Work Packages and their key performance indicators (KPIs):

1: Materials processing and evaluation;

KPI: useful materials and micro-electrode arrays;

2: Interface (hardware);

KPI: interaction PC/material; controlled stimuli;

90 H. Broersma

Discovery
 Engine Interface

Material Disc

 1001 0101 Digital
Domain

Analogue
Domain

Fig. 1 Schematic conceptual overview of NASCENCE

3: Interface (software);

KPI: API; genetic algorithms;

4: Computational tasks (experimental);

KPI: suitable tasks/materials;

5: Computational tasks (simulations);

KPI: models for simulation/prediction;

6: Evaluation and data mining;

KPI: functional software for open ended experimentation;

7: Mathematical foundations;

KPI: theoretical foundation for evolvable systems;

8: Dissemination, collaboration and exploitation;

9: Project management;

In the next sections, the aim is to give a concise overview of the accomplishments

of the NASCENCE project. More details can be found in [5] and the papers that are

listed there. But we start with some additional remarks about the motivation behind

the suggested approach of EIM, and by presenting more details on the use of evo-

lutionary algorithms, with a specific example that was used to evolve a nanoparticle

substrate.

4 Why and How to Evolve Dead Matter?

The work within NASCENCE has been inspired on one hand by the great achieve-

ments of Nature itself, and on the other hand by the opportunities offered by nan-

otechnology as a possible alternative to digital computing.

Evolution has done a great job for many living organisms, and it has done so

through a conceptually rather easy but smart, albeit very slow bottom up process of

natural Darwinian evolution. There seems to be no design involved in this process:

the computational instructions that underlie living creatures have not been designed

but rather have (been) evolved. Two questions come to mind: Can we use something

Evolution in Nanomaterio: The NASCENCE Project 91

similar as evolution on ‘dead’ matter in order to get something useful? Can we do it

quickly, via a rapidly converging evolutionary process?

The digital industry has done a great job for computation. It has developed and

advanced digital circuitry extremely fast, to very dense packings of millions of tran-

sistors of very tiny size, currently in the range of 15 nm. It is not clear whether this

will continue, and even the big players in this industry predict that we shall lose con-

trol over the production processes within the next decade. Another concern is that

we are wasting a lot of energy on the production and use of digital equipment. More-

over, there are fundamental issues that have been raised with respect to the concepts

behind digital computation. Due to the abstraction from electrical signal levels to

logical zeros and ones, it seems plausible that digital computation is not making use

of the full potential opportunities offered by physical systems. According to Conrad

this leads us to pay “The Price of Programmability” [10]. Another question then

emerges: Is there an alternative way to use (nanoscale) material that exploits the full

potential properties of physical systems to solve computational problems rather than

restricting them by abstraction to zeros and ones?

Motivated by the above observations, the NASCENCE project has been focusing

on using nanoscale material in another, less controlled but hopefully more efficient

way. The results that have been obtained so far by the members of the NASCENCE

project look promising, as can be concluded from the later sections of this chapter.

They show how computer-controlled evolution was used successfully to ‘program’

several functionalities in nanoscale materials by directly manipulating these physi-

cal systems. Although the results should be considered as a proof of principle, it is

hoped that the approach taken in NASCENCE will inspire the creation of novel and

useful devices in physical systems whose operational principles are not necessarily

understood or are hitherto unknown.

The central idea of EIM is that the application of some physical ‘configuration’

signals to a material can cause it to alter how it affects ‘input’ signals and produces

‘output’ signals. The output signals are picked up and a fitness score is assigned,

depending on how close the output signals are to the desired response. This fitness is

assigned to the member of the population that supplied the configuration signals. For

the purpose of using an evolutionary algorithm, the patterns of configuration signals

that are applied as external stimuli have to be encoded, mimicking genomes in natural

evolution. These artificial genomes enable us to mimic evolution on the codes, in

order to find configurations that cause the matter to perform useful computational

tasks. This approach is illustrated by the following example that is taken from [3].

4.1 An Illustrative Example: Nanoparticle Networks

Consider Fig. 2, in which the small spheres represent coated gold nanoparticles (NPs)

that are trapped on an electrode array to form a fixed NP-network; more details can

be found in [3].

92 H. Broersma

Fig. 2 Artist’s impression of a disordered NP-network

Two electrodes are used for applying time-dependent voltage signals (as indi-

cated by Vin1,Vin2 in Fig. 2). All but one of the remaining electrodes are used for

applying static control voltages (as indicated by V1,… ,V5 in Fig. 2), and one is used

for measuring the resulting time-dependent current (as indicated by Iout in Fig. 2). In

addition, a static voltage can be applied to the back gate (as indicated by V6 in Fig. 2).

The strongly non-linear switching behaviour of the NPs, that act as single-electron

transistors (SETs) under the right circumstances, and their mutual interactions give

rise to functionality greatly depending on the control voltages that manipulate the

internal state of the NP-network.

At low temperatures, an NP with capacitance C has a charging energy E = e2∕C
(where e is the charge on the electron), which is larger than the thermal energy. In

this case NPs exhibit a phenomenon that is known as Coulomb blockade [22] and act

as SETs. One electron at a time can tunnel when sufficient energy is available (ON

state), either by applying a voltage across the SET or by electro-statically shifting

its potential. Otherwise, the transport is blocked because of the Coulomb blockade

(OFF state).

Measurements in [3] indeed indicated that the low-temperature electron transport

in the NP-networks that were used for the experiments is dominated by this Coulomb

blockade effect, and that their detailed behaviour strongly depends on the used input

and output electrodes, as well as on the static voltages applied to the remaining elec-

trodes. These characteristics lie at the basis of the ability to use these NP-networks

for the realisation of computational tasks. Because the current NP-networks have a

rather simple structure with only a few configuration electrodes to play with, the aim

in [3] was to first look for logic gates. The idea was thus to enable all possible 2-way

Evolution in Nanomaterio: The NASCENCE Project 93

logic gates with one and the same NP-network, by only varying the configuration

voltages, without the necessity to apply a specific design of the NP-network.

So, in this set-up, fixing two of the electrodes as inputs and one as an output, the

remaining electrodes together with the back gate have been used to configure the

NP-network for the target functionalities, applying a genetic algorithm (GA). More

details on the working of a GA, and how it was applied for our purposes, appear in

the next section, where the same GA was used for the experiments as well as the

simulations. Some additional information on the simulations appears in later sub-

sections, but next we present a short summary of the outcomes of the experimental

work in [3].

4.1.1 Logic Gates

In this subsection we give a brief description of the work in [3] where the NP-

networks as sketched in Fig. 2 were used to evolve all Boolean logic gates.

In Fig. 3a we see an atomic force micrograph (AFM) image of one of the real

NP-networks that were used for the experiments in [3], where the two input elec-

trodes and the output electrode are denoted by VIN1,VIN2 and IOUT , respectively.

Time-dependent signals in the order of a hundred mV were applied to the input elec-

trodes as illustrated in Fig. 3b, and a time-dependent current in the order of one hun-

dred pA was read from the output electrode. The other five electrodes and the back

gate have been used to apply different sets of static configuration voltages. Using

a GA, suitable sets of configuration voltages have been found to produce the out-

put functions of Fig. 3c, d. Red symbols are experimental data, solid black curves

are expected output signals (matched to the amplitudes of the experimental data).

We observe two clear negators (inverters) for the input functions P and Q in Fig. 3c,

and we observe a variety of Boolean logic gates in Fig. 3d, including the universal

NAND and NOR gate. Supplementary work in [3] reveals that all these gates show a

great stability and reproducibility. For the exclusive gates (XOR, XNOR) spike-like

features are observed at the rising and falling edges of the (1,1) input, as might have

been expected for a finite slope in the input signals. More details can be found in [3].

The remarkable thing here is not that we can produce logic gates using the electri-

cal and physical properties of charge transport in neighbouring NPs. What is remark-

able, is that we can do this with one and the same sample of a disordered NP-network

in a circular region of about 200 nm in diameter, and by using only six configuration

voltages. This shows the great potential for our approach. Note that a similar designed

reconfigurable device based on today’s transistor technology would require about the

same space, and it would also require rewiring of the input signals to multiple inputs.

4.1.2 Behaviour of Gold NPs

The electrical properties and physical effect of Coulomb blockade behind the charge

transport in the used gold NP-networks are pretty well understood. As described

94 H. Broersma

Fig. 3 AFM image of an NP-network (a), the input voltages in mV applied to VIN1 and VIN2 (b)

and the different logic outputs in pA read from IOUT (c and d) [3]

above, under suitable energy conditions and restrictions, the charge transport is gov-

erned by the Coulomb blockade effect [22, 53]. The particles act as SETs with a high

ON/OFF ratio and strong non-linear behaviour. This makes them potentially good

candidates for interesting nontrivial functionalities. As an illustration, in Fig. 4 we

included some I-V characteristics of one of the NP-networks we used in [3].

The nonlinear behaviour is very clear from the figures. We also observed a special

form of nonlinearity usually referred to as negative differential resistance (NDR), as

Evolution in Nanomaterio: The NASCENCE Project 95

Fig. 4 AFM image of an NP-network (a), the input voltages in mV applied to electrode E4 and the

output current in pA read at electrode E6 at different temperatures (b) the outputs in pA read from

E1 for different input electrodes at 0.28 K (c), and the effect of a static voltage applied at E3 on the

I–V curves of a fixed pair at 0.28 K (d) [3]

shown in Fig. 5: a gate that was evolved to be a negator (inverter) for 0 mV< VIN <

100 mV exhibits NDR within the considerably larger range -50 mV< VIN <100 mV.

This behaviour is interesting and we think it plays a key role in the potential evolv-

ability of more complex functions. For instance, if we compare an XOR with an OR,

then it can be observed that the OR could in principle be based on simple linear

behaviour, where a high input signal gives rise to a high output signal, no matter

whether both input signals are high or just one of the input signals. In case of an

XOR this is different: we should only have a high output signal if precisely one of

the input signals is high and the other is low; two high input signals should yield a

low output signal. This is clearly more likely to be a reachable target functionality if

the evolvable system exhibits NDR behaviour.

96 H. Broersma

Fig. 5 NDR behaviour of a

gold NP-network: the output

current IOUT increases with

an increasing input voltage

VIN in the interval

−150mV < VIN < −50mV,

but the I-V curve bends

down in the region of

−50mV < VIN <100 mV [3]

The above experimental results give supporting evidence for our expectation that

much more is possible in terms of more complicated functionalities, enabled by such

disordered NP-networks with more (smaller) particles and a more sophisticated elec-

trode array and back gate structure. This is part of our current research at the MESA+

Institute for Nanotechnology in Twente.

4.1.3 Simulations of NP-Networks

Apart from the experimental work and results, the NASCENCE consortium has also

worked on the theoretical underpinning of the experimental work and on simulations.

The latter are based on physical or mathematical models of the material systems. In

case of the NP-networks the physics is pretty well understood. In this subsection, a

short description of the physical model that underlies the behaviour of jumping elec-

trons in NP-networks are presented, as well as an alternative approach to simulating

these NP-networks using neural networks.

As we explained earlier, the charge transport in the NP-networks we have been

using in the experiments that have led to [3] is based on a physical phenomenon

that is known as the Coulomb blockade effect [22, 53]. The individual gold NPs act

as SETs. Electrons can jump between neighbouring particles when the energy con-

ditions are favourable. One electron at a time can tunnel between two particles if

sufficient energy is available (ON state), either by applying a voltage across the par-

ticle or by electro-statically shifting its potential; otherwise, the transport is blocked

due to Coulomb blockade (OFF state). These disordered assemblies of NPs there-

fore provide an almost random network of interconnected robust, non-linear, peri-

odic switches, as a result of the Coulomb oscillations of the individual NPs. We have

observed experimentally that electron transport below 5 K is dominated by Coulomb

blockade, and strongly depends on the used input and output electrodes, as well as

on the static voltages applied to the remaining electrodes.

Due to the high costs and time consuming experiments involved in the experimen-

tal work, it was highly desirable to develop a simulation tool to explore the potential

functionalities of such NP-networks without the burden of spending many hours in

Evolution in Nanomaterio: The NASCENCE Project 97

the lab and wasting expensive resources to look for such functionalities experimen-

tally. In addition, the simulations can also inform us on the minimum requirements

that are needed for obtaining the targeted functionality if we were able to produce

these NP-networks according to a predetermined design. This could lead to new

devices for the digital industry, possibly replacing purpose-built assemblies of tran-

sistors. Moreover, simulations can provide us with evidence concerning the scalabil-

ity of our approach. Simulations can also give us new insights into the dynamics of

the charge transport that might lead to a better understanding as to why and how the

networks reveal the functionalities we observe. Furthermore, there are many ques-

tions on the use of these networks that are difficult to answer experimentally, because

there are serious challenges in fabricating examples with smaller central gaps or with

more control electrodes using the same area.

The simulation tool we developed in [12] is an extension of existing tools for

simulating NP interactions, like SPICE [43] or SIMON [55]. Since the dynamics of

our NP-networks is governed by stochastic processes (electrons on particles can tun-

nel through junctions with a certain probability), there are basically two simulation

methods to our disposal: Monte-Carlo Methods and the Master Equation Method

[53, 54]. Since the number of particles is large, this rules out the second approach,

hence the Monte-Carlo Method is the only suitable candidate. This method simu-

lates the tunneling times of electrons stochastically. To get meaningful results, one

needs to run the algorithm in the order of a million times. Doing so, the stochastic

process gives averaged values of the charges, currents, voltages, etc. More details on

this physical-model based simulation tool can be found in [12].

We have validated our tool for designed systems with small numbers of particles

that are experimentally known from the literature, and that have also been simulated

before [54]. We have also used our tool to examine other structures of NP-networks.

Interestingly, we have shown through simulations that all Boolean logic gates that

we evolved experimentally in [3] can be evolved in a regular 4× 4 grid consisting of

only 16 NPs. We refer to [12] for more details. Currently, we are not aware of any

production techniques for constructing these regular grids of NPs.

Although our simulation tool can in principle handle arbitrary systems of any

size, scalability is a serious issue if we consider the computation time. Even a paral-

lellised CUDA code we have developed for a GPU does not really solve the problem

if we want to simulate networks consisting of hundreds of particles. Moreover, as

the networks in [3] cannot be produced according to a predefined specific design, it

is not possible to use an accurate physical model for such systems.

With these drawbacks in mind, we have taken an alternative approach. This novel

approach is based on training artificial neural networks in order to model and inves-

tigate the NP-networks.

Neural networks have proven to be powerful function approximators and have

been successfully applied in a wide variety of domains [6, 25, 49, 51]. Being essen-

tially black-boxes themselves, neural networks do not facilitate a better understand-

ing of the underlying quantum-mechanical processes. For that purpose the physical

model we described before is more appropriate. But in contrast to physical models,

98 H. Broersma

neural networks provide differentiable models and thus offer interesting possibilities

to explore the computational capabilities of the nano-material.

Before this exploration can take place, a neural network must first be trained,

using data collected from the material. In our case, since we already have a physical

model and an associated validated simulation tool for the NP-networks, to show that

this approach is useful we can restrict ourselves in the first instance to training data

obtained from the simulated material. This gives us the opportunity to predict func-

tionalities in small NP-networks, also networks that have not been fabricated yet,

like the 4× 4 grid structure we mentioned above. This in turn can inform electrical

engineers on the minimum requirements necessary for obtaining such functionalities

without the burden of costly and time-consuming fabrication and experimentation.

One of the advantages of the neural network approach is that we do not need to

have any detailed information on the structure or physical properties of the material.

We only need as many input-output data combinations as we can get from the simu-

lation tool or from measurements on a particular material sample, in order to train a

neural network that models this specific sample. The more independent data we use,

the more accurate the trained neural network is expected to model the sample.

Another advantage of the neural network approach is that one can optimise the

input configuration through gradient descent instead of performing a black-box opti-

misation. In other words, as soon as we have trained the neural network with suf-

ficiently many input-output combinations, searching for arbitrary functions is very

fast and can happen independently of the material or the physical model.

To show that this approach is worthwhile, in [15] we used data obtained from the

physical-model based simulations that we mentioned above to train a neural network.

We show in [15] that the neural network can model the simulated nano-material quite

accurately. The differentiable neural network model of the evolvable NP-network is

then used to find logic gates, as a proof of principle.

This shows that the new approach has great potential for partly replacing costly

and time-consuming experiments. We are currently also using the neural network

approach on real data collected from samples of the NP-networks.

5 Back to the General Method

No matter what matter one uses, the approach of EIM requires a method to optimise

or at least find good configurations for a specific target functionality of the evolvable

system. But to be able to do this, first of all there is a need for a translation or mapping

between the physical domain and the computer domain, and vice versa, as indicated

in Fig. 6 that was taken from [5].

In the physical domain, there is a material (in our earlier example an NP-network)

to which physical stimuli can be applied (in our example voltages) or measured (in

our example currents). In the NP-network example we have just given, the stimuli

signals were static voltages and time-dependent voltages and currents, but the type

of signals could be different, depending on the type of material and its characteristic

Evolution in Nanomaterio: The NASCENCE Project 99

Fig. 6 Concept of EIM: physical and computer domain [5]

behaviour under influence of external stimuli. The signals are either input signals,

output signals or configuration signals. With the help of a suitable interface made up

of conventional electronics, in the computer domain a digital computer controls the

application of physical inputs applied to the material (the time-dependent voltages in

our example), the reading of physical signals from the material (the time-dependent

currents in our example), and the application of other physical inputs to the material

known as configurations (the static voltages in our example). Since we are using

a digital computer to control the signals, we need to encode and decode between

physical signals and representations of these signals by strings of numerical values

(and at a lower level bits), with one entry for each of the applied (or measured) signal.

Such strings can be interpreted as genotypes of the state of the physical material

when supplied with the according levels of the applied signals. These genotypes of

numerical data are stored and manipulated on the computer and, if necessary, again

transformed back into configuration signals that physically affect the material, when

applied. In order to find suitable signals that induce a target functionality between

100 H. Broersma

Algorithm 1 (Genetic Algorithm)

1: Generate an initial generation of size p. Set the number of generations as g = 0
2: repeat
3: Calculate the fitness of each member of the generation

4: Select a number of parents according to quality of fitness

5: Recombine some, if not all, parents to create offspring genomes

6: Mutate some parents and offspring

7: Form a new generation from mutated parents and offspring

8: Optional: promote a number of unaltered parents from step 4 to the new generation

9: Increment the number of generations g ← g + 1
10: until (g equals the number of generations required) or (the fitness is acceptable)

inputs and outputs of the evolvable system, the genotypes are subject to a GA that

we are going to explain shortly.

Physical output signals, under the influence of certain input and configuration

signals, are read from the material and converted to output data in the computer.

Comparing this measured output to the ideal output of a target functionality under

the given input signals, a fitness value is obtained from the measured output data.

This fitness value should be a good measure for how close the evolvable system is

to performing the target functionality. This fitness of the measured performance and

the corresponding genotype of the current state of the evolvable system is then used

in the GA, with the goal to optimise (or at least determine sufficiently good settings

of) the configuration signals for the target functionality.

To illustrate the steps in the GA, Algorithm 1 gives the ingredients of a generic

GA in pseudocode, adapted from [5].

In Line 1 of the pseudocode, the initial generation of size p corresponds to p (pos-

sibly randomly chosen, but usually based on earlier experiments to characterise the

typical behaviour of the system) initial genomes that are translated into configuration

and input signals, and tried on the evolvable system.

Based on the measured outputs, for all the p choices, a fitness value is obtained

in Line 3, and a selection of a number of genomes that correspond to the best fitness

values is taken in Line 4.

To obtain new choices for genomes, the next generation of genomes to try on

the material system is based on combining and manipulating the entries (genes) of

the selected genomes, using principles that mimic natural evolution, like recombi-

nation, crossover, mutation, as in Lines 5–7. The “survival-of-the-fittest” principle

of Darwinian evolution is implemented by using a form of fitness-based selection

that is more likely to choose solutions for the next generation that are fitter rather

than poorer. Mutation is an operation that changes a genome by making random

alterations to some genes, with a certain probability. This is usually a suitable tool to

avoid running into a bad local optimum. Recombination is a process of generating

one or more new genomes by recombining genes from two or more genomes. Some-

times, genomes from one generation are promoted directly to the next generation;

this is referred to as elitism (see the optional step in Line 8 of the algorithm).

Evolution in Nanomaterio: The NASCENCE Project 101

Fig. 7 The GA that was used for the NP-networks in [3]

It is clear that there are many choices involved in specifying a GA for a particular

optimisation problem or for a particular evolvable system and target functionality, as

in our research. These choices are usually based on trial and error, until a satisfactory

convergence to acceptable solutions is observed.

Figure 7 illustrates the GA that was used for the NP-networks in [3]. Like every

GA, this GA searches for optimum genomes by iterating over sufficiently many

generations. In this specific GA, every generation Gn has a fixed population of 20

genomes (represented by the strands in Fig. 7) that are each composed of six genes

(configuration voltages V1 up to V6, represented by coloured bars in the figure). The

GA starts with a random initial generation G0, whose fitness is generally low, as

indicated in the leftmost column (for a GA search for an AND gate). With a com-

posite cloning-breeding procedure (as illustrated in the middle of Fig. 7; see [3] for

details) for evolving generation Gn into Gn+1, we eventually reach a final generation

GN whose top genomes have a (much) higher fitness than the top genomes of G0 and

the intermediate generations (as illustrated in the rightmost column of Fig. 7). For

more details on the settings of the GA that were chosen for the evolution of Boolean

logic in these NP-networks we refer the reader to the supplementary material of [3].

102 H. Broersma

6 Other Examples from the NASCENCE Project

Before we are going to present some of the results for other functionalities that

have been experimentally tried out using the EIM approach within the NASCENCE

project, we need to point out that there are basically two main ways to approach

computational problems with EIM.

In the approach that we took in our earlier example, the GA determines configura-

tions that in principle allow the material to act as a stand-alone reconfigurable logic

device. This is a device which, provided with the appropriate evolved configuration

signals, carries out the desired target computational mapping. In our earlier example,

one and the same NP-network was able to perform all 2-way Boolean logic gates,

with different settings of the static configuration voltages, after removing the digital

computer that was used to find suitable configuration settings. Within NASCENCE,

a number of applications for which we took the same approach have been considered.

We shortly describe some of the other applications.

We note here that the term configuration of a material can have a number of mean-

ings. It can merely be the application of physical signals to the material so that some

underlying physical properties change, e.g. conductance or resistance. As a result,

the material is put into a state that allows the desired computation to take place. This

was the case in our earlier NP-network example. However, alternatively it may be that

when the physical signals are applied to the material, the material physically changes

in some way. For instance, the underlying (electrical) network might be rearranged,

or the nanoscale elements could self-organise to a desired state so that the target com-

putational functionality is obtained. An example of the latter is provided by earlier

work with liquid crystal of Harding and Miller [16]. In this case, applied configura-

tion signals caused liquid crystal molecules to twist, thus there was a physical change

in the material when configuration signals were applied. As a matter of fact, both of

the above effects may happen at the same time.

There is another approach in which EIM could be applied with the aid of evolv-

able systems. In this alternative approach, a material is merely used for the mapping

of genomes to fitness values. The material is seen as an assistant in an evolutionary

search process. It provides a “black-box” mapping from genome to output data (from

which fitness is assessed). The thinking behind this is that the material may provide

a more evolvable genotype-to-phenotype mapping, since physical variables can be

exploited that could not be exploited if a purely algorithmic mapping was used (as

is standard in evolutionary computation). In this type of hybrid system, much of the

data required for solving a particular problem would remain on a digital computer.

The role of the material would be to improve the search process itself. Thus in this

case the material does not necessarily require any input data. Examples of compu-

tational problems that can be tackled using this approach are: Travelling Salesman

Problem (TSP), Function Optimisation and Bin-packing. The TSP is the well-known

problem of determining the shortest tour through a number of cities. Function optimi-

sation is the problem of determining a vector of numbers which minimises a complex

function. Bin-packing is the problem of packing a number of items into as few bins

Evolution in Nanomaterio: The NASCENCE Project 103

as possible, assuming that each bin has a fixed weight capacity. To obtain solutions to

such problems using EIM requires that a set of configuration signals are determined

that cause the material to output a suitable vector of measured values. The solutions

are not necessarily optimal solutions, but usually approximate solutions. Generally,

this method is difficult to scale and has at the time only resulted in solutions for rather

small instances of the problems.

6.1 Materials and Interfaces Used Within NASCENCE

As we noted before, computational materials may be configured by different kinds

of stimuli, e.g., electrical signals, magnetic fields, temperature variations, light, etc.

However, it was decided at an early stage to only manipulate electrical signals within

the NASCENCE project. Two types of evolvable material systems were constructed

for this purpose. Both are based on electrode arrays. A material is deposited in the

vicinity of the electrodes. Some of the electrodes are chosen as inputs (if the com-

putational problem demands inputs), some are chosen as outputs, and a number of

electrodes are chosen as configuration electrodes. In one system that we showed

before, the material consisted of functionalised 20 nm AU NPs interconnected by

insulating molecules (1-octanethiols) that were trapped in a circular region (200 nm

in diameter) between radial metal (Ti/Au) electrodes on top of a highly doped Si/SiO2
substrate, which functions as a back gate. This device operates at temperatures below

1
◦
K [3]. In the second system, the material deposited was a mixture of single-

walled carbon nanotubes (SWCNT) randomly mixed in an insulating material. An

example of this other system is shown in Fig. 8. The insulating material was either

PMMA/PBMA (Polymethy/butyl methacralate) [42]. The material in the centre is a

mixture of SWCNT and PMMA. The concentration of SWCNT is 0.05% by weight.

SWCNTs are mixed with PMMA or PBMA and dissolved in anisole (methoxyben-

zene). 20 µL of material is drop dispensed onto the electrode array. This is dried at

100
◦
C for 30 min to leave a film over the electrodes. Carbon nanotubes are conduct-

ing or semi-conducting and the role of the PMMA/PBMA is to introduce insulat-

ing regions within the nanotube network, to create non-linear current versus voltage

characteristics.

In order to be able to apply a GA to determine a set of signals that should be

applied to the electrode arrays, one requires a hardware interface system between a

Fig. 8 Circular twelve

electrode array with a

mixture of SWCNT and

PMMA in the centre [42]

104 H. Broersma

computer and the material. The hardware system needs to allow a variety of signals

to be applied to the electrodes. In the NASCENCE project the signals used were one

of the following:

∙ Digital voltages

∙ Analogue voltages

∙ Square-wave signals

One also needs to be able to sample and record voltages and currents detected on

electrodes, since from these measurements a fitness value is determined. Thus one

needs equipment that allows the user to choose a sampling frequency and store the

values (in a buffer). Since it is not known in advance to which electrodes input signals

should be applied, generally one needs a way of allowing the GA to choose which

electrodes receive inputs (if the computational problem requires inputs) and which

electrodes are designated as outputs, and finally which electrodes are the configu-

ration inputs. A variety of different hardware systems have been explored for doing

this.

∙ Digital acquisition cards together with programmable switch arrays [8]

∙ Mbed microcontrollers with digital to analogue converters [33]

∙ Purpose built platforms [3, 31].

6.2 Computational Problems

The NASCENCE consortium investigated a diverse range of computational prob-

lems. The list of problems with references to the associated papers is given below.

We refrain from giving details here, but refer the interested reader to the listed papers

instead. Except for the results in [3] that were obtained using the NP-networks we

showed before, all other results were obtained by using different versions of the men-

tioned SWCNT-composites.

1. Logic gates

a. Two-input single output Boolean functions (e.g. (N)AND, (N)OR, XOR) [3,

23, 31]

b. Three/Four input single output Boolean functions (e.g. even-3 and 4 par-

ity) [37]

c. Two-input two-output Boolean functions (e.g. half adder) [3, 23, 33]

d. Three-input, two-output Boolean functions (e.g. full-adder)

2 Travelling Salesman

This has no inputs and as many outputs as there are cities [8]

3. Classification

Evolution in Nanomaterio: The NASCENCE Project 105

a. Standard machine learning benchmarks (Iris, Lens, banknote): number of

inputs equals the number of attributes, number of outputs is equal to the

number of classes [7, 38]

b. Frequency classification: this requires one input for carrying the source sig-

nal whose frequency is to be classified and two outputs which are used to

decide the class of the frequency (high or low) [39, 42]

c. Tone discriminator: this has the same number of inputs and outputs as the

frequency classifier [42]

4. Function Optimisation

This has no inputs and as many outputs as there are dimensions in the function

to be optimised [41, 42]

5. Bin-Packing

This has no inputs and as many outputs as there are items to be placed into

bins [40]

6. Robot control

This has as many inputs as robot sensors and as many outputs as robot actua-

tors (e.g. motors) [36]

7. Graph colouring

This has been looked at with a single input (graph select) and as many out-

puts as there are nodes to be coloured. Each output selects the colour of the

node [30]

The seven classes of problems cover many types of problems involving markedly

different numbers of inputs, outputs and number of instances. Some problems like

TSP, Function Optimisation and Bin-packing have no inputs. The material acts like

a form of genetic programming and via evolved configurations generates an approx-

imate solution from its outputs. This is standard practice in genetic programming. In

this type of approach a material is used in the genotype-phenotype mapping. How-

ever, one must be careful that in problems that have no inputs, evolution is not merely

evolving configuration signals to produce outputs that are desired. In other words,

that it is not directly wiring configuration signals to outputs, thus effectively ignoring

the material.

In the work on evolving logic gates various functions present much greater dif-

ficulty due to their inherent non-linearity. It is well-known that parity functions are

difficult to evolve non-linear functions. Indeed, they have been used as benchmark

problems in genetic programming for some time.

106 H. Broersma

6.3 Electrical Behaviour of SWCNT-Composites

Whereas the physics behind the non-linear behaviour of the NP-networks that were

used within NASCENCE is pretty much understood, the case is quite different for

the material samples that are based on SWCNTs. Within NASCENCE several mod-

els at different levels of abstraction have been used for describing and analysing the

electrical behaviour, and for predicting and simulating the computational capabili-

ties of SWCNT-composites. As mentioned earlier, this SWCNT-based material may

be configured by different kinds of stimuli, e.g., electrical signals, magnetic fields,

temperature variations, light, etc., but within NASCENCE we have restricted these

signals to three types:

∙ Static voltages;

∙ Square waves;

∙ A mixture of the two.

In order to be able to perform any kind of computation with the help of SWCNT-

based composites, the input data and the configuration data must allow the exploita-

tion and manipulation of underlying physical properties in the SWCNT-composite

material. Moreover, such manipulated properties must be observable and give a mea-

surable response, i.e., output response. As such, the choice of the input signal and

configuration types play an important role and define which physical properties are

available and utilised. In [30], a comparison between different signal types and their

effect has been made for the evolution of solutions for small instances of the graph

colouring problem.

In the case of static voltages, the parameters under evolutionary control are typ-

ically the electrode to which the signal is applied to, the starting time, the ending

time, and the voltage amplitude. In the experiments in [30], the range of amplitude

was limited from 0 to 3.3 V. In the case of square wave signals, the evolved parame-

ters are the electrode to which the signal is applied to, the starting time, the ending

time, the frequency, and the duty cycle. In the experiments in [30], the square wave

amplitude was fixed at 0 and 3.3 V. The results there show that it was possible to

evolve satisfactory solutions using all three types of signals (static voltages only,

square waves only, and a mixture of static voltages and square waves). However,

the choice of signal types influenced the evolutionary results. Square wave signals

showed more promising potential than the other signal types, and the ability to pro-

duce richer dynamics, as one can also conclude from [45].

In [29], the model used to describe the SWCNT-networks suggests these networks

behave as networks of resistors if only static DC voltages are applied. Moreover, it

was shown there that TSP problems as introduced and solved in [8] could be solved

using a SPICE model of the SWCNT-material as a ‘cloud’ of resistors [43]. In case

of applied square wave signals, the material could be seen as an RC circuit, i.e.,

the SWCNT-material also holds capacitance. Inspection of evolved solutions in [46]

reveals that the exploited physical properties are often unanticipated. In particular,

it was observed that evolution was able to create and exploit signal delays, signal

Evolution in Nanomaterio: The NASCENCE Project 107

inversions and signal canceling. All the mentioned properties may provide a source

of non-linearity and rich dynamics that may be potentially exploited for physical

implementations of reservoir computing [21, 32] in SWCNT-networks.

We conclude this subsection with a short description of the four models that have

been considered within NASCENCE to model and analyse possible behaviour of the

SWCNT-composites.

6.3.1 Models of SWCNT-Composites

Modelling of any material system consisting of nanoscale elements may be per-

formed at several abstraction levels, ranging from the low level local interactions

between neighbouring elements to the high level black-box behavioural models.

Other intermediate levels may also be important, particularly for describing emer-

gence of properties at different intermediate scales. Four different models have been

considered and analysed within NASCENCE.

1. Models based on collective electrodynamics within the SWCNT-composites.
Such models are described in more detail in [26], and are based on Ashby’s

systems theory [1], as introduced in classical cybernetics. Electrical properties

exploited for computation arise as an emergent property of the stimulated mate-

rial. The transport of charge in the SWCNT-composite can be considered as a

manifestation of a collective emergent property of electrons in the computing sub-

strate. Within this framework, a future research direction is proposed in which one

may consider the manipulation of quantum properties of electrons in the mater-

ial so that the emerging electromagnetic properties can be used for computation.

Another aspect of the proposed framework is to allow the manipulation of other

parameters, e.g., temperature, in the description of the system state to create a big-

ger choice of variables. This approach is related to polymorphic electronics [50],

where there may be different functionalities for different operating temperatures.

2. Models based on DC or AC circuits.
Observing the behaviour of SWCNT materials under varying inputs, e.g., sta-

tic voltages or square wave signals, allows macroscopic modelling of pin-to-pin

characteristics with simple RC circuits. In [30], two SPICE models [43] are pre-

sented, one for describing the electrical behaviour when stimulated with static

voltages applied to input pins, and one for capturing the behaviour when square

waves are used as manipulation signals.

3. Models based on dynamical hierarchies and cellular structure.
The approach in [27] aims at modelling conductivity dependence on the concen-

tration of SWCNTs and varying electric potential in the material. The approach

is based on two main paradigms: dynamical hierarchies [48] and cellular compu-

tation [9]. Each material sample is divided into a grid of cells, in which each

cell represents a subarea of the sample with a specific content, i.e., polymer

molecules, SWCNT bundles, or electrodes. Each cell behaves according to the

physics of the elements it contains and the interactions with neighbouring cells.

108 H. Broersma

Results show that higher concentrations of SWCNTs lead to more percolation

paths and consequently more current flow. Different cell shapes may be consid-

ered for future research.

4. Models based on cellular automata.
The wide variety of problems solved with SWCNT-composites does not give any

direct indication of the computational properties and computational power of the

materials used. However, it is clear that the materials can be exploited at the com-

putational level required to solve the given task. Cellular automata (CA) offer a

broader knowledge of different complexity levels and computational classes, e.g.,

Wolfram classes [56]. As such, CA models of the material may enable the devel-

opment of a framework that relates measurable physical properties to abstract CA

behaviour. In [14], cellular automata transition tables of different complexities

have been evolved in-materio. An interesting future direction is the possibility to

evolve universal cellular automata [2, 11] with the SWCNT-composites. In addi-

tion, ongoing work attempts to relate the evolved in-materio cellular automata

with CA parameters [28], and relate the behaviour of the material to the notion

of “edge of chaos”.

7 Conclusions

This chapter tried to give the reader an overview of the accomplishments of the EC-

funded NASCENCE project, with the relevant historical notes, background and the

general concepts and principles. The author centred all material and examples around

the work that was done within the framework of NASCENCE at his home university

in Twente, notably the CTIT Institute for ICT Research and the MESA+ Institute

for Nanotechnology. Details of this work and of the work done at the other partner’s

institutions can be found by following the pointers to the references that have been

provided. The goal of the NASCENCE project was to demonstrate that computer-

controlled evolution could exploit the physical properties of material systems based

on carbon nanotubes and nanoparticles for solving computational problems. Exper-

imental results have shown that this is indeed a plausible, competitive and efficient

method for executing computational functions. Proof of concept has been given on

several instances of problems within various complexities, and different number of

inputs and outputs. The results are very promising and lay the foundation for fur-

ther work. Future work includes the investigation of novel materials and larger and

more sophisticated systems. One of our future goals is to apply these material sys-

tems for real world applications, and to develop stand-alone devices based on these

principles. The long term goal of this research is to build information processing

devices by exploiting bottom-up architectures without a predefined design and with-

out reproducing individual components.

Evolution in Nanomaterio: The NASCENCE Project 109

Acknowledgements The research leading to these results has received funding from the European

Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement number

317662. It is with great pleasure that the author of this chapter thanks all the members of the

NASCENCE project for the wonderful collaboration in this adventurous endeavour, and in par-

ticular Julian F. Miller for his inspiration and positive attitude. Happy birthday, Julian!

References

1. Ashby, W.R.: Design for a Brain, the Origin of Adaptive Behaviour. Chapman & Hall Ltd.

(1960)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways for your mathematical plays, volume

4. AMC 10, 12 (2003)

3. Bose, S.K., Lawrence, C.P., Liu, Z., Makarenko, K.S., van Damme, R.M.J., Broersma, H.J.,

van der Wiel, W.G.: Evolution of a designless nanoparticle network into reconfigurable boolean

logic. Nat. Nanotechnol. 207, 1048–1052 (2015). doi:10.1038/NNANO.2015.207

4. Broersma, H., Gomez, F., Miller, J.F., Petty, M., Tufte, G.: Nascence project: nanoscale engi-

neering for novel computation using evolution. Int. J. Unconvent. Comput. 8(4), 313–317

(2012)

5. Broersma, H..J., Miller, J.F., Nichele, S.: Computational matter: Evolving computational func-

tions in nanoscale materials. In: A. Adamatzky (ed.) Advances in Unconventional Computing

Volume 2: Prototypes, Models and Algorithms, pp. 397–428 (2016)

6. Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks for traffic

sign classification. In: International Joint Conference on Neural Networks (IJCNN), pp. 1918–

1921 (2011)

7. Clegg, K., Miller, J., Massey, M., Petty, M.: Practical issues for configuring carbon nanotube

composite materials for computation. In: Evolvable Systems (ICES), 2014 IEEE International

Conference on, pp. 61–68 (2014)

8. Clegg, K.D., Miller, J.F., Massey, M.K., Petty, M.C.: Travelling salesman problem solved ‘in

materio’ by evolved carbon nanotube device. In: Parallel Problem Solving from Nature - PPSN

XIII - 13th International Conference, Proceedings, LNCS, vol. 8672, pp. 692–701. Springer

(2014)

9. Codd, E.F.: Cellular Automata. Academic Press (1968)

10. Conrad, M.: The price of programmability. In: R. Herken (ed.) The Universal Turing Machine

A Half-Century Survey, pp. 285–307. Oxford University Press (1988)

11. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40 (2004)

12. van Damme, R., Broersma, H., Mikhal, J., Lawrence, C., van der Wiel, W.: A simulation tool for

evolving functionalities in disordered nanoparticle networks. IEEE Congress on Evolutionary

Computation (CEC 2016), 24–29 July 2016, Vancouver, Canada pp. 5238–5245 (2015)

13. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)

14. Farstad, S.: Evolving cellular automata in-materio. In: Master Thesis Semester Project, Nor-

wegian University of Science and Technology, Supervisor: Stefano Nichele, Gunnar Tufte.

NTNU (2015)

15. Greff, K., van Damme, R., Koutník, J., Broersma, H., Mikhal, J., Lawrence, C., van der Wiel,

W., Schmidhuber, J.: Unconventional computing using evolution-in-nanomaterio: Neural net-

works meet nanoparticle networks. The Eighth International Conference on Future Computa-

tional Technologies and Applications, Future Computing (2016)

16. Harding, S., Miller, J.F.: Evolution in materio: A tone discriminator in liquid crystal. In: In

Proceedings of the Congress on Evolutionary Computation 2004 (CEC’2004), vol. 2, pp. 1800–

1807 (2004)

17. Harding, S., Miller, J.F.: Evolution in materio. In: R.A. Meyers (ed.) Encyclopedia of Com-

plexity and Systems Science, pp. 3220–3233. Springer (2009)

http://dx.doi.org/10.1038/NNANO.2015.207

110 H. Broersma

18. Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. Int. J.

Unconvention. Comput. 3(4), 243–257 (2007)

19. Harding, S.L., Miller, J.F., Rietman, E.A.: Evolution in materio: exploiting the physics of mate-

rials for computation. Int. J. Unconvention. Comput. 4(2), 155–194 (2008)

20. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology. Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA

(1992)

21. Jaeger, H.: The echo state approach to analysing and training recurrent neural networks-with an

erratum note. In: German National Research Center for Information Technology GMD Tech-

nical Report Bonn, Germany 148, 34 (2001)

22. Korotkov, A.: Coulomb Blockade and Digital Single-Electron Devices, pp. 157–189. Black-

well, Oxford (1997)

23. Kotsialos, A., Massey, M.K., Qaiser, F., Zeze, D.A., Pearson, C., Petty, M.C.: Logic gate and

circuit training on randomly dispersed carbon nanotubes. Int. J. Unconvention. Comput. 10,

473–497 (2014)

24. Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT

Press, Cambridge, Massachusetts, USA (1992)

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems (NIPS 2012), p. 4

(2012)

26. Laketić, D., Tufte, G., Lykkebø, O.R., Nichele, S.: An explanation of computation–collective

electrodynamics in blobs of carbon nanotubes. In: Proceedings of 9th EAI International Confer-

ence on Bio-inspired Information and Communications Technologies (BIONETICS), in press.

ACM (2015)

27. Laketić, D., Tufte, G., Nichele, S., Lykkebø, O.R.: Bringing Colours to the Black Box–A Novel

Approach to Explaining Materials for Evolution-in-Materio. In: Proceedings of 7th Interna-

tional Conference on Future Computational Technology and Applications. XPS Press (2015)

28. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation.

Physica D Nonlin Phenomena 42(1), 12–37 (1990)

29. Lykkebø, O., Nichele, S., Tufte, G.: An investigation of square waves for evolution in car-

bon nanotubes material. In: Proceedings of the 13th European Conference on Artificial Life

(ECAL2015), pp. 503–510. MIT Press (2015)

30. Lykkebø, O., Tufte, G.: Comparison and evaluation of signal representations for a carbon nan-

otube computational device. In: Evolvable Systems (ICES), 2014 IEEE International Confer-

ence on, pp. 54–60 (2014)

31. Lykkebø, O.R., Harding, S., Tufte, G., Miller, J.F.: Mecobo: A hardware and software platform

for in materio evolution. In: O.H. Ibarra, L. Kari, S. Kopecki (eds.) Unconventional Computa-

tion and Natural Computation, LNCS, pp. 267–279. Springer International Publishing (2014)

32. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new

framework for neural computation based on perturbations. Neural Computat. 14(11), 2531–

2560 (2002)

33. Massey, M.K., Kotsialos, A., Qaiser, F., Zeze, D.A., Pearson, C., Volpati, D., Bowen, L., Petty,

M.C.: Computing with carbon nanotubes: optimization of threshold logic gates using disor-

dered nanotube/polymer composites. J. Appl. Phys. 117(13), 134903 (2015)

34. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proceed-

ings of NASA/DoD Evolvable Hardware Workshop pp. 167–176 (2002)

35. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materials.

Evolution. Intelligen. 7, 49–67 (2014)

36. Mohid, M., Miller, J.: Evolving robot controllers using carbon nanotubes. In: Proceedings of

the 13th European Conference on Artificial Life (ECAL2015), pp. 106–113. MIT Press (2015)

37. Mohid, M., Miller, J.: Solving even parity problems using carbon nanotubes. In: Computational

Intelligence (UKCI), 15th UK Workshop on. IEEE Press (2015)

38. Mohid, M., Miller, J.: Evolving solution to computational problems using carbon nanotubes.

Int. J. Unconvention. Comput. 11, 245–281 (2016)

Evolution in Nanomaterio: The NASCENCE Project 111

39. Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M., Petty, M.: Evolution-in-

materio: A frequency classifier using materials. In: Proceedings of the 2014 IEEE International

Conference on Evolvable Systems (ICES): From Biology to Hardware., pp. 46–53. IEEE Press

(2014)

40. Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M., Petty, M.: Evolution-

in-materio: Solving bin packing problems using materials. In: Proceedings of the 2014 IEEE

International Conference on Evolvable Systems (ICES): From Biology to Hardware., pp. 38–

45. IEEE Press (2014)

41. Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M., Petty, M.: Evolution-

in-materio: Solving function optimization problems using materials. In: Computational Intel-

ligence (UKCI), 2014 14th UK Workshop on, pp. 1–8. IEEE Press (2014)

42. Mohid, M., Miller, J., Harding, S., Tufte, G., Massey, M., Petty, M.: Evolution-in-materio:

solving computational problems using carbon nanotube-polymer composites. Soft Comput.

20, 3007–3022 (2016)

43. Nagel, L., Pederson, D.: Simulation program with integrated circuit emphasis. Memorandum

ERL-M382, University of California, Berkeley (1973)

44. Neumann, J.V.: First draft of a report on the edvac. Tech. Rep., University of Pennsylvania

(1945)

45. Nichele, S., Laketić, D., Lykkebø, O.R., , Tufte, G.: Is there chaos in blobs of carbon nan-

otubes used to perform computation? In: Proceedings of 7th International Conference on Future

Comp. Tech. and Applications. XPS Press (2015)

46. Nichele, S., Lykkebø, O.R., Tufte, G.: An investigation of underlying physical properties

exploited by evolution in nanotubes materials. In: Proceedings of 2015 IEEE International

Conference on Evolvable Systems, IEEE Symposium Series on Computational Intelligence, in

press. IEEE (2015)

47. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enter-

prises, UK Ltd (2008)

48. Rasmussen, S., Baas, N.A., Mayer, B., Nilsson, M., Olesen, M.W.: Ansatz for dynamical hier-

archies. Artific. Life 7(4), 329–353 (2001)

49. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory based recurrent neural network

architectures for large vocabulary speech recognition. CoRR (2014). arXiv:1402.1128

50. Sekanina, L.: Design methods for polymorphic digital circuits. In: Proceedings of the 8th IEEE

Design and Diagnostics of Electronic Circuits and Systems Workshop DDECS, pp. 145–150

(2005)

51. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:

Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger (eds.) Advances

in Neural Information Processing Systems 27: Annual Conference on Neural Information

Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 3104–

3112 (2014). http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-

networks

52. Turing, A.M.: On computable numbers, with an application to the entscheidungs problem.

Proc. London Mathemat. Soc. 42(2), 230–265 (1936)

53. Wasshuber, C.: Computational Single-Electronics. Springer (2001)

54. Wasshuber, C.: Single-Electronics–How it works. How it’s used. How it’s simulated. In: Pro-

ceedings of the International Symposium on Quality Electronic Design, pp. 502–507 (2012)

55. Wasshuber, C., Kosina, H., Selberherr, S.: A simulator for single-electron tunnel devices and

circuits. IEEE Trans. Comput. Aided Des. Integ. Circ. Syst. 16, 937–944 (1997)

56. Wolfram, S.: Universality and complexity in cellular automata. Physica D Nonlin. Phenom.

10(1), 1–35 (1984)

http://arxiv.org/abs/1402.1128
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks

Using Reed-Muller Expansions
in the Synthesis and Optimization
of Boolean Quantum Circuits

Ahmed Younes

Abstract There have been efforts to find an automatic way to create efficient

Boolean quantum circuits, because of their wide range of applications. This chapter

shows how to build efficient Boolean quantum circuits. A direct synthesis method

can be used to implement any Boolean function as a quantum circuit using its truth

table, where the generated circuits are more efficient than ones generated using meth-

ods proposed by others. The chapter shows, using another method, that there is a

direct correspondence between Boolean quantum operations and the classical Reed-

Muller expansions. This relation makes it possible for the problem of synthesis and

optimization of Boolean quantum circuits to be tackled within the domain of Reed-

Muller logic under manufacturing constraints, for example, the interaction between

qubits of the system.

1 Introduction

The need to do computation faster and more reliably was and still is an essential aim.

People are trying to find ways to achieve this goal by designing devices/machines to

accelerate the process of computation, starting from using their own hands, passing

on to simple devices like, for example, the abacus.

The conventional computers we know today, based on Turing Machines [17, 65],

came to life after John Barden, Walter Brattain, and Will Shockley developed the

transistor in 1947. For inventing new families of computers with more powerful

capabilities, it was necessary to increase the number of transistors used in approxi-

mately the same physical space. The only way to achieve this goal is by decreasing

the size of the components with a process known as miniaturisation [50]. According

to Moore’s law: “The number of transistors per square inch on integrated circuits has

A. Younes (✉)

Faculty of Science, Department of Mathematics and Computer Science,

Alexandria University, Alexandria, Egypt

e-mail: ayounes@alexu.edu.eg

A. Younes

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_5

113

114 A. Younes

doubled every year since the integrated circuit was invented”. This law has proved

to be true since 1965 when Gordon Moore proposed it until now. However, accord-

ing to this law, the size of the components will hit the quantum level by 2020 where

it is not possible any more to control the states of the components by conventional

means, so we must start looking for alternatives.

There have been efforts trying to find suitable alternatives to conventional com-

puters. Charles Bennett in the early 1970 s showed [9] that computation could be

done in a reversible way, where the inputs can be re-generated from the outputs

[33], by describing a Universal Reversible Turing Machine. It was shown that doing

computation reversibly would help to decrease the energy dissipation of electronic

devices per operation (a minimum of log2 kT joules per bit erased, where k is Boltz-

man’s constant and T is the temperature) [33, 39]. This was considered as one of

the ways to go further in the miniaturisation process of components. Edward Fred-

kin and Tommaso Toffoli [34] examined how reversible computation could be done

using traditional Boolean logic gates. They showed that there is a universal reversible

three-bit gate for reversible computation, known now as the Toffoli gate, that could

be used instead of the traditional Boolean logic gates like AND, OR, etc.

Quantum computers are computational devices that exploit quantum mechanical

principles to do computation more powerfully than by conventional computers [10,

13, 60]. The field of quantum computation started in the early 1980 s with the pro-

posal of Paul Benioff [7, 8] for computers working according to the principles of

quantum mechanics, and Richard Feynman [31, 32], who noticed that certain quan-

tum mechanical effects cannot be simulated efficiently on conventional computers,

so, he suggested that computers working according to the quantum principles might

perform more efficiently. In 1985, David Deutsch introduced the Universal Quan-
tum Turing machine [23]. The next question was how to use this new device. A

few quantum algorithms were introduced by David Deutsch and Richard Jozsa [25]

and by Daniel Simon [60]. In 1994, the field started to arise as one of the hot areas

of research when Peter Shor [59] surprised the world by describing a polynomial-

time quantum algorithm for factorising integers using the phase estimation tech-
nique. In 1996, Lov Grover [36] described another quantum algorithm for searching

an unstructured list with quadratic speed-up over conventional algorithms by using

the amplitude amplification technique. Most of the algorithms introduced since then

have been based mainly on these two techniques of phase estimation and amplitude

amplification.

Quantum computers have arisen as one of the strong possible alternatives to con-

ventional computers. Most of the work done so far in the field of reversible compu-

tation is useful and suitable for the field of quantum computation [54], since quan-

tum physics is itself reversible [28]. In addition, extra computational power may

be gained from systems operating with the principles of quantum mechanics. A race

started among mathematicians, computer scientists, and physicists trying to find new

quantum algorithms, quantum complexity theory [12], and quantum theory of infor-

mation [11, 15, 52, 68], beside the big challenge to build real quantum computers

[18, 20, 35].

Using Reed-Muller Expansions in the Synthesis . . . 115

Fig. 1 a Truth table of a

reversible function; b its

circuit implementation

�

�

� �

�� ��

�

�

�

�

x0

x1

x2

x′
0

x′
1

x′
2

x0 x1 x2 x′
0 x′

1 x′
2

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 1 1 1
0 1 1 1 1 0
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 0 1 0

(a) (b)

Researchers are trying to build quantum circuits using reversible/quantum gates

[5, 66]. Finding a universal quantum set of gates is essential to be able to build

general-purpose quantum circuits. There are many alternatives for the universal set

of gates, more than that in conventional and reversible computation. For instance,

two-qubit universal quantum gates are possible [4, 29]. In fact, almost any two-qubit

or n-qubit (n ≥ 2) gates are also universal [24, 42].

Much work has been done trying to find universal sets for quantum computation.

However, it is not clearly known how we can use any of these universal sets to auto-

matically build a quantum circuit for a given problem. A few quantum circuits are

known for some famous problems [19, 66]. However, it still not clear how to auto-

matically build efficient quantum circuit for any given operation. There have been

efforts to evolve quantum circuits using evolutionary methods [6, 56, 61, 62] but it

is not clear if such ways can be used in general to create efficient quantum circuits

for any given operation.

Reversible logic [9, 34] is one of the hot areas of research. It has many applica-

tions in quantum computation [37, 51], low-power CMOS [21, 67] and many more.

Synthesis of reversible circuits cannot be done using conventional approaches [63].

A function is reversible if it maps an input vector to a unique output vector, and vice

versa [58], i.e. we can re-generate the input vector from the output vector (reversibil-

ity). It is allowed for the inputs to be changed as long as the function maintains

reversibility as shown in Fig. 1.

Much work has been done trying to find an efficient reversible circuit for an arbi-

trary reversible function. Reversible truth table can be seen as a permutation matrix

of size 2n × 2n
. In one research direction, it has been shown that the process of syn-

thesizing linear reversible circuits can be reduced to a row reduction problem of n × n
non-singular matrix [53]. Standard row reduction methods such as Gaussian elimina-

tion and LU-decomposition have been proposed [14]. In another research direction,

search algorithms and template matching tools using reversible gates libraries have

been used [30, 44–47]. These work efficiently for small circuits. Benchmarks for

reversible circuits have been established [22, 57].

116 A. Younes

Table 1 (a) Reversible truth table representing a Boolean function; (b) dropping half the truth table

depends on whether the output qubit is initialized to 0 or 1

(a) (b)

x0 x1 x2 x′0 x′1 x′2 x0 x1 x2 x′0 x′1 x′2
0 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1 0 0 1 0

0 1 0 0 1 0 1 0 0 1 0 0

0 1 1 0 1 1 1 1 0 1 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

A Boolean function is a function that takes n Boolean inputs and generates a single

Boolean output. Implementing Boolean functions as reversible functions using some

of the above methods is not possible for certain classes of Boolean functions [58].

For example, representing the truth table of a Boolean function as a non-singular

n × n matrix may not be possible in some cases. In case of Boolean functions, we

may need to preserve the inputs unchanged after applying the circuit. Implementing

Boolean function as a reversible function using search algorithms could be unneces-

sarily exhaustive, since we can immediately drop half the reversible truth table and

keep track only for the changes to the single output, since no inputs will be changed,

Table 1.

Recently, there have been some efforts to find methods to create efficient Boolean

quantum circuits. One method uses a ROM-based model such that the inputs might

not be changed even during an intermediate stage. Using this model requires an expo-

nential number of ROM calls [64]. It has been suggested [49] that fixed polarity

Reed-Muller expansions (FPRM) [3] can be used with binary decision diagrams

(BDD) [2, 16] in an iterative algorithm to generate reversible circuits for simple

incompletely specified Boolean functions with fewer than 10 variables. Another

method [40] uses a modified version of Karnaugh maps [26] and depends on a

clever choice of certain minterms to be used in the minimization process. However,

this algorithm may have poor scalability because of the usage of Karnaugh maps.

Another method is given in [38], where a useful set of transformations for Boolean

quantum circuits is shown. In this method, extra auxiliary qubits are used in the con-

struction that increase the hardware cost.

The chapter is organized as follows: Sect. 2 introduces the definition of the

Boolean quantum logic and defines the structure of the Boolean quantum circuits

to be constructed. Section 3 presents a method that can be used to convert the truth

table of any Boolean function to its quantum circuit by following certain steps, then

compares the efficiency of the circuits created by this method with the circuits cre-

ated by others. This section ends with a general analysis on the efficiency of the

Using Reed-Muller Expansions in the Synthesis . . . 117

created circuits. Section 4 presents a method that shows that there is a direct relation

between Boolean quantum logic and certain form of classical logic known as Reed-
Muller expansions (RM). This section reviews the principles of the classical Reed-

Muller logic, then defines the Boolean quantum logic to be used by the method. This

section shows the steps we may follow to construct quantum circuits directly from

the corresponding classical Reed-Muller expansions. Section 5 shows the benefits

we may gain from handling the problem of synthesis and optimization of Boolean

quantum circuits under practical constraints within the domain of Reed-Muller. The

chapter ends with a general conclusion in Sect. 6.

2 Quantum Logic

Quantum logic gates [5], or quantum transformations, are unitary operations applied

on a quantum register during the process of the computation to change the state of

the system from one state to another. A quantum circuit is constructed from simpler

quantum gates. A quantum gate can be represented as a unitary matrix [51]. The

reason that the quantum gates must be unitary is that quantum systems follow the

fundamental laws of quantum physics and must be reversible [5]. To satisfy this

condition, using any matrix U as a quantum gate, it must be unitary, i.e. the inverse of

that matrix must be equal to its complex conjugate transpose: U−1 = U†
and UU† =

I, where U−1
denotes the inverse of U, U†

denotes the complex conjugate transpose

of U and I is the identity matrix. This agrees with the definition of reversibility [33].

A quantum register of n qubits can be represented as a vector in the 2n
—dimensional

complex vector space. Any gate applied on that register can be understood by its

action on the basis vectors and can be represented as a unitary matrix of size 2n × 2n
.

2.1 The General n-Qubit Controlled Gate

In general, the controlled operations are the basic building blocks that are usually

used to synthesize quantum Boolean circuits. The controlled operations can have

multi-control/target qubits as shown in Fig. 2. It works as follows: an operation U
is applied on the target qubit(s)

|
|
|
xn+j

⟩

(j = 0,… , l − 1) if and only if all the control

qubit(s) ||xk⟩ (k = 0,… , n − 1) are set to |1⟩. Notice that, U can be represented as a

unitary matrix of size 2l × 2l
, and the whole controlled operation can be represented

as a unitary matrix of size 2n+l × 2n+l
. The state of the qubits after applying this gate

are transformed according to the following rule:

|
|xk⟩ → |

|xk⟩ , k = 0,… , n − 1,
l−1
⨂

j=0

|
|
|
xn+j

⟩

→ Ux0x1...xn−1 (
l−1
⨂

j=0

|
|
|
xn+j

⟩

), (1)

118 A. Younes

Fig. 2 The general n-qubit

controlled-U gate
�

�

�

...

...
...

|x0〉

|x1〉

|xn−1〉

|xn〉

|xn+1〉

|xn+l−1〉

|x0〉

|x1〉

|xn−1〉

|x′
n〉

∣∣x′
n+1

〉

∣
∣x′

n+l−1

〉

U

where x0x1...xn−1 in the exponent of U denotes the AND operation of the qubit values

x0, x1,… , xn−1.

If U is replaced with the X gate (NOT gate), the resulting gate is called the CNOT
gate. It works as follows: It inverts the target qubit if and only if all the control qubits

are set to |1⟩. Thus the system is transformed according to the following rule:

|
|xk⟩ → |

|xk⟩ ; k = 0,… , n − 1,
|
|xn⟩ → |

|x′n
⟩

= |
|xn ⊕ x0x1...xn−1⟩ .

(2)

To avoid ambiguity, Cnot denotes a controlled-NOT operation with a single control

qubit, CCnot denotes a controlled-NOT operation with two control qubits and CNOT ,

in general, denotes a controlled-NOT operation with n ≥ 1 control qubits.

2.2 Generalized CNOT Gate

The operations of the CNOT gate [38] shown above can be generalized as follows

[43]: The CNOT (C|t) is a gate where the target qubit |t⟩ is controlled by a set of

qubits C such that |t⟩ ∉ C. The state of |t⟩ is flipped if and only if the conditions

specified over the control qubits evaluate to true. The condition specified over certain

control qubit may evaluate to true depends on whether the state of the qubit is |0⟩
(cond-0; 𝛿 = 1) or |1⟩ (cond-1; 𝛿 = 0), where 𝛿 is a Boolean parameter that is used

in the Boolean algebraic expressions to indicate the condition being set on the qubit.

For example, if the condition over certain qubit |
|
x0⟩ evaluates to true if |

|
x0⟩ = |1⟩,

then we set 𝛿0 = 0 so that x0 ⊕ 𝛿0 = x0 and if the condition over that qubit evaluates

to true if ||x0⟩ = |0⟩, then we set 𝛿0 = 1 so that x0 ⊕ 𝛿0 = x0. That is, the new state

Using Reed-Muller Expansions in the Synthesis . . . 119

�

�

�

�

|x0〉
|x1〉
|x2〉
|x3〉

Fig. 3 CNOT
({

x0, x1, x2
}

|x3
)

gate, where ◦ and ∙ means that the condition on the qubit evaluates

to true if and only if the state of that qubit is |0⟩ (cond-0) and |1⟩ (cond-1) respectively

of |t⟩ after applying the CNOT gate is found by XOR-ing the old state of |t⟩ with the

AND-ing of the states of the control qubits in C (under the condition being specified

on each control qubit).

For example, consider the CNOT gate shown in Fig. 3. It can be represented as

CNOT
({

x0, x1, x2
}

|x3
)

. This means that the state of the target qubit ||x3⟩ is flipped if

and only if ||x0⟩ = |
|x2⟩ = |1⟩ and ||x1⟩ = |0⟩. In general, the target qubit in a four-qubit

CNOT gate is changed according to the operation: x3 → x3 ⊕
(

x0 ⊕ 𝛿0
) (

x1 ⊕ 𝛿1
)

(

x2 ⊕ 𝛿2
)

, so to represent the gate shown in Fig. 3, we set 𝛿0 = 𝛿2 = 0 and 𝛿1 = 1,

so the operation for this gate over ||x3⟩ is: x3 → x3 ⊕ x0x1x2.

2.3 Boolean Quantum Circuits (BQC)

A Boolean function, f , is a function that takes n Boolean variables as inputs and

gives one Boolean variable as output,

f (x0, x1,… , xn−1) → {0, 1} , xk ∈ {0, 1} . (3)

Any Boolean function can be represented by a truth table. In order to be reversible,

the circuit must have equal number of inputs and outputs. For example, consider the

Boolean function f (x0, x1, x2) = x0 + x1x2. Classically its truth table is represented

as shown in Table 2a and for quantum computation purposes, the representation is

as shown in Table 2b, where the initial value of the auxiliary qubit (fini) is equal to 0,

which carries the value of the Boolean function at the end of the computation (ffin).

A quantum circuit QC of size m (m is the number of the CNOT gates) representing

a Boolean function f with n inputs ||xk⟩, k = 0,… , n − 1, has n + 1 qubits where the

extra qubit ||xn⟩ represents the target qubit to carry the output of the Boolean function

at the end of the computation. QC can be represented as a sequence of CNOT gates

as follows [38]:

QC = CNOT
(

C1|t
)

…CNOT
(

Cj|t
)

…CNOT
(

Cm|t
)

, (4)

where |t⟩ = |
|xn⟩ and Cj ⊆

{
|
|x0⟩ ,… ,

|
|xn−1⟩

}

, j = 1,… ,m.

120 A. Younes

Table 2 Truth tables for f (x0, x1, x2) = x0 + x1x2: (a) Classical representation; (b) modified ver-

sion, representing the initial and the final states of the system

(a) (b)

x0 x1 x2 f x0 x1 x2 fini x0 x1 x2 ffin

0 0 0 1 0 0 0 0 0 0 0 1

0 0 1 1 0 0 1 0 0 0 1 1

0 1 0 1 0 1 0 0 0 1 0 1

0 1 1 1 0 1 1 0 0 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 0 1 1 1 1

3 Direct Synthesis of a BQC Using a Truth Table

This section shows a direct method to convert the truth table of any Boolean function

to the equivalent quantum circuit by following certain steps. This method [70] can

be used in the implementation of any given Boolean function as a quantum circuit

to generate more efficient circuits than that generated using methods proposed by

others, as is shown later.

3.1 Converting a Truth Table to a BQC

Consider a Boolean function f with n inputs. Construct the modified truth table as

shown in Table 2b then apply the following steps:

1. Initialization: Using the modified truth table, choose CNOT
(

Cj|t
)

according

to the following steps:

a. Select the input configurations from the truth table where ffin is equal to 1.

b. Add a single CNOT gate for every selected configuration taking fini as the

target qubit.

c. Set the condition over the control qubits in the corresponding CNOT gate

such that the qubit with value 0 in the truth table has cond-0 and the qubit

with value 1 has cond-1.

d. For input configurations where ffin is equal to 0, we do not add any gates,

i.e. applying identity gate.

For example, according to the truth table shown in Table 2b, we select only the

configurations with ffin = 1 as shown in Table 3 and construct the corresponding

quantum circuit as shown in Fig. 4.

Using Reed-Muller Expansions in the Synthesis . . . 121

Table 3 Input configurations for f (x0, x1, x2) = x0 + x1x2 = 1
x0 x1 x2 ffin

G0 0 0 0 1

G1 0 0 1 1

G2 0 1 0 1

G3 0 1 1 1

G4 1 1 1 1

Fig. 4 Initial quantum

circuit for

f (x0, x1, x2) = x0 + x1x2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

|x0〉
|x1〉
|x2〉
∣∣ f f in

〉

G0 G1 G2 G3 G4

| fini〉
|x2〉
|x1〉
|x0〉

2. Decomposition: In the following transformations, assuming that we have clas-

sical inputs, we trace only the operations being applied on the target qubit, since

no control qubits are changed during the run of the circuit. These circuit trans-

formations are an extension and generalization of some of the equivalences

between reversible circuits shown in [58]. We apply these transformations on

every CNOT gate in the circuit we had from step-1. Applying this step elim-

inates cond-0 over the control qubits from the circuit. Let ||xk⟩ be the control

qubits, ||xn⟩ be the target qubit and 𝛿k ∈ {0, 1} for k = 0, 1,… , n − 1. The gen-

eral operation of each CNOT gate to be applied on the target qubit can be written

as follows:

xn → xn ⊕
(

x0 ⊕ 𝛿0
) (

x1 ⊕ 𝛿1
)

…
(

xn−2 ⊕ 𝛿n−2
) (

xn−1 ⊕ 𝛿n−1
)

. (5)

Multiplying all terms we get the following transformation:

xn ⊕
(

x0 ⊕ 𝛿0
) (

x1 ⊕ 𝛿1
)

…
(

xn−2 ⊕ 𝛿n−2
) (

xn−1 ⊕ 𝛿n−1
)

= xn ⊕ x0x1 … xn−1 ⊕ x0x1 … xn−2𝛿n−1 ⊕…⊕ 𝛿0x1 … xn−1
⊕…⊕ 𝛿0𝛿1 … 𝛿n−1.

(6)

Examples

Example 1: Consider L.H.S circuit in Fig. 5 where one control qubit with cond-0.

Decomposing this gate gives the R.H.S circuit in Fig. 5 by setting 𝛿0 = 1 and

𝛿k = 0; k = 1,… , n − 1 in L.H.S and R.H.S of Eq. 6.

122 A. Younes

Fig. 5 n + 1–qubits CNOT
gate with 𝛿0 = 1 and its

equivalent circuit

decomposition

� �
�
�

� �
� �

� � �
�
�

��
��

...
...

...

|x0〉
|x1〉
|x2〉

|x0〉
|x1〉
|x2〉

|xn−2〉
|xn−1〉
|xn〉

|xn−2〉
|xn−1〉
|xn〉

Example 2: Consider L.H.S circuit in Fig. 6 where all the control qubits with cond-0.

Decomposing this gate gives the R.H.S circuit in Fig. 6 by setting 𝛿k = 1; k =
0,… , n − 1 in L.H.S and R.H.S of Eq. 6.

Example 3: Applying this decomposition on every CNOT gate in the initial circuit

shown in Fig. 4 for f (x0, x1, x2) = x0 + x1x2, we get the circuit shown in Fig. 7.

3. Optimization:The circuit we get from step-2 contains the CNOT gates that have

the same target qubit and all the control qubits with cond-1, so they commute

with each other, and are self-inverses. Therefore pairs of identical gates can be

removed from the circuit as follows:

CNOT(C1|t)…CNOT(Cj′ |t)…CNOT(Cm|t)…CNOT(Cj′′ |t)
= CNOT(C1|t)…CNOT(Cm|t),

(7)

if and only if Cj′ = Cj′′ . Applying this rule recursively on the circuit we had from

step-2, we get the final quantum circuit that represents the Boolean function. For

example, the final quantum circuit for f (x0, x1, x2) = x0 + x1x2 is shown in Fig. 8.

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�

�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�
�

�

�

�

�

�

� �

�

�

� �
�

�

...
...

...
...

...
...

...
...

...
...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

|x0〉
|x1〉
|x2〉

|xn−2〉
|xn−1〉
|xn〉

|x0〉
|x1〉
|x2〉

|xn−2〉
|xn−1〉
|xn〉

Fig. 6 n + 1–qubits CNOT gate with all 𝛿k = 1 and its equivalent circuit decomposition

Using Reed-Muller Expansions in the Synthesis . . . 123

�

�

� �

�

� �

�

�

�

�

� �

�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � � � � � � � � � � �

|x0〉
|x1〉
|x2〉
|0〉

|x0〉
|x1〉
|x2〉
| f 〉

Fig. 7 Quantum circuit for f (x0, x1, x2) = x0 + x1x2 after applying the decomposition shown in

Eq. 6

Fig. 8 Final circuit for

f (x0, x1, x2) = x0 + x1x2
�

�

�

�

��

�

|x3〉
|x2〉
|x1〉
|x0〉

3.2 Comparison with Previous Work

The method shown in [40] uses a modified version of Karnaugh maps and depends

on a clever choice of certain minterms to be used in the minimization process. The

generated circuits may not be unique (for example, two alternatives are shown in

Fig. 9). The Direct Synthesis method generates a unique form of a circuit (up to

permutation) similar to that shown in Fig. 9b, which contains the smaller number of

the CNOT gates. The generation of circuits using the method [40] is very hard for

large number of inputs n because of the usage of Karnaugh maps, whereas the Direct

Synthesis method can be used for arbitrary n inputs.

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

� �

|x0〉
|x1〉
|x2〉
| f 〉

|x0〉
|x1〉
|x2〉
|0〉

|x0〉
|x1〉
|x2〉
| f 〉

|x0〉
|x1〉
|x2〉
|0〉

(a) (b)

Fig. 9 Implementation of f = x0x1 + x1x2 + x0x1x2 according to method [40] (a) & (b). Using the

proposed method, we get circuit (b) only

124 A. Younes

� � � � � � � � � �

� � � � � � ��

� � � � � � � � � � � � � �

� � ��

� � � � �

� ��� �

|x0〉
|x1〉
|x2〉

|0〉
|0〉

|0〉

|0〉
|0〉
| f 〉
|x2〉
|x1〉
|x0〉 |x0〉

|x1〉
|x2〉
|0〉

|x0〉
|x1〉
|x2〉
| f 〉

(x0+ x2) (x0+ x1+ x2)(a) (b)

Fig. 10 Implementation of f = (x0 + x2)(x0 + x1 + x2) according to: amethod [38], b the proposed

method

In another work [38], a method is proposed that requires extra auxiliary qubits in

the generated quantum circuits. Figure 10 compares between a circuit generated by

this method (Fig. 10a) and the equivalent, but much simpler, circuit obtained by the

method proposed in this chapter (Fig. 10b) where we used only one auxiliary qubit

to carry the result of the Boolean function.

3.3 Analysis and Results

The circuits created by the Direct Synthesis method are based mainly on the CNOT
gates. People sometimes refer to the CNOT-based circuits as reversible circuits. This

construction is suitable for reversible computation in the sense that reversible oper-

ations could be done by loading the qubits by classical values. It is also suitable for

quantum computation from the sense that we are not employing the reversible ver-

sion of the FAN-OUT operation [63] in designing the Boolean circuits, which cannot

be used in quantum circuits because of the No-Cloning theory [69].

Figure 11 shows a complete set for a three-qubit quantum circuits (two inputs)

generated by this method. Using this method, after step-1, the maximum number of

the CNOT gates we can add is up to 2
n
, where all the control qubits are involved in

each CNOT gate, with some of the control qubits with cond-0 and others with cond-

1. Decomposing each CNOT gate in the circuit as shown in step-2 to eliminate all

𝛿k = 1, we get a new quantum circuit where the number of the CNOT gates is up to

3n
. Applying the optimization step, the number of the CNOT gates can be up to 2n

,

similar to step-1 with an important difference: Not all the control qubits have to be

involved in each CNOT gate as in step-1, where all the control qubits have cond-1,

i.e. we mainly minimize the number of control qubits in the circuit.

The worst case with 2n CNOT gates exists when only a single input configura-

tion with all the inputs with the value 0 makes the function evaluates to 1 as shown

Using Reed-Muller Expansions in the Synthesis . . . 125

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

� �

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

� �

�

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉

|x0〉
|x1〉

|0〉

|0〉

|x0〉
|x1〉
| f 〉

|x0〉

| f 〉

|x0〉

|x1〉

|x1〉
| f 〉

|x0〉
| f 〉

|x0〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
|0〉

|0〉
|x0〉
|x0〉

|0〉
|x1〉
|x0〉

|0〉
|x1〉
|x0〉 |x0〉

|x1〉
| f 〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
| f 〉

f = x0x1

f = x0

f = x0+ x1

f = x1

f = x0x1

f = (x0 ⊕ x1)

f = x0x1

f = 1

f = x0x1

f = x1

f = x0

f = x0+ x1

f = x0x1

f = 0

f = x0 ⊕ x1

f = x0+ x1

Fig. 11 A complete set of three-qubit quantum circuits

Table 4 Truth table for the worst case where the circuit generated by the method contains 2n

CNOT gates

x0 x1 x2 … xn−1 f
0 0 0 … 0 1

0 0 0 … 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 1 1 … 1 0

1 0 0 … 0 0

1 0 0 … 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 … 1 0

in Table 4, where the input configuration generates an initial circuit similar to that

shown in Fig. 6. In this case we can ignore the last two steps of the method and

replace them with another decomposition as shown in Fig. 12, where the circuit con-

tains O(n) gates [27] instead of 2n
gates. However, this decomposition cannot be

used in general to construct the BQC for any Boolean function, since the worst case

we can get with this decomposition is (n + 1)2n
gates subject to weak optimization

based on the permutation the gates are arranged in, where adjacent NOT gates can

126 A. Younes

be removed together, while identical CNOT gates cannot be removed together unless

there is no NOT gates lying in between, which does not happen in the worst case as

shown in Fig. 13a. The worst case using this decomposition where there are O(n2n)
gates happens when all the input configurations can make the function evaluate to 1

(negation). Using the Direct Synthesis method in this case, we get a single NOT gate

applied on the target qubit as shown in Fig. 13b. This problem gives the possibility

of further circuit optimization that can be handled, in general, using Reed-Muller

expansion, as we see in the next section.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
� �

�

�
�
�

...
...

|x0〉
|x1〉
|x2〉

|xn−2〉
|xn−1〉
|xn〉

|x0〉
|x1〉
|x2〉

|xn−2〉
|xn−1〉
|xn〉

Fig. 12 Decomposition for the single input configuration case with up to 2n + 1 gates, where all

the inputs with cond-0. If any of the inputs ||xk⟩ with cond-1 on the L.H.S. CNOT gate, when we

can remove the CNOT(xk) gates for this qubit after and before the R.H.S. CNOT gate. This case has

a special importance in designing the oracle for the original Grover’s algorithm that searches for a

single match (single input configuration that makes the Boolean function evaluates to TRUE, this

was studied separately in [27])

�

�

�

� �

� �

�

�

�

�

�

� �

� �

� � � � �

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
| f 〉

|x0〉
|x1〉
|0〉

|x0〉
|x1〉
| f 〉

(a) (b)

Fig. 13 a The worst case for the decomposition shown in Fig. 12 when applied to construct arbi-

trary Boolean function, b the equivalent circuit using the Direct Synthesis method for f (x0, x1) = 1

Using Reed-Muller Expansions in the Synthesis . . . 127

4 Boolean Quantum Circuits as Reed-Muller Expansions

In the previous section, we examined a method that can be used to convert the

truth table of any given Boolean function to a quantum circuit. The Direct Synthe-

sis method did not consider some of the practical constraints related to the synthe-

sis of quantum circuits. This section presents a method that shows a direct relation

between Boolean quantum logic and certain form of classical logic known as Reed-
Muller expansions (RM). This relation makes it possible to propose that the synthe-

sis and optimization of Boolean quantum circuits under practical constraints could

be handled using RM logic to minimize the cost of the known constraint handling

techniques [71].

4.1 Reed-Muller Expansions

In digital logic design, two paradigms have been studied. The first used the operations

of AND, OR and NOT and called canonical Boolean logic. The second used the

operations AND, XOR and NOT and called Reed-Muller logic. RM is equivalent to

modulo-2 algebra. In this section, we review the properties of RM logic [3].

4.1.1 Modulo–2 Algebra

For any Boolean variable x, we can write the following XOR expressions:

x ⊕ 1 = x, x ⊕ 0 = x,
x ⊕ 1 = x, x ⊕ 0 = x.

Let
∙
x be a variable representing a Boolean variable in its true (x) or complemented

form (x), then we can write the following expressions:

∙
x⊕ 1 =

∙
x,

∙
x⊕ 0 =

∙
x,

∙
x⊕

∙
x = 0,

∙
x⊕

∙
x = 1,

1⊕ 1 = 0,
∙

x0(1⊕
∙

x1) =
∙

x0 ⊕
∙

x0
∙

x1,

f ⊕ f
∙
x = f

∙
x,where f is any Boolean function.

For any XOR expression, the following properties hold:

1- x0 ⊕ (x1 ⊕ x2) = (x0 ⊕ x1)⊕ x2 = x0 ⊕ x1 ⊕ x2. (Associative)

2- x0(x1 ⊕ x2) = x0x1 ⊕ x0x2. (Distributive)

3- x0 ⊕ x1 = x1 ⊕ x0. (Commutative)

128 A. Younes

4.1.2 Representation of Reed-Muller Expansions

Any Boolean function f with n variables f ∶ {0, 1}n → {0, 1} can be represented as

a sum of products [3],

f (x0, ..., xn−1) =
2n−1
∑

i=0
aimi, (8)

where mi are the minterms and ai = 0 or 1 indicates the presence or absence of

minterms respectively and
∑

means that the arguments are subject to Boolean oper-

ation inclusive-OR. This expansion can also be expressed in RM as follows [1],

f (
∙
x0, ...,

∙
xn−1) =

2n−1
⨁

i=0
bi𝜑i, (9)

where,

𝜑i =
n−1
∏

k=0

(∙
xk

)ik
, (10)

where
∙
xk = xk or xk and xk, bi ∈ {0, 1} and ik represent the binary digits of i.

𝜑i are known as product terms and bi determine whether a product term is present

or not.
⨁

means that the arguments are subject to Boolean operation exclusive-OR
(XOR) and multiplication is assumed to be the AND operation.

A RM function f (
∙
x0, ...,

∙
xn−1) is said to have fixed polarity if throughout the expan-

sion each variable
∙
xk is either xk or xk exclusively. If for some variables xk and xk both

occur when the function is said to have mixed polarity [3].

There is a relation between ai and bi coefficients shown in Eqs. 8 and 9, which

can be found in detail in [3].

4.1.3 𝝅 Notations

Consider the fixed polarity RM functions with
∙
xk in its xk form (Positive Polarity

RM). The RM expansion can be expressed as a ring sum of products. For n variables

expansion, there are 2n
possible combinations of variables known as the 𝜋 terms [3].

1 and 0 are used to indicate the presence or absence of a variable in the product term

respectively. For example, a four variable term x3x2x1x0 contains the four variables

and is represented by 1111 = 15, x3x2x1x0 = 𝜋15 and x3x1x0 (x2 is missing) = 𝜋11.

Using this notation [3], the positive polarity RM expansion shown in Eq. 9 can

be written as follows,

Using Reed-Muller Expansions in the Synthesis . . . 129

f (x0, ..., xn−1) =
2n−1
⨁

i=0
bi𝜋i. (11)

The conversion between 𝜑i and 𝜋i used in Eqs. 9 and 11 can be done in both

directions. For example, consider the three variables x0, x1 and x2:

𝜑7 = x0x1x2 = 𝜋7,

𝜑6 = x0x1x2 = x0x1(x2 ⊕ 1)
= x0x1x2 ⊕ x0x1
= 𝜋7 ⊕ 𝜋6,

𝜑5 = x0x1x2 = x0(x1 ⊕ 1)x2
= x0x1x2 ⊕ x0x2
= 𝜋7 ⊕ 𝜋5.

Similarly we can construct the rest of conversion as follows:

𝜑4 = 𝜋7 ⊕ 𝜋6 ⊕ 𝜋5 ⊕ 𝜋4,

𝜑3 = 𝜋7 ⊕ 𝜋3,

𝜑2 = 𝜋7 ⊕ 𝜋6 ⊕ 𝜋3 ⊕ 𝜋2,

𝜑1 = 𝜋7 ⊕ 𝜋5 ⊕ 𝜋3 ⊕ 𝜋1,

𝜑0 = 𝜋7 ⊕ 𝜋6 ⊕ 𝜋5 ⊕ 𝜋4 ⊕ 𝜋3 ⊕ 𝜋2 ⊕ 𝜋1 ⊕ 𝜋0.
For the above conversion, the inverse is also true [3],

𝜋7 = 𝜑7,

𝜋6 = 𝜑7 ⊕𝜑6,

𝜋5 = 𝜑7 ⊕𝜑5,
and so on.

4.2 Boolean Quantum Logic

In the construction of Boolean quantum circuits, we initialize a single auxiliary qubit

to 0, to hold the result of the Boolean function at the end of the computation.

Without loss of generality, we consider in this section the CNOT(C|t) gate where

only cond-1 could be set over the control qubits in C, i.e. the state of the target qubit

|t⟩ is flipped if and only if all the qubits in C are set to state |1⟩. For example, consider

the CNOT gate shown in Fig. 14, it can be represented as CNOT
({

x0, x2
}

|x3
)

. The

state of the qubit ||x3⟩ is flipped if and only if ||x0⟩ = |
|x2⟩ = |1⟩with whatever value in

|
|x1⟩, i.e. ||x3⟩ is changed according to the operation x3 → x3 ⊕ x0x2. The case where

C is an empty set is written as CNOT(x0), where |
|x0⟩ is the qubit that is flipped

unconditionally.

Using the above definition of the CNOT gate and the definition of the BQC, the

quantum circuit shown in Fig. 15 can be represented as follows,

U = CNOT({x0, x1}|x2).CNOT({x1}|x2).CNOT(x2). (12)

130 A. Younes

Fig. 14 CNOT
({

x0, x2
}

|x3
)

gate
�

�

�

|x0〉
|x1〉
|x2〉
|x3〉

Fig. 15 Boolean quantum

circuit
�

� �

���

|x0〉
|x1〉
|x2〉

Now, to trace the operations that have been applied on the target qubit ||x2⟩, we

trace the operation of each of the CNOT gates as follows:

∙ CNOT({x0, x1}|x2) ⇒ x2 → x2 ⊕ x0x1.

∙ CNOT({x1}|x2) ⇒ x2 → x2 ⊕ x1.

∙ CNOT(x2) ⇒ x2 → x2 = x2 ⊕ 1.

Combining the three operations, we can see that the complete operation applied

on |
|x2⟩ is represented as follows,

x2 → x2 ⊕ x0x1 ⊕ x1 ⊕ 1. (13)

If ||x2⟩ is initialized to |0⟩, applying the circuit makes ||x2⟩ carry the result of the

operation x0x1 ⊕ x1 ⊕ 1, which is equivalent to the operation x0 + x1.

4.3 Representation of BQC as RM

4.3.1 BQC for Positive Polarity RM

Considering the previous sections, we might notice that there is a close connection

between RM and quantum circuits representing arbitrary Boolean functions. In this

section, we show the steps that allow us to implement any arbitrary Boolean function

f using positive polarity RM expansions as quantum circuits.

Example:

Consider the function f
(

x0, x1, x2
)

= x0 + x1x2. To find the quantum circuit imple-

mentation for this function, we may follow the following procedure [3]:

Using Reed-Muller Expansions in the Synthesis . . . 131

Fig. 16 Quantum circuit

implementation for

f
(

x0, x1, x2
)

= x0 + x1x2 �

�

�� �

� �|x0〉
|x1〉
|x2〉

|x0〉
|x1〉
|x2〉

|0〉 | f 〉

(1) The above function can be represented as a sum of products as follows,

f (x0, x1, x2) = x0x1x2 + x0x1x2 + x0x1x2 + x0x1x2 + x0x1x2. (14)

(2) Converting to 𝜑i notation according to Eq. 9,

f (x0, x1, x2) = 𝜑0 ⊕𝜑1 ⊕𝜑2 ⊕𝜑3 ⊕𝜑7. (15)

(3) Substituting 𝜋 product terms shown in Sect. 4.1.3, we get,

f = 𝜋7 ⊕ 𝜋6 ⊕ 𝜋5 ⊕ 𝜋4 ⊕ 𝜋3 ⊕ 𝜋2 ⊕ 𝜋1 ⊕ 𝜋0 ⊕ 𝜋7 ⊕ 𝜋5⊕

𝜋3 ⊕ 𝜋1 ⊕ 𝜋7 ⊕ 𝜋6 ⊕ 𝜋3 ⊕ 𝜋2 ⊕ 𝜋7 ⊕ 𝜋3 ⊕ 𝜋7.
(16)

(4) Using modulo-2 operations to simplify this expansion we get,

f = 𝜋7 ⊕ 𝜋4 ⊕ 𝜋0 = x0x1x2 ⊕ x0 ⊕ 1. (17)

Using the last expansion in Eq. 17, we can create the quantum circuit, which

implements this function as follows:

1. Initialize the target qubit |t⟩ to the state |0⟩, which holds the result of the Boolean

function.

2. Add a CNOT gate for each product term in this expansion taking the Boolean

variables in this product term as control qubits and the result qubit as the target

qubit |t⟩.
3. For the product term, which contains 1, we add a CNOT(t), so the final circuit

is as shown in Fig. 16.

It is important to notice here that the representation of BQC as positive polarity

RM is equivalent to the Direct Synthesis method, where we get the same circuit as

follows: Consider the above example for f
(

x0, x1, x2
)

= x0 + x1x2 to be represented

using the Direct Synthesis method:

i. Representing the function as a sum of products as shown in Eq. 14 is equivalent

to constructing the truth table of that function with the configurations that makes

the function evaluate to true.

132 A. Younes

ii. Converting to 𝜑i notation shown in Eq. 15 is equivalent to constructing the ini-

tial quantum circuit by step-1 of the Direct Synthesis method, where xk ⊕ 𝛿k is

equivalent to xk for 𝛿k = 0 and xk for 𝛿k = 1 in the expressions shown in Eq. 10.

iii. Substituting 𝜋 product terms shown in Eq. 16 is equivalent to the decomposi-

tion to be applied by step-2 of the Direct Synthesis method, where we remove

all the occurrences of xk from the minterm that is similar to removing all the

occurrences of 𝛿k = 1 depends on the condition being specified over each qubit.

iv. Using modulo-2 operations to simplify the expansion as shown in Eq. 17 is

equivalent to the rule of optimization to be applied by step-3 of the Direct Syn-

thesis method.

The Direct Synthesis method in the previous section provides a simpler way to

demonstrate the construction of that kind of circuit without the need to understand

the properties of RM.

4.3.2 BQC for Fixed Polarity RM

Consider the RM expansion shown in Eq. 9 where
∙
xk can be xk or xk exclusively. For

n variables expansion where each variable may be in its true or complemented form,

but not both, then there are 2n
possible expansions. These are known as fixed polarity

generalized Reed-Muller (GRM) expansions [3].

We can identify different GRM expansions by a polarity number, which is a num-

ber that represents the binary number calculated in the following way [3]: If a vari-

able appears in its true form, it is represented by 0, and 1 for a variable appearing

in its complemented form. For example, consider the Boolean function f (
∙
x0,

∙
x1,

∙
x2):

f (x0, x1, x2) has polarity 0 (000), f (x0, x1, x2) has polarity 2 (010), f (x0, x1, x2) has

polarity 5 (101) and f (x0, x1, x2) has polarity 7 (111) and so on.

The RM expansion with a certain polarity can be converted to another polarity

by replacing any variable xk by (xk ⊕ 1) or any variable xk by (xk ⊕ 1). For example,

consider the Boolean function f
(

x0, x1, x2
)

= x0 + x1x2, it can be represented with

different polarity RM expansions as follows,

f = x0x1x2 ⊕ x0 ⊕ 1 ∶ 0-polarity, (18)

f = x0x1x2 ⊕ x0x1 ⊕ x0 ⊕ 1 ∶ 1-polarity, (19)

f = x0x1x2 ⊕ x1x2 ⊕ x0x1 ⊕ x1 ⊕ x0 ∶ 5-polarity, (20)

f = x0 x1 x2 ⊕ x0 x2 ⊕ x1 x2 ⊕ x0 x1 ⊕ x1 ⊕ x2 ⊕ 1 ∶ 7-polarity. (21)

Using Reed-Muller Expansions in the Synthesis . . . 133

Different polarity RM expansions give different quantum circuits for the same

Boolean function. For example, consider the different polarity representations for

the function f
(

x0, x1, x2
)

= x0 + x1x2 shown above. Each representation has different

quantum circuit (as shown in Fig. 17) using the following procedure:

1. Initialize the target qubit |t⟩ to the state |0⟩, which holds the result of the Boolean

function.

2. Add a CNOT gate for each product term in the RM expansion taking the Boolean

variables in this term as control qubits and the result qubit as the target qubit |t⟩.
3. For the product term, which contains 1, we add a CNOT(t).
4. For control qubit ||xk⟩, which appears in complemented form, we add a CNOT(xk)

at the beginning of the circuit to negate its value during the run of the circuit and

add another CNOT(xk) at the end of the circuit to restore its original value.

It is clear from Fig. 17 that changing polarity changes the number of the CNOT
gates in the circuit, i.e. its efficiency. This means that there is a need to develop search

algorithms for optimizing canonical Reed-Muller expansions for quantum Boolean

functions similar to those found for classical digital circuit design [48, 55], taking

into account that efficient expansions for classical computers may be not so efficient

for quantum computers. For example, consider f (x0, x1, x2) defined as follows,

f = x0x1x2 + x0x1x2 + x0x1x2 + x0x1x2, (22)

its 0-polarity expansion is given by x0 ⊕ x2 ⊕ 1 and its 3-polarity expansion is

given by x0 ⊕ x2. From a classical point of view, 3-polarity expansion is better than

Fig. 17 Quantum circuits for the Boolean function f
(

x0, x1, x2
)

= x0 + x1x2 with different polar-

ities

134 A. Younes

Fig. 18 Changing polarity may affect the number of the CNOT gates used

0-polarity expansion because it contains two product terms rather that three prod-

uct terms in 0-polarity expansion. On the contrary, implementing both expansions

as BQC we can see that 0-polarity expansion is better than 3-polarity expansion

because of the number of the CNOT gates used as shown in Fig. 18.

Using the Direct Synthesis method, the worst case ocurs when the circuit contains

2n
gates and we have shown an alternative decomposition (Fig. 12) where we get

O(n) instead (see Sect. 3.3). Actually this is equivalent to changing the polarity of

the expression in this case, i.e. the case where we get 2n CNOT gates is equivalent to

the 0-polarity form and the case where we get O(n) CNOT gates is equivalent to the

2n − 1 polarity form where all the inputs are changed from xk to xk ⊕ 1 in the RM

expression.

4.3.3 BQC for Mixed Polarity RM

Mixed polarity RM are expansions where it is allowed that some variables
∙
xk to

appear in their true form (xk) and their complemented form (xk) both in the same

expansion [3]. To understand how this kind of expansion can be implemented as a

quantum circuit, consider the three variable mixed polarity RM,

f = x0x1x2 ⊕ x0x1 ⊕ x0 ⊕ x2 ⊕ 1. (23)

Using the following procedure, we get the quantum circuit as shown in Fig. 19:

1. Initialize the target qubit |t⟩ to the state |0⟩, which holds the result of the Boolean

function.

2. Add a CNOT gate for each product term in the RM expansion taking the Boolean

variables in this term as control qubits and the result qubit as the target qubit |t⟩.
3. For the product term, which contains 1, we add a CNOT(t).
4. For control qubit ||xk⟩, which appears in complemented form, we add a CNOT(xk)

directly before and after (negate/restore) the CNOT gate where this variable

appears in its complemented form.

Using Reed-Muller Expansions in the Synthesis . . . 135

Fig. 19 Mixed polarity

BQC for f =
x0x1x2 ⊕ x0x1 ⊕ x0 ⊕ x2 ⊕ 1

� �

�

�

�

�

�

�

�

�

�

�

� � �

� �

�|x0〉
|x1〉
|x2〉
|0〉

|x0〉
|x1〉
|x2〉
| f 〉

4.3.4 Calculating the Number of the CNOT Gates

For a Fixed Polarity RM expansion, the number of the CNOT gates in the final

quantum circuit can be calculated as follows,

m1 = S + 2K, 0 ≤ S ≤ 2n; 0 ≤ K ≤ n, (24)

where m1 is the total number of the CNOT gates, S is the number of product terms

in the expansion, K is the number of variables in complemented form and n is the

number of inputs to the Boolean function, the term 2K represents the number of the

CNOT gates that are added at the beginning and the ending of the circuit (comple-

mented form) to negate the value of the control qubit during the run of the circuit

and to restore its original value respectively.

For a Mixed Polarity RM expansion, the number of the CNOT gates in the final

quantum circuit can be calculated as follows,

m2 = S + 2L, 0 ≤ S ≤ 2n; 1 ≤ L < n2n−1
, (25)

where m2 is the total number of the CNOT gates, S is the number of product terms in

the expansion, L is the total number of occurrences of all variables in complemented

form and n is the number of inputs to the Boolean function, the term 2L represents

the number of the CNOT gates which may be added before and after the control qubit

which appears in complemented form during the run of the circuit to negate/restore

its value respectively.

5 Practical Construction of BQC

In general, the meaning of optimality for quantum circuits is connected with practical

constraints, for instance, the interaction between certain control qubits [41]. Circuits

depend on the physical implementation, so, it is sometimes difficult to take certain

qubits as control qubits on the same CNOT gate (involved in the same operation)

because the interaction between these qubits may be difficult to control. Another

constraint is the number of control qubits per CNOT gate [5]. There have been efforts

136 A. Younes

Fig. 20 An abstract

four-qubit system with its

allowed interaction

�
�

�� �
�

��.

�
�

�� �
��

Y Y Y

Y Y Y

Y Y Y

Y Y Y

N

N

Y

Y

x0 x1 x2 0

x0

x1

x2

0

|0| 〉x1〉

|x2〉

|x0〉

Y Y Y

Y Y Y

Y Y Y

Y Y Y

N

N

Y

Y

Fig. 21 The SWAP gate

�

�

�

�

�

� �
��

|x0〉
|x1〉

|x1〉
|x0〉

SWAP

|x0〉
|x1〉 |x0〉

|x1〉

Fig. 22 Solving the

interaction problem using the

SWAP gate �
�
�

�

�
�

�
��
� �

��
�

|x0〉
|x1〉
|x2〉
|0〉

|x0〉
|x1〉
|x2〉
|0〉

to try to decrease the number of control qubits even with an increase in the total

number of the CNOT gates in the circuit. Another constraint is the total number the

CNOT gates in the circuit which should be kept to a minimum so we are able to

maintain coherence during the operation of the circuit. In this section, we review

how these constraints are being handled (one at a time) at present and how RM

expansions can help in handling this problem.

Consider an abstract four-qubits system shown in Fig. 20 where Y and N in the

associated table mean that the qubits can and cannot interact respectively. For sim-

plicity, the auxiliary qubit |0⟩ is able to interact with all the control qubits ||x0⟩, ||x1⟩
and |

|x2⟩. The main problem is in the interaction between |
|x0⟩ and |

|x2⟩. This prob-

lem is known to be handled using the SWAP gate [41] shown in Fig. 21. To illustrate

this, consider the gate shown in Fig. 22, where ||x0⟩ and |
|x2⟩ are involved in the same

CNOT gate. By temporarily swapping the values of ||x0⟩ and |
|x1⟩, this gate can be

implemented on the above system with an increase in the total number of the CNOT
gates because of the added SWAP gates.

Another constraint is the number of control qubits per CNOT gate. This problem

has been studied in [5] and it was shown that the number of control qubits can be

reduced to two control qubits/CNOT gate (the Toffoli gate) by using extra auxiliary

qubits and an increase in the number of the CNOT gates in the final circuit (4n − 8)
Toffloi gates, n ≥ 5, where n is the number of control qubits/gate). Notice that we

add another (4n − 7) Toffoli gates to reset the auxiliary qubits (which is optional),

Using Reed-Muller Expansions in the Synthesis . . . 137

Fig. 23 Decreasing the

number of control

qubits/CNOT gate

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�|x0〉
|x1〉
|x2〉
|x3〉
|0〉
|0〉
|0〉

|x0〉
|x1〉
|x2〉
|x3〉
|0〉
|0〉
|0〉

|x0〉
|x1〉
|x2〉
|x3〉
|0〉
|0〉
| f 〉

each of which can then be decomposed to two–qubit gates (Lemma 6.1 in [5]) which

was proved to be universal for quantum computation [4, 29]. In Fig. 23, we show an

example of an equivalent decomposition to that shown in Lemma 7.2 in [5] but more

efficient using the transformation rules shown in [38], where each CNOT gate with

n ≥ 4 can be decomposed to (2n − 7) Toffoli gates with another optional (2n − 6)
Toffoli gates . This was proved in [27].

The above techniques deal with different constraints in a gate level approach.

Using RM makes it possible to deal with the problem using a circuit level approach.

To illustrate this, consider the equivalent quantum circuits shown in Fig. 24. Consider

implementing these circuits on the system shown in Fig. 20. The 0-polarity form

contains, in general, the interaction problem between |
|x0⟩ and |

|x2⟩ twice whereas

the 2-polarity and 6-polarity contain this interaction only once. The 0-polarity con-

tains four CNOT gates and 2-polarity contains two CNOT gates and two simple NOT
gates and the 6-polarity contains a single CNOT gate with an increase in the sim-

ple NOT gates in favour of more complicated controlled operations. In terms of the

total number of control qubits, 0-polarity contains eight control qubits, 2-polarity

�

�

�

�

�

�

� �

� �

�

�

�

�

�

�

�

�

�

� �

�

� � � � � � �

|x0〉
|x1〉

|0〉
|x2〉

|x0〉
|x1〉
|x2〉
| f 〉

6-polarity0-polarity 2-polarity

Fig. 24 Optimization using different polarities

138 A. Younes

contains five control qubits and 6-polarity contains three control qubits. In that sense,

using RM can be considered as a platform for synthesis and optimization of BQC to

minimize the cost of using any of the above constraint handling techniques.

6 Conclusion

In this chapter, we showed that there is a close connection between quantum Boolean

operations and Reed-Muller expansions, which implies that a complete study of syn-

thesis and optimization of Boolean quantum logic can be done within the domain

of classical Reed-Muller logic. If we consider the positive polarity RM expansions

and its corresponding BQC, then using this method we get the same circuit that we

would get using the Direct Synthesis method without the explicit construction of the

truth table. The worst case we get using positive polarity RM can be avoided using

different polarities. The Direct Synthesis method provides a simpler way to demon-

strate the construction of that kind of circuit without the need to understand the RM

expansions.

We showed that the sense of optimality in quantum circuits’ construction fol-

lows practical constraints, which can also be handled using the RM expansions. We

showed that an efficient RM expression on classical computers may not be so efficient

on quantum computers and vice versa. In that sense, we showed that the construction

of Boolean quantum logic could be tackled within the domain of RM and algorithms

for optimizing BQC that are required should be able to be found within that domain.

References

1. Akers, S.B.: On a theory of Boolean functions. J. SIAM 7, 487–489 (1959)

2. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C-27(6), 509–516 (1978)

3. Almaini, A.: Electronic Logic Systems, chapter 12: Modulo-2 Logic Circuits, p. 470, 2nd edn.

Prentice-Hall, Englewood Cliffs, NJ (1989)

4. Barenco, A.: A universal two-bit gate for quantum computation. Proc. R. Soc. Lond. A 449,

679–683 (1995)

5. Barenco, A., Bennett, C., Cleve, R., Divincenzo, D.P., Margolus, N., Shor, P., Sleator, T.,

Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5),

3457–3467 (1995)

6. Barnum, H., Bernstein, H., Spector, L.: Quantum circuits for OR and AND of ORs. J. Phys.

A: Math. Gen. 33(45), 8047–8057 (2000)

7. Benioff, P.: Quantum mechanical hamiltonian models of Turing machines. J. Stat. Phys. 29,

515–546 (1982)

8. Benioff, P.: Quantum mechanical hamiltonian models of Turing machines that dissipate no

energy. Phys. Rev. Lett. 48, 1581–1585 (1982)

9. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

10. Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum

computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

11. Bennett, C., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptog-

raphy. J. Cryptol. 5(1), 3–28 (1992)

Using Reed-Muller Expansions in the Synthesis . . . 139

12. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473

(1997)

13. Berthiaume, A., Brassard, G.: The quantum challenge to complexity theory. In: Proceedings

of the 7th IEEE Conference on Structure in Complexity Theory, pp. 132–137 (1992)

14. Beth, T., Roetteler, M.: Quantum algorithms: applicable algebra and quantum physics. In:

Quantum Information, pp. 96–150. Springer (2001)

15. Braunstein, S., Fuchs, A.: A quantum analog of Huffman coding. IEEE Trans. Inf. Theory

46(4), 1644–1649 (2000)

16. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-

put. C-35(8), 677–691 (1986)

17. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58(2), 345–363

(1936)

18. Cirac, J., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–

4094 (1995)

19. Cleve, R., Watrous, J.: Fast parallel circuit for the quantum Fourier transform. In: Proceedings

of the 41th Annual Symposium on Foundations of Computer Science, p. 526 (2000)

20. Cory, D., Fahmy, A., Havel, T.: Nuclear magnetic resonance spectroscopy: an experimentally

accessible paradigm for quantum computing. In: Proceedings of the 4th Workshop on Physics

and Computation, pp. 87–91 (1996)

21. De Vos, A., Desoete, B., Janiak, F., Nogawski, A.: Control gates as building blocks for

reversible computers. In: Proceedings of the 11th International Workshop on Power and Tim-

ing Modeling, Optimization and Simulation, pp. 9201–9210 (2001)

22. Deptartment of Computer Science, North Carolina State University. N.C.S.U. collaborative

benchmarking laboratory. http://www.cbl.ncsu.edu/benchmarks/

23. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum com-

puter. Proc. R. Soc. Lond. A 400, 97–117 (1985)

24. Deutsch, D., Barenco, A., Ekert, A.: Universality in quantum computation. Proc. R. Soc. Lond.

A 449, 669–677 (1995)

25. Deutsch, D., Josza, R.: Rapid solution of problems by quantum computation. Proc. R. Soc.

Lond. A 439, 553–558 (1992)

26. Devadas, S., Ghosh, A., Keutzer, K.: Logic Synthesis. McGraw-Hill, New York (1994)

27. Diao, Z., Zubairy, M.S., Chen, G.: Quantum circuit design for Grover’s algorithm. Z. Natur-

forschung, vol. 57a, pp. 701–708 (2002)

28. Dirac, P.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1947)

29. Divincenzo, D.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51(2),

1015–1022 (1995)

30. Dueck, G.W., Maslov, D.: Reversible function synthesis with minimum garbage outputs. In:

Proceedings of the 6th International Symposium on Representations and Methodology of

Future Computing Technologies, pp. 154–161 (2003)

31. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

32. Feynman, R.: Quantum mechanical computers. Opt. News 11(2), 11–20 (1985)

33. Feynman, R.: Feynman Lectures on Computation. Addison-Wesley, Reading (1996)

34. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

35. Gershenfeld, N., Chuang, I.: Bulk spin-resonance quantum computation. Science 275, 350–356

(1997)

36. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the

28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

37. Gruska, J.: Quantum Computing. McGraw-Hill, London (1999)

38. Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing CNOT–based

quantum circuits. In: Proceedings of the 39th Conference on Design Automation, pp. 419–424.

ACM Press (2002)

39. Keyes, R., Landauer, R.: Minimal energy dissipation in logic. IBM J. Res. Dev. 14, 152–157

(1970)

http://www.cbl.ncsu.edu/benchmarks/

140 A. Younes

40. Lee, J., Kim, J., Cheong, Y., Lee, S.: A Practical Method for Constructing Quantum Combi-

national Logic Circuits (1999). arXiv:9911053

41. Lloyd, S.: A potentially realizable quantum computer. Science 261, 1569–1571 (1993)

42. Lloyd, S.: Almost any quantum logic gate is universal. Phys. Rev. Lett. 75(2), 346–349 (1995)

43. Maslov, D., Dueck, G.W.: Complexity of reversible Toffoli cascades and EXOR PLAs. In:

Proceedings of the 12th International Workshop on Post-Binary ULSI Systems, pp. 17–20

(2003)

44. Maslov, D., Dueck, G.W., Miller, D.M.: Fredkin/Toffoli templates for reversible logic synthe-

sis. In: Proceedings of the ACM/IEEE International Conference on Computer-Aided Design,

p. 256 (2003)

45. Maslov, D., Dueck, G.W., Miller, D.M.: Simplification of Toffoli networks via templates. In:

Proceedings of the 16th Symposium on Integrated Circuits and Systems Design, p. 53 (2003)

46. Miller, D.M., Dueck, G.W.: Spectral techniques for reversible logic synthesis. In: Proceedings

of the 6th International Symposium on Representations and Methodology of Future Computing

Technologies, pp. 56–62 (2003)

47. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic

synthesis. In: Proceedings of the 40th Conference on Design Automation, pp. 318–323 (2003)

48. Miller, J., Thomson, P.: Highly efficient exhaustive search algorithm for optimising canonical

Reed-Muller expansions of Boolean functions. Int. J. Electron. 76, 37–56 (1994)

49. Mishchenko, A., Perkowski, M.: Logic synthesis of reversible wave cascades. In: Proceedings

of International Workshop on Logic and Synthesis (2002)

50. Moore, G.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117

(1965)

51. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Uni-

versity Press, Cambridge, UK (2000)

52. Ogawa, T., Nagaoka, H.: Strong converse to the quantum channel coding theorem. IEEE Trans.

Inf. Theory 45(7), 2486–2489 (1999)

53. Patel, K.N., Markov, I.L., Hayes, J.P.: Efficient Synthesis of Linear Reversible Circuits (2003).

arXiv:0302002

54. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266 (1985)

55. Robertson, G., Miller, J., Thomson, P.: Non-exhaustive search methods and their use in the

minimisation of Reed-Muller canonical expansions. Int. J. Electron. 80(1), 1–12 (1996)

56. Rylander, B., Soule, T., Foster, J., Alves-foss, J.: Quantum evolutionary programming. In: Pro-

ceedings of the Genetic and Evolutionary, Computation Conference, pp. 1005–1011 (2001)

57. School of Computer Science, University of Victoria. Maslov reversible logic synthesis bench-

marks. http://www.cs.uvic.ca/dmaslov/

58. Shende, V., Prasad, A., Markov, I., Hayes, J.: Reversible logic circuit synthesis. In: Proceedings

of ACM/IEEE International Conference on Computer-Aided Design, pp. 353–360 (2002)

59. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceed-

ingsof the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE

Computer Society Press (1994)

60. Simon, D.: On the power of quantum computation. In: Proceedings of the 35th Annual Sym-

posium on Foundations of Computer Science, pp. 116–123 (1994)

61. Spector, L., Barnum, H., Bernstein, H., Swami, N.: Finding better-than-classical quantum

AND/OR algorithm using genetic programming. In: Proceedings of the Congress on Evolu-

tionary Computation, vol. 3, pp. 2239–2246. IEEE Press (1999)

62. Surkan, A., Khuskivadze, A.: Evolution of quantum algorithms for computer of reversible oper-

ators. In: The 2002 (NASA/DOD) Conference on Evolvable Hardware, IEEE Computer Soci-

ety, pp. 186–187 (2001)

63. Toffoli, T.: Reversible computing. In: de Bakker, W., van Leeuwen, J. (eds.), Automata, Lan-

guages and Programming, p. 632. Springer, New York (1980). Technical Memo MIT/LCS/TM-

151, MIT Lab for Computer Science (unpublished)

64. Travaglione, B.C., Nielsen, M.A., Wiseman, H.M., Ambainis, A.: ROM-based Computation:

Quantum Versus Classical (2001). arXiv:0109016

http://arxiv.org/abs/9911053
http://arxiv.org/abs/0302002
http://www.cs.uvic.ca/dmaslov/
http://arxiv.org/abs/0109016

Using Reed-Muller Expansions in the Synthesis . . . 141

65. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. In:

Proceedings of the London Mathematical Society, Series 2, vol. 42, pp. 230–265 (1936)

66. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations.

Phys. Rev. A 54(1), 147–153 (1996)

67. De Vos, A., Desoete, B., Adamski, A., Pietrzak, P., Sibinski, M., Widerski, T.: Design of

reversible logic circuits by means of control gates. In: Proceedings of the 10th International

Workshop on Integrated Circuit Design, Power and Timing Modeling, Optimization and Sim-

ulation, pp. 255–264 (2000)

68. Wiedemann, D.: Quantum cryptography. SIGACT News 18(2), 48–51 (1987)

69. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)

70. Younes, A., Miller, J.: Automated method for building CNOT based quantum circuits for

Boolean functions. In: Proceedings of the 1st International Computer Engineering Conference

New Technologies for the Information Society, pp. 562–565, (2004)

71. Younes, A., Miller, J.: Representation of Boolean quantum circuits as Reed-Muller expansions.

Int. J. Electron. 91(7), 431–444 (2004)

Part II
Cartesian Genetic Programming

Applications

Some Remarks on Code Evolution with
Genetic Programming

Wolfgang Banzhaf

Abstract In this chapter we take a fresh look at the current status of evolving

computer code using Genetic Programming methods. The emphasis is not so much

on what has been achieved in detail in the past few years, but on the general research

direction of code evolution and its ramifications for GP. We begin with a quick glance

at the area of Search-based Software Engineering (SBSE), discuss the history of GP

as applied to code evolution, consider various application scenarios, and speculate

on techniques that might lead to a scaling-up of present-day approaches.

1 Search-Based Software Engineering

Search-based Software Engineering is a technique within the area of Software Engi-

neering that formulates software engineering problems as search problems which

can be addressed by established (meta-)heuristic search methods [20]. More gen-

erally, all kinds of Machine Learning approaches can brought to bear on these

search/optimization problems, and possibly help accelerate the pace of program-

ming, debugging and testing or repairing and repurposing of software. The ultimate

goal of these approaches would be to allow computers to program computers, in

other words “automatic programming”.

All Engineering disciplines are pragmatic in the approach to their respective

object of study. Software Engineering (SE) is no exception. When Harman and Jones

wrote their manifesto on search-based approaches to SE in 2001 [20], they wondered

why SE had been so slow to take up the challenges of search/optimization that other

Engineering disciplines had taken up much earlier. They cite the widespread use of

genetic algorithms and other metaheuristic search techniques in order to find satis-

factory solutions to problems in SE often characterized by competing constraints,

inconsistencies and contradictory goals, multiple solutions of varying complexity

W. Banzhaf (✉)

BEACON Center for the Study of Evolution in Action and Department

of Computer Science and Engineering, Michigan State University,

East Lansing, MI 48824, USA

e-mail: banzhafw@msu.edu

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_6

145

146 W. Banzhaf

and reachable perfect solutions. Perhaps it was the “youth” of SE that has been one

of the reasons why this engineering discipline was not yet adopting techniques that

at that time had already made serious in-roads in civil or mechanical, chemical, bio-

medical or electric engineering. But a decade after John Koza’s seminal book [29]

on Genetic Programming, the time seemed to have been right to make this bold sug-

gestion about the possible use of metaheuristics in SE.

A review of the search-based software engineering (SBSE) literature shows the

main current thrusts of this area to be:

∙ Software testing [43].

∙ Non-functional property optimization [1, 55].

∙ Software bug repair [14].

∙ Requirement analysis [17].

∙ Software design, development and maintenance planning [2, 3, 9].

∙ Software refactoring [34].

These techniques are, however, far from a complete list of search methods applied

in software engineering. For example, there is model checking as a way to provide

a quality measure for searching in the space of programs [27, 28], software duplica-

tion (clone) search using various methods [51], semantics-based code search [50],

code completion [46], code refactoring [45], code smell detection [13] and feature

summarization [42], to name a few more examples where search techniques are or

can be applied.

2 History of Genetic Programming as Applied to Code
Evolution

The core idea of Genetic Programming has, of course, always been to program com-

puters using inspiration from the theory of natural evolution [29]. However, for the

first two decades of its application, GP mostly was used to evolve algorithms that

could model systems (symbolic regression) [30] or classify data (a typical machine

learning task) [12].

When we wrote our textbook for GP in 1998 [6], the ambition of writing larger

pieces of software with GP—and thus to automatically program—was considered

to be far from being realistic. Though the vision was upheld and we claimed that

we live, as far as programming computers is concerned, in an age similar to the

Middle Ages before the invention of printing with movable letters, we did not see

an easy path to achieving this goal. But why would one have to put code together

by hand? Wouldn’t an automatic method, just taking the specification of program

behavior in a suitable form be enough to instruct a GP-driven process to fulfill these

expectations? We also claimed that programmers are acting in a similar way as one

would have to expect from a GP method [6], by writing code in pieces, copying and

pasting, inserting changes, i.e. mutating, by recombining and adapting functions that

were originally designed for different purposes or in different contexts.

Some Remarks on Code Evolution with Genetic Programming 147

While GP had successfully evolved small pieces of code from scratch, the method

could not easily scale up to large program packages or anything beyond 100–200

lines of code. So scalability was a big problem, along with the need to specify com-

plex behavior for a multi-faceted application with many different use cases.

Nevertheless, researchers examined the search spaces of programs, often making

use of radical simplifications, like examining GP’s behavior in the search space of

Boolean functions. In a series of works, W.B. Langdon and R. Poli examined these

search spaces and the behavior of GP in it [37]. And while this led to the recognition

of important factors, like the complexity of a solution [32], or the different effects of

operators when searching in this space [33], or the advantages of neutrality [25], the

question of how to scale up GP to large search spaces remained unresolved [7].

In the domain of symbolic regression and classification/supervised learning, it

was again John Koza who has demonstrated how to scale up to more complex prob-

lems. Using a method devised by Gruau [18] for neural networks akin to a develop-

mental process, Koza and co-workers were able to demonstrate the ability of GP to

solve more complex problems [31]. Development and the rewriting of code was also

at the center of self-modifying Cartesian GP (SMCGP) [19]. In that case, rather than

complexity, the issue was generalization ability.

As mentioned, these latter developments took place in the classical GP application

spaces of regression/modeling and classification/learning. In the second half of the

last decade, however, important steps were taken that ultimately led to the realization

that we might not be so far away from using GP systematically for code evolution.

One of the most important was the demonstration of bug repair capabilities of a

GP system later called GenProg [54]. A program is taken that performs well under

many test cases, but fails under a few (the bug), and repaired by patching the bug.

Three key innovations allowed this step, (i) operation in a high-level search space

provided by the abstract syntax tree (AST) of programs; (ii) assuming that the correct

program behavior is hidden somewhere in the program, and thus no new code needs

to be generated, only already existing code of that program is used; (iii) variation

operators focus on code executed on the failed test cases only. In a series of demon-

strations, the authors showed convincingly that GP can be applied to this domain,

even when the programs consist of hundreds of thousands of lines of code [40].

Another important step was what has become known as “evolutionary” or “genetic

improvement” of programs. Again, existing programs were taken as input, and sub-

jected to evolutionary/genetic optimization processes for non-functional features like

energy consumption, execution time etc., functions that sometimes are under the

influence of compiler flags [5]. In this case, test cases that could assure correct pro-

gram behaviour were either used or co-evolved with the program. The goal was

to keep the functionality of the program while optimizing for other features (non-

functional). One of the main issues in these approaches is the seeding of the popula-

tion. One wants to start with a semantically correct program, and move through the

search space in a way that allows to keep the semantic validity of program variants,

while at the same time optimizing one or more non-functional goals.

Arcuri et al. [5] solve this problem by applying variations to the program, then

filtering—based on test cases that are taken from a test case population—only those

148 W. Banzhaf

program variants that behave correctly. In their study, which took 8 algorithms writ-

ten as C functions of a maximum of 100 lines of code, they found that thousands of

improved code versions were generated with various trade-offs. Many times, GP

exploited features of the code that were on the semantic level and could not be

addressed by a regular compiler.

Harman et al. [23] approach the improvement of code using a BNF grammar for

decomposing the program to be improved. Again, non-functional features, like com-

plexity or speed of execution are targeted, but also an improvement in the accuracy

of the program behavior is selected for, so the process is multi-objective. The BNF

grammar extracted is a representation of the program that can be subjected to vari-

ations via mutation and crossover, and the programs that can be generated by those

modifications are subjected to test cases, with their behavior compared to the origi-

nal program. While this works well for correct programs, the authors point out that

often it is beneficial to have additional information at hand that allows to judge the

functional properties of a program. The original program as well as other sources of

information can be used as an oracle for testing whether the variant program is work-

ing correctly or not. In order to scale up to reasonable code examples, the authors

focus the search on heavily used parts of the program and their corresponding BNF

grammar parts. As for the non-functional criteria, again the pieces of code that are

critical for their fulfillment are most targeted by variation operators [35].

In summary, we can see techniques being developed to improve or repair existing

programs with a focus on instructions that play a role in the behavior to be repaired

or improved. Methods are also developed to either co-evolve test cases, or distrib-

ute test cases such that more difficult tests are sufficiently represented in the set.

More generally, all kinds of Machine Learning approaches can brought to bear on

these search/optimization problems, and possibly help accelerate the pace of pro-

gramming, debugging and testing or repairing and repurposing of software. I briefly

indicate this research direction in the next section.

3 Machine Learning

The field of program synthesis is clearly much bigger than genetic programming.

Learning programs from examples, a task frequently posed to Genetic Program-

ming, is known in Machine Learning as “oracle-based” program synthesis [26]. Inte-

ger Logic Programming (ILP) and other classical machine learning approaches have

been applied on program synthesis [39].

For example, code completion is a task that can be approached from the language

perspective. By analyzing usage patterns and building probabilistic models of pat-

terns in code, it is possible to complete code in constrained applications with high

precision [46]. So instead of the programmer being forced to type out all lines of code

completely, a less tedious approach could be used. While this does not allow really

automatic programming, the transition between manual and automatic programming

becomes continuous.

Some Remarks on Code Evolution with Genetic Programming 149

Machine learning has also been applied to predict a correct program from a set

of programs on the behavior of input/output pairs. The task here is to rank programs

that are correct versus those that are not, based on their behavior. Programming-by-

example tasks [44] are becoming more widespread and the ranking of correct pro-

grams is at the border between machine learning and formal methods in computing

[53].

While Genetic Programming is a pioneer in the field of code synthesis, other

Machine Learning paradigms have taken notice. We can expect, over the next decade,

that a number of interesting developments in the area of automatic programming and

code synthesis will emerge.

4 The Use of Genetic Programming in Code Evolution
Tasks

4.1 An Overview of the Tasks Approachable by GP

Before we discuss a few principles that shine through previous successes in applying

GP to code evolution, let’s first have a look at the different tasks that GP could be

applied to. This list is not exhaustive as I am sure I have overlooked possibilities.

1. Code Adaptation
Starting from working code for one processor type, how can we evolve code for

another?

The simple answer would be to say that if we have an abstract language construct,

we can compile it to different target processors, so the compiler takes care of the

adaptation. This is fine in general, but does not allow to take advantage of the

functionality of the target architecture.

A typical example would be code developed for a CPU (of any kind) needing

adaptation to a GPU architecture. See Langdon and Harman [36] for an example.

2. Code Synthesis
Given a behavioral description of a program, how can we synthesize it from a

source code base?

We need to search in the semantic space of programs to find relevant functions

or code to use and adapt, or at least snippets that can be put together to produce

the overall code looked for.

Semantic search is an active area of research in Software Engineering and its

methods could be brought to bear on this problem [50].

3. Code Generation/Code Creation
Given a behavioral description of a program, how can we generate the code to

produce that behavior?

This was the original question for GP. One uses test (fitness) cases to define the

input/output relation of a program, to define its behavior. It normally starts from

150 W. Banzhaf

a population of random programs to produce the desired behavior. A description

is sometimes called I/O oracles. It could also be done on a higher “specification

level”.

4. Code Optimization
Given code, how can we optimize it with respect to certain (non-functional or

functional) criteria?

Those criteria might be efficiency, speed of execution, robustness, assurance and

security criteria, resilience, or accuracy. This has been proposed under the title of

Genetic Improvement (GI), with the GISMOE approach being a prime example

[49].

5. Code Repair
Given buggy code and a behavioral description, how can we repair the code to

make sure it functions properly?

This task sometimes overlaps with Task 4. Evolving bugs is a very successful

application for GP, as exemplified by the GENPROG system [14, 54].

6. Code Grafting
Given the need to add some functionality to a program that already exists in

another piece of code for a different purpose, how to graft this piece?

Examples of this task have been examined in [8, 48] under the name “program

transplantation”.

7. Code Testing
Given a working program, how can we evolve tests that lead to its failure (in order

to remove those conditions that lead to the failure)?

The production/evolution of test cases is an active area of research in Software

Engineering [11]. With GP, it could be considered as the evolution of test cases,

or the co-evolution of program code and test cases, as already the work of White

et al. have shown [55].

4.2 Main Aspects of Code Evolution

The above applications have a couple of overlapping aspects that are studied in con-

nection with GP in code evolution. Those can be grouped into three categories:

(a) Population seeding

(b) Search bias

(c) Test case application

(a) refers to the question of how to initialize a population of programs at the begin-

ning of the search. The most common procedure in GP so far, but probably not

the method to be used in difficult programming problems, is to start the search

with a random population. Similar to other engineering problems, it might be

better to start from an existing solution and to evolve away from that solution

in search of one that is better in regard to different criteria. Incorporating expert

Some Remarks on Code Evolution with Genetic Programming 151

knowledge via the seeding strategy has been examined in the past [52], how-

ever, we believe there is much to be done to come up with efficient methods for

programming.

(b) refers to the fact that not all search directions in a large search space are equally

promising. For that reason, most researchers in SBSE adopt a strategy where

they first examine which parts of the code are used (at all or frequently) under

the conditions required (i.e. of input/output pairs, or for non-functional criteria).

Once those code segments have been found, they are subjected to intense search

modifications, while other parts which are not used at all, or used only infre-

quently, are left aside as probably not relevant. An inquiry into similar questions

has occupied Biology since a long time under the heading of hyper-mutations

[41].

(c) has been an ongoing discussion in Genetic Programming. To evaluate test cases

is expensive, so the question is whether we have to run all test cases on all indi-

viduals in the population all the time. There have been various scenarios how

to avoid this approach. Sampling techniques have been proposed, both based on

difficulty of the test case, or on the prior frequency of its use [10, 16, 38]. The

co-evolution of test cases has been a topic at least since the early work of Hillis

[24] and has been applied very early in bug fixing [4, 5].

All three categories of questions aim at improving the scalability of GP search in

programming spaces which for any reasonable program is of enormous size. In what

follows we shall provide a few speculative thoughts of how these key questions will

develop over the next few years, and where, to my mind, possible solutions could be

found.

5 How to Scale Up?

The current section is not a comprehensive review of work in SBSE and what has

been achieved (a good survey is [21, 22]), but an attempt at pointing to a number of

key areas where progress can be expected in the future.

The reader might have noticed that we haven’t discussed program representation

for GP at all so far. How is the code represented such that GP can search efficiently

and come up with functional code versions without having to wait until the end of the

universe? We know that program spaces are notoriously large, so search efficiency

is of tantamount importance. So we can safely add

(d) code representation

for GP into the list above.

The original work on evolutionary improvement of existing software used abstract

syntax trees (ASTs) of the source code written in a computer language like C or

Java. This representation is also commonly used in program analysis and program

transformation, and a set of tools exist to extract ASTs from source code, as they

152 W. Banzhaf

are an intermediate step in compiling code. However, it turns out that working on

the ASTs of program source code and manipulating it directly by genetic operations

does not scale well when trying to improve programs of larger sizes.

As a result, most recent work is done with a differential representation where an

input program remains the reference point for a collection of changes that comprise

the GP individual. This approach scales much better than the non-differential rep-

resentation. A sequence of insert/delete and replace operations on the AST—or in

the case of a BNF grammar, changes to lines of code represented in the grammar—

comprise the individual, again always requiring the input program as a reference

point. This is in line with the idea of “improvement” of an existing program and

could be termed a linear GP system for code improvement.

Clearly, this approach is only useful for improvements of working programs, or is

it? I think that the very same approach can be used to evolve programs more or less

from scratch. The idea is to consider a sequence of program improvements just like

the evolution from a primitive cell (primitive working program) to a sophisticated

and specialized cell (functional program for an arbitrary task). What would need to

happen is that the reference input program is, at certain moments we can call “epoch

ends”, replaced by the best program so far. In other words, the reference program is

replaced by a (usually) more complex one that has made progress toward the task

enshrined in fitness test cases. At the beginning of a new epoch, the GP individuals

of earlier epochs are set aside and replaced by newly initialized very short programs

(perhaps simple mutations to the now new reference individual). As changes accrue

during an evolutionary epoch, individuals grow in length until again an epoch comes

to an end and the reference individual is replaced.

This way, a very simple (stem cell type?) program at the beginning of a run, could

be used to evolve in different directions, guided by test cases, and end up in different

behavioral spaces that represent different functionalities. This type of programming

would therefore require a very general and simple input program, that will gradually

be augmented and specialized into different directions, depending on the test case

specification. Is code evolvable in this way? I suspect so.

At first sight, this strikes as a complicated way to produce complex code, how-

ever, there are shortcuts. In this connection it is helpful to recall that, according to

a statistical examination of code bases, most small segments of code (up to a length

of approximately 6 or 7 lines of code) have already been written somewhere [15].

If there is a way to harness from the environment this code already existing, this

would greatly facilitate the task of assembling a complex program. This will require

to traverse the feature space of existing code to find relevant segments [42].

A well-known mechanism useful for building up complexity could be put to use

as well: duplication and divergence of modules. Natural evolution seems to have

proceeded through a number of repeated steps of duplication and divergence [47]

and there is no reason to doubt that the same method couldn’t be used with benefit

when building up program complexity.

Another question: Are there other programmers (or programming agents) that

have faced a similar task, and how did they proceed in the source language (or in

another language) to write the code necessary to achieve the goal?

Some Remarks on Code Evolution with Genetic Programming 153

Finally: Is the task decomposable into smaller parts that have been addressed

elsewhere in the programmer’s own work or in that of others? If that is the case, the

evolution could be split into independent parts run on the simpler tasks.

In summary: Besides the tricks of complexity handling indicated in [7], we would

use a differential code representation that would undergo epochs of evolution under

the control of test cases. Even the test cases could be switched at the changes of

epochs, for instance, to provide more detailed guidance on the desired program

behavior. Much of what is described here might be categorized as a developmen-

tal approach, though there are key ingredients of real computational development

still missing from the picture. However, it is reasonable to expect that evo-devo

approaches could become very successful.

6 Conclusion

In this chapter we have looked at code evolution and discussed a few recent devel-

opments in this area. We saw that the scalability of code evolution approaches is

an important obstacle. However, I believe that in the last decade breakthroughs have

been made that have fundamentally altered the playing field for the use of GP in code

evolution. This application of GP has moved from a dream in the 1990s to a realistic

opportunity in the last 10 years. It is time to invest huge research efforts in this area

and to harness the continuing growth in speed of our computer hardware.

To give one example where the interaction of GP code evolution and new devel-

opments in Computer Science could be very useful is in the area of “big code”.

Following von Neumann’s lead for using the same physical representation for data

and code, the term “big code” has been coined in equivalence to the earlier term “big

data”. Big code refers to collections of code, like on GitHub, which can be scoured

or exploited for other tasks, if the appropariate tools are available to find the right

entries [56]. This brings to attention the need for tools for semantic search in program

spaces [50].

In this contribution we have discussed a number of research questions that might

be fruitfully addressed in the application of GP to code evolution. Besides the differ-

ent tasks mentioned in Sect. 4, key areas of investigation should be the topics (a)–(d)

raised in the same Section later. As well, research about a good way to construct com-

plexity, in particular in connection with an approach that makes use of the “natural”

complexity of the environment—how to find the right function, how to integrate it

with the existing program—are pertinent to code evolution.

Code evolution is of enormous economic importance. Genetic programming has

posed new kinds of questions and opened up new ways to think about this problem.

Exciting new avenues are before us. I believe that GP has a good opportunity to make

serious contributions to this area.

Acknowledgements This essay was written on the occasion of the Festschrift for Julian F. Miller’s

60th birthday. It is dedicated to Julian, a wonderful friend and inspiring colleague.

154 W. Banzhaf

References

1. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for non-functional

system properties. Inf. Softw. Technol. 51, 957–976 (2009)

2. Alba, E., Chicano, J.F.: Software project management with GAs. Inf. Sci. 177, 238002401

(2007)

3. Antoniol, G., Di Penta, M., Harman, M.: Search-based techniques applied to optimization of

project planning for a massive maintenance project. In: Proceedings of the 21st IEEE Interna-

tional Conference on Software Maintenance, 2005. ICSM’05, pp. 2400249. IEEE Press, New

Jersey (2005)

4. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug fixing. In:

Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 162–168. IEEE

Press, New York (2008)

5. Arcuri, A., White, D.R., Clark, J., Yao, X.: Multi-objective improvement of software using

co-evolution and smart seeding. Proc. Int. Conf. SEAL 2008, 61–70 (2008)

6. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming—An Introduction.

Morgan-Kaufmann, San Francisco, CA (1998)

7. Banzhaf, W., Miller, J.: The challenge of complexity. In: Menon, A. (ed.) Frontiers of Evolu-

tionary Computation, pp. 243–260. Springer, Berlin (2004)

8. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: Automated software transplanta-

tion. In: Proceedigns of the 2015 International Symposium on Software Testing and Analysis,

ISSTA 2015, pp. 257–269 (2015)

9. Clark, J.A., Jacob, J.L.: Protocols are programs too: the meta-heuristic search for security pro-

tocols. Inf. Softw. Technol. 43, 8910904 (2001)

10. Curry, R., Lichodzijewski, P., Heywood, M.: Scaling genetic programming to large datasets

using hierarchical dynamic subset selection. IEEE Trans. Syst. Man Cybern. Part B (Cyber-

netics) 37 1065–1073 (2007)

11. Dustin, E., Rashka, J., Paul, J.: Automated Software Testing. Addison Wesley (1999)

12. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic programming to

classification. IEEE Trans. Syst. Man Cybern.-C 40, 121–144 (2010)

13. Fontana, F., Zanoni, M., Marin, A.: Code smell detection: towards a machine learning-based

approach. In: Proceedings of the IEEE International Conference on Software Maintenance, pp.

396-399. IEEE Press, New Jersey (2013)

14. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming approach to auto-

mated software repair. In: Proceedigns of the 11th Annual Conference on Genetic and Evolu-

tionary Computation, pp. 947–954. ACM Press, New York (2009)

15. Gabel, M., Su, Z.: A Study of the uniqueness of source code. In: Proceedings of the Eighteenth

ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 147–

156. ACM Press, New York (2010)

16. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning in genetic

programming. In: Proceedings of the International Conference on Parallel Problem Solving

from Nature, pp. 312–321. Springer, Berlin (1994)

17. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. Inf.

Softw. Technol. 46, 2430253 (2004)

18. Gruau, F.: Neural network synthesis using cellular encoding and the genetic algorithm. Ph.D.

Thesis. Laboratoire de l’Informatique du Parallelisme, Ecole Normale Supirieure de Lyon

(1994)

19. Harding, S., Miller, J.F., Banzhaf, W.: Developments in Cartesian Genetic Programming: self-

modifying CGP. Genet. Program. Evolvable Mach. 11, 397–439 (2010)

20. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol. 43, 833–839

(2001)

21. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: a comprehensive

analysis and review of trends techniques and applications. Department of Computer Science,

King’s College London Technical Report TR-09-03 (2009)

Some Remarks on Code Evolution with Genetic Programming 155

22. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends, tech-

niques and applications. ACM Comput. Surv. 45, 11:1–11:61 (2012)

23. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.: The GISMOE chal-

lenge: constructing the pareto program surface using genetic programming to find better pro-

grams. In: Proceedings ot the 27th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE 12), pp. 1–14. ACM Press, New York (2012)

24. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure.

Physica D: Nonlinear Phenom. 42, 228–234 (1990)

25. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple scales: a

quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic

programming. Genet. Program. Evolvable Mach. 13, 305–337 (2012)

26. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthe-

sis. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering

(ICSE-2010), pp. 215–224. ACM, New York (2010)

27. Johnson, C.G.: Genetic programming with fitness based on model checking. In: European Con-

ference on Genetic Programming, pp. 114–124. Springer, Berlin (2007)

28. Katz, G., Peled, D.: Model checking-based genetic programming with an application to mutual

exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008, LNCS 4963, p. 1410156

(2008)

29. Koza, J.: Genetic Programming: on the programming of computers by means of natural selec-

tion. MIT Press, Cambridge (1992)

30. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Subprograms. MIT

Press, Cambridge, MA (1994)

31. Koza, J.R.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan

Kaufmann, San Francisco, CA (1999)

32. Langdon, W.B.: Scaling of program tree fitness spaces. Evolut. Comput. 7, 399–428 (1999)

33. Langdon, W.B.: Size-fair and homologous tree genetic programming crossovers. Genet. Pro-

gram. Evolvable Mach. 1, 95–119 (2000)

34. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software. In: Proceedings of

the European Conference on Genetic Programming, pp. 87–99. Springer, Berlin (2014)

35. Langdon, W.B., Harman, M.: Optimising existing software with genetic programming. IEEE

Trans. Evol. Comput. 19, 118–135 (2015)

36. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software. In: Proceedings of

the European Conference on Genetic Programming, pp. 87–99. Springer, Berlin (2014)

37. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Berlin (2002)

38. Lasarczyk, C.W.G., Dittrich, P., Banzhaf, W.: Dynamic subset selection based on a fitness case

topology. Evol. Comput. 12, 223–242 (2004)

39. Lau, T.A., Weld, D.S.: Programming by demonstration: an inductive learning formulation. In:

Proceedings of the 4th international conference on Intelligent user interfaces IUI-1999, pp.

145–152. ACM, New York (1999)

40. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for automatic

software repair. IEEE Trans. Softw. Eng. 38, 54–72 (2012)

41. Martincorena, I., Luscombe, N.M.: Non-random mutation: the evolution of targeted hypermu-

tation and hypomutation. Bioessays 35, 123–130 (2012)

42. McBurney, P.W., Liu, C., McMillan, C.: Automated feature discovery via sentence selection

and source code summarization. J. Softw.: Evol. Process 28, 120–145 (2016)

43. McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verification

Reliab. 14, 1050156 (2004)

44. Menon, A., Tamuz, O., Gulwani, S., Lampson, B., Kalai, A.: A machine learning framework

for programming by example. In: JMLR W & CP Proceedings of ICML (2013), vol 28 (2013)

45. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Trans. Softw. Eng. 30, 126–139

(2004)

156 W. Banzhaf

46. Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Tamrawi, A., Nguyen, H.V., Al-Kofahi, J.,

Nguyen, T.N.: Graph-based pattern-oriented, context-sensitive source code completion. In:

Proceedigns of the 34th International Conference on Software Engineering, pp. 69–79. IEEE

Press, New Jersey (2012)

47. Ohno, S.: Evolution by Gene Duplication. Springer, New York (1970)

48. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement and code

transplants to specialise a C++ program to a problem class. In: Genetic Programming—

Proceedings of the 17th European Conference, EuroGP 2014, pp. 137–149. Springer, Berlin

(2014)

49. Petke, J., Langdon, W.B., Harman, M.: Applying genetic improvement to MiniSAT. In: Pro-

ceedings of the International Symposium on Search Based Software Engineering, pp. 257–262.

Springer, Berlin (2013)

50. Reiss, S.P.: Semantics-Based Code Search. ICSE09. 16–24 May 2009, pp. 243–253. IEEE

Press, New Jersey (2009)

51. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Queens Sch. Comput.

TR 541–2007 (2007)

52. Schmidt, M.D., Lipson, H.: Incorporating expert knowledge in evolutionary search: a study of

seeding methods. In: Proceedings of the 11th Annual conference on Genetic and evolutionary

computation, pp. 1091–1098. ACM Press, New York (2009)

53. Singh, R., Gulwani, S.: Predicting a correct program in programming by example. In: Kroen-

ing, D., Pasareanu, C.S. (eds.) Proceedings of the CAV 2015, pp. 398–414. Springer, Switzer-

land (2015)

54. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using genetic

programming. In: Proceedings of ICSE09, 16–24 May 2009, Vancouver, Canada, pp. 364–374.

IEEE Press, New Jersey (2009)

55. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE Trans.

Evol. Comput. 15, 515–538 (2011)

56. Yahav, E.: Analysis and synthesis of “Big Code”. In: Esparza, J. et al. (eds.) Dependable Soft-

ware Systems Engineering. IOS Press (2016)

Cartesian Genetic Programming for Control
Engineering

Tim Clarke

Abstract Genetic programming has a proven ability to discover novel solutions to

engineering problems. The author has worked with Julian F. Miller, together with

some undergraduate and postgraduate students, over the last ten or so years in explor-

ing innovation through evolution, using Cartesian Genetic Programming (CGP). Our

co-supervisions and private meetings stimulated many discussions about its appli-

cation to a specific problem domain: control engineering. Initially, we explored the

design of a flight control system for a single rotor helicopter, where the author has

considerable theoretical and practical experience. The challenge of taming helicopter

dynamics (which are non-linear, highly cross-coupled and unstable) seemed ideally

suited to the application of CGP. However, our combined energies drew us towards

the more fundamental issues of how best to generalise the problem with the objec-

tive of freeing up the innovation process from constrictions imposed by conventional

engineering thinking. This chapter provides an outline of our thoughts and hopefully

may motivate a reader out there to progress this still embryonic research. The scene

is set by considering a ‘simple’ class of problems: the single-input, single-output,

linear, time-invariant system.

1 Introduction

In the context of this chapter, Control Engineering concerns the modification of the

behaviour of dynamic systems in response to external stimuli through feedback.

Behind this seemingly abstract and dry definition, the implications and impact of

Control Engineering on our very existence are remarkable. It is well understood that

the behaviours of our own biological, biochemical and physiological processes and

T. Clarke (✉)

Department of Electronic Engineering, University of York,

Heslington YO10 5DD, UK

e-mail: tim.clarke@york.ac.uk

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_7

157

158 T. Clarke

their responses to external factors (food, climate and stress are obvious examples) are

effected through mechanisms that have become well understood in an engineering

context in the last 150 years or so and are, truly, the cornerstone of the infrastructure

for modern living.

Consider two simple examples: the humble kettle and the home heating sys-

tem. Without the temperature-based on-off switch of the kettle, how many of us

would regularly experience a kitchen filled with clouds of steam? Central heating

and other environmental control systems can maintain pleasant living conditions for

us in extreme climates. The industrial and manufacturing processes that produce our

goods and chattels, foodstuffs, pharmaceuticals, fuels, chemicals (the list is virtu-

ally endless) are subject to feedback control mechanisms which regulate the process

machinery. Our automotive transport systems, from car manufacture to the urban

traffic control systems that maintain safe, orderly and expeditious flows also rely on

feedback control.

There is something satisfyingly symmetrical about returning to Mother Nature to

seek inspiration for new ways of harnessing the undoubted power of feedback. That

is the focus of this chapter. It explores how Cartesian Genetic Programming (CGP)

[6] can be harnessed to discover novel solutions to Control Engineering problems.

Referring to Fig. 1, the human solution search space tends to be limited by several

factors, such as:

∙ procedures

∙ self-imposed rules

∙ paradigms

∙ dogma

∙ intelligence

∙ skill

∙ past experience

Automatic, intelligent search algorithms, such as Genetic Programming, open up

the potential solution search space. In the figure, the Human search space boundary

Fig. 1 The three solution

search spaces: human, CGP

and the virtually-unbounded

space of all possible designs

CGP solution space

Human
solution
search
space

Limits
of human

design

All
possible
designs

Cartesian Genetic Programming for Control Engineering 159

is drawn with a bold line to indicate the significant challenges of moving the state of

the art in Control Engineering. The outer boundary between the CGP solution space

and all possible designs is much more insubstantial, indicating that it is only limited

by the choices made in how CGP is employed. These choices are discussed later.

The term Cartesian Genetic Control (CGC) is used for convenience. Rather than

focus strongly on specific results, this chapter considers some of the drivers that

might have a bearing upon the efficacy of an evolutionary approach. The objective

is to stimulate further interest and activity in this surprisingly embryonic field.

Control Engineering is a huge field. Therefore we do two things to make the task

of this chapter tractable. Firstly, we assume that the reader has some knowledge of

the fundamentals of Control Theory. Alternatively, the reader will need to access the

plethora of undergraduate-level Control Engineering texts (e.g. [3, 7]) and become

familiar with the concepts listed below. Another approach, and one which the author

highly recommends, is for a collaboration between a practising Control Engineer and

an aficionado of CGP. Concepts we assume understood include the following:

∙ Laplace transforms; transfer functions; poles and zeros.

∙ frequency responses; gain and phase margins.

∙ time responses; system type.

∙ digital control systems; anti-aliasing; sample-and-hold.

2 Feedback Control

2.1 Outline Principles

In its broadest context, feedback control can be considered, algorithmically, as a

recursive, three-part loop.

As shown in Fig. 2, a dynamic system is stimulated in order to perform a task

whilst conforming to some behaviour. The behaviour of the system is measured using

appropriate sensors. Measured outputs are compared with the externally-applied

stimulus. This may define the required behaviour of the system. The difference

between the demanded and achieved response is then used directly, or after predeter-

mined modification via a controller, to change the system behaviour, which is mea-

sured using those same sensors. The loop is repeated dum repetunt. This feedback

loop is the basis for the physical realisation of controllers. The comparison between

desired and achieved responses generates an error, which is the defining characteris-

tic of negative feedback. The idea of using feedback loops was implicitly understood

and accepted as far back in time as the pre-Christian Arab and Greek civilisations.

There was, at that time, a significant preoccupation with keeping accurate time using

water clocks. Feedback-based water regulators were used to maintain constant water

levels. The interested reader is directed to the wealth of internet-based material to

enjoy the some remarkable examples of human ingenuity.

160 T. Clarke

Controller Dynamic
System

+

-

External
Stimulus

Closed
Loop

System
Response

Feedback
Signal

Fig. 2 A basic feedback control system

H (s)s A(s) S(s)+

-
P(s)

p

F(s)

++ G(s)G(s)

Fig. 3 Conventional control structural blocks

2.2 Control Strategies and Objectives

On the basic premise that we shall apply negative feedback, we can identify some

conventional structural options open to the Control Engineer.

Beginning with the blue blocks in Fig. 3, G(s)1 represents the dynamic system

itself with A(s) and S(s) respectively representing the actuation and sensor systems.

The control function is effected by the yellow blocks. Hs(s), operating on the error

signal, is known as a series controller whilst Hp(s), acting directly on the feedback

signals, is a parallel controller. P(s) is a pre-filter and F(s) is commonly called a

feed-forward controller. Some or all of the yellow controller blocks, shown in Fig. 3,

may be used to effect control action on the system (sometimes known as the plant) in

order to attain a set of control objectives. Sensors and actuators elicit information and

effect action, respectively, on the plant. The controller blocks act as filters, modifying

the content (in amplitude and frequency content) of the signals passing into them.

The Control Strategy is the selection of which blocks to employ.

There are two fundamental Control Objectives: regulation and tracking. If the

objective of the controlled system is to maintain a constant output (such as the

desired, uniform thickness of strip steel produced in a hot rolling mill from a large

steel slab), it is a regulation problem. Otherwise, if the objective of the controlled

system is to follow a changing input (such as the desired positioning of the read/write

head of a blu-ray disc system—a 580 nm diameter laser light spot moving over a track

width of 320 nm [9]), then it is a tracking problem. We can further elaborate these

1
Here we use the common and convenient Laplace transform notation of a transfer function (∙(s))

to represent the dynamic characteristics of a continuous dynamic system.

Cartesian Genetic Programming for Control Engineering 161

fundamental objectives. If the system is subjected to a disturbance, is the regulation

or tracking objective still tightly maintained? Examples would be a localised change

in the hardness of the steel slab, or a physical shock applied to the blu-ray player.

How long does the system take to settle to its steady operation after a change of input

or a disturbance? Is there an error between the desired and actual response, once any

transient behaviour dies away? What happens if components within the system G(s)
start to wear, or drift off-specification due, for example, to a temperature rise?

2.3 Representations of Plant and Control Systems

Later, we consider how the mathematical representation of a controller can affect the

behaviour of the evolutionary processes. Here we consider a variety of formats which

are in common use. Beforehand, we will look at two alternative domains of repre-

sentation. The behaviour of dynamic systems can be described, in the time domain,

using differential equations. However, their manipulation can be cumbersome, error-

prone and time-consuming. By the application of linear transforms, it is possible to

generate representations that can be handled algebraically, using relatively simple

polynomial forms. For continuous systems, it is usual to employ the Laplace trans-

form [7]. For sampled data, digital or discrete systems, the z-transform or one of its

variants [3] is employed.

2.4 Control Specifications

Clearly, the desired closed loop performance of the controlled system will influence

how the evolutionary cost or fitness function is defined. This section discusses some

alternative control specifications in common use.

2.4.1 Step Response

The input step response of a system is a commonly used as a way to define the

specification of a closed loop system and therefore to assess the performance of

the controller. The step response is the measured output response to a unity ampli-

tude change in the input level. The response can be quantitatively described by the

following set of characteristics.

1. Rise Time (Tr). This is usually defined as the time taken for the response to pass

from 10 to 90% of the settled final value (steady state).

2. Percentage Overshoot (%OS). This is the maximum amplitude of the largest over-

shoot of the response (normally the first overshoot) expressed as a percentage of

the final value. Some overshoot is accepted as a compromise to allow a faster rise

time.

162 T. Clarke

0 2 4 6 8 10 12
0

0.5

1

1.5
Step Response

Time (seconds)

A
m

pl
itu

de
Overshoot

(presented as % of final value)

Steady state
error

Ts

(Settling time: 98% of
final value)

Final value

Unit step input

0.9

0.1 Tr

(Rise time)

Fig. 4 Typical response of a second order system to a unit amplitude step demand

3. Settling Time (Ts). This is the time at which the response falls within ±2% of the

final value and remains within these limits.

4. Steady State Error (SSE). For a constant input amplitude, the steady state response

amplitude should ideally be the same. If not, there exists a steady state error. The

reader is referred to textbook discussions of system type and steady state error

performance for full elucidation of this problem.

Figure 4 defines these quantities graphically. The actual system is

G(s) = 9
(s2 + s + 10)

=
0.9𝜔2

n

(s2 + 2𝜁𝜔ns + 𝜔

2
n)

(1)

There is a trade off between some of these characteristics. Resolution is challeng-

ing without resorting to pareto-optimal methods.
2

An alternative is to integrate all

characteristics into one quantifiable measure by comparing the actual step response

to some ideal and expressing costs as the error. Such integral-based, time-scaled error

algorithms are the cornerstone of a class of optimal control design methods such as

the Linear Quadratic Regulator (LQR) approach [1]. The most common measures

are the integral of the time-weighted absolute error (ITAE) [4] and the integral of

the time-weighted squared error (ITSE) [8].

2
which would require a significant modification of CGP.

Cartesian Genetic Programming for Control Engineering 163

2.4.2 Dominant Dynamics

Many control problems can be specified in terms of the desired dominant time

response. By this we mean the most enduring transient behaviour when a system

is stimulated. We need to take a brief look at the relationship between the system

poles and the transient response. In the simplest analysis, poles that lie further to the

left in the left half s-plane are associated with dynamics that decay quickest. There-

fore, dominant dynamics are associated with poles close to the imaginary axis in the

s-plane—so-called slow poles. As a good rule of thumb, if the time constant of the

slowest pole(s) is five times that of the next slowest, then the composite response is

dominated by the slow dynamics and the system largely behaves as a system com-

prising only the slow poles. The s-plane plot of Fig. 5 should clarify.

The complex conjugate pair of poles are said to be dominant and the system

response is largely second order if the horizontal distance between the origin and

the real pole at s = −p is at least 5 × 𝜁𝜔n—the horizontal distance between origin

and the second order poles at s = −𝜁𝜔n ± j𝜔n
√
1 − 𝜁

2. From this, it is possible to

specify the real system closed loop response to be “dominantly second order with a

natural frequency 𝜔n and a damping ratio of 𝜁”. Even if there are dominant poles, the

higher order complement of poles affects the actual system response. It is therefore

often the case that controllers, once designed to meet the dominant dynamics spec-

ification, are then tested on the plant model against the specification and may then

need tuning to accommodate the higher order reality. Just as a reminder, the reader

is assumed to understand the concept of poles and zeros. Any good control text will

provide an explanation, under the treatment of the Laplace transform.

X

X

21n

n

n

j

X
p

real 1 order pole atst s=-p

complex conjugate 2 order polend

Fig. 5 Dominant dynamics—an s-plane representation

164 T. Clarke

2.4.3 Frequency Specifications

There is a close relationship between positions of poles/zeros in the s-plane, time

responses and frequency responses. Indeed a Control Engineer often moves between

all three when tackling a suitable, challenging control problem. That said, it is less

often the case that the specification of the behaviour of a closed loop system is fully

represented in the frequency domain. Characteristics often considered are the gain

and phase margins, the unity gain crossover frequency and, less often, the closed

loop system bandwidth.

3 CGC and Its Implementation

For the purposes of brevity, the reader is assumed to have a working knowledge of

CGP. In this section, we bridge the gap between Control Theory and CGP imple-

mentation for CGC. We refer to the experiences of the author and Julian F. Miller in

this section. We have worked together with postgraduate students and a succession

of very capable final year undergraduate students whose project focus was CGC. We

had many discussions and sent our charges off to ponder, theorise and test—as did

we! We firstly define some terms used in our discussions, based upon Fig. 6.

3.1 Consequences of the Design Sequence

We now summarise our position using, as a focus, the process flow for designing to

meet a step response specification—as illustrated in Fig. 7. The two most important

choices to be made are where to specify fitness and where to evolve the controller.

Inputs

Function Nodes
(defined by Function Genes)

Connections
(defined by Connectivity Genes)

Junk (Unused)
Nodes

Outputs

Fig. 6 CGP nodal structure

Cartesian Genetic Programming for Control Engineering 165

Controller
Transfer
Function

Structures

Controller
Transfer
Function

Coefficients

Controller
Design

Constraints
(e.g. max gains)

Open Loop
System

Transfer
Function

Closed Loop
System

Transfer
Function

Control
Strategy

(See Fig. 1.2)

Control
System

Transfer
Function

Closed Loop
System

Step
Response

Step
Response

Characteristics

Rise
Time

Specification/Testing
Domain

Design Domain

Settling
Time % Overshoot Steady State

Error

Fig. 7 Controller design flow based upon step response criteria

166 T. Clarke

Looking at Fig. 7, blocks close to the top represent the typical design domain for

conventional controller solutions, such as pole placement and, ultimately, individ-

ual controller transfer functions; whilst those down towards the bottom represent the

characteristics of the physical system most often used in control problem specifica-

tions such as step response characteristics which, in turn, are derived from the actual

continuous time-domain step response. Here comes the paradox.

Specifications for control problems are often represented by the step response

characteristics, often obtained through simulation or real stimulation. However, the

physical factors that cause the step response outcomes are represented mathemati-
cally. Those factors through which control systems are usually designed are repre-

sented by the positions of the system poles and zeroes and controller (compensator)

poles and zeroes or the compensator transfer function coefficients. There is a signif-

icant degree of disjunction between simulation and mathematical representations.

If the controller is evolved as a transfer function and fitness is determined by

the resulting step response characteristics, it may prove very difficult to provide a

smooth fitness space. This happens because the effect of subtle variations in an arbi-

trary transfer function coefficient (or altering the polynomial structure of the transfer

function itself) can produce potentially huge changes in the step response charac-

teristics. There is a non-obvious mapping between minor evolutionary changes in

coefficient value or polynomial structure and the corresponding change in fitness.

This increases the ‘randomisation’ effect of evolution and reduces the potential for

incremental optimisation. Thus, the full capabilities of CGP are possibly not utilised.

CGP is considered to be capable of handling very abstract fitness definitions. How-

ever the broad nature of the solution space for most control problems would seem to

counter this claim.

Conversely, specifying both fitness and controller design at the transfer func-

tion level would allow fitness to be directly related to the evolved solution, but an

improvement in such a fitness value would not necessarily represent an equivalent

improvement in the step response characteristics. Thus ‘perfect’ fitness would not

necessarily represent a perfect solution. Furthermore, it would be difficult to char-

acterise ‘perfect’ fitness in such an algorithm. This presents possibly the greatest

challenge in producing an algorithm with which to evolve controllers.

4 Phenotypes for a Controller

Now we get to one nub of the CGC problem. How do we represent a controller? This

underpins a subsidiary question which is: what are the function genes? If a change

in a gene affects the eventual controller, how radical should this change be allowed

to be?

Cartesian Genetic Programming for Control Engineering 167

4.1 Evolving Control Strategy

Should CGP change the Control Strategy or just the migration towards achieving the

Control Objective(s)—or both? CGP provides us with a ready method for strategy

change (Fig. 3) through changes in its connectivity genes (Fig. 6). In all of our past

work, we never used the connectivity to affect strategy. Rather, we selected either

series (Hs(s)) or parallel (Hp(s)) compensation, and used connectivity genes to mod-

ify the internal structure of the controller. This use of the input and output connec-
tivity genes of CGP to specify and alter Control Strategy is a largely unexplored
problem.

4.2 Evolving Controller Structural Blocks

4.2.1 Choice of the CGC Function Set

There are many options for the choice of function set which constitute the funda-

mental elements for a controller structural block (Hs(s) or (Hp(s)) for example). So

far, we have considered linear, time-invariant target plant systems and wish to utilise

linear, continuous, time-invariant controllers. Therefore, the functions would gen-

erally be continuous-time operators which could be static (scaling, sum, difference,

product, protected divide, etc.), basic dynamic (integration, differentiation) or classi-

cal controller functions (lead and lag terms). Alternatively, the fundamental function

set could be s-plane structures (simple and complex poles and zeros along with gain

terms).

A more radical approach could be to make use of sampled data. Here, we assume

that sensor outputs are filtered for anti-aliasing purposes then sampled at an appro-

priate rate. Controller outputs would be passed through a sample-and-hold func-

tion before being presented as ‘continuous’ inputs to the plant. The function set, as

defined by the function genes, can be any operations associated with digital process-

ing to build up the controller. It is possible to work at the lowest levels of repre-

sentations such as bit-wise operators and shifts. At a higher level, one could work

with delays and scalings to form recursive realisations of digital filters (after all, this

is essentially what a dynamic compensator is) or, at a still higher level, the classi-

cal controller functions could be specified as numerator/denominator polynomials

of evolvable order with evolvable coefficients, or as discrete z-plane poles/zeros and

gains.

We come back to the paradox expressed earlier in Sect. 3.1. The more fundamen-

tal the operators in the function set (static in the continuous case or bit-wise operators

and shifts in the discrete case) the greater the remove from the physicality of the step

response specification. The solution space is unlikely to be smooth and monotoni-

cally changing. Genetic operators have unpredictable effects on the progression of

the evolutionary process. The upside is that the outer boundary, depicted in Fig. 1,

is likely to enclose a much larger CGC solution space.

168 T. Clarke

4.2.2 Interpreting Solutions

A compelling example of the use of GP for Control is that of Koza et al. [5]. They

evolved a controller for a two-lag plant

G(s) = K
(1 + 𝜏s)2

(2)

K is allowed to vary between 1 and 2 whilst 𝜏 can vary between 0.5 and 1. The set

of specifications is as follows:

∙ minimise ITAE for step input

∙ overshoot below 4% and settling time less than 2 s

∙ controller robust in the face of variations in plant gain and time constant

∙ no extreme plant inputs (from controller)

∙ controller/plant system bandwidth limited

∙ no controllers that cannot be physically realised.

The controller related function set was:

∙ gain

∙ inverter

∙ simple lead (zero)

∙ simple lag (pole)

∙ 2nd order lag

∙ integrator

∙ differentiator

∙ add

∙ subtract

∙ automatically defined functions, created through architecture-altering operations.

The fitness function had to encapsulate the multi-objective nature of the speci-

fication set. It did this by combining a lexical approach (instantly high-weighting

pathological solutions that could not be simulated, for example, and summing other

fitness measures—ITAE and bandwidth, for example). They suggest that setting a

time limit penalty for the simulations of the closed loop system put indirect pressure

on the process to reduce the complexity of solutions. Our own experience is that

this reduces the settling time for evolved solutions. Their explicit use of bandwidth

restrictions is interesting. The intention here is to limit the high frequency content

of demands placed on the plant by the controller, thereby preventing damage to del-

icate components. Our approach has always been to limit the positioning of poles

and zeroes. This is done based upon good engineering principles. In practice, there

should be no controller action faster than the fastest dynamic of the plant. To allow

otherwise creates rate-limiting non-linearities which, in turn, lead to destabilising

dynamic lags. Often, ‘toy’ problems neglect this.

The evolved solution was a prefilter and a series controller (P(s) and Hs(s) of

Fig. 3 respectively). The form of H(s) is a slightly more sophisticated form of

Cartesian Genetic Programming for Control Engineering 169

a proportional-plus-integral-plus-derivative (PID) controller—a PID-plus-squared-

derivative (PIDD
2
) controller. To all intents and purposes this combines a PID con-

troller with a proportional-plus-derivative (PD) controller. The solution was com-

pared with the results of a design produced by Dorf and Bishop [2] who originally

posed the problem. To be fair to the original authors, they set a specification, met

it and stopped there. Koza et al. evolved a solution that bettered it, most certainly.

However, had a competent Control Engineer wished to do the same, the route of

developing a supplementary PD controller would have been a sensible strategy. What

is impressive is that the GP solution did the same thing.

5 Representative CGP Control Experiments

Here, we present a couple of examples of the type of experiments we conducted to

test the ability of CGP to evolve useful controllers for simple test problems. Although

there is no sophistication in the approach, they demonstrate the ability of CGP to

realise controllers using a conventional controller function set:

∙ gain

∙ simple lead (zero) and lag (pole)

∙ 2nd order lead and lag

∙ integrator

∙ differentiator

∙ phase lead/lag

Limits were placed on controller pole locations to avoid damage to the plant due

to high frequency demands by the controller. As ‘toy’ problems, we did not consider

the effects of actuator rate limiting. Rather, we assume the system would response

instantaneously to commands. The problems were chosen to represent two typical

controller design challenges.

5.1 Problem 1—Speeding up Response

This is a typical issue where the open loop plant is incapable of providing a quick

enough response to a change of set point under simple feedback. A compensator is

necessary to achieve a quicker response than would be possible with a simple gain

controller. The plant is

G(s) = 1
s(s + 4)(s + 6)

(3)

170 T. Clarke

In this case the fastest settling time with a simple gain controller is 3.88 s. We set

the following requirements:

∙ Ts < 2 s

∙ %OS < 35%

A classically designed controller in the form of a phase advance network (PAN)

Hs(s) = 1423 s + 5
s + 42.93

(4)

achieves the following specification:

∙ zero steady state error

∙ Ts = 1.96 s

∙ %OS = 30.5

The CGC solution is

Hs(s) = 112.4(s + 2.61) (5)

and achieves the following specification:

∙ zero steady state error

∙ Ts = 0.986 s

∙ %OS = 27.5

The unit step responses for both controllers is shown at Fig. 8.

The outcome for CGC is to create a PD controller rather than the original PAN. To

achieve this the ITAE criterion was used as the test for fitness. Bounds were placed

on the controller poles to lie between s = −0.2 and s = −20.

Fig. 8 The solutions to

problem 1—the unit step

response

Problem 1

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Classical Controller
CGP Controller

Cartesian Genetic Programming for Control Engineering 171

5.2 Problem 2—Eliminating a Steady State Error

Here we have a Type 0 plant (no open loop plant integrators) which, without an

appropriate controller, develops a 95% steady state error when a step input is applied.

What is required here is integral action by the controller. The plant is:

G(s) = 1
(s + 1)(s + 2)(s + 10)

(6)

We wish to remove the steady state error and enable a settling time within 10 s.

The problem is that the required integral control action creates a very slow residual

response, once the faster transient dynamics have subsided.

Our classically designed solution is a proportional-plus-integral (PI) controller

Hs(s) = 164.565 s + 0.1
s

(7)

which achieves the following:

∙ ‘zero’ steady state error (after a very long wait)

∙ Ts= 17.3 s

∙ %OS = 41.5%

The CGC controller is very different:

Hs(s) = 2476(s + 3.37) (8)

It achieves the following:

∙ a steady state error of 0.2%
∙ Ts = 0.775 s

∙ %OS = 74.1%

The step responses are shown at Figs. 9 and 10.

The CGC solution is approached through a compromise. A PD controller is used

to speed up the step response and high gain reduces the steady state error. It is pos-

sible now to reduce the gain of 2476 which would improve the damping (less pro-

nounced oscillations) but at the expense of increasing the settling time and the steady

state error. ITSE was used to gauge the fitness of solutions.

5.3 Observations

In our two illustrative experiments, CGC is able to present alternative design strate-

gies for the designer to consider. In Problem 1, the application of a PD controller

instead of a PAN is predictable and realistic. Also, without appropriate restraint, the

172 T. Clarke

Fig. 9 The solutions to

problem 2—plotted over

short timescale

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Problem 2

Time (seconds)

A
m

pl
itu

de

Classical Controller
CGP Controller

Fig. 10 The solutions to

problem 2—plotted over a

longer timescale

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Problem 2

Time (seconds)

A
m

pl
itu

de

Classical Controller
CGP Controller

CGC solution exceeds the desired specification—here in %OS and in settling time.

In this case CGC is seen to demonstrate a sensible alternative solution.

In the case of Problem 2, CGC presents a radically different approach to the steady

state error problem without resorting to problematical integral action. The normal

alternative approach to P + I control is a Phase Lag Network (PLN). It does not

eliminate the error, but reduces it. The outcome will be a long-term residual error

as in Fig. 10, but it never reaches an error-free settled state. The CGC PD solution is

much faster, settling at a very small residual steady state error. It enables the designer

to then adjust the gain to meet a desirable compromise between steady state error,

speed of response and an acceptable level of transient oscillation.

Cartesian Genetic Programming for Control Engineering 173

6 Conclusions

In this paper we set out the case for studying CGC. We suggest some potentially

fruitful endeavours that could explore the search space beyond the limits of human

design (Fig. 1)

∙ representation of plant/controller—analogue (continuous sensing and analogue

circuit controllers), digital (sampled sensors and computer-based controllers)

∙ matching control specifications to fitness (Sect. 2.4)

∙ concurrent exploration of Control Strategy and Structures (Sect. 3.1)

∙ form and choice of CGC function sets (Sect. 4.2)

In addition, one could explore the application of CGC for bootstrapping the

unconventional use of conventional approaches, such as noted with Problem 2 in

Sect. 5.2.

Here we have only considered linear, time-invariant (LTI), single-input, single-

output (SISO) problems. Many real-world problems are non-linear (the reality is

that everything in non-linear to some degree or other), time-varying and multi-input,

multi-output (MIMO). Even with LTI, MIMO problems, there is a truly vast and rich

field of enquiry involving sophisticated mathematics, considerable ingenuity and a

large measure of either intractability or complexity. CGP would be very capable of

directing the exploration process.

References

1. Clarke, T., Davies, R.: Robust eigenstructure assignment using the genetic algorithm and con-

strained state feedback. Proc. Inst. Mech. Eng. Part I—J. Syst. Control Eng. 211(1), 53–61

(1997)

2. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 13th edn. Pearson (2017)

3. Dutton, K., Thompson, S., Barraclough, B.: The Art of Control Engineering, 1st edn. Addison-

Wesley Longman Publishing Co., Inc, Boston, MA, USA (1997)

4. Graham, D., Lathrop, R.C.: The synthesis of “optimum” transient response: criteria and standard

forms. Trans. Am. Inst. Electr. Eng. Part II: Appl. Ind. 72(5), 273–288 (1953)

5. Koza, J.R., Keane, M.A., Jessen, Y., Bennett III, F.H., Mydlowec, W.: Automatic creation of

human-competitive programs and controllers by means of genetic programming. Genet. Pro-

gram. Evolvable Mach. 1(1–2), 121–164 (2000)

6. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Genetic Programming, European

Conference, Edinburgh, Scotland, UK, April 15–16, 2000, Proceedings, pp. 121–132 (2000)

7. Nise, N.S.: Control Systems Engineering, 7th edn. Wiley (2015)

8. Schultz, W.C., Rideout, V.C.: Control system performance measures: past, present, and future.

IRE Trans. Autom. Control AC-6 1:22–35 (1961)

9. Singla, N., O’Sullivan, J.A.: Influence of pit-shape variation on the decoding performance for

two-dimensional optical storage (TwoDOS). In: 2006 IEEE International Conference on Com-

munications, vol. 7, pp. 3185–3190, June 2006

Combining Local and Global Search:
A Multi-objective Evolutionary Algorithm
for Cartesian Genetic Programming

Paul Kaufmann and Marco Platzner

Abstract This work investigates the effects of the periodization of local and global

multi-objective search algorithms. We rely on a model for periodization and define a

multi-objective evolutionary algorithm adopting concepts from Evolutionary Strate-

gies and NSGAII. We show that our method excels for the evolution of digital circuits

on the Cartesian Genetic Programming model as well as on some standard bench-

marks such as the ZDT6, especially when periodized with standard multi-objective

genetic algorithms.

1 Introduction

Pareto-based multi-objective genetic algorithms show excellent performance when

optimizing for multiple and often conflicting goals. In our work, we are interested in

multi-criteria optimization of digital hardware [12, 16] using the Cartesian Genetic

Programming model [20] to represent circuits. Experience shows that for this spe-

cific application domain global multi-objective genetic optimizers can be rather slow,

especially when compared with local Evolutionary Strategy (ES) techniques [17].

However, in the presence of multiple objectives local search techniques typically

work with fitness functions that are linear combinations of the single objectives,

rather than with the Pareto-based principle. Linear weighting schemes need to be

balanced by a human designer each time there is a new set of goal functions, in

order to obtain the highest possible performance. The demand for an unsupervised

and preference-free multi-objective method for CGP is a challenge we address in the

presented work.

We describe a periodization technique that alternates the execution of global and

local evolutionary optimizers [13]. The technique relies on a periodized execution

P. Kaufmann (✉) ⋅ M. Platzner

Computer Science Department, Paderborn University,

Warburger Str. 100, 33098 Paderborn, Germany

e-mail: Paul.Kaufmann@gmail.com

M. Platzner

e-mail: Platzner@uni-paderborn.de

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_8

175

176 P. Kaufmann and M. Platzner

model that blends algorithm properties, functionalities and convergence behaviors in

a simple and straight-forward way. A typical example is the combination of global

search for the early phase of an optimization run with local search for the final

phase [7, 25].

Additionally, we present a local search algorithm termed hybrid Evolutionary
Strategy (hES), a synthesis of a standard ES and a Pareto set preserving technique,

and investigate its performance when periodized with multi-objective genetic opti-

mizers NSGAII [4] and SPEA2 [29]. The characteristic of hES is that it applies a

𝜇 + 𝜆 ES on the Pareto-dominant individuals obtained by a multi-objective genetic

algorithm while keeping diversity in and avoiding deterioration of the Pareto set.

The remainder of this Chapter is structured as follows: Sect. 2 presents related

work on hybrid evolutionary search techniques. Our periodization model is defined in

Sect. 3, followed by a discussion of the hybrid Evolutionary Strategy (hES) in Sect. 4.

Section 5 defines the fitness metrics used in our experiments and Sect. 6 shows the

benchmarks and presents the results. Finally, Sect. 7 concludes the work.

2 Related Work

Early work on multi-objective optimization of CGP was presented by Kaufmann

and Platzner in [14]. The authors used NSGAII and SPEA2 for the optimization of

Boolean circuits for functional quality, area, and delay. In the following years the

authors have refined their method in [11, 24]. In the meantime, Walker et al. have

also proposed a similar approach for the optimization of digital circuits regarding

multiple objective in [27].

Hernández-Díaz et al. [7] presented a two-stage multi-objective evolutionary

algorithm based on Differential Evolution (DE) and Rough Sets (RS) theory. In the

first stage, the authors employed a fast converging multi-objective DE scheme to

compute an initial Pareto frontier approximation. In the second stage, they improve

the Pareto set diversity using RS theory for detecting loosely-covered regions. The

algorithm’s performance is verified on the standard ZDT{1, . . . , 6} and DTLZ

{1, . . . , 4} benchmarks [6, 19]. To compare the computed Pareto sets, the authors

used three metrics, the unary additive epsilon indicator [32], the standard deviation

of crowding distances (SDC) [5] and the space covered by a Pareto set [31]. The pro-

posed algorithm generally outperformed NSGAII, except on the DTLZ2 and DTLZ4

benchmarks using the SDC metric.

Talbi et al. [25] proposed a similar two-stage approach and used a multi-objective

genetic algorithm (GA) to calculate a first rough Pareto frontier approximation,

followed by a local search technique for refining the approximation. The authors

observed improved behavior to a GA-only approach as soon as the complexity of the

test problems increases.

Zapotecas et al. [30] presented a hybrid approach combining the global opti-

mizer NSGAII with the local optimizers of Nelder and Mead [21] and the golden

section method. The authors enhanced the exploratory NSGAII by local search

Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 177

methods in order to reduce the number of fitness evaluations. The hybrid algorithm

was compared to standard NSGAII on continuous benchmarks ZDT{1, . . . , 4}, ZDT6

and DTLZ{1, 2} using the metrics inverted generational distance [26], spacing [22]

and coverage indicator [28]. With the exception of the ZDT6 and DTLZ{1, 2} bench-

marks in combination with the spacing metric, the hybrid algorithm outperformed

NSGAII.

Harada et al. [8] analyzed GA-and-LS and GA-then-LS schemata in which local

search is applied either after each generation or after a completed run of a genetic

algorithm. The authors concluded thatGA-then-LS is superior toGA-and-LS on mul-

tiple benchmarks and used generational and Pareto-optimal frontier distances [5] for

comparison.

The work of Ishibuchi et al. [9, 10] is close to our approach. The authors discuss

various implementations of standard multi-objective optimizers such as SPEA2 and

NSGAII combined with local search. The key idea of their approach is to periodically

swap between different optimizers during a run. The authors conclude that the per-

formance of such a hybrid optimizer is sensitive to the balance between global and

local search. However, by carefully weighting global and local search strategies the

periodized hybrid optimizer outperformed the standard multi-objective optimizer.

In our work, which base on the work of Kaufmann et al. [13], we investigate

hybrid Evolutionary Strategies (hES) and its periodization with the multi-objective

optimizers NSGAII and SPEA2 in a GA-and-LS manner.

3 The Periodization Model

Let A = (a1, a2,… , an) be the set of algorithms used in the periodization. As an

illustrative example, consider A = {GA1,GA2,LS}. For a hypothetical periodized

algorithm that executes a single step/generation of GA1, followed by two steps of LS,

then a single step of GA2 and two steps of LS, the index sequence I for the algorithm

selection is given by (a1, a3, a2, a3), and the repetition sequence F is (f1, f2, f3, f4) =
(1, 2, 1, 2). While in this specific example, F is a vector of constants, the number of

repetitions can be adaptively adjusted based on the history of the optimization run

H . In particular, global search GAs with fast convergence in the beginning of an

optimization run could be repeated more often in the early search phases, while local

search algorithms that excel at improving nearly optimal nondominated sets could

be used more intensively in the final optimization phase.

With t as the current generation number,H as the history of the current optimiza-

tion run,A = (a1, a2,… , an), n ∈ ℕ as the set of algorithms used in the periodization,

I = (i1, i2,… , im), m ∈ ℕ, ik ∈ (1, 2,… , n) as the set of indices for the selected algo-

rithms in the execution sequence, and F = (f1, f2,… , fm), fk(t,H) → ℕ as the num-

ber of repetitions for the algorithms in I, the complete periodized execution model P
is defined as:

178 P. Kaufmann and M. Platzner

P ∶= AF
I = (af1(t,H)

i1
, af2(t,H)

i2
,… , afm(t,H)

im
).

The history H can be large if considering the complete information of an optimiza-

tion run, or more compact if considering, for example, only the dominated space

of the current nondominated set. In our experiments, we choose fk(t,H)) ∶= fk(t) ≡
const. For the general case, however, H changes with each generation. Accordingly,

the number of algorithm repetitions fk(t,Ht) computed in generation t for algorithm

ak may differ from the fk(t + 1,Ht+1) computed in the next generation. Therefore, the

repetition vector F needs to be updated after each generation. An example where this

effect becomes relevant is when some algorithm is iterated until local convergence

occurs. That is, if for l algorithm repetitions the best individual or the nondominated

area does not change, the periodization scheme proceeds with the next algorithm.

However, if the population can be improved, the algorithm is executed again for at

least l generations.

4 Hybrid Evolutionary Strategies

Evolutionary Strategies in their original form rely solely on a mutation operator. The

{𝜇 ,

+
𝜆} ES uses 𝜇 parents to create 𝜆 offspring individuals and selects 𝜇 new parents

from all individuals in case of a ‘+’ variant or from the new individuals in case of

the ‘,’ variant.

hES is a 1 + 𝜆 ES designed for periodization with multi-objective evolutionary

algorithms. In particular, we include two concepts from the Elitist Nondominated

Sorting GA II in hES: fast nondominated sorting and crowding distance as a diver-

sity metric. Fast nondominated sorting calculates nondominated sets for the objective

space points. The crowding distance for a point is defined as the volume of a hyper-

cube bounded by the adjoining points in the same nondominated set. Consequently,

the crowding distance creates an order, denoted by ≺n, on the points of a nondom-

inated set. hES uses fast nondominated sorting to decompose parents and offspring

individuals into nondominated sets, and uses crowding distances to decide which of

the individuals might be skipped in order to keep the nondominated set diverse. In

summary, the key ideas are:

1. A local search style algorithm is executed for every element of a given set of

solutions. Exactly one individual, which is nondominated, from a parent and its

offspring individuals proceeds to the next population.

2. Offspring individuals that are mutually nondominated to their parent but have a

different Pareto vector are skipped. This prevents unnecessary fluctuations in the

nondominated set.

3. Neutral genetic drift, as presented by Miller in [20], is achieved by skipping a

parent if at least one of its offspring individuals holds an equal Pareto vector.

4. Parents and offspring individuals are partitioned into nondominated sets and new

parents are selected using NSGAII’s crowding distance metric.

Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 179

Algorithm 1 shows the pseudocode of an hES implementation, hES-step.

The algorithm starts with the creation of offspring individuals in lines 1–4. To

this end, for every individual in the parent population Pt, hES-step executes 1 + 𝜆

ES appending the newly created offspring individuals to Qt. The 1 + 𝜆 ES loop is

implemented by the ES-generate in Algorithm 1. After the offspring individ-

uals are created, hES-step proceeds with the concatenation of parents and off-

spring individuals by calling the add-replace procedure, listed in Algorithm 3.

add-replace clones the parent population and successively adds offspring indi-

viduals that have a unique Pareto vector to this population. An offspring individual

with a Pareto vector identical to its parent replaces the parent. Then, hES-step par-

titions the concatenated set Rt in line 6 into nondominated sets Fi using NSGAII’s

fast-nondominated-sort. After that, starting with the dominant set F1, the

algorithm partitions F1 by the parents into G = {G1,G2,…}. That means all indi-

viduals of Gi have the same parent p. Additionally, if p ∈ F1, then p ∈ Gi. Should a

non-empty set Gi not contain the parent p, one of the least crowded individuals of Gi
is selected to proceed to the next generation. Otherwise, the parent proceeds to the

next generation. Once p or one of its offspring individuals is transferred to the next

generation, p and all of its offspring individuals are skipped by hES-step from

further processing in the currect generation.

Algorithm 1: hES-step(𝜆,Pt)—perform a single hES step

Input: 𝜆, parent population Pt
Output: new archive Pt+1

1 Qt ← ∅
2 foreach p ∈ Pt do
3 Qt ← Qt ∪ ES-generate(p, 𝜆)
4 end
5 Rt ← add-replace(Pt,Qt)
6 F ← fast-nondominated-sort(Rt)
7 Pt+1 ← ∅
8 foreach Fi ∈ F do
9 crowding-distance-assignment(Fi)
10 G ← group-ordered-by-parent(Fi)
11 foreach Gj ∈ G do
12 if parent of Gj not already replaced then
13 if parent(Gj) ∈ Gj then
14 Pt+1 ← Pt+1 ∪ {parent(Gj)}
15 else
16 sort(Gj, ≺n)
17 Pt+1 ← Pt+1 ∪ {Gj[0]}
18 end
19 mark parent of Gj as replaced

20 end
21 end
22 end

180 P. Kaufmann and M. Platzner

Algorithm 2: ES-generate(p,𝜆)—generate 𝜆 offspring individuals

Input: parent p, number of offspring individuals 𝜆

Output: offspring set Q
1 Q ← ∅
2 for i ← 1 to 𝜆 do
3 p′ ← mutate(p)
4 Q ← Q ∪ {p′}
5 end

Algorithm 3: add-replace(P,Q)—return copy of P joint by Q, replace

parents in P by offspring individuals in Q with equal Pareto vectors, avoid

adding multiple offspring individuals with equal Pareto vectors.

Input: sets P, Q
Output: set R

1 R ← P
2 foreach q ∈ Q do
3 if ∄r ∈ R : r ⪯ q ∧ q ⪯ r then
4 R ← R ∪ {q}
5 end
6 if ∃r ∈ R : r ⪯ q ∧ q ⪯ r ∧ parent({q}) == r then
7 R ← R ∪ {q}
8 R ← R∖{r}
9 end
10 end

5 Performance Assessment

To analyze the performance of multi-objective optimizers, we need to compare the

calculated Pareto sets. In this work we employ two methods: the ranking of Pareto

sets by a quality indicator and the analysis of the mean Pareto set, attained during

multiple runs. Both methods are described by Knowles et al. [18] and are also imple-

mented in the PISA toolbox by Bleuler et al. [1].

5.1 Quality Indicators

To compare Pareto sets, Zitzler et al. [32] introduced the concept of a Quality Indi-

cator (QI) as a function mapping a set of Pareto sets to a set of real numbers. Under

QI, the Pareto sets define a relation on the Pareto set quality. In our work, we use

the unary additive epsilon indicator I1
𝜀+. It is based on the binary additive epsilon

indicator I
𝜀+ which is defined for two Pareto sets A and B as:

I
𝜀+(A,B) = inf

𝜀∈ℝ
{∀b ∈ B ∃a ∈ A ∶ a ⪯

𝜀+ b}.

Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 181

Table 1 Interpretation of the Kruskal-Wallis test: given the Kruskal-Wallis test rejects H0, a dot

denotes a p-value higher than 𝛼

A1 A2 A3

A1 – 0.002 0.007

A2 ⋅ – ⋅

A3 ⋅ 0.003 –

Here, the relation⪯
𝜀+ is defined as a ⪯

𝜀+ b ⇔ ∀i ∶ ai ≤ 𝜀 + b. For a reference Pareto

set R, the unary additive epsilon indicator I1
𝜀+ can be now derived as

I1
𝜀+(A) = I

𝜀+(A,R).

Following Knowles et al. [18], we use the non-parametric Kruskal-Wallis (KW)

test [2] to statistically evaluate sequences of quality numbers. The Kruskal-Wallis

test differentiates between the null hypothesisH0 = “The distribution functions of the

sequences are identical” and the alternative hypothesis HA = “At least one sequence

tends to yield better observations than another sequence”. In case the test rejects H0,

we provide for all sequence pairs the one-tailed p-value. Table 1 presents an example:

for an algorithm tuple (A
row

,A
col
) a p-value equal or below 𝛼 indicates a lower mean

for A
row

. Thus, one can conclude for Table 1 that A1 outperforms A2 and A3, and A3
outperforms A2. In our experiments, we configure the significance level 𝛼 to 0.01.

5.2 Empirical Attainment Functions

An additional way of interpreting the results of multi-objective optimizers is to look

at the Pareto points that are covered, i.e., weakly dominated, with a certain proba-

bility during the multiple repetitions of an optimization algorithm. All Pareto points

that have been reached in x% of the runs are referred to as the x%-attainment. The

attainment allows for a direct graphical interpretation as shown in the examples of

Figs. 2 and 3.

In order to statistically compare the attainments we use the two-tailed

Kolmogorov-Smirnov test [23]. It distinguishes between H0= “Sequences A and B

follow the same distribution” and HA= “Sequences A and B follow different distrib-

utions”. Table 2 contains exemplary results for the Kolmogorov-Smirnov (KS) test.

It can be interpreted as: A1 differs significantly from A2 and A3. In our experiments,

we configure the significance level 𝛼 to 0.05.

182 P. Kaufmann and M. Platzner

Table 2 Interpretation of the Kolmogorov-Smirnov test: A dot denotes an accepted H0 hypothesis

at the given 𝛼

A1 A2 A3

A1 – * *

A2 * – ⋅

A3 * ⋅ –

* indicates significantly different nondominated set distributions

6 Evaluation

We experimented with several benchmarks to compare hES and the periodized vari-

ants of hES, NSGAII and SPEA2. At first, we used the standard benchmarks for

multi-objective algorithms DTLZ{2, 6} and ZDT6. These benchmarks are available

with the PISA toolbox [1] and are described in [19]. Second, we compared our algo-

rithms on the evolution of digital circuits, i.e., even 5- and 7-parity and (2, 2) and

(3, 3) adders and multipliers, using Cartesian Genetic Programming (CGP) [20] as

the hardware representation model. Figure 1 illustrates the CGP phenotype. Besides

the functional quality of the digital circuit, which in this case is set as a constraint,

we select the circuit’s area and speed to define a multi-objective benchmark [15].

In our experiments we executed 20 repetitions for every combination of goal func-

tion and algorithm. For the hES, ES-generate produces 32 offspring individuals

for each parent. For the other benchmarks, Algorithm 1 was configured to have one

offspring individual per parent.

Table 3 presents the configuration of the benchmarks DTLZ{2, 6} and ZDT6.

For these benchmarks, NSGAII and SPEA2 employ the SBX crossover operator [3].

The optimization runs were stopped after 10,000 fitness evaluations. Table 4 shows

for the digital circuit benchmarks the CGP configurations, termination criteria, and

nc

nn

ni nr

f4

f5

f7

f8

f11

f10

f17
f21

f22

f23

f6

f9

f20

pi1

pi2

pi3

pi0

po24

po25

no

Fig. 1 Cartesian Genetic Programming (CGP) encodes a two dimensional grid of functional units

connected by feed forward wires, thus forming a directed acyclic graph. The CGP model is para-

metrized with the number of primary inputs ni and outputs no, number of rows nr and columns nc,
number of functional block inputs nn, the maximal length of a wire l and the functional set F that

can be computed by the nodes

Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 183

Table 3 DTLZ2, DTLZ6, and ZDT6 benchmark configurations

Number objectives 2

Number of decision variables 100

Individual mutation probability 1

Individual recombination probability 1

Variable mutation probability 1

Variable swap probability 0.5

Variable recombination probability 1

Eta mutation 20

Eta recombination 15

Use symmetric recombination 1

Table 4 CGP benchmark configurations. S is the termination number, measured in fitness evalu-

ations. |P| and |A| denote the capacity of the parent population and the archive

5-parity 7-parity (2, 2) add (2, 2) mul (3, 3) add (3, 3) mul

S 400, 000 800, 000 400, 000 1, 600, 000 400, 000 160, 000

ni 5 7 4 4 6 6

no 1 1 4 4 6 6

nn 2

l ∞
nc 200

nr 1

|P|/|A| 32/100 for hES, 50/100 else

F see Table 5

P(mut.) 0.1

P(rcmb.) 0.0 for hES, 0.5 else

rcmb. type one-point

population sizes. We limit the functional set to the Boolean functions presented in

Table 5. To simplify the nomenclature, we use the following abbreviations:

hES → h
SPEA2 → s
NSGAII → n

184 P. Kaufmann and M. Platzner

Table 5 CGP configuration: functional set F
Number Function

0 0

1 1

2 a
3 b
4 a
5 b
6 a ⋅ b
7 a ⋅ b
8 a ⋅ b
9 a ⋅ b
10 a⊕ b
11 a⊕ b
12 a + b
13 a + b
14 a + b
15 a + b
16 a ⋅ c + b ⋅ c
17 a ⋅ c + b ⋅ c
18 a ⋅ c + b ⋅ c
19 a ⋅ c + b ⋅ c

6.1 Periodization of hES for DTLZ2, DTLZ6 and ZDT6

To examine the effect of local search, we first execute the standard NSGAII and

SPEA2 for a given benchmark in order to determine the reference performance.

Then, we increase step by step the influence of local search by periodizing NSGAII

with hES until only hES is executed. In terms of our periodization model (cf. Sect. 3),

we investigate the six periodization schemes: n, s, nh, nh4
, nh10

, and h.

Table 6 shows the results of the KW test applied to the benchmarks DTLZ{2, 6}

and ZDT6 with respect to the unary additive epsilon indicator I1
𝜀+ at the significance

level 𝛼 = 1%. The results of the KS test are omitted as they indicate differences

significant at 𝛼 = 5% between the nondominated sets for almost all combinations of

algorithm and benchmark.

The central observation for the DTLZ2 and DTLZ6 experiments is that the qual-

ity of the nondominated sets degrades with an increasing influence of local search.

Starting with the periodization of NSGAII and hES, the KW test shows falling per-

formance when increasing the number of hES iterations. The hES-only experiment

results in the worst performance of all the algorithms. The KW test results are con-

firmed by the graphical interpretation of the 75% attained nondominated sets in

Fig. 2a, b.

Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 185

Table 6 Comparison of the nondominated sets of DTLZ2, DTLZ6, and ZDT6. A dot denotes an

accepted H0. When the KW test rejects H0 for the algorithm pair (arow, acol), a one-tailed p-value

lower than 𝛼 = 0.01 indicates that a
row

evolves significantly better nondominated sets than a
col

regarding I1
𝜀+

n s nh nh4 nh10 h

KW test DTLZ2 n ⋅ 0.0 0.0 0.0 0.0

s ⋅ 0.0 0.0 0.0 0.0

nh ⋅ ⋅ 0.0 0.0 0.0

nh4 ⋅ ⋅ ⋅ 0.0 0.0

nh10 ⋅ ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

DTLZ6 KW test n ⋅ 0.0 0.0 0.0 0.0

s ⋅ 0.0 0.0 0.0 0.0

nh ⋅ ⋅ 0.0 0.0 0.0

nh4 ⋅ ⋅ ⋅ 0.0 0.0

nh10 ⋅ ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

ZDT6 KW test n ⋅ ⋅ ⋅ ⋅ 0.0

s ⋅ ⋅ ⋅ ⋅ 0.0

nh 0.0001 0.0027 ⋅ 0.0001 0.0

nh4
0.0 0.0 0.0014 0.0 0.0

nh10 ⋅ ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

For the ZDT6 benchmark, the influence of hES is not as one-sided as for the

DTLZ{2,6} benchmarks. The nh periodization outperforms SPEA2 and NSGAII.

Further increase in the influence of hES in the nh4
periodization lets it dominate all

other algorithms. The nh10
periodization is on a par with SPEA2 and NSGAII, while

the execution of hES alone, as with DTLZ{2, 6}, falls behind. The 75% attainments

pictured in Fig. 3 confirm this. Interestingly, despite the large gap between nh10
and

the group of SPEA2 and NSGAII, the KW test finds no significant differences at

𝛼 = 1% between the corresponding indicator sequences. The KS test, similar to the

results for the DTLZ{2, 6} benchmarks, reveals significant differences at 𝛼 = 5% for

all algorithm combinations except the NSGAII and SPEA2 pair.

The DTLZ{2,6} and ZDT6 benchmarks demonstrate the various kinds of impact

that local search may have when periodized with global search algorithms. To gain an

insight into whether the order of the algorithms in the periodization sequence influ-

ences the results, and into how an hES-less periodizations of SPEA2 and NSGAII

compares to the regular SPEA2 and NSGAII, we fixate on the ZDT6 benchmark and

apply 2- and 3-tuple permutations of the NSGAII, SPEA2, and hES algorithms. All

the experiments were repeated 100 times and the execution was stopped after 200

generations.

186 P. Kaufmann and M. Platzner

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

h

nh10

nh4

nh
n
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h

nh10

nh4

nh
n
s

(a)

(b)

Fig. 2 75%-attainments for the 2-dimensional DTLZ2 a and DTLZ6 b benchmarks. A hypothetical

optimum is located at 0⃗

Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 187

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h

nh10

n
s

nh

nh4

Fig. 3 75%-attainments for the 2-dimensional ZDT6 benchmarks. A hypothetical optimum is

located at 0⃗

Table 7 shows the results for 2-tuple combinations of NSGAII, SPEA2, and hES.

The general observation taken from the KW test is that hES periodized with either

NSGAII or SPEA2 outperforms standard NSGAII, SPEA2, and their combina-

tions. Interestingly, the hES-after-SPEA2 outperforms the hES-after-NSGAII, while

SPEA2-after-hES does not. This shows that the performance of this particular peri-

odization scheme may be sensitive to the initial order of the executed algorithms.

The KS test confirms the results observed before. There are basically two classes

of algorithms, showing significantly different results: the class of algorithms peri-

odized with hES, and the class of NSGAII, SPEA2 and their combinations. In con-

trast to the previous test, the differences between (hs) and (nh) are now identified as

significant.

Next, Table 7 shows also the results of 3-tuple combinations of hES with NSGAII

and SPEA2. Similar to the results achieved for the 2-tuple tests, all the periodized

algorithms outperform (KW) and differ (KS) from NSGAII and SPEA2.

In summary, we can conclude that for the DTLZ{2, 6} benchmarks, an increasing

impact of hES reduces the quality of the nondominated sets evolved, while for the

ZDT6 benchmark, the schemes periodized with hES have the dominating results.

6.2 Periodization of hES for Digital Circuit Design

In contrast to the previous benchmarks, we optimize for three objectives in this

section: the functional quality, the area, and the propagation delay. In total, each

188 P. Kaufmann and M. Platzner

Table 7 ZDT6 nondominated sets comparison for 2- and 3-tuple combinations of NSGAII, SPEA2

and hES to NSGAII and SPEA2. A dot denotes an accepted H0. When the KW test rejects H0 for

the algorithm pair (arow, acol), a one-tailed p-value lower than 𝛼 = 0.01 indicates that a
row

evolves

significantly better nondominated sets than a
col

regarding I1
𝜀+. A star indicates significantly different

nondominated set distributions at 𝛼 = 0.05 according to the KS test

n s nh hn sh hs ns sn

KW test n ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
s ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
nh 0.0 0.0 ⋅ ⋅ ⋅ 0.0 0.0

hn 0.0 0.0 ⋅ ⋅ ⋅ 0.0 0.0

sh 0.0 0.0 0.0091 ⋅ ⋅ 0.0 0.0

hs 0.0 0.0 ⋅ ⋅ ⋅ 0.0 0.0

ns ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
sn ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

KS test n ⋅ * * * * ⋅ ⋅
s ⋅ * * * * ⋅ ⋅
nh * * ⋅ * * * *

hn * * ⋅ ⋅ ⋅ * *

sh * * * ⋅ ⋅ * *

hs * * * ⋅ ⋅ * *

ns ⋅ ⋅ * * * * ⋅
sn ⋅ ⋅ * * * * ⋅

n s nhs nsh shn snh hns hsn

KW test n ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
s ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
nhs 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
nsh 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
shn 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
snh 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
hns 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅
hsn 0.0 0.0 ⋅ ⋅ ⋅ ⋅ ⋅

KS test n ⋅ * * * * * *

s ⋅ * * * * * *

nhs * * ⋅ ⋅ ⋅ ⋅ ⋅
nsh * * ⋅ ⋅ ⋅ ⋅ ⋅
shn * * ⋅ ⋅ ⋅ ⋅ ⋅
snh * * ⋅ ⋅ ⋅ ⋅ ⋅
hns * * ⋅ ⋅ ⋅ ⋅ ⋅
hsn * * ⋅ ⋅ ⋅ ⋅ ⋅

* indicates significantly different nondominated set distributions

Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 189

Table 8 The number of circuits with perfect functional quality evolved during 20 runs

(2, 2) add (3, 3) add (2, 2) mul (3, 3) mul 5-parity 7-parity

n 1 0 0 0 0 0

s 6 0 7 0 0 0

nh 7 0 8 0 0 0

nh4
9 0 11 0 0 0

nh10
11 0 14 0 0 0

h 12 1 15 0 0 0

algorithm is executed 20 times for each pair of goal functions. Table 8 summarizes

the number of runs that resulted in functionally correct solutions. The first obser-

vation is that for the parity, the (3, 3) adder, and the (3, 3) multiplier benchmarks,

almost none of the algorithms managed to evolve functionally correct circuits. We

focus therefore on the experiments involving the (2, 2) adder and the (2, 2)multiplier,

when discussing the influence of local search on the evolution of correct circuits.

Despite treating equally all objectives, hES is most effective in finding function-

ally correct solutions. While SPEA2 outperforms NSGAII for this particular CGP

configuration on the (2, 2) adder and multiplier benchmarks, increasing the influence

of hES in the periodization with NSGAII produces even greater success rates. nh4

and especially nh10
periodization schemes reveal only a small gap with the hES-only

performance. This insight is also partly confirmed by the results of the KW and the

KS tests presented in Table 9. For the (2, 2) adder, the KW test finds no significant

differences in nondominated sets at 𝛼 = 1% while the KS test partitions the algo-

rithms into groups of {n}, {s, nh, nh4
, nh10

}, and {h} with significant differences

in the evolved nondominated sets at 𝛼 = 5%. For the (2, 2) multiplier benchmark,

NSGAII is dominated by all, and hES by SPEA2 and nh according to the KW test.

The KS test splits the algorithms, similarly to what happened with the (2, 2) bench-

mark, into groups of {n}, {s, nh, nh4
, nh10

}, and {h}. Additionally, in the group

of {s, nh, nh4
, nh10

} SPEA2 evolves different nondominated sets than it does for

nh4
, nh10

.

The (3, 3) adder and multiplier benchmarks split the algorithms into {n} and {s,

nh, nh4
, nh10

, h} groups with different nondominated sets according to the KW

test. The KS test reveals, similar to what happened with the (2, 2) benchmarks, the

same general tendency of differences between the nondominated sets evolved by the

NSGAII, the hES, and the group of the remaining algorithms.

The general partitioning according to the quality of the evolved nondominated

sets between NSGAII, hES, and the rest of the algorithms, is even more pronounced

for the parity benchmarks, as now the KW test also confirms significant differences

(Table 10). That is, SPEA2, nh, nh4
, and nh10

are better than NSGAII and hES for

5- and 7-parity functions and NSGAII is better than hES for the 7-parity function.

190 P. Kaufmann and M. Platzner

Table 9 Non-dominated sets comparison: A dot denotes an acceptedH0. When the KW test rejects

H0 for the algorithm pair (arow, acol), a one-tailed p-value lower than 𝛼 = 0.01 indicates that a
row

evolves significantly better nondominated sets than a
col

regarding I1
𝜀+. A star indicates significantly

different nondominated set distributions at 𝛼 = 0.05 according to the KS test

n s nh nh4 nh10 h

(2, 2) add KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s ⋅ ⋅ ⋅ ⋅ ⋅
nh ⋅ ⋅ ⋅ ⋅ ⋅
nh4 ⋅ ⋅ ⋅ ⋅ ⋅
nh10 ⋅ ⋅ ⋅ ⋅ ⋅
h ⋅ ⋅ ⋅ ⋅ ⋅

(2, 2) add KS test n * * * * *

s * ⋅ ⋅ ⋅ *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* ⋅ ⋅ ⋅ *

h * * * * *

(3, 3) add KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s 0.0067 ⋅ ⋅ ⋅ ⋅
nh 0.0004 ⋅ ⋅ ⋅ ⋅
nh4

0.0011 ⋅ ⋅ ⋅ ⋅
nh10

0.0 ⋅ ⋅ ⋅ ⋅
h 0.0 ⋅ ⋅ ⋅ ⋅

(3, 3) add KS test n ⋅ * * * *

s ⋅ ⋅ ⋅ ⋅ *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* ⋅ ⋅ ⋅ *

h * * * * *

(2, 2) mul KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s 0.0 ⋅ ⋅ ⋅ 0.0

nh 0.0 ⋅ ⋅ ⋅ 0.0013

nh4
0.0 ⋅ ⋅ ⋅

nh10
0.0 ⋅ ⋅ ⋅

h 0.0016 ⋅ ⋅ ⋅ ⋅

(2, 2) mul KS test n * * * * *

s * ⋅ * * *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* * ⋅ ⋅ *

h * * * * *

(3, 3) mul KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s 0.0006 ⋅ ⋅ ⋅ ⋅

(continued)

Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 191

Table 9 (continued)

n s nh nh4 nh10 h

nh 0.0 ⋅ ⋅ ⋅ ⋅
nh4

0.0 ⋅ ⋅ ⋅ ⋅
nh10

0.0 ⋅ ⋅ ⋅ ⋅
h 0.0002 ⋅ ⋅ ⋅ ⋅

(3, 3) mul KS test n * * * * *

s * ⋅ ⋅ * *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* * ⋅ ⋅ *

h * * * * *

* indicates significantly different nondominated set distributions

Table 10 Non-dominated sets comparison: A dot denotes an accepted H0. When the KW test

rejects H0 for the algorithm pair (arow, acol), a one-tailed p-value lower than 𝛼 = 0.01 indicates

that a
row

evolves significantly better nondominated sets than a
col

regarding I1
𝜀+. A star indicates

significantly different nondominated set distributions at 𝛼 = 0.05 according to the KS test

n s nh nh4 nh10 h

5-parity KW test n ⋅ ⋅ ⋅ ⋅ ⋅
s 0.0 ⋅ ⋅ ⋅ 0.0

nh 0.0 ⋅ ⋅ ⋅ 0.0

nh4
0.0 ⋅ ⋅ ⋅ 0.0

nh10
0.0 ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

5-parity KS test n * * * * *

s * ⋅ ⋅ ⋅ *

nh * ⋅ ⋅ * *

nh4
* ⋅ ⋅ ⋅ *

nh10
* ⋅ * ⋅ *

h * * * * *

7-parity KW test n ⋅ ⋅ ⋅ ⋅ 0.0054

s 0.0 ⋅ ⋅ ⋅ 0.0

nh 0.002 ⋅ ⋅ ⋅ 0.0

nh4
0.0 ⋅ ⋅ ⋅ 0.0

nh10
0.0 ⋅ ⋅ ⋅ 0.0

h ⋅ ⋅ ⋅ ⋅ ⋅

7-parity KS test n * * * * *

s * ⋅ ⋅ ⋅ *

nh * ⋅ ⋅ ⋅ *

nh4
* ⋅ ⋅ ⋅ *

nh10
* ⋅ ⋅ ⋅ *

h * * * * *

* indicates significantly different nondominated set distributions

192 P. Kaufmann and M. Platzner

The KS test finds significant differences between the three groups, also finding a

significant difference between nh and nh10
for 5-parity.

In summary, we can state that periodizations of hES with NSGAII, as well as

the non-periodized SPEA2, create, for almost all benchmarks, nondominated sets

which are better than those of the non-periodized hES and NSGAII. Additionally,

with the increasing influence of hES in a periodization scheme, the probability for

the evolution of correct CGP circuits increases.

7 Conclusion

In this work, we investigated the periodization of multi-objective local and global

search algorithms. For this, we relied on a periodized execution model and on the

hybrid Evolutionary Strategies as a local search technique tailored to periodization

with Pareto-based genetic multi-objective optimizers such as NSGAII and SPEA2.

The results show that for the DTLZ{2, 6} benchmarks, hES and its periodization

with NSGAII underperforms. For ZDT6 and, most importantly, for the evolution of

digital circuit benchmarks on the CGP model, hES and its periodizations are sig-

nificantly better than the reference algorithms NSGAII and SPEA2. Furthermore,

the periodized execution model proved to be a simple, fast and flexible approach to

combine multiple optimization algorithms for merging functional and behavior prop-

erties. Thus, blending multi- and single-objective optimizers, local and global search

algorithms and differently converging methods creates a new family of optimization

algorithms.

References

1. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—a platform and programming lan-

guage independent interface for search algorithms. In: Intlernational Conference on Evolu-

tionary Multi-Criterion Optimization (EMO) LNCS, pp. 494–508. Springer (2003)

2. Conover, W.J., Practical Nonparametric Statistics (3rd edn.). Wiley (1999)

3. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex

Syst. 9, 115–148 (1995)

4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimisation: NSGA-II. In: Parallel Problem Solving from Nature

(PPSN’00), pp. 849–858. Springer (2000)

5. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Inc (2001)

6. Deb, K.,Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-

objective optimization. In: Evolutionary Multiobjective Optimization: theoretical Advances

and Applications, chap. 6, pp. 105–145. Springer (2005)

7. García, A., Díaz, H., Luis, V., Quintero, S., Carlos, A., Coello, C., Caballero, R., Luque, J.M.:

A new proposal for multi-objective optimization using differential evolution and rough sets

theory. In: Genetic and Evolutionary Computation (GECCO), pp. 675–682. ACM (2006)

Combining Local and Global Search: A Multi-objective Evolutionary Algorithm . . . 193

8. Harada, K., Ikeda, K., Kobayashi, S.: Hybridization of genetic algorithm and llocal search in

multiobjective function optimization: recommendation of GA then LS. In: Genetic and Evo-

lutionary Computation (GECCO), pp. 667–674. ACM (2006)

9. Ishibuchi, H., Narukawa, K.: Some issues on the implementation of local search in evolutionary

multiobjective optimization. In: Genetic and Evolutionary Computation (GECCO), LNCS, pp.

1246–1258. Springer (2004)

10. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in

hybrid evolutionary multi-criterion optimization Algorithms. In: Genetic and Evolutionary

Computation (GECCO), pp. 1301–1308. Morgan Kaufmann Publishers (2002)

11. Paul, K.: Adapting Hardware Systems by Means of Multi-Objective Evolution. Logos Verlag,

Berlin (2013)

12. Knieper, T., Defo, B., Kaufmann, P., Platzner, M.: On robust evolution of digital hardware. In:

Biologically Inspired Collaborative Computing (BICC), vol. 268 of IFIP International Feder-

ation for Information Processing, pp. 2313–222. Springer (2008)

13. Kaufmann, P., Knieper, T., Platzner, M.: A novel hybrid evolutionary strategy and its periodiza-

tion with multi-objective genetic optimizers. In: IEEE World Congress on Computational Intel-

ligence (WCCI), Congress on Evolutionary Computation (CEC), pp. 541–548. IEEE (2010)

14. Kaufmann, P., Platzner, M.: Multi-objective Intrinsic Hardware Evolution. In: International

Conference Military Applications of Programmable Logic Devices (MAPLD) (2006)

15. Kaufmann, P., Platzner, M.: MOVES: a modular framework for hardware evolution. In: IEEE

Adaptive Hardware and Systems (AHS), pp. 447–454. IEEE (2007)

16. Kaufmann, P., Platzner, M.: Toward self-adaptive embedded systems: multi-objective hard-

ware evolution. In: Architecture of Computing Systems (ARCS), vol. 4415 of LNCS, pp. 199–

208. Springer (2007)

17. Kaufmann, P., Plessl, C., Platzner, M.: EvoCaches: application-specific adaptation of cache

mappings. In: IEEE Adaptive Hardware and Systems (AHS), pp. 11–18. IEEE, CS (2009)

18. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic

Multiobjective Optimizers. Technical report, Computer Engineering and Networks Laboratory

(TIK), ETH Zurich, Switzerland (2006)

19. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley,

Inc (1990)

20. Miller, J., Thomson, P.: Cartesian genetic programming. In: European Conference on Genetic

Programming (EuroGP), pp. 121–132. Springer (2000)

21. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313

(1965)

22. Scott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimiza-

tion. Master’s thesis, Department of Aeronautics and Astronautics. Massachusetts Institute of

Technology (1995)

23. Shaw, K.J., Nortcliffe, A.L., Thompson, M., Love, J., Fonseca, C.M.,. Fleming, P.J.: Assess-

ing the performance of multiobjective genetic algorithms for optimization of a batch process

scheduling problem. In: Evolutionary Computation, pp. 37–45. IEEE (1999)

24. Lukas, K., Walker, J.A., Kaufmann, P., Plessl, C., Platzner, M.: Evolution of Electronic Cir-

cuits. Cartesian Genetic Programming. Natural Computing Series, pp. 125–179. Springer,

Berlin (2011)

25. Talbi, El-G., Rahoual, M., Mabed, M.H., Dhaenens, M.C: A hybrid evolutionary approach for

multicriteria optimization problems: application to the flow shop. In: International Conference

on Evolutionary Multi-Criterion Optimization (EMO), pp. 416–428. Springer (2001)

26. David, A, Veldhuizen, V.: Multiobjective evolutionary algorithms: classifications, analyses,

and new innovations. PhD thesis, Department of Electrical and Computer Engineering. Air-

force Institute of Technology (1999)

27. Walker, J.A., Hilder, J.A., Tyrrell, A.M: Towards evolving industry-feasible intrinsic variability

tolerant cmos designs. In: 2009 IEEE Congress on Evolutionary Computation, pp. 1591–1598

(May 2009)

194 P. Kaufmann and M. Platzner

28. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empir-

ical results. In: Evolutionary Computation, vol. 8(2), pp. 173–195. MIT Press (2000)

29. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algo-

rithm. Tech. Rep. 103, ETH Zurich (2001)

30. Martínez, S.Z., Carlos, A., Coello, C.: A proposal to hybridize multi-objective evolutionary

algorithms with non-gradient mathematical programming techniques. In: Parallel Problem

Solving from Nature (PPSN’08), pp 837–846. Springer (2008)

31. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and

the strength pareto approach. In: IEEE Transcations on Evolutionary Computation, vol. 3(4),

pp. 257–271. IEEE 1999

32. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assess-

ment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2),

117–132 (2003)

Approximate Computing: An Old Job
for Cartesian Genetic Programming?

Lukas Sekanina

Abstract Miller’s Cartesian genetic programming (CGP) has significantly influ-

enced the development of evolutionary circuit design and evolvable hardware. We

present key ingredients of CGP with respect to the efficient search in the space of

digital circuits. We then show that approximate computing, which is currently one of

the promising approaches used to reduce power consumption of computer systems,

is a natural application for CGP. We briefly survey typical applications of CGP in

approximate circuit design and outline new directions in approximate computing that

could benefit from CGP.

1 Introduction

Julian F. Miller, a pioneer of genetic programming (GP), evolvable hardware (EHW),

evolution in materio and other approaches that could be together classified as uncon-

ventional computing paradigms, is best known as the (co)inventor of Cartesian

genetic programming (CGP) [25]. Genetic programming is a computational intel-

ligence method capable of the automated designing of programs. It has been devel-

oped since the eighties, with the significant contribution of John Koza who mainly

worked on a tree-based GP in which candidate solutions are syntactic trees [20]. In

Miller’s version of genetic programming, CGP, candidate solutions are represented

using directed acyclic graphs encoded as finite-size strings of integers. This repre-

sentation is especially useful for evolving electronic circuits as it naturally captures

the circuit physical structure and supports multiple outputs, subgraph sharing and

various types of elementary circuit components.

CGP has predominantly been developed within two research communities: genetic

programming and evolvable hardware. For the genetic programming community,

interesting concepts behind CGP are the specific genotype-phenotype mapping,

mutation-driven search over small populations, role of neutrality and bloat free

L. Sekanina (✉)

Faculty of Information Technology, Brno University of Technology,

IT4Innovations Centre of Excellence, Brno, Czech Republic

e-mail: sekanina@fit.vutbr.cz

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_9

195

196 L. Sekanina

search. In the last decade, CGP was extended in various directions, for example,

the evolution of modular code was supported and self-modifying CGP enabled the

evolved programs to change themselves as a function of time. For the evolvable hard-

ware community, CGP has represented a natural way to model and evolve digital cir-

cuits, not only in a circuit simulator but also directly on a chip. New circuit designs,

including patented solutions,
1

were routinely obtained by means of CGP. Digital

architectures capable of autonomous adaptation and self-repair were constructed,

where CGP was responsible for autonomous changes of the circuits involved. CGP-

based results have also been published outside the major evolutionary computing

or evolvable hardware events, thus influencing people focusing on the mainstream

circuit design approach.

In computer engineering, the following trends can be observed [7, 22]:

∙ Energy efficiency is strongly requested, especially for omnipresent wireless

battery-powered systems (such as smart phones, consumer electronics and wire-

less sensor networks) and, on the other hand, for energy demanding data and super-

computer centers processing Big Data.

∙ Computationally-demanding applications (e.g. those based on deep neural net-

works) are implemented even in small battery powered embedded systems.

∙ Integrated circuits developed using recent fabrication technology exhibit reliabil-

ity issues and uncertainties, especially when operated at low voltages.

∙ Massive parallelism available by implementing billions of transistors on a single

die cannot be fully employed as only a fraction of them can be activated at the

same time in order to prevent burning the chip.

One of the approaches capable of coping (at least partly) with the aforementioned

issues is approximate computing [31]. It exploits the fact that many applications are

inherently error resilient. If some errors can be tolerated, then the underlying hard-

ware and software can be simplified to be faster or less energy consuming. Multi-

media, datamining and machine learning applications are good candidates for the

approximation because possible small imperfections in data processing usually have

only a small impact on the quality of result. The approximate hardware and software

system design can be viewed as an optimization problem in which a good trade-off

is sought among key design variables—performance, energy and error. This opti-

mization problem can be attacked with CGP [60, 61]. A real challenge is to employ

approximate computing for the most advanced technology nodes, where transistors

parameters exhibit unusual variability. One of the approaches is, by graceful per-

formance degradation at run-time and in the presence of uncertainties or errors, to

deliver the best possible trade-off between the quality of result and energy consump-

tion for all components on a chip. It has to be noted that this new notion of approx-

imation, which was established around 2010, is different from the approximations

that have been conducted for decades in the fields of computer engineering (such as

approximate signal processing by [38]) and computer science (such as approximate

algorithms by [64]).

1
Nonlinear image filter, Patent No. 304181, Czech Republic, 2013.

Approximate Computing: An Old Job for Cartesian Genetic Programming? 197

The aim of this chapter is to emphasize Miller’s contribution to the evolutionary

design of gate level circuits. In particular, we highlight some of the ingredients of

CGP that are crucial for an efficient search, especially in the space of digital circuits

(Sect. 2). We show that some of Miller’s results in the area of evolutionary circuit

design that were obtained over 15 years ago can be interpreted as vital contributions

to the current research in approximate computing (Sect. 3). We briefly survey current

applications of CGP in approximate circuit design (Sect. 4). The last part of this

chapter is devoted to new directions in approximate computing that could benefit

from CGP (Sect. 5). Final remarks are given in Sect. 6.

2 Cartesian Genetic Programming

According to Julian F. Miller:

Cartesian genetic programming grew from a method of evolving digital circuits developed by

Miller et al. in 1997 [29]. However the term ‘Cartesian genetic programming’ first appeared

in 1999 [23] and was proposed as a general form of genetic programming in 2000 [28].

In CGP, candidate solutions are represented in a two-dimensional array of pro-

grammable nodes. While the phenotype is represented using a directed oriented

graph, the genotype is encoded in a fixed-size string of integers. In this section,

key ingredients of CGP are briefly introduced. The aim is not to provide a detailed

description (which is available in [25]), but to emphasize important consequences

for practical evolutionary circuit design. We primarily deal with combinational gate-

level circuits.

2.1 Circuit Representation

An ni-input and no-output combinational circuit is modelled using an array of nc ⋅ nr
programmable nodes forming a Cartesian grid. A set of available na-input node func-

tions is denoted Γ, where elementary logic functions are included for gate-level cir-

cuits. The levels-back parameter l constraints which columns a node can get its inputs

from. No feedbacks are allowed in the basic version of CGP. The primary inputs

and programmable nodes are uniquely numbered. For each node the chromosome

contains (na+1) values that represent the node function and na addresses specify-

ing the input connections. The chromosome also contains no values specifying the

gates connected to the primary outputs. The chromosome size is ncnr(na + 1) + no
integers.

The circuit representation used by CGP was not invented by Miller as there are

papers from the early nineties utilizing the same concept [21, 37]. An important

property of this representation is its extensibility to support different types of com-

ponents (such as gates, 3-electrode transistors, or 6-input look-up tables), recurrent

198 L. Sekanina

networks [51], transistor-level circuits [68], modular circuits [14, 67], decomposi-

tion strategies [49] and self-modifying code [8].

No restrictions on resulting circuits are given if nr = 1 and l = nc, which is the

most common setting used in the literature. However, this setting is not suitable for

an on-chip implementation of CGP as many options for interconnecting the nodes are

allowed and must be supported by the underlying hardware platform. On the other

hand, if l = 1 then pipeline circuits can naturally be evolved and implemented.

After decoding the genotype, each node is labelled as active or inactive according

to its utilization in the phenotype. Regarding the size of the array, one of the conclu-

sions in the literature is that more is better (i.e. the number of evaluations is minimal

when the genome size far exceeds what is necessary for the problem at hand [27]). A

recent work showed that there is a problem-dependent limit in the number of nodes

that makes sense to employ in the array [52]. However, all results were obtained for

relatively small problem instances (such as 4-bit multiplier or 8-bit parity requiring

tens of gates to be implemented). It is an open question if this high redundancy is

useful for the evolution of real-world circuits containing thousands of gates.

2.2 Genetic Operators

Despise several attempts to introduce a useful crossover operator to CGP [2, 47],

mutation is the only genetic operator employed in almost all studies and applica-

tions conducted with CGP. The structure of fitness landscapes was studied and it

has been shown that the landscapes are vastly neutral with sharply differentiated

plateaus [30]. The search space is considered as very difficult, especially for circuits

such as parallel multipliers. The recent work of Goldman and Punch analysed several

types of mutation and their impact of the quality of search, stressing the importance

of mutations on active over inactive genes [6]. Vasicek showed that there is no rea-

son to support neutral mutations for evolutionary optimization of complex circuits

(hundreds of inputs, thousands of gates) if the task is to minimize the number of

gates in a fully functional circuit [53].

2.3 Seeding the Initial Population

If the initial population is randomly generated, we speak about evolutionary circuit
design. The task for CGP is to provide a circuit structure. If conventional solutions

are used in the initial population (i.e. the circuit structure is known), the goal of

CGP is to optimize circuit parameters (as well as structure) and then we speak about

evolutionary circuit optimization. While it is very time consuming to evolve non-

trivial circuits from scratch, the question is whether it makes sense to evolve them at

all. We believe that there are at least two reasons.

Approximate Computing: An Old Job for Cartesian Genetic Programming? 199

Firstly, the approach seems to be promising for adaptive embedded systems. If

a new logic function has to be implemented in reconfigurable hardware, employing

CGP could be a good choice in the case of simple logic circuits. The reason is that it

is usually impossible to perform a standard circuit design and synthesis procedure by

means of common circuit design software executed directly in the embedded system

because of its high time and resources requirements. On the other hand, CGP, which

is generating and testing candidate solutions directly in the reconfigurable device,

can provide a suitable solution in a reasonable time, even if some circuit compo-

nents are faulty [40]. This is impossible using conventional synthesis, placement

and routing algorithms which expect fault-free chips.

Secondly, the circuit design problem can serve as a useful test problem for the

performance evaluation and comparison of genetic programming systems. It is also

occasionally possible to obtain new useful implementations of these circuits, unbi-

ased with respect to conventional circuit designs. The most complex circuits evolved

from scratch (without any decomposition) were reported in [58] and they contain less

than 30 inputs and a thousand gates.

However, in the circuit design and optimization practice, there is no reason to start

from scratch. A fully functional solution can always be generated from the specifi-

cation by means of a basic conventional circuit design method. The most complex

circuits optimized by CGP that was seeded with the best known conventional imple-

mentations were reported by [53]. They contained hundreds of inputs and thousands

of gates.

It should be noted that the approach discussed so far assumes that a circuit fully

compliant with the specification must be delivered. This scenario is referred to as

the evolution of completely specified circuits and is primarily relevant for arithmetic

circuits and control logic. On the other hand, incompletely specified circuits are used

in applications (such as classification, filtering, hashing and prediction) in which the

correctness can only be evaluated using a subset of all possible input vectors because

verifying responses for all possible input combinations is intractable. According to

the applications reported in the literature, it seems that the evolutionary circuit design

is more successful for the incompletely specified circuits. We see in Sect. 3.1 that

both approaches are relevant for approximate computing.

2.4 Search Algorithm

While the problem representation used in CGP is not an original invention of Julian

F. Miller, the mutation-based search algorithm operating over this representation

is fundamental in Miller’s contribution. The search algorithm utilized by CGP is a

simple (1 + 𝜆) search strategy. Every new population consists of the parent and its

𝜆 offspring created by a mutation operator. The parent is always the highest-scored

candidate circuit. The parent from the previous generation is never selected as a new

parent if there is another offspring with the same fitness value. This rule is crucial for

an efficient search as it introduces new genetic material into the population through

200 L. Sekanina

the neutral mutations. The algorithm is terminated when the maximum number of

generations is exhausted or a sufficiently working solution is obtained.

It was observed in [5] that if CGP is minimizing the number of gates in an already

fully functional circuit, then a modified parent selection mechanism is more efficient

than the standard one. Quite unintuitively, the selection of the parent individual based

solely on its functionality (i.e. all fully functional offspring can then become the new

parent independent of their size) instead of compactness, led to smaller phenotypes

at the end of evolution.

Contrasted to the tree-based GP, CGP employs a very small population (𝜆 is usu-

ally between 1 and 10), but many generations are produced. Introducing a multi-

objective or co-evolutionary CGP is then problematic as the populations are very

small. Despite this fact, several multiobjective CGP implementations [11, 13, 16]

and co-evolutionary CGP implementations [46] have been proposed.

2.5 Fitness Evaluation and Its Acceleration

Since its introduction, CGP has been promoted as a universal form of GP, but is

especially useful for circuit design and optimization. Many authors reported digital

circuits that can be evolved from scratch or optimized by CGP and at the same time

these circuits show some improvements in terms of the number of gates (and delay

in some cases) against conventional implementations (one of the first results in this

direction was reported by [63]). The most common approach to construct the fitness

function f () is as follows:

f =
{

b when b < no2ni ,
b + (ncnr − z) otherwise, (1)

where b is the number of correct output bits obtained as response for all possi-

ble assignments to the inputs, z denotes the number of gates utilized in a partic-

ular candidate circuit and nc ⋅ nr is the total number of available gates. It can be

seen that the last term ncnr − z is considered only if the circuit behavior is perfect

Approximate Computing: An Old Job for Cartesian Genetic Programming? 201

(i.e. b = bmax = no2ni). We can observe that the evolution has to discover a perfectly

working solution firstly, while the size of circuit is not important. Then, the number

of gates is optimized.

For the incompletely specified problems, the fitness is usually calculated on the

basis of candidate circuit responses for a given training data set. The evolved circuit

has to be validated using a test set. This approach has been widely adopted in the

evolutionary design of image filters [42], classifiers [17], hash functions [15] and

other circuits.

As the fitness calculation is the most time consuming procedure of CGP, var-

ious accelerators have been proposed to reduce the circuit evaluation time. The

approaches include bit-level parallel circuit simulation and fitness function precom-

pilation [62], parallel CGP [13], and FPGA [3, 54] and GPU [9] based accelerators.

2.6 Practical Aspects of Evolutionary Circuit Design

CGP for logic synthesis and optimization, as discussed so far, has not been widely

accepted by the circuit design community. The reason is that this approach is far

from the practical needs of the community. The main criticism addressed the issues

of the (1) initial solution selection (i.e. there is usually no reason to evolve a circuit

from scratch, see Sect. 2.3), (2) simplified modelling of circuit parameters, (3) poor

scalability of the method, (4) non-deterministic behaviour of the method and (5)

validation of the method using a few benchmark circuits only. We elaborate (2) and

(3) in greater detail in the following paragraphs.

The fitness function according to Eq. 1 would be acceptable for logic synthesis,

where the goal is to minimize the number of gates. It is insufficient for circuits that

have to be implemented on a chip, where detailed information about the area on a

chip, delay and power consumption are important. In order to estimate parameters

of a given circuit, a detailed circuit analysis is requested. As many candidate circuits

have to be evaluated it is very time consuming to call a professional circuit simulator

for each circuit. Hence parameters of candidate circuits are estimated in the fitness

function and a complete measurement is performed for the best circuits at the end

of evolution. This methodology was implemented, for example, in paper [33, 59],

in which the area and delay were estimated using the parameters defined in the lib-

erty timing file available for a given semiconductor technology. Delay of a gate was

modelled as a function of its input transition time and the output capacitive load.

The delay of the whole circuit was then determined as a delay along the longest

path. The total area was calculated as the sum of areas of all gates involved in the

circuit. Finally, power consumption was estimated according to the methodology

introduced for gate- and transistor-level circuits in [33]. In another transistor-level

approach, power consumption and other circuit parameters were computed for all

candidate designs using a circuit simulator of the Spice family [69].

Coping with the scalability problems is a more serious issue. The problem is that

the circuit evaluation time (Eq. 1) grows exponentially with the number of inputs.

202 L. Sekanina

Hence the method is only applicable to the evolution of relatively small circuits.

Because the specification is given in the form of a truth table, it is impossible to

specify complex circuits in practice. Several methods have been proposed to elimi-

nate these problems (see the overview in [43]). However, the most complex circuits

evolved in this scenario are, for example, 6-bit multipliers, 9-bit adders, and 17-bit

parity circuits [13, 49].

A promising solution to the fitness evaluation scalability problem is based on a

completely different strategy to the fitness evaluation. In practice, a common sit-

uation is that a highly unoptimized, but fully functional circuit implementation, is

always available. Such a circuit can be used in the initial population of CGP. The new

fitness evaluation procedure then exploits the fact that efficient algorithms, which

allow us to decide relatively quickly on whether two circuits are functionally equiv-

alent, were developed in the field of formal verification. In our context, the task is

to decide whether the parent and its offspring (created by a mutation operator) are

functionally equivalent, assuming that the evolutionary algorithm is seeded by a fully

functional solution and that the current parent is also fully functional. If the equiv-

alence holds, the fitness of the offspring is given by the number of gates if the task

is to minimize the number of gates. An evolutionary circuit optimization method

was introduced in [55], which employs a satisfiability problem solver (SAT solver)

in the fitness function in order to decide the functional equivalence. An average gate

reduction of 25% was reported for benchmark circuits containing thousands of gates

and having tens of inputs in comparison with state of the art academia, as well as

commercial tools [56]. This result was improved in [53] by using a circuit simulator

prior to a SAT solver to disprove the equivalence between a candidate solution and

its parent. If the equivalence checking is based on binary decision diagrams (BDD),

the circuits can also be evolved from scratch because it is possible and relatively easy

to obtain the Hamming distance between the outputs of the candidate circuit and the

specification [58]. However, the BDD-based approach seems to be less scalable than

the SAT-based fitness evaluation.

We can summarize that CGP is currently applicable in the evolutionary design

and optimization of relatively complex combinational circuits. CGP can work as a

multi-objective design method in which key circuit parameters are directly estimated

in the fitness evaluation procedure and optimized in the course of evolution. While

improving conventionally optimized circuits is the clear advantage of CGP, its huge

execution time is the main drawback.

3 Approximate Computing and Evolvable Hardware

The research dealing with approximate computing has been substantially growing

since 2010. We briefly introduce this concept in this section. We emphasize that

some research performed in CGP and evolvable hardware community over 10 years

ago is currently very relevant for approximate computing.

Approximate Computing: An Old Job for Cartesian Genetic Programming? 203

3.1 Approximate Computing

According to [31]:

Approximate computing exploits the gap between the level of accuracy required by the appli-

cations/users and that provided by the computing system, for achieving diverse optimiza-

tions.

Approximate computing was established with the goal of providing more energy

efficient, faster, and less complex computer-based systems by allowing some errors

in computations. One of motivations for approximate computing is that the exact

computing utilizing nanometer transistors provided by recent technology nodes is

extremely expensive in terms of energy requirements and reliable behavior. An open

question is how to effectively and reliably compute with a huge amount of unreliable

components. Another motivation is that many applications (typically in the areas of

multimedia, graphics, data mining, and big data processing) are inherently error
resilient. This resilience can be exploited in such a way that the error is exchanged

for improvements in power consumption, throughput or implementation cost.

One of the approximation techniques is functional approximation whose prin-

ciple is to implement a slightly different function with respect to the original one,

provided that the error is acceptable and key system parameters are improved. The

functional approximation can be conducted at the level of software as well as hard-

ware. An approximate solution is typically obtained by a heuristic procedure that

modifies the original implementation. For example, artificial neural networks were

used to approximate software modules [4] and search-based methods allowed us to

approximate some hardware components [39].

In addition to functional approximations, timing induced approximations (voltage

over scaling) and components showing “unreliable” behavior (such as approximate

memory elements) are often employed. The aim is to support approximate computing

at the level of programming languages [41] and exploit new features of specialized

approximate processors [1].

3.2 Approximations with CGP Before the Approximate
Computing Era

Two main directions in approximate computing are (1) energy-efficient computing

with unreliable components that are present in the new chips, and (2) approximation

of circuits and programs on conventional platforms in order to reduce energy require-

ments. Interestingly, both directions can be traced in Miller’s research on evolvable

hardware and CGP.

204 L. Sekanina

3.2.1 Evolution in Materio

In the mid-1990s, Adrian Thompson evolved a tone discriminator circuit directly

in the XC6216 FPGA chip. The discriminator required significantly less resources

than usual conventionally designed solutions would occupy in the same FPGA [50].

Despite a huge effort, Thompson has never fully understood the evolved design. The

evolved discriminator was fully functional, but its robustness was limited. For exam-

ple, a higher sensitivity to fluctuations in environment (external temperature, power

supply voltage) and dependence on a particular piece of FPGA were reported. This

result, showing an innovative trade-off between the robustness and the amount of

resources in the FPGA, can be considered as an early approach to approximate cir-

cuit design by means of evolutionary algorithms.

Thompson’s work was for Julian F. Miller and his collaborators a starting point

in continuing the investigation of the exploitation of physical properties of suitable

substrates using artificial evolution. They have developed a new concept which is

currently referred to as the evolution in materio (i.e. evolving useful functions in

a physical system without understanding the rules of the game [26]). The idea is

that there is a material to which physical signals can be applied or measured via

a set of electrodes. A computer controls the application of physical inputs applied

to the material, reading of physical signals from the material and the application to

the material of other physical inputs known as physical configurations. Successful

examples include evolved logic functions in liquid crystals [10] and carbon nan-

otubes materials [32].

In order to study and exploit “physics” (known from the evolution in materio) in

computer simulation, Miller contributed to the development of the so-called messy
gates. A messy gate is a gate-like component with added noise. CGP was extended to

support noise modelling and then used to evolve small combinational circuits com-

posed of messy gates. Evolved circuits exhibited implicit fault tolerance. Moreover,

surprisingly efficient and robust designs were obtained for small combinational cir-

cuits.

The above-mentioned studies show that reliable computing on unknown and unre-

liable platforms has been one of Miller’s central research topics for a long time. This

topic has been further explored within an EU-funded project, NASCENCE.
2

3.2.2 Functional Approximation and Approximation of Functions

The functional approximation is frequently used to approximate digital circuits such

as adders, multipliers, filters and general logic. In 1999, Miller introduced a CGP-

based method for a finite impulse response (FIR) filter design [24] that would be

called functional approximation nowadays. In this method, candidate filters are com-

posed of elementary logic gates, thus ignoring completely the well-developed tech-

niques based on multiply–and–accumulate structures. Evolved networks of gates are

extremely area-efficient (and thus potentially energy efficient) in comparison with

2
NAnoSCale Engineering for Novel Computation using Evolution, http://www.nascence.eu.

http://www.nascence.eu

Approximate Computing: An Old Job for Cartesian Genetic Programming? 205

conventional filters. However, only partial functionally has been obtained because

of the overall simplicity of the logic networks. The evolved circuits are not, in fact,

filters. In most cases, they are combinational quasi-linear circuits trained on some

data. They are not able to generalize for the input signals unseen during the evolu-

tion. In order to obtain real filters, the design process must guarantee that the evolved

circuits are linear, which is not the case in this method. One of the possible benefits of

the method is that circuits can be evolved to perform filtering task, even if sufficient

resources are not available (e.g. a part of chip is damaged). Furthermore, as Miller

noted, “The origin of the quasi-linearity is at present quite mysterious . . .Currently

there is no known mathematical way of designing filters directly at this level”.

In mathematics, it is investigated how certain (usually complex) functions can best

be approximated by means of basic functions that are inexpensive or suitable accord-

ing to a given purpose, and with quantitatively characterizing the errors thereby intro-

duced. CGP (and GP in general) is a method capable of performing the so-called sym-
bolic regression (i.e. providing an expression which represents (with some error) an

unknown function for a given data set). Miller was one of the core persons who estab-

lished a self-modifyingCGP (SMCGP), which can find general solutions to classes of

problems and mathematical algorithms such as arbitrary parity, n-bit binary addition,

sequences that compute 𝜋 and e, etc. [8]. SMCGP is a developmental form of CGP

that supports self-modification functions in addition to computational functions and

enables phenotypes to vary over time. By means of the phenotype development, the

degree of approximation of the target behaviour (and thus the corresponding error)

can be tuned.

4 Circuit Approximation by Means of CGP

This section briefly surveys recent applications of CGP is which approximate com-

puting is explicitly mentioned as the target application. The approximate circuit

design problem is formulated as a multi-objective optimization problem in which

the accuracy, area, delay (or performance) and power consumption are conflicting

design objectives. The CGP-based approximation methods typically include the fol-

lowing attributes:

∙ Circuit parameters (delay, area, power consumption) are modelled more precisely

than in the applications discussed in the previous sections.

∙ The search algorithm is typically constructed as multiobjective and seeded by con-

ventional implementations showing different circuit parameters. It is assumed that

the user will choose the most suitable trade-off from the Pareto front for a partic-

ular application.

∙ Different types of error metrics are employed. If a candidate circuit is evaluated

using all possible input combinations, an arbitrary error metric can be computed.

In the case of complex circuits, formal methods based on SAT solving or BDDs

are currently applicable for evaluating only a few relevant error metrics [12].

206 L. Sekanina

In the following sections, three CGP-based approaches for circuit approximation are

presented. Finally, CGP utilizing relaxed equivalence checking in the fitness function

is discussed.

4.1 Resources-Oriented Method

This method exploits the fact that CGP can produce a partially working solution even

if sufficient resources for constructing an accurate circuit are not available. The idea

is to evolve a circuit showing a minimum error using ki components (gates) pro-

vided that ki < K and K is the number of components (gates) required to implement

a correct circuit. CGP is considered as a single-objective method which is executed

several times with different ki as the parameter. It provides a set of approximate cir-

cuits, each of which typically exhibits a different trade-off between the functionality

and the number of gates. The main advantage is that the user can control the used

area (and power consumption) more comfortably than by means of the error-oriented

methods. The method was employed to approximate small multipliers and 9-input

and 25-input median circuits operating over 8 bits [60]. Approximate software imple-

mentations of the median function were evaluated for microcontrollers by [34].

4.2 Error-Oriented Method

Vasicek and Sekanina [57] proposed a complementary design approach. The user is

supposed to define the required error level emax (e.g. the average error magnitude).

In the first step, CGP, which is seeded by a conventional fully functional implemen-

tation, is utilized to modify the seed in order to obtain a circuit with a predefined

emax. After obtaining that circuit, in the second step, CGP can minimize the num-

ber of gates or other criteria providing that emax is left unchanged. The method is

again a single objective and multiple runs are required to construct the Pareto front.

The method was evaluated in the task of approximate multipliers design. The error-

oriented approach tends to be less computationally demanding than the resources

oriented method.

Approximate multipliers showing specific properties were evolved for artificial

neural networks implemented on a chip. Their utilization led to a significant power

consumption reduction and only a very small loss in the accuracy of the image clas-

sification [35].

4.3 Multi-objective CGP

In the multi-objective method, the error and other key circuit parameters (area, delay

and power consumption) are optimized together by an algorithm combining CGP

with NSGA-II [36, 59]. For example, in [36], the initial population was seeded using

Approximate Computing: An Old Job for Cartesian Genetic Programming? 207

13 different conventional 8-bit adders and 6 different conventional 8-bit multipliers

in the task of the adder and multiplier approximation. The gate set contained compo-

nents of a 180 nm process library, including half and full adders. The mean relative

error was used in the fitness function while the predefined worst case error and worst

case relative error constrained the search space. As the task is very computation-

ally demanding, a highly parallel implementation of CGP, exploiting a vectorised

and multi-threaded code, was employed. This approach enabled us to evolve a rich

library of adders and multipliers (showing different errors and parameters) that can

be utilized in future applications of approximate computing.

4.4 Relaxed Equivalence Checking

So far we have discussed the approximation methods that evaluate the candidate solu-

tions by applying a set of (all) input vectors and measuring the error of the output

vectors with respect to an exact solution. This approach is not, however, applica-

ble when approximating complex circuits. If the exact error of the approximation

has to be determined, formal relaxed equivalence checking is requested, stressing

the fact that the considered systems will be checked to be equal up to some bound

w.r.t., a suitably chosen distance metric. This research area is rather unexplored as

almost all formal approaches have been developed for (exact) equivalence check-

ing [12]. Checking the worst error can be based on satisfiability (SAT) solving as

demonstrated in [66]. However, while violating the worst error can be detected, no

efficient method capable of establishing, for example, the average error using a SAT

solver has been proposed up to now. Approaches based on binary decision diagrams

(BDDs) in order to determine the average arithmetic error, worst error, and error rate

were introduced [48].

In the context of CGP, a fitness function based on the average Hamming distance

computed by means of BDD was introduced by [61]. The method enabled us to

approximate combinational circuits consisting of hundreds of gates and up to 50

inputs (i.e. the circuits whose evolution and approximation is impossible with a direct

implementation of the fitness function defined in Eq. 1).

5 New Directions

Although evolutionary approximation of arithmetic circuits [36] and general logic

[61] is possible with CGP, and CGP seems to be a quite competitive method,

there are other promising areas for CGP in approximate computing. If a candidate

208 L. Sekanina

approximate circuit is evaluated using a data set (e.g. in applications such as image

filtering, classification and prediction), then the scalability issues of CGP are not as

burning as in the case of arithmetic circuits. Hence, we expect that CGP would be

very successful in these domains.

5.1 Quality Configurable Circuits

In applications such as signal processing or image compression, it is useful when

the quality of approximation (and a corresponding circuit error) can dynamically be

adapted in “situ” as a response to variable requirements on the quality of results and

available resources. This adaptive quality control is addressed by methods recently

developed in the area of approximate computing [45, 65].

This concept has, however, been explored by the evolvable hardware community

in the past. For example, a polymorphic FIR filter was proposed which can operate

in two modes: a standard one and one with a reduced power budget. When the filter

operates with a reduced power budget, some filter coefficients are reconfigured and

some parts of the filter are disconnected. The goal is to reconfigure the filter in such

a way that its original function is approximated as precisely as possible. The recon-

figuration of coefficients is implemented using multiplierless polymorphic constant

multipliers whose implementation was evolved using CGP [44]. In another study,

Kneiper et al. investigated the robustness of EHW-based classifiers that are able

to cope with changing resources at run-time. The performance and accuracy was

recognized as sufficient as long as a certain amount of resources are present in the

system [19]. It seems to be a natural task for CGP to automatically divide a target

circuit into several sections and optimize these sections in such a way that a quality

configurable solution is obtained.

5.2 Approximate Neural Networks

CGP has already been used in order to approximate neural networks, in particular,

the multipliers involved in computing the product of the inputs and synaptic weights

were approximated by [35]. However, there is a new opportunity for CGP in approxi-

mate neural networks. Miller has managed CGP to encode and evolve artificial neural

networks. CGP is able to simultaneously evolve the networks connections weights,

topology and neuron transfer functions [18]. It is also compatible with recurrent-

CGP enabling the evolution of recurrent neural networks. It seems straightforward

to evolve approximate neural network implementations by means of CGP and find a

good trade-off between the network error and power consumption.

Approximate Computing: An Old Job for Cartesian Genetic Programming? 209

6 Final Remarks

In this chapter, we highlighted Julian F. Miller’s contribution to the evolutionary

circuit design and identified a strong connection and relevance of his research to

approximate computing.

It is fair to say that this chapter could be seen as a bit biased as many of the results

and studies referenced were developed by the Evolvable hardware group at Faculty of

Information Technology, Brno University of Technology. However, it indicates how

strongly our work was influenced by the concepts and methods proposed by Julian

F. Miller. We hope that Miller’s ideas were exploited by us in a good way and that

we helped to disseminate these ideas to other communities, outside the evolutionary

computing (Miller’s home), such as mainstream circuit design conferences (DATE,

ICCAD, FPL and DDECS).

Thank you, Julian!

Acknowledgements This work was supported by The Ministry of Education, Youth and Sports of

the Czech Republic from the National Programme of Sustainability (NPU II); project

IT4Innovations excellence in science—LQ1602.

References

1. Chippa, V., Venkataramani, S., Chakradhar, S., Roy, K., Raghunathan, A.: Approximate com-

puting: an integrated hardware approach. In: 2013 Asilomar Conference on Signals, Systems

and Computers, pp. 111–117. IEEE (2013)

2. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic program-

ming. In: Proceedings of GECCO, pp. 1580–1587. ACM (2007)

3. Dobai, R., Sekanina, L.: Low-level flexible architecture with hybrid reconfiguration for evolv-

able hardware. ACM Trans. Reconfig. Technol. Syst. 8(3), 1–24 (2015)

4. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration for general-purpose

approximate programs. Commun. ACM 58(1), 105–115 (2015)

5. Gajda, Z., Sekanina, L.: An efficient selection strategy for digital circuit evolution. In: Evolv-

able Systems: From Biology to Hardware, LNCS, vol. 6274, pp. 13–24. Springer (2010)

6. Goldman, B.W., Punch, W.F.: Analysis of Cartesian genetic programming’s evolutionary

mechanisms. IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)

7. Gupta, P., Agarwal, Y., Dolecek, L., Dutt, N., Gupta, R.K., Kumar, R., Mitra, S., Nicolau, A.,

Rosing, T.S., Srivastava, M.B., Swanson, S., Sylvester, D.: Underdesigned and opportunistic

computing in presence of hardware variability. IEEE Trans. CAD Integr. Circuits Syst. 32(1),

8–23 (2013)

8. Harding, S., Miller, J.F., Banzhaf, W.: Developments in cartesian genetic programming: self-

modifying CGP. Genet. Program. Evolvable Mach. 11(3–4), 397–439 (2010)

9. Harding, S.L., Banzhaf, W.: Hardware acceleration for CGP: graphics processing units. In:

Cartesian Genetic Programming, pp. 231–253. Springer (2011)

10. Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. Int. J.

Unconv. Comput. 3(4), 243–257 (2007)

11. Hilder, J., Walker, J., Tyrrell, A.: Use of a multi-objective fitness function to improve cartesian

genetic programming circuits. In: NASA/ESA Conference on Adaptive Hardware and Systems,

pp. 179–185. IEEE (2010)

210 L. Sekanina

12. Holik, L., Lengal, O., Rogalewicz, A., Sekanina, L., Vasicek, Z., Vojnar, T.: Towards formal

relaxed equivalence checking in approximate computing methodology. In: 2nd Workshop on

Approximate Computing (WAPCO 2016), HiPEAC, pp. 1–6 (2016)

13. Hrbacek, R., Sekanina, L.: Towards highly optimized cartesian genetic programming: from

sequential via SIMD and thread to massive parallel implementation. In: Proceedings of the

2014 Conference on Genetic and Evolutionary Computation, pp. 1015–1022. ACM(2014)

14. Kaufmann, P., Platzner, M.: Advanced techniques for the creation and propagation of modules

in cartesian genetic programming. In: Genetic and Evolutionary Computation (GECCO), pp.

1219–1226. ACM Press (2008)

15. Kaufmann, P., Plessl, C., Platzner, M.: EvoCaches: application-specific adaptation of cache

mappings. In: Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems,

pp. 11–18. IEEE Computer Society, Los Alamitos, CA, USA (2009)

16. Kaufmann, P., Knieper, T., Platzner, M.: A novel hybrid evolutionary strategy and its peri-

odization with multi-objective genetic optimizers. In: 2010 IEEE Congress on Evolutionary

Computation (CEC), pp. 1–8. IEEE (2010)

17. Kaufmann, P., Glette, K., Gruber, T., Platzner, M., Torresen, J., Sick, B.: Classification of

electromyographic signals: comparing evolvable hardware to conventional classifiers. IEEE

Trans. Evol. Comput. 17(1), 46–63 (2013)

18. Khan, G.M., Miller, J.F., Halliday, D.M.: Evolution of Cartesian genetic programs for devel-

opment of learning neural architecture. Evol. Comput. 19(3), 469–523 (2011)

19. Knieper, T., Kaufmann, P., Glette, K., Platzner, M., Torresen, J.: Coping with resource fluctu-

ations: the run-time reconfigurable functional unit row classifier architecture. In: Proceedings

of the 9th International Conference on Evolvable Systems: From Biology to Hardware, LNCS,

vol. 6274, pp. 250–261. Springer (2010)

20. Koza, J.R.: Genetic Programming: On The Programming of Computers by Means of Natural

Selection. MIT press (1992)

21. Louis, S., Rawlins, G.J.E.: Designer genetic algorithms: genetic algorithms in structure design.

In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 53–60.

Morgan Kauffman (1991)

22. Markov, I.: Limits on fundamental limits to computation. Nature 512, 147–154 (2014)

23. Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a cartesian

genetic programming approach. In: Proceedings of the 1st Annual Conference on Genetic and

Evolutionary Computation, vol. 2, pp. 1135–1142. Morgan Kaufmann Publishers Inc. (1999)

24. Miller, J.F.: On the filtering properties of evolved gate arrays. In: 1st NASA-DoD Workshop

on Evolvable Hardware, pp. 2–11. IEEE Computer Society (1999)

25. Miller, J.F.: Cartesian Genetic Programming. Springer (2011)

26. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proceed-

ings of the 2002 NASA/DoD Conference on Evolvable Hardware (EH’02), pp. 167–176. IEEE

Computer Society (2002)

27. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic pro-

gramming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

28. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proceedings of the 3rd European

Conference on Genetic Programming EuroGP2000, LNCS, vol. 1802, pp. 121–132. Springer

(2000)

29. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algo-

rithms. Arithmetic circuits: A case study. In: Genetic algorithms and evolution strategy in engi-

neering and computer science. Wiley (1998)

30. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits—

part II. Genet. Program. Evolvable Mach. 1(3), 259–288 (2000)

31. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. 48(4),

62:1–62:33 (2016)

32. Mohid, M., Miller, J.F., Harding, S.L., Tufte, G., Massey, M.K., Petty, M.C.: Evolution-in-

materio: solving computational problems using carbon nanotube-polymer composites. Soft

Comput. 20(8), 3007–3022 (2016)

Approximate Computing: An Old Job for Cartesian Genetic Programming? 211

33. Mrazek, V., Vasicek, Z.: Automatic design of low-power vlsi circuits: Accurate and approxi-

mate multipliers. In: Proceedings of 13th IEEE/IFIP International Conference on Embedded

and Ubiquitous Computing, pp. 106–113. IEEE (2015)

34. Mrazek, V., Vasicek, Z., Sekanina, L.: Evolutionary approximation of software for embedded

systems: median function. In: GECCO Companion ’15 Proceedings of the Companion Publi-

cation of the 2015 on Genetic and Evolutionary Computation Conference, pp. 795–801. ACM

(2015)

35. Mrazek, V., Sarwar, S.S., Sekanina, L., Vasicek, Z., Roy, K.: Design of power-efficient approx-

imate multipliers for approximate artificial neural networks. In: 2016 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). pp. 811–817 (2016)

36. Mrazek, V., Hrbacek, R., Vasicek, Z., Sekanina, L.: Evoapprox8b: library of approximate

adders and multipliers for circuit design and benchmarking of approximation methods. In:

2017 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 258–261

(2017)

37. Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.: Evolvable hard-

ware at function level. In: Parallel Problem Solving from Nature—PPSN IV, LNCS, vol. 1141,

pp. 62–71. Springer (1996)

38. Nawab, S., Oppenheim, A., Chandrakasan, A., Winograd, J., Ludwig, J.: Approximate signal

processing. J. VLSI Signal Process. 15(1–2), 177–200 (1997)

39. Nepal, K., Li, Y., Bahar, R.I., Reda, S.: ABACUS: a technique for automated behavioral synthe-

sis of approximate computing circuits. In: Proceedings of the Conference on Design, Automa-

tion and Test in Europe, EDA Consortium, DATE’14, pp. 1–6 (2014)

40. Salvador, R., Otero, A., Mora, J., la De, E.T., Riesgo, T., Sekanina, L.: Self-reconfigurable

evolvable hardware system for adaptive image processing. IEEE Trans. Comput. 62(8), 1481–

1493 (2013)

41. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.: EnerJ:

approximate data types for safe and general low-power computation. In: Proceedings of the

32nd ACM SIGPLAN Conference on Programming Language Design and Implementation,

pp. 164–174. ACM (2011)

42. Sekanina, L.: Evolvable components: from theory to hardware implementations. Nat. Comput.

Ser. (2004)

43. Sekanina, L.: Evolvable hardware. In: Handbook of Natural Computing, pp. 1657–1705.

Springer (2012)

44. Sekanina, L., Ruzicka, R., Gajda, Z.: Polymorphic fir filters with backup mode enabling power

savings. In: Proceedings of the 2009 NASA/ESA Conference on Adaptive Hardware and Sys-

tems, pp. 43–50. IEEE Computer Society (2009)

45. Shubham, J., Venkataramani, S., Raghunathan, A.: Approximation through logic isolation for

the design of quality configurable circuits. In: Proceedings of the 2016 Design, Automation &

Test in Europe Conference and Exhibition (DATE), pp. 1–6. EDA Consortium (2016)

46. Sikulova, M., Sekanina, L.: Acceleration of evolutionary image filter design using coevolution

in Cartesian GP. In: Parallel Problem Solving from Nature-PPSN XII, no. 7491 in LNCS, pp.

163–172. Springer (2012)

47. Slany, K., Sekanina, L.: Fitness landscape analysis and image filter evolution using functional-

level CGP. In: Proceedings of European Conference on Genetic Programming. LNCS, vol.

4445, pp. 311–320. Springer (2007)

48. Soeken, M., Grosse, D., Chandrasekharan, A., Drechsler, R.: BDD minimization for approx-

imate computing. In: 21st Asia and South Pacific Design Automation Conference ASP-DAC

2016, pp. 474–479. IEEE (2016)

49. Stomeo, E., Kalganova, T., Lambert, C.: Generalized disjunction decomposition for evolvable

hardware. IEEE Trans. Syst. Man Cybern. Part B 36(5), 1024–1043 (2006)

50. Thompson, A., Layzell, P., Zebulum, S.: Explorations in design space: unconventional elec-

tronics design through artificial evolution. IEEE Trans. Evol. Comput. 3(3), 167–196 (1999)

51. Turner, A.J., Miller, J.F.: Recurrent cartesian genetic programming. In: Parallel Problem Solv-

ing from Nature—PPSN XIII, pp. 476–486. Springer (2014)

212 L. Sekanina

52. Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using cartesian genetic pro-

gramming. Genet. Program. Evolvable Mach. 16(4), 531–558 (2015)

53. Vasicek, Z.: Cartesian GP in optimization of combinational circuits with hundreds of inputs

and thousands of gates. In: Proceedings of the 18th European Conference on Genetic

Programming—EuroGP. LCNS 9025, pp. 139–150. Springer International Publishing (2015)

54. Vasicek, Z., Sekanina, L.: An evolvable hardware system in Xilinx Virtex II Pro FPGA. Int. J.

Innov. Comput. Appl. 1(1), 63–73 (2007)

55. Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-synthesis evolu-

tionary optimization in evolvable hardware. Genet. Program. Evolvable Mach. 12(3), 305–327

(2011)

56. Vasicek, Z., Sekanina, L.: A global postsynthesis optimization method for combinational cir-

cuits. In: Proceedings of the Design, Automation and Test in Europe, DATE, pp. 1525–1528.

IEEE Computer Society (2011)

57. Vasicek, Z., Sekanina, L.: Evolutionary design of approximate multipliers under different error

metrics. In: IEEE International Symposium on Design and Diagnostics of Electronic Circuits

and Systems 2013, pp. 135–140. IEEE (2014)

58. Vasicek, Z., Sekanina, L.: How to evolve complex combinational circuits from scratch? In:

2014 IEEE International Conference on Evolvable Systems Proceedings, pp. 133–140. IEEE

(2014)

59. Vasicek, Z., Sekanina, L.: Circuit approximation using single- and multi-objective cartesian

GP. In: Genetic Programming. LNCS 9025, pp. 217–229. Springer (2015)

60. Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits design. IEEE

Trans. Evol. Comput. 19(3), 432–444 (2015)

61. Vasicek, Z., Sekanina, L.: Evolutionary design of complex approximate combinational circuits.

Genet. Program. Evolvable Mach. 17(2), 169–192 (2016)

62. Vasicek, Z., Slany, K.: Efficient phenotype evaluation in cartesian genetic programming. In:

Proceedings of the 15th European Conference on Genetic Programming. LNCS 7244, pp. 266–

278. Springer (2012)

63. Vassilev, V., Job, D., Miller, J.F.: Towards the automatic design of more efficient digital circuits.

In: Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 151–160. IEEE

Computer Society (2000)

64. Vazirani, V.V.: Approximation Algorithms. Springer (2001)

65. Venkataramani, S., Roy, K., Raghunathan, A.: Substitute-and-simplify: a unified design par-

adigm for approximate and quality configurable circuits. Design, Automation and Test in

Europe, DATE’13, pp. 1367–1372. EDA Consortium San Jose, CA, USA (2013)

66. Venkatesan, R., Agarwal, A., Roy, K., Raghunathan, A.: MACACO: modeling and analy-

sis of circuits for approximate computing. In: 2011 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pp. 667–673. IEEE (2011)

67. Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and reuse of modules in carte-

sian genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417 (2008)

68. Walker, J.A., Hilder, J.A., Tyrrell, A.M.: Evolving Variability-Tolerant CMOS Designs.

Springer, Berlin Heidelberg (2008)

69. Walker, J.A., Hilder, J.A., Reid, D., Asenov, A., Roy, S., Millar, C., Tyrrell, A.M.: The evolution

of standard cell libraries for future technology nodes. Genet. Program. Evolvable Mach. 12(3),

235–256 (2011)

Breaking the Stereotypical Dogma of
Artificial Neural Networks with Cartesian
Genetic Programming

Gul Muhammad Khan and Arbab Masood Ahmad

Abstract This chapter presents the work done in the field of Cartesian Genetic Pro-

gramming evolved Artificial Neural Networks (CGPANN). Three types of CGPANN

are presented, the Feed-forward CGPANN (FFCGPAN), Recurrent CGPANN and

the CGPANN that has developmental plasticity, also called Plastic CGPANN or

PCGPANN. Each of these networks is explained with the help of diagrams. Per-

formance results obtained for a number of benchmark problems using these net-

works are illustrated with the help of tables. Artificial Neural Networks (ANNs) suf-

fer from the dilemma of how to select complexity of the network for a specific task,

what should be the pattern of inter-connectivity, and in case of feedback, what topol-

ogy will produce the best possible results. Cartesian Genetic Programming (CGP)

offers the ability to select not only the desired network complexity but also the inter-

connectivity patterns, topology of feedback systems, and above all, decides which

input parameters should be weighted more or less and which one to be neglected. In

this chapter we discuss how CGP is used to evolve the architecture of Neural Net-

works for optimum network and characteristics. Don’t you want a system that designs

everything for you? That helps you select the optimal network, the inter-connectivity,

the topology, the complexity, input parameters selection and input sensitivity? If yes,

then CGP evolved Artificial Neural Network (CGPANN) and CGP evolved Recur-

rent Neural Network (CGPRNN) is the answer to your questions.

G.M. Khan (✉)

Department of Electrical Engineering, University of Engineering

and Technology, Peshawar, Pakistan

e-mail: gk502@uetpeshawar.edu.pk

A.M. Ahmad

Department of Computer Systems Engineering, University of Engineering

and Technology, Peshawar, Pakistan

e-mail: arbabmasood@uetpeshawar.edu.pk

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_10

213

214 G.M. Khan and A.M. Ahmad

1 Artificial Neural Networks

Artificial Neural Network (ANN) is a powerful tool for non-linear mapping between

input and output. It is the ultimate solution when all the traditional algorithms fail.

It provides a parametric expression for the system whose mathematical model for

functionality is unknown. Despite successful application of neural networks to a

variety of problems, they still have some limitations. One of the most common lim-

itations is associated with neural network training. The back-propagation learning

algorithm cannot guarantee an optimal solution. Back propagation has the tendency

to get stuck-up at a sub-optimal point, and might never come out of it. Much research

has been done to tackle this problem. Evolutionary methods can provide solution to

this problem. They do so by producing multiple solutions at any one point, thus if

one of them is stuck-up at suboptimal point the other might be in closer vicinity to

the global optimum and will thus cause the network to reach the global optimum.

In real-world applications, the back-propagation algorithm might converge to a set

of sub-optimal weights from which it cannot escape. As a result, the neural network

is often unable to find a desirable solution to a problem at hand. To get the bene-

fits of both ANN and evolutionary methods researchers tried a hybrid of both these

methods [33]. Another difficulty is related to selecting an optimal topology for the

neural network. The right network architecture for a particular problem is often cho-

sen by means of heuristics, and designing a neural network topology is still more

of art than engineering. Genetic algorithm [25] and genetic programming [28] are

effective optimization techniques that can guide both weight and topology selection.

2 Neuro-Evolution

The process of evolving various parameters of neural network is termed Neuro-

evolution. Unlike backpropagation algorithm which is used to train only weights of

the network to obtain the desired optimum characteristics, evolutionary techniques

can train the network topology and even the learning rules. In case of evolving con-

nection weights, we perform the following steps:

1. Encode the connection weights of each individual neural network into chromo-

somes.

2. Calculate the error function and determine the individual‘s fitness.

3. Reproduce children based on selection criteria.

4. Apply genetic operators.

Success or failure of an application is largely determined by the network architecture

(i.e. the number of neurons and their interconnections). As the network architecture

is usually decided by trial and error, a good algorithm is required to automatically

design an efficient architecture for each particular application. Genetic algorithms

may well be suited for this task. The basic idea behind evolving a suitable network

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 215

architecture is to conduct a genetic search in a population of possible architectures.

We must first choose a method of encoding a network’s architecture into a chromo-

some. There are two types of encoding schemes:

Direct Encoding: When all the information of the network is represented directly

by genes in the code, it is referred to as Direct Encoding Scheme. In this case the

network has a one to one relationship between genotype and phenotype.

Indirect Encoding: In this type of encoding the genes don’t represent the network

directly, and show only the indirect function responsible for generation of network

parameters [5]. This is biologically more plausible, as according to the findings of

neuroscience it is impossible for genetic information to be encoded in humans to

specify the whole nervous system directly. It is computationally more expensive,

since it doesn’t have any clue of the targeted application for which the network is

developed.

3 CGP Evolved Artificial Neural Network (CGPANN)

We have used CGP to introduce four different ways of evolving neural networks that

are as follows:

∙ Feed-forward CGP evolved ANN (FCGPANN)

∙ Recurrent CGP evolved ANN (RCGPANN)

∙ Plastic CGP evolved ANN (PCGPANN)

∙ Plastic Recurrent CGPANN (PRCGPANN).

3.1 Feed-Forward CGP Evolved ANN (FCGPANN)

In the first case, CGP is transformed to a feed-forward neural network by considering

each node as a neuron, and providing each connection with a weight. The neurons

of such a network are arranged in Cartesian format with rows and columns inspired

by original CGP architecture, and later on restricted to a single row mostly giving

the network an ability to create infinite graphs/topologies. Each neuron in the net-

work can take connection from either a previous neuron or from the system input.

Not all neurons are necessarily connected with each other or with system inputs,

this provides the network with an ability to continuously evolve its complexity along

with the weights. All the network parameters are represented by a string of numbers

called genotype. The number of active neurons (connected from inputs to outputs)

varies from generation to generation subject to the genotype selection. Output of

any neuron or a system input can be a candidate for the systems output selection.

The ultimate system functionality is identified by interconnecting neurons from out-

put to input. Since CGP works best with mutation, thus only mutation operator is

216 G.M. Khan and A.M. Ahmad

W1

Wn

C1

Cn

I1

In

O

Weights Connections Activation
Function

Summer
Output

Inputs

Fig. 1 A CGPANN node containing the inputs, weights, switches, summer and activation function

explored in all the variants of neural networks introduced in this work. Mutation

operator specifies the percentage of genes to be mutated during the process of evo-

lution. A gene can be an input connection to a node, a weight, a switch or a neuron

function. These genes for a single node are shown in Fig. 1. An FCGPANN geno-

type for arity 2 (two inputs per node) is represented by the following expression:

FI1W1C1I2W2C2,FI1W1C1I2W2C2 … ,O1,O2 …On. Where F is the activation func-

tion chosen randomly from a list of different type of nonlinear functions. The two

most popular functions, also used in this work are the Log-sigmoid and the tangent

hyperbolic function, I represents output of a node or a system input, connected to

the node under consideration, W is the weight being multiplied with a node input

and C is an optional ON/OFF switch. All these genes can get only certain allowed

values depending on the type of network. The network representation of a genotype

is called a phenotype. Figure 2 shows a typical FCGPANN phenotype with its asso-

ciated genotype. We have the option to evolve, all the parameters, or can fix one or

two and evolve others.

FCGPANN was initially tested for its speed of learning, and evaluated against the

previously introduced neuro-evolutionary techniques on benchmarks such as single

and double Pole balancing [19]. Table 1 shows the superior performance of FCG-

PANN and RCGPANN (see next section) in comparison to the other neuroevolu-

tionary techniques evaluated for speed of learning on single pole balancing prob-

lem. Table 2 shows the performance of FCGPANN and RCGPANN compared to

other techniques, for Markovian and non-Markovian cases of double pole balanc-

ing task, where a Markovian process can be defined as the one in which the condi-

tional probability distribution of the future state depends only on the present state

and not on the past history. The figures show average number of evaluations needed

to achieve the target objective of balancing the poles for a specific bench marked time

interval. FCGPANN is explored in a range of applications including: breast cancer

detection, prediction of foreign currency exchange rates, Load forecasting, Internet

multimedia traffic management, cloud resource estimation, solar irradiance predic-

tion, wind power forecasting and arrhythmia detection [2, 13, 14, 16, 19, 24, 30].

FCGPANN outperformed all the previously introduced techniques as highlighted in

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 217

Node 1 Node 2 Outputs

Fig. 2 A CGPANN phenotype with its corresponding genotype

Table 1 Comparison of CGPANN with other neuro-evolutionary algorithms in terms of average

number of evaluations required to solve the single pole balancing task

Method Markovian Non-Markovian

Conventional Neuro-Evolution (CNE) [36] 352 724

Symbiotic, Adaptive Neural Evolution (SANE) [23] 302 1212

Enforced sub-population (ESP) [7] 289 589

Neuro-Evolution of Augmenting Topologies (NEAT) [35] 743 1523

Cooperative synapse neuroevolution (CoSyNE) [6] 98 127

FCGPANN [19] 21 –

RCGPANN [19] 17 55

the literature. Table 3 shows the comparative results for the mean accuracy in breast

cancer detection with fine needle aspiration (FNA), using different algorithms. It

can be seen that FCGPANN outperformed the other methods [19]. Another impor-

tant area in which FCGPANN was successfully applied is the prediction of foreign

currency exchange rates [24]. Table 4 shows the comparative results for prediction

of foreign currency exchange rates using FCGPANN and other methods.

Marketing a product requires good knowledge about the demands of customers,

especially in the case of food products. FCGPANN provides efficient method to pre-

dict market trends [1].

218 G.M. Khan and A.M. Ahmad

Table 2 Comparison of CGPANN with other neuro-evolutionary algorithms in terms of average

number of evaluations required to solve the double pole balancing task

Method Markovian Non-Markovian

Standard fitness Standard fitness Damping fitness

Conventional Neuro-Evolution (CNE)

[36]

22 100 76 906 87 623

Symbiotic, Adaptive Neural Evolution

(SANE) [23]

12 600 262 700 451 612

Enforced sub-population (ESP) [7] 3 800 7 374 26 342

Neuro-Evolution of Augmenting

Topologies (NEAT) [35]

3 600 – 6 929

Cooperative synapse neuroevolution

(CoSyNE) [6]

954 1 294 3416

FCGPANN [19] 77 – –

RCGPANN [19] 129 163 387

Table 3 Comparison of Mean Absolute Percentage Errors (MAPE) obtained using various clas-

sification methods using the processed FNA data from WDBC that contains 30 features

No. Method Mean (MAPE)

1 Multi-Layer Perceptron (MLP) [8] 95.56

2 Fisher Linear Discriminant Analysis

(FLDA)/MLP [8]

90.92

3 Principle Component Analysis (PCA)/MLP [8] 92.02

4 Genetic Programming (GP/MDC) [8] 96.58

5 Evolutionary Neural Network (ENN) [10] 95.6

6 FCGPANN [19] 97 for Type-I and 98.5 for Type-II

Table 4 Comparison between the MAPE of other well known methods and that of FCGPANN,

for predicting foreign exchange rates

Network MAPE (%)

Hidden Markov model (HMM) [29] 1.928

ARIMA [3] 1.6108

Regression model [29] 1.9

CART model 1.62

Neural network model [9] 1.61

FCGPANN [24] 1.148

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 219

3.2 Recurrent CGPANN (RCGPANN)

The second type of CGPANN is the Recurrent CGPANN (RCGPANN). These net-

works are more suitable for modeling systems that are dynamic and nonlinear. This

network is a modification to one of the earliest networks, the Jordan’s network [11].

In the Jordan’s network there are state inputs that are equal in number to the out-

puts. These inputs are fed by the outputs through unit weights. The state inputs are

present only at the input layer. Learning of these networks take place by changing

the weights of connections between input layer and the hidden layer and, the hid-

den and the output layer. In RCGPANN unlike the Jordan’s network the state inputs

can be connected, not necessarily to the first layer but to any layer. These additional

inputs also have the activation functions. Figures 3 and 4 show a typical RCGPANN

neuron, and the RCGPANN genotype and phenotype respectively. Here I1 and I2 are

the normal inputs while R is a state input. Initial value of the R input to the system is

considered zero. Output is taken from Node 6 as evident from genotype and the cor-

responding phenotype, and node 6 takes input from node 3 and input I2 only. Node

4 and 5 do not contribute to the output and are termed inactive nodes, while 3 and 6

are active nodes as they contribute to the output. Following are the outputs of active

nodes:

𝜓3 = tanh(I1 ⋅W13 + I2 ⋅W23 + R ⋅WR3)

𝜓6 = tanh(𝜓3 ⋅W36 + I2 ⋅W26 + R ⋅WR6)

where I1 and I2 are the normal inputs to the system, R is the state input, Wmn is

the weight of connection between system-input/node m and n, 𝜓m is the output of

node m. Figure 5 shows the case when all the outputs are presented as feedback

X

X

X

I1

W23

W13

I2

R

WR3

Activation
Function

Output 3

Fig. 3 A typical RCGPANN neuron

220 G.M. Khan and A.M. Ahmad

Fig. 4 Figure showing a RCGPANN genotype, b 2× 2 RCGPANN Network and c corresponding

to the phenotype

inputs to the neurons for selection. The output is averaged to find the desired output

of the system. RCGPANN was also tested initially for its speed of learning similar

to FCGPANN on both single and double pole balancing for both markovian and

nonmorkovian cases. Its performance relative to other neuroevolutionary techniques

for Markovian and non-Markovian cases explored on single pole balancing task is

shown in Table 1 and that on double pole is shown in Table 2. The numbers in the

tables represent the required average number of evaluations to find the desired pole

balancing behaviour. The results in these two tables clearly show the superiority of

FCGPANN and RCGPANN in Markovian case and that of RCGPANN in the non-

Markovian case.

FCGPANN and RCGPANN are also tested for their generalization ability. Table 5

shows generalization of FCGPANN and RCGPANN: average number of random cart

initializations (out of 625) that can be balanced for a desired number (benchmark) of

time-steps. Table 6 presents the generalization ability of various neuroevolutionary

algorithms for the double pole balancing scenario for non-Markovian case using the

damping fitness function. It is observed that the RCGPANN scored 335.84 out of

625 for 50 independently evolved genotypes exhibiting greater generalization ability

as compared to other techniques presented to date. Recurrent CGPANN has been

successfully applied to a number of applications including: Load forecasting, for-

eign currency exchange rates, bandwidth management and estimation [16, 17, 31].

RCGPANN has been successfully applied to electrical load prediction for a com-

plete year and also for different seasons of the year, enabling efficient utilization of

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 221

Fig. 5 RCGPANN phenotype with full feedback having all outputs available for feedback

electricity management [14]. Table 7 compares the performance of RCGPANN with

other contemporary methods in terms of Mean Absolute Percentage Error (MAPE),

for the load forecasting task. Bandwidth allocation for communication channels has

always been a challenge for the engineers. Recurrent CGPANN has been success-

fully applied to predict the size of next MPEG4 video frame based on the estimate

of the last ten frames [16]. Table 8 shows the comparative results of next frame pre-

diction in terms of overall error for RCGPANN and other models. The electric load

prediction discussed earlier was improved to predict very short term (about half an

hour) load [18]. Table 9 shows the performance in terms of MAPE values, for the

proposed RCGPANN in comparison to other methods, for predicting very short term

electric load. Table 10 shows the comparative results for predicting the foreign cur-

rency exchange rate using RCGPANN and other models [31].

222 G.M. Khan and A.M. Ahmad

Table 5 Generalization of CGPANN: average number of random cart initializations (out of 625)

that can be solved

Algorithm type Markovian Non-Markovian

Single pole Double pole Single pole Double pole

FCGPANN 590 277.38 – –

RCGPANN 363.94 471.92 294 335.84

Table 6 Comparison of

generalization of CGPANN

with other neuroevolutionary

algorithms for the double

pole balancing scenario for

Non-Markovian case

Method Value

CE 300

ESP 289

NEAT 286

RCGPANN 335.84

Table 7 Comparison of

RCGPANN with other

methods for the load

forecasting task

Method MAPE (%)

Local linear model tree 1.98

Support vector machine 1.93

Autonomous ANN 1.75

Floating search + SVM 1.70

CGPANN 1.71

ANN-back propagation 2.41

GA based adaptive ANN 1.94

RCGPANN 1.56

Table 8 Best overall error

comparison in MPEG4 frame

size prediction

S.no. Scheme Error (%)

1 Recurrent ANN RMSE = 3.0

2 F-CGPANN RMSE = 16

3 Laetitia et al.

model

RPE = 7.30

4 SARIMA MARE = 1.37

5 Kalman filter MARE = 1.4

6 Proposed

(RCGPANN)

RMSE = 2.7

MAPE = 1.2

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 223

Table 9 Comparison of RCGPANN with other methods in terms of MAPE for very short time

electric load forecasting

S.no Model MAPE (%)

1 Self-supervised adaptive ANN 0.91

2 FNN for RTLF 0.88

3 ANNSTLF 2

4 RBF forecaster 1.3393

5 Model in [34] 0.66

6 Multiplicative decomposition

model

0.7601

7 Seasonal ARIMA model 1.6108

8 Model 1 [22] 1.792

9 Model 2 [22] 1.813

10 RCGPANN (proposed model) 0.43

Table 10 Comparison between the accuracy distribution rates and MAPE of RCGPANN and other

models for the foreign currency exchange rate prediction

Network Accuracy (%)

Multi layer perceptron [21] 72

HFERFM [27] 69.9

AFERFM [27] 81.2

Backpropagation with Bayesian regularization

[12]

93.93

RCGPANN (implemented) 98.872

3.3 Plastic CGPANN (PCGPANN)

Plasticity in neural networks has been the characteristic of choice when it comes

to applications in dynamic systems due to its comparatively better performance [4,

26, 32]. The improved performance in Plastic neural networks can be attributed to

the adaptability of its morphology to environmental stimuli. This is similar to the

natural neural system. In this developmental form of CGPANN an additional output

gene provides extra features to the system. PCGPANN has the same basic struc-

ture as that of CGPANN presented previously. With the addition of an extra output

gene, that causes developmental decisions during evaluation process, the CGPANN

achieves its plasticity. The decision is made on the basis of output values. The muta-

tion of the genotype is invoked according to a decision function that decides either

to invoke mutation or not. The decision function in this case is a threshold function

which invokes mutation when the value of output of the CGPANN is higher than

the threshold value. The threshold value is selected based on the performance of the

model. In this way an unlimited number of phenotypes might be generated from a

224 G.M. Khan and A.M. Ahmad

single genotype, depending on the system requirement. The network is tested for its

performance in diverse learning domains. The genotypes are modified based on the

defined set of constraints. The plasticity invokes mutation of genotype at runtime,

modifying its genes, producing complex network structures.

3.3.1 PCGPANN Methodology

The PCGPANN generalized approach is demonstrated in Fig. 6. The figure depicts

network topology, its parameters i.e. inputs, connections, outputs, the additional

output gene and the algorithm of PCGPANN. The system consists of the original

CGPANN as explained before. Output from this network is fed into the running sum

block. Based on the evolutionary requirements, the number of outputs fed into the

summation block can vary. Either half or full number of CGPANN outputs are fed

into the summation block. The network is thus named Full Feedback (FFB) or Half

Feedback (HFB) network, based on its architecture. Output of the summation block

is fed to a decision function that generates either a 0 or a 1 so as to invoke the muta-

tion or not. Depending on the value of the summation block the decision function

either invokes mutation or leaves the genotype unchanged. The network is unique in

its ability to invoke mutation during run time. The mutation may take place randomly

in any of the following network genes: node inputs, weights, outputs or activation

functions. The genes are mutated under the given set of constraints.

Decision
Box

Inputs

Summation
Function

Sigmoid Function

Invoke Mutation

CGPANN

Outputs
W0

W1

W2

W3

W4

W5

W6

W7

W8

W9

I0

I1

I2

I3

I4

I 5

I 6

I7

I 8

I9

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

0

9

3

5

8

7

2

4

1

w14

w10

w11

w12

w13

w16

w15

w17

W0

W1

W2

W3

W4

W5

W6

W7

W8

W9

6

Fig. 6 A Generalized approach of PCGPANN depicting the network topology, attributes: inputs,

connections, outputs, the additional output gene and the algorithm

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 225

Constraints:

1. If the gene that has to be mutated is the function of a node, then a new function

is randomly selected from a list of functions and assigned to the node.

2. If a weight gene has to be mutated, then it is assigned a random value between

−1 and +1.

3. If the gene to be mutated happens to be a node input, then depending on the

levels-back parameter, output of any randomly selected node on the left of the

node under consideration or a network input is connected to it.

4. If an output gene has to be mutated, then it is connected to the output of a ran-

domly selected node or a system input.

In each iteration genes are mutated, the number of mutations depending on runtime

mutation rate (Developmental index). The possibility of change in genotype at run-

time is dependent on the output from activation function. The decision function is

maintained in accordance to the expected range of output from the activation func-

tion.

3.3.2 Development in PCGPANN

The plasticity in PCGPANN is based on the decision function. Once developmental

index is invoked by the function, the network initiate a step by step process of devel-

opment under the given set of aforementioned constraints. An example of various

possible steps of development in PCGPANN are illustrated in Fig. 7. A change may

be invoked in either the input of a node, a function or a weight gene as shown in the

figure. The process is highlighted both in the genotype and the phenotype. Figure 7a

shows the initial genotype and phenotype. There are two node functions, a sigmoid

and a tangent hyperbolic, in the initial genotype. These are the available functions

that can be randomly assigned to a node when mutation takes place. The 𝜓0s and 𝜓1s

are network inputs and 𝜓2 is the output of the first node and 𝜓3 is the system output,

while the weights have values in the range [−1, 1]. The mathematical representation

of the initial network is given in Eq. 1.

𝜓3 = Sig
[
0.6𝜓1 + 0.2Tanh(0.2𝜓0 + 0.7𝜓1)

]
(1)

In the first case, the function of first node i.e. Tanh is transformed to sigmoid function.

The updated genotype and phenotype are presented in Fig. 7b. The mathematical

expression for the updated genotype is given in Eq. 2.

𝜓3 = Sig
[
0.6𝜓1 + 0.2Sig(0.2𝜓0 + 0.7𝜓1)

]
(2)

In the second case, the weight changes from 0.1 to 0.7 i.e. at the first input of

the second node as shown in Fig. 7c. The mathematical expression for the updated

genotype is given by Eq. 3.

226 G.M. Khan and A.M. Ahmad

Fig. 7 Demonstration of real time development in PCGPANN

𝜓3 = Sig
[
0.6𝜓1 + 0.7Sig(0.2𝜓0 + 0.7𝜓1)

]
(3)

In Fig. 7d, the structure is modified when an input to the neuron is altered i.e. the

first input to the second node is disconnected from node 1 and connected to a system

input. The network attains final expression as given by Eq. 4.

𝜓3 = Sig
[
0.6𝜓1 + 0.7𝜓0

]
(4)

Similar to FCGPANN and RCGPANN, PCGPANN is also first evaluated for its

learning ability and then the generalization of performing in an unknown environ-

ment. Table 11 shows the comparative results for PCGPANN and other algorithms,

used for single and double pole balancing tasks. The performance is shown in terms

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 227

Table 11 Comparison of PCGPANN with other neuroevolutionary algorithms applied on single

and double pole balancing task: average number of network evaluations

Method Single pole Double pole

Conventional Neuro-Evolution (CNE) [36] 352 22 100

Symbiotic, Adaptive Neural Evolution (SANE) [23] 302 12 600

Enforced sub-population (ESP) [7] 289 3 800

Neuro-Evolution of Augmenting Topologies (NEAT) [35] 743 3 600

Cooperative synapse neuroevolution (CoSyNE) [6] 98 954

FCGPANN 21 77

PCGPANN 104 1 169

Table 12 Average number of random cart-pole initializations (out of 625) that can be solved

Type Single pole Double pole

FCGPANN 590 277.38

PCGPANN 456 349

Table 13 Comparison of PCGPANN with other ANNS for the prediction of foreign currency

exchange rates

Network Accuracy

AFERFM 81.2

HFERFM 69.9

Multi layer perceptron 72

Volterra network 76

Back propagation network 62.27

Multi neural network 66.82

CGPANN 98.85

PCGPANN [15] 98.8516

of average number of network evaluations [20]. Table 12 shows generalization of

the PCGPANN genotypes in comparison to FCGPANN for both the single and dou-

ble pole balancing scenarios. Plastic CGPANN has also been successfully applied to

evolve a dynamic and robust computational model for efficiently predicting daily for-

eign currency exchange rates in advance based on past data [15]. Table 13 shows the

comparative results of foreign currency exchange rate prediction using PCGPANN

and other contemporary methods.

228 G.M. Khan and A.M. Ahmad

3.4 Plastic Recurrent Cartesian Genetic Programming
Evolved Artificial Neural Network (PRCGPANN)

Plastic Recurrent Cartesian Genetic Programming Evolved Artificial Neural Net-

work is an online learning approach that incorporates developmental plasticity in

Recurrent Neural Networks. Recurrent Neural Networks can process arbitrary

sequences of inputs due to their ability to access internal memory. In a Plastic RCG-

PANN the output gene not only forms the system output but also plays a role in the

developmental decision. Output of the system is applied to a decision function to

invoke development of the network. Development in the phenotype takes place with

the mutation of the genotype in runtime. The recurrent CGPANN has a feedback

mechanism in the network, that feeds one or more outputs back to the system. The

general approach of PCGPRNN is depicted in Fig. 8. The figure shows the inputs,

outputs, connections, recurrent inputs and the output gene that invokes development

in the network. The initial network is the original representation of the genotype

that changes in response to the output of the system with the passage of time. The

decision regarding the development is the reflection of output of the system fed into

the sum block and the recurrent paths taken from the CGPANN block associated

with the weights, summation and sigmoid function as shown in the figure. If the

value obtained from the function is less than defined decision value, development is

invoked in the network or otherwise the outputs are monitored without any modifica-

tion. The uniqueness aspect of the approach is that network changes take place in real

time according to the data flow in the network and this provides the plasticity feature

to the network. PRCGPANNs invoke changes in the network by changing (or mutat-

ing) a node function, an input, a weight or by switching an input in the real time. The

learning rules for development in the PCGPRNN are achieved during the process of

evolution. A special case is presented here to describe the developmental mechanism

in PRCGPANN at run time as shown in Figs. 9, 10 and 11. The system has three

inputs (I0, I1 and I2), two recurrent inputs (R0 and R1), five outputs (Y0,Y1,Y2,Y3
and Y4), weights (w0,w1,w2,w3,,w11) and the plastic feedback (PF).

Figure 9 shows the original phenotype having the following genotype:

Genotype = f0, I0,w0, I1,w1, I2,w2, f1, I3,w5,R1,w4, I2,w6,

f2, I3,w7,R1,w4,R0,w8, f3, I3,w10, I4,w11, I0,w9, I3, I1, I4, I5, I6

Figure 10 illustrates the change in function as a result of change in function gene

as highlighted in the genotype below:

Genotype = f0, I0,w0, I1,w1, I2,w2, f1, I3,w5,R1,w4, I2,w6,

f0, I3,w7,R1,w4,R0,w8, f3, I3,w10, I4,w11, I0,w9, I3, I1, I4, I5, I6

Figure 11 shows the change in the output connectivity at runtime respectively with

corresponding change in gene highlighted below:

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 229

Fig. 8 Structural view of PRCGPANN

Genotype = f0, I0,w0, I1,w1, I2,w2, f1, I3,w5,R1,w4, I2,w6,

f0, I3,w7,R1,w4,R0,w8, f3, I3,w10, I4,w11, I0,w9, I0, I1, I4, I5, I6

The various cases of genotype and phenotype diagrams above demonstrate the

possible run time modification to the recurrent network, thus adding not only the sig-

nal feedback but also structural feedback through modification in the system architec-

ture and topology at runtime. This is a very interesting system, because it can trans-

form to feedforward and feedback structure from time to time during the processing,

thus giving a unique ability to the system. This architecture is yet to be explored on

various applications.

230 G.M. Khan and A.M. Ahmad

Fig. 9 Original PRCGPANN phenotype

Fig. 10 Mutation in the function of the network

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 231

Fig. 11 Mutation in the output gene

4 Concluding Remarks

This chapter provides a detailed overview of how CGP is used to evolve artificial

neural network by finding the proper set of weights and topology for the network.

CGP based ANN provides an ideal platform to all Markovian and non-Markovian,

Linear and non-linear problems that are static or dynamic/plastic. They can help

finding the unknown mathematical model for the problem at hand. The CGPANN

model not only helps in selection of topology and optimum weights for ANNs, but

also helps in identifying the best possible features to be selected amongst many pro-

vided to the network and ignoring the unwanted noise. Various models of CGPANNs

are tested in diverse fields of application for its speed of learning, robustness, and

accuracy. Comparison with other algorithms on same set of problems show encour-

aging results.

References

1. Ali, J., Khan, G.M., Mahmud, S.A.: Enhancing growth curve approach using CGPANN for pre-

dicting the sustainability of new food products. In: IFIP International Conference on Artificial

Intelligence Applications and Innovations, pp. 286–297. Springer (2014)

232 G.M. Khan and A.M. Ahmad

2. Arbab, M.A., Khan, G.M., Sahibzada, A.M.: Cardiac arrhythmia classification using cartesian

genetic programming evolved artificial neural network. Exp. Clin. Cardiol. 20(9) (2014)

3. Bidlo, M.: Evolutionary design of generic combinational multipliers using development. In:

International Conference on Evolvable Systems, pp. 77–88. Springer (2007)

4. Carpenter, G.A., Grossberg, S.: The art of adaptive pattern recognition by a self-organizing

neural network. Computer 21(3), 77–88 (1988)

5. Fekiač, J., Zelinka, I., Burguillo, J.C.: A review of methods for encoding neural network topolo-

gies in evolutionary computation. In: Proceedings of 25th European Conference on Modeling

and Simulation ECMS 2011, pp. 410–416 (2011)

6. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through coopera-

tively coevolved synapses. J. Mach. Learn. Res. 9(May), 937–965 (2008)

7. Gomez, F.J., Miikkulainen, R.: Solving non-markovian control tasks with neuroevolution.

IJCAI 99, 1356–1361 (1999)

8. Guo, H., Nandi, A.K.: Breast cancer diagnosis using genetic programming generated feature.

Pattern Recognit. 39(5), 980–987 (2006)

9. Haider, A., Hanif, M.N.: Inflation forecasting in Pakistan using artificial neural networks. Pak.

Econ. Soc. Rev. 123–138 (2009)

10. Iranpour, M., Almassi, S., Analoui, M.: Breast cancer detection from fna using svm and rbf

classifier. In: 1st Joint Congress on Fuzzy and Intelligent Systems (2007)

11. Jordan, M.I.: Attractor dynamics and parallellism in a connectionist sequential machine. In:

Proceedings of the 8th Confererence of the Cognitive Science Society, pp. 531–546. Lawrence

Erlbaum Associates (1986)

12. Kamruzzaman, J., Sarker, R.A.: Forecasting of currency exchange rates using ANN: a case

study. In: Neural Networks and Signal Processing, 2003. Proceedings of the 2003 International

Conference on, vol. 1, pp. 793–797. IEEE (2003, December)

13. Khan, G.M., Ali, J., Mahmud, S.A.: Wind power forecastingan application of machine learning

in renewable energy. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp.

1130–1137. IEEE (2014)

14. Khan, G.M., Khattak, A.R., Zafari, F., Mahmud, S.A.: Electrical load forecasting using fast

learning recurrent neural networks. In: The 2013 International Joint Conference on Neural

Networks (IJCNN), pp. 1–6. IEEE (2013)

15. Khan, G.M., Nayab, D., Mahmud, S.A., Zafar, H.: Evolving dynamic forecasting model for for-

eign currency exchange rates using plastic neural networks. In: 2013 12th International Con-

ference on Machine Learning and Applications (ICMLA), vol. 2, pp. 15–20. IEEE (2013)

16. Khan, G.M., Ullah, F., Mahmud, S.A.: MPEG-4 internet traffic estimation using recurrent

CGPANN. In: International Conference on Engineering Applications of Neural Networks, pp.

22–31. Springer (2013)

17. Khan, G.M., Zafari, F.: Dynamic feedback neuro-evolutionary networks for forecasting the

highly fluctuating electrical loads. Genet. Program. Evolvable Mach. 17(4), 391–408 (2016)

18. Khan, G.M., Zafari, F., Mahmud, S.A.: Very short term load forecasting using cartesian genetic

programming evolved recurrent neural networks (CGPRNN). In: 2013 12th International Con-

ference on Machine Learning and Applications (ICMLA), vol. 2, pp. 152–155. IEEE (2013)

19. Khan, M.M., Ahmad, A.M., Khan, G.M., Miller, J.F.: Fast learning neural networks using

cartesian genetic programming. Neurocomputing 121, 274–289 (2013)

20. Khan, M.M., Khan, G.M., Miller, J.F.: Developmental plasticity in cartesian genetic program-

ming artificial neural networks. In: Proceedings of the 8th International Conference on Infor-

matics in Control, Automation and Robotics (ICINCO 2011), pp. 449–458. SciTePress (2011)

21. Kryuchin, O.V., Arzamastsev, A.A., Troitzsch, K.G.: The prediction of currency exchange rates

using artificial neural networks. Exch. Organ. Behav. Teach. J. 4 (2007)

22. Liu, K., Subbarayan, S., Shoults, R., Manry, M., Kwan, C., Lewis, F., Naccarino, J.: Compar-

ison of very short-term load forecasting techniques. IEEE Trans. Power Syst. 11(2), 877–882

(1996)

23. Moriarty, D.E.: Symbiotic evolution of neural networks in sequential decision tasks. Ph.D.

thesis, University of Texas at Austin USA (1997)

Breaking the Stereotypical Dogma of Artificial Neural Networks . . . 233

24. Nayab, D., Khan, G.M., Mahmud, S.A.: Prediction of foreign currency exchange rates using

cgpann. In: International Conference on Engineering Applications of Neural Networks, pp.

91–101. Springer (2013)

25. Pan, Z., Nie, L.: Evolving both the topology and weights of neural networks. Parallel Algo-

rithms Appl. 9(3–4), 299–307 (1996)

26. Papadrakakis, M., Papadopoulos, V., Lagaros, N.D.: Structural reliability analyis of elastic-

plastic structures using neural networks and monte carlo simulation. Comput. Methods Appl.

Mech. Eng. 136(1–2), 145–163 (1996)

27. Philip, A.A., Taofiki, A.A., Bidemi, A.A.: Artificial neural network model for forecasting for-

eign exchange rate. World Comput. Sci. Inf. Technol. J. (WCSIT) 1 (3) 110–118 (2011)

28. Pujol, J.C.F., Poli, R.: Evolving the topology and the weights of neural networks using a dual

representation. Appl. Intell. 8(1), 73–84 (1998)

29. Refenes, A.N., Azema-Barac, M., Chen, L., Karoussos, S.: Currency exchange rate prediction

and neural network design strategies. Neural Comput. Appl. 1(1), 46–58 (1993)

30. Rehman, M., Ali, J., Khan, G.M., Mahmud, S.A.: Extracting trends ensembles in solar irradi-

ance for green energy generation using neuro-evolution. In: IFIP International Conference on

Artificial Intelligence Applications and Innovations, pp. 456–465. Springer (2014)

31. Rehman, M., Khan, G.M., Mahmud, S.A.: Foreign currency exchange rates prediction using

cgp and recurrent neural network. IERI Procedia 10, 239–244 (2014)

32. Sadeghi, B.: A bp-neural network predictor model for plastic injection molding process. J.

Mater. Process. Technol. 103(3), 411–416 (2000)

33. Sarangi, P.P., Sahu, A., Panda, M.: A hybrid differential evolution and back-propagation algo-

rithm for feedforward neural network training. Int. J. Comput. Appl. 84(14) (2013)

34. Singh, D., Singh, S.: A self-selecting neural network for short-term load forecasting. Electr.

Power Compon. Syst. 29(2), 117–130 (2001)

35. Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning through evolving neural net-

work topologies. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary

Computation, pp. 569–577. Morgan Kaufmann Publishers Inc. (2002)

36. Wieland, A.P.: Evolving neural network controllers for unstable systems. In: IJCNN-91-Seattle

International Joint Conference on Neural Networks, 1991, vol. 2, pp. 667–673. IEEE (1991)

Multi-step Ahead Forecasting Using
Cartesian Genetic Programming

Ivars Dzalbs and Tatiana Kalganova

Abstract This paper describes a forecasting method that is suitable for long range
predictions. Forecasts are made by a calculating machine of which inputs are the
actual data and the outputs are the forecasted values. The Cartesian Genetic Pro-
gramming (CGP) algorithm finds the best performing machine out of a huge
abundance of candidates via evolutionary strategy. The algorithm can cope with
non-stationary highly multivariate data series, and can reveal hidden relationships
among the input variables. Multiple experiments were devised by looking at several
time series from different industries. Forecast results were analysed and compared
using average Symmetric Mean Absolute Percentage Error (SMAPE) across all
datasets. Overall, CGP achieved comparable to Support Vector Machine algorithm
and performed better than Neural Networks.

1 Introduction

Predicting the future based on past data has been of interest for a long time. The
further ahead the forecast can be made, the more time there is to act on tactical
decisions, such as planning production resources or creating strategic contracts.
Furthermore, forecasts have many applications, such as finance and telecommu-
nication [1], economics [2, 3], meteorology [4], agricultural [5].

Multi-step ahead forecasting problem is more involved since, compared to
one-step ahead forecasting, it has to deal with increased complications, like reduced
accuracy and accumulated errors [6].

Rapid technological growth has made it possible to develop and test sophisticated
machine learning algorithms in forecasting domain. These models use historical data
to learn the underlying dependencies in the past to predict the future. For instance,

I. Dzalbs ⋅ T. Kalganova (✉)
Brunel University London, Kingston Lane, Uxbridge UB8 2PX, UK
e-mail: Tatiana.Kalganova@brunel.ac.uk

© Springer International Publishing AG 2018
S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,
Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_11

235

[7] shows how Neural Networks (NN) can be used to accurately predict long-term
energy requirements of an electric utility. Furthermore, Cortez [5] shows that NN
and Support Vector Machine (SVM) outperform the classical Holt-Winters
(HW) forecasting method. The aim of this chapter is to introduce an alternative
forecasting model based on CGP that is comparable to both NN and SVM.

2 Proposed Algorithm Applied to Data Forecasting
Problem

Cartesian Genetic Programming (CGP) was first introduced as one of the evolu-
tionary techniques to design logic circuits [8]. Due to its specific nature of the
chromosome representation, CGP has been applied to a number of automatic design
and optimisation problems [9, 10]. The proposed approach is based on classical
CGP using a (1 + λ) evolutionary strategy [11]. During each generation, the
number of parents (P) are selected to produce a number of children (C) using
mutation operator only. The mutation rate (M) is expressed as percentage of the
number of genes that are being mutated. The quality of the chromosome is eval-
uated using fitness function. The best chromosomes in the population are defined as
fittest members. Furthermore, the fittest member(s) of the population now becomes
the parent(s) and the process repeats till Gn generations are reached.

Each chromosome represents one approximation equation. The equation is
assembled using arithmetic operators defined by primary arithmetic equations, also
called gates. Each gate can have a maximum of number of inputs, J. Each gate type
defines one primary arithmetic operation. Variations of primary arithmetic equa-
tions used in evolutionary process are defined in the function library in advance.
Therefore, each gate is represented using collection of the following genes:

• The number of inputs to the gate
• Gate type
• Collection of inputs for a specific gate
• Gate constant

Each chromosome is defined as following (Fig. 1):

• Collection of gates, G
• Collection of chromosome outputs

The number of chromosome outputs is defined by the number of outputs to be
forecasted. The evolutionary process is driven by mutation that is focused on:

• Changing the number of inputs in gate
• Changing the gate function out of the function library
• Changing the gate inputs
• Changing the gate constant

236 I. Dzalbs and T. Kalganova

Furthermore, mutation of chromosome outputs is also allowed and the initial
population is randomly generated.

In this chapter, the data have been forecast using two different proposed
multi-step ahead forecasting methods. Depending on the method used, historical
data entries are used to predict future values up to seasonal period N. Each dataset is
divided into a training dataset and a validation dataset (Nv), as shown in Table 1,
where validation data points, due to the sequential nature of the datasets, are the last
Nv entries from all data points. The algorithm uses the training dataset to obtain an
estimate function. The estimate function is then used to predict the values of
non-trained validation data, also called blind data.

Fig. 1 Graphical representation of gate and chromosome. In this example, 3 inputs are used to
generate 2 outputs. Only 2 gates are used and one additional input (avg). Output 1 uses first gate
(output label 4), whereas output 0 uses output of the second gate (output label 5)

Table 1 Datasets used [5]

Series Dataset title The total
number of
data points

Duration of
seasonal
period (N) [5]

The number of
validation data
points (Nv)

Cars Monthly car sales in Quebec
1960–1968

108 12 12

Pigs Monthly total number of pigs
slaughtered in Victoria. Jan
1980–August 1995

188 12 12

Pass International airline passengers:
monthly totals in thousands. Jan
49–Dec 60

144 12 19

Gas Monthly gasoline demand
Ontario gallon millions 1960–
1975

192 12 19

Houses Monthly sales of U.S. houses
(thousands) 1965–1975

132 12 12

Cradfq Monthly critical radio
frequencies in Washington, D.C.,
May 1934–April 1954

240 12 24

Suns Annual Wolfer sunspot numbers.
1770–1889

289 10 25

Multi-step Ahead Forecasting Using Cartesian Genetic Programming 237

2.1 Lagging Forecast Method

Let us consider the series X be the actual time series and Y be the prediction based
time series. Given the actual values in period xt we make a forecast N periods ahead
to predict value of yt+N , where N is any integer value that represents the duration of
seasonal period given in Table 1. Furthermore, predicted value of yt will be based
on the actual value of xt−N . Therefore, this method takes one input value to predict
one output value, as shown in Fig. 2.

2.2 Full Period Forecast Method

This method takes an input vector xt−N . . . xt− 1ð Þ of N data points defined as
particular seasonal period to predict some future output vector yt . . . yt+N − 1ð Þ.
Therefore, this method can take advantages of relationships between points in the
same seasonal period to predict either single or multiple future forecasted points, as
shown in Fig. 3.

2.3 Evaluation of the Forecasting Performance

The forecasting performance is evaluated by an accuracy measure, such as Sym-
metric Mean Absolute Percentage Error (SMAPE) [12]:

SMAPE=
1
N

∑
N

t=1

Yt −Xtj j
Xtj j+ Ytj jð Þ ̸2

ð1Þ

Fig. 2 Scheme of lagging forecast method, where series x is the actual time series and y is the
prediction based time series

Fig. 3 Scheme of full period forecast method, where series x is the actual time series and y is the
prediction based time series

238 I. Dzalbs and T. Kalganova

where Yt is the forecast value, Xt is the actual value and N is the number of forecasts
points (seasonal period). SMAPE is particularly useful for measuring
scale-independent performance, having values from 0 to 200%, with 0% indicating
no error in the forecast and 200% being the worst forecast. It allows us to compare
average forecasting error across multiple datasets which then is comparable to other
forecasting methods.

3 Experimental Results

In order to evaluate the proposed algorithm’s performance, results must be com-
pared. Using [5] Neural Networks (NN) and Support Vector Machine’s
(SVM) results as the baseline, several experiments were run using both, Lagging
forecast and Full period forecast. Furthermore, 10 runs were applied to the selected
model and the average performance value obtained. The chosen sets of arithmetic
operators in the Function library are shown in Table 2. These sets are grouped by
their complexity.

Experiment 1: Feasibility study
In this experiment, the developed algorithm was tested across all 7 datasets sum-
marized in Table 1 in order to confirm that developed CGP algorithm can be used
on real data. The initial algorithm configuration was derived from the complexity of
the datasets and available hardware, as shown in Table 3. Results are then com-
pared to NN and SVM solutions as in Table 4, where CGP-L and CGP-FP is
Cartesian Genetic Programming with Lagging method and with Full Period method
respectively.

Absolute error= ∑
N

t=1
Yt −Xtj j ð2Þ

where Yt is the forecast value, Xt is the actual value and N is the number of forecasts
points (seasonal period).

As can be seen from the results in Table 4, both CGP-L and CGP-FP obtain very
competitive results. CGP-L performed better than NN in 6 out of 7 forecasts.
Similarly, CGP-FP performed better results compared to NN in 4 out of 7 datasets.
When compared to SVM, both CGP-L and CGP-FP showed competitive results,
performing worse by 1.96% and 3.01% respectively.

This experiment confirmed that CGP is able to forecast time series and produce
competitive results.

Experiment 2: Optimum fitness function
The fitness function, also referred as objective function, determines how the per-
formance of produced results are measured. It can be based on the forecasting error

Multi-step Ahead Forecasting Using Cartesian Genetic Programming 239

Table 2 Function library combinations, where i1 is the first input of the gate, const is the gate
constant

Function name (name of the
primitive arithmetic functions)

Combination
1—
default

2—
simple

3—
trigonometric

4—
statistic

5—
logical

sum(i1,i2,i3,…) √ √ √ √ √
multiply(i1,i2,i3,…) √ √ √ √
const*sum(i1,i2,i3,…) √ √ √ √ √
avg(i1,i2,i3,…) √ √ √
substract(i1,i2,i3,…) √ √ √ √ √
division(i1,i2) √ √ √ √
naturalLog(i1) √ √ √
logBase10(i1) √ √ √
exp(i1) √ √ √
sin(const*i1) √ √ √ √
cos(const*i1) √ √ √ √
tan(const*i1) √ √ √
sqrt(i1) √ √ √
const*0.1 √ √ √
mult(i1,i2,const) √ √ √ √ √
const*sin(i1) √
const*cos(i1) √
const*tan(i1) √
const*i1^2 √ √ √ √ √
const*i1^3 √ √ √ √ √
i1^const √ √ √ √ √
standardDev(i1,i2,i3,…) √ √
skewNess(i1,i2,i3,…) √ √
kurtosis(i1,i2,i3,…) √ √
invert(i1) √
min(i1,i2,i3,…) √
max(i1,i2,i3,…) √

Table 3 CGP initial configuration

The number of gates (G) 50
Mutation rate (M) 5%
The number of children (C) 2
The number of parents (P) 8
The number of generations (Gn) 100 000
The maximum number of inputs in a gate (J) 20
Fitness function Absolute error
Function library combination 1 (default value)

240 I. Dzalbs and T. Kalganova

or on other metrics, such as service level or profit. Due to the nature of datasets,
various representations of forecasting error have been explored.

In this experiment, two variations of initial algorithm in Experiment 1 were
developed based on the configuration in Table 3. The fitness function was changed
from Absolute Error (AE) to Mean Square Error (MSE) and Symmetric Mean
Absolute Percentage Error (SMAPE).

Results in Table 5 clearly indicates that evaluating the error within CGP’s fitness
function using Absolute Error (AE) performs better than using more complex MSE
or SMAPE evaluations.

Experiment 3: Most suitable function library
CGP uses a combination of primary arithmetic equations (gate functions) to esti-
mate the time series. These arithmetic operators can be as simple as summation of
two input numbers, or as complex as calculating standard deviation across multiple
inputs.

In this experiment, the impact on different gate functions was investigated. Each
gate can contain only one of the functions from the function library (in Table 2).
Five different combinations were generated:

1. default—combination that was used in Experiment 1: Feasibility study and
Experiment 2: Optimum fitness function;

Table 4 Comparison of the forecasting errors (SMAPE, %)

Series NN [5] SVM [5] Proposed CGP-L Proposed CGP-FP

Cars 9.25 9.72 9.02 12.56
Pigs 6.3 7.2 6.12 13.72
Pass 4.88 9.08 3.6 3.64
Gas 7.67 4.08 6.06 3.16
Houses 15.49 10.68 17.56 15.56
Cradfq 22.21 10.71 15.3 14.58
Suns 59.8 42.33 49.84 50.67
Average value 17.94 13.4 15.36 16.41

Table 5 Comparison of the fitness function (SMAPE, %)

Fitness function
series

AE MSE SMAPE
CGP-L CGP-FP CGP-L CGP-FP CGP-L CGP-FP

Cars 9.02 12.56 8.08 11.03 11.61 11.41
Pigs 6.12 13.72 7.6 13.67 6.99 8.64
Pass 3.6 3.64 4.01 4.02 4.17 4.04
Gas 6.06 3.16 5.34 6.88 5.17 3.05
Houses 17.56 15.56 17.94 34.47 15.97 37.09
Cradfq 15.3 14.58 19.88 17.07 15.53 11.71
Suns 49.84 50.67 52.98 52.66 50.92 45.85

Average value 15.36 16.41 16.55 19.97 15.76 17.4

Multi-step Ahead Forecasting Using Cartesian Genetic Programming 241

2. simple—only using basic functions such as addition, subtraction and
multiplication/division;

3. trigonometric—additional trigonometric functions such as sin, cos and tan as
well as exponential components;

4. statistical—additional statistical components such as average, standard devia-
tion, skewness and kurtosis;

5. logical—additional logical expressions such as inverter, min, max and com-
parison functions.

CGP was set based on the parameters in Table 3 where variable “Function
Library combination” was altered. The results are compared in Table 6.

This experiment shows that CGP performs the best with very simplistic function
library. Although all combinations produce very comparable results, the “simple”
function library combination performs on average approximately 1% better than any
other combination on both CGP-L and CGP-FP. During 10 runs all models pro-
duced stable and repeatable results with variation of around 0.2%.

Experiment 4: Additional statistical inputs
Although CGP can estimate complex mathematical equations using simple math-
ematical operators, it can be beneficial to provide additional statistical inputs to
speed up the process.

Additional 4 statistical inputs where added to the model’s inputs in this exper-
iment. Statistical inputs are calculated based on previous period’s vectors values.
For instance, if current input vector is xt−N . . . xt− 1ð Þ in case of CGP-FP, then
additional inputs would be calculated based on xt− 2N . . . xt−N − 1ð Þ. Similarly, if
input is xt−N in case of CGP-L, then additional statistical inputs would be calcu-
lated from xt−N . . . xt− 1ð Þ vector. We looked at the four common statistical
expressions: mean, standard deviation, skewness [13] and kurtosis [13]:

skewness=
∑N

i=1 Xi −X
� �3 ̸N
s3

kurtosis=
∑N

i=1 Xi −X
� �4 ̸N

s4

where X is the mean and s is the standard deviation and N is the number of data
points in the period. CGP was set based on the parameters in Table 7 and averages
of 10 simulations can be seen in Table 8. Table 8 shows that CGP-L average
SMAPE error increases by 1.47% when additional statistical inputs are used.
However, CGP-FP model benefits from statistical information, decreasing the
forecasting error further by 3.01% and is comparable to the forecasting error of
SVM [5]. Compared to SVM results, CGP-FP is performing better on 4 out of 7
datasets, while average SMAPE results are the same (13.4%).

Experiment 5: Models
To further investigate the dynamics of Cartesian Genetic Programming, the impact
of the number of generations was explored. The algorithm was set up as defined in

242 I. Dzalbs and T. Kalganova

T
ab

le
6

C
om

pa
ri
so
n
of

th
e
fu
nc
tio

n
lib

ra
ri
es

(S
M
A
PE

,%
),
w
he
re
C
G
P-
L
an
d
C
G
P-
FP

is
C
ar
te
si
an

ge
ne
tic

pr
og

ra
m
m
in
g
al
go

ri
th
m

w
ith

la
gg

in
g
fo
re
ca
st
an
d

w
ith

fu
ll
pe
ri
od

fo
re
ca
st
re
sp
ec
tiv

el
y

L
ib
ra
ry

co
m
bi
na
tio

n
Se
ri
es

D
ef
au
lt
(1
)

Si
m
pl
e
(2
)

T
ri
go

no
m
et
ri
c
(3
)

St
at
is
tic
al

(4
)

L
og

ic
al

(5
)

C
G
P-
L

C
G
P-
FP

C
G
P-
L

C
G
P-
FP

C
G
P-
L

C
G
P-
FP

C
G
P-
L

C
G
P-
FP

C
G
P-
L

C
G
P-
FP

C
ar
s

9.
02

12
.5
6

8.
76

12
.2
4

10
.4
6

17
.5
2

9.
5

10
.8
8

9.
6

15
.2
6

Pi
gs

6.
12

13
.7
2

6.
73

9.
42

6.
66

11
.9
8

6.
62

22
.4
5

7.
25

9.
93

Pa
ss

3.
6

3.
64

3.
43

9.
76

4.
45

6.
57

3.
46

4.
41

6.
61

3.
59

G
as

6.
06

3.
16

5.
9

2.
84

8.
91

9.
98

5.
51

2.
91

7.
3

3.
61

H
ou

se
s

17
.5
6

15
.5
6

16
.2

17
.6
5

16
.5
2

24
.2
9

17
.6
1

33
.1
2

17
.2
7

28
.0
2

C
ra
df
q

15
.3

14
.5
8

15
.1
8

14
.3
3

15
.7
7

17
.1
1

15
.7
3

13
.1
8

16
.6
9

11
.3
1

Su
ns

49
.8
4

50
.6
7

45
.5
2

40
.3
3

49
.3
4

46
.9
6

51
.0
2

40
.7
5

52
.6
1

41
.8
2

A
ve
ra
ge

15
.3
6

16
.4
1

14
.5
3

15
.2
2

16
.0
2

19
.2

15
.6
4

18
.2
4

16
.7
6

15
.8
3

Multi-step Ahead Forecasting Using Cartesian Genetic Programming 243

Table 7, with additional statistical inputs described in Experiment 4: and termi-
nation criteria “Generations (Gn)” was altered. Only the overall SMAPE averages
for all datasets are shown in Table 9. It can be clearly seen from Table 9 that
forecasting error decreases when generations (Gn) is increased from 1 to 1000, then
forecasting error stays around the same value from 1 000 to 100 000 generations
and increases when iterations reach 1 million. At 1 million generations algorithm is
over-trained which leads to over-fitting the datasets. Moreover, the algorithm starts
to remember the datasets instead of finding the general expression, which is very

Table 7 CGP configuration, experiment 4

The number of gates (G) 50
Mutation rate (M) 5%
The number of children (C) 2
The number of parents (P) 8
The number of generations (Gn) 100 000
The maximum number of inputs in a gate (J) 20
Fitness function Absolute error
Function Library combination (See
Table 2)

2

Table 8 Additional statistical input comparison (SMAPE, %)

Series NN
[5]

SVM
[5]

CGP-L
(without
inputs)

CGP-FP
(without
inputs)

CGP-L
(with
inputs)

CGP-FP
(with
inputs)

Cars 9.25 9.72 9.02 12.56 12.99 11.65
Pigs 6.3 7.2 6.12 13.72 8.36 8.89
Pass 4.88 9.08 3.6 3.64 4.09 5.4
Gas 7.67 4.08 6.06 3.16 5.58 4
Houses 15.49 10.68 17.56 15.56 27.88 15.72
Cradfq 22.21 10.71 15.3 14.58 10.66 8.42
Suns 59.8 42.33 49.84 50.67 48.24 39.75
Average 17.94 13.4 15.36 16.41 16.83 13.4

Table 9 Generation
(Gn) forecasting performance,
SMAPE (%)

Gn CGP-L CGP-FP

1 135.9 147.5
10 138.3 130.2
100 83.7 45.3
1 000 16.0 14.0
10 000 17.1 13.0
50 000 16.9 14.3
100 000 16.8 13.4

1 000 000 21.9 15.3

244 I. Dzalbs and T. Kalganova

common problem in machine learning for forecasting [14]. Furthermore, CGP-FP
model at 10 thousand generations is performing the best, with average of 13.0%
SMAPE value which is better than SVM [5] by 0.4% on average.

4 Conclusions and Further Work

Multi-step ahead forecasting is very useful tool for various industries. Predicting a
time series many steps ahead in the future is not trivial. Our results supplement the
work discussed in [15], where it was shown that Multiple-Output (in this paper,
“Full Period”) approach are invariably better than Single-Output (in this paper,
“Lagging method”) approach.

Moreover, proposed model achieved competitive performance to the SVM and
NN results in [5]. On average (SMAPE), proposed CGP-FP model performed 0.4%
better than SVM and 4.94% better than NN.

Furthermore, work in [16] describes a technique called “dropout” that prevents
over-fitting on Neural Networks by randomly dropping the nodes along with their
connections from the neural network during training. Similar approach could be
adopted to CGP model, where best chromosome’s currently active gates are ran-
domly dropped in order to avoid overfitting.

Acknowledgements The authors would like to thank the supporter of this work: Intel
Corporation.

References

1. Palit, A.K., Popovic, D.: Computational intelligence in time series forecasting: theory and
engineering applications (advances in industrial control). Springer (2005)

2. Xiong, T., Bao, Y., Hu, Z.: Beyond one-step-ahead forecasting: evaluation of alternative
multi-step-ahead forecasting models for crude oil prices. Energy Econ. 40, 405–415 (2013)

3. Andalib, A., Atrya, F.: Multi-step ahead forecasts for electricity prices using NARX: a new
approach, a critical analysis of one-step ahead forecasts. Energy Convers. Manage. 50(3),
739–747 (2009)

4. Chang, F.J., Chiang Y.M., Chang, L.C.: Multi-step-ahead neural networks for flood
forecasting. Hydrol. Sci. J. 52(1), 114–130 (2007)

5. Cortez, P.: Sensitivity analysis for time lag selection to forecast seasonal time series using
neural networks and support vector machines. In: The 2010 International Joint Conference on
Neural Networks (IJCNN) (2010)

6. Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., Lendasse, A.: Methodology for long-term
prediction of time series. Neurocomputing 70(16–18), 2861–2869 (2007)

7. Al-Saba, T., El-Amin, I.: Artificial neural networks as applied to long-term demand
forecasting. Artif. Intell. Eng. 13(2), 189–197 (1999)

8. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the evolutionary design of digital circuits—
part I. Genet. Program Evolvable Mach. 1(1), 7–35 (2000)

Multi-step Ahead Forecasting Using Cartesian Genetic Programming 245

9. Gajda, Z., Sekanina, L.: Gate-level optimization of polymorphic circuits using Cartesian
genetic programming. In: Evolutionary Computation (2009)

10. Walker, J.A., Liu, Y., Tempesti, G., Tyrrell, A.M.: Automatic code generation on a MOVE
processor using Cartesian genetic programming. In: Evolvable Systems: From Biology to
Hardware, pp. 238–249 (2010)

11. Miller, J.F.: Cartesian Genetic Programming. Springer, Berlin Heidelberg (2011)
12. Armstrong, J.S.: Long-Range Forecasting: From Crystal Ball to Computer.

Wiley-Interscience (1985)
13. NIST, 1.3.5.11. Measures of Skewness and Kurtosis. http://www.itl.nist.gov/div898/

handbook/eda/section3/eda35b.htm
14. Hawkins, D.M., The problem of overfitting. J. Chem. Inf. Comput. Sci. pp. 1–12 (2004)
15. Taieba, S.B., Bontempia, G., Atiyac, A.F., Sorjamaab, A.: A review and comparison of

strategies for multi-step ahead time series forecasting based on the NN5 forecasting
competition. Expert Syst. Appl. 39(8), 7067–7083 (2012)

16. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever I., Salakhutdinov, R.: Dropout: A
simple way to prevent neural networks from overfitting, J Mach Learn Res 15, pp. 1929–
1958, (2014)

246 I. Dzalbs and T. Kalganova

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm

Medical Applications of Cartesian Genetic
Programming

Stephen L. Smith and Michael A. Lones

Abstract The application of machine learning techniques to problems in medicine
are now becoming widespread, but the rational and advantages of using a particular
approach is not always clear or justified. This chapter describes the application of a
version of Cartesian Genetic Programming (CGP), termed Implicit Context Rep-
resentation CGP, to two very different medical applications: diagnosis and moni-
toring of Parkinson’s disease, and the differential diagnosis of thyroid cancer.
Importantly, the use of CGP brings two major benefits: one is the generation of high
performing classifiers, and the second, an understanding of how the patient mea-
surements are used to form these classifiers. The latter is typically difficult to
achieve using alternative machine learning methods and also provides a unique
understanding of the underlying clinical conditions.

1 Introduction

Medical problems are a specific and challenging example of real-world applications
of evolutionary computation which require special consideration in design and
implementation to ensure a meaningful and effective outcome. Any investigation
that goes beyond a simple benchmarking exercise using existing datasets will likely
require substantial resources including the time and willingness of patients and
clinicians which often incurs a certain level of anxiety, inconvenience and cost. It is
therefore essential from the outset to clearly understand the clinical need and how
the application of computational intelligence methods can meet this need through,

S.L. Smith (✉)
Department of Electronic Engineering, University of York, York, UK
e-mail: stephen.smith@york.ac.uk

M.A. Lones
School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK

© Springer International Publishing AG 2018
S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,
Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_12

247

for example, a quicker test, a more accurate or objective diagnosis, or providing a
better understanding of the clinical condition itself. For clinical diagnosis and
monitoring, it is also important to establish how the method can be easily incor-
porated into the exiting clinical protocol to encourage uptake and minimise errors in
use. Similarly, the health economics of introducing such methods into a health
system should be one of the first considerations, not the last, and will ultimately
determine whether the technology will be adopted in routine clinical use.

It is clear that the application of evolutionary computation (EC) to problems in
medicine has much to offer and has previously been demonstrated in areas such as:
medical imaging and signal processing, data mining medical data and patient
records, modelling and simulation of medical processes, clinical expert systems and
knowledge-based systems, and clinical diagnosis and therapy [1]. Much previous
work has focused on the use of genetic algorithms (GAs) as an optimiser in
combination with feature extractors and other methods that are applied to the raw
data [2–7]. This is understandable as the size, nature and type of data can vary
hugely depending on the problem at hand; for example, a common set of vital signs
for a patient (such as pulse rate, temperature, respiration rate, and blood pressure)
will generate a few bytes of data for each reading, whereas full-field digital
mammography can generate in the order of 100 MB of image data per patient and a
typical MRI scan several gigabytes. The modality of the data can encompass a very
wide range from discrete readings, images, sound, video and text to hugely complex
multidimensional datasets. There is also potential merit in applying EC directly to
the raw data with the evolved algorithm effectively providing a feature extractor as
well as a classifier.

Considering the proliferation of EC methods developed over the past 10 years, it
can be difficult to justify the choice of a particular algorithm, but previous work and
experience has shown that some are better suited to particular applications than
others [8–12]. Genetic Programming (GP) is a powerful and flexible paradigm but
has drawbacks, the most common being bloat of the parse tree representation (an
uncontrolled growth of the network over subsequent generations) [13, 14] and lack
of built-in modularity that leads to an ungainly and inefficient solutions. In the case
of medical applications, both of these features are important to deliver solutions that
are both effective and have the capacity to be interrogated by, for example, pro-
viding an informed understanding of how the provided clinical data relates to the
resulting classification. The directed graph representation of Cartesian Genetic
Programming (CGP) addresses these drawbacks of GP and has a number of
additional advantages that makes implementation of medical applications both
easier and more effective, such as a variable geometry, simple encoding and
adaption of an implicit context representation. These properties and benefits are
considered in greater detail in the following section, after which several clinical
example applications are presented that demonstrate both the flexibility and power
of CGP to deliver effective clinical solutions.

248 S.L. Smith and M.A. Lones

2 CGP for Medical Applications

As discussed above, CGP possess a number of properties that make it an effective
choice of algorithm for application to a wide range of medical problems. The
directed graph representation is both flexible and powerful, and can be used as an
optimiser, feature extractor and classifier.

2.1 CGP Geometry

Although CGP, as its name indicates, can adopt a Cartesian arrangement of rows
and columns, it is commonly implemented with only one row and a number of
columns equal to the number of processing nodes required. This provides maximum
flexibility (within a directed graph representation) for any one node to provide the
input to any subsequent node to its right in the network, as show in Fig. 1.

Alternatively, a Cartesian arrangement with multiple rows and columns can be
implemented, such as a network of 10 rows and 3 columns, as shown in Fig. 2.

The choice of geometric arrangement will have an effect on the processing of the
data as with the single row representation, the second processing node onwards may
be supplied with data from an input node or any proceeding processing node.
However, in the multi-row representation, there is a greater opportunity for all input
node values to be processed in a similar way, as the first 10 processing nodes in the
first column of the network may only take data from the input nodes. It can be
argued that such an arrangement will be beneficial in scenarios such as that depicted
in Fig. 3 where a steam of data is being sampled in a moving window operation
before being presented to the network. In this case, it would be logical to suggest
that data elements from the window should be processed in a similar way.

Reducing the number of processing nodes specified in the geometric parameters
of the CGP network can be used to force simpler solutions to be evolved, although
potentially with reduced fitness. Alternatively, the number of active nodes within

Fig. 1 Commonly adopted single row CGP geometry

Medical Application of Cartesian Genetic Programming … 249

the network can be used as a factor in the fitness function to encourage simpler
networks to be evolved. In either case this is a useful property where the complexity
of the evolved solution and execution time is critical, as for example, where the
algorithm is to be implemented in firmware, or hardware, for real time operation.

Fig. 2 Multiple row CGP geometry

Fig. 3 CGP processing of streamed data using a moving window operation

250 S.L. Smith and M.A. Lones

2.2 Implicit Context Representation CGP

One of the benefits of CGP over standard GP is the implicit reuse of subexpressions
and its use of functional redundancy provided by its graphical representation [15].
However, CGP can be said to be positionally dependent, since the inputs to, and
output from processing nodes are dependent upon its Cartesian co-ordinates which
are encoded within the program’s representation. This positional dependence can be
disruptive during recombination and, consequently, the crossover operator is often
ineffective [16] (unless the operator is well matched to the problem [17]. Lones
[18] and Smith [19] have proposed Implicit context as a means of providing
positional independence to CGP by specifying that interconnections between input
nodes, processing nodes and output nodes are specified in terms of each node’s
functional context within the network rather than its Cartesian co-ordinates. Termed
Implicit Context Representation CGP (IRCGP), a node’s inputs and output are
augmented by functionality profiles––binding sites at the input and a shape at the
output, as shown in Fig. 4. The shape functionality profile is simply a vector that
describes the functional behaviour of the node within the network, and the binding
site functionality profiles, vectors that describe the functionality profile of the node
to which that input is best matched. Networks are therefore formed, not through
stochastic operation as in conventional CGP, but by interconnecting nodes which
most closely match their respective functionality profiles. This is achieved using a
bottom-up process in which each node’s binding site is connected to the input or
processing node shape (if available) that provides the closest match, as illustrated in
Fig. 5. Following selection, recombination operators are applied to the binding
site functionality profiles and node function (as in conventional CGP), and the
shape functionality profile calculated as a function of the two. (Further details
of how functionality profiles are described and defined can be found in [19].)

Fig. 4 Functionality profiles
used to describe a CGP
processing node (taken from
[16])

Medical Application of Cartesian Genetic Programming … 251

2.3 Fitness Function

Although not limited to CGP, the representation facilitates the use of simple fitness
function, preferably a single figure. In medical applications there is often an overlap
between the two classes under investigation which will mean an unavoidable
misclassification of data inputs dependent on the threshold adopted. This is shown
graphically in Fig. 6 where the proportion of True Positives (TP), True Negatives
(TN), False Positives (FP) and False Negatives (FN) will depend on where the
threshold is placed.

Fig. 5 The interconnection of processing nodes within a CGP network using functionality profiles
(taken from [20])

Fig. 6 Depiction of True Positives (TP), True Negatives (TN), False Positives (FP) and False
Negative (FN) values dependent on the threshold chosen in an overlapped two-class problem
(kakau (https://commons.wikimedia.org/wiki/File:Receiver_Operating_Characteristic.png),
Receiver Operating Characteristic, https://creativecommons.org/licenses/by-sa/3.0/legalcode)

252 S.L. Smith and M.A. Lones

https://commons.wikimedia.org/wiki/File:Receiver_Operating_Characteristic.png
https://creativecommons.org/licenses/by-sa/3.0/legalcode

A convenient means of establishing the performance of an evolved classifier
over a range of thresholds can be achieved using a receiver operating characteristic
(ROC) curve [21], which can be construction as shown in Fig. 7. The area under the
ROC curve provides a summary of the classifier performance over a range of
thresholds and can therefore be used as an effective fitness function.

2.4 CGP as an Optimiser and a Feature Extractor

It is common for EAs to be used an optimiser in conjunction with a feature
extractor. The Cartesian representation of CGP and the predefined number of inputs
to the network makes it particularly appropriate to act on either previously extracted
features or the raw data values. Figure 8 provides an example of how features
extracted from pixel values of an image can then be presented to the inputs of a
CGP network, acting as an optimiser and classifier. Figure 9 portrays the same
image, but in this example, the pixel values are passed directly to the inputs of the
CGP network. It is reliant on CGP to effectively evolve features that will subse-
quently classify.

Fig. 7 Summary of how the area under a receiver operating characteristic (ROC) curve can be
used as an effective fitness function for evolving classifiers

Features

Fig. 8 CGP as an optimising classifier

Medical Application of Cartesian Genetic Programming … 253

3 Example Applications

3.1 Parkinson’s Disease

Parkinson’s disease (PD) affects approximately 120,000 people in the UK alone and
is projected to increase dramatically over the next decade as people live longer [22].
It is a chronic debilitating disease which has no cure, but effective medication
provides good relief from symptoms in most patients for a number of years. The
two main clinical challenges of the condition are accurate diagnosis and effective
monitoring and management of side effects from medication.

3.1.1 Diagnosis of Parkinson’s Disease

Diagnosis of Parkinson’s disease can be difficult to confirm by conventional clinical
assessment alone particularly in the early stages when symptoms are easily con-
fused with other conditions such as essential tremor, progressive supranuclear palsy
and dystonia. It is widely accepted that misdiagnosis of Parkinson’s disease is as
high as 25% [23, 24] and yet early confirmation is important for effective long term
management of the condition [25].

A novel, non-invasive test has been developed by Smith et al. [26] which digitizes
a conventional clinical assessment for Parkinson’s disease––a simple finger-tapping
task––where the patient is asked to tap their forefinger and thumb together for a
period of 10–30 s. To digitize these tapping actions in real-time two small elec-
tromagnetic tracking sensors are attached to the forefinger and thumb as shown in
Fig. 10. A recording from the sensors showing the distance between the finger and
thumb over the course of a single tap is shown in Fig. 11 along with the associated
acceleration profiles. The normalized acceleration for the entire tapping sequence is
fed to the inputs of an IRCGP network via an overlapping moving window, as
summarized in Fig. 12. The fitness function comprises the area under the receiver

Fig. 9 CGP as a feature extractor and classifier

254 S.L. Smith and M.A. Lones

Fig. 10 Electromagnetic tracking sensors used to digitize a conventional clinical tapping task for
Parkinson’s disease

Fig. 11 Extract of data for one finger tap showing separation between finger and thumb (top),
acceleration (middle) and normalised acceleration (bottom); superimposed grey bands relate to
input data used in evolved classifier (taken from [28])

Medical Application of Cartesian Genetic Programming … 255

operating characteristic curve (AUC) and classifier results exceeding 0.9 AUC have
been achieved, as shown in Fig. 13. For full details see Lones et al. [27].

Figure 14 gives a schematic representation of the most discriminating classifier
evolved. This relatively simple network provides an important indication of those
aspects of the finger tapping activity that contributed to the classification of
Parkinson’s disease; in this case, inputs 5, 7, 12, 16 and 17 have been mapped on to
the data in Fig. 11 as a set of grey lines. Interestingly, the evolved network has

Fig. 12 Overview of moving
window operation feeding
tapping data to IRCGP (taken
from [28])

Fig. 13 ROC curves for the
best evolved classifier (taken
from [28])

256 S.L. Smith and M.A. Lones

selected the deceleration of the fingers in both the opening and closing phases of the
tapping activity.

3.1.2 Monitoring the Side Effects to Medication for Parkinson’s
Disease

The most effective form of treatment for PD symptoms is a drug called levodopa,
but approximately 90% patients who take it for ten years or more develop invol-
untary movements called dyskinesia. These movements are a major source of
disability, severely affecting the patient’s quality of life and have significant
financial implications for the healthcare system. Management of dyskinesia is
particularly difficult as it may occur many times per day and an accurate method of
monitoring is not available. Currently, physicians rely on patients’ own descrip-
tions, or in severe cases, patients are admitted to hospital for several days to monitor
symptoms. However, because it is difficult to measure the dyskinesia accurately, the
changes made to the patient’s medication can often be ineffective. Providing an
objective and accurate record of the patient’s dyskinesia will allow physicians to
make effective changes to medication, improve the patient’s quality of life and
reduce costs to the healthcare system.

The solution adopted was to monitor the patient’s movements over 24–48 h by
attaching small matchbox-sized sensors to the patient’s arms, legs, head and torso
as shown in Fig. 15. The sensors contain accelerometers and gyroscopes that
measure the patient’s movements in six degrees of freedom and can transmit the
data via Bluetooth to a computer or smart phone, or record to an internal microSD
card (Fig. 16). Once uploaded, the data is presented to an IRCGP network using a
moving window in a similar way to that described above for the finger tapping task
[29].

Fig. 14 Schematic for most
discriminative classifier.
Window offsets are in bold,
constants are in italics,
and > indicates the max
function. The dashed line
indicates sub-expression
reuse, which is possible
because we are using
graph-based CGP, rather than
a standard tree-based GP
(taken from [28])

Medical Application of Cartesian Genetic Programming … 257

Fig. 15 Positioning of
sensors on patient’s arms,
legs, torso and head

Fig. 16 Six degree of
freedom
accelerator/gyroscope sensor

Clinically, Dyskinesia is measured on a five-point scale where 0 signifies no
occurrence of the side-effect and 4, severe occurrence. The results presented in
Fig. 17 show that the best evolved IRCGP network can predict Dyskinesia (at level
4 and level 3) with an area under RoC curve (AUC) of 0.9. Figure 18 shows how
tremor, a symptom of Parkinson’s disease itself, can also be predicted with an
accuracy of 0.98 AUC. The results for dyskinesia are plotted on an easy-to-read
time chart that allow the clinicians to see how the dyskinesia varies throughout the
measurement period with respect to when medication is taken. Figure 19 is an

258 S.L. Smith and M.A. Lones

example of a summary chart for a patient measured over a 24 h period. The red dots
represent the time at which medication was taken, the dark green lines the occur-
rence of severe Dyskinesia (level 4) and the light green lines, significant dyskinesia
(level 3). The purple line indicates when the patient is asleep. Figure 20 shows a
similar chart for each of the individual sensors worn.

Fig. 17 ROC curves for
dyskinesia levels 1–4 (taken
from [29])

Fig. 18 ROC curves for
tremor levels 1–4 (taken from
[29])

Medical Application of Cartesian Genetic Programming … 259

3.2 Thyroid Cancer

Cancer of the thyroid can be broadly categorised into four main types: Papillary,
Follicular, Medullary and Anaplastic. Although overall incidence is relatively low
with 3,404 new cases being diagnosed in the UK in 2014 (accounting for
approximately 1% of all cancers), thyroid cancer incidence rates have increased by
149% since the 1970s. Incidence is dominated by Papillary cancer which accounts
for some 75–85% of cases and has an excellent prognosis if detected early; those
with cancer stages 1 and 2 have a 100% 5-year survival rate, but this decreases to
51% for cancer stage 4. Follicular thyroid cancer has a similar prognosis and
accounts for 10–20% of cases, whereas Medullary thyroid cancer (5–8% of cases)
has a poorer prognosis for cancer stage 4. Anaplastic thyroid cancer, accounting for
less than 5% of cases, has a 7% 5-year survival rate and is usually classed as cancer
stage 4 when diagnosed [30]. It is clear that a reliable and rapid means of diag-
nosing and differentiating between different types of thyroid cancer is needed to
improve prognosis. Currently confirmation of diagnosis requires a fine needle
biopsy, an invasive procedure usually taking 2 to 3 weeks.

A novel approach to confirming diagnosis is the use of Raman spectroscopy, an
optical methodology that can provide detailed biochemical information from a

Fig. 19 Example of a summary chart for a patient measured over a 24 h period. The red dots
represent the time at which medication was taken, the dark green lines the occurrence of severe
dyskinesia (level 4) and the light green lines, significant dyskinesia (level 3). The purple line
indicates when the patient is asleep

Fig. 20 Individual charts for each of the six sensors worn by the patient. See Fig. 19 for a full
explanation

260 S.L. Smith and M.A. Lones

blood sample alone––a procedure that can be completed in a matter of minutes [31].
However, as can be seen in the example spectra shown in Fig. 21 the different
energy level patterns associated with DNA and RNA bases and Amino acids are
complex and cannot be easily distinguished.

Work undertaken by Lones et al. [32] used implicit context representation CGP
(IRCGP) to discriminate between the Raman spectra of thyroid cancers and normal
follicular epithelial, as listed in Table 1. Normalisation was applied to each cell line
to compensate for experimental variability and consisted of linear scaling of the
total energies of the mean spectra for each of the cell lines, as show in Fig. 22.

Selected Raman shift values for the spectra were then presented to the inputs of
an IRCGP network configured to evolve a classifier as summarised in Fig. 23.

The results for a multi-class solution is presented in Fig. 24 with the fittest
classier obtaining an AUC score of 0.75. Evolving classifiers for classes as a set of
pair-wise evaluations is presented in Fig. 25 it can be seen that higher performing
classifiers have been generated that, importantly, discriminate well between
Anaplastic thyroid carcinoma (the most aggressive form of the cancer) and both
Papillary thyroid carcinoma (the most commonly occurring cancer) and normal
follicular epithelial. This demonstrates how the technique has the potential to be
provide a clinical useful and important tool. The expressions for the top performing

Fig. 21 Example Raman spectra for DNA and RNA bases and amino acids

Table 1 Cell lines used in the training of an IRCGP classifier

Class Name Cell type Samples

1 Nthy-ori 3-1 Normal follicular epithelial 30
2 K1 Papillary thyroid carcinoma 25
3 RO82-W-1 Follicular thyroid carcinoma 25
4 TT Medullary thyroid carcinoma 24
5 8305C Anaplastic thyroid carcinoma 25

Medical Application of Cartesian Genetic Programming … 261

Fig. 22 Original and normalised Raman spectra for each cell line (taken from [32])

Fig. 23 Selected Raman shift values from spectra of blood samples are presented to the inputs of
an IRCGP network train to classify the cancer type (taken from [32])

Test

Fig. 24 Best multi-class
classifier with AUC score of
0.75

262 S.L. Smith and M.A. Lones

classifiers are shown in Table 2 These can be related back to the respective Raman
spectra, as shown in Fig. 26 and provide an insight to those DNA and RNA bases
and Amino acids associate with predicting the particular type of cancer.

Classes Train Validate Test

1/2/3/4/5 0.75 0.78 0.75

1/2 0.69 0.64 0.61

1/3 0.80 0.83 0.74

1/4 0.85 0.94 0.88

1/5 0.94 0.98 0.91

2/3 0.65 0.69 0.62

2/4 0.70 0.82 0.79

2/5 0.84 0.89 0.83

3/4 0.59 0.65 0.71

3/5 0.76 0.76 0.78

4/5 0.68 0.62 0.60

Fig. 25 Evolved classifiers
for classes as a set of
pair-wise evaluations

Table 2 Expressions for the best performing classifiers

Expression Test AUC

out = 885, 1001f g− 1607−max 1656, 1117f g 0.75

out = ð841+ 1002Þ− ð836+ 1600Þ+ ðmax − 622, 1657*1655f g− 1657*1655Þ 0.75
out = 780− 1606+ ðmax 1002, 1084f g− ð636+ 1664ÞÞ 0.74
out = ð1002− 1661Þ− ðð1607− 1379Þð625− 1783ÞÞ−max 625, 636f g 0.73

out = − − 1001, 1270+ 1741f g+ − 999, 1606f g
� �

0.72

out = − − 1002, 999f g+ − 1473, 1173f g− − 1473*ð1599+ 723Þ
� �

0.72

out = ð636*1661−max 878, 893f gÞð636*1661− ð1002− 833ÞÞ 0.72

out = − sub1, min 833, 1463, 636
� �� �

, sub1, 1603+ 1661
n o

sub1 = −max 1685, 1002f g

0.71

out = ð1001− 713Þ+ ð1715*1751− 636Þ 0.71

out = 1439+ f1533, 1759g
� �2

, sub1 − sub2

� �
+ ðsub1 − sub2Þ

sub1 = 1603+ 1757+ ð833− 1001Þ
sub2 = f1566, 964g

0.71

Medical Application of Cartesian Genetic Programming … 263

4 Summary

The aim of this chapter has been to illustrate how properties of CGP make it
particularly suitable for medical applications. Its simple and adaptable directed
graph structure supports implicit modularity and avoids bloat, providing a distinct
advantage over conventional GP. The representation is also amenable to customi-
sation to an implicit context representation that overcomes the positional depen-
dence of CGP’s encoding. The ability to configure the geometry of the network
allows for solutions that can be made compact which is of particular benefit if a
real-time or hardware implementation is required. As well as generating high
performance classifiers, the ability to decode the network as a mathematical
expression provides useful insight to the functioning of the measured system.

References

1. Smith, S.L., Cagnoni, S.: Genetic and Evolutionary Computation: Medical Applications.
Wiley (2011)

2. Benamrane, N., Aribi, A., Kraoula, L.: Fuzzy neural networks and genetic algorithms for
medical images interpretation. In: Geometric Modeling and Imaging–New Trends
(GMAI’06), pp. 259–264. IEEE (2006)

3. Delibasis, K., Undrill, P.E., Cameron, G.G.: Designing texture filters with genetic algorithms:
an application to medical images. Sig. Process. 57, 19–33 (1997)

4. Delibasis, K., Undrill, P.E., Cameron, G.G.: Designing Fourier descriptor-based geometric
models for object interpretation in medical images using genetic algorithms. Comput. Vis.
Image Underst. 66, 286–300 (1997)

Fig. 26 RNA/DNA bases and amino acids indicated by Raman offsets in best evolved classifiers

264 S.L. Smith and M.A. Lones

5. Gudmundsson, M., El-Kwae, E.A., Kabuka, M.R.: Edge detection in medical images using a
genetic algorithm. IEEE Trans. Med. Imaging 17, 469–474 (1998)

6. Maulik, U.: Medical image segmentation using genetic algorithms. IEEE Trans. Inf. Technol.
Biomed. 13, 166–173 (2009)

7. Shih, F.Y., Wu, Y.-T.: Robust watermarking and compression for medical images based on
genetic algorithms. Inf. Sci. 175, 200–216 (2005)

8. Ding, S., Li, H., Su, C., Yu, J., Jin, F.: Evolutionary artificial neural networks: a review. Artif.
Intell. Rev. 39, 251–260 (2013)

9. Fister Jr, I., Yang, X.-S., Fister, I., Brest, J., Fister, D.: A brief review of nature-inspired
algorithms for optimization. arXiv:1307.4186 (2013)

10. Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on evolutionary algorithms in
Bayesian network learning and inference tasks. Inf. Sci. 233, 109–125 (2013)

11. Tahmasian, M., Bettray, L.M., van Eimeren, T., Drzezga, A., Timmermann, L., Eickhoff, C.
R., Eickhoff, S.B., Eggers, C.: A systematic review on the applications of resting-state fMRI
in Parkinson’s disease: does dopamine replacement therapy play a role? Cortex 73, 80–105
(2015)

12. Zang, H., Zhang, S., Hapeshi, K.: A review of nature-inspired algorithms. J. Bionic Eng. 7,
232–237 (2010)

13. Langdon, W.B.: Quadratic bloat in genetic programming. In: Proceedings of the 2nd Annual
Conference on Genetic and Evolutionary Computation, pp. 451–458. Morgan Kaufmann
Publishers Inc. (2000)

14. Langdon, W.B., Poli, R.: Fitness causes bloat. Soft Computing in Engineering Design and
Manufacturing, pp. 13–22. Springer (1998)

15. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in Cartesian genetic
programming. IEEE Trans. Evol. Comput. 10, 167–174 (2006)

16. Cai, X., Smith, S.L., Tyrrell, A.M.: Positional independence and recombination in Cartesian
genetic programming. In: European Conference on Genetic Programming, pp. 351–360.
Springer (2006)

17. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic
programming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, pp. 1580–1587. ACM (2017)

18. Lones, M.A., Tyrrell, A.M.: Modelling biological evolvability: implicit context and variation
filtering in enzyme genetic programming. BioSystems 76, 229–238 (2004)

19. Smith, S.L., Leggett, S., Tyrrell, A.M.: An implicit context representation for evolving image
processing filters. In: Workshops on Applications of Evolutionary Computation, pp. 407–416.
Springer (2015)

20. Smith, S.L., Lones, M.A.: Implicit context representation Cartesian genetic programming for
the assessment of visuo-spatial ability. In: IEEE Congress on Evolutionary Computation,
2009. CEC’09, pp. 1072–1078. IEEE (2009)

21. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)
22. Parkinson’s, U.: Parkinson’s prevalence in the United Kingdom. 2009. London, Parkinson’s

UK. 1–13 (2012)
23. Bajaj, N.P., Gontu, V., Birchall, J., Patterson, J., Grosset, D.G., Lees, A.J.: Accuracy of

clinical diagnosis in tremulous Parkinsonian patients: a blinded video study. J. Neurol.
Neurosurg. Psychiatry 81, 1223–1228 (2010)

24. Das, R.: A comparison of multiple classification methods for diagnosis of Parkinson disease.
Expert Syst. Appl. 37, 1568–1572 (2010)

25. NICE: Parkinson’s disease: national clinical guideline for diagnosis and management in
primary and secondary care. Royal College of Physicians (2006)

26. Smith, S.L., Lones, M.A., Bedder, M., Alty, J.E., Cosgrove, J., Maguire, R.J., Pownall, M.E.,
Ivanoiu, D., Lyle, C., Cording, A.: Computational approaches for understanding the diagnosis
and treatment of Parkinson’s disease. IET Syst. Biol. 9, 226–233 (2015)

Medical Application of Cartesian Genetic Programming … 265

27. Lones, M.A., Smith, S.L., Alty, J.E., Lacy, S.E., Possin, K.L., Jamieson, D.S., Tyrrell, A.M.:
Evolving Classifiers to recognize the movement characteristics of Parkinson’s disease
patients. IEEE Trans. Evol. Comput. 18, 559–576 (2014)

28. Lones, M.A., Alty, J.E., Lacy, S.E., Jamieson, D.S., Possin, K.L., Schuff, N., Smith, S.L.:
Evolving classifiers to inform clinical assessment of Parkinson’s disease. In: IEEE
Symposium on Computational Intelligence in Healthcare and e-health (CICARE) 2013,
pp. 76–82. IEEE (2013)

29. Lones, M.A., Alty, J.E., Duggan-Carter, P., Turner, A.J., Jamieson, D., Smith, S.L.:
Classification and characterisation of movement patterns during levodopa therapy for
parkinson’s disease. In: Proceedings of the 2014 Conference Companion on Genetic and
Evolutionary Computation Companion, pp. 1321–1328. ACM (2014)

30. Shrivastava, J.P., Mangal, K., Woike, P., Marskole, P., Gaur, R.: Role of FNAC in diagnosing
thyroid neoplasms-A retrospective study. IOSR J. Dent. Med. Sci. (IOSR-JDMS) 1, 13–16

31. Kendall, C., Isabelle, M., Bazant-Hegemark, F., Hutchings, J., Orr, L., Babrah, J., Baker, R.,
Stone, N.: Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 134, 1029–
1045 (2009)

32. Lones, M., Smith, S.L., Harris, A.T., High, A.S., Fisher, S.E., Smith, D.A., Kirkham, J.:
Discriminating normal and cancerous thyroid cell lines using implicit context representation
cartesian genetic programming. In: IEEE Congress on Evolutionary Computation
(CEC) 2010, pp. 1–6. IEEE (2010)

266 S.L. Smith and M.A. Lones

Part III
Chemistry and Development

Chemical Computing Through Simulated
Evolution

Larry Bull, Rita Toth, Chris Stone, Ben De Lacy Costello
and Andrew Adamatzky

Abstract Many forms of unconventional computing, i.e., massively parallel
computers which exploit the non-linear material properties of their substrate, can be
realised through simulated evolution. That is, the behaviour of non-linear media can
be controlled automatically and the structural design of the media optimized
through the nature-inspired machine learning approach. This chapter describes
work using the Belousov-Zhabotinsky reaction as a non-linear chemical medium in
which to realise computation. Firstly, aspects of the basic structure of an experi-
mental chemical computer are evolved to implement two Boolean logic functions
through a collision-based scheme. Secondly, a controller is evolved to dynamically
affect the rich spatio-temporal chemical wave behaviour to implement three Boo-
lean functions, in both simulation and experimentation.

1 Introduction

Following early work in evolvable hardware with programmable silicon devices
[26], Miller and Downing [17] suggested the same general approach might be
applied to aid the design and programming of unconventional computers. That is,
evolutionary computing techniques may be able to harness the as yet only partially
understood intricate dynamics of non-linear media to perform computations more
effectively than with traditional architectures. Previous theoretical and experimental
studies have shown that reaction-diffusion chemical systems are capable of infor-
mation processing. Experimental prototypes of reaction-diffusion processors have
been used to solve a wide range of computational problems, including image pro-
cessing, path planning, robot navigation, computational geometry and counting (see

L. Bull (✉) ⋅ C. Stone ⋅ B. De Lacy Costello ⋅ A. Adamatzky
Unconventional Computing Group, University of the West of England,
Bristol BS16 1QY, UK
e-mail: larry.bull@uwe.ac.uk

R. Toth
High Performance Ceramics, EMPA, Dubendorf, Switzerland

© Springer International Publishing AG 2018
S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,
Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_13

269

[2] for an overview). As such, we have been exploring the use of simulated evolution
to design such chemical systems which exploit collision-based computing (e.g., [1]).

The directly analogous approach to that typically adopted in evolvable hardware
is to use the evolutionary search process to determine how to configure the basic
setup of the computational medium before inputs are applied and the resultant
outputs interpreted. For example, Harding and Miller [8] searched the space of
control line voltages for a liquid crystal display for various tasks, and this general
approach has been used in all known subsequent work (see [18] for an overview).
This chapter begins by describing the use of the same approach with a
spatially-distributed light-sensitive form of the Belousov-Zhabotinsky (BZ) [29]
reaction in gel which supports travelling reaction-diffusion waves and patterns. In
particular, the spatial location of inputs (waves of excitation) is defined by evolution.

In our other approach, we exploit the photoinhibitory property of the reaction
dynamically. That is, the chemical activity (amount of excitation on the gel) can be
controlled by an applied light intensity, namely it can be decreased by illuminating
the gel with high light intensity and vice versa. In this way a BZ network can be
created via light and here controlled using (heterogeneous) Cellular Automata
(CA) [27] designed using simulated evolution. This architecture is adapted from the
system described by Wang et al. [28] and experimental chemical computers have
again been realised, after simulation, as is described below.

2 Chemical Computing

Excitable and oscillating chemical systems have been used to solve a number of
computational tasks such as implementing logical circuits [24], image processing
[14], shortest path problems [23] and memory [20]. In addition chemical diodes [3],
coincidence detectors [7] and transformers where a periodic input signal of waves
may be modulated by the barrier into a complex output signal depending on the gap
width and frequency of the input [21] have all been demonstrated experimentally.

A number of experimental and theoretical constructs utilising networks of
chemical reactions to implement computation have been described. These chemical
systems act as simple models for networks of coupled oscillators such as neurons,
circadian pacemakers and other biological systems [13]. Ross and co-workers (e.g.,
[10]) produced a theoretical construct suggesting the use of “chemical” reactor
systems coupled by mass flow for implementing logic gates neural networks and
finite-state machines. In further work Hjelmfelt and Ross [9] simulated a pattern
recognition device constructed from large networks of mass-coupled chemical
reactors containing a bistable iodate-arsenous acid reaction. They encoded arbitrary
patterns of low and high iodide concentrations in the network of 36 coupled
reactors. When the network is initialized with a pattern similar to the encoded one
then errors in the initial pattern are corrected bringing about the regeneration of the
stored pattern. However, if the pattern is not similar then the network evolves to a
homogenous state signalling non-recognition.

270 L. Bull et al.

In related experimental work Laplante et al. [15] used a network of eight bistable
mass coupled chemical reactors (via 16 tubes) to implement pattern recognition
operations. They demonstrated experimentally that stored patterns of high and low
iodine concentrations could be recalled (stable output state) if similar patterns were
used as input data to the programmed network. This highlights how a pro-
grammable parallel processor could be constructed from coupled chemical reactors.
This described chemical system has many properties similar to parallel neural
networks. In other work Lebender and Schneider [16] described methods of con-
structing logical gates using a series of flow rate coupled continuous flow stirred
tank reactors (CSTR) containing a bistable nonlinear chemical reaction. The min-
imal bromate reaction involves the oxidation of cerium (III) (Ce3+) ions by bromate
in the presence of bromide and sulphuric acid. In the reaction the Ce4+ concen-
tration state is considered as “0” “false” (“1” “true”) if a given steady state is within
10% of the minimal (maximal) value. The reactors were flow rate coupled according
to rules given by a feedforward neural network run using a PC. The experiment is
started by feeding in two “true” states to the input reactors and then switching the
flow rates to generate “true”-“false”, “false”-“true” and “false”-“false”. In this three
coupled reactor system the AND (output “true” if inputs are both high Ce4+,
“true”), OR (output “true” if one of the inputs is “true”), NAND (output “true” if
one of the inputs is “false”) and NOR gates (output “true” if both of the inputs are
“false”) could be realised. However to construct XOR and XNOR gates two
additional reactors (a hidden layer) were required. These composite gates are solved
by interlinking AND and OR gates and their negations. In their work coupling was
implemented by computer but they suggested that true chemical computing of some
Boolean functions may be achieved by using the outflows of reactors as the inflows
to other reactors, i.e., serial mass coupling.

As yet no large scale experimental network implementations have been under-
taken mainly due to the complexity of analysing and controlling many reactors.
That said, there have been many experimental studies carried out involving coupled
oscillating and bistable systems (e.g., see [4, 5, 11, 25]). The reactions are coupled
together either physically by diffusion or an electrical connection or chemically, by
having two oscillators that share a common chemical species. The effects observed
include multistability, synchronisation, in-phase and out of phase entrainment,
amplitude or “oscillator death”, the cessation of oscillation in two coupled oscil-
lating systems, or the converse, “rhythmogenesis”, in which coupling two systems
at steady state causes them to start oscillating [6].

3 Experimental Setup

Sodium bromate, sodium bromide, malonic acid, sulphuric acid, tris(bipyridyl)
ruthenium (II) chloride, 27% sodium silicate solution stabilized in 4.9 M sodium
hydroxide were purchased from Aldrich (U.K.) and used as received unless stated
otherwise. To create the gels a stock solution of sodium silicate was prepared by
mixing 222 mL of the purchased sodium silicate solution with 57 mL of 2 M

Chemical Computing Through Simulated Evolution 271

sulphuric acid and 187 mL of deionised water. Ru(bpy)3SO4 was recrystallised from
the chloride salt with sulphuric acid. Gels were prepared by mixing 2.5 mL of the
acidified silicate solution with 0.6 mL of 0.025 M Ru(bpy)3SO4 and 0.65 mL of
1.0 M sulphuric acid solution. Using capillary action, portions of this solution were
quickly transferred into a custom-designed 25 cm long 0.3 mm deep Perspex mould
covered with microscope slides. The solutions were left for 3 h to permit complete
gellation. After gellation the adherence to the Perspex mould is negligible leaving a
thin gel layer on the glass slide. After 3 h the slides were carefully removed from the
mould and the gels on the slides were washed in deionised water at least five times to
remove by-products. The gels were 26-by-26 mm, with a wet thickness of
approximately 300 µm. The gels were stored under water and rinsed just before use.

The catalyst-free reaction mixture was freshly prepared in a 30 mL
continuously-fed stirred tank reactor (CSTR), which involved the in situ synthesis
of stoichiometric bromomalonic acid from malonic acid and bromine generated
from the partial reduction of sodium bromate. This CSTR in turn continuously fed a
thermostated open reactor with fresh catalyst-free BZ solution in order to maintain a
nonequilibrium state. The final composition of the catalyst-free reaction solution in
the reactor was: 0.42 M sodium bromate, 0.19 M malonic acid, 0.64 M sulphuric
acid and 0.11 M bromide. The residence time was 30 min.

An InFocus Model LP820 Projector was used to illuminate the computer-
controlled image. Images were captured using a Lumenera Infinity 2 USB 2.0
scientific digital camera. The open reactor was surrounded by a water jacket ther-
mostated at 22 °C. Peristaltic pumps were used to pump the reaction solution into
the reactor and remove the effluent. A diagrammatic representation of the experi-
mental setup is shown in Fig. 1.

Fig. 1 A block diagram of the experimental setup where A: computer, B: projector, C: mirror, D:
microscope slide with the catalyst-laden gel, E: thermostatted Petri dish, F: CSTR, G1 and G2:
pumps, H: stock solutions, I: camera, J: effluent flow, K: thermostatted water bath

272 L. Bull et al.

4 Configuration Design

A spatially distributed excitable field was created on the surface of the gel by the
projection of a 7-by-7 cell grid pattern generated using a computer. The image
comprised of cells with three possible intensity levels of 0.35 (level 0), 1.0 (level 1)
and 3.5 mW cm−2 (level 2), representing excitable, subexcitable, and non-excitable
domains respectively. The grid pattern was projected onto the catalyst-laden gel
through a 455 nm narrow bandpass interference filter and 100/100 mm focal length
lens pair and mirror assembly. The size of the projected grid was approximately
14 mm square. Every 10 s, the grid pattern was replaced with a uniform grey level
of 3.5 mW cm−2 for 10 ms during which time an image of the BZ fragments on the
gel was captured. The purpose of removing the grid pattern during this period was
to allow activity on the gel to be more visible to the camera and assist in subsequent
image processing of chemical activity.

Captured images were processed to identify chemical wave activity. This was
done by differencing successive images on a pixel by pixel basis to create a black
and white thresholded image. Each pixel in the black and white image was set to
white, corresponding to chemical activity; if the intensity of the red or blue channels
differed in successive images by more than 5 out of 256 pixels (1.95%). Pixels at
locations not meeting this criterion were set to black. The images were cropped to
the grid location and the grid superimposed on the thresholded images to aid
analysis of the results.

Around the bottom, left and right sides of the grid is a channel through which
chemical activity in the form of excitation fragments can travel. Chemical fragments
are generated at the centre of this channel by means of a small area of darkness and
these travel along the channel and up the sides of the grid approximately sym-
metrically (Fig. 2a). Three sides of the projected grid are used to provide inputs to
the system. A one-cell boundary around the edge of the grid is set by default to level
2. This light level acts as a barrier to prevent spurious entry of chemical fragments
into the centre of the grid where computation is to occur. The boundary at the left
and right sides of the grid is modulated to allow entry of fragments. Under program
control the left and right sides of the grid are treated as being the two binary inputs
to the system. There are thus four possible states—00, 01, 10 and 11—for which
chemical activity must be supplied to the grid in order to test its operation imple-
menting Boolean logic. For a ‘0’ input, light at the appropriate boundary remains at
level 2 prohibiting fragments from passing from the initiation channel into the grid.
For an input of value ‘1’ light level at the left and/or right side boundary of the grid
is controlled by the genome used by the simple evolutionary algorithm. The gen-
ome is a binary string of length 10 bits, with 5 bits coding for the 5 active boundary
cells along the left side of the grid and 5 for the right side. Depending upon the
genome, the light level associated with each cell in the active boundary is given the
level 0 or 2. A light level of 0 allows fragment activity to pass into the 5-by-5 cell
centre area of the grid, which is illuminated with a uniform light level of 1. In this
way the evolutionary algorithm is able to influence the spatial and temporal

Chemical Computing Through Simulated Evolution 273

dynamics of chemical activity in the centre of the grid with the aim of inducing
‘useful’ activity in the form of computation. In addition to the two inputs controlled
by the EA, a constant truth input is provided to the grid by means of a single cell in
the centre of the bottom boundary that has a fixed light level of 0.

The evolutionary algorithm used is a simple genetics-based hill climber: starting
from an initial random solution, an offspring is evaluated and adopted as the parent
if at least as fit as the original solution. This choice is motivated by the impracti-
cality of testing multiple individuals in a population with a real (slow) chemical
system such as used here. Bitwise mutation is the only variation operator, with a
single gene being mutated after each complete cycle of four logical input
presentations.

(a)

00

01

10

11

(b) (c)

Fig. 2 a Initiation pattern,
b example input configuration
representing input logic states
and c collisions of fragments
occurring during
configuration (b). The black
area (level 0) in (a) and
(b) represents the excitable
medium (where chemical
waves can fully develop)
whilst the white area (level 2)
is non excitable (where the
formation of waves is
inhibited). The grey area
(level 1) in the centre of the
grid is subexcitable where
wave fragments just manage
to propagate

274 L. Bull et al.

The output of computations occurring in the centre of the grid is obtained by
monitoring the 25 cells in the centre of the grid using the image processing tech-
niques described above. Each output cell is tested 300 s after the system has been
presented with one of the four possible Boolean input configurations and is
assigned the Boolean output value of 1 if the total chemical activity in the cell is at a
level of 20% or more and a value of 0 otherwise. The centre of the grid thus
implements (potentially) 25 logic functions in parallel. To determine the fitness of
each cell position with respect to a target logic function, each of the four possible
input configurations is presented in turn and a fitness of 1 is assigned to the cell if it
presents the correct output for that configuration. A complete logic function is
discovered when a single cell presents all four correct outputs in a single learning
episode. For this work we investigated the ability of the system to discover
two-input AND and NAND gates. These gates are complementary in function and
both were investigated to avoid the possibility of results being biased by particular
properties of the chemical system used.

Figure 3a shows the discovery of correctly functioning AND gates in at least one
of the cells in the central sub-excitable area of the grid. We were able to run a
maximum of 30 input configurations (which required about 6 h) in the experiments
because after that time the excitability of the system changed due to the

(a)

(b)

0

2

4

6

8

0 10 20
Input configuration

Fi
tn

es
s

0

2

4

6

8

0 10 20
Input configuration

Fi
tn

es
s

Fig. 3 Number of input
configurations necessary to
discover the first (a) AND and
(b) NAND gate. Gate is found
when fitness reaches four.
Fitness is an average of 3
runs. Error bars show
minimum and maximum
fitness

Chemical Computing Through Simulated Evolution 275

“desensitization” effect of high intensity light. Figure 3b shows similar results for
the design of single NAND gates.

From these results it is evidently somewhat trivial for the EA to design grid
boundary conditions such that single instances of correctly functioning two-input
logic gates can be produced by collision-based computing. We therefore wanted to
attempt a more testing problem, namely the simultaneous design of multiple con-
currently functioning logic gates. Figure 4 shows that it is possible to design
concurrently functioning AND and NAND gates using the same technique with
only a marginal increase in difficulty. A second general approach is explored next.

From these results it is evidently somewhat trivial for the EA to design grid
boundary conditions such that single instances of correctly functioning two-input
logic gates can be produced by collision-based computing. We therefore wanted to
attempt a more testing problem, namely the simultaneous design of multiple con-
currently functioning logic gates. Figure 4 shows that it is possible to design
concurrently functioning AND and NAND gates using the same technique with
only a marginal increase in difficulty. A second general approach is explored next.

5 Dynamic Control

5.1 Simulated Gels

Features of the chemical system are simulated using a two-variable Oregonator
model modified to account for photochemistry:

∂u
∂t

=
1
ε

u− u2 − ðfv+ΦÞ u− q
u+ q

� �
+Du∇2u

∂v
∂t

= u− v.

0

2

4

6

8

0 10 20
Input configuration

Fi
tn

es
s

Fig. 4 Number of input
configurations necessary to
discover the first two cells
implementing concurrently
functioning AND and NAND
gates. Both gates are found
when fitness reaches eight.
Fitness is an average of 3
runs. Error bars show
minimum and maximum
fitness

276 L. Bull et al.

The variables u and v represent the instantaneous local concentrations of the
bromous acid autocatalyst and the oxidized form of the catalyst, HBrO2 and tris
(bipyridyl) Ru (III), respectively, scaled to dimensionless quantities. The rate of the
photo-induced bromide production is designated by Φ, which also denotes the
excitability of the system in which low simulated light intensities facilitate exci-
tation while high intensities result in the production of bromide that inhibits the
process. The system was integrated using the Euler method with a five-node
Laplacian operator, time step Δt = 0.001 and grid point spacing Δx = 0.62. The
diffusion coefficient, Du, of species u was unity, while that of species v was set to
zero as the catalyst is immobilized in the gel. The kinetic parameters were set to
ε = 0.11, f = 1.1 and q = 0.0002. The medium is oscillatory in the dark which
made it possible to initiate waves in a cell by setting its simulated light intensity to
zero. At different Φ values the medium is excitable, subexcitable or non-excitable.

5.2 Evolutionary Control

We have used Cellular Automata to control such chemical systems, i.e., finite
automata are arranged in a two-dimensional lattice with aperiodic boundary con-
ditions (an edge cell has five neighbours, a corner cell has three neighbours, all
other cells have eight neighbours each). Use of a CA with such a two-dimensional
topology is a natural choice given the spatio-temporal dynamics of the BZ reaction
(Fig. 5). Each automaton updates its state depending on its own state and the states
of its neighbours. States are updated in parallel and in discrete time. In standard CA
all cells have the same state transition function (rule), whereas in this work the

Gel state

Evolving Heterogeneous CA controller

Light projections

Fig. 5 Relationship between the CA controller, applied grid pattern and chemical system
comprising one process control cycle

Chemical Computing Through Simulated Evolution 277

CA is heterogeneous, i.e., each cell/automaton has its own state transition function.
The transition function of every cell is evolved by a simple evolutionary process.
This approach is very similar to that presented by Sipper [22]. However, his reli-
ance upon each cell having access to its own fitness means it is not applicable in the
majority of chemical computing scenarios we envisage. Instead, fitness is based on
emergent global phenomena in our approach (as in [19], for example). Thus, fol-
lowing Kauffman [12], and as above, we use a simple approach wherein each
automaton of the two-dimensional CA controller is developed via a simple
genetics-based hillclimber. After fitness has been assigned, some proportion of the
CA’s genes are randomly chosen and mutated. Mutation is the only variation
operator used here to modify a given CA cell’s transition rule to allow the
exploration of alternative light levels for the grid state. For a CA cell with eight
neighbours there are 29 possible grid state to light level transitions, each of which is
a potential mutation site. After the defined number of such mutations have occurred,
an evolutionary generation is complete and the simulation is reset and repeated. The
system keeps track of which CA states are visited since mutation. On the next
fitness evaluation (at the end of a further 25 control cycles) mutations in states that
were not visited are discarded on the grounds that they have not contributed to the
global fitness value and are thus untested. We also performed control experiments
with a modified version to determine the performance of an equivalent random CA
controller. This algorithm ignored the fitness of mutants and retained all mutations
except those from unvisited states.

For a given experiment, a random set of CA rules is created for a
two-dimensional array of size 10-by-10, i.e., 100 cells. The rule for each cell is
represented as a gene in a genome, which at any one time takes one of the discrete
light intensity values used in the experiment. As previously mentioned, the grid
edges are not connected (i.e., the grid is planar and does not form a toroid) and the
neighborhood size of each cell is of radius 1; cells consider neighborhoods of
varying size depending upon their spatial position, varying from three in the cor-
ners, to five for the other edge cells, and eight everywhere else. In the model each of
the 100 cells consists of 400 (20-by-20) simulation points for the reaction. The
reaction is thus simulated numerically by a lattice of size 200-by-200 points, which
is divided into the 10-by-10 grid.

To begin examining the potential for the evolution of controllers for such tem-
porally dynamic structures in the continuous, non-linear 2D media described we
have designed a simple scheme to create a number of two-input Boolean logic gates.
Excitation is fed in at the bottom of the grid into a branching pattern. To encode a
logical ‘1’ and ‘0’ either both branches or just one branch of the two “trees” shown in
Fig. 6 are allowed to fill with excitation, i.e., the grid is divided into two for the
inputs. These waves were channelled into the grid and broken up into 12 fragments
by choosing an appropriate light pattern as shown in Fig. 7. The black area repre-
sents the excitable medium whilst the white area is non-excitable. After initiation
three light levels were used: one is sufficiently high to inhibit the reaction; one is at
the sub-excitable threshold such that excitation just manages to propagate; and the
other low enough to fully enable it. The modelled chemical system was run for 600

278 L. Bull et al.

iterations of the simulator. This value was chosen to produce network dynamics
similar to those obtained in experiment over 10 s of real time.

A colour image was produced by mapping the level of oxidized catalyst at each
simulation point into an RGB value. Image processing of the colour image was
necessary to determine chemical activity. This was done by differencing successive
images on a pixel by pixel basis to create a black and white thresholded image.
Each pixel in the black and white image was set to white (corresponding to exci-
tation) if the intensity of the red or blue channels in successive colour images
differed by more than 5 out of 256 pixels (1.95%). Pixels at locations not meeting
this criterion were set to black. An outline of the grid was superimposed on the
black and white images to aid visual analysis of the results.

The black and white images were then processed to produce a 100-bit
description of the grid for the CA. In this description each bit corresponds to a cell
and it is set to true if the average level of activity within the given cell is greater
than a pre-determined threshold of 10%. Here, activity is computed for each cell as
the fraction of white pixels in that cell. This binary description represents a
high-level depiction of activity in the BZ network and is used as input to the CA.
Once cycle of the CA is performed whereby each cell of the CA considers its own
state and that of its neighbours (obtained from the binary state description) to
determine the light level to be used for that grid cell in the next time step. Each grid
cell may be illuminated with one of three possible light levels. The CA returns a
100-digit trinary action string, each digit of which indicates whether high
(Φ = 0.093023), sub-excitable threshold (Φ = 0.04) or low (Φ = 0.000876)
intensity light should be projected onto the given cell. The progression of the
simulated chemical system, image analysis of its state and operation of the CA to
determine the set of new light levels comprises one control cycle of the process.
A typical light pattern generated by the CA controller is shown in Fig. 6b. Another
600 iterations are then simulated with those light-levels projected, etc. until 25
control cycles have passed. The number of active cells in the grid, that is those with
activity at or above the 10% threshold, is used to distinguish between a logical ‘0’
and ‘1’ as the output of the system. For example, in the case of XOR, the controller
must learn to keep the number of active cells below the specified level for the 00
and 11 cases but increase the number for the 01 and 10 cases.

Fig. 6 Showing initiation pattern (a) and a typical example of a coevolved light pattern (b)

Chemical Computing Through Simulated Evolution 279

I1 I2 O (AND) O (NAND) O (XOR)

0,0 N=6 0 N=8 1 N=26 0 N=16

0,1 N=9 0 N=18 1 N=22 1 N=20

1,0 N=9 0 N=7 1 N=20 1 N=24

1,1 N=12 1 N=24 0 N=8 0 N=7

Fig. 7 Typical examples of solutions of AND, NAND and XOR logic gates in simulation,
required active cells: 20, N: actual number of active cells. Input states I1, I2 for the logic gates are
shown on the left and consist of two binary digits, spatially encoded using left and right “initiation
trees” (Fig. 6). Input values of ‘0’ are encoded using a single branch of the relevant tree resulting
in 3 fragments, while binary ‘1’ is encoded using both branches of the tree resulting in 6 fragments.
Evolution found a solution in 56 (AND), 364 (NAND) and 1656 (XOR) generations

280 L. Bull et al.

5.3 Results 1: Simulation

Figure 7 shows typical examples of each of the three logic gates learned using the
simulated chemical system. Each of the four possible input combinations is pre-
sented in turn—00 to 11—and for each input combination the system is allowed to
develop for 25 control cycles. Fitness for each input pattern is evaluated after the
25 control cycles with each correct output scoring 1, resulting in a maximum
possible fitness of 4. Figure 8 shows the fitness averaged over ten runs for AND
and NAND tasks with mutation rate 4000, and similar results for XOR are shown
for mutation rate 6000. Favorable comparisons to an equivalent random controller
are also shown in each case.

From these results, it is evidently somewhat trivial for the EA to design grid
boundary conditions such that single instances of correctly functioning two-input
logic gates can be produced by collision-based computing. We therefore wanted to
attempt a more testing problem, namely the simultaneous design of multiple con-
currently functioning logic gates. Figure 4 shows that it is possible to design
concurrently functioning AND and NAND gates using the same technique with
only a marginal increase in difficulty. A second general approach is explored next.

5.4 Results 2: Experimentation

Given the success of our approach using the simulated chemical reaction, we have
attempted to implement the same tasks using a real chemical system constructed
using a slight variation of the previous methodology described above. The spatially
distributed excitable field on the surface of the gel was achieved by the projection of
a 10-by-10 cell checkerboard grid pattern. The checkerboard image comprised of
cells with three possible intensity levels of 0.35, 1.6 and 3.5 mW cm−2, representing
excitable, the subexcitable threshold, and non-excitable domains respectively. The
size of the projected grid was approximately 20 mm square. Again, every 10 s, the
checkerboard pattern was replaced with a uniform grey level of 3.5 mW cm−2 for
10 ms during which time an image of the BZ fragments on the gel was captured.
Captured images were cropped to the grid location and processed to identify
activity in the same manner as for the model (see above).

Figures 9 and 10 show how similar performance is possible on the real chemical
system for each of the three logic functions. In order to produce working XOR and
NAND gates from these experiments, it was necessary to use a value of 15 for the
required number of active cells due to the relative difficulty of these tasks. All other
parameters were the same as those used for numerical simulation.

Because of the limited lifetime of the medium these runs were seeded with CAs
evolved during the simulated runs presented in Fig. 8. Runs using random initial
controllers were also explored on the real chemical system (dashed lines on
Fig. 10), but no successful runs were found over the 40 generations. This is not

Chemical Computing Through Simulated Evolution 281

surprising considering that the average generations needed to find a good solution
was higher than 40 in the simulations because of the relative increase in difficulty.
Nevertheless the two systems are very similar since the runs with seeded CAs

AND

0

1

2

3

4

0 1000 2000

1000 2000

1000 2000

Generations
Fi

tn
es

s

NAND

0

1

2

3

4

0
Generations

Fi
tn

es
s

XOR

0

1

2

3

4

0
Generations

Fi
tn

es
s

Fig. 8 Showing the
performance of evolving CA
controllers for the three logic
gate tasks considered. Dashed
lines show the equivalent
performance of random
search

282 L. Bull et al.

evolved during the simulations found solutions in a very short time, namely in 16 or
20 generations. If a solution had been found in four generations it would have
meant that the initial states of the simulated and real chemical system are perfectly
identical. However, since there is a noticeable difference between the initial states,
the solution found by the evolutionary algorithm in simulation was very close to the
solution needed for the real chemistry, but a few generations of evolution were

I1 I2 O (AND) O (NAND) O (XOR)

0,0 N=6 0 N=10 1 N=23 0 N=10

0,1 N=10 0 N=19 1 N=22 1 N=21

1,0 N=10 0 N=19 1 N=18 1 N=17

1,1 N=13 1 N=24 0 N=9 0 N=10

Fig. 9 Typical examples of solutions of AND, NAND and XOR logic gates in chemical
experiment, required number of active cells: 15 (20 for AND), N: actual number of active cells.
Input states I1, I2 for the logic gates are shown on the left and consist of two binary digits, spatially
encoded using left and right “initiation trees” (Fig. 7). Input values of ‘0’ are encoded using a
single branch of the relevant tree resulting in 3 or 4 fragments, while binary ‘1’ is encoded using
both branches of the tree resulting in 6 or 7 fragments. The simulated evolution—seeded with a
CA evolved during the simulated runs—found a solution in 16 generations in each case

Chemical Computing Through Simulated Evolution 283

AND

NAND

0

1

2

3

4

Generations

Fi
tn

es
s

XOR

0

1

2

3

4

Generations

Fi
tn

es
s

0

1

2

3

4

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

Generations
Fi

tn
es

s

Fig. 10 Showing the
performance of evolving CA
controllers for the three logic
gate tasks considered. Dashed
lines show the equivalent
performance of random
search

284 L. Bull et al.

needed to adapt to the difference between the two systems. These results show that
the approach is capable of adapting to small changes in its environment and finding
a solution very quickly when presented with domain-specific knowledge obtained
from modeling.

6 Conclusions

Excitable and oscillating chemical systems have previously been used to solve a
number of simple computational tasks. However, the experimental design of such
systems has typically been non-trivial. In this chapter we have presented results
from a general methodology by which to achieve the complex task of designing
such systems—through the use of simulated evolution. We have shown using both
simulated and real systems that it is possible in this way to control dynamically the
behavior of the BZ reaction, and to design the basic configuration of a chemical
computer (after [17]). Which of these approaches is best able to exploit the prop-
erties of non-linear media for computation—or whether their use in combination is
possible—remains open to future exploration.

References

1. Adamatzky, A. (ed.): Collision-based Computing. Springer, London (2002)
2. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers. Elsevier

(2005)
3. Agladze, K., Aliev, R.R., Yamaguhi, T., Yoshikawa, K.: Chemical diode. J. Phys. Chem. 100,

13895–13897 (1996)
4. Bar-Eli, K., Reuveni, S.: Stable stationary-states of coupled chemical oscillators: experimental

evidence. J. Phys. Chem. 89, 1329–1330 (1985)
5. Crowley, M.F., Field, R.J.: Electrically coupled Belousov-Zhabotinskii oscillators 1:

experiments and simulations. J. Phys. Chem. 90, 1907–1915 (1986)
6. Dolnik, M., Epstein, I.R.: Coupled chaotic oscillators. Phys. Rev. E 54, 3361–3368 (1996)
7. Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. J. Phys. Chem.

A 107, 1664–1669 (2003)
8. Harding, S.L., Miller, J.F.: Evolution in materio: initial experiments with liquid crystal. In:

Evolvable Hardware, NASA/DOD Conference on Computer Society, pp. 289–299. IEEE
(2004)

9. Hjelmfelt, A., Ross, J.: Mass-coupled chemical systems with computational properties.
J. Phys. Chem. 97, 7988–7992 (1993)

10. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and
turing machines. PNAS 88, 10983–10987 (1991)

11. Holz, R., Schneider, F.W.: Control of dynamic states with time-delay between 2 mutually
flow-rate coupled reactors. J. Phys. Chem. 97, 12239 (1993)

12. Kauffman, S.: The Origins of Order. Oxford (1993)
13. Kawato, M., Suzuki, R.: Two coupled neural oscillators as a model of the circadian

pacemaker. J. Theor. Biol. 86, 547–575 (1980)

Chemical Computing Through Simulated Evolution 285

14. Kuhnert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light sensitive chemical
waves. Nature 337, 244–247 (1989)

15. Laplante, J.P., Pemberton, M., Hjelmfelt, A., Ross, J.: Experiments on pattern recognition by
chemical kinetics. J. Phys. Chem. 99, 10063–10065 (1995)

16. Lebender, D., Schneider, F.W.: Logical gates using a nonlinear chemical reaction. J. Phys.
Chem. 98, 7533–7537 (1994)

17. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In:
Proceedings of the NASA/DOD Conference on Evolvable Hardware, Computer Society,
pp. 167–176. IEEE (2002)

18. Miller, J., Harding, S., Tufte, G.: Evolution in-materio: evolving computation in materials.
Evol. Intel. 7(1), 49–67 (2014)

19. Mitchell, M., Hraber, P., Crutchfield, J.: Revisiting the edge of chaos: evolving cellular
automata to perform computations. Complex Syst. 7, 83–130 (1993)

20. Motoike, I.N., Yoshikawa, K., Iguchi, Y., Nakata, S.: Real time memory on an excitable field.
Phys. Rev. E 63, 1–4 (2001)

21. Sielewiesiuk, J., Gorecki, J.: Passive barrier as a transformer of chemical frequency. J. Phys.
Chem. A 106, 4068–4076 (2002)

22. Sipper, M.: Evolution of Parallel Cellular Machines. Springer (1997)
23. Steinbock, O., Toth, A., Showalter, K.: Navigating complex labyrinths: optimal paths from

chemical waves. Science 267, 868–871 (1995)
24. Steinbock, O., Kettunen, P., Showalter, K.: Chemical wave logic gates. J. Phys. Chem. 100,

18970–18975 (1996)
25. Stuchl, I., Marek, M.: Dissipative structures in coupled cells: experiments. J. Phys. Chem. 77,

2956–2963 (1982)
26. Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: Higuchi, T.,

Iwata, M., Weixin, L. (eds.) Proceedings of 1st International Conferences on Evolvable
Systems (ICES’96), LNCS. pp. 1259:390–405. Springer (1997)

27. Von Neumann, J.: The Theory of Self-Reproducing Automata. University of Illinois (1966)
28. Wang, J., Kádár, S., Jung, P., Showalter, K.: Noise driven avalanche behavior in subexcitable

media. Phys. Rev. Lett. 82, 855–858 (1999)
29. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional

liquid-phase self-oscillating system. Nature 225, 535–537 (1970)

286 L. Bull et al.

Sub-Symbolic Artificial Chemistries

Penelope Faulkner, Mihail Krastev, Angelika Sebald
and Susan Stepney

Abstract We wish to use Artificial Chemistries to build and investigate open-ended

systems. As such, we wish to minimise the number of explicit rules and proper-

ties needed. We describe here the concept of sub-symbolic Artificial Chemistries
(ssAChems), where reaction properties are emergent properties of the internal struc-

ture and dynamics of the component particles. We define the components of a

ssAChem, and illustrate it with two examples: RBN-world, where the particles are

Random Boolean Networks, the emergent properties come from the dynamics on an

attractor cycle, and composition is through rewiring the components to form a larger

RBN; and SMAC, where the particles are Hermitian matrices, the emergent proper-

ties are eigenvalues and eigenvectors, and composition is through the non-associative

Jordan product. We conclude with some ssAChem design guidelines.

1 Introduction

Artificial Chemistries (AChems) are examined for many reasons. In the context of

Artificial Life (ALife) they can form an underpinning technology. In these cases,

the systems are often carefully crafted, with atoms and reaction rules hand tuned to

produce the desired properties, such as replication and evolution.

Another use of AChems is to study open-ended systems in general [6]. In such

cases it is important to ensure that the open-ended properties are not specifically

P. Faulkner ⋅ A. Sebald

Department of Chemistry, University of York, York, UK

e-mail: pf550@york.ac.uk

A. Sebald

e-mail: angelika.sebald@york.ac.uk

M. Krastev ⋅ S. Stepney (✉)

Department of Computer Science, University of York, York, UK

e-mail: susan.stepney@york.ac.uk

M. Krastev

e-mail: mk599@york.ac.uk

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_14

287

288 P. Faulkner et al.

designed in, but rather emerge from the properties underlying system. Such behav-

iour is needed to allow the possibility of multiple levels of emergence.

In 2009, Faulconbridge, Stepney, Miller and Caves presented the first work on a

subsymbolic artificial chemistry (ssAChem), called bRBN-world [11], with subse-

quent work described in [9, 10]. The core idea of ssAChems is that reaction proper-

ties should be emergent properties of the internal structures of the relevant atoms and

molecules, analogous to the way that these are emergent properties of the electronic

structures of physical atoms and molecules. The behavioural specifics emerge from

these structures, rather than being solely defined by external rules.

We have continued work on ssAChems, enriching and diversifying the original

concept. In this chapter we brings together some of the recent work. We start with

some background material on AChems in general (Sect. 2). We then give a formal

definition of ssAChems (Sect. 3). We use this definition to introduce a new ssAChem,

SMAC, based on matrix algebra (Sect. 4). We also use the definition to summarise

bRBN-world, and add a new feature: an environmental temperature model (Sect. 5).

We finish with some guidelines to follow when designing a new ssAChem (Sect. 6).

2 Why AChems?

2.1 What Chemistry Can Give ALife/Complexity Science

When we take a good look at the contemporary activities carried out under the

broad umbrella of ‘chemistry’ we are confronted with a vast range of fascinating

developments and output. An increasing proportion of these research and develop-

ment activities no longer fits the traditional boxes of the various science disciplines,

but instead has moved to cover areas in between classical disciplines, ranging from

shared approaches with physics, engineering, materials science, biology, pharma-

cology, archaeology, forensic sciences all the way to medical sciences.

This contemporary state of affairs can act as an encouragement for our endeavour

to design subsymbolic artificial chemistries (we come back to various definitions in a

moment): whatever theoretically underpins this wide range of natural activities must

surely cater well for the emerging properties of a rich system.

Traditionally, the discipline has been subdivided into the classical domains of

organic, inorganic and physical chemistry. This subdivision is still maintained in

many areas of undergraduate teaching and in organisational structures of many chem-

istry departments. However, its mainly output/substance focus cannot help us with

finding inspiration for the rational design of artificial chemistries.

If we want to take inspiration from chemistry for the design of algorithms with

emergent properties we need to take a step back, and take a dispassionate and per-

haps slightly unconventional look at the very core of what forms the basis of the

conceptual and descriptive framework that helps us to deal with chemistry. Strip-

ping matters back to the essentials yields the following picture.

Sub-Symbolic Artificial Chemistries 289

Nature provides a set of possibilities: the elements in the periodic table. Their

properties in turn provide variability, and their number forms the basis of endless

options for combinatorics constrained by reaction properties. In practice much of

the rich behaviour of chemical systems relies on a fairly small subset of chemical

elements. Biochemistry produces its own larger ‘units’ from this small subset of

chemical atoms: the four unit genetic code, and the 20 unit amino acid code. Pri-

mary linear combinatoric systems (DNA and proteins) then exploit spatial properties

to gain functional secondary and tertiary structures. In each case, the properties of

the units emerges from their internal structure. Further exotic units can be added to

these small alphabets in certain circumstances. The properties of these further units

emerge in a similar manner.

Faced with having to understand, handle, predict or manipulate a massive set

of possibilities, the discipline of chemistry has developed empirical rules to come

to grips with this richness in nature. The basic set of rules in use is limited and

fairly straightforward. The energetics of the systems considered are described by

thermodynamics; kinetics describe rates of change (and often reaction mechanisms)

of the systems as macroscopic entities. The laws of quantum mechanics describe

microscopic properties such as electronic structures of atoms and molecules. Statis-

tics, mainly in the form of statistical thermodynamics, provides the necessary link

between macroscopic and microscopic properties.

This small but effective set of rules in operation deals with essentially the entire

vast range of ‘chemistry’. Note that (i) none of these rules applied to ‘chemistry’

make any reference to chemical properties, and (ii) all of the many and varied prop-

erties of chemical systems emerge from the combination of a set of possibilities with

a set of rules. This ‘chemistry rule book’ seems to be quite capable of dealing with

the rich natural system.

Let us translate this highly minimalistic view of the working of the foundations

of chemistry to our task of recreating similarly rich emergent properties in silico. To

do this we need recognise that chemistry uses descriptive rules that are a scientific

model built from observation of what the system does; such a model may be wrong

or partial. AChems, on the other hand, implement underlying rules that govern what

the simulation system does; such rules cannot be wrong, cannot be broken. Thus

we must chose our simulation rules judiciously, not to rigidly enforce one level of

behaviour, but to provide sufficient richness of possibilities that higher level rule-

based behaviours can emerge.

A stripped down view of the underpinning rules of chemistry lends itself to being

applied in the rational design of algorithms with emergent properties: we need (i) to

pick a sufficiently large and versatile set of possibilities (‘atoms’) and (ii) combine

this set with a small but powerful set of rules to govern the possibilities and steer the

system toward a sweet spot of just enough complexity. Nature does this fabulously

well, so there is no immediately obvious reason why we should not be able to recreate

such behaviours in silico, as long as we are able to do so in a computationally feasible

manner.

290 P. Faulkner et al.

2.2 Quick Definition of AChems

An artificial chemistry (AChem) is a computational system that is analogous to cer-

tain aspects of the dynamics of atomic and molecular level interactions of real chem-

istry. AChems are not typically used as simulations of real chemistry, but rather

exploit combinatorics, dynamics, and other properties in a computational setting.

Often, AChems are used to explore aspects of Artificial Life, and aspects of the ori-

gin of life. Here we are interested in exploring how open-ended systems can develop

as a consequence of emergent properties.

Dittrich et al. [7] formally define an AChem as a triple (𝕊,ℝ,𝔸), where𝕊 is the set

of possible molecules, ℝ is the set of rules for interacting the molecules, and 𝔸 is an

algorithm describing the dynamics of the environment, the reaction vessel, and how

the rules are applied to the molecules. 𝕊 and ℝ are more fundamental to the AChem,

and may be thought of as the underlying ‘physics’ of the system; 𝔸 may then be

varied to see how the specified molecules and rules behave in different environments

or contexts, for example, spatial versus aspatial, closed versus chemostat.

𝕊 and ℝ can be defined explicitly (by listing all possible molecules, and all pos-

sible interactions), or implicitly, using a procedural algorithm or declarative expres-

sion. For an open-ended system, both 𝕊 and ℝ need to be defined implicitly, as novel

molecules and their interactions can continually arise.

2.3 Historical Context

AChems were originally created as an addition to the study of artificial life in the

hopes that they would illuminate the transition from inanimate to animate matter

through complex chemistry. Three properties are thought to be the basis for open-

ended evolution and complexification of life [2, 8, 24]

1. self-replication: a property that directly or indirectly propagates the creation of

copies of itself [14, 15, 23]

2. metabolism: a lifeform’s ability to change and maintain itself in its life time, by

processing energy to reproduce, repair damage, create or destroy structures [16,

23]

3. mutability: the capability for minor changes to occur during replication [8],

needed for life capable of evolutionary behaviours

From these requirements of life the need for several high level emergent properties

of chemistries have been inferred [11]: autocatalytic sets [17] (a precursor of self-

reproduction); hypercycles [8]; and heteropolymers (giving an information-bearing

molecule made up from a set of repeating subunits, for example RNA and DNA

[22]).

Sub-Symbolic Artificial Chemistries 291

2.4 Desirable Properties of an AChem

Complex emergent properties such as self-replication and metabolism should not be

designed into an AChem. Instead, we can define a set of low level requirements of a

chemistry that can be tested at the level of small ‘molecules’ comprising only a few

atoms [9, 11, 25]. These properties are not sufficient for these and other higher level

properties to emerge, but are necessary to allow them to exist.

2.4.1 Macroscopic Properties

∙ unbounded molecular size: an open-ended system must have some aspect of its

state space unbounded in size; a bounded system could (at least potentially)

exhaust its state space.

∙ conservation of mass: some form of conservation law (energy, mass, particle num-

ber) is needed to stop the system simply being a white hole; we conserve atoms,

in a context where our reaction vessel may have inflows and outflows.

2.4.2 Microscopic Properties

∙ synthesis: the forming of a bond between two molecules, producing a new larger

molecule: A + B → D. The products of synthesis (and decomposition, below)

should be the same kind of objects as the reactants, so that these can then react

without the need to introduce new kinds of rules.

∙ self-synthesis: the forming of a bond between two identical molecules: A + A →
D. The overall goal is start from a relatively small set of atoms, so we must allow

some atoms and molecules to bind with copies of themselves. However, self-

synthesis should not be universal, as we do not want every randomly selected

set of atoms to form a molecule. If all molecules were possible, the system would

be the basic combinatorics of all possible combinations of the atoms. We want

the system to have the same complexity as real chemistry, so we need implicit

restrictions to the set of possible molecules.

∙ decomposition: the removal of a bond in a molecule (which may affect other bonds

in the molecule): D → A + B. Decomposition allows for the potential formation

of structures that cannot be formed directly by synthesis, for example by allow-

ing the use of scaffolding. It also allows cycles in reaction networks, for example,

metabolic cycles as a combination of anabolic (building up) and catabolic (break-

ing down) reactions.

292 P. Faulkner et al.

2.4.3 Environmental and Contextual Properties

Molecules and reactions should be able to be influenced by environmental or con-

textual conditions, such as space and temperature analogues. This allows the same

‘physics’ of the molecules to exhibit different behaviours in different contexts, and

so for that behaviour to potentially be controlled, regulated, or influenced.

Additionally, molecules and reactions should be able to influence their environ-

ment, permitting feedback cycles so that the system can influence its own dynamics.

For example, endothermic and exothermic reactions can affect the environmental

temperature, which in turn can affect reaction rates.

2.5 Rationale for Sub-symbolic AChems

In real-world chemistry, whether an atom or molecule bonds with another is a result

of a complex set of factors based on the states of the reactants, such as the number

of electrons and energy states. These are emergent properties that cannot be inferred

from the chemical formula (symbolic form) of a molecule.

In order to build a system with such properties we use a new approach, of defin-

ing atoms with internal structure. Rather than assigning an atom a symbol and then

defining its bonding behaviour purely in the rule system, we define an atom with

its own structure and emergent properties. We then define bonding rules in terms of

these emergent properties.

We call AChems that display this property of controlling binding based on emer-

gent properties of the molecule sub-symbolic AChems (ssAChems) [9, 11]. These

ssAChems move beyond treating atoms as structureless symbols as in traditional

AChems.

We use the same (𝕊,ℝ,𝔸) formalism to define our ssAChems below, but our

systems have more of their semantics and behaviour provided in the molecules in

𝕊 (since it emerges from their internal structure), and less in the rules ℝ; behaviour

can emerge in a uniform manner across molecules. This makes the definitions in

ssAChems more implicit than in symbolic AChems.

2.5.1 Terminology

To help prevent confusion between the properties of real chemical molecules and

our AChem objects, and to prevent the abuse of chemistry terminology, we use the

following distinct terminology:

∙ The objects of interest are particles; these are either atomic particles (atoms) or

composite particles (composites).
∙ Particles can be joined together, or composed, with links; links can be broken to

decompose composite particles; no operations within the system can decompose

an atom.

Sub-Symbolic Artificial Chemistries 293

2.5.2 Requirements and Design Principles

We place several requirements on the kinds of things that can be used as the basis of

an ssAChem.

∙ structure and/or dynamics: the particles should have an underlying structure

and/or dynamics, from which linking properties can emerge

∙ multiple emergent properties: in a system with a rich set of emergent properties,

different properties can be selected to serve a variety of functions

∙ single type of particle: atomic particles can be linked to form composite particles

that are the same type of thing as the atoms, with the same kind of emergent prop-

erties, so that these can in turn link to other atoms and composites, without the

need to introduce new rules

∙ everything emergent: any design decision (for example, linking probability) is

based on an emergent property, not on a property of the underlying representa-

tion (for example, a property should not rely on using the first item in a list, but

instead the item in the list with, say, the maximum or minimum value of an emer-

gent property)

∙ computational tractability: we wish to build computational systems, and so we

need the calculation of emergent properties, and of the composition rules, to be

tractable.

3 Definition of an ssAChem

In this section we define a generic ssAChem, in terms of its (𝕊,ℝ,𝔸). This provides a

detailed framework that can be instantiated with specific ssAChems. This framework

is then instantiated with two example ssAChems, one based on Hermitian matrices

(Sect. 4), and one based on Random Boolean Networks (Sect. 5).

3.1 The Set of Possible Particles 𝕊

The particles are defined in terms of the underlying structure of particles, their

behavioural model, and the emergent properties of that model. Particles in an

ssAChem have their own emergent behaviours that are exploited by the rules. Some

of the ‘physics’ of the system has been moved from ℝ into 𝕊.

3.1.1 Structure

S defines the underlying structure of the members of the particle set.

Example structures are:

294 P. Faulkner et al.

∙ Binary trees: S ∶= A | S × S, so S is the set of possible particles comprising the

atoms A and all pairwise linked particles S × S. This structure is used in the matrix

chemistry of Sect. 4.

∙ General n-ary trees: S ∶= A | S+, so S is the set of possible particles comprising

the atoms A and all chains of linked particles S+ (we also require the chain length

to be ≥ 2). This structure is used in the RBN chemistry of Sect. 5.

∙ General graphs: S ∶= (E,V), where the vertices are the constituent atoms A, and

the edges are the relevant links. This structure is a model for real world molecules.

Other structures can be defined. We require structures to have a ‘memory’ of the

underlying constituent atoms. That is, any structure defined must conserve atomic

constituents:

A + B ⇌ C ⇒ bag(A)⊕ bag(B) = bag(C) (1)

where bag(P) denotes the bag (multiset) of atoms in particle P, and ⊕ denotes bag

addition.

3.1.2 Behavioural Model

B is the behavioural model of the particles, which provides the basis of the chemical

properties of interest of the particles.

Each particle structure s ∈ S has a behavioural model instance b ∈ B, derived via

linking rules from the behavioural model instances of its constituent atoms.

Some models are static mathematical constructs (for example, matrices, Sect. 4).

Others may be discrete dynamical systems (for example, RBNs, Sect. 5), which can

have an associated current state, 𝛴.

3.1.3 Emergent Properties

Behavioural models have one or more emergent properties: e ∶ B × 𝛴 → X. The

ssAChem-specific type X is typically the real numbers, but it may be, say, a vector,

or any other type of interest.

These emergent properties can be used for a variety of purposes: here we use them

mainly for linking probabilities.

It is desirable for these emergent properties to be efficiently computable.

3.1.4 Atoms and Composites

Each of the atoms, A ⊂ S, is assigned a unique base atomic model ba ∈ B. Where

relevant, each atom instance is initialised to a particular or random initial state,

𝜎0 ∈ 𝛴.

Sub-Symbolic Artificial Chemistries 295

Each atom is assigned a unique symbol as its name, enabling us to write down the

structure of specific particles. This name is typically an arbitrary letter, or a struc-

tured name reflecting some of its underlying emergent properties. The name may be

decorated with a tag to indicate the current state of an atom instance.

Each composite is defined by its structure, behavioural model, and current state:

C = S × B × 𝛴.

Composites may have an internal composition mirroring their structure S; that

is, subcomposites corresponding to substructures may also have behavioural models

and state. These submodels and substates are related to the overall model and state

in a way defined by the linking algorithms (see later).

One possibility we have yet to explore is associating multiple diverse models with

a given structure, with C = S × (B × 𝛴)N . For example, one model might express

micro/particle level behaviour, and another macro/ensemble level behaviour. Or one

might express linking properties, another functional properties, allowing composites

to have some derived behaviour. Or the models might be combined in some way to

jointly express a single property.

3.2 The Rules, ℝ

The rules define the result of linking two particles, and of decomposing a composite

particle. Each of these is defined through a precondition (whether the rule applies),

and an operation (the result of applying the rule).

3.2.1 Ancillary Information

Ideally, all the properties of a particle emerge from its behavioural model. How-

ever, in some cases extra information is needed to make deterministic the definition

of how two particles link, or how a composite particle decomposes. This ancillary

information is provided to operations by the parameter 𝜆 ∈ L.

The ancillary information 𝜆 ∈ L might provide some internal position within the

structure of C where the link is to be established or decomposed; it might provide

details of which linking site is to be used. The specific value of 𝜆 is provided by the

algorithm.

For example, in bRBN-world (Sect. 5), each particle has two linking sites, and the

ancillary information of which site is to be used in the linking attempt is provided by

the algorithm (a random choice if both are available). This choice is made emergently

in the later Spiky-RBN ssAChem [20].

296 P. Faulkner et al.

3.2.2 Linking Criterion

The linking criterion, K ∶ ℙ((C × L) × (C × L)), defines whether a pair of particles

can in principle link, based on their emergent properties, plus any ancillary infor-

mation 𝜆 ∈ L. K defines the domain of applicability, or precondition, of the linking

operation ⌢.

Whether particles that can link in principle then link in practice is given by the

linking algorithm, which depends on further factors.

3.2.3 Linking Operation

The linking operation, ⌢ ∶ (C × L)2 → C, takes two particles, plus ancillary infor-

mation, and gives their linked composition. The linking operation can be applied

only if the linking criterion holds.

It is desirable that the linking operation to be either non-commutative (a⌢b ≠

b⌢a in general), or non-associative (a⌢(b⌢c) ≠ (a⌢b)⌢c in general), or both [12].

An operation that is both commutative and associative cannot capture isomers,
composites comprising the same collection of atoms but with different structures

and properties. This is because with associativity we can omit the brackets, so

a⌢(b⌢c) = a⌢b⌢c, and then with commutativity we can swap adjacent atoms:

= a⌢c⌢b = c⌢a⌢b. By this means we can get all permutations of a, b, c; the linked

system is merely an unstructured bag of atoms, not a structured composite, and so

loses much of the possible combinatoric power.

3.2.4 Decomposition Criterion

The decomposition criterion, Kd ∶ ℙ(C × L), defines whether a composite particle

can in principle decompose, based on its emergent properties, plus any ancillary

information 𝜆 ∈ L. Kd defines the domain of applicability, or precondition, of the

decomposition operation.

Decomposition acts to break links between subcomposite components: it does not

cleave atomic particles. Hence no atomic particle is in Kd.

Whether composite particles that can decompose in principle then decompose in

practice is given by the decomposition algorithm, which depends on further factors.

3.2.5 Decomposition Operation

The decomposition operation, D ∶ C × L → C2
, takes a composite particle, plus

ancillary information, and gives its decomposed products resulting from breaking a

single link. The decomposition operation can be applied only if the decomposition

criterion holds.

Sub-Symbolic Artificial Chemistries 297

There is no requirement for the products to be able to link to form the original

composite. Thus decomposition may allow the indirect formation of composites that

cannot form by linking alone.

3.3 The Algorithm, 𝔸

The overall reactor algorithm describes the dynamics of the reaction system, includ-

ing the effect of the environment. Environmental effects may include such things

as spatial structure (well-mixed, grid, etc.), inflows and outflows of particles, and

(analogues of) energetics. The environmental state can affect the probability of an

attempted linking or decomposition succeeding.

3.3.1 Environment

The environment, E , captures those properties of the system within which reactions

happen that are not captured by particle properties alone.

For example, the environment might be aspatial, or a spatial system, allowing

varying concentrations and movement of particles; it might have sources and sinks

of particles (as in a chemostat); it might have a temperature analogue.

3.3.2 Linking Probability

The linking probability, Prb ∶ E → (C × L)2 → C → ℜ, defines the probability

that, in a given environment, an attempted linking operation (c1, 𝜆1)⌢(c2, 𝜆2) = c′
will be successful.

If the linking criterion is not satisfied, that is, if ((c1, 𝜆1), (c2, 𝜆2)) ∉ K, then the

linking operation is not applicable, and we say that Prb(e)((c1, 𝜆1), (c2, 𝜆2))(c′) = 0.

The linking algorithm can distinguish the case of not linkable in principle (not in K)

from linkable but with zero probability in this case (in K, but nevertheless Prb = 0).

3.3.3 Linking Algorithm

The linking algorithm defines how to use the linking rule and linking probability

to perform a linking attempt. The behaviours of a given particle structure and rules

can be explored in a variety of algorithms.

298 P. Faulkner et al.

3.3.4 Decomposition Probability

The decomposition probability, Prd ∶ E → C × L → C2 → ℜ, defines the proba-

bility that, in a given environment, an attempted decomposition operation, (c, 𝜆) →
(c1, c2), will be successful.

3.3.5 Decomposition Algorithm

The decomposition algorithm defines how to use the decomposition rule and

decomposition probability to perform a decomposition attempt.

3.3.6 Reactor Algorithm

The reactor algorithm defines how to use the linking and decomposition algo-

rithms, and the environment state, to describe the overall behaviour of the reacting

system. It defines which particles are in the initial system, which are chosen for link-

ing and decomposition attempts, and if and how particles are added to or removed

from the system during execution.

The algorithm for choosing particles can cover all the possibilities: exhaustive

pair-wise search, random collisions via a Gillespie-style algorithm [13] for a well-

mixed reaction vessel, proximity in a spatial grid of diffusing particles, and more.

There might be a fixed number of atoms (conservation of mass), or a chemostat-style

inflow/outflow, or other non-physical simulation possibilities. Each of these choices

can used the same ‘physics’ of the system (the same 𝕊 and ℝ), merely changing

the reaction vessel setup, 𝔸, to investigate different behaviours and properties of the

AChem.

3.4 Summary of the ssAChem Framework

1. the set of possible particles 𝕊, and their underlying properties, defined by

a. S, the underlying structure of the particles

b. B, the behavioural model of the particles

c. e, the emergent properties of B

2. the rules ℝ, defining how particles link and decompose, given by

a. the linking rule, comprising:

i. the linking criterion, which defines whether a pair of particles can in

principle link, based on their emergent properties

ii. the linking operation, which takes two particles that satisfy the linking

criterion, and gives their linked composition

Sub-Symbolic Artificial Chemistries 299

b. the decomposition rule, comprising:

i. the decomposition criterion, which defines whether a composite par-

ticles can in principle decompose, based on its emergent properties

ii. the decomposition operation, which takes a composite particle that

satisfies the decomposition criterion, and gives its decomposition prod-

ucts

3. the algorithm 𝔸, using the following components to define the overall behaviour

of the reacting system:

a. the environment, defining properties of the system within which reactions

occur (e.g., space, temperature)

b. the linking probability that, in a given environment, an attempted linking

operation will succeed

c. the linking algorithm, which uses the linking rule under the linking prob-

ability to perform a linking attempt

d. The decomposition probability, that, in a given environment, an attempted

decomposition operation will succeed

e. The decomposition algorithm, which uses the decomposition rule under

the decomposition probability to perform a decomposition attempt

f. The overall reactor algorithm, which uses the linking and decomposition

algorithms, and defines how particles are chosen for reaction attempts.

4 SMAC: Sub-symbolic Matrix Artificial Chemistry

In our first example we illustrate the basics of the ssAChem concepts in a relatively

simple system that has no dynamic state, but a lot of rich mathematical structure.

We consider a mathematical system with rich algebraic structure that can be

employed to define a ssAChem. The basic particle is the matrix. Given the richness

of emergent properties of matrices and the fact that most computers are optimised for

matrix arithmetic, the matrix seems to be a natural base for a sub-symbolic AChem.

There are various so-called matrix AChems in the literature. For example, the

Matrix-multiplication chemistry [3–5] works over binary strings and folds them in to

matrices to perform linking through matrix multiplication. However, this makes no

use of the many emergent properties or algebraic structure of mathematical matri-

ces. In general, existing matrix AChems make little or no use of the mathematical

properties of matrices, and would be better named ‘array-based’ AChems.

300 P. Faulkner et al.

4.1 SMAC’s Set of Possible Particles, 𝕊

4.1.1 SMAC Structure

The structure of SMAC particles is defined as S ∶∶=A | S⌢S, that is, the structure of

the set of possible particles comprises the atoms A and all pairwise linked particles

S⌢S. So SMAC particles have an underlying binary tree structure.

4.1.2 SMAC Behavioural Model

The SMAC behavioural modelB is the set of d dimensional Hermitian matrices (here

d = 3). Particles are static; they have no current state 𝛴.

Matrix Notation

We define a vector 𝐯 of dimension d in terms of its components vi, 1 ≤ i ≤ d; it has

magnitude |𝐯| = v. We define a matrix 𝐌 of dimension d in terms of its components

Mij, 1 ≤ i, j ≤ d. Vector dot product 𝐯.𝐰, matrix addition 𝐌 + 𝐍, matrix-vector mul-

tiplication 𝐌𝐯, and matrix multiplication 𝐌𝐍 have their usual definitions.

A Hermitian matrix is one equal to its conjugate transpose: 𝐌 = 𝐌† ⟺ Mij =
̄Mji where Mij ∈ ℂ.

4.1.3 SMAC Emergent Properties

Matrices have several emergent properties, that is, properties of the matrix as a

whole, rather than of its individual components. These include:

∙ Eigenvalues 𝜆i and eigenvectors 𝐯i, solutions of 𝐌𝐯 = 𝜆𝐯. A d-dimension matrix

in general has d eigenvalue-eigenvector pairs. Each of the eigenvectors describes a

direction, while the corresponding eigenvalue provides a magnitude to that direc-

tion. This provides an inherent geometry to the matrix. In general eigenvalues can

be complex numbers (they are solutions of the d-order characteristic polynomial

of the matrix). Here we restrict ourselves to Hermitian matrices, which have real

eigenvalues.

∙ Trace: Tr(𝐌) =
∑d

i=1 Mii. The sum of the eigenvalues equals the trace:
∑d

i=1 𝜆i =
Tr(𝐌), hence the trace of a Hermitian matrix is real.

∙ Rank: the dimension spanned by the matrix’s rows (or columns).

∙ Determinant: |𝐌|

∙ Similar properties of submatrices of 𝐌

Sub-Symbolic Artificial Chemistries 301

Here we restrict our investigations to d = 3, both for tractability (the complexity

of eigenvalue calculations is >O(d2)), and for a convenient geometric interpretation

of the eigenvectors.

The SMAC emergent properties are the absolute values of the three eigenvalues

of the behavioural model matrix, truncated to the nearest integer towards zero:

ei ∶= ⌊|𝜆i|⌋ (2)

The trace is not necessarily equal to the sum of these truncated values.

We also use the length-normalised eigenvectors 𝐯̂i in calculating linking proba-

bilities.

4.1.4 SMAC Atoms and Composites

We create an atomic set of 3 × 3 Hermitian matrices. We restrict the entries in our

atomic set to have real and imaginary parts of 0 or ±1, and further restrict the leading

diagonal elements to be real (because Hermitian).

We disallow the ‘singleton matrices’ (those with a single non-zero entry) and the

traceless matrices (which includes the zero matrix), since these have trivial linking

properties (later).

We generate our set of atomic behavioural models as:

Ba = {𝐀 | Ajj ∈ {0,±1};
Ajk ∈ {0,±1,±i,±1 ± i}, j < k;
Ajk = ̄Akj, k < j; (3)

#(Ajk ≠ 0) > 1;
Tr(𝐀) ≠ 0}

This gives a set of 39 − 6 − 7 × 36 = 14574 ‘atoms’, which is rather too large to be

investigated fully. So we partition this set into 66 equivalence classes of atoms, where

atoms in the same class have the same integer values of their eigenvalues rounded

to zero, and same traces. We take a single arbitrarily chosen
1

entry from each class.

This provides us with a ‘periodic table’ of 66 elements, classified by eigenvalue set

and by trace (Fig. 1).

The textual representation of large composites is not very readable. For example,

one of the composites generated by our system (see later) is:

M1000 =((((FFd⌢LLf)⌢Vc)⌢Lb)⌢((AAd⌢(Nc⌢Re))
⌢((Re⌢(FFd⌢LLf))⌢((Nc⌢GGf)⌢(JJf⌢(Aa⌢Dc))))))

(4)

1
To follow our design criteria, we should choose a non-arbitrary element. Future work includes

developing a choice criterion for this.

302 P. Faulkner et al.

Fi
g.
1

P
e
r
io

d
ic

ta
b
le

:
th

e
a
r
ra

n
g
e
m

e
n
t

o
f

th
e

6
6

S
M

A
C

e
le

m
e
n
ts

b
y

tr
a
c
e

a
n
d

e
ig

e
n
v
a
lu

e
s
e
t.

W
e

n
a
m

e
e
a
c
h

e
le

m
e
n
t

u
s
in

g
o
n
e

o
r

tw
o

u
p
p
e
r

c
a
s
e

le
tt

e
rs

(A
–
Z,

AA
–
LL

)
to

in
d

ic
a
te

w
h

ic
h

o
f

th
e

3
7

d
is

ti
n

c
t
s
e
ts

o
f

ro
u

n
d

e
d

e
ig

e
n
v
a
lu

e
s
,
a
n

d
a

lo
w

e
r

c
a
s
e

le
tt

e
r

(a
–
f)

to
in

d
ic

a
te

w
h

ic
h

o
f

th
e

6
d

is
ti

n
c
t
tr

a
c
e

v
a
lu

e
s

is
a
s
s
o

c
ia

te
d

w
it

h
th

a
t

e
le

m
e
n

t

Sub-Symbolic Artificial Chemistries 303

Fig. 2 Graph representation of M1000. This demonstrates a property of SMAC that differs from

real chemistry: links can form between links, as well as between atoms

Fig. 3 SMAC graphs showing the atomic structure of two composites containing the same atoms

a (((Ba⌢Yc)⌢Kc)⌢(Kc⌢Re)) b (((Yc⌢Kc)⌢Ba)⌢(Kc⌢Re))

This is difficult to unpick, so we introduce a graph representation of composites. The

graph of the above composite is shown in Fig. 2.

Figure 3 shows two isomers (comprising the same atoms, but linked in different

structures) in the graphical representation.

Since the behavioural model has no state, a composite is completely defined by its

binary tree structure and its matrix; C = S × B. The matrix at the root of the structure

is the only one involved in linking; sub-structures have their own associated compo-

nent matrices which need to be remembered, however, as they may become the root

matrix as a result of decomposition. See Fig. 4.

304 P. Faulkner et al.

((AB)(CD))

(CD)

(D)(C)

(AB)

(B)(A)

Fig. 4 The underlying structure of the SMAC compound ((A⌢B)⌢(C⌢D)). The structure S is given

by the binary tree with A,B,C,D as the atomic leaves. The behavioural model at each sub-tree is

given by the relevant matrix product defined in Sect. 4.2.2. The matrix at the root of the structure

is the only one involved in the linking algorithm. Sub-structure matrices may become the root of

decomposed composites

4.2 SMAC Rules

4.2.1 SMAC Linking Criterion

The SMAC emergent properties used in linking are the set of d (truncated) eigen-

value and eigenvector pairs. A SMAC particle can be considered to have d potential

binding sites, labelled 1,… , d. For SMAC, ancillary information is provided by the

linking criterion, which determines which (if any) specific site of these d is linkable

in each particle: L = 1,… , d. Here d = 3.

Consider two particles A and B, with corresponding emergent properties of sets

of truncated eigenvectors {bAi } and {bBj }. For the particles to link, we require them

to have

∙ a non-zero eigenvalue in common: {bAi } ∩ {bBj } ∉ {∅, {0}}
∙ a non-zero trace of their Jordan product, Tr(A◦B) ≠ 0 (in order to apply trace scal-

ing; see Sect. 4.2.2).

4.2.2 SMAC Linking Operation

For SMAC, no ancillary information is needed for the linking operation, so we have

⌢∶C2 → C.

We impose the following algebraic requirements on our linking operation as

applied to our behavioural model of Hermitian matrices:

∙ It should preserve the property of being Hermitian: 𝐌 = 𝐌†
and 𝐍 = 𝐍† ⟹

𝐌⌢𝐍 = (𝐌⌢𝐍)†.
∙ It should be commutative: 𝐌⌢𝐍 = 𝐍⌢𝐌. This is inspired by real chemistry; for

example, carbon monoxide could be written as C⌢O or O⌢C, but is still the same

molecule. Note that matrix addition is commutative and matrix multiplication is

not commutative.

∙ It should therefore be non-associative: 𝐌⌢(𝐍⌢𝐏) ≠ (𝐌⌢𝐍)⌢𝐏 in general (see

Sect. 3.2.3). Note that both matrix addition and matrix multiplication are associa-

tive.

Sub-Symbolic Artificial Chemistries 305

To meet these requirements, we use a Jordan algebra [21] based on Hermitian

matrices, and define the linking operation using the Jordan product:

𝐌◦𝐍 = 1
2 (𝐌𝐍 + 𝐍𝐌) (5)

This is clearly commutative (since matrix addition is commutative). A little algebra

demonstrates that it is non-associative, and that the product preserves the Hermitian

property.

The Jordan product itself is not suitable for a linking operation that uses eigen-

value matching as its linking property. The eigenvaules of Jordan product matrices

tend to grow exponentially fast with the number of Jordan products used. This would

result in composites predominantly linking only with composites containing similar

numbers of atoms: we would not, for example, be able to see a single atom linking

to a large composite.

So our linking operation incorporates trace-scaling, which exhibits matching

eigenvalues over a wide range of particle sizes.

A⌢B ∶= |Tr(A)| + |Tr(B)|
|Tr(A◦B)|

A◦B (6)

Consequently, we require composites to have a non-zero trace.

4.2.3 SMAC Decomposition Criterion

Currently, we have not defined a SMAC decomposition criterion. We are investigat-

ing the products of decomposition given that a link breaks, but not yet the criterion

for allowing that link breaking.

4.2.4 SMAC Decomposition Operation

Although the SMAC structure is a binary tree, we wish to have a decomposition

operation that allows ‘internal’ links to break. This potentially allows the formation

of structures that cannot form directly.

The simplest case is breaking an outermost link. A⌢B → A + B. Both A and B
may be complex structures.

Breaking a link one deep in the tree is also simple to define: A⌢(B⌢C) → A +
B + C.

When we break a link two deep, we need to ‘fix up’ the resulting mal-formed

binary tree: A⌢(B⌢(C⌢D)) → A⌢B + C + D. This forms composite A⌢B indirectly,

potentially allowing new composites that could not form directly, or have only a low

probability of forming directly.

306 P. Faulkner et al.

(a)
...

x

DC

B

A

(b)
...

?B

A

+ C + D

(c)
...

BA

+ C + D

B

A

C DX

B

A C D

?

BA C D

Fig. 5 Breaking the link between C and D in the composite subcomponent A⌢(B⌢(C⌢D)). a the

link to be broken (left shows the binary tree representation; right shows the SMAC notation); b the

link broken, and the resulting components: B has no partner; c B migrates up the tree, resulting in

A⌢B; in the SMAC notation, we refer to this as ‘link straightening’

This break and fix-up pattern also holds for more deeply nested links:

A⌢(B⌢(C⌢(D⌢E))) → A⌢(B⌢C) + D + E. The underlying operation is illustrated

in Fig. 5.

4.3 SMAC Algorithm

4.3.1 SMAC Environment

The version of SMAC described here has no environmental input.

4.3.2 SMAC Linking Probability

Consider two particles A and B, with corresponding sets of truncated eigenvalues

{bAk } and {bBk }, and length-normalised eigenvectors {𝐯̂Ak } and {𝐯̂Bk }.

If the linking criterion holds, then we have a matching eigenvalue bAi = bBj = b.

Let the eigenvectors associated with this matching eigenvalue be 𝐯̂Ai and 𝐯̂Bj .

Sub-Symbolic Artificial Chemistries 307

We construct a linking probability from their dot product, such that anti-parallel

eigenvectors have the highest linking probability of 1, and parallel eigenvectors have

the lowest linking probability of 0:

Pr(A⌢B) = 1
2
(
1 − 𝐯̂Ai .𝐯̂

B
i
)

(7)

If there is more than one pair of matching eigenvalues, we choose the pair whose

eigenvectors are most nearly anti-parallel (min{𝐯̂Ai .𝐯̂
B
i }), and so produce the highest

linking probability.

This choice of parallel eigenvectors resulting in zero linking probability ensures

that not every atom can undergo self synthesis. In order to get self-synthesis we must

have a repeated eigenvalue.

4.3.3 SMAC Linking Algorithm

For particles to be able to link, they must have non-zero eigenvalues in common, and

the trace of the resulting composite must be non-zero. If these criteria are met, then

linking can occur on this attempt with probability as given by Eq. 7.

4.3.4 SMAC Decomposition Probability

Currently, we have not specified a decomposition probability.

Our decomposition operation can produce composites that cannot form directly

by synthesis, because certain links do not have matching eigenvalues. This implies

the decomposition probability needs to be different from the linking probability, to

ensure such composites do not immediately disintegrate.

4.3.5 SMAC Decomposition Algorithm

Currently, we have not specified a decomposition algorithm.

4.3.6 SMAC Reactor Algorithm

Here we are in the early stages of investigation, and use a simple reactor algorithm

involving linking only, and no decomposition. We generate 10,000 composites using

Algorithm 1. We then analyse the resulting composites (see Sect. 4.5).

308 P. Faulkner et al.

Algorithm 1 SMAC 10,000 composite synthesis

1: mols := list of the 66 atoms

2: tries := 0

3: repeat
4: A,B :∈ mols

5: C := A⌢B
6: if C then
7: append C to mols list

8: end if
9: ++tries

10: until # mols = 10,066

4.4 Summary of the SMAC ssAChem

4.4.1 Definition

∙ structure S

– structure: binary tree: S ∶∶=A | S⌢S
– behavioural model: 3 × 3 Hermitian matrices, Tr ≠ 0; no state

– emergent properties: eigenvalues and eigenvectors; trace

– atoms: 66 specific matrices

∙ linking rules R

– linking criterion: matching (truncated, absolute-value) eigenvalues and

Tr(A◦B) ≠ 0
– linking operation: A⌢B = |Tr(A)|+|Tr(B)|

|Tr(A◦B)|
(A◦B);A◦B = 1

2
(AB + BA)

– decomposition criterion: not defined

– decomposition operation: ‘link straightening’, see Fig. 5

∙ algorithm A

– environment: none, for now

– linking probability:
1
2

(
1 − 𝐯̂Ai .𝐯̂

B
i

)

– linking algorithm: the linking operation is applied with the linking probability

– decomposition probability: not defined

– decomposition algorithm: not defined

– reactor algorithm: see Algorithm 1; used for our initial investigations

Sub-Symbolic Artificial Chemistries 309

Fig. 6 The isomers

(Am
⌢X)⌢An

and

Am
⌢(X⌢An), where X is an

atom or a composite, have

identical properties in this

ssAChem

Am X

An

≡
An X

Am

XAm

An

≡

XAn

Am

4.4.2 Structure vModel

The commutative but non-associative linking operation used in SMAC allows iso-

mers exist (Fig. 3). However, the linking operation is associative in some special

cases. For example, it is clear from Eq. (5) that A◦A = AA = A2
, and that therefore

Power associative: A◦mA◦n = A◦(m+n) = Am+n ∀m, n ≥ 0 (8)

where A◦n = A◦A◦… ◦A(n times) = An
. Hence all composites containing n copies

of just a single atom type A have identical properties in this ssAChem.

It can readily be checked that the following associativity condition also holds:

Jordan identity: (Am◦X)◦An = Am◦(X◦An) ∀m, n ≥ 0 (9)

Hence the two isomers (different structures) in Fig. 6 have identical properties (model

values) in this ssAChem.

This demonstrates the difference between structure and properties. Two particles

with the same properties can nevertheless be different particles, in that they have a

different internal structure. In particular, they may decompose differently.

4.5 SMAC Results

We have performed a variety of experiments to investigate SMAC’s low-level chem-

ical properties of synthesis and decomposition, to evaluate its promise as the basis

for a sub-symbolic AChem. We summarise the results here.

4.5.1 Synthesis and Self-synthesis

The linking probability is zero for parallel eigenvectors, so in order to get self-

synthesis we must have a repeated eigenvalue. In such cases there will be (at least

310 P. Faulkner et al.

two) eigenvectors orthogonal to one another (because Hermitian), and hence cos 𝜃 =
0, p = 0.5. Hence self-synthesis probabilities are either be 0 (no repeated eigenval-

ues: 10 atom classes) or 0.5 (repeated eigenvalues, using the orthogonal eigenvectors:

28 atom classes). Hence we do have atoms capable of self-synthesis, and atoms not

capable of self-synthesis.

The probability distribution for general atomic synthesis across all possible atom

pairs shows a broad range of probabilities from zero to one.

To investigate the synthesis properties of composites we use the reactor Algo-

rithm 1 to generate 10,000 composites. This process generates a wide range of com-

posite sizes, including example composite M1000 (Eq. 4, Fig. 2), and large compos-

ites comprising over 200 atoms.

The composite generator took 119,757 tries at forming links to generate 10,000

composites. This implies an 8.35% probability of successful linking in this setup. The

probability distribution for this form of composite synthesis also shows a broad range

of linking probabilities from zero to one. Additionally, there does not seem to be a

strong effect of trace size (and hence composite size) on these linking probabilities.

This indicates that large composites can still link effectively.

We observe that large and small composites react with each other, as do similarly

sized composites. For any particular size of composite s the set of reactions creating

composites of that size have reactants ranging in size evenly from 1 to s − 1. Thus

there is no bias to linking either similarly or differently sized composites.

4.5.2 Decomposition

We have examined the larger composites produced in the synthesis experiment, and

have found several cases where the decomposition operation could form composites

that cannot be created directly (because of no matching eigenvalues), or only with a

very low probability (because of near-parallel eigenvectors).

A particular composite formation by decomposition in shown in Fig. 7; the prod-

uct composite cannot be formed by synthesis alone.

(a) (b)

Fig. 7 a Initial composite before (Yc⌢Ia) link decomposed; b The two atoms Yc and Ia, plus the

composite shown, result from link breaking and link straightening. The new composite cannot form

directly because (Yc⌢Pe) and (Jb⌢BBe) do not have matching eigenvalues

Sub-Symbolic Artificial Chemistries 311

4.6 SMAC History Versus Presentation

The definition of SMAC here following the ssAChem framework starts with matri-

ces as particles, then moves to Jordan products for linking rules. The invention of

SMAC followed a different route [12]: the requirement for non-associativity led to

the investigation of Jordan algebras, and then the Hermitian matrices as a suitably

rich model of these algebras. The overall aim of the SMAC work is to use mathemat-

ical structures (starting with the algebraic structure of the particles and their links)

as a rich source of inspiration and results for exploitation by ssAChems.

5 The bRBN-World ssAChem

Our second example to illustrate the ssAChem concepts exploits a different approach

from the algebraic matrix structures in SMAC. Here, we use Random Boolean Net-

works as our particles and network manipulations as our linking operation: these

systems have rich dynamical structure but less overt mathematical foundations.

This work is based mainly on the bRBN models discussed in [9–11], augmented

with a first investigation of a temperature model. Current work is exploring more

emergent linking sites, to produce ‘spiky RBNs’ [20].

5.1 bRBN-World Particles

5.1.1 bRBN-World Structure

We define this structure inductively as S ∶∶=A | S+, with n > 1. That is, the set of pos-

sible particles comprises the atoms A and all (finite) lists of linked particles S⌢…⌢S
(n > 1 terms). This results in bRBN-world particles having an underlying n-ary tree

structure.

5.1.2 bRBN-World Behavioural Model

The behavioural model B is the set of K = 2 ‘linking’ Random Boolean Networks

(bRBNs).

Random Boolean Network Definition

A Random Boolean Network (RBN) is a discrete dynamical system with the follow-

ing structure. It has N nodes. Each node i has:

312 P. Faulkner et al.

∙ a binary valued state, which at time t is si,t ∈ 𝔹
∙ K inputs, assigned randomly from K of the N nodes (including possibly itself),

defining its neighbourhood, a K-tuple of node labels with no duplicates

∙ a randomly assigned state transition rule, a boolean function from its neighbour-

hood state to its own next state: 𝜙i ∈ 𝔹K → 𝔹

The state of node i’s neighbourhood at time t is 𝜒i,t ∈ 𝔹K
, a K-tuple of the binary

states of the neighbourhood nodes. At each timestep, the state of all the nodes updates

in parallel: si,t+1 = 𝜙i(𝜒i,t).
As with any finite discrete dynamical system, the state of an RBN eventually falls

on an attractor: a repeating cycle of states. Kauffman [18, 19] discovered that K = 2
RBNs rapidly converge to relatively few relatively short attractors: they are complex,

but not chaotic.

bRBNs: RBNs Modified for Linking

K = 2 RBNs are a computationally tractable system with rich microdynamics (of the

entire microstate) and complex macrodynamics (the attractor space). We take such

K = 2 RBNs as the basis for an ssAChem.

bRBN-world [9–11] uses a modification of basic RBNs, called bRBNs, as the

behavioural model. A bRBN atom is constructed from a plain RBN as follows: add

b linking nodes to the RBN (for this work, b = 2). For each linking node, select an

RBN node at random, and change one of its K inputs to come from the linking node.

Linking nodes do not have inputs, so have no need for an associated random boolean

function; instead they have a fixed boolean state (0 or ‘cleared’ if unlinked, 1 or ‘set’

if linked; see later for linking details). See Fig. 8.

The linking algorithm can access the microstate of the RBN (to calculate the

emergent linking property), each of the b linking nodes and their state, and the

‘wiring’ between nodes (to perform the link).

A given particle can exist in different states (the microstate of the underlying RBN

at time t), dependent on its initial condition.

5.1.3 bRBN-World Emergent Properties

An RBN is a discrete dynamical system which exhibits many rich emergent proper-

ties. We can look at properties at different levels of resolution. There are properties

that merely count the number of timesteps needed to traverse between two states:

∙ transient length et: the number of timesteps to move from some initial state (for

example, all zeros or all ones) to an attractor

∙ attractor cycle length ec
Then there are detailed properties of the microstates during these macro

-transitions, such as:

Sub-Symbolic Artificial Chemistries 313

(a) (b)

(c) (d)

Fig. 8 Constructing a bRBN: a a K = 2,N = 4 RBN, plus b = 2 unattached linking nodes (cir-

cles); b connecting the first bnode: randomly select rnode 1; randomly select south input (dashed);

c connecting the first bnode: replace south input with input from b1; d connecting the second bnode:

randomly select rnode 3; randomly select north input; replace with input from b2

∙ flashing: how many nodes change state during the macro-transition

∙ flashes: total number of state changes during the macro-transition

∙ total: the sum of the state values during the macro-transition

∙ proportion: the proportion of nodes that are ‘on’, averaged over the macro-

transition

We have investigated each of these properties for attractor cycles to determine

their suitability as emergent properties in bRBN-world [9, 10]. The suitable choices,

which also depend on choice of linking criterion, are discussed in Sect. 5.5.1.

5.1.4 bRBN-World Particles

The atoms are chosen from the set of size N RBNs. We discuss the choice of N in

Sect. 5.5.1.

Initially [10, 11] we chose small atomic RBNs at random. Later investigations

[9] use an evolutionary algorithm to search for an ‘interesting’ set of atomic bRBNs;

see Sect. 5.5.2.

We use arbitrary alphabetical symbols to name the atoms. We use parenthesised

strings of atoms to display the composites. We distinguish the different basin of

attraction, where necessary, with a superscript digit. For example (adapted from [9,

Fig. 8.5.3]):

((((C1
⌢C1)2⌢(C1

⌢C1)1)3⌢(C1
⌢C6)4)1⌢B3)1 (10)

314 P. Faulkner et al.

Fig. 9 The underlying structure of the RBN-world compound ((A⌢B⌢C)⌢D). The structure S is

given by the n-ary tree with A,B,C,D as the atomic leaves. The behavioural model at each sub-

tree is given by the relevant linked RBNs (Sect. 5.2.2 and Fig. 10). The bRBNs at each level of the

structure are involved in the linking algorithm. A white circle denotes a linking site not yet linked,

with value set to 0; a black circle denotes a linking site that has been linked (in a parent node), with

value here set to 1

An RBN-world particle is defined by its n-ary tree structure, its bRBN, and its

current state; C = S × B × 𝛴. At the root of each substructure is a single compos-

ite bRBN; the intermediate nodes contains smaller composite bRBNs; the leaves

contain the atomic bRBNs (Fig. 9). The properties of the bRBNs at each level of the

structure are involved in the linking algorithm. The fact that properties of lower level

structures are used in the linking algorithm stops the linking operation from being

associative: ((A⌢B⌢C)⌢D) ≠ ((A⌢B)⌢(C⌢D)) ≠ (A⌢B⌢C⌢D) in general.

5.2 bRBN-World Rules

5.2.1 bRBN-World Linking Criterion

An RBN is a discrete dynamical system which exhibits a rich possible set of emergent

properties that we can use for defining linking criteria (Sect. 5.1.3).

These numerical properties can be compared in a variety of ways. We have inves-

tigated [9, 10]:

∙ equal: the same values (to within a small tolerance)

∙ similar: like equal, but with a larger tolerance bound

∙ different: not similar

∙ sum one: the properties sum to one (to within a small tolerance)

∙ sum zero: the properties sum to zero (to within a small tolerance), hence are oppo-

sites

The suitable choices, which also depend on choice of emergent property, are dis-

cussed in Sect. 5.5.1.

Sub-Symbolic Artificial Chemistries 315

5.2.2 bRBN-World Linking Operation

Two individual bRBNs are linked into a larger composite as shown in Fig. 10. Note

that although the result is a bRBN, its RBN component does not have the structure

of a ‘typical’ RBN: the communication is channeled through specific links, and the

result is not a small world network. In particular, large composites comprising long

chains of RBNs will have different dynamics from a typical RBN.

Two structured compounds are linked, at a given linking site in each, as illustrated

in Figs. 11 and 12. The link is formed, and the structures are ‘zipped’ together moving

up the trees, to form a single tree.

Fig. 10 Linking two bRBNs. The unlinked bRBNs are stored in the lower nodes of the structure

tree; the linked composite bRBN is stored in the higher level of the tree

Fig. 11 Two composites,

(A(B(CDE))) and

(((FG)H)J), to be linked at

the linking sites indicated by

the arrow

316 P. Faulkner et al.

(a) (b)

(c) (d)

Fig. 12 The linking operation illustrated: linking (A(B(CDE))) and (((FG)H)J) to produce the

linked compound ((A(B(CDE)FG)H)J): a set linking sites here and below to ‘linked’ black dots;

b merge parent nodes; create bRBN that is the join of all the new node’s children (shown in grey);

move up to the newly merged parent; c while the node has two parents, merge the parent nodes;

create the newly merged node’s bRBN from its children; move up to the newly merged parent;

d while the node has one parent, create the node’s bRBN from its children; move up to the parent

Ancillary information used for linking is: S, the position in the structure where

the link is to be formed; b, which linking node is to be used; 𝜎, the current state (for

the linking property).

5.2.3 bRBN-World Decomposition Criterion

The decomposition criterion on a formed link is the same as the linking criterion for

forming the link. So, for example in Fig. 10, the criterion for decomposing the top

level link uses the two bRBNs ABC and D. Although these had to fulfil the linking

criterion when the link was formed, they might no longer fulfil it, because now their

linked input nodes are set to 1 rather than 0, and so their dynamics have been changed.

5.2.4 bRBN-World Decomposition Operation

The decomposition operation is the reverse of the linking operation (Sect. 5.3.3). The

designated link is broken, the higher level nodes are ‘unzipped’ to form two separate

trees, and the binding site nodes of the lower levels set to 0.

Sub-Symbolic Artificial Chemistries 317

5.3 bRBN-World Algorithm

5.3.1 Environment

In previously published work on bRBN-world [9–11], there are no environmental

inputs. In particular, all reactions occur in an aspatial environment.

We report here some preliminary results related to reaction in a constant temper-

ature heat bath.

5.3.2 bRBN-World Linking Probability

In the previously published work on bRBN-world [9–11], Pr = 1. That is, if the

linking criterion holds, and the link is attempted, then it succeeds with no further

criterion to satisfy.

We report here some preliminary results related to reaction probabilities given by

a temperature analogue, inspired by reaction kinetics. We use transient lengths as the

emergent properties for calculating a temperature-dependent probability. Let X0,X1
be the length of the transient from the all-zeros and all-ones state of particle X. Then

consider the linking operation attempting to form composite C from particles A,B.

We define two energies; the linking energy 𝛥Eb and the decomposition energy 𝛥Ed
(Fig. 13):

𝛥Eb = (A1 + B1 + C1) − (A0 + B0) (11)

𝛥Ed = (A1 + B1 + C1) − C0 (12)

The binding and decomposition probabilities use these energy-analogues in a

Boltzmann-like factor, similar to that used in simulated annealing:

Pr =
{

1 ; 𝛥E < 0
exp(−𝛥E∕T) ; 0 ≤ 𝛥E (13)

Fig. 13 ‘Energy’ levels of

reactants and linked

particles, used to calculate

probabilities

318 P. Faulkner et al.

The previously published work can be thought of as the infinite temperature limit,

with Pr = 1.

5.3.3 bRBN-World Linking Algorithm

Choose one of the linking nodes in each particle, at random.

Get the linking location for these nodes: starting at atomic level, progressively

move up the composite tree structure until the linking property holds; use the first

linking location found, or FAIL if no linking location is found.

Apply the linking operation (Sect. 5.2.2) at the linking location with probability

given by Eq. 13.

5.3.4 bRBN-World Decomposition Probability

In the previously published work on bRBN-world [9–11], Pr = 1. That is, if the

linking criterion does not hold, and decomposition is attempted, then it succeeds

with no further criterion to satisfy.

We report some preliminary results related to reaction probabilities given by a

temperature analogue, inspired by reaction kinetics. This allows otherwise ‘unstable’

links that do not meed the linking criterion to nevertheless persist. See Sect. 5.3.2

for the linking and decomposition probabilities.

5.3.5 bRBN-World Decomposition Algorithm

Decomposition proceeds as follows. For a given composite, all the links of its linked

component bRBNs are examined. Any link the no longer fulfils the linking criterion

(the linking property may have changed on linking) is broken, with probability given

by Eq. 13. Any products are similarly decomposed.

5.3.6 bRBN-World Reactor Algorithm

The full reactor algorithm is as follows. Two distinct composites are selected; a link-

ing is attempted (Sect. 5.3.3). Decomposition is then attempted (Sect. 5.3.5), either

on the initial reactants, or on the successfully linked product. The overall result is

the outcome of these two attempts.

A newly-formed composite may decompose because the original linking no

longer satisfies the linking criterion (due to changing the state of the relevant link-

ing nodes at the linking location), or because the linking criterion no longer holds

elsewhere in the compound. If no link takes place, one or both initial composite

particles might themselves decompose, if the linking attempt somehow falsified a

linking criterion somewhere in the stateful composite.

Sub-Symbolic Artificial Chemistries 319

5.4 Summary of bRBN-World ssAChem

∙ set 𝕊

– structure: n-ary tree: S ∶∶=A|S+, n > 1
– model: bRBN with b = 2 linking sites; cycle evolution experiments use N = 10,

K = 2
– emergent properties: various transient and attractor cycle properties

(Sect. 5.1.3); cycle evolution experiments use ‘proportion’

– atoms: specific small bRBNs

∙ rules ℝ

– linking criterion: matching emergent properties of the bRBNs (Sect. 5.2.1);

cycle evolution experiments use ‘sum one’

– linking operation: form a larger bRBN at the top of the structure tree, zipping

together component RBNs lower down the tree

– decomposition criterion: linking criterion fails to hold for linked structures

– decomposition operation: break the link, and unzip the trees

∙ algorithm 𝔸:

– environment: aspatial heat bath

– linking probability: Boltzmann factor from transient emergent properties

– linking algorithm: link those that pass the linking criterion, with linking prob-

ability

– decomposition probability: Boltzmann factor from transient emergent proper-

ties

– decomposition algorithm: break internal links that fail the linking criterion, with

decomposition probability

– reactor algorithm: link, then decompose.

5.5 bRBN-World Results

5.5.1 Choice of Parameters, Linking Property and Criterion

There are many parameters and properties to choose from: do any result in a good

ssAChem?

In our initial work on bRBN-world [11], we arbitrarily chose attractor cycle length

as our emergent property, to establish that bRBNs exhibited sufficiently rich behav-

iours to be the basis for an ssAChem.

In subsequent investigations [9, 10] we determined a better choice, through explo-

ration of the parameter space. That exploration demonstrates that atomic network

size N and connectivity K has little influence, and that the best choice of emergent

320 P. Faulkner et al.

property (Sect. 5.1.3) and linking criterion (Sect. 5.2.1) is either ‘proportion’ as prop-

erty and ‘sum one’ as criterion, or ‘total’ as property and ‘sum zero’ as criterion. We

use ‘proportion/sum one’ for further work on bRBNs.

5.5.2 Evolutionary Search for Atomic bRBNs

The space of possible atomic RBNs is vast. The preliminary bRBN-world exper-

iments [10, 11] sample bRBNs at random. To find richer behaviours from small

atomic sets, [9] employs a search over the bRBN atomic space, using a genetic algo-

rithm.

The richness of the exhibited behaviour of a candidate atomic set is measure by

a fitness function. This function examines the reaction network generated by the

atoms for ‘loops’; cyclic reactions such asA → A(BCD) → A(BC) → AB → A. What

counts as a ‘loop’ has to be carefully defined to exclude trivial loops such as A1 →
A2 → A1

(where the superscript indicates an atom in a different attractor state), and

meaningless loops such as A → BC → A (where there is no common element around

the loop). See [9, Chap. 8] for details.

A well-mixed reactor vessel is populated with 1000 atoms of each of five types.

A reaction network is formed by running the vessel for a sufficient time, using a

Gillispie-style algorithm. The fitness function is applied to the resulting network.

The genetic algorithm uses a population size of 100 vessels, and is run for 300

generations. Mutation changes the details of the five types of atoms used. See [9,

Chap. 8] for further details.

This evolutionary approach successfully discovered atomic sets capable of pro-

ducing complex reaction networks. For example, one reaction network analysed in

detail exhibited 1,286 reactions and 645 different particles, and a longest reaction

loop comprising 8 reactions.

This demonstrates that the bRBN-world ssAChem can continue to support more

complex behaviours.

5.5.3 Addition of a Temperature Analogue

Following on from the work presented in [9–11], we have performed some prelimi-

nary experiments with the temperature analogue described in Sect. 5.3.2.

At very low temperatures (‘absolute zero’, T = 0) essentially no reactions occur,

as the probability is always zero (except when 𝛥E < 0, which happens only rarely).

At very high temperatures (T = 15) the system essentially reduces to the previ-

ously published bRBN-world behaviours: all reactions that merely satisfy the linking

criterion occur, as do all the possible decompositions (no ‘unstable’ links can sur-

vive).

At intermediate temperatures (2 < T < 10) we have a reduced reaction rate, as

expected. We see a mix of behaviours, with different composite species thriving in

Sub-Symbolic Artificial Chemistries 321

different temperature ranges. Additionally, we see new composites that cannot occur

at higher temperatures, because they would decompose.

We have also performed preliminary experiments where the temperature of the

system changes between three temperatures (low T = 2, medium T = 5, high T =
10) for five cycles. These systems show a higher degree of reactivity than a similar

system held at the medium temperature.

These preliminary experiments demonstrate that a temperature analogue has an

interesting effect on the behaviour of the system, by allowing otherwise unstable

composites to persist, and engage in further reactions. Having demonstrated the

promise of the approach, we need to perform larger scale experiments to quantify

the effects.

6 ssAChem Design Guidelines

We have provided a framework within which ssAChems can be defined. SMAC and

bRBN-world provide two different instantiations of this framework. SMAC focusses

on the underlying mathematical structure provided by Jordan algebras and their

realisation in the Hermitian matrix model. RBN-world focusses on the underlying

dynamical system that provides the atomic properties. These results demonstrate

that the ssAChem concept is generically useful. It is not only the original dynamic

bRBN-world implementation that demonstrates interesting chemistry: other systems

with less dynamics but deeper mathematical structure also demonstrate interesting

chemistry.

The process of designing a new ssAChem can proceed as follows:

1. start from the ssAChem framework provided here

2. instantiate it with a particular model: an atomic set, the emergent properties, the

linking rules

3. develop a computational implementation

4. perform initial experiments, to demonstrate that the chosen model has rich behav-

iour, and to find good parameter values

5. perform full experiments, to explore full system behaviours

Acknowledgements Faulkner is funded by an York Chemistry Department Teaching PhD stu-

dentship. Krastev is funded by a York Computer Science Department EPSRC DTA PhD stu-

dentship. We thank Leo Caves for some insightful comments on this work. We thank Michael Kro-

tosky, Andrew Balin, and Rudi Mears for their work in exploring some earlier versions of ideas

presented here.

322 P. Faulkner et al.

References

1. ALife XV, Cancun, Mexico. MIT Press (2016)

2. Anet, F.A.L.: The place of metabolism in the origin of life. Curr. Opin. Chem. Biol. 8(6),

654–659 (2004)

3. Banzhaf, W.: Self-replicating sequences of binary numbers—Foundations I: General. Biol.

Cybern. 69(4), 269–274 (1993)

4. Banzhaf, W.: Self-replicating sequences of binary numbers—Foundations II: Strings of length

N = 4. Biol. Cybern. 69(4), 275–281 (1993)

5. Banzhaf, W.: Self-organization in a system of binary strings. In: Proceedings of Artificial Life

IV, pp. 109–118 (1994)

6. Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster, J.A., McMullin, B., de Melo,

V.V., Miconi, T., Spector, L., Stepney, S., White, R.: Requirements for evolvability in complex

systems. Theory Biosci. 135(3), 131–161 (2016)

7. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries–a review. Artif. Life 7(3), 225–275

(2001)

8. Eigen, M., Schuster, P.: A principle of natural self-organization. Naturwissenschaften 64(11),

541–565 (1977)

9. Faulconbridge, A.: RBN-world: sub-symbolic artificial chemistry for artificial life. Ph.D. the-

sis, University of York, UK (2011)

10. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.: RBN-world: The hunt for a rich AChem.

In: ALife XII, Odense, Denmark, pp. 261–268. MIT Press (2010)

11. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.S.D.: RBN-World: a sub-symbolic artifi-

cial chemistry. In: ECAL 2009, Budapest, Hungary. LNCS, vol. 5777, pp. 377–384. Springer

(2011)

12. Faulkner, P., Sebald, A., Stepney, S.: Jordan algebra AChems: exploiting mathematical richness

for open ended design. In: ALife XV, Cancun, Mexico [1], pp. 582–589 (2016)

13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.

81(25), 2340–2361 (1977)

14. Hutton, T.J.: Evolvable self-replicating molecules in an artificial chemistry. Artif. Life 8(4),

341–356 (2002)

15. Hutton, T.J.: Evolvable self-reproducing cells in a two-dimensional artificial chemistry. Artif.

Life 13(1), 11–30 (2007)

16. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J.

Theoret. Biol. 22(3), 437–467 (1969)

17. Kauffman, S.A.: Autocatalytic sets of proteins. J. Theoret. Biol. 119(1), 1–24 (1986)

18. Kauffman, S.A.: Requirements for evolvability in complex systems. Physica D 42, 135–152

(1990)

19. Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)

20. Krastev, M., Sebald, A., Stepney, S.: Emergent bonding properties in the Spiky RBN AChem.

In: ALife XV, Cancun, Mexico [1], pp. 600–607 (2016)

21. McCrimmon, K.: Jordan algebras and their applications. Bull. Am. Math. Soc. 84(4), 612–627

(1978)

22. Ogawa, A.K., Yiqin, W., McMinn, D.L., Liu, J., Schultz, P.G., Romesberg, F.E.: Efforts toward

the expansion of the genetic alphabet: information storage and replication with unnatural

hydrophobic base pairs. J. Am. Chem. Soc. 122(14), 3274–3287 (2000)

23. Ono, N., Ikegami, T.: Model of self-replicating cell capable of self-maintenance. In: Advances

in artificial life, pp. 399–406. Springer (1999)

24. Pross, A.: Causation and the origin of life: metabolism or replication first? Orig. Life Evol.

Biosph. 34(3), 307–321 (2004)

25. Suzuki, H., Ono, N., Yuta, K.: Several necessary conditions for the evolution of complex forms

of life in an artificial environment. Artif. Life 9(2), 153–174 (2003)

Discovering Boolean Gates in Slime Mould

Simon Harding, Jan Koutník, Júrgen Schmidhuber
and Andrew Adamatzky

Abstract Slime mould of Physarum polycephalum is a large cell exhibiting rich

spatial non-linear electrical characteristics. We exploit the electrical properties of the

slime mould to implement logic gates using a flexible hardware platform designed

for investigating the electrical properties of a substrate (Mecobo). We apply arbi-

trary electrical signals to ‘configure’ the slime mould, i.e. change shape of its body

and, measure the slime mould’s electrical response. We show that it is possible to

find configurations that allow the Physarum to act as any 2-input Boolean gate. The

occurrence frequency of the gates discovered in the slime was analysed and com-

pared to complexity hierarchies of logical gates obtained in other unconventional

materials. The search for gates was performed by both sweeping across configu-

rations in the real material as well as training a neural network-based model and

searching the gates therein using gradient descent.

1 Introduction

Slime mould Physarum polycephalum is a large single cell [23] capable for distrib-

uted sensing, concurrent information processing, parallel computation and decen-

tralized actuation [1, 7]. The ease of culturing and experimenting with Physarum

makes this slime mould an ideal substrate for real-world implementations of uncon-

ventional sensing and computing devices [1]. A range of hybrid electronic devices

were implemented as experimental working prototypes. They include Physarum self-

routing and self-repairing wires [3], electronic oscillators [6], chemical sensor [33],

tactical sensor [4], low pass filter [34], colour sensor [5], memristor [13, 24], robot

controllers [12, 30], opto-electronics logical gates [20], electrical oscillation fre-

quency logical gates [32], FPGA co-processor [21], Shottky diode [10], transistor

[24]. There prototypes show that Physarum is amongst most prospective candidates

S. Harding ⋅ A. Adamatzky (✉)

Unconventional Computing Centre, University of the West of England, Bristol, UK

e-mail: andrew.adamatzky@uwe.ac.uk

J. Koutník ⋅ J. Schmidhuber

IDSIA, USI&SUPSI, Manno-Lugano, CH, Switzerland

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_15

323

324 S. Harding et al.

for future hybrid devices, where living substrates physically share space, interface

with and co-function with conventional silicon circuits.

So far there are four types of Boolean gates implemented in Physarum.

∙ Chemotactic behaviour based morphological gate [28]; logical False is an absence

of tube in a particular point of substrate and logical True is a presence of the tube.

∙ Ballistic morphological gate [2] based on inertial propagation of the slime mould;

logical False is an absence of tube in a particular point of substrate and logical

True is a presence of the tube.

∙ Hybrid slime mould and opto-electronics gate [20] where growing Physarum acts

as a conductor and the Physarum’s behaviour is controlled by light.

∙ Frequency of oscillation based gate i [32], where frequencies of Physarum’s elec-

trical potential oscillations are interpreted as Boolean values and input data as

chemical stimuli.

These logical circuits are slow and unreliable, and are difficult to reconfigure. Thus

we aimed to develop an experimental setup to obtain fast, repeatable and reusable

slime mould circuits using the ‘computing in materio’ paradigm.

The Mecobo platform has been designed and built within an EU-funded research

project called NASCENCE [9]. The purpose of the hardware and software is to

facilitate ‘evolution in materio’ (EIM)—a process by which the physical properties of

a material are exploited to solve computational problems without requiring a detailed

understanding of such properties [22].

EIM was inspired by the work of Adrian Thompson who investigated whether it

was possible for unconstrained evolution to evolve working electronic circuits using

a silicon chip called a Field Programmable Gate Array (FPGA). He evolved a digital

circuit that could discriminate between 1 or 10 kHz signal [26]. When the evolved cir-

cuit was analysed, Thompson discovered that artificial evolution had exploited physi-

cal properties of the chip. Despite considerable analysis and investigation Thompson

and Layzell were unable to pinpoint what exactly was going on in the evolved cir-

cuits [25]. Harding and Miller attempted to replicate these findings using a liquid

crystal display [14]. They found that computer-controlled evolution could utilize the

physical properties of liquid crystal—by applying configuration signals, and mea-

suring the response from the material—to help solving a number of computational

problems [16].

In the work by Harding and Miller, a flexible hardware platform known as an

‘Evolvable Motherboard’ was developed. The NASCENCE project has developed a

new version of this hardware based on low-cost FPGAs that more flexible than the

original platform used with liquid crystal.

In this paper, we describe the Mecobo platform (Sect. 1) and how it is interfaced

to Physarum (Sect. 1) to perform an exhaustive search over a sub-set of possible

configurations. In Sect. 2 the results from this search are then searched to confirm

whether Physarum is capable of acting as Boolean gates. We find that all possible 2-

input gates can be configured this way. Section 2.2.1 further explores the complexity

of the computation by modelling the material using a neural network model.

Discovering Boolean Gates in Slime Mould 325

Fig. 1 Overview of the Mecobo hardware software architecture

The Mecobo Platform
Mecobo is designed to interface a host computer to a candidate computational sub-

strate, in this instance the Physarum. The hardware can act as a signal generator, and

route these signals to arbitrary ‘pins’—which are typically electrodes connected to

the candidate material. The hardware can also record the electrical response from

the substrate. Again, this recording (or recordings) can be linked to any ‘pin’. Both

applied signals (used for configuration) and measurements can be analog or digital.

The core of the hardware is a microprocessor and an FPGA that run a ‘sched-

uler’, illustrated in Fig. 2. A series of actions, such as “output 1 Hz square wave on

pin 5, measure on pin 3” are placed into a queue, and the queue executed. Com-

plex series of actions can be scheduled onto the Mecobo. The Mecobo connects, via

USB, to a host PC. The host PC runs software implementing the server side of the

Mecobo Application Programming Interface (API). The API work flow mirrors the

hardware’s scheduler, and allows for applications to interface to the hardware without

understanding all of the underlying technical details. Implemented using THRIFT,

the API is also language and operating system agnostic, with the additional benefit

that it can executed remotely over a network. The API software also includes func-

tionality for data processing and logging of collected data for later analysis.

Figure 1 shows a simplified architectural overview of the Mecobo hardware and

software. A full description, of both hardware and software can be found in [19]

Fig. 3. The hardware, firmware and software for the Mecobo are open source and

can be accessed at the project website: http://www.nascence.eu/.

http://www.nascence.eu/

326 S. Harding et al.

Fig. 2 Overview of the low-level Mecobo hardware architecture

(a) (b) (c)

(d) (e) (f)

Fig. 3 Time-lapse of Physarum growing on agar with electrodes. Images are approximately 6 h

apart

Interfacing Physarum to Mecobo
A crude containing dish with electrodes was constructed from matrix board and gold-

plated header pins, as shown in Fig. 4a. Onto these pins, we pushed down a section

of 2% agar (with or without Physarum) so that the pins punctured the agar, and were

visible above the surface. This allowed the Physarum to come into direct contact

with the electrodes. For experiments where the substrate was intended to be only

Physarum, a small amount of molten agar was painted over the contacts and some of

the matrix board. This minimized the amount of agar, in order to reduce its influence.

Small amounts of damp paper towel were placed around the container to maintain

humidity.

A video available at https://www.youtube.com/watch?v=rymwltzyK88 shows the

Physarum growing and moving around the electrodes.

https://www.youtube.com/watch?v=rymwltzyK88

Discovering Boolean Gates in Slime Mould 327

(a)

(b)

Fig. 4 a Electrodes with agar and Physarum. The white spots are oat flakes, which are used to feed

the Physarum. b Agar dish connected to Mecobo

As shown in Fig. 4b the electrodes were then connected to the digital outputs of

the Mecobo. Each electrode was connected to the Mecobo interface using a 4.7 kΩ
resistor to limit the amount of applied current. The digital outputs of the Mecobo

provide either 0 v (low) or 3.3 v (high).

2 Data Collection

The possible configuration space for the Mecobo platform is vast, and it would be

infeasible to attempt to apply all possible configurations to the Physarum. In the

Nascence project, evolutionary algorithms are used as a practical method to search

through the configuration space and find configurations that perform a particular

task. Just as with the initial experiments in the Nascence project [19], we start with

an exhaustive search over a small configuration space.

The exhaustive search procedure consisted of applying all possible binary com-

binations of various frequency pairs to 9 pins (which is a practical amount for time

purposes). One pin was used as an output from the material, with the other 8 pins

acting as inputs.

For each binary combination, each pair of frequencies was tried with one fre-

quency representing a ‘low’ and the other representing a ‘high’ input. The fre-

quency pairs were combinations of square waves of either (250Hz, 500Hz, 1 kHz,

or 2.5 kHz).

328 S. Harding et al.

The order of applied configurations was shuffled to help prevent similar configu-

rations being applied sequentially.

The Mecobo measured the digital response from the Physarum and/or agar for

32 ms. The digital threshold is 0.75 v for high, with voltages below this being classed

as low. The sampling frequency was twice the highest input frequency applied.

In total, 49,152 states are applied, in a process that takes approximately 2 h to

complete. The majority of the time is spent configuring the Mecobo and transferring

sampled data back to the host PC.

Exhaustive Search for Boolean Gates

2.1 Method

Boolean logic gates are the building block for many circuits, sensors and compu-

tational devices. Using an exhaustive search, we were able to data mine within the

collected data to look for configurations that acted as Boolean gates.

The data was searched for all two-input Boolean functions. Two pins were selected

as the inputs to the gates (A and B), and one pin was selected as the gate output. The

output response of the material (i.e. true or false) was determined from the output

frequency of the material. A Fast Fourier Transform (FFT) was performed, and the

frequency of the highest magnitude response was determined. The output was true
if this frequency was nearer to the true input frequency, and false if nearer in value

to the false input frequency. The remaining pins were then treated as configuration

pins for the Physarum/agar. Each possible combination of configuration, input pair

and output were then compared to see what logical operation it performed.

If for a given configuration (using the same frequency pairs), the output for all

combinations of inputs A and B matched the expected behaviour of a gate, then it

was judged that the Physarum and/or agar could implement that gate. As the con-

figurations are temporally spaced, and each configuration applied multiple times (as

A and B could be swapped over), a discovered gate would likely be ‘stable’ over

the time taken to run the experiment. As the Physarum grows and moves, or as the

agar dehydrates and shrinks, the physical substrate will vary. Therefore, we would

not expect the system to be stable over long periods of time. Repeated measurements

that are temporally spaced also reduces the possibility of measurement noise strongly

influencing the results.

2.2 Results

As detailed in Table 1, agar on its own was unable to produce the universal gates

NAND or NOR. It was also unable to produce the non-linear gates XOR or NXOR.

Substrates that involve Physarum can be seen to produce more types of gates. It is

Discovering Boolean Gates in Slime Mould 329

Table 1 Number of gates mined from the frequency responses of the Physarum. The Agar column

contains a number of such configurations (input pins having values true, T, or false, F) found in the

bare agar substrate and the Physarum column contains number of the configuration found in the

dish containing the Physarum. We can see that the Physarum actually performs the logic functions

whereas the sole agar is not capable of that

No. Inputs xy Agar Physarum Physarum

+ Agar

Gate

FF FT TF TT

1 F F F F 76 104 121 144 15864 Constant

False

2 T F F F 86 8 x NOR y
3 F T F F 201 13 NOT x

AND y
4 T T F F 60 2 NOT x
5 F F T F 201 13 x AND

NOT y
6 T F T F 60 2 NOT y
7 F T T F 66 4 x XOR y
8 T T T F 112 10 x NAND

y
9 F F F T 43 546 13 268 564 x AND y
10 T F F T 52 0 x XNOR

y
11 F T F T 15 249 18 259 3 707 y
12 T T F T 260 9 NOT x

AND

NOT y
OR y

13 F F T T 15 249 18 259 3 707 x
14 T F T T 260 9 x OR

NOT y
15 F T T T 43 564 13 128 536 x OR y
16 T T T T 74 996 113 266 13 448 Constant

True

particularly interesting to note that far fewer AND or OR gates were found when

using Physarum+Agar, compared to only agar.

Using Physarum, both with the agar and with minimal agar, the search was able

to find many types of logic gates.

When the amount of agar was minimised, the fewest gates were found. This result

was expected as the Physarum did not appear to connect between many of the elec-

trodes, and therefore would only be able to participate in a smaller number of the

configurations.

330 S. Harding et al.

Table 2 Number of XOR gates found for given Input pin configurations

Input Pin

B

Input Pin A

0 2 3 4 5 6 7 8

0 24 24 16 40 24 8

2 24 16 8

3 24 8 16

4 16 16 24 8 16 8

5 40 8 8 24 8

6 24 14 8 8

7 16 16 8

8 8 8

2.2.1 Detailed Analysis XOR

Considering only the XOR solutions that occur in the Physarum+Agar substrate,

we can investigate the collected data in some detail. Table 2 shows the frequency of

times that particular pins are used as inputs (the symmetry is a result of the fact that

in this instance A and B can be swapped and still produce a valid gate).

Table 2 shows that some electrode pins are used much more frequently than others

as inputs, and that only two electrodes ever get used successfully as outputs. This

strongly suggests that the physical structure of the Physarum is important, and that

a uniform mass would not be effective.

The experiment ran for 7322 s (122 min). During this time we observed the

Physarum did move around on the agar. We generated a histogram that shows the

number of times an applied configuration was used as part of XOR against time. The

chart in Fig. 5 indicates that most of the results were found earlier on in the experi-

ment. In addition to the movement of the Physarum, this may be caused by the agar

drying out and becoming less conductive. It therefore seems likely that there might

be more possible gate configurations, but that the search was too slow to discover

them before the characteristics of the Physarum+agar changed.

Mould Modelling Using Neural Networks
This section uses neural network (NN) models [17], trained by gradient descent [11,

18, 31] to approximate the mapping from input voltages to the output voltage by

training them on many randomly chosen examples measured during the exhaustive

search. By solving that task a NN becomes a differentiable model of the—potentially

complex—structures inside the material. Having the NN model, one can assess the

complexity of the material based on trainability of the NN model.

A NN consist of a sequence of layers, where each layer computes an affine pro-

jection of its inputs followed by the application of a point-wise non-linear function

𝜓 :

Discovering Boolean Gates in Slime Mould 331

60 62

38

76

36 40
30

38 43
31

20

50

10 20 30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

Time [min]

X
O
R
C
ou

nt

Fig. 5 XOR density. The chart shows how many XOR functions were found in the Physarum

material over the course of 120 min long experiment. We can see that most of the gates was found

in the beginning

𝐡 = 𝜓(𝐖𝐱 + 𝐛) (1)

where 𝜃 = {𝐖,𝐛} are the parameters of the layer. By stacking these layers one can

build non-linear functions of varying expressiveness that are differentiable. In theory

they can approximate any function to arbitrary precision given enough hidden units.

2.2.2 Data Preprocessing

The random search collected data was preprocessed in order to form a supervised

training set. The input frequencies were ordered and translated to integer numbers

in range from 1 to 5 forming an input vector 𝐱 ∈ {1, 2, 3, 4, 5}9, where the input

frequency was present. The value of 0 was used in the case of a grounded input pin

or when the pin was used as the output pin. The target output vector had 9 entries as

well (𝐭 ∈ [0, 1]9) but only the one that corresponds to the output pin was used at a

time.

A middle section of the output buffer (1/4 to 3/4 section of the signal length) was

preprocessed and transformed to a desired output target in one following three ways

in the three experiments:

∙ Ratio: The proportion of ones in the signal.

∙ Peak Frequency: The peak of the frequency spectrum normalised such that 0.0
corresponds to a constant signal and 1.0 corresponds to the sequence 010101… .

The peak was obtained by computing the Fourier spectrum of the middle section of

the signal, removing the DC component (first frequency component), computing

the absolute values of the complex spectrum and using the first half (the spectrum

is symmetric) to find the position of the maximum peak index.

∙ Compressibility: Relative length of the output buffer compressed using LZW to

the maximum length of the compressed buffer. High values point to irregular out-

puts.

The networks have been trained to predict the output vector given the inputs,

where we only trained for the one active output while ignoring the other 8 predictions

332 S. Harding et al.

Table 3 Best hyperparameter settings for each of the three tasks along with the resulting Mean

Squared Error (MSE)

Task # Layers # Units Act. Fn. Learning rate MSE

Ratio 8 200 ReLU 0.055 6.058 × 10−4

Frequency 5 200 ReLU 0.074 2.68 × 10−2

Compressibility 5 200 ReLU 0.100 7.09 × 10−4

of the network. Note that this essentially corresponds to training 9 different neural

networks with one output each, that share the weights of all but their last layer.

The network weights were trained using Stochastic Gradient Descend (SGD) with

a minibatch-size of 100 to minimise the Mean Squared Error on the active output.

We kept aside 10% of the data as a validation set. Training was stopped after 100

epochs (full cycles through the training data) or once the error on the validation set

didn’t decrease for 5 consecutive epochs.

Neural networks have certain hyperparameters like the learning rate for SGD and

the network-architecture that need to be set. To optimize these choices we performed

a big random search of 1650 runs sampling the hyperparameters as follows:

∙ learning rate 𝜂 log-uniform from 10−3 to 10−1
∙ number of hidden layers uniform from {1, 2, 3, 4, 5, 6, 7, 8}

∙ number of hidden units in each layer from the set {50, 100, 200, 500}

∙ The activation function of all hidden units from the set {tanh, ReLU,
1

logistic

sigmoid}

The best networks for the three tasks can be found in Table 3.

2.2.3 Modelling Results

On all three tasks the networks prediction error on the validation set decreased sig-

nificantly during training. Figure 6 depicts the loss, the target and the prediction of

the network for each example of the validation for all three tasks sorted by their loss.

It can be seen that in all three cases the targets (true outputs) have a characteris-

tic structure consisting of horizontal lines. This is due to the fact that certain target

values are very likely. For each such value there are easy cases that the networks

predict with high accuracy (the left side of the bar), and there seem to be difficult

cases (right part of the bars) for which the predictions bifurcate (see prediction plots

at the bottom of Fig. 6). This essentially means that the output distribution has sharp

peaks which get smoothed out a bit by the networks. Overall, the networks predictive

performance is very good (apart from the high values in the frequencies task which

all fall into the high-loss region). The worst performance is on the frequencies task,

while the best performance is achieved on the first task (predicting the ratios).

1
ReLU: Rectified Linear Unit.

Discovering Boolean Gates in Slime Mould 333

Fig. 6 Loss, true output, and prediction for all validation samples on each of the three tasks. The

examples are sorted by their associated training loss

2.2.4 Searching for Logic Gates in the NN Model

The best network for the first task (predicting the ratio) was searched for the following

logic functions: AND, OR, NAND, NOR, XOR, and XNOR. We encode the values

for True and False for the inputs as 4 and 1 respectively (corresponding to high and

low input frequency). For the output values we define 0 as False and 0.5 as True,

because these two values are easy to distinguish and are the most common output

values.

First, a set of examples with different combinations of input values but which

share the same (random) values for the configuration pins along with the desired

output values.

Gradient descent is then used to minimise the MSE by adjusting the values for the

configuration pins, but we keep their values the same for all examples. So formally,

given our neural network model ̂f of the nano-material, we define an error over our

N input/output pairs (I(i)1 , I(i)2 ,O(i)):

E =
N∑

i=1

1
2
(̂f (I(i)1 , I(i)2 , 𝜃) − O(i))2 (2)

The gradient is then calculated using backpropagation of the error:

334 S. Harding et al.

Fig. 7 The functions found by our search procedure all with pins 1 and 2 for inputs and pin 4 as

output. The results for AND and NOR are a good fit, while the search for OR and XOR clearly

failed to produce usable functions

𝜕E
𝜕𝜃

= (̂f (I(i)1 , I(i)2 , 𝜃) − O(i))
𝜕

̂f
𝜕𝜃

(3)

where 𝜃 = {c1,… , c6}.

At the end of this gradient descent process the configuration pin values are not

in the allowed set {1, 2, 3, 4} anymore. To make them valid inputs we round and

clip them. This most likely increases the error, but hopefully still remains in a region

where the network computes the desired function. It is unlikely that this procedure

will always work, so in addition to this local search we also perform a global search.

One problem with the method described above is that it only performs a local

search, which means that the solution that it converges to, might correspond to a

bad local minimum. Furthermore the discretization we need to perform at the end of

the local search might lead to a configuration which doesn’t approximate the desired

function very well.

To mitigate these problems we first sample 1 000 random starting points (settings

of the configuration leads) and perform just 10 iterations of our local search on them.

Only the starting point that lead to the lowest error is then optimised further for 500

epochs to obtain the final solution. In this way we reduce the risk of getting stuck in

a poor local minimum. There is another free parameter which we haven’t optimised

yet, which is the assignments of input and output pins. We therefore repeat the above

procedure for all 224 possible allocations of input and output pins. The found gates

and their responses are summarised in Fig. 7.

3 Discussion

We do not know what is exact physical mechanism of the gate operations imple-

mented by the slime mould. We can speculate that the following factors might con-

tribute to the particular responses observed:

Discovering Boolean Gates in Slime Mould 335

∙ The slime mould is conductive. Every single protoplasmic tube can be considered

as a wire [3].

∙ The resistance of the slime mould wire depends on biochemical and physiological

state of slime, thickness of tubes, and the Physarum’s reaction to environmental

conditions. The resistance also oscillates, due to contractile activity and shuffling

of cytoplasm in the protoplasmic tubes [6].

∙ Physarum exhibits memristive properties when tested in current-voltage cycles

[13]. Thus some pathways in Physarum could become non-conductive under AC

stimulation.

∙ Morphology of Physarum can be modified by application of AC [29]. That is the

slime mould can physically move between electrodes in response to stimulation

by input electrical signals.

∙ In certain conditions Physarum allows the conduction of AC frequencies with

attenuation profile similar to a low pass filter [34, 35].

The frequency of gates’ discovery in Physarum varies substantially between the

gates, with XOR and XNOR being the most rarely observable gates. Is it typical

for all non-linear systems implementing gates or just Physarum? Let gates g1 and g2
be discovered with occurrence frequencies f (g1) and f (g2), we say gate g1 is easy

to develop or evolve than gate g2: g1 ⊳ g2 if f (g1) > f (g2). The hierarchies of gates

obtained using evolutionary techniques in liquid crystals [15], light-sensitive modifi-

cation of Belousov-Zhabotinsky system [27] are compared with Physarum generated

gates and morphological complexity of configurations of one-dimensional cellular

automata governed by the gates [8]:

∙ Gates in liquid crystals [15]: {OR, NOR} ⊳ AND ⊳ NOT ⊳ NAND ⊳ XOR

∙ Gates in Belousov-Zhabotinsy medium [27]: AND ⊳ NAND ⊳ XOR

∙ Gates in cellular automata [8]: OR ⊳ NOR ⊳ AND ⊳ NAND ⊳ XOR

∙ Gates in Physarum: AND ⊳ OR ⊳ NAND ⊳ NOR ⊳ XOR ⊳ XNOR

We see that in all systems quoted the gate XOR is the most difficult to find, develop

or evolve. Why is it so? A search for an answer could be one of the topics for further

studies.

The search of gate configurations in the differentiable material model renders to

be an efficient method of finding the correct configurations, that generates robust

solutions. It remains to be confirmed whether these configurations work at the real

mould again and close the loop between the modelling and the real material.

Acknowledgements The research leading to these results has received funding from the EC FP7

under grant agreements 317662 (NASCENCE project) and 316366 (PHYCHIP project).

The authors would like to acknowledge the assistance of Odd Rune Lykkebø for his technical assis-

tance with Mecobo. Simon and Andy prepared the mould and performed the exhaustive search

experiments on the hardware platform, Jan, Klaus and Jürgen contributed with the mould neural

network modelling.

336 S. Harding et al.

References

1. Andrew, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific

(2010)

2. Andrew, A.: Slime Mould Logical Gates: Exploring Ballistic Approach. arXiv:1005.2301,

(2010)

3. Adamatzky, A.: Physarum wires: self-growing self-repairing smart wires made from slime

mould. Biomed. Eng. Lett. 3(4), 232–241 (2013)

4. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuat. B Chem. 188, 38–44 (2013)

5. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum poly-

cephalum. Organ. Elect. 14(12), 3355–3361 (2013)

6. Adamatzky, A.: Slime mould electronic oscillators. Microelect. Eng. 124, 58–65 (2014)

7. Andrew, A.: Advances in Physarum Machines: Sensing and Computing with Slime Mould.

Springer (2016)

8. Adamatzky, A., Bull, L.: Are complex systems hard to evolve? Complexity 14(6), 15–20 (2009)

9. Broersma, H., Gomez, F., Miller, J.F., Petty, M., Tufte, G.: NASCENCE project: nanoscale

engineering for novel computation using evolution. Int. J. Unconvent. Comput. 8(4), 313–317

(2012)

10. Angelica,, C., Dimonte, A., Berzina, T., Erokhin, V.: Non-linear bioelectronic element: Schot-

tky effect and electrochemistry. Int. J. Unconvent. Comput. 10(5–6), 375–379 (2014)

11. Dreyfus, S.E.: The computational solution of optimal control problems with time lag. IEEE

Trans. Automat. Control 18(4), 383–385 (1973)

12. Ella, G., Andrew, A.: Translating slime mould responses: a novel way to present data to the

public. In: Adamatzky, A.: (ed.), Advances in Physarum Machines. Springer (2016)

13. Gale, E., Adamatzky, A., De Lacy Costello, B.: Slime mould memristors. BioNanoScience

5(1), 1–8 (2013)

14. Simon, H., Julian, F. Miller. Evolution in materio: A tone discriminator in liquid crystal. In:

Proceedings of the Congress on Evolutionary Computation 2004 (CEC’2004), vol. 2, pp. 1800–

1807, (2004)

15. Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. In Proc.

Eur. Conf. Artif. Life (ECAL 2005), Workshop on Unconventional Computing: From Cellular

Automata to Wetware, pp. 133–149. Beckington, UK, (2005)

16. Harding, S.L., Miller, J.F.: Evolution in materio: evolving logic gates in liquid crystal. Int. J.

Unconvent. Comput. 3(4), 243–257 (2007)

17. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR,

Upper Saddle River, NJ, USA (1998)

18. Linnainmaa, S.: The representation of the cumulative rounding error of an algorithm as a Taylor

expansion of the local rounding errors. Master’s thesis, University of Helsinki (1970)

19. Lykkebo, O.R., Harding, S., Tufte, G., Miller, J.F.: Mecobo: a hardware and software platform

for in materio evolution. In: Ibarra, O., Kari, L., Kopecki, S. (eds.) Unconventional Computa-

tion and Natural Computation, LNCS, pp. 267–279. Springer International Publishing (2014)

20. Mayne, R., Adamatzky, A.: Slime mould foraging behaviour as optically coupled logical oper-

ations. Int. J. Gen. Syst. 44(3), 305–313 (2015)

21. Mayne, R., Tsompanas, M.-A., Sirakoulis, G., Adamatzky, A.: Towards a slime mould-FPGA

interface. Biomedical. Eng. Lett. 5(1), 51–57 (2015)

22. Miller, Julian F., Harding, Simon L., Tufte, Gunnar: Evolution-in-materio: evolving computa-

tion in materials. Evolution. Intelligen. 7, 49–67 (2014)

23. Stephenson, S.L., Stempen, H., Ian, H.: Myxomycetes: A Handbook of Slime Molds. Timber

Press Portland, Oregon, (1994)

24. Giuseppe, T., Pasquale, D’.A., Cifarelli, A., Dimonte, A., Romeo, A., Tatiana, B., Erokhin, V.,

Iannotta, S.: A hybrid living/organic electrochemical transistor based on the physarum poly-

cephalum cell endowed with both sensing and memristive properties. Chem. Sci. 6(5), 2859–

2868 (2015)

http://arxiv.org/abs/1005.2301

Discovering Boolean Gates in Slime Mould 337

25. Thompson, A., Layzell, P.: Analysis of unconventional evolved electronics. Commun. ACM

42(4), 71–79 (1999)

26. Thompson, A.: Hardware Evolution–Automatic Design of Electronic Circuits in Reconfig-

urable Hardware by Artificial Evolution. Springer, (1998)

27. Toth, R., Stone, C., Adamatzky, A., De Lacy Costello, B., Larry, B.: Dynamic control and infor-

mation processing in the Belousov-Zhabotinsky reaction using a coevolutionary algorithm. J.

Chem. Phys. 129(18), 184708 (2008)

28. Tsuda, S., Aono, M., Gunji, Y-P.: Robust and emergent physarum logical-computing. Biosys-

tems 73(1), 45–55 (2004)

29. Tsuda, S., Jones, J., Adamatzky, A., Mills, J.: Routing physarum with electrical flow/current.

arXiv:1204.1752, (2012)

30. Tsuda, S., Zauner, K.P., Gunji, Y.-P.: Robot control: from silicon circuitry to cells. In: Biolog-

ically Inspired Approaches to Advanced Information technology, pp. 20–32. Springer, (2006)

31. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. PhD thesis, Harvard University, (1974)

32. Whiting, J.G.H., De Lacy Costello, B., Adamatzky, A.: Slime mould logic gates based on

frequency changes of electrical potential oscillation. Biosystems 124, 21–25 (2014)

33. Whiting, J.G.H., De Lacy Costello, B., Adamatzky, A.: Towards slime mould chemical sensor:

Mapping chemical inputs onto electrical potential dynamics of physarum polycephalum. Sens.

Actuat. B Chem. 191, 844–853 (2014)

34. Whiting, J.G.H., De Lacy Costello, B., Adamatzky, A.: Transfer function of protoplasmic tubes

of Physarum polycephalum. Biosystems 128, 48–51 (2015)

35. Whiting, J.G.H., Mayne, R., Moody, N., De Lacy Costello, B., Adamatzky, A.: Practical cir-

cuits with physarum wires. arXiv:1511.07915 (2015)

http://arxiv.org/abs/1204.1752
http://arxiv.org/abs/1511.07915

Artificial Development

Tüze Kuyucu, Martin A. Trefzer and Andy M. Tyrrell

Abstract Development as it occurs in biological organisms is defined as the process
of gene activity that directs a sequence of cellular events in an organismwhich brings
about the profound changes that occur to the organism. Hence, the many chemical

and physical processes which translate the vast genetic information gathered over the

evolutionary history of an organism, and put it to use to create a fully formed, viable

adult organism from a single cell, is subsumed under the term “development”. This

also includes properties of development that go way beyond the formation of organ-

isms such as, for instance, mechanisms that maintain the stability and functionality of

an organism throughout its lifetime, and properties that make development an adap-

tive process capable of shaping an organism to match—within certain bounds—the

conditions and requirements of a given environment. Considering these capabilities

from a computer science or engineering angle quickly leads on to ideas of taking

inspiration from biological examples and translating their capabilities, generative

construction, resilience and the ability to adapt, to man-made systems. The aim is

thereby to create systems that mimic biology sufficiently so that these desired proper-

ties are emergent, but not as excessively as to make the construction or operation of a

system infeasible as a result of complexity or implementation overheads. Software or

hardware processes aiming to achieve this are referred to as artificial developmental
models. This chapter therefore focuses on motivating the use of artificial develop-

ment, provides an overview of existing models and a recipe for creating them, and

discusses two example applications of image processing and robot control.

T. Kuyucu (✉)

Disruptive Technologies, Trondheim, Norway

e-mail: tuze.kuyucu@disruptive-technologies.com

M.A. Trefzer ⋅ A.M. Tyrrell

Department of Electronics, University of York, York, UK

e-mail: martin.trefzer@york.ac.uk

A.M. Tyrrell

e-mail: andy.tyrrell@york.ac.uk

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_16

339

340 T. Kuyucu et al.

1 Introduction

“The development of multicellular organisms from a single cell—the fertilized

egg—is a brilliant triumph of evolution” notes Wolpert in his book, Principles of

Development [71]. The structure of a single cell may arguably be the most complex

part of any organism, but despite the evolutionary adaptation a unicellular organism

is still vastly limited in the tasks it can achieve and is vulnerable to environmental

threats. A multicellular organism is capable of multi-tasking using division of labour

amongst the cells, and it is able to protect itself from environmental threats better than

a unicellular organism would, since the loss of a cell or few cells does not necessarily

harm the organism. Although multicellularity could have arisen through cell division

failure or chance mutation in the evolutionary history of organisms, multicellularity

is a key process harnessed by nature to create complex and intelligent biological

organisms capable of executing sophisticated behaviours and surviving harsh and

changing environmental conditions [6]. Multicellular organisms are a product of a

process called development that builds these organisms from a single cell. Wolpert

defines development as “The process of gene activity that directs a sequence of cel-

lular events in an organism which brings about the profound changes that occur to

the organism [71]”. Development is how all the genetic information gathered over

the evolutionary history of an organism is put to use to create an adult organism

from a single cell. However, development is also a mechanism that maintains the

stability and functionality of an organism throughout its lifetime, and not merely a

genotype to phenotype mapping mechanism of biology for creating complex multi-

cellular organisms. Thanks to multicellular development, an organism is capable of

surviving damage and loss of its physical parts, which otherwise would be lethal to

the organism.

1.1 Models of Development in Evolutionary Computation

Multicellular biological organisms have been a topic of interest in the computer sci-

ence and engineering fields as inspiration of models of intelligent systems. Their abil-

ity to be robust, adaptive, and scalable while they develop, make them interesting in

computational intelligence as these properties are difficult to design using traditional

approaches to computation or engineering. Biological organisms can grow from a

single cell into a multicellular organism using the same genotype for all cells. These

cells can then specialize to form different parts of an organism. Although the process

of development in biology is clearly defined, its definition in Evolutionary Compu-

tation (EC) varies significantly [8, 13, 16, 18, 27, 38, 49, 59, 67]. While some

artificial algorithms try to closely model the biological development, others are sim-

ply inspired by a mechanism of biological development. In the latter cases, artificial

development is defined by its main inspiration and the task it is used for. Roggen’s

diffusion-based developmental model [56], the self modifying cartesian genetic

Artificial Development 341

programming by Harding et al. [27], and Stanley’s pattern producing networks [59],

are examples of systems that use simple inspirations from select biological devel-

opmental mechanisms. Whereas the developmental models such as those presented

in [16, 19, 64], are examples of systems that model the biological development more

closely. Although most commonly referred to as artificial development, its name can

also take many other forms; computational embryology, artificial embryology, artifi-

cial embryogeny, artificial ontogeny, computational development [8]. In the remain-

der of this article artificial development is used to refer to a computational system

that models the biological developmental process for the uses of understanding biol-

ogy and/or aiding EC applications.

1.2 Benefits of Artificial Developmental Systems

Multicellular development is a key element of nature in achieving complex, robust,

adaptive and intelligent organisms, Fig. 1. Biological development makes use of the

changing environment that is internal as well as external to the organism to bring

about complex properties that EC strives to solve: scalability, fault tolerance, and

adaptivity. Furthermore, such embedded environmental awareness in the biological

systems lead to complex higher level behaviours such as self-organization, despite

their seemingly architectured design [14].

A multicellular design approach in EC benefiting from the decentralized organi-

zational mechanism achieved in biological organisms could also bring about similar

benefits to EC. Scalability, fault tolerance and adaptivity are the three possible ben-

efits discussed in further detail in this subsection.

1.2.1 Scalability

Over the years of EC research, the complexity of the evolved designs has not

increased greatly. The inability of evolution to design systems at the desired level of

complexity in a reasonable amount of time is a major problem. The ability to achieve

higher complexity systems without a major increase in genotype size and within an

acceptable time frame is referred to as scalability. Traditional system design meth-

ods in engineering and computer science build complex systems via the repeated use

of functions or modules. Hence it has been acknowledged by many that introducing a

mechanism that can achieve modular behaviour while evolving designs could relieve

the scalability problem [1, 24, 31, 37, 52, 63, 68, 69]. An example of the use of

modules in EC is the Automatically Defined Functions (ADF) [37]; ADF introduces

reuse of parts of the genetic code during evolution. This adds the concept of modular-

ity to Genetic Programming (GP), [36], aiming to speed up evolution, and increase

the achievable complexity. Koza showed that ADFs increase the evolutionary speed

of GP. A similar modularity was introduced by Walker and Miller [69], for Carte-

sian Genetic Programming (CGP) [50], to speed up the evolution of more complex

342 T. Kuyucu et al.

Fig. 1 The process of multicellular development brings a relatively simple cell to a system of

many-cells that scale to enormously complex organisms, which are adaptive to their environment,

and can also survive hostilities both at a cellular level and system (organism) level (taken from

Wikipedia 6/2/14)

problems with CGP. It was shown that evolution of problems with modular CGP

was much faster (20x in some cases), and scaled better for complex problems. The

modularity in GP and CGP is done in a systematic way, where a modularity mecha-

nism works in parallel with evolution to create modules from pieces of the evolved

system which then can be reused by evolution. However, such explicitly defined

mechanism that incorporates modularity into evolution can not solve the scalabil-

ity problem. This is due to the presence of direct genotype
1
-phenotype

2
mapping.

A direct genotype-phenotype encoding causes the genotype to grow in proportion

to the phenotype. This creates a large search space as the target system gets more

complex. Hence a direct mapping from genotype to phenotype is less effective in

designing complex systems [1, 3, 20, 25, 51, 56, 68].

1
Genetic information in a cell that is used to obtain a certain phenotype.

2
The physical form and characteristics of an organism; the target system in EC.

Artificial Development 343

In nature, biological organisms achieve phenotypes specified by genes that are

orders of magnitude smaller. An example of this is the human genome, which com-

prises approximately 30,000 genes, yet a human brain alone has roughly 1011 neu-

rons, [7, 9]. It is noteworthy that the number of distinct cell types in human body

is around 200, and this number is as low as 13–15 for Hydra, which is a predatory

animal with regenerative ability, [33]. The extremely complex structural and behav-

ioural architecture of biological organisms is not through intelligent design, but the

heavy reuse of cells and genes. Biology achieves a highly scalable mapping via mul-

ticellularity and gene reuse; each cell has the same copy of genotype, and each gene

in a given genotype may have different effects depending on when and where they

are expressed. Also, the same set of genes are used over and over again in building

phenotypic structures of similar characteristics, e.g. limbs in animals. Taking inspi-

ration from biology, the idea of multicellularity in achieving complex systems in EC

has been implemented by many researchers. Although the ability of artificial devel-

opment to be scalable has been demonstrated only in simple experiments, [3, 16,

20, 26, 41, 56], successful use of development in the design of systems at desired

complexities that tackle real world problems is yet to be achieved.

1.2.2 Fault Tolerance

Biological organisms are robust creatures that can achieve a very high level of fault

tolerance. The regenerative ability of plants is an excellent example of fault tolerance

and recovery in biological organisms. Plants cells are classified as totipotent (the

ability of a cell to grow and generate all the specialized parts of an organism and

revert back to this stem-cell capability even after specialisation), hence, under the

right conditions any plant cell would theoretically be able to grow into a fully devel-

oped adult plant [44]. Another example of a simple organism that features amazing

regenerative properties is the Hydra, which has the ability to regenerate even when

cut in half, producing two hydrae [4]. One of the main reasons for the type of repair

and regeneration that happens in biological organisms is because of the lack of a

central control mechanism. The ability of multiple cells to coordinate and organize

themselves using various communication mechanisms provide an emergent adaptiv-

ity and fault tolerance to the whole organism.

Fault tolerant systems in electronics and computer science are highly important

for remote, safety critical and hazardous applications. Almost all of the widely used

techniques (N-modular redundancy [NMR] being the most popular) in achieving

fault tolerance in electronics require a central control mechanism or a “golden” mem-

ory which is assumed to be failure-proof, [43]. A de-centralized multicellular archi-

tecture can provide the system designed with redundancy, allowing the destruction of

a number of cells before failure. In a multicellular design all cells are essentially iden-

tical to one another, hence a cell has the potential to change specialization and replace

a damaged cell in order to recover from faults. This multiple redundant behaviour

in development can be used to create a system free of a single point of failure if

344 T. Kuyucu et al.

each cellular structure is represented by an independent piece of hardware; hence

removing the weakest link present in traditional redundancy designs.

In addition to cell redundancy, biological organisms also have functional redun-

dancy in their genetic code. In biology this functional redundancy arising from dif-

ferent genetic codes is referred to as degeneracy. Edelman and Gally [15], define

degeneracy as; “the ability of elements that are structurally different to perform the

same function or yield the same output”, and they also note that degeneracy “is a

well known characteristic of the genetic code and immune systems.” Edelman and

Gally emphasize that degeneracy is a key mechanism for the robustness of com-

plex mechanisms and that it is almost directly related with complexity. In biological

organisms degeneracy is present at almost every functional level; from genes to high

level behaviours like body movements and social behaviours, [15].

A developmental model can provide degeneracy both at the genotypic and phe-

notypic levels [40]. Due to the indirect mapping of genes to the target phenotype,

a developmental system can have multiple genes that perform the same function.

Depending on their location in the organism each cell would have a different gene

activity, but some of these cells would still have the same phenotypic functionality.

Degeneracy in a developmental system can provide a powerful fault tolerance mech-

anism, as it provides robustness to genetic perturbations. A well explained example

of gene redundancy in biology is the control of platelet activation by collagen [54].

Artificial development has been shown to provide a smoother degradation to per-

turbed genetic code, [2, 42]; when the genetic code of an artificial organism is altered

before mapping the genome to the respective phenotype, the damaged genome will

provide a phenotype that shows a more “graceful” degradation for a developmental

system in comparison to direct mapping of the genome. In fact in some cases it was

shown that a small number of gene knock-outs did not affect the overall result of gene

expression, [40, 55]. It has also been demonstrated that a developmental system may

be able to recover from transient changes in the phenotype, despite sometimes not

being explicitly trained to do so, [17, 46, 49, 55, 56]. However in order to bene-

fit from the fault recovery properties of development, the developmental mechanism

needs to be continuously running even when a fully functional phenotype is reached.

In other words, the developmental system needs to have reached an attractor3
that

represents the desired phenotype. The ability of a developmental system to keep its

phenotype unchanged after it has reached the target phenotypic form (i.e. represent

the target phenotype as an attractor) is termed stability. To achieve a target phenotype

at an attractor state of a developmental system (i.e. finding a stable system) can be

a harder task than achieving the target phenotype at a transient state. Unfortunately,

solutions that occur at transient states are of no use for fault tolerance or adaptivity.

3
An attractor is a single (point attractor) or a group of states (cyclic attractor) to which a dynamical

system settles after a time.

Artificial Development 345

1.2.3 Adaptivity

Adaptive behaviour of biological organisms is another attractive quality that is aimed

to be captured in EC. Designing systems that change their structure to adapt to their

environments is a very challenging task, especially when a lot of the environmental

factors can vary unpredictably. Multicellular organisms achieve adaptivity smoothly,

and they change their structures or behaviours to fit the given environment for maxi-

mum survival chances. The stability of a multi cellular organism directly relies on the

internal stability of its cells, i.e. the Gene Regulatory Network (GRN), as explored

by [32]. An example of adaptivity in biology is a changing plant structure depending

on sunlight: if a plant “discovers” that there is an obstruction in the way that blocks

the sun, the plant will grow in a way to maximise sunlight exposure.

It is intended that by modelling multicellular development an adaptive system

will be achieved. However as mentioned in Sect. 1.2.2, in order to achieve an adap-

tive system the developmental system needs to be at a stable state when it achieves a

functional phenotype. Once a stable state is achieved, the developmental process can

run continuously in the background and adapt to environmental changes. A develop-

mental system can have several attractors, [67]; in an ideal case a dramatic change in

the environment making the current configuration ineffective will cause the devel-

opmental system move to another attractor that would suit the current environmental

conditions better.

Again, degeneracy in a developmental system can also allow the system to be

more adaptive, because of the existence of multiple implementations of the same

function. For example a change in an environmental condition may affect the acti-

vation of some genes in a developmental system, however the functionality of the

organism would still be protected due to the existence of other genes that serve the

same purpose as the affected genes. Systems with high degree of degeneracy have

been observed to be very adaptable in biology as well, and favoured by natural selec-

tion, [15].

2 Artificial Developmental Systems

In the literature, artificial developmental systems have sometimes been classified

into two categories as: Grammatical or Cell Chemistry developmental models, [8,

17, 18, 60]. However, there are developmental models that do not fit either of these

classifications, e.g. in [23], the developmental system is designed in a way to func-

tion without the use of cell chemistry but the developmental model is far from a

grammatical implementation. The reason for classifying developmental models into

Grammatical and Cell Chemistry is because the grammatical models of develop-

ment follow a high level abstraction of biology, whereas the models that involve cell

chemistry follow a low-level abstraction of biological development, and these two

models of development cover most of the artificial developmental models present in

346 T. Kuyucu et al.

the literature. In order to make a similar but slightly clearer distinction amongst the

present developmental models, we categorize the developmental systems as either

Macro- or Micro-model developmental systems.

2.1 Macro-Model Developmental Systems

A macro-model developmental system models the biological development at a high

abstraction level, considering the overall behaviour of a biological organism or a

developmental mechanism. A macro-model system’s implementation is largely dif-

ferent to its biological inspiration, since the aim is to model the characteristic behav-

iour of the target developmental system/mechanism. Simply put a macro-model

developmental system does not model individual cells in a multi-cellular organism,

but provides a developmental behaviour in the system by the inclusion of time and

ability to self modify over time. A widely known example of a macro-model develop-

mental system is the Lindenmayer Systems (L-Systems) [45]. L-Systems, a parallel

rewriting system, was introduced for modelling the growth processes of plant devel-

opment [45]. L-Systems model plant development using a set of rules via a gram-

mar implementation, thus aiming to imitate biological development of plants using

recursive functions. L-Systems have been applied to circuit design problems [25,

35], neural networks [5], and 3D morphology design [29, 58]. Another example of a

grammatical developmental system is Cellular Encoding (CE) [21]. CE was designed

to be used in the design of neural networks. Using CE, a neural net would learn recur-

rence and solve large parity problems such as a 51-bit parity problem [21].

An example of a non-grammatical macro-model developmental system is self-

modifying Cartesian Genetic Programming (CGP), which models a CGP system that

could alter its own structure over time after the evolution phase is complete [27]. One

of the big advantages of using a macro-model developmental system is that they are

generally computationally more efficient when compared to a micro-model develop-

mental system. However, exceptions such as Cellular Automata (CA) [70], which is

a computationally efficient to implement micro-model developmental system.

2.2 Micro-Model Developmental Systems

As a lower level model of the biological development, a micro-model developmen-

tal system uses a bottom-up approach to modelling development. This category of

developmental systems can also be seen as the more biologically plausible imple-

mentations, which imitate biological development at a cellular level, see Fig. 2.

Hence a micro-model developmental system involves the modelling of individual

cells and their interactions, which together make up a whole organism. Each cell

in a micro-model developmental system has the same genotype and inter-cellular

Artificial Development 347

Fig. 2 A micro-model developmental system considers the detailed process of multicellular devel-

opment from the inner workings of a cell to its communication mechanisms with its neighbours

communication allows cells to specialize. All these cells together would form an

organism which is the end product of development after each developmental step.
4

Even though closer to biology, a micro-model developmental system does not

necessarily model biological development accurately. In fact there is much work in

this type of artificial development with diverse design constraints, those that model

biology closely [16, 19, 30, 34, 39], those that aim to model biological development

in a simplistic fashion [56, 62, 70], and models that are “in-between”, [13, 20, 23,

48]. Mimicking biology closely should provide a developmental system with high

evolvability, [3, 11], whereas a simplistic model would reduce the number of com-

plicated processes that exist in biological development, reducing simulation times

drastically. The first and one of the simplest examples to micro-model developmental

4
The time it takes to carry out all the developmental processes—such as the processing of the

genome and cell signalling for all cells– once, is referred to as a developmental step.

348 T. Kuyucu et al.

system is CA, [70]. CAs model biological systems with a grid of cells that determine

their states using the local information from their neighbours and a global rule; this

way, CAs effectively model inter-cellular communication and cell specialization.

3 Constructing an Artificial Developmental Model

Biological processes such as evolution and development are intricate systems. These

partially understood processes provide engineers and computer scientists with new

inspirations for new design techniques and computing paradigms. However, using

models of these processes to achieve effective design methods is arduous. In order

to exploit the full potential of these approaches, one needs to carefully construct

their system. Each mechanism, however small, modelled is an added complexity,

and another bias towards a certain type of problem, [40].

3.1 Ingredients

The process of designing an effective developmental model for EC reduces to imple-

menting and sculpting the right biological mechanisms in an effective way. This aims

to achieve an evolvable developmental system while maintaining a system that is not

constrained or overwhelmed by undesirable biological processes. But how can we

know which processes are useful and which are not? Implementations of artificial

development in EC has been proposed since early 90’s; e.g., [12, 19]. But most of the

developmental models designed still rely on educated guesses, and various assump-

tions on the suitability of the biological developmental processes for EC applications.

The need to investigate the behaviour and effective ways of implementing artificial

development is already acknowledged by various researchers, [13, 22, 23, 60, 61].

Due to the lack of a solid understanding of (ADS)s, the practical use of them is still

in infancy and many recent works still investigate and reproduce the known benefits

and properties of ADSs in order to achieve a better understanding, [10, 28, 47, 53,

57].

Before the components of a developmental system are explored, the approach to

modelling the developmental system needs to evaluated. Is macro-modelling appro-

priate for the problem at hand? Determining the right components of a successful

developmental system starts with acquiring detailed knowledge of the problem that

developmental system aims to solve. Properties such as scalability and adaptivity

can often be conflicting, and mechanisms that favour one may often weaken the

other [40]. Furthermore, the type symmetry (or asymmetry) that exists in the sys-

tem also requires different dynamics from the developmental system and thus favours

only some of the mechanisms available to a developmental system. In fact a pre-study

of the problem being solved with the candidate system and the available mechanisms

would be necessary for complex problems [40].

Artificial Development 349

4 Case Studies

A detailed investigation into some of the poorly understood mechanisms and design

constraints can be found in [42]. In this study, two dimensional patterns with dif-

ferent properties are used as experimental problems. The study shows that the type

of problem being solved is highly correlated to the use of particular mechanisms.

Conclusions then can be drawn from the resulting behaviour of a particular mecha-

nism. The study explores the success of evolution in training an ADS, and concludes

that the success of evolution is more likely when the evolution itself is given a larger

control over the overall behaviour of the ADS. [42] provide a study in some of the

common mechanisms used in micro-model developmental systems, such as cell sig-

nalling, chemical interactions, gene expression mechanisms, etc., where using the

right combination of mechanisms provided up to four-fold improvement in success

rates.

The study draws important conclusions on some of the fundamental mechanisms

employed in ADSs. Understanding the capabilities of the mechanisms that accom-

pany ADSs is an important step towards harnessing the full potential of ADSs for

designing and optimizing engineering problems. With the advancing technology and

a better understanding of what is needed from evolutionary computation, ADSs have

the potential to be used in the evolutionary design of real life systems.

The conclusions drawn from this study led to the successful implementation of

the practical applications, the following subsections detail a few examples.

4.1 Robot Controller

Navigation of a robotic system is a practical example with diverse challenges, which

ADSs can be successfully applied. In [66], an ADS based controller is evolved, which

is tested in simulation as well as on a real robot. The evolved control system is demon-

strated to be robust and adaptive. The task is to achieve obstacle avoidance and recon-

naissance; a developmental controller is evolved in evolution using the map shown

in Fig. 3a.

In order to investigate whether the controller exhibits at least to a certain extent

adaptive behaviour, it is tested in simulation on three different maps, shown in

Fig. 3a, b, c. Despite these maps being considerably different, the robot successfully

navigates around the obstacles and explores the map quite efficiently.

The controller evolved in Fig. 3a and tested in Fig. 3b, c, d, is also tested without

alterations on a real robot, as shown in Fig. 3f. It is observed that the robot is trapped

for an intial duration in the lower-right corner of the map shown in Fig. 3e, before

it successfully resumes its primary wall-following behaviour, from then on without

getting stuck in similar situations again, and navigates through the map. This demon-

strates adaptation to the new environment when the controller is first deployed on a

real robot. The described behaviour is achieved by evolving a developmental system

350 T. Kuyucu et al.

(a) The map where the ADS
controller was trained

(b) Cave (c) U-Maze

(d) Distributed Obstacles (e) Trace of the real e-puck. (f) E-puck under test.

Fig. 3 The figure shows a comparison of the behaviour of the same ADS based controller in dif-

ferent maps. The red and green lines show the robot’s traces, and yellow marks show the collision

points [66]

that controls the robots through the maze while being influenced by sensor readings.

The ADS is allowed to run continuously in order to provide the adaptive behaviour

demonstrated in the experiments.

4.2 Image Compression Using Artificial Development

One of the most prominent applications for studying ADSs is pattern generation and

pattern formation, [13, 18, 45, 48]. The idea is simple; a two-dimensional array

of identical entities (cells) achieve representation of a 2D pattern which is defined

through the cell states or protein concentrations. This simple application can be

extended to natural images, where instead of using the cell states as the only rep-

resentation of images, the states at various points in the developmental time-line are

used to represent parts of an image. The work by [65] introduces this application of

ADSs to achieving competitive image compression rates.

Artificial Development 351

Fig. 4 Developing images as 8× 8 tiles, where each tile is obtained at a certain developmental

step [65]

An ADS is trained in a manner such that the resulting two dimensional array of

cells form a pattern that matches a given set of target patterns as closely as possible at

arbitrary developmental steps. For a defined starting point, the developed organisms

are enumerated according to the order in which they occur while running the ADS.

Hence, a sequence of complex states can be represented by the ADS and a sequence

of integers. If the pattern at each developmental step is interpreted as a tile of a larger

image, the image will be (re-)constructed during the developmental process. From a

data compression point of view this is ideal since the states can become arbitrarily

complex while the amount of compressed data remains constant for a fixed number

of developmental steps. Figure 4 demonstrates the process of developing an image

visually. The image is split into smaller tiles that fit the size of the developmental

organism. The state of each cell at a certain developmental step represents a pixel of

the whole image. The resulting tiles from each determined developmental step are

then put together to form the complete image.

However, there are two major issues with this kind of data compression: first,

optimisation of a dynamic system is time consuming and requires a large amount

of computation. Second, it is not necessarily guaranteed that an arbitrary set of data

can be exactly matched by any implementation of an ADS. While dynamic systems

are probably not practical for lossless data compression, this work demonstrates the

application of ADSs to lossy image data compression. In the latter case, it is not

necessary to encode a perfect version of the input data, as long as sufficient image

quality is achieved. In cases where smaller amounts of data are more important than

maximum quality, the compression rate can be increased at the cost of losing infor-

mation, i.e. losing image detail.

The resulting performance of the ADS as an image compression algorithm is

impressive as it achieves better image compression than the most widely used image

compression format: JPEG. The Genetically Compressed Images (GCI)—those that

are the result of the evolved ADS—are shown side by side to JPEG compression of

the same image in Fig. 5. With the shown image a 95% quality JPEG requires 150

kB of data storage, while the 6-pass GCI requires only 37 kB. The major drawback

of the ADS based compression is the large amount of time needed for achieving the

image compression (10 h on a 2.8 GHz Core2 desktop PC).

352 T. Kuyucu et al.

(a) JPG qual. 10% (b) JPG qual. 50% (c) JPG qual. 90%

(d) GCI 1-pass (e) GCI 4-passes (f) GCI 6-passes

Fig. 5 Comparison of JPG and GCI at low, medium and high quality settings [65]

The ADS’s ability to achieve scalable designs is used in an innovative manner to

achieve image compression rates not seen before.

5 Concluding Remarks

Artificial developmental systems present an attractive and advantageous medium

to evolving systems that can solve difficult and complex problems by offering an

evolvable genotypic landscape. There are vast amount of different approaches to

modelling multicellular development, and none provides a silver bullet. To the con-

trary, each model with each configuration provides a different evolutionary land-

scape that makes its application suitable only for a selection of problems. Under-

standing the desired properties (and hence the application), and how to configure the

ADS to meet those properties best is the key to a successful ADS. Prior to achiev-

ing the example applications presented in Sect. 4, it was necessary to go through a

sequence of investigations in order to find the most suitable developmental mecha-

nisms and appropriate parameters. It was also crucial to carefully study the applica-

tion at hand in order to develop an artificial-development friendly genetic represen-

tation. It was only then when the full power of a generative genotype-to-phenotype

mapping could be harnessed and achieve human-competitive results. Just like their

Artificial Development 353

biological example—and unlike any direct mapping ever will—artificial develop-

mental mappings of genetic encoding to phenotype representing a solution are capa-

ble of learning and exploiting non-obvious and non-trivial similarities, regularities

and patterns of a search space or solution. To conclude, therefore, it can be said that

even though not as straight forward and one-size-fits all to design, generative map-

pings and artificial developmental processes hold the key to unlock efficient access

to otherwise combinatorially infeasible large search spaces of complex, large-scale

problems.

References

1. Banzhaf, W., Beslon, G., Christensen, S., Foster, J.A., Kepes, F., Lefort, V., Miller, J.F., Rad-

man, M., Ramsden, J.J.: Guidelines: from artificial evolution to computational evolution: a

research agenda. Nat. Rev. Genet. 7, 729–735 (2006)

2. Bentley, P.: Investigations into graceful degradation of evolutionary developmental software.

Nat. Comput. Int. J. 4(4):417–437 (2005). doi:10.1007/s11047-005-3666-7

3. Bentley, P., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an

evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation

Conference, pp. 35–43. Morgan Kaufmann, Orlando, Florida, USA. http://citeseer.ist.psu.edu/

bentley99three.html (1999)

4. Bode, H.R.: Head regeneration in hydra. Dev. Dyn. 226, 225–236 (2003)

5. Boers, E.J., Kuiper, H.: Biological Metaphors and the Design of Modular Artificial Neural

Networks. Master’s thesis, Leiden University (1992)

6. Bonner, J.T.: The origins of multicellularity. Integr. Biol. Iss. News Rev. 1(1):27–36 (1998)

7. Braitenberg, V.: Brain size and number of neurons: an exercise in synthetic neuroanatomy. J.

Comput. Neurosci. 10(1):71–77 (2001)

8. Chavoya, A.: Foundations of Computational, Intelligence Volume 1, Studies in Computational

Intelligence, vol. 201/2009, Springer Berlin / Heidelberg, Chap Artificial Development, pp.

185–215 (2009)

9. Claverie, J.M.: What if there are only 30,000 human genes? Science 291(5507):1255–1257

(2001)

10. Cussat-Blanc, S., Harrington, K., Pollack, J.: Gene regulatory network evolution through aug-

menting topologies. IEEE Trans. Evol. Comput. 19(6):823–837 (2015). doi:10.1109/TEVC.

2015.2396199

11. Dawkins, R.: The evolution of evolvability. In: Kumar, S., Bentley, P. (eds.) On Growth Form

and Computers, pp. 239–255. Elsevier Academic Press (2003)

12. Dellaert, F., Beer, R.D.: Toward an evolvable model of development for autonomous agent

synthesis. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV, MIT Press Cambridge, pp. 246–

257. http://citeseer.ist.psu.edu/dellaert94toward.html (1994)

13. Devert, A., Bredeche, N., Schoenauer, M.: Robust multi-cellular developmental design. In:

GECCO ’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com-

putation, ACM, New York, NY, USA, pp. 982–989 (2007). doi:10.1145/1276958.1277156

14. Doursat, R., Sayama, H., Michel, O.: A review of morphogenetic engineering. Nat. Comput.

12(4):517–535 (2013). doi:10.1007/s11047-013-9398-1

15. Edelman, G.M., Gally, J.A.: Degeneracy and complexity in biological systems. Proc. Nat.

Acad. Sci. U.S.A. 98(24):13,763–13,768 (2001). doi:10.1073/pnas.231499798

16. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene

expression. In: Proceedings of 4th European Conference on Artificial Life, pp. 205–213 (1997)

http://dx.doi.org/10.1007/s11047-005-3666-7
http://citeseer.ist.psu.edu/bentley99three.html
http://citeseer.ist.psu.edu/bentley99three.html
http://dx.doi.org/10.1109/TEVC.2015.2396199
http://dx.doi.org/10.1109/TEVC.2015.2396199
http://citeseer.ist.psu.edu/dellaert94toward.html
http://dx.doi.org/10.1145/1276958.1277156
http://dx.doi.org/10.1007/s11047-013-9398-1
http://dx.doi.org/10.1073/pnas.231499798

354 T. Kuyucu et al.

17. Federici, D.: Using embryonic stages to increase the evolvability of development. In: Pro-

ceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004), Springer

(2004)

18. Flann, N., Jing, H., Bansal, M., Patel, V., Podgorski, G.: Biological development of cell pat-

terns : characterizing the space of cell chemistry genetic regulatory networks. In: 8th European

conference (ECAL), Springer, Berlin, Heidelberg (2005)

19. Fleischer, K., Barr, A.H.: A simulation testbed for the study of multicellular development:

the multiple mechanisms of morphogenesis. In: Third Artificial Life Workshop Santa Fe, pp.

389–416. New Mexico, USA. http://citeseer.ist.psu.edu/fleischer93simulation.html (1993)

20. Gordon, T.G.W.: Exploiting Development to Enhance the Scalability of Hardware Evolution.

Ph.D. thesis, University College London (2005)

21. Gruau, F.: Neural network synthesis using cellular encoding and the genetic algorithm.

Ph.D. thesis, Ecole Normale Supirieure de Lyon, France. http://citeseerx.ist.psu.edu/viewdoc/

summary? 10.1.1.29.5939 (1994)

22. Haddow, P., Hoye, J.: Investigating the effect of regulatory decisions in a development model.

In: IEEE Congress on Evolutionary Computation CEC ’09, pp. 293–300 (2009). doi:10.1109/

CEC.2009.4982961

23. Haddow, P.C., Hoye, J.: Achieving a simple development model for 3d shapes: are chemicals

necessary? In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com-

putation (GECCO), ACM, New York, NY, USA, pp. 1013–1020 (2007). doi:10.1145/1276958.

1277160

24. Haddow, P.C., Tufte, G.: Bridging the genotype-phenotype mapping for digital fpgas. In: EH

’01: Proceedings of the The 3rd NASA/DoD Workshop on Evolvable Hardware, IEEE Com-

puter Society, Washington, DC, USA, p. 109 (2001)

25. Haddow, P.C., Tufte, G., van Remortel, P.: Shrinking the genotype: L-systems for EHW? In:

ICES, pp. 128–139. http://citeseer.ist.psu.edu/554036.html (2001)

26. Harding, S., Miller, J.F., Banzhaf, W.: Self modifying cartesian genetic programming: Par-

ity. In: 2009 IEEE Congress on Evolutionary Computation, pp. 285–292 (2009). doi:10.1109/

CEC.2009.4982960

27. Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying cartesian genetic programming. In:

GECCO ’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com-

putation, ACM, New York, NY, USA, pp. 1021–1028 (2007). doi:10.1145/1276958.1277161

28. Harrington, K.I.: A circuit basis for morphogenesis. Theor. Comput. Sci. 633:28–36 (2016).

doi:10.1016/j.tcs.2015.07.002

29. Hornby, G.S., Pollack, J.B.: The Advantages of Generative Grammatical Encodings for Phys-

ical Design. IEEE Press, In. In Congress on Evolutionary Computation (2001)

30. Jakobi, N.: Harnessing morphogenesis. In: International Conference on Information Processing

in Cells and Tissues, pp. 29–41. http://citeseer.ist.psu.edu/jakobi95harnessing.html (1995)

31. Kalganova, T.: Bidirectional incremental evolution in extrinsic evolvable hardware. In: Lohn,

J., Stoica, A., Keymeulen, D. (eds.) The Second NASA/DoD Workshop on Evolvable Hard-

ware, pp. 65–74. IEEE Computer Society, Palo Alto, California (2000)

32. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J.

Theor. Biol. 22(3):437–467 (1969). doi:10.1016/0022-5193(69)90015-0

33. Kauffman, S.: At Home in the Universe: The Search for the Laws of Self-Organization and

Complexity. Oxford University Press (1996)

34. Kitano, H.: A simple model of neurogenesis and cell differentiation based on evolutionary

large-scale chaos. Artif. Life 2(1):79–99 (1995)

35. Kitano, H.: Building complex systems using developmental process: an engineering approach.

In: ICES ’98: Proceedings of the Second International Conference on Evolvable Systems,

Springer, London, UK, pp. 218–229 (1998)

36. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA, USA (1992)

37. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press,

Cambridge, MA, USA (1994)

http://citeseer.ist.psu.edu/fleischer93simulation.html
http://citeseerx.ist.psu.edu/viewdoc/summary?
http://citeseerx.ist.psu.edu/viewdoc/summary?
http://dx.doi.org/10.1109/CEC.2009.4982961
http://dx.doi.org/10.1109/CEC.2009.4982961
http://dx.doi.org/10.1145/1276958.1277160
http://dx.doi.org/10.1145/1276958.1277160
http://citeseer.ist.psu.edu/554036.html
http://dx.doi.org/10.1109/CEC.2009.4982960
http://dx.doi.org/10.1109/CEC.2009.4982960
http://dx.doi.org/10.1145/1276958.1277161
http://dx.doi.org/10.1016/j.tcs.2015.07.002
http://citeseer.ist.psu.edu/jakobi95harnessing.html
http://dx.doi.org/10.1016/0022-5193(69)90015-0

Artificial Development 355

38. Kumar, S., Bentley, P. (eds.): On Growth. Elsevier Academic Press, Form and Computers

(2003a)

39. Kumar, S., Bentley, P.J.: Biologically plausible evolutionary development. In: In Proceedings

of ICES 03, the 5th International Conference on Evolvable Systems: From Biology to Hard-

ware, pp. 57–68 (2003b)

40. Kuyucu, T.: Evolution of Circuits in Hardware and the Evolvability of Artificial Development.

Ph.D. thesis, The University of York (2010)

41. Kuyucu, T., Trefzer, M., Miller, J.F., Tyrrell, A.M.: A scalable solution to n-bit parity via

articial development. In: 5th International Conference on Ph.D. Research in Microelectronics

& Electronics (2009)

42. Kuyucu, T., Trefzer, M.A., Miller, J.F., Tyrrell, A.M.: An investigation of the importance of

mechanisms and parameters in a multicellular developmental system. IEEE Trans. Evolution.

Comput. 15(3):313–345 (2011). doi:10.1109/TEVC.2011.2132724

43. Lala, P.K.: Self-checking and Fault-Tolerant Digital Design. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA (2001)

44. Leyser, O., Day, S.: Mechanisms in Plant Development. Blackwell (2003)

45. Lindenmayer, A.: Mathematical models for cellular interactions in development. I. filaments

with one-sided inputs. J. Theor. Biol. 280–299 (1968)

46. Liu, H., Miller, J.F., Tyrrell, A.M.: Intrinsic evolvable hardware implementation of a robust

biological development model for digital systems. In: EH ’05: Proceedings of the 2005

NASA/DoD Conference on Evolvable Hardware, IEEE Computer Society, Washington, DC,

USA, pp. 87–92 (2005). doi:10.1109/EH.2005.32

47. Lopes, R.L., Costa, E.: Rencode: a regulatory network computational device. In: Genetic Pro-

gramming: 14th European Conference, EuroGP, pp. 142–153 (2011)

48. Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-repair.

In: 7th European Conference on Artificial Life, Springer LNAI, pp. 256–265 (2003)

49. Miller, J.F.: Evolving a self-repairing, self-regulating, french flag organism. Genetic and Evo-

lutionary Computation GECCO, pp. 129–139. Springer, Berlin / Heidelberg (2004)

50. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Genetic Programming, Proceed-

ings of EuroGP’2000, Springer, pp. 121–132 (2000)

51. Miller, J.F., Thomson, P.: (2003) A developmental method for growing graphs and circuits. In:

Evolvable Systems: From Biology to Hardware, 5th International Conference, pp. 93–104

52. Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.: Hardware evolu-

tion at function level. In: PPSN IV: Proceedings of the 4th International Conference on Parallel

Problem Solving from Nature. Springer, London, UK, pp. 62–71 (1996)

53. Öztürkeri, C., Johnson, C.G.: Self-repair ability of evolved self-assembling systems in cellular

automata. Genet. Prog. Evol. Mach. 15(3):313–341 (2014). doi:10.1007/s10710-014-9216-2

54. Pearce, A.C., Senis, Y.A., Billadeau, D.D., Turner, M., Watson, S.P., Vigorito, E.: Vav1 and

vav3 have critical but redundant roles in mediating platelet activation by collagen. Biol. Chem.

279(53):955–953, 962 (2004)

55. Reil, T.: Dynamics of gene expression in an artificial genome - implications for biological and

artificial ontogeny. In: ECAL ’99: Proceedings of the 5th European Conference on Advances

in Artificial Life, Springer, London, UK, pp. 457–466 (1999)

56. Roggen, D.: Multi-cellular Reconfigurable Circuits: Evolution Morphogenesis and Learning.

Ph.D. thesis, EPFL. http://citeseer.ist.psu.edu/roggen05multicellular.html (2005)

57. Schramm, L., Jin, Y., Sendhoff, B.: Evolution and analysis of genetic networks for stable cel-

lular growth and regeneration. Artific. Life 18(4):425–444 (2012)

58. Sims, K.: Evolving 3d morphology and behavior by competition. Artif. Life 1(4):353–372

(1994)

59. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development.

Gen. Prog. Evolv. Mach. 8(2):131–162 (2007). doi:10.1007/s10710-007-9028-8

60. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2):93–130

(2003). doi:10.1162/106454603322221487

http://dx.doi.org/10.1109/TEVC.2011.2132724
http://dx.doi.org/10.1109/EH.2005.32
http://dx.doi.org/10.1007/s10710-014-9216-2
http://citeseer.ist.psu.edu/roggen05multicellular.html
http://dx.doi.org/10.1007/s10710-007-9028-8
http://dx.doi.org/10.1162/106454603322221487

356 T. Kuyucu et al.

61. Steiner, T., Jin, Y., Sendhoff, B.: A cellular model for the evolutionary development of light-

weight material with an inner structure. In: GECCO ’08: Proceedings of the 10th annual con-

ference on Genetic and evolutionary computation, ACM, New York, NY, USA, pp. 851–858

(2008). doi:10.1145/1389095.1389260

62. Tempesti, G., Mange, D., Petraglio, E., Stauffer, A., Thoma, Y.: Developmental processes in

silicon: an engineering perspective. In: EH ’03: Proceedings of the 2003 NASA/DoD Confer-

ence on Evolvable Hardware, IEEE Computer Society, Washington, DC, USA, pp. 255–264

(2003)

63. Torresen, J.: A divide-and-conquer approach to evolvable hardware. In: ICES ’98: Proceedings

of the Second International Conference on Evolvable Systems, Springer, London, UK, pp. 57–

65 (1998)

64. Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: A model for intrinsic artificial develop-

ment featuring structural feedback and emergent growth. In: IEEE Congress on Evolutionary

Computation (2009)

65. Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrel, A.M.: Image compression of natural images

using artificial gene regulatory networks. In: GECCO’10 (2010a)

66. Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: Evolution and analysis of a robot con-

troller based on a gene regulatory network. In: The 9th International Conference on Evolvable

Systems: From Biology to Hardware (2010b)

67. Tufte, G.: The discrete dynamics of developmental systems. In: Evolutionary Computation,

2009. CEC ’09. IEEE Congress on, pp. 2209–2216 (2009). doi:10.1109/CEC.2009.4983215

68. Vassilev, V.K., Miller, J.F.: Scalability problems of digital circuit evolution: Evolvability and

efficient designs. In: EH ’00: Proceedings of the 2nd NASA/DoD workshop on Evolvable Hard-

ware, IEEE Computer Society, Washington, DC, USA, pp. 55–64 (2000)

69. Walker, J., Miller, J.: Evolution and acquisition of modules in cartesian genetic programming.

EuroGp, Springer, Berlin, Heidelberg 3003, 187–197 (2004)

70. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign, IL, USA (2002)

71. Wolpert,, L., Beddington, R., Jessell, T.M., Lawrence, P., Meyerowitz, E.M., Smith, J.: Prin-

ciples of Development. Oxford University Press (2002)

http://dx.doi.org/10.1145/1389095.1389260
http://dx.doi.org/10.1109/CEC.2009.4983215

Computers from Plants We Never Made:
Speculations

Andrew Adamatzky, Simon Harding, Victor Erokhin, Richard
Mayne, Nina Gizzie, Frantisek Baluška, Stefano Mancuso
and Georgios Ch. Sirakoulis

Abstract Plants are highly intelligent organisms. They continuously make distrib-

uted processing of sensory information, concurrent decision making and parallel

actuation. The plants are efficient green computers per se. Outside in nature, the

plants are programmed and hardwired to perform a narrow range of tasks aimed

to maximize the plants’ ecological distribution, survival and reproduction. To ‘per-

suade’ plants to solve tasks outside their usual range of activities, we must either

choose problem domains which homomorphic to the plants natural domains or mod-

ify biophysical properties of plants to make them organic electronic devices. We

discuss possible designs and prototypes of computing systems that could be based

A. Adamatzky (✉) ⋅ S. Harding ⋅ R. Mayne ⋅ N. Gizzie

Unconventional Computing Centre, UWE Bristol, UK

e-mail: andrew.adamatzky@uwe.ac.uk

S. Harding

e-mail: slh@evolutioninmaterio.com

R. Mayne

e-mail: richard.mayne@uwe.ac.uk

N. Gizzie

e-mail: nina.gizzie@gmail.com

V. Erokhin

CNR-IMEM, Parma, Italy

e-mail: victor.erokhin@fis.unipr.it

F. Baluška

Institute of Cellular and Molecular Botany,

University of Bonn, Bonn, Germany

e-mail: baluska@uni-bonn.de

S. Mancuso

International Laboratory of Plant Neurobiology,

University of Florence, Firenze, Italy

e-mail: stefano.mancuso@unifi.it

G.Ch. Sirakoulis

Department of Electrical & Computer Engineering,

Democritus University of Thrace, Xanthi, Greece

e-mail: gsirak@ee.duth.gr

© Springer International Publishing AG 2018

S. Stepney and A. Adamatzky (eds.), Inspired by Nature, Emergence,

Complexity and Computation 28, https://doi.org/10.1007/978-3-319-67997-6_17

357

358 A. Adamatzky et al.

on morphological development of roots, interaction of roots, and analog electrical

computation with plants, and plant-derived electronic components. In morphologi-

cal plant processors data are represented by initial configuration of roots and con-

figurations of sources of attractants and repellents; results of computation are repre-

sented by topology of the roots’ network. Computation is implemented by the roots

following gradients of attractants and repellents, as well as interacting with each

other. Problems solvable by plant roots, in principle, include shortest-path, minimum

spanning tree, Voronoi diagram, 𝛼-shapes, convex subdivision of concave polygons.

Electrical properties of plants can be modified by loading the plants with functional

nanoparticles or coating parts of plants of conductive polymers. Thus, we are in

position to make living variable resistors, capacitors, operational amplifiers, multi-

pliers, potentiometers and fixed-function generators. The electrically modified plants

can implement summation, integration with respect to time, inversion, multiplica-

tion, exponentiation, logarithm, division. Mathematical and engineering problems

to be solved can be represented in plant root networks of resistive or reaction ele-

ments. Developments in plant-based computing architectures will trigger emergence

of a unique community of biologists, electronic engineering and computer scientists

working together to produce living electronic devices which future green computers

will be made of.

1 Introduction

Plants perform neuronal-like computation not just for rapid and effective adapta-

tion to an ever-changing physical environment but also for the sharing of informa-

tion with other plants of the same species and for communication with bacteria and

fungi [17–19, 21–25, 33]. In fact, plants emerge as social organisms. Roots are well

known for their ability to avoid dangerous places by actively growing away from

hostile soil patches. By using a vast diversity of volatiles, plants are able to attract or

repel diverse insects and animals, as well as to shape their biotic niche. The number

of volatile compounds released and received for plant communication is immense,

requiring complex signal-release machinery, and ’neuronal-like’ decoding appara-

tus for correct interpretation of received signals. The plant screens continuously and

updates diverse information about its surroundings, combines this with the inter-

nal information about its internal state and makes adaptive decisions that reconcile

its well-being with the environment [97–99]. Until now, detection and contextual

filtering of at least 20 biological, physical, chemical and electrical signals was doc-

umented. Plants discriminate lengths, directions and intensities of the signal. These

signals induce a memory that can last, depending on the signal, for hours or days, or

even up to years. Once learnt, these plant memories usually ensure a much quicker

and more forceful response to subsequent signalling [20, 98]. Via feedback cross-

talks, memories become associative, inducing specific cellular changes. Thus plant

behaviour is active, purpose-driven and intentional.

Computers from Plants We Never Made: Speculations 359

In last decade we manufactured a range of high-impact experimental prototypes

from unusual substrates. These include experimental implementations of logical

gates, circuits and binary adders employing interaction of wave-fragments in light-

sensitive Belousov-Zhabotinsky media [9, 40, 41], swarms of soldier crabs [63],

growing lamellypodia of slime mould Physarum polycephalum [6], crystallisation

patterns in ‘hot ice’ [2], jet streams in fluidic devices [83]. After constructing over 40

computing, sensing and actuating devices with slime mould [6] we turned our prying

eyes to plants. We thought that plant roots could be ideal candidates to make uncon-

ventional computing because of the following features. Roots interact with each of

their proximal neighbours and can be influenced by their neighbours to induce a

tendency to align the directions of their growth [23, 39, 78]. Roots, as already men-

tioned, communicate their sensory information within and between adjacent roots,

and other organisms like bacteria and fungi [14, 95]. This signalling and commu-

nicative nature of plant roots is very important for our major task to generate root-

based computing devices. Outside in Nature, almost all roots are interconnected into

huge underground root-fungal information networks, resembling the Internet. Roots

can be grown in wet air chambers, as well as within nutrition solutes which allow

accomplishment of relevant experiments. Roots can be isolated from seedlings using

root vitro cultures which can be maintained for several years. Each root apex acts

both as a sensory organ and as a brain-like command centre to generate each unique

plant/root-specific cognition and behaviour [18, 22, 25]. It is easy to manipulate root

behaviour using diverse physical and chemical cues and signals. Roots efficiently

outsource external computation by the environment via the sensing and suppression

of nutrient gradients. The induction of pattern type of roots behaviour is determined

by the environment, specifically nutrient quality and substrate hardness, dryness etc.

Moreover, roots are sensitive to illumination and show negative phototropism behav-

iour when exposed to light [35, 109], electric fields, temperature gradients, diverse

molecules including volatiles and, therefore, allow for parallel and non-destructive

input of information.

In 2012 Adamatzky, Baluska, Mancuso and Erokhin submitted ERC grant pro-

posal “Rhizomes”. They proposed to experimentally realize computing schemes via

interaction of plant roots and to produce electronic devices from living roots by coat-

ing and loading the roots with functional materials, especially conductive polymers.

This particular grant proposal was not funded however some ERC evaluators ‘bor-

rowed’ methods and techniques from the proposal and implemented them their own

laboratories. Most notable example is plant electronics ideas. They were originally

outlined in “Rhizomes” proposal yet borrowed from the proposal by some Nordic

fellows, who evaluated for ERC, and published without crediting original authors.

Realising that most ideas will be ‘stolen’ in a similar fashion sooner or later anyway,

we decided to disclose them in full.

360 A. Adamatzky et al.

2 Morphological Computation

In morphological phyto-computers, data are represented by initial configuration of

roots and configurations of sources of attractants and repellents. Results of compu-

tation are represented by the topology of the roots’ network. Computation is imple-

mented by the roots following gradients of attractants and repellents and interacting

with each other. Gradients of fields generated by configurations and concentrations of

attractants are an important prerequisite for successful programming of plant-based

morphological processors. Chemical control and programming of root behaviour can

be implemented via application of attractants and repellents in the roots’ growth

substrate and/or in the surrounding air. In particular, chemo-attractants are carbo-

hydrates, peptones, amino-acids phenylalanine, leucine, serine, asparagine, glycine,

alanine, aspartate, glutamate, threonine, and fructose, while chemo-repellents are

sucrose, tryptophan and salt. Plant roots perform complex computations by the fol-

lowing general mechanisms: root tropisms stimulated via attracting and repelling

spatially extended stimuli; morphological adaptation of root system architecture to

attracting and repelling spatially extended stimuli; wave-like propagation of informa-

tion along the root bodies via plant-synapse networks; helical nutation of growing

root apexes, patterns of which correlate with their environmental stimuli; competi-

tion and entrainment of oscillations in their bodies.

2.1 Shortest Path

Shortest path is a typical problem that every rookie in computer science solves, typ-

ically by coding the treasured Knuth algorithm. In a less formal definition, given

a space with obstacles, source and destination points, the problem is to calculate a

collision-free path from the source to the destination which is the shortest possi-

ble relative to a predefined distance metric. A root is positioned at the source, the

destination is labelled with chemo-attractants, obstacles are represented by source

of chemo-repellents and/or localised super-threshold illumination. The root-based

search could be implemented without chemicals but the source and destination loci

are represented by poles of AC/DC voltage/current and the obstacles by domains

of super-threshold illumination or sub-threshold humidity. The collision-free short-

est path is represented by the physical body of the root grown from the source to

the destination. Implementation of this task could require suppression of the roots

branching.

An experimental laboratory demonstration for showing feasibility of solving the

shortest path with roots was demonstrated in Baluska lab and published in [108].

Their experiments have been done in Y-junction, turned upside down because roots

are guided by gravity. Seeds were placed in the end of the vertical channel and attract-

ing or neutral substances in the slanted channels. When just a distilled water is placed

in both slanted channels, the roots from several seeds split arbitrarily between the

Computers from Plants We Never Made: Speculations 361

channels (Fig. 1a). When a chemo-attractant, e.g. diethyl ether, is placed in one of the

slanted channels all roots move into the channel with the chemoattractant (Fig. 1b).

Experiments on path finding by roots in mazes with more complex geometry than

Y-junction are proved to be inconclusive so far. In [5] we presented results of few

scoping experiments, see two illustrations in Fig. 2, yet reached no conclusive results.

When seeds are placed in or near a central chamber of a labyrinth their routes some-

what grow towards exit of the labyrinth. However, they often become stuck midway

and do not actually reach the exit. These findings have been confirmed also with

roots of Arabidopsis (unpublished data). The inconclusive results are possibly due

to the fact that we used gravity as the only guiding force to navigate the routes.

Collision-free path finding of plant roots was tested in further experiments in the

Unconventional Computing Centre (UWE, Bristol). We have 3D printed with nylon

Fig. 1 Plant roots select a path towards attractant. Reprinted from [108]. a Control experiment.

The maize roots are growing Y-maze with 1 ml of distilled water in both slanted channels. b Diethyl

ether (100 µl ether and 900 µl distilled water is added to left slanted channel

Fig. 2 Scoping experiments on routing plant roots in mazes. From [5]

362 A. Adamatzky et al.

templates of several countries, with elevation. Afterwards, we have been placing

seeds either at bare templates or templates coated by 2% phytogel. Templates were

kept in containers with very high humidity for up to several weeks. The templates

rested horizontally: there was no preferentially directions of root growth, neither

directed by gravity or light nor by chemo-attractants. Therefore roots explored the

space. A single maize seed placed at the position roughly corresponding to Min-

neapolis, produced several roots. The roots propagated in different from each other

directions thus optimising space explored (Fig. 3a). It seems that while navigating

tips of roots avoid elevations: sometimes they go around localised elevation, some-

times they are reflected from the extended elevation. In another series of experiments,

we scattered lettuce seeds on the template coated by phytogel. While scattering the

seeds we were aiming to roughly approximate density of USA population: regions

with high population density received a higher number of the seeds (Fig. 3b). We

observed that roots tend to cluster in groups (Fig. 3c). This is a well known phe-

nomenon [39] and groups of routes propagate along valleys or river beds, definitely

Fig. 3 Plant roots on 3D templates of the USA. a Maize seeds was placed at the location of the

template corresponding to Minneapolis (the location was chosen for no apparent reason). Photo is

made c. 7–10 days after inoculation. (bcd) Lettuce seeds were scatted in the USA template. b Dried

template with lettuce seedlings. c Agar film removed from the template. d Zoomed part of the agar

film representing eastern part of USA

Computers from Plants We Never Made: Speculations 363

avoiding any elevations (Fig. 3d). See also video of the experiment where lettuce

seedlings grow on the 3D template of Russia: https://drive.google.com/open?id=

0BzPSgPF_2eyUYlNlWEVwenVoLUU.

2.2 Spanning Trees

Minimum spanning tree is a skeleton architecture of communication, transport and

sensor networks. The Euclidean minimum spanning tree is a connected acyclic graph

which has minimum possible sum of edges’ lengths. To construct a spanning tree

we can represent points of a data set with sources of nutrients and place a plant

seed at one of the data points. The root will grow following gradients of the chemo-

attractants, branch in the sites corresponding to the planar data set and, eventually,

span the set with its physical body. In [7] we used live slime mould Physarum
polycephalum to imitate exploration of planets and to analyse potential scenarios

of developing transport networks on Moon and Mars. In that experiments we have

been inoculating the slime mould on 3D templates of the planets, at the positions

matching sites of Apollo or Soyuz landings; then we allowed the slime mould to

develop a network of protoplasmic tubes. We have repeated similar experiments but

used plant seeds instead of slime mould (Fig. 4). We found that roots could be as

good as the slime mould in imitating exploratory propagation, or scouting, in an

unknown terrains. The basic traits include maximisation of geographical distance

between neighbouring roots and avoidance of elevations.

Fig. 4 Plant roots explore surface of 3D template of Moon. a Lettuce. b Basil

https://drive.google.com/open?id=0BzPSgPF_2eyUYlNlWEVwenVoLUU
https://drive.google.com/open?id=0BzPSgPF_2eyUYlNlWEVwenVoLUU

364 A. Adamatzky et al.

2.3 Crowd Dynamics

Can we study crowd dynamics using roots growing in a geometrically constrained

environment? We printed a 3D nylon template of a part of Bristol city (UK), roughly

a rectangular domain 2 miles × 2 miles, centered at Temple Mead Train station. In

this template, blocks of houses were represented by elevations and streets as indenta-

tions. To imitate crowds we placed seeds of lettuce in large open spaces, mainly gar-

dens and squares (Fig. 5a). The templates were kept in a horizontal position in closed

Fig. 5 Imitation of crowd propagation with plant roots on a 3D template of Bristol, UK. a Seedlings

are growing in three open spaces, including Temple Gardens and Queen Square. b Example of

bouncing movement of root apex. c Root apexes form two swarms separated by an obstacle. d Two

apexes repel each other and choose different directions of propagation

Computers from Plants We Never Made: Speculations 365

transparent containers with very high moisture contents. Morphology of growing

roots were recorded in 7–14 days after start of experiments. We have made the fol-

lowing observations so far.

Root apexes prefer wider streets, they rarely (if ever) enter side streets, and nar-

rowing branches of main streets (Fig. 5b–d). This may be explained by the fact that

plants emit ultrasound [86] and root apexes can sense ultrasound waves [57]. Chances

are high that root apexes navigate in their constrained environment similarly to bats.

Therefore entries to narrow streets are not detected.

In absence of attractants and repellents root apexes propagate ballistically: after

entering a room a root grows along its original ‘velocity’ vector until it collides with

an obstacle. The apex reflects on collision. This is well illustrated in Fig. 5b.

Root apexes swarm when propagating along wide streets (Fig. 5c), their growth is

coherent, they often propagate in parallel, forming arrays of roots. Roots swarming is

a known fact [39] yet still a valuable observation in the context of imitating crowds.

Rays of apexes often dissipate on entering the wider space as illustrated in Fig. 5d.

As shown, two roots propagate westward along a narrow street. Then they enter main

street and collide with its west side. On ‘impact’, one root deflects north-west another

south-west.

2.4 Voronoi Diagram

Let P be a non-empty finite set of planar points. A planar Voronoi diagram of the set

P is a partition of the plane into such regions that, for any element of P, a region cor-

responding to a unique point p contains all those points of the plane which are closer

to p than to any other node of P. The planar diagram is combinatorially equivalent to

the lower envelope of unit paraboloids centred at points of P. Approximation of the

following Voronoi diagrams—planar diagram of point set, generalised of arbitrary

geometrical shapes, Bregman diagrams on anisotropic and inhomogeneous spaces,

multiplicative and furthest point diagrams—could be produced when implemented

in experimental laboratory conditions with roots.

The Voronoi diagram can be approximated by growing roots similarly to the

approximation of the diagram with slime mould [3] or precipitating reaction

-diffusion fronts [8]. We represent every point of a data set P by a seed. The branch-

ing root system grows omnidirectionally. When wave-fronts of growing root systems,

originated from different seeds, approach each other they stop further propagation.

Thus loci of space not covered by roots represent segments of the Voronoi cells. The

approach can be illustrated using a model of growing and branching pattern, devel-

oped by us originally to imitate computation with liquid crystal fingers [10]. Seeds

are places in data points (Fig. 6a), root growth fronts propagate (Fig. 6b, c), collide

with each other (Fig. 6d, e). The Voronoi diagram is approximated when the system

becomes stationary and no more growth occurs (Fig. 6f).

366 A. Adamatzky et al.

Fig. 6 Approximation of Voronoi diagram with growing and branching roots. See details of com-

puter model in [10]. Snapshots are taken at a 160, b 216, c 234, d 246, e 256 and f 331 step of

simulation

2.5 Planar Hulls

Computing a polygon defining a set of planar points is a classical problem of compu-

tational geometry. 𝛼-hull of a planar set P is an intersection of the complement of all

closed discs of radius 1/𝛼 that includes no points of P. 𝛼-shape is a convex hull when

𝛼 → ∞. We can represent planar points P with sources of long-distance attractants

and short-distance repellents and place a root outside the data set. The roots prop-

agate towards the data and envelop the data set with their physical bodies. We can

represent value of 𝛼 by attractants/repellents with various diffusion constants and

thus enable roots to calculate a wide range the shapes including concave and convex

hulls. This approach worked well in experiments on approximation of concave hull

with slime mould [4].

2.6 Subdivision of Concave Polygons

A concave polygon is a shape comprised of straight lines with at least one indenta-

tion, or angle pointing inward. The problem is to subdivide the given concave shape

Computers from Plants We Never Made: Speculations 367

Fig. 7 Illustration on how a polygon can be subdivided by plant roots. The original model refers

to liquid crystal fingers [10] but mechanisms of interaction could be the same. Snapshots are taken

at different stages of simulation, see details in [10]

into convex shapes. The problem can be solved with growing roots as follows. Roots

are initiated at the singular points of indentations (of the data polygon) and the roots

propagation vectors are co-aligned with medians of the corresponding inward angles.

Given a concave polygon, every indentation initiates one propagating root apex. By

applying an external electro-magnetic field we can make root apexes turning only left

(relatively to their vector of propagation). By following this “turn-left-if-there-is-no-

place-to-go” routine and also competing for the available space with each other, the

roots fill n − 1 convex domains. At least one convex domain will remain unfilled.

See an example of subdivision of a concave polygon in Fig. 7.

2.7 Logical Gates from Plant Roots

A collision-based computation, emerged from Fredkin-Toffoli conservative logic

[52], employs mobile compact finite patterns, which implement computation while

interacting with each other [1]. Information values (e.g. truth values of logical vari-

ables) are given by either absence or presence of the localisations or other parameters

of the localisations. The localisations travel in space and perform computation when

they collide with each other. Almost any part of the medium space can be used as a

wire. The localisations undergo transformations, they change velocities, form bound

states and annihilate or fuse when they interact with other localisations. Information

values of localisations are transformed as a result of collision and thus a computation

is implemented. In [11] we proposed theoretical constructs of logical gates imple-

mented with plant roots as morphological computing asynchronous devices. Values

of Boolean variables are represented by plant roots. A presence of a plant root at

a given site symbolises the logical TRUE, an absence the logical FALSE. Logical

functions are calculated via interaction between roots. Two types of two-inputs-two-

outputs gates are proposed [11]: a gate ⟨x, y⟩ → ⟨xy, x + y⟩ where root apexes are

guided by gravity and a gate ⟨x, y⟩ → ⟨xy, x⟩where root apexes are guided by humid-

ity. Let us show how a logical gate based on attraction of roots can be implemented.

368 A. Adamatzky et al.

x

q

j

y

p

(a)
1

1

0

0

(b)
0

0

1

1

(c)
1

1

1

0

(d)

x x

y
xy

(e)

Fig. 8 a Scheme of humidity gate with two inputs x and y and two outputs p send q: p = xy and

q = x. b x = 1 and y = 0. c x = 0 and y = 1. d x = 1 and y = 1. e Equivalent logic scheme. From

[11]

Root apexes are attracted to humidity [22] and a range of chemical compounds [15,

62, 89, 92, 107, 108]. A root apexes grow towards the domain with highest concen-

tration of attractants. The root minimises energy during its growth: it does not change

its velocity vector if environmental conditions stay the same. This is a distant analog

of inertia.

Assume attractants are applied at the exits of channels p and q (Fig. 8a). When

an apex of the root, growing along channel x, reaches a junction between channels,

the apex continues (due to energy minimisation) its growth into the channel q if

this channel is not occupied by other root (Fig. 8b). A root in input channel y grows

through the junction into the output channel p (Fig. 8c).

The gate Fig. 8a has such a geometry that a path along channel x to junction j
is shorter than a path along channel y to the junction j. Therefore, a root growing

in channel x propagates through the junction into channel q before root starting in

channel y reaches the junction. When both roots are initiated in the input channels the

x-root appears in the output q but the y-root is blocked by the x-root from propagating

into the channel p: no signal appears at the output p (Fig. 8d). This gate realises

functions p = xy and q = x (Fig. 8e). If y is always 1 the gate produces a signal and

its negation at the same time.

Two attraction gates Fig. 8a can be cascaded into a circuit to implement a one-bit

half-adder, with additional output, as shown in Fig. 9a. We assume the planar gate

is lying flat and sources of attractants are provided near exits of output channels p,

q and r. The half-adder is realised on inputs p = x⊕ y (sum) and r = xy (carry); the

circuit has also a ‘bonus’ output q = x + y (Fig. 9e). The circuits work as follows:

∙ Inputs x = 1 and y = 0: Two roots are initiated in channels marked x in Fig. 9a;

one root propagates to junction j1 to junction j3 and exits in channel q; another

root propagates to junction j4 to junction j2 and into channel p (Fig. 9b).

Computers from Plants We Never Made: Speculations 369

x

q

y

p
j2

j1

j3

y

r

x

0

j4

1

1

0

1

0

0

1

0

0

1

1

1

1

0

0

0

1

1

1

0

1

1

1

0

x+ y

xy

x ⊕ y

x

y

(a) (b)

(c) (d)

(e)

Fig. 9 A half-adder made of two humidity gates. a Scheme of the circuit, p = x⊕ y, q = x + y,

r = xy. b x = 1 and y = 0. c x = 0 and y = 1. d x = 1 and y = 1. e Equivalent logic gates design.

From [11]

∙ Inputs x = 0 and y = 1: Two roots are initiated in channels marked y in Fig. 9a; one

root propagates to junction j1 then to junction j2 and exits at channel p; another

root propagates to junction j4 then to junction j3 then into channel q (Fig. 9c).

∙ Inputs x = 1 and y = 1: Roots are initiated in all four input channels. The root

initiated in the northern channel x propagates towards exit q. This root blocks

propagation of the root initiated in the southern channel y, therefore the root from

the southern channel x exits the circuit via the channel r. The root growing in the

northern channel x blocks propagation of the root initiated in the norther channel

y, therefore no roots appear in the output p (Fig. 9d).

370 A. Adamatzky et al.

3 Plant Electronics

In living electronic processors parts of a plant are functionalized via coating with

polymers and loading with nano-particles, thus local modulations of the plant’s elec-

trical properties is achieved. A whole plant is transformed into an electronic circuit,

where functionalized parts of the plant are basic electronic elements and ’raw’ parts

are conductors.

3.1 Plant Wire

In [5] we have exhibited that plants can function as wires, albeit slightly noisy ones.

Namely, in laboratory experiments with lettuce seedlings we found that the seedlings

implement a linear transfer function of input potential to output potential. Roughly

an output potential is 1.5–2 V less than an input potential, thus e.g. by applying 12 V

potential, we get 10 V output potential. Resistance of 3–4 day lettuce seedling is

about 3 M 𝛺 on average. This is much higher than resistance of conventional con-

ductors yet relatively low compared to the resistance of other living creatures [60]. In

our experiments [5] we measured resistance by bridging two aluminium electrodes

with a seedling. If we did insert Ag/AgCl needle electrodes inside the seedling, we

would expect to record much lower resistance, as has been shown in [76].

Resistance of plant wires can be affected by temperature [76], illumination and

chemical substances. For example, when a lettuce seedling is exposed to vapour of

chloroform (one 1 µL in a standard 90 mm Petri dish) the seedling exhibits high

amplitude irregular oscillations of its resistance (Fig. 10).

E
le

ct
ric

al
 r

es
is

ta
nc

e,
 O

hm

3.5 106

4.0 106

4.5 106

Time, sec

0 50 100 150 200 250 300

Fig. 10 Effect of chloroform on lettuce electrical resistance. Solid green lines show the resistance

of an intact lettuce seedling and dashed red lines the resistance of a seedling in presence of chloro-

form

Computers from Plants We Never Made: Speculations 371

3.2 Functionalizing Plants

Electrical properties of plants can be changed by synthesis of inorganic materials

by plants, coating roots with metal nano-particles and conductive polymers, growth

of alloy networks. Here we overview general principles, some of them might not be

applicable for plants, subject to further studies.

Many organisms, both unicellular and multicellular, produce inorganic materials

either intra- or extra-cellular, e.g. include magneto-tactic bacteria (which synthe-

size magnetite nano-particles), diatoms (which synthesize siliceous materials) and

S-layer bacteria (which produce gypsum and calcium carbonate layers). Biomimetic

inorganic materials have been recently achieved by morpho-synthesis of biological

templates such as viruses, bacteria, diatoms, biopolymers, eggshells, sea urchins,

spider silks, insects, wood and leaves. We can employ recent results in biomorphic

mineralization to produce reusable components of plants with conductive and mag-

netic substrates.

To coat roots with gold nano-particles (intake, transport and excretion) we can

proceed as follows. Gold nano-particles (20–500 nm) pure or coated with bio-affine

substances can be saturated in the feeding substrate of roots and/or applied as a liquid

directly to growing roots. The gold particles will be in-taken by the roots, transported

along the roots, distributed in the root network and eventually excreted onto the outer

cell wall of root cells. When roots cease to function, the gold coating stays in place,

providing passive conducting pathway.

Cellular synthesizes can be implemented via in plant growth of (semi-)conductive

crystals from metal ions present in substrate. The growing roots will recover silver

particle extracellularly from solutions containing Ag
+

ions, e.g. by saturating roots

in 1 mM soluble silver in the log phase of growth. We can expose roots to aqueous

AuCl
4−

ions; the exposure will result in reduction of the metal ions and formation

of gold nano-particles of around 20 nm.

To growth alloy networks of plants we can use two approaches. First, co-growing

of single metal networks. One root network is coated gold, and then another root

network is grown on top of it and coated with silver. Another approach could be to

synthesise nano-materials with programmed morphology. Some preliminary stud-

ies with biological substrates, were successful. Alloy nano-particles exhibit unique

electronic, optical, and catalytic properties that are different from those of the cor-

responding individual metal particles. We can expose plants to equi-molar solutions

of HAuCl4 and AgNO3 so that the formation of highly stable Au-Ag alloy nano-

particles of varying mole fractions could be achieved.

Polyaniline (PANI) is a conducting polymer that can reach very high level of the

conductivity (about 50–100 S/cm in our experiments), several forms of PANI can

be deposited using layer-by-layer technique. Next layer is electro-statically attracted

and, again, its thickness growth is blocked when the previous charge is compensated

and new charge prevents further absorption due to the electrostatic repulsion. We can

coat surface of roots with PANI, with a control of the thickness of about 1 nm. The

approach has been successfully tested on several biological objects, notable slime

372 A. Adamatzky et al.

mould [28, 38, 44]. When implementing passive electrical components from plants

we can take into account the geometry and morphology of the roots network coated

with PANI. The electrical conductivity of the signal pathway will depend only on

the length and level of branching of the connection according to the Ohm’s law. Of

course, we will be able to set the basic level of the conductivity varying the thickness

of the deposited layer. With regards to active electrical behaviour, conductivity state

of PANI dependents on its redox state. Oxidized state is conducting and reduced

state is insulating. The difference in conductivity is about 8 orders of magnitude.

Thus, the conductivity of the individual zone of PANI will depend also on its actual

potential (the use of plant roots implies the presence of the electrolyte, that will act

as a medium for the redox reactions).The conductivity map will depend not only on

the morphology, but also on the potential distribution map, that is connected to the

previous function of the network. An attempt could be made to produce a simple

bipolar junction transistor, with possible extension to an operational amplifier.

Another important feature of PANI layers, that can be useful for the plant comput-

ers, is its capability to vary the color according to the conductivity state [27]. This

property will allow to register the conductivity map of the whole formed network,

while usually we have the possibility to measure only between fixed points where

electrodes are attached. If we are thinking about the system with learning proper-

ties [42], it can be not enough we must register the variation of the connections

between all elements of the network. In the case of a double-layer perceptron, for

example, it required a realization of rather complicated external electronic circuit,

providing the temporal detachment of individual elements from the network for the

registering of its conductivity [46]. Instead, the application of the spectroscopic tech-

nique allows monitoring of the conductivity state of all elements of the network in a

real time for rather large area (up to half a meter), what will simplify, for example,

the application of back propagation learning algorithms (Fig. 11).

Fig. 11 Lettuce functionalised with nanomaterials. a Scanning electron micrograph and EDX

spectrum of lettuce seedlings treated with aluminium oxide: low magnification of a snapped lettuce

seedling stem showing bright regions. b Light micrograph of 4 µm sections of lettuce seedlings

treated with graphene in transverse orientation, haemotoxylin and eosin staining. From [61]

Computers from Plants We Never Made: Speculations 373

3.3 Case Study. Modifying Lettuce with Nanomaterials

In [61] we hybridised lettuce seedlings with a variety of metallic and non-metallic

nanomaterials; carbon nanotubes, graphene oxide, aluminium oxide and calcium

phosphate. Toxic effects and the following electrical properties were monitored;

mean potential, resistance and capacitance. Macroscopic observations revealed only

slight deleterious health effects after administration with one variety of particle, alu-

minium oxide.

Mean potential in calcium phosphate-hybridised seedlings showed a considerable

increase when compared with the control, whereas those administered with graphene

oxide showed a small decrease; there were no notable variations across the remaining

treatments. Electrical resistance decreased substantially in graphene oxide-treated

seedlings whereas slight increases were shown following calcium phosphate and car-

bon nanotubes applications. Capacitance showed no considerable variation across

treated seedlings. These results demonstrate that use of some nanomaterials, specif-

ically graphene oxide and calcium phosphate may be used towards biohybridisation

purposes including the generation of living ‘wires’.

Graphene oxide and calcium phosphate were found to be, by a margin of at least

25%, the strongest modulators of the natural electrical properties of lettuce seedlings

in this study, as is summarised in Fig. 12 and Table 1; although statistical significance

was not achieved between the control and the nanomaterials, statistical significance

was achieved between the resistance changes of graphene oxide and calcium phos-

phate.

We also provided evidence that nanomaterials are able to enter different histolog-

ical layers of the plant, through demonstrating that graphene oxide and latex spheres

become lodged in the epidermis whereas aluminium oxide and some latex spheres

travel into the stem. With pores of plants being up to 8 nm in diameter, the size of the

nanoparticles must be important when hybridising with lettuce seedlings. However,

large nanomaterials may be able to embed and coat their surface, which provides

extra benefits as any toxic effects caused by the nanomaterials would be reduced as

there is less interference with proteins and intracellular mechanisms. Toxicity may

Fig. 12 Modifying lettuce

electrical properties:

resistance versus electrical

potential plot. Nanomaterials

used are graphene, carnon

nanotybes (CNTs), calcium

phosphate (CaPh) and

aluminimum oxide (AO).

From [61]

AO Control

Graphene

CNTs

CaPh

R
es

is
ta

nc
e,

 M
O

hm

2.0

2.5

3.0

3.5

4.0

Electrical potential, mV
0.7 0.8 0.9 1.0 1.1 1.2 1.3

374 A. Adamatzky et al.

Table 1 Effects of selected nanomaterials on lettuce seedlings. If intake of the nanomaterial

increases the measured parameters we indicate ↑, if it decreases ↓ and if parameter is within 5% of

the control then the value is recorded as unchanged 0. If parameter is altered 25% above or below the

control the arrow signs are encircled. Nanomaterials used are graphene, carnon nanotybes (CNTs),

calcium phosphate (CaPh) and aluminimum oxide (AO). From [61]

Material Potential Resistance Capacitance

Graphene ↓ ↓○ ↑

CNTs 0 ↑ 0

CaPh ↑○ ↑ ↓

AO 0 0 ↑

also vary dependant on when the application of nanomaterials take place i.e. pre- or

post- germination as well as different nanomaterials having different effects on plant

species and organisms. So these factors i.e. size of nanoparticle, type of nanoparti-

cle, when dispensed and plant species, all need to be considered when choosing a

biological ’wire’.

3.4 Implementation of Logical Circuits Using Plant-Based
Memristors

Memristor (memory resistor) is a device whose resistance changes depending on

the polarity and magnitude of a voltage applied to the device’s terminals and the

duration of this voltage application. The memristor is a non-volatile memory because

the specific resistance is retained until the application of another voltage [36, 37,

94]. A memristor implements a material implication of Boolean logic and thus any

logical circuit can be constructed from memristors [32].

In 2013, we discovered memristive behaviour of a living substrate, namely slime

mouldPhysarum polycephalum [58] while Volkov and colleagues reported that some

plants, like Venus flytrap, Mimosa pudica and Aloe vera, exhibit characteristics

analogous to memristors pitch curves in the electrical current versus voltage pro-

files [102]. A strong hypothesis is that more likely all living and unmodified plants

are ‘memristors’ as well as living substrates, including slime mould [58], skin [77]

and blood [68].

In our case, the basic device is an organic memristive system-element, com-

posed of conducting polymer PANI, as described earlier, with a solid electrolyte

heterojunction. Device conductivity is a function of ionic charge which is transferred

through the heterojunction. Its application for the realization of adaptive circuits and

systems, imitating synaptic learning, has been already demonstrated [30, 47–50].

By employing PANI coated plant roots as memristive devices, novel memristors-

based electronics will be investigated and designed aimed at exploiting the poten-

tial advantages of this device in advanced information processing circuits. Original

Computers from Plants We Never Made: Speculations 375

circuit design methodologies could be addressed to exploit the memristor non-linear

behaviour and its memory properties in novel computational networks and especially

when aiming at the design of beyond von Neumann computing systems.

In particular, memristor-based logic circuits open new pathways for the explo-

ration of advanced computing architectures as promising alternatives to conventional

integrated circuit technologies which are facing serious challenges related to contin-

uous scaling [90], [72], [87]. However, up to now no standard logic circuit design

methodology exists [104]. So, it is not immediately clear what kind of computing

architectures would in practice benefit the most from the computing capabilities of

memristors [32, 59, 69–71, 85, 103–105].

Even if we wish to apply some hybrid designs like 1 transistor—1 memristor

(1T1M) to further explore the computing paradigms of such structures, while still

lying in the living substrate level, the plants can be modified using a similar approach

developed in [96]. Tarabella et al. implemented a transistor, a three-terminal active

device that power amplifies an input signal, with slime mould. An organic electro-

chemical transistor is a semiconducting polymer channel in contact with an elec-

trolyte. Its functioning is based on the reversible doping of the polymer channel. A

hybrid Physarum bio-organic electrochemical transistor was made by interfacing an

organic semiconductor, poly-3, 4-ethylenedioxythiophene doped with poly-styrene

sulfonate, with the Physarum [96]. The slime mould played a role of electrolyte.

Electrical measurements in three-terminal mode uncover characteristics similar to

transistor operations. The device operates in a depletion mode similarly to stan-

dard electrolyte-gated transistors. The Physarum transistor works well with plat-

inum, golden and silver electrodes. If the drain electrode is removed and the device

becomes two-terminal, it exhibits cyclic voltage-current characteristics similar to

memristors [96]. We are aiming to apply similar confrontation in the plant devices

and discover by experiments the limits of the proposed approach.

As a result, basic logic and analog functionalities will be scouted for the specific

organic memristor plant devices and should be compared with standard implemen-

tations on silicon. Our focus would be on the inherent low voltage and low power

consumption of the proposed devices and it would be a key issue of the work. This

approach will hopefully allow us to construct all the necessary universal logical cir-

cuits either by using one of the possible already existing, beyond von Neumann,

computing architectures like, for example, material implication or by introducing a

novel suitable, beyond-Von Neumann, computing system architecture.

4 Analog Computation on Electrical Properties of Plant
Roots

In tasks of collision-based computing and implementation of conservative logical

gates, apexes of roots represented discrete quanta of signals while acting in con-

tinuous time. When implementing analog computing devices with roots we adopt

continuous representation of space and time and continuous values.

376 A. Adamatzky et al.

The following components will be analysed: resistors, capacitors, operational

amplifiers, multipliers, potentiometers and fixed-function generators. We will evalu-

ate a potential towards implementation of the core mathematical operations that will

be implemented in experimental laboratory conditions: summation, integration with

respect to time, inversion, multiplication, exponentiation, logarithm, division. The

mathematical and engineering problems to be solved will be represented in plant

root networks of resistive elements or reaction elements, involving capacitance and

inductance as well as resistance, to model spatial distribution of voltage, current,

electrical potential in space, temperature, pressure [66, 88, 106]. Implementations

considered will included active elements analog computers, where no amplification

required and passive elements computers, where amplification of signal is necessary.

Typically data in analogue circuits can be represented by resistors. By selectively

modifying properties some parts of plant’s root system, we make the plant to imple-

ment basic analog computing [65, 91]. A feasibility of constructing plant circuits

with heterogeneous functionality of parts is supported by results showing that cerium

dioxide nanoparticles in-taken by maize plants are not transferred to the newly grown

areas of plants [31]. Let us consider an example of an analog circuit which can be

produced from plants with modified electrical properties. This example is borrowed

from our paper [61].

If we selectively adjust resistance of two branches of the same root and interface

upper part of the root with an amplifier the plant will simulate certain equations. The

classical (see e.g. [65, 91]) scheme is shown in Fig. 13. Root branches with modified

electrical properties represent input resistors R1 and R2, upper modified root repre-

sents feedback resistance R0. The output voltage v0 is equal to the negative of the

algebraic sums of the modified input voltages: v0 = −(R0
R1
v1 +

R0
R2
v2). Depending on

the ratios of the resistances and voltage polarity in each branch the scheme imple-

ments addition, subtraction and multiplication. The equation v0 = −(R0
R1
v1 +

R0
R2
v2)

can be seen as analogous to z = ax + by, where the output voltage v0 has a polarity

corresponding to the sign of z, the sign inversion of the amplifier is compensated by

negative relationships between v1 and x and v2 and y: v1 = −x and v2 = −y. Thus,

we have a = R0
R1

and b = R0
R2

.

Then we managed to selectively modify root branches of the same root with

graphene R1 = R
graphene

≈ 2M𝛺 and calcium phosphate R2 = R
CaPh

≈ 4M𝛺 [61].

Part of the root above branching site remains unmodified: R0 = R
control

≈ 3M𝛺.

Thus, the modified root simulates the equation z = 1.3x + 2y. The input voltages

Fig. 13 Summing amplifier

simulating equation

z = ax + by, a = R0
R1

, b = R0
R2

,

v1 = −x and v2 = −y, v0 = z;
see discussion in [61]

R1

v1

R2

v2

R0

v0

Computers from Plants We Never Made: Speculations 377

are multiplied by 1.3 and 2.0 and then added. If a and b are less than 1 then input

voltage will be divided and then added: this can be achieved by, e.g. leaving one

of the branches unmodified and loading part of the root above branching site with

graphene. By making v1 and v2 with opposite polarity we simulate subtraction. To

make a summing integration we need to substantially increase capacitance of some

segments of a root [61].

The following tasks can be potentially implemented in plant-based analog com-

puters:

∙ Hamilton circuit and Travelling Salesman Problem [29, 84]. Given cities, physi-

cally represented by current differences in the plant root network, find a shortest

path through all cities, which visits each city once and ends in its source. Asso-

ciated potential, or Lyapunov, function achieves its global minimum value at an

equilibrium point of the network corresponding to the problem’s solution.

∙ Satisfiability Problem [45, 67]. Values of variables of a Boolean logic formula

are represented by voltage values of the root tree-like network and potential is

indicated if the values can be assigned in a manner to make the Boolean formula

true.

∙ Quadratic Diophantine Equation and partition problem [12]. Positive input num-

bers a, b, and c are represented by sources of electrical current to answer the

question—are two positive integers x and y such that (a ⋅ x2) + (b ⋅ y) = c.

∙ Majority-classification (earliest cellular automaton version is published in [54]).

Given a configuration of input states a and b, represented by electrical character-

istics of distant parts of plant root network, generate output value a if majority of

inputs have value a and generated value b if the value b dominates in the inputs.

∙ Analog sorting of numbers [13]. Usually sorting of numbers assume discreteness

of data. We can represent values of numbers to be sorted by electrical currents and

apply principles of rational flow in a non-periodic Toda lattice [34] to undertake

the smooth sorting.

∙ Implementation of Kirchhoff-Łukasiewicz machine [81, 82]. A Kirchhoff-Łukasi-

ewicz machine was proposed by late Jonathan Mills [81, 82] to combine power

and intuitive appeal of analog computers with conventional digital circuits. The

machine is based on a sheet of conductive foam with array of probes interfaced

with hardware implementation of Łukasiewcz logic arrays. The Łukasiewcz arrays

are regular lattices of continuous state machines connected locally to each other.

Arithmetic and logical functions are defined using implication and negated impli-

cation. Array inputs are differences between two electrical currents. Algebraic

expressions can be converted to Łukasiewicz implications by tree-pattern match-

ing and minimisation. The simplified expressions of implications can be further

converted to layouts of living and mineralised/coated plant roots. The tasks to be

implemented on plant-root based Kirchoff-Łukasiewicz machine are fuzzy con-

trollers, tautology checkers, simulation of constraint propagation network with

implications.

378 A. Adamatzky et al.

5 Evolution in Plants: Searching for Logical Gates

Given the success of implementing logical gates with the Mecobo evolvable hard-

ware platform and Physarum [64], it was envisioned that plants may also be a suitable

medium for ‘evolution in materio’ type experiments. The Mecobo was designed to

provide a general purpose interface to allow for evolution in materio experiments

and for probing the electrical properties of a substrate without understanding the

underlying electrical properties of the substrate, and without having to develop new

interface techniques for each material under investigation [73].

The same methodology was used to find gates as had previously been used for

Physarum [64], and carbon nano-tubes and various polymers [74, 79, 80].

Eight electrodes were connected to the digital outputs of the Mecobo, via a cur-

rent limiting 4.7 k𝛺 resistor, as shown in Fig. 14. The electrodes were then inserted

through the stem of a plant. For these experiments, a common house hold plant,

Schlumbergera, was used. Schlumbergera is a type of Brazilian cactus commonly

known as a ‘Christmas Cactus’. It has large, flat, stem segments that provide a good

location to securely insert electrodes. All of the electrodes were inserted into a sin-

gle segment. The positions chosen were essentially random, but with care taken to

ensure that two electrodes were not very close together or touching as this would

likely result in electrodes being shorted together, and reducing the chances of find-

ing interesting behaviour. An example arrangement can be seen in Fig. 14a.

Similar to before, an exhaustive search was conducted by applying all possible

binary combinations of various frequency pairs to 7 pins (which is a practical amount

for time purposes). One pin was used as an output from the material, with the other

7 pins acting as inputs to the plant.

For each binary combination, each pair of frequencies was tried with one fre-

quency representing a ‘low’ and the other representing a ‘high’ input. The frequency

pairs were combinations of DC square waves of either (250Hz, 500Hz, 1 kHz, or

2.5 kHz). The amplitude of the square waves is 3.3V.

Fig. 14 Photos of experimental setup. a Electrodes in Schlumbergera cactus. b Mecobo board

Computers from Plants We Never Made: Speculations 379

The Mecobo measured the digital response from the plant for 32 ms. The digi-

tal threshold is 0.75V for high, with voltages below this being classed as low. The

sampling frequency was twice the highest input frequency applied.

Five different runs were completed. With different stem segments and electrode

arrangements used each time.

Table 2, shows a summary for all of the runs. We see that all possible 2 input

Boolean gates were implemented. As with previous work, we see that gates such as

XOR and XNOR are found relatively infrequently. Looking at each run individually,

Table 3 shows the same pattern. It is interesting to note that on each run all gates

were found, and that in very similar proportions.

Table 4 shows how many XOR gates were found for each combination of fre-

quencies used for representing the Boolean input states. We see that there is a bias

towards the higher frequencies tested. We also see that not all combinations produce

gates, and that the frequency pairs are not used asymmetrically. For example, true

and false can be represented by either 2500 Hz or 1000 Hz, but representing false

with 2500 Hz produces more viable gates. It appears that representing false by the

higher frequency in the pair produces more solutions. More in depth analysis, and

modelling of the results will be required to fully understand this behaviour, but it

hints that expanding the search to use higher frequencies than 2500 Hz would result

in more Boolean circuits being discovered.

Table 2 Number of gates mined from the frequency responses of the Schlumbergera

Cfg. Inputs xy Number of gates Gate

FF FT TF TT

1 F F F F 95718 Constant false

2 T F F F 366 x NOR y
3 F T F F 304 NOT x AND y
4 T T F F 430 NOT x
5 F F T F 304 x AND NOT y
6 T F T F 430 NOT y
7 F T T F 74 x XOR y
8 T T T F 314 x NAND y
9 F F F T 510 x AND y
10 T F F T 104 x XNOR y
11 F T F T 863 y
12 T T F T 307 NOT x AND NOT y OR y
13 F F T T 863 x
14 T F T T 307 x OR NOT y
15 F T T T 512 x OR y
16 T T T T 94564 Constant true

380 A. Adamatzky et al.

Table 3 Number of gates mined from the frequency responses of the Schlumbergera

Cfg. Number of gates Gate

Run 1 Run 2 Run 3 Run 4 Run 5 Average

1 19130 18870 19160 19198 19360 19144 Constant false

2 56 50 104 90 66 73 x NOR y
3 56 42 64 67 75 61 NOT x AND y
4 99 72 79 89 91 86 NOT x
5 56 42 64 67 75 61 x AND NOT y
6 99 72 79 89 91 86 NOT y
7 4 12 20 22 16 15 x XOR y
8 68 68 68 52 58 63 x NAND y
9 88 70 114 118 120 102 x AND y
10 8 8 38 32 18 21 x XNOR y
11 89 71 243 228 232 173 y
12 57 52 63 60 75 61 NOT x AND NOT y OR y
13 89 71 243 228 232 173 x
14 57 52 63 60 75 61 x OR NOT y
15 68 44 138 136 126 102 x OR y
16 19134 18844 18840 18842 18904 18913 Constant true

Table 4 Number of XOR gates mined from the frequency responses of the Schlumbergera for each

frequency pair. Frequency A is used to represent False, Frequency B for True.

Frequency A Frequency B Count

2500 1000 28

1000 250 14

1000 2500 10

250 2500 8

500 250 8

2500 500 4

2500 250 2

1000 500 0

500 2500 0

500 1000 0

250 1000 0

250 500 0

Computers from Plants We Never Made: Speculations 381

Whilst the experiments with Schlumbergera were successful, experiments with

other plants will be necessary to prove feasibility of the approach. Chances are high

plants of different species will be showing differently shaped distributions of fre-

quencies of logical gates discovered. Thus, we might construct a unique mapping

between taxonomy of plants and geometries of logical gates distributions. Also,

methodology wise, future experiments will investigate if it is possible to find solu-

tions directly using evolution to find the pin configuration, rather than a time con-

suming exhaustive approach.

6 Brain Made of Plants

The survival of an organism depends on its ability to respond to the environment

through its senses when neuronal systems translate sensory information into electri-

cal impulses via neural code [43]. This enables multisensory integration that in turn

leads to adaptive motor responses and active behavior. In plants, numerous physi-

cal environmental factors, especially light and gravity, are continuously monitored

[21, 24, 25, 33, 55, 56, 75, 93]. Specialized plant cells have been optimized by

evolution to translate sensory information obtained from the physical environment

into motor responses known as tropisms, with root gravitropism representing one of

the most intensively studied plant organ tropisms. Electrical signals are induced by

all known physical factors in plants, suggesting that electricity mediates physical-

biological communication in plants too [21, 51, 53, 100, 101]. Root gravitropism

is a particularly instructive example in this respect. Sensory perception of gravity is

accomplished at the very tip of the root apex, at the root cap [26], which includes a

vestibular-like gravisensing organ composed of statocytes [17]. On the other hand,

the motor responses, which begin almost immediately after root cap sensory events,

are accomplished in relatively remote growth zones of the root apex [16]. Therefore,

root gravitropism represents a nice example of a neuronal sensory-motor circuit in

plants.

Quite possible future green computers will be using plants as elements of memory

and neural network, followed by plant neuromorphic processors, will be developed.

A rather artistic example of an attempt to make a neural-like network from plants

is shown in Fig. 15. Seeds of lettuce were planted into the phytogel-made real-life

sized model of a human brain cortex. When seedlings developed (Fig. 15a) recording

electrodes were placed in the model brain (Fig. 15b); reference electrode was located

medially between hemispheres. Electrical potential on each recording electrode was

determined by electrical potential of c. 20 lettuce seedlings in the vicinity of the

electrode.

To check if there is an interaction between seedlings in a response to stimulation

we illuminated a group of seedlings. Electrical response of the lettuce population is

shown in Fig. 15c. Indeed one experiment must not lead to any conclusion, however,

382 A. Adamatzky et al.

Ch 8

Ch 6

Light ON

Ch 2

Ch 7

Ch 3

Ch 1

Ch 5

Ch 4

Light OFF

E
le

ct
ric

al
 p

ot
en

tia
l,

m
V

30

20

10

0

10

20

30

40

Time, sec * 10K

0 50 100 150 200 103

(a)

(b)

(c)

Fig. 15 Experimental setup towards a ‘brain’ made of lettuce seedlings. a A template of human

cortex made from phytogel, lettuce seedlings and electrodes are visible. b Scheme of positions of

electrodes and site of stimulation with light. c Electrical potential recorded over two days with

sampling rate once per second

we can still speculate that light stimulus might lead to slight decrease in electrical

potential of the illuminated population. The light stimulation might also lead to wider

dispersion of electrical potential values in the population.

7 Discussion

We proposed designs of living and hybrid computing systems made of plants.

The designs are original both in theory—collision-based computing, morphologi-

cal computing, memristive circuits—and implementation—functional devices to be

Computers from Plants We Never Made: Speculations 383

made of living or loaded with nanoparticles or coated with conductive polymers plant

roots. When the proposed designs will be implemented they will contribute towards

breakthroughs in computer science (algorithm/architectures of plant computing),

computational geometry (plant based processors), graph-theoretic studies (proximity

graphs by plant roots), biology (properties of plant at the interface with electronics),

material science (functional elements), electronics (high density self-growing cir-

cuits), self-assembly and self-regenerative systems. The designs can be materialised

in two type of phyto-chips: morphological chip and analog chips. The morphological

chips are disposable computing devices based on computation with raw, unmodified,

living roots; these chips represent result of computation by geometry of grown parts

of plants. Computational geometry processors will be solving plane tessellations and

generalised Voronoi diagrams, approximation of planar shapes (concave and convex

hulls); these are classical problems of computational geometry. Almost all classical

tasks of image processing, including dilation, erosion, opening and closing, expan-

sion and shrinking, edge detection and completion can be solved using swarms of

plant roots. Graph-optimisation processors will be solving tasks of parameterised

spanning trees, Gabriel graph, relative neighbourhood graph, Delaunay triangula-

tion, Steiner trees. Analog chips are based on biomorphic mineralisation of plant

root networks and coating roots with metals and alloys; some architecture could be

composed of living and artificially functionalised root networks. The analog phyto-

chips are general purpose analog computers, capable for implementing multi-valued

logic and arithmetic. What species of plants will be used in future phyto-chips? Best

candidates are Arabidopsis thaliana, Zea mays, Ocimum basilicum, Mentha genus,
Raphanus sativus, Spinacia oleracea, Macleaya microcarpa, Helianthus annuus.
They could be chosen due to their growth characteristics, robustness, availability

of mutant lines and research data on physiology and protocols of laboratory experi-

ments.

References

1. Adamatzky, A.: Collision-Based Computing. Springer (2002)

2. Adamatzky, A.: Hot ice computer. Phys. Lett. A 374(2), 264–271 (2009)

3. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific (2010)

4. Adamatzky, A.: Slime mould computes planar shapes. Int. J. Bio-Inspir. Comput. 4(3), 149–

154 (2012)

5. Adamatzky, A.: Towards plant wires. Biosystems 122, 1–6 (2014)

6. Adamatzky, A. (ed.): Advances in Physarum Machines: Sensing and Computing with Slime

Mould. Springer (2016)

7. Adamatzky, A., Armstrong, R., De Lacy Costello, B., Deng, Y., Jones, J., Mayne, R., Schu-

bert, T., Sirakoulis, G.Ch., Zhang, X.: Slime mould analogue models of space exploration

and planet colonisation. J. Br. Interplanet. Soc. 67, 290–304 (2014)

8. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier (2005)

9. Adamatzky, A., Holley, J., Bull, L., Costello, B.D.L.: On computing in fine-grained compart-

mentalised Belousov-Zhabotinsky medium. Chaos Solitons Fractals 44(10), 779–790 (2011)

10. Adamatzky, A., Kitson, S., Costello, B.D.L., Matranga, M.A., Younger, D.: Computing with

liquid crystal fingers: Models of geometric and logical computation. Phys. Rev. E 84(6),

061,702 (2011)

384 A. Adamatzky et al.

11. Adamatzky, A., Sirakoulis, G.Ch., Martinez, G.J., Baluska, F., Mancuso, S.: On plant roots

logical gates. arXiv preprint arXiv:1610.04602 (2016)

12. Adleman, L.M., McCurley, K.S.: Open problems in number theoretic complexity, ii. In: Inter-

national Algorithmic Number Theory Symposium, pp. 291–322. Springer (1994)

13. Akl, S.G.: Parallel Sorting Algorithms, vol. 12. Academic press (2014)

14. Bais, H.P., Park, S.W., Weir, T.L., Callaway, R.M., Vivanco, J.M.: How plants communicate

using the underground information superhighway. Trends Plant Sci. 9(1), 26–32 (2004)

15. Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M.: The role of root exudates in

rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–

266 (2006)

16. Baluška, F., Mancuso, S.: Plant neurobiology as a paradigm shift not only in the plant sci-

ences. Plant Signal. Behav. 2(4), 205–207 (2007)

17. Baluška, F., Mancuso, S.: Deep evolutionary origins of neurobiology: turning the essence

of’neural’upside-down. Commun. Integr. Biol. 2(1), 60–65 (2009)

18. Baluška, F., Mancuso, S.: Plant neurobiology: from sensory biology, via plant communica-

tion, to social plant behavior. Cognit. Process. 10(1), 3–7 (2009)

19. Baluška, F., Mancuso, S.: Vision in plants via plant-specific ocelli? Trends Plant Sci. 21(9),

727–730 (2016)

20. Baluška, F., Mancuso, S., Volkmann, D. (eds.): Communication in Plants: Neuronal Aspects

of Plant Life. Springer (2007)

21. Baluška, F., Mancuso, S., Volkmann, D.: Communication in plants. In: Neuronal Aspect of

Plant Life. Spriger, Heidelberg (2006)

22. Baluška, F., Mancuso, S., Volkmann, D., Barlow, P.: Root apices as plant command centres:

the unique brain-like status of the root apex transition zone. Biologia (Bratisl.) 59(Suppl. 13),

1–13 (2004)

23. Baluška, F., Mancuso, S., Volkmann, D., Barlow, P.W.: Root apex transition zone: a

signalling-response nexus in the root. Trends Plant Sci. 15(7), 402–408 (2010)

24. Baluška, F., Volkmann, D., Hlavacka, A., Mancuso, S., Barlow, P.W.: Neurobiological view

of plants and their body plan. In: Communication in Plants, pp. 19–35. Springer (2006)

25. Baluška, F., Volkmann, D., Menzel, D.: Plant synapses: actin-based domains for cell-to-cell

communication. Trends Plant Sci. 10(3), 106–111 (2005)

26. Barlow, P.W.: The response of roots and root systems to their environmentan interpretation

derived from an analysis of the hierarchical organization of plant life. Environ. Exp. Bot.

33(1), 1–10 (1993)

27. Battistoni, S., Dimonte, A., Erokhin, V.: Spectrophotometric characterization of organic

memristive devices. Org. Electron. 38, 79–83 (2016)

28. Battistoni, S., Dimonte, A., Erokhin, V.: Organic memristor based elements for bio-inspired

computing. In: Advances in Unconventional Computing, pp. 469–496. Springer (2017)

29. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM

(JACM) 9(1), 61–63 (1962)

30. Berzina, T., Erokhin, V., Fontana, M.: Spectroscopic investigation of an electrochemically

controlled conducting polymer-solid electrolyte junction. J. Appl. Phys. 101(2), 024,501

(2007)

31. Birbaum, K., Brogioli, R., Schellenberg, M., Martinoia, E., Stark, W.J., Günther, D., Limbach,

L.K.: No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ. Sci.

Technol. 44(22), 8718–8723 (2010)

32. Borghetti, J., Snidera, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristive

switches enable stateful logic operations via material implication. Nature 464(7290), 873–876

(2010)

33. Brenner, E.D., Stahlberg, R., Mancuso, S., Vivanco, J., Baluška, F., Van Volkenburgh, E.:

Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci. 11(8), 413–419

(2006)

34. Brockett, R.W.: A rational flow for the Toda lattice equations. In: Operators, Systems and

Linear Algebra, pp. 33–44. Springer (1997)

http://arxiv.org/abs/1610.04602

Computers from Plants We Never Made: Speculations 385

35. Burbach, C., Markus, K., Zhang, Y., Schlicht, M., Baluška, F.: Photophobic behavior of maize

roots. Plant Signal. Behav. 7(7), 874–878 (2012)

36. Chua, L.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–

519 (1971)

37. Chua, L.O., Tseng, C.W.: A memristive circuit model for p-n junction diodes. Int. J. Circuit

Theory Appl. 2(4), 367–389 (1974)

38. Cifarelli, A., Berzina, T., Erokhin, V.: Bio-organic memristive device: polyaniline–physarum

polycephalum interface. Phys. Status Solidi (c) 12(1-2), 218–221 (2015)

39. Ciszak, M., Comparini, D., Mazzolai, B., Baluska, F., Arecchi, F.T., Vicsek, T., Mancuso, S.:

Swarming behavior in plant roots. PLoS One 7(1), e29,759 (2012)

40. Costello, B.D.L., Adamatzky, A.: Experimental implementation of collision-based gates in

Belousov-Zhabotinsky medium. Chaos Solitons Fractals 25(3), 535–544 (2005)

41. Costello, B.D.L., Adamatzky, A., Jahan, I., Zhang, L.: Towards constructing one-bit binary

adder in excitable chemical medium. Chem. Phys. 381(1), 88–99 (2011)

42. Demin, V., Erokhin, V., Emelyanov, A., Battistoni, S., Baldi, G., Iannotta, S., Kashkarov, P.,

Kovalchuk, M.: Hardware elementary perceptron based on polyaniline memristive devices.

Org. Electron. 25, 16–20 (2015)

43. DeWeese, M.R., Zador, A.: Neurobiology: efficiency measures. Nature 439(7079), 920–921

(2006)

44. Dimonte, A., Battistoni, S., Erokhin, V.: Physarum in hybrid electronic devices. In: Advances

in Physarum Machines, pp. 91–107. Springer (2016)

45. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-

tional horn formulae. J. Log. Program. 1(3), 267–284 (1984)

46. Emelyanov, A., Lapkin, D., Demin, V., Erokhin, V., Battistoni, S., Baldi, G., Dimonte, A.,

Korovin, A., Iannotta, S., Kashkarov, P., et al.: First steps towards the realization of a double

layer perceptron based on organic memristive devices. AIP Adv. 6(11), 111,301 (2016)

47. Erokhin, V., Berzina, T., Camorani, P., Fontana, M.P.: Non-equilibrium electrical behaviour

of polymeric electrochemical junctions. J. Phys. Condens. Matter 19(20), 205,111 (2007)

48. Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., Fontana, M.P.:

Material memristive device circuits with synaptic plasticity: learning and memory. Bio-

NanoScience 1(1–2), 24–30 (2011)

49. Erokhin, V., Fontana, M.P.: Electrochemically controlled polymeric device: a memristor (and

more) found two years ago. arXiv preprint arXiv:0807.0333 (2008)

50. Erokhin, V., Howard, G.D., Adamatzky, A.: Organic memristor devices for logic elements

with memory. Int. J. Bifurcat. Chaos 22(11), 1250,283 (2012)

51. Felle, H.H., Zimmermann, M.R.: Systemic signalling in barley through action potentials.

Planta 226(1), 203–214 (2007)

52. Fredkin, E., Toffoli, T.: Conservative logic. In: A. Adamatzky (ed.) Collision-Based Comput-

ing. Springer (2002)

53. Fromm, J., Lautner, S.: Electrical signals and their physiological significance in plants. Plant

Cell Environ. 30(3), 249–257 (2007)

54. Gács, P., Kurdyumov, G.L., Levin, L.A.: One-dimensional uniform arrays that wash out finite

islands. Probl. Peredachi Informatsii 14(3), 92–96 (1978)

55. Gagliano, M., Mancuso, S., Robert, D.: Towards understanding plant bioacoustics. Trends

Plant Sci 17(6), 323–325 (2012)

56. Gagliano, M., Renton, M., Depczynski, M., Mancuso, S.: Experience teaches plants to learn

faster and forget slower in environments where it matters. Oecologia 175(1), 63–72 (2014)

57. Gagliano, M., Renton, M., Duvdevani, N., Timmins, M., Mancuso, S.: Acoustic and magnetic

communication in plants: is it possible? Plant Signal Behav 7(10), 1346–1348 (2012)

58. Gale, E., Adamatzky, A., de Lacy Costello, B.: Slime mould memristors. BioNanoScience

5(1), 1–8 (2015)

59. Gao, L., Alibart, F., Strukov, D.B.: Programmable cmos/memristor threshold logic. IEEE

Trans. Nanotechnol. 12(2), 115–119 (2013)

http://arxiv.org/abs/0807.0333

386 A. Adamatzky et al.

60. Geddes, L., Baker, L.: The specific resistance of biological materiala compendium of data for

the biomedical engineer and physiologist. Med. Biol. Eng. 5(3), 271–293 (1967)

61. Gizzie, N., Mayne, R., Patton, D., Kendrick, P., Adamatzky, A.: On hybridising lettuce

seedlings with nanoparticles and the resultant effects on the organisms electrical characteris-

tics. Biosystems 147, 28–34 (2016)

62. Graham, T.L.: Flavonoid and isoflavonoid distribution in developing soybean seedling tissues

and in seed and root exudates. Plant Physiol. 95(2), 594–603 (1991)

63. Gunji, Y.P., Nishiyama, Y., Adamatzky, A., Simos, T.E., Psihoyios, G., Tsitouras, C., Anas-

tassi, Z.: Robust soldier crab ball gate. Complex systems 20(2), 93 (2011)

64. Harding, S., Koutnik, J., Greff, K., Schmidhuber, J., Adamatzky, A.: Discovering Boolean

gates in slime mould. arXiv preprint arXiv:1607.02168 (2016)

65. James, M.L., Smith, G.M., Wolford, J.C.: Analog computer simulation of engineering sys-

tems. International Textbook Company (1966)

66. Johnson, C.L.: Analog Computer Techniques. McGraw-Hill Book Company, Incorporated

(1963)

67. Kalmar, L., Suranyi, J.: On the reduction of the decision problem. J. Symb. Log. 12(03),

65–73 (1947)

68. Kosta, S.P., Kosta, Y., Bhatele, M., Dubey, Y., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel,

B.: Human blood liquid memristor. Int. J. Med. Eng. Inform. 3(1), 16–29 (2011)

69. Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A.,

Weiser, U.C.: MAGIC - memristor-aided logic. IEEE Trans. Circuits Syst. 61-II(11), 895–

899 (2014)

70. Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G.: Mrl—

memristor ratioed logic. In: 2012 13th International Workshop on Cellular Nanoscale Net-

works and their Applications, pp. 1–6 (2012)

71. Lehtonen, E., Tissari, J., Poikonen, J.H., Laiho, M., Koskinen, L.: A cellular computing archi-

tecture for parallel memristive stateful logic. Microelectron. J. 45(11), 1438–1449 (2014)

72. Linn, E., Rosezin, R., Tappertzhofen, S., Bttger, U., Waser, R.: Beyond von Neumann logic

operations in passive crossbar arrays alongside memory operations. Nanotechnology 23(30),

305,205 (2012)

73. Lykkebø, O.R., Harding, S., Tufte, G., Miller, J.F.: MECOBO: A hardware and software plat-

form for in materio evolution. In: International Conference on Unconventional Computation

and Natural Computation, pp. 267–279. Springer (2014)

74. Lykkebø, O.R., Nichele, S., Tufte, G.: An investigation of square waves for evolution in carbon

nanotubes material. In: 13th European Conference on Artificial Life (2015)

75. Mancuso, S.: Hydraulic and electrical transmission of wound-induced signals in vitis vinifera.

Funct. Plant Biol. 26(1), 55–61 (1999)

76. Mancuso, S.: Seasonal dynamics of electrical impedance parameters in shoots and leaves

related to rooting ability of olive (Olea europea) cuttings. Tree Physiol. 19(2), 95–101 (1999)

77. Martinsen, Ø.G., Grimnes, S., Lütken, C., Johnsen, G.: Memristance in human skin. In: Jour-

nal of Physics: Conference Series, vol. 224, p. 012071. IOP Publishing (2010)

78. Masi, E., Ciszak, M., Stefano, G., Renna, L., Azzarello, E., Pandolfi, C., Mugnai, S., Baluška,

F., Arecchi, F., Mancuso, S.: Spatiotemporal dynamics of the electrical network activity in

the root apex. Proc. Natl. Acad. Sci. 106(10), 4048–4053 (2009)

79. Massey, M., Kotsialos, A., Qaiser, F., Zeze, D., Pearson, C., Volpati, D., Bowen, L., Petty, M.:

Computing with carbon nanotubes: Optimization of threshold logic gates using disordered

nanotube/polymer composites. J. Appl. Phys. 117(13), 134,903 (2015)

80. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materi-

als. Evol. Intell. 7(1), 49–67 (2014)

81. Mills, J.: Kirchhoff-Lukasiewicz Machines. Indiana University Web Sites Collection. (1995)

82. Mills, J.W.: The nature of the extended analog computer. Phys. D. 237(9), 1235–1256 (2008)

83. Morgan, A.J., Barrow, D.A., Adamatzky, A., Hanczyc, M.M.: Simple fluidic digital half-

adder. arXiv preprint arXiv:1602.01084 (2016)

84. Ore, O.: Note on Hamilton circuits. Am. Math. Mon. 67(1), 55–55 (1960)

http://arxiv.org/abs/1607.02168
http://arxiv.org/abs/1602.01084

Computers from Plants We Never Made: Speculations 387

85. Papandroulidakis, G., Vourkas, I., Vasileiadis, N., Sirakoulis, G.Ch.: Boolean logic operations

and computing circuits based on memristors. IEEE Trans. Circuits Syst. II Express Br. 61(12),

972–976 (2014)

86. Perel’man, M.E., Rubinstein, G.M.: Ultrasound vibrations of plant cells membranes: water

lift in trees, electrical phenomena. arXiv:preprint physics/0611133 (2006)

87. Pershin, Y.V., Ventra, M.D.: Neuromorphic, digital, and quantum computation with memory

circuit elements. Proc. IEEE 100(6), 2071–2080 (2012)

88. Peterson, G.R.: Basic Analog Computation. Macmillan (1967)

89. Schlicht, M., Ludwig-Müller, J., Burbach, C., Volkmann, D., Baluska, F.: Indole-3-butyric

acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric

oxide. New Phytol. 200(2), 473–482 (2013)

90. Semiconductor Industry Association: International Technology Roadmap for Semiconductors

(ITRS). Semiconductor Industry Association (2007). http://www.itrs2.net

91. Soroka, W.W.: Analog Methods in Computation and Simulation. McGraw-Hill (1954)

92. Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.P., Vier-

heilig, H.: Flavonoids and strigolactones in root exudates as signals in symbiotic and patho-

genic plant-fungus interactions. Molecules 12(7), 1290–1306 (2007)

93. Stone, B.B., Esmon, C.A., Liscum, E.: Phototropins, other photoreceptors, and associated

signaling: the lead and supporting cast in the control of plant movement responses. Curr.

Top. Dev. Biol. 66, 215–238 (2005)

94. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found.

Nature 453(7191), 80–83 (2008)

95. Sugiyama, A., Yazaki, K.: Root exudates of legume plants and their involvement in inter-

actions with soil microbes. In: Secretions and exudates in biological systems, pp. 27–48.

Springer (2012)

96. Tarabella, G., D’Angelo, P., Cifarelli, A., Dimonte, A., Romeo, A., Berzina, T., Erokhin, V.,

Iannotta, S.: A hybrid living/organic electrochemical transistor based on the Physarum poly-

cephalum cell endowed with both sensing and memristive properties. Chem. Sci. 6(5), 2859–

2868 (2015)

97. Trewavas, A.: Green plants as intelligent organisms. Trends Plant Sci. 10(9), 413–419 (2005)

98. Trewavas, A.: What is plant behaviour? Plant Cell Environ. 32(6), 606–616 (2009)

99. Trewavas, A.J., Baluška, F.: The ubiquity of consciousness. EMBO Rep. 12(12), 1221–1225

(2011)

100. Volkov, A.G.: Electrophysiology and phototropism. In: Communication in Plants, pp. 351–

367. Springer (2006)

101. Volkov, A.G., Ranatunga, D.R.A.: Plants as environmental biosensors. Plant Signal. Behav.

1(3), 105–115 (2006)

102. Volkov, A.G., Tucket, C., Reedus, J., Volkova, M.I., Markin, V.S., Chua, L.: Memristors in

plants. Plant Signal. Behav. 9(3), e28,152 (2014)

103. Vourkas, I., Sirakoulis, G.Ch.: Memristor-based combinational circuits: a design methodol-

ogy for encoders/decoders. Microelectron. J. 45(1), 59–70 (2014)

104. Vourkas, I., Sirakoulis, G.Ch.: Emerging memristor-based logic circuit design approaches: a

review. IEEE Circuits Syst. Mag. 16(3), 15–30 (2016)

105. Vourkas, I., Sirakoulis, G.Ch.: Memristor-based nanoelectronic computing circuits and archi-

tectures. In: Emergence Complexity and Computation. Springer, Cham (2016)

106. Weyrick, R.C.: Fundamentals of Analog Computers. Prentice Hall (1969)

107. Xu, W., Ding, G., Yokawa, K., Baluška, F., Li, Q.F., Liu, Y., Shi, W., Liang, J., Zhang, J.: An

improved agar-plate method for studying root growth and response of Arabidopsis thaliana.

Sci. Rep. 3, 1273 (2013)

108. Yokawa, K., Baluska, F.: Binary decisions in maize root behavior: Y-maze system as tool for

unconventional computation in plants. IJUC 10(5–6), 381–390 (2014)

109. Yokawa, K., Kagenishi, T., Kawano, T., Mancuso, S., Baluška, F.: Illumination of arabidop-

sis roots induces immediate burst of ros production. Plant Signal. Behav. 6(10), 1460–1464

(2011)

http://arxiv.org/abs/preprint
http://www.itrs2.net

	Preface
	References

	Contents
	Evolution and Hardware
	1 Evolvable Hardware Challenges: Past, Present and the Path to a Promising Future
	Abstract
	1 Introduction
	2 Defining Evolvable Hardware
	2.1 Evolvable Hardware Characteristics
	2.2 Possible Advantages of Evolvable Hardware

	3 Platforms for Intrinsic EH
	4 Success Stories
	5 Challenges
	5.1 From Birth to Maturity
	5.2 Scalability
	5.3 Measurements
	5.4 Realistic Environments or Models

	6 Newer Approaches
	7 The Future
	8 Summary
	References

	Bridging the Gap Between Evolvable Hardware and Industry Using Cartesian Genetic Programming
	1 Introduction
	2 Evolutionary Design of Digital Circuits
	2.1 First Generation EHW
	2.2 Scalability Issues
	2.3 Second Generation EHW

	3 Open Challenges
	3.1 Evolutionary Synthesis and Hardware Community
	3.2 Efficiency of Cartesian Genetic Programming
	3.3 Deceptive Fitness Landscape

	4 Final Remarks
	References

	Designing Digital Systems Using Cartesian Genetic Programming and VHDL
	1 Introduction
	2 Evolving Circuits
	2.1 Combinatorial
	2.2 Sequential
	2.3 HDLs in the Evolutionary Loop
	2.4 Development of GA and CGP Representations

	3 Proposed Method
	3.1 Physical Representation
	3.2 Hardware Description Language and VHDL
	3.3 CGP Representation and Evolutionary Strategies

	4 Experimental Setup
	4.1 Environment
	4.2 CGP Parameters

	5 Combinatorial Circuit Results
	5.1 4-Bit Even Parity Generator
	5.2 2-Bit Adder
	5.3 3-Bit Adder

	6 Sequential Circuits Results
	6.1 3-Bit Counter
	6.2 4-Bit Counter

	7 Conclusion
	References

	Evolution in Nanomaterio: The NASCENCE Project
	1 A Bit of History
	2 A Bit of Background
	3 NASCENCE in a Nutshell
	4 Why and How to Evolve Dead Matter?
	4.1 An Illustrative Example: Nanoparticle Networks

	5 Back to the General Method
	6 Other Examples from the NASCENCE Project
	6.1 Materials and Interfaces Used Within NASCENCE
	6.2 Computational Problems
	6.3 Electrical Behaviour of SWCNT-Composites

	7 Conclusions
	References

	Using Reed-Muller Expansions in the Synthesis and Optimization of Boolean Quantum Circuits
	1 Introduction
	2 Quantum Logic
	2.1 The General n-Qubit Controlled Gate
	2.2 Generalized CNOT Gate
	2.3 Boolean Quantum Circuits (BQC)

	3 Direct Synthesis of a BQC Using a Truth Table
	3.1 Converting a Truth Table to a BQC
	3.2 Comparison with Previous Work
	3.3 Analysis and Results

	4 Boolean Quantum Circuits as Reed-Muller Expansions
	4.1 Reed-Muller Expansions
	4.2 Boolean Quantum Logic
	4.3 Representation of BQC as RM

	5 Practical Construction of BQC
	6 Conclusion
	References

	Cartesian Genetic Programming Applications
	Some Remarks on Code Evolution with Genetic Programming
	1 Search-Based Software Engineering
	2 History of Genetic Programming as Applied to Code Evolution
	3 Machine Learning
	4 The Use of Genetic Programming in Code Evolution Tasks
	4.1 An Overview of the Tasks Approachable by GP
	4.2 Main Aspects of Code Evolution

	5 How to Scale Up?
	6 Conclusion
	References

	Cartesian Genetic Programming for Control Engineering
	1 Introduction
	2 Feedback Control
	2.1 Outline Principles
	2.2 Control Strategies and Objectives
	2.3 Representations of Plant and Control Systems
	2.4 Control Specifications

	3 CGC and Its Implementation
	3.1 Consequences of the Design Sequence

	4 Phenotypes for a Controller
	4.1 Evolving Control Strategy
	4.2 Evolving Controller Structural Blocks

	5 Representative CGP Control Experiments
	5.1 Problem 1---Speeding up Response
	5.2 Problem 2---Eliminating a Steady State Error
	5.3 Observations

	6 Conclusions
	References

	Combining Local and Global Search: A Multi-objective Evolutionary Algorithm for Cartesian Genetic Programming
	1 Introduction
	2 Related Work
	3 The Periodization Model
	4 Hybrid Evolutionary Strategies
	5 Performance Assessment
	5.1 Quality Indicators
	5.2 Empirical Attainment Functions

	6 Evaluation
	6.1 Periodization of hES for DTLZ2, DTLZ6 and ZDT6
	6.2 Periodization of hES for Digital Circuit Design

	7 Conclusion
	References

	Approximate Computing: An Old Job for Cartesian Genetic Programming?
	1 Introduction
	2 Cartesian Genetic Programming
	2.1 Circuit Representation
	2.2 Genetic Operators
	2.3 Seeding the Initial Population
	2.4 Search Algorithm
	2.5 Fitness Evaluation and Its Acceleration
	2.6 Practical Aspects of Evolutionary Circuit Design

	3 Approximate Computing and Evolvable Hardware
	3.1 Approximate Computing
	3.2 Approximations with CGP Before the Approximate Computing Era

	4 Circuit Approximation by Means of CGP
	4.1 Resources-Oriented Method
	4.2 Error-Oriented Method
	4.3 Multi-objective CGP
	4.4 Relaxed Equivalence Checking

	5 New Directions
	5.1 Quality Configurable Circuits
	5.2 Approximate Neural Networks

	6 Final Remarks
	References

	Breaking the Stereotypical Dogma of Artificial Neural Networks with Cartesian Genetic Programming
	1 Artificial Neural Networks
	2 Neuro-Evolution
	3 CGP Evolved Artificial Neural Network (CGPANN)
	3.1 Feed-Forward CGP Evolved ANN (FCGPANN)
	3.2 Recurrent CGPANN (RCGPANN)
	3.3 Plastic CGPANN (PCGPANN)
	3.4 Plastic Recurrent Cartesian Genetic Programming Evolved Artificial Neural Network (PRCGPANN)

	4 Concluding Remarks
	References

	11 Multi-step Ahead Forecasting Using Cartesian Genetic Programming
	Abstract
	1 Introduction
	2 Proposed Algorithm Applied to Data Forecasting Problem
	2.1 Lagging Forecast Method
	2.2 Full Period Forecast Method
	2.3 Evaluation of the Forecasting Performance

	3 Experimental Results
	4 Conclusions and Further Work
	Acknowledgements
	References

	12 Medical Applications of Cartesian Genetic Programming
	Abstract
	1 Introduction
	2 CGP for Medical Applications
	2.1 CGP Geometry
	2.2 Implicit Context Representation CGP
	2.3 Fitness Function
	2.4 CGP as an Optimiser and a Feature Extractor

	3 Example Applications
	3.1 Parkinson’s Disease
	3.1.1 Diagnosis of Parkinson’s Disease
	3.1.2 Monitoring the Side Effects to Medication for Parkinson’s Disease

	3.2 Thyroid Cancer

	4 Summary
	References

	Chemistry and Development
	13 Chemical Computing Through Simulated Evolution
	Abstract
	1 Introduction
	2 Chemical Computing
	3 Experimental Setup
	4 Configuration Design
	5 Dynamic Control
	5.1 Simulated Gels
	5.2 Evolutionary Control
	5.3 Results 1: Simulation
	5.4 Results 2: Experimentation

	6 Conclusions
	References

	Sub-Symbolic Artificial Chemistries
	1 Introduction
	2 Why AChems?
	2.1 What Chemistry Can Give ALife/Complexity Science
	2.2 Quick Definition of AChems
	2.3 Historical Context
	2.4 Desirable Properties of an AChem
	2.5 Rationale for Sub-symbolic AChems

	3 Definition of an ssAChem
	3.1 The Set of Possible Particles mathbbS
	3.2 The Rules, mathbbR
	3.3 The Algorithm, mathbbA
	3.4 Summary of the ssAChem Framework

	4 SMAC: Sub-symbolic Matrix Artificial Chemistry
	4.1 SMAC's Set of Possible Particles, mathbbS
	4.2 SMAC Rules
	4.3 SMAC Algorithm
	4.4 Summary of the SMAC ssAChem
	4.5 SMAC Results
	4.6 SMAC History Versus Presentation

	5 The bRBN-World ssAChem
	5.1 bRBN-World Particles
	5.2 bRBN-World Rules
	5.3 bRBN-World Algorithm
	5.4 Summary of bRBN-World ssAChem
	5.5 bRBN-World Results

	6 ssAChem Design Guidelines
	References

	Discovering Boolean Gates in Slime Mould
	1 Introduction
	2 Data Collection
	2.1 Method
	2.2 Results

	3 Discussion
	References

	Artificial Development
	1 Introduction
	1.1 Models of Development in Evolutionary Computation
	1.2 Benefits of Artificial Developmental Systems

	2 Artificial Developmental Systems
	2.1 Macro-Model Developmental Systems
	2.2 Micro-Model Developmental Systems

	3 Constructing an Artificial Developmental Model
	3.1 Ingredients

	4 Case Studies
	4.1 Robot Controller
	4.2 Image Compression Using Artificial Development

	5 Concluding Remarks
	References

	Computers from Plants We Never Made: Speculations
	1 Introduction
	2 Morphological Computation
	2.1 Shortest Path
	2.2 Spanning Trees
	2.3 Crowd Dynamics
	2.4 Voronoi Diagram
	2.5 Planar Hulls
	2.6 Subdivision of Concave Polygons
	2.7 Logical Gates from Plant Roots

	3 Plant Electronics
	3.1 Plant Wire
	3.2 Functionalizing Plants
	3.3 Case Study. Modifying Lettuce with Nanomaterials
	3.4 Implementation of Logical Circuits Using Plant-Based Memristors

	4 Analog Computation on Electrical Properties of Plant Roots
	5 Evolution in Plants: Searching for Logical Gates
	6 Brain Made of Plants
	7 Discussion
	References

