
Chapter 11
A Novel Foot Progression Angle
Detection Method

Jeffery Young, Milena Simic and Milan Simic

Abstract Foot Progression Angle (FPA) detection is an important measurement in
clinical gait analysis. Currently, the FPA can only be computed, while walking in a
laboratory with a marker-based or Initial Measure Unit (IMU) based motion capture
systems. A novel Visual Feature Matching (VFM) method is presented here,
measuring the FPA by comparing the shoe orientation with the progression, i.e. the
walking direction. Both the foot orientation and progression direction are detected
by image processing methods in rectified digital images. Differential FPA (DFPA)
algorithm is developed to provide accurate FPA measurement. The hardware of this
system combines only one wearable sensor, a chest or torso mounted smart phone
camera, and a laptop on the same Wi-Fi network. There is no other prerequisite
hardware installation or other specialized set up. This method is a solution for
long-term gait self-monitoring in a home or community like environments. Our
novel approach leads to simple and persistent, real time remote gait FPA moni-
toring, and it is a core of new bio-feedback medical procedure.
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11.1 Introduction

This chapter introduces a new implementation of feature detection in measuring
foot progression angle. The FPA is an important parameter in the treatment of the
people with medial knee osteoarthritis. Abnormal FPA is a clinical indicator of gait
monitoring and retraining [1]. The FPA alternation is presented as a possible
solution for reducing the knee loading and knee pain for individuals with knee
osteoarthritis. In addition to that, changes in the FPA have been correlated with
changes in the foot eversion moment [2], knee adduction moment [3], hip joint
moment [4], foot pressure distribution [5], and foot medial loading [6, 7].
A comprehensive review of gait modification strategies for altering medial knee
joint load is given in [8]. The importance of exercise, gait retraining, and also
footwear and insoles for knee osteoarthritis treatment, is also highlighted in the
literature [9, 10].

Currently, the FPA can only be computed, while walking in a laboratory
equipped with marker-based or the IMU based motion capture systems. Specialized
cameras or sensors are required to be installed by technicians in both methods.
Those methods are too complex and not appropriate for long term non-clinical
based FPA monitoring and walking habits retaining.

In our initial investigation we have considered applications of various wearable
sensors, such as the accelerometers and gyroscopes. In addition to that, the touch
sensors were considered for flat foot phase detection. All off those should be
installed and used in non-clinical environments. As such, we present a different
approach in this study.

First of all, let us explain what the positions are that our body takes, while we are
walking naturally in a straight line. We go through the sequence of Gate Cycles.
Each Gate Cycle has two phases: Stance Phase, which takes about 60% of the time
and Swing Phase with 40% of the Gate Cycle time. During the Stance Phase one leg
and foot is bearing the body weight, while during the Swing Phase the feet are not
touching the ground. In this study, only Stance Phase is considered, since the FPA
can be measured only when a foot is on the ground (see Fig. 11.1).

Fig. 11.1 Stance Phase is 60% of the gate cycle, which consists of four stages: a heel strike,
b early flat foot, c late flat foot (mid stance), d toe off (push off)
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Since in the Swing Phase a foot is off the ground, we cannot perform our
measurements. We propose the VFM system to estimate the FPA using a
monocular camera as a sole sensor in the model. The FPA is calculated as the angle
between the foot vector, line joining the heel point center and the second metatarsal
head, and the forward Progression Direction (PD) visualized as a pair of parallel
lines in transverse plane. Measurements are conducted during foot flat phase of
walking. The average time duration available for the FPA measurements is between
15 and 50% of stance [11]. The VFM method, for the first time is proposed for
measuring the FPA via a chest mounted smart phone in non-clinical scenarios.
The VFM model detects the FPA without installing any devices inside or outside of
the shoes and keeps the intrusive and technician intervention to the minimum. In
addition, the problem of matching the feature of shoe is addressed in this study. An
image rectification is performed to remove the distortion caused by the monocular
camera. The VFM modeling results are validated through comparison to the results
from Digital Inclinometer Measurement (DIM).

This chapter includes following information. Experiment scenarios and system
setup are described in Sect. 11.2. Image calibration and rectification are discussed
in Sect. 11.3. Section 11.4 includes the VFM algorithm modules. Validation and
results are represented in Sect. 11.5. Conclusions are given in Sect. 11.6.

11.2 Experiment Scenarios and Setup

The research presented here is approved by the Institutional Ethics Committee and
all participants have provided written informed consent. In order to achieve Data
AcQuisition (DAQ) goal, while still maintaining the low intrusion, low mainte-
nance, high portable, and accessibility at this stage of research, the mobile phone is
turned into a webcam via standard vision applications. Laptop is used for image
processing. Mobile phone and laptop are on the same Wi-Fi network so that they
can communicate. Currently, the VFM model of the FPA analysis is running on
MATLAB 2014a environment using a laptop computer. Personal computer plat-
form could, also, be used to analyze and present the gait data. The system is
implemented entirely on mobile phone platform in the later stages of the research
and biofeedback medical procedure is developed on mobile phone platform as well.

During the proceeding with computer vision and image processing, the optimal
system setup became important. Mounting the camera downward on the torso
(Fig. 11.2a, b) has a few advantages. First, the torso is just above the foot, which is
the best angle to detect the FPA. Second, camera can monitor two feet with closed
range, which is better than a vision range obtained from the head and ceiling
mounting positions. Third, the position is close to the body weight center with high
accessibility and stability. It is better than what can be obtained with other body
mounting solutions. The chest mounted camera has similar property like torso one
and is applied as an alternative solution.
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Figure 11.2c shows a camera mounted on a walking aid. This approach is a
subject of a separate investigation devoted to the people that need any kind of
walking aid. The downward facing camera is mounted on torso via a harness shown
in Fig. 11.2a, b. The camera axis does not have to be orthogonal to the plane of
motion.

Experimental system is designed to be applied on the track, hallway, and tiles
covered floor or any floors with visible straight lines or edges (see Fig. 11.3).
Assume that the PD is the same as the direction defined by those parallel lines,
which must be shown in camera’s image acquired for the purpose of image recti-
fication and lines detection. A smart phone camera is the only the DAQ hardware
needed for the VFM model.

Fig. 11.2 Monitoring system: a front view, b top view of chest mounted camera and harness,
c walking aid as platform

Fig. 11.3 Experimental environments with straight lines used for reference direction: a floor mat,
b hall way, c tracks
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11.3 Image Calibration and Rectification

The VFM method of the FPA estimation is composed of seven modules, as shown
in Fig. 11.4. The module 1 “Baseline data collection” is the starting module of the
whole model. It is only executed once in each walking test. We will now analyze
the initial data collection, while all other modules and the whole algorithm will be
explained later. Onboard camera captures sequences of images that carry a large

Fig. 11.4 The flow chart of
VFM model. Module 1
collects baseline data likes
FPAref, VFref. Module 2
extracts visual features from
current frame of image.
Module 3 matches VFnew and
VFref. Module 4 aligns shoes
of two successive images into
same orientation. Module 5
detects the PD in Imnew and
Imref. Module 6 measures
PDdif in aligned image.
Module 7 calculate PDdif and
FPAnew
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amount of geometrical information, such as the PD and the FPA. There are also two
types of distortions: lens distortion and perspective distortion caused by the optical
lens and position of the camera relative to the subject [12]. Image calibration and
rectification are the tools used to eliminate those two types of distortion resound-
ingly. After removing the distortion in perspective image, the FPA is detectable by
calculating the angle between foot line and the PD.

Lens distortion can often be corrected by applying suitable algorithmic trans-
formations to the digital photograph [13, 14]. Using those transformations, the lens
distortions can be corrected in retrospect and the measurement error can be elim-
inated. In starting module, the calibration was conducted above the calibration
pattern before each experiment.

Camera calibration is the process of estimating parameters of the camera using
images of a special calibration pattern, as shown in Fig. 11.5. Camera parameters,
including the intrinsics, extrinsics and distortion coefficients, are extracted by the
flexible calibration method [15]. They are shown in Fig. 11.5.

During a calibration, the photo shots from different angles and positions were
collected by onboard camera in front of the calibration pattern board. The visualiza-
tion results are shown in Fig. 11.6. The left column plots the locations of the cali-
bration pattern in the camera’s coordinate system and the right column plots the
locations of the camera in the pattern’s coordinate system. Based on that, 3D info
matrix is built up and the camera’s extrinsic parameters were calculated. The mea-
surements were accurate within 0.2 mm when 10 images are collected. When more
pictures are analyzed, high accuracy can be achieved, as given in literature [15].

The imaging geometry and perspective projection were already investigated
comprehensively for the computer vision applications [16]. Under perspective

Fig. 11.5 Calibration images and 3D camera position rebuild
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image, a plane is mapped to the image by a plane projective transformation [12].
This transformation is used in many computer vision applications, including planar
object recognition [17, 18]. The projective transformation is determined uniquely if
Euclidean world coordinates of four or more image points are known [19].

Once the transformation is determined, the Euclidean measurements, such as
lengths and angles, can be calculated on the world plane directly. In this research,
only planar angle measurement is studied, which needs a pair of parallel lines on
ground to rectify images (Fig. 11.7a, c). While walking along the parallel lines of
track, hall way, or tile defined direction, the parallel lines are detectable by Hough
transformation [20, 21]. The Hough transformation is applied in the module 5
“Detect PD line”. The PD lines are shown in Fig. 11.7 before and after the Hough
transformation. Those detected parallel lines are used as the reference lines to
transfer the prospective image into the rectified image with metric angle informa-
tion. The rectified image, as shown in Fig. 11.7b, d, allows the metric properties,
such as planar angles to be measured on the world plane from those perspective
images [19, 22].

Fig. 11.6 Visualization results of camera calibration
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In the Planar Angle Measurement (PAM) demonstration, two paper strips were
placed upon a same plane and rotated constantly. The relative angle of two strips
was calculated in the real time by the PAM method (Fig. 11.8a, b). In the demo, the

Fig. 11.7 Angle measurement in the rectified images of the planar surfaces: a and c original input
image, tile, tape, b and d rectified image
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paper strips were segmented out from each image frame in video stream, as shown
in Fig. 11.8d [23, 24]. After calibration and rectification, the angles between two
stripes were detected accurately with average error Eaver ± 0.05° shown in
Fig. 11.8c, d. The PAM method is applied in the module 6 “Measure planar angle”
to measure the PDdif , as shown in Fig. 11.8. Our average error is well below the
FPA differences that appear with every step, i.e. all step are different and accord-
ingly all FPAs.

Fig. 11.8 Angle measurement in the rectified planar surface: a and c input images, b strip edges,
d angle detection
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11.4 VFM Algorithm Modules

The whole procedure is shown in Fig. 11.4. The first module is already explained
above comprehensively. The other six modules are conducted continuously until
the end of walking test. The baseline data collection module collects data such as
Imref, VFref, and FPAref, where Imref is the static on-ground shoe image taken from
onboard camera, VFref refers to the shoe visual features extracted from Imref, and
FPAref is the reference FPA measured in Imref.

In the FPA enhancement method, the DFPA is developed to provide accurate
FPA measurement. The DFPA uses the reference FPA (FPAref), which is fixed and
already known, as shown in Fig. 11.9, to obtain a precise angle of unknown
rotation by relating it to known object Imref via VFref.

The Imnew is the image frame containing the FPA information at Foot Flat Phase
(FFP) moment in each step, which is picked out by the FFP estimation algorithm.
The FFP optimization is the subject of a parallel investigation. The main approach
in that complementary research is a detection of the sequence of still foot images
that implies stationary phase in the foot motion. The sequence is appearing from the
Early Flat Foot stage, as shown in Fig. 11.1b, to the Late Flat Foot, shown in
Fig. 11.1c. In that foot flat position, appearing during the stance phase after the heel
contact, a foot stays in contact with the ground and the location of the foot should
not be changing. For real time algorithm, the time duration of the FFP is an
important factor. Some of the other parameters, such as the FPA, step length, and
step width, are detectable in this period.

Another approach that is also a valuable option would be the application of
additional tactile sensors. The most reliable solution will be selected and will
become the part of the biofeedback system. The vision based FFP algorithm that we
use at the moment not only detects the FFP image frame in real-time video stream
but also identifies the left and right foot. Therefore, the FPA is detectable in each
image that is indicated by FFP moment.

Fig. 11.9 The known FPA
measured applying a
protractor is used in defining
reference angle FPAref
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Hereinafter, consider the foot feature extraction and matching, alternative feature
extraction method, and the FPA measurement in Sects. 11.4.1–11.4.3, respectively.

11.4.1 Foot Feature Extraction and Matching

The Speeded-Up Robust Feature (SURF) algorithm is based on extraction of feature
points from image [25]. This method is also used for description of feature points
and comparison of these points in the module 2 “Detect shoe features” and module
3 “Matching features”, as shown in Fig. 11.10. The main advantage of the SURF is
its speed. Higher speed processing is achieved using the integral convolution
method and approximation of Gaussian function [15]. The feature points of shoes

(a) (b)

(c) (d)

(e) 

Fig. 11.10 Shoes alignment: a initial image Imref, b obtained image Imnew, c feature point
extraction, d matched features, e shoes alignment and PDdif measurement
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were extracted by the SURF in images Imref and Imnew (Fig. 11.10c). The shoe
transformation between the images Imref and Imnew has been found corresponding to
the matched feature point pairs using the statistically robust M-estimator SAmple
Consensus (MSAC) algorithm [26]. The shoes from the images Imref and Imnew

were aligned into same size and orientation by matched feature point pairs for PDdif

measurement. The process is conducted in module 2 of the VFM model, as shown
in Fig. 11.4.

11.4.2 Alternative Feature Extraction Method

Since the color and textile of participant’s shoes are unexpected and the other
variable environment conditions as well, the shoe is not identifiable in the image.
A pair of paper strips, instead of shoes, is used in the investigations (Fig. 11.11).
There are two functional areas in the strip: outside solo color area and inside feature
area. The outside solo color area shows better identification in an image [11]. The
color segment detection crops the foot area out of the whole photo, as shown in
Fig. 11.11a, b [23, 24]. Furthermore, the inside feature area reduces the VFM
model’s detection time cost without affecting the angle accuracy. This method is
ideal for participants to monitor the FPA in their own shoes and in the familiar
environments.

11.4.3 FPA Measurement

In the calibrated and rectified image, the FPA is detectable by calculating the angle
between the foot orientation and the PD. The numbers and positions of the SURF
feature points in each image are variable. Accordingly, there is no a certain

Fig. 11.11 Shoe indicator (an alternative feature extraction method): a foot indicator strip,
b segmented foot area, c matched features
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geometry shape of a group of feature points to describe the same shoe in each
image. Instead of measuring angle between the feature points and the PD, angles of
VFdif are measured in aligned Imref and Imnew via VFref and VFnew. VFdif is the
relative position between VFref and VFnew in Imref and Imnew. Due to the fact that the
human body is not a fixture, the positions between the onboard camera and shoes
are variable in Imref and Imnew. For example, when the camera rotates with body and
the foot keeps still on ground, FPAdif is zero degree theoretically, while VFdif

reports a rotation value due to the body sway. Therefore, FPAdif is defined the same
as PDdif (the rotation offset of the PD measured in Imref and Imnew in the shoe
aligned picture). It is different to the scenario that can be seen in Fig. 11.10e.

Thus, FPAnew is calculated by using PDdif and FPAref, as given by Eq. 11.1.

FPAnew ¼ PDdif þFPAref ð11:1Þ

11.5 Validation and Results

To test the performance of the proposed VFM model of the FPA estimation, the
validation tests were conducted both on static protractor patterns and in process of
walking along a straight track. The accuracy of the VFM model was evaluated
based on the average errors with respect to the FPA computed from the DIM and
Protractor Measurement (PM) methods. One-way ANalysis of VAriance (ANOVA)
was used to determine if there was any difference in errors of FPA estimation based
on the DIM and the VFM model.

In the static validation, the shoe was placed upon a large protractor laying on the
track and rotated transversely from 0° to 40°, as shown in Fig. 11.12. The FPA
results estimated by the PM, the DIM and the VFM are shown in Table 11.1. The
average FPA errors of the DIM and the VFM were 0.0063 ± 0.000009° and
0.312578 ± 0.0494°. As digital inclinometer and protractor are in the same plane,
the DIM and the PM recorded the FPA errors within 0.64%, which is negligible.

Fig. 11.12 Validation methods: a the DIM, b the PM
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Furthermore, it is not feasible to place protractor under each step, therefore only the
DIM is applied to validate the VFM model in the walking test.

From the column of errors of the VFM in Table 11.1, we can see that the error of
the VFM estimation increases, as foot rotates away from the original orientation
(0°). This error can be minimized by setting original reference of shoes orientation
into the middle of the subjects’ FPA range. For example, if the subject’s FPA range
is observed from 20° to 40°, then the reference shoes orientation should be set to
30°, which minimizes the error ranges.

In the walking test, the subject’s nature FPA was observed to be around 4°,
which was set as original reference of shoes orientation. The DIM and the VFM
estimations of the FPA during a trial are shown in Table 11.2. In general, the FPA
estimations from the VFM model closely followed the DIM estimations under the
walking test. The average FPA errors were −0.15 ± 0.13° for normal gait.

For comparison, consider that a recently published result in a foot wore
Magneto-Inertial Sensing system yielded corresponding error measures of
−0.15 ± 0.24° [2]. Our proposed FPA estimation uses only a smart phone as input

Table 11.1 Validation results of the PM, the DIM, and the VFM

PM (°) DIM (°) VFM (°) Errors of VFM (°)

0 0.007953 0.019978 0.012025

5 5.004283 4.898605 –0.10568

10 10.009435 10.19978 0.190345

15 15.004838 14.70017 –0.30467

20 19.998932 20.41958 0.420648

25 25.008534 24.47842 –0.53011

30 30.008432 29.37410 –0.63433

35 35.0052843 35.69447 0.689186

40 40.0069274 40.74925 0.742323

Table 11.2 Walking
validation results of the DIM
and the VFM estimations

Left foot Right foot

# DIM (°) VFM (°) # DIM (°) VFM (°)

1 4.39 4.56 2 5.53 5.56

3 5.29 5.46 4 5.71 6.02

5 4.41 4.62 6 4.44 4.68

7 5.50 5.59 8 5.23 5.55

9 5.47 5.61 10 5.37 5.70

11 5.33 5.39 12 4.63 4.90

13 5.22 5.44 14 4.62 4.87

15 4.47 4.47 16 5.65 5.89

17 5.04 5.24 18 4.55 4.55

19 5.52 5.86 20 4.88 5.10
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sensor and achieves similar error rates, while being substantially less complex to
implement.

Validation results are shown in Fig. 11.13. Solid and dashed lines represent the
DIM and the VFM estimations over 20 steps in the trial respectively, see
Fig. 11.13a. There are no significant differences between the DIM and the VFM
methods of FPA estimates for the nature walking condition. The average errors of
the VFM are slightly larger than the DIM method errors, and one outliner (6.4°) is
found at 11th step, as shown in Fig. 11.13a. This is likely due the curly edges of the
carpet, which could affect the accuracy of the PD and the FPA measurements.

The VFM model was tested to analysis the FPA with respect to three variables:
Step Length, Step Width, and Body Swing Angle (BSA) [27]. The 10-step
free-cadence walking at the self-selected velocity was recorded firstly as baseline.
Cadence is the walking rate expressed in steps per minute. Everyone can calculate
his/her free-cadence walking rate. Average is in the range of 100–130 steps/min
calculated based on the walking speed in km per hour and the step length. There are
huge differences for each person.

Ten real-time numeric outputs of gait information for free-cadence walking were
collected and are presented in Fig. 11.14a, while their corresponding graphic pat-
terns are displayed in Fig. 11.14b. The graphic patterns, one per step, are instantly
updated on the computer screen. Gait information like the foot progression angle,
body swing angle, and flat-foot stance time of each step are displayed in text box of
Fig. 11.14b. The gait information of two successive steps, such as the step length
and step width, is illustrated between two frames.

The step length, step width and the BSA variability are modified to present the
effect to the baseline FPA through this method, as shown in Fig. 11.15. It can be
seen that three groups of the FPA values are computed in relevant to the variability
of participant’s step length. The first increment of step length is 100 mm, and the
second is 200 mm. The blue dots present results for walking using nature step
length that have the largest FPA. As the step length increases, the FPA is observed
to be smaller, i.e. foots ate more aligned to the progression direction. The regression
function between the FPA variability and step length variables is given by Eq. 11.2,

Fig. 11.13 FPA validation results and error analysis: a plots, b variance
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where 1 degree increase in the FPA variability is associated with 129.29 mm
reduction in step_length variability.

FPA ¼ 13:203� 1:2929 � step lenth ð11:2Þ

Figure 11.15b reflects the participant’s FPA in respect to step widths, in his
free-cadence, and in targeting 10° and 20° larger, respectively. Changing step width
affects the FPA dramatically as the FPA ranges from 2° to 12° in Fig. 11.15b.
The FPA is affected but not on same direction. Mean FPA is 1.5° less than the
baseline FPA, when the participant targeting 10 mm larger step width and 6° larger
in targeting 20 mm larger step width. It depends on how the participant deals with
the gait modification in his/her own most comfort way.

Figure 11.15c plots the effect of the BSA in respect to the FPA on three walks:
free-cadence walking manner, increasing the BSA by 10° and 20° on that. The FPA
stays at a stable value, while the participant can keep the balance by swinging other
part of body. The chart does not address the relative importance related to the FPA
contributed by the BSA. The FPA shows low correlation with the body sway
compared to the step length and step width. The differences between the FPA
values measured for various BSA are not significant. Thus, all three groups of data
represent the same mean FPA value at increasing BSA.

Fig. 11.14 Real time numeric outputs: a numerical outputs, b graphical outputs collected during
the walk. Axis OY corresponds to the PD. Motion time is expressed in ms. Axes OX and OY
together show 2D layout of the experimental place. Time t is the elapsed time from the beginning
of the video, while the FPA and the BSA, as all other quantities, are shown for each step (# is a
step number)
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Fig. 11.15 The statistic
charts of the FPAs in respect
to: a step length in, b step
width in, c the BSA in. White
dots with blue circle represent
the gait info of free-cadence
as a baseline, green and red
dots represent data collected
on first and second gait
modifications
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11.6 Conclusions

The research presented here is a part of a larger project called mobile foot pro-
gression angle correction system. Investigation includes the flat foot phase detec-
tion, then foot progression angle estimation, and finally, correction system design.
Monocular vision sensor captures large amount of data simultaneously. Smart
phone can play multiple roles in the FPA estimation process. The visual feature
matching model for the FPA estimation, in the research presented here, has
obtained equivalent output results that are comparable with the recently published
work, which was conducted in the dedicated lab environments. Comparing to the
Foot Wore IMU Sensing system, the VFM estimates has the advantage in detecting
movement disorder with abnormal gait; as VFM model, it does not need large real
time computation to predict movement approaching, nor need the coping with the
IMU sensor’s drift problem over the time. While the PM and the DIM methods of
the FPA estimation are accurate in static FPA measurements, they are not feasible
to test a participant’s nature gait manner in walking. Therefore, the VFM model is a
solution for long-term real time FPA monitoring in home or community like
environments. In the future, patients with movement disorders or abnormal gait and
the FPA estimation, in non-straight line walking, could be diagnosed and treated
with the system based on presented VFM method. In order to prepare for that, we
will conduct a comprehensive testing of the biofeedback method with large number
of participants.
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