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Perle Geoffroy-Donders1,2(B), Grégoire Allaire2, Julien Cortial1,
and Olivier Pantz3

1 Safran Tech, Safran S.A., Magny-les-Hameaux, France
{perle.geoffroy,julien.cortial}@safrangroup.com
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Abstract. We present here a topology optimization method based on
a homogenization approach to design oriented and parametrized cellular
structures. The present work deals with 2-D square cells featuring a rec-
tangular hole, because their structure is close to that of rank-2 sequential
laminates, which are optimal for compliance optimization. For several
cells, the value and the parametric sensitivities of their effective elastic
tensor can easily be computed, by the resolution of a cell problem. The
obtained results can be used to build a surrogate model for the homoge-
nized constitutive law. Moreover, we add the local orientation of the cells
to our problem. Then, an optimal composite shape is computed thanks to
an alternate directions algorithm. The crucial ingredient of the method-
ology is the extraction of a quasi-periodic and additive manufacturable
structure from the previously obtained composite shape, based on the
introduction of a space transformation.

Keywords: Homogenization · Topology optimization · Cellular
structures · Additive manufacturing · Elasticity

1 Introduction

We present here a topology optimization method based on a homogenization
approach to design oriented and parametrized cellular structures. On one hand,
for a large class of shape optimization problems, composite structures, which
are mathematically the limits of classical micro-perforated shapes, are known to
reach the optimum [1]. On the other hand, the improvement of additive manu-
facturing (AM) technologies makes possible to manufacture structures with very
complex topologies, like periodic cellular structures [14].

The choice of the periodic cells is not trivial and there is a large literature
[7] about optimization of periodic cells to achieve some mechanical properties.
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However, graded cellular structures can be more efficient than periodic cellular
structures, since mechanical properties can be locally adjusted to the needs. Sev-
eral approaches have been explored to optimize such structures. Geihe et al. [10]
work on the set of square cells with parametrized elliptic holes and rewrite the
topology optimization problem as a parametric one. Other methods are based
on the Simplified Isotropic Material with Penalization (SIMP) method [6]. After
the selection of a set of density- parametrized cells, an optimal density is com-
puted and then is used to define the final design of each cell which composed the
global structure [16]. An alternative consists of optimizing locally the design of
each cell, with the constraint that its density is equal to the previously computed
optimal density [12]. Wang et al. [18] present a multiscale design method: the
microstructure of the cells, parametrized by the density, and the macro distrib-
ution of material are both simultaneously optimized.

In the present study, our approach is close to the one developed by Cramer
et al. [8,9], or likewise, by Zhang et al. [19]. A set of parametrized cells is previ-
ously fixed. We introduce their effective elastic properties, which are computed
by homogenization method and which vary smoothly with the design variables.
Then an optimal composite shape, defined by the optimal homogenized fields of
parameters is computed thanks to an alternate directions algorithm. One of the
originalities of our work is that we do not consider only the density as design vari-
ables, but more parameters, whose the cell orientation. In that way, we enlarge
greatly the set of reachable elastic tensors.

The main originality of our work is to propose a deshomogenization method,
which yields to a smooth and well-connected structure. Indeed, the question of
the connectivity between neighbors cells is crucial. Several methods have been
developed to take account this constraint, during the cell design optimization
[20], or during the multiscale design optimization [18]. Here, thanks to the design
of our cells, we do not face this issue. But our method is also generalizable to
other kind of cells, without any further limitation. Indeed, we compute optimal
continuous fields of design variables (the final size of the cells is not a priori fixed)
and the connectivity is ensured by the smoothness of the design parameters.

Otherwise, to deshomogenize a composite structure with isotropic cells, the
direct projection of the optimal density on each cell is a natural approach [19].
However, here the optimal cell orientation has to be considered. We introduce
a space transformation for this purpose [13]. To prevent a significant distortion
of cells during the projection, we regularize the optimal orientation, so that the
previous transformation is conformal (i.e. angle-preserving). Thus, the respective
elastic behaviors of the projected structure and the optimal composite it is based
on remain close to each other.

2 Square Cells

A classical optimization problem in elasticity involves the minimization of the
compliance under a volume constraint.

Let D be the optimization domain and Ω ⊂ D the reference configuration of
an isotropic elastic body. The structure Ω is clamped on ΓD ⊂ ∂Ω, and submitted
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to surface loads g on ΓN ⊂ ∂Ω. Let u be the displacement in the structure, σ
the constraint tensor and A the elastic tensor of the material phase:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

div(σ) = 0 in Ω
σ = Ae(u) in Ω
e(u) = 1

2 (∇u + ∇uT )
u = 0 on ΓD,
σ · n = g on ΓN ,
σ · n = 0 on Γ = ∂Ω \ (ΓD ∪ ΓN )

(1)

Given V a target value for the volume, we are interested in the following
compliance minimization problem:

min
|Ω| = V

ΓD ∪ ΓN ⊂ ∂Ω

∫

ΓN

g · u ds (2)

Robust approaches, for instance the level-set method [3] or SIMP [6], are
really efficient to find an optimal distribution of material in the design space D.
However, they do not consider the option to adapt locally the microstructure of
the medium to design a better performing structure. Indeed, the global optimum
is known to be reached by composite materials, in particular by laminates of
rank-2 (respectively rank-3) laminates in 2D (respectively, in 3D) [1,4].

Let Gθ be the set of effective elastic tensors for composites structures of
density θ (composed of a void phase and an isotropic elastic phase) and CD be
the set of composite designs:

CD = {(θ,A∗) ∈ L∞(D; [0, 1] × M 4
N ) | A∗(x) ∈ Gθ(x) a.e. in D}

The optimisation problem could be reformulated as a minimization problem
on CD , however this is not appropriate since the set Gθ is not explicitly known.
Thus, we use a subset of Gθ, namely the homogenized elastic tensors of a partic-
ular class of composites. Even if the laminates are known to be optimal and their
elastic tensors have explicit expressions, they are excluded from the admissible
set. Indeed they present several scales of material, putting them out of reach
of traditional and additive manufacturing processes. Instead, we retain a simple
composite already used in the seminal paper [5]: square cells with a rectangular
central hole (see Fig. 1). We will denote them by Ysq(l1, l2) where l1, l2 ∈ [0; 1]
are the relative linear dimensions of the hole. The structure of those cells is close
to the one of rank-2 laminates with orthogonal lamination directions, which are
optimal for compliance minimization problems. Moreover, they do not feature
several embedded material scales: a structure made of this composite is more
likely to be additive manufacturable. We emphasize the fact that the global
optimum can be reached only by multi-scale design cells [2], and consequently
no manufacturable structures.

Because the considered cell is not isotropic, its effective elastic behavior
is orientation-dependent. Hence, there are three optimization variables for the
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Fig. 1. Square cell and hole parametrization

optimization problem (2), namely the functions l1(x), l2(x) ∈ L∞(D, [0; 1]) and
α(x) ∈ L∞(D,R) the angle of rotation of the cells.

The compliance minimization problem (2) does not consist anymore in cap-
turing an optimal shape Ω, but in finding the most efficient microstructure on
the whole domain D, with (ΓN ∪ ΓD) ⊂ ∂D.

Let Ssq = {(l1, l2, α) ∈ L∞(D, [0; 1]2 × (R)| ∫
D

(1 − l1(x)l2(x))dx = V } the
set of admissible designs. The minimization problem becomes:

min
(l1,l2,α)∈Ssq

∫

ΓN

g · u ds (3)

where u is the solution of (1) with Ω = D and A = A∗.

3 Homogenized Elastic Tensor

3.1 Homogenization Method

The homogenization method has been used in many scientific disciplines, in
particular for shape optimization. For the sake of completeness and brevity,
only a few important results are recalled here, the interested reader will find
more details and proofs in [1]. Let Ω be a periodic medium of period ε, con-
stituted of an isotropic elastic solid phase, with constant Hooke’s tensor A,
and a void phase. The distribution is given through the characterisitic func-
tion χ(y) ∈ L∞

# (Y, {0, 1}). Let Y = (0, 1)N be the rescaled unit periodic cell,
where N is the space dimension.

When ε → 0, the medium can be considered homogeneous, with an effective
constant elastic tensor A∗. To compute this homogenized tensor A∗, we introduce
correctors wij corresponding to the local displacement in the cell Y, defined for
each pair (i, j) ∈ {1, ..., N}2 by the solutions of the following cell problems [1]:

{
div(Aχ(eij + e(wij))) = 0

y �→ wij Y-periodic (4)

where eij = 1
2 (ei ⊗ ej + ej ⊗ ei) is a basis of the symmetric tensors of order 2.

It can be shown that the tensor A∗ depends on the solutions wij of the cell
problems:
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A∗
ijkl =

∫

Y

χA(y)A(eij + e(wij)) : (ekl + e(wkl))dy ∀i, j, k, l ∈ {1, .., N} (5)

Because the set of periodic composites is dense in the set of all composites
[17], this method can be used to compute the homogenized elastic properties of
any composite materials.

3.2 Homogenized Elastic Tensor of Ysq cells

Thanks to homogenization, the effective elastic tensors A∗(l1, l2) of the cells Ysq

can be computed. The considered cells are orthotropic: A∗ is fully characterized
by only four of its components, namely A∗

1111, A
∗
1122, A

∗
2222, A

∗
1212 in the basis

(y1, y2).
Let (l1, l2) be the sizing parameters of the cell Ysq. We solve the three cell

problems (4) on Ysq, to determine the correctors w11, w22, w12. The four inde-
pendent coefficients of the elastic tensor can be calculated using the Eq. (5).

3.3 Parametric Sensitivities of the Homogenized Tensor

Let Ysq, and l1 and l2 its sizing parameters. Let Γint be the internal boundary of
Ysq, separated it in two parts according to the direction of the normal: Γint,m of
normal colinear to ym with m ∈ {1, 2}, and Γint = Γint,1∪Γint,2. The derivatives
of the homogenized elastic tensor of Ysq with respect to lm is:

∀i, j, k, l ∈ {1, 2} ∂A∗
ijkl

∂lm
= −1

2

∫

Γint,m

(A(eij + e(wij)) : (ekl + e(wkl)))ds (6)

3.4 Interpolation of the Homogenized Elastic Tensors and Its
Derivatives

Thanks to the previous method, we are able to compute the elastic tensor and
its derivatives for any arbitrary set of sizing parameters (l1, l2), even if we can
not establish a closed-form expression when (l1, l2) vary. The proposed strategy
consists in computing the material properties for a discrete sample of parame-
ters values and using the collected data to construct a surrogate model for the
constitutive law.

The compliance of the cell grows with the size of the hole: the four homoge-
nized coefficients are strictly decreasing, with respect to l1 and l2. This property
must be preserved during the interpolation of the elastic tensor. Among the sev-
eral interpolation methods that were investigated, namely linear interpolation,
plines, Kriging, only the linear interpolation ensures the strict monotonicity of
the functions. However, using a linear interpolation, the derivatives of the ten-
sor with respect to l1 and l2 can not be properly computed directly from the
interpolated coefficients. So the sensitivities have been interpolated separately
them likewise. This strategy makes the values of coefficients and their sensitiv-
ities inconsistent. However, in practice, this approximation leads to consistent
results and so is admissible.
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3.5 Cell Orientation

As mentioned in Sect. 4, the considered cells are not isotropic but orthotropic,
in other words their elastic behavior depends on their orientation α. Let R(α)
be the rotation matrix of angle α, and A∗(l1, l2, α) the effective elastic tensor of
a cell Ysq rotated by the angle α:

A∗
ijkl(l1, l2, α) = Rip(α)Rjq(α)Rkr(α)Rls(α) A∗

pqrs(l1, l2) i, j, k, l, p, q, r, s ∈ {1, .., N}
(7)

Unlike the parameters l1 and l2, the dependency on the orientation α can be
written as an explicit expression: the derivatives of the elastic tensor according
to α are also formally known. We notice that a rotation of angle π yields an
equivalent cell: the optimal orientation is so defined modulo π.

4 Topology Optimization

The optimization problem (3) defined in Sect. 4 is self-adjoint. The associated
Lagrangian is:

L (l1, l2, α, η) =
1
2

∫

Ω

A∗−1(l1, l2, α)σ : σdx + η

∫

Ω

((1 − l1l2) − V0)dx (8)

where η is the Lagrange multiplier associated with the volume constraint.
We use the projected gradient algorithm to find a stationary point of (8).

The descent directions are given by the derivatives of L with respect to l1, l2
and α (the projection part comes from the box constraints l1, l2 ∈ [0; 1]). The
value of η is updated at each iteration by a dichotomy process, to respect the
volume constraint.

In practice, the gradient descent method is not really efficient to compute
the optimal orientation. Pedersen proved that the optimal orientation of an
orthotropic cell for a given displacement field is the one where the cell is aligned
with the principal directions of the stress tensor [15]. First, we solve the elasticity
problem, which means we minimize with respect to the stress. Second, for the
computed stress field, we update the orientation in order that the cells are aligned
with the principal directions of the stress tensor. We reiterate this process until
convergence, alternating with the usual gradient descent on l1 and l2.

This approach is more efficient that the gradient descent method, especially
because the optimal orientation is exactly known at each iteration. However,
for multiple loads cases, the optimal orientation is no longer explicitly defined.
Nevertheless, the optimal orientation at one point only depends on the value of
the local stress field and is solution of a one dimensional minimization problem.

However, this method can not be straightforwardly generalized to other
objective functions. For other objective functions, like point-wise displacement,
there is no such local formulation.
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5 Results

5.1 Homogenized Elastic Tensor

To interpolate the effective elastic tensor, we have to solve the cell problems for
differents pairs of sizing parameters (l1, l2). We chose a regular grid of samples:
(l1, l2) ∈ {( i

n , j
n ) | i, j ∈ {0, 1, .., n}}, with n = 20. All our computations have

been performed with FreeFem++ [11].

5.2 Numerical Results of Topology Optimization

The methodology is applied to the bridge case, see Fig. 2. The width of the design
domain is twice its height, a vertical load is applied on a central segment, and
sliding conditions are applied on low external segments (each segment is 10% of
the total length). The constraint volume is 30% of the total available volume.
The Lamé coefficients of the solid material are λ = 7.5 and μ = 5.5.

We run five test cases: in case A, we optimized on the three design variables,
while in cases B and C, we optimized respectively only on the dimensions of the
holes, and only on the orientation α. Results are summarized in Table 1. Cases
D and E differ from cases A and B because of the constraint l1 = l2: we restrict
the subset of considered cells to square cells with square holes, and consequently
the subset of admissible effective elastic tensors to {A∗|A∗

1111 = A∗
2222}. Even if

those cells are not isotropic, they are less anisotropic due to the fact that they
are symmetric under a π

2 rotation.

Fig. 2. Bridge load case

The lower compliance is reached when all microstructural parameters are
actually used as design variables: taken separately, the orientation and the siz-
ing parameters of the holes alone do not allow to reach the minimal compliance.
Note that between cases A and B, the compliance improvement is about 25%.
The anisotropy of the cells is efficiently used. This is supported by a comparison
of cases A and B with cases D and E: the loss of anisotropy leads to a suboptimal
design. Furthermore, the final compliances in cases B and E differ only by 4%.
Indeed, in those cases, orientation is fixed, so to withstand the load in regions
where the principal directions of the stress tensor are not aligned with the prin-
cipal axes of the cell, the best option is to have an isotropic material, and so
intermediate densities are unfavourable. This is the only way to maximize the
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Table 1. Test cases

Case Optimization with
respect to l1 and l2

Optimization with
respect to α

Optimal compliance

A Local Local 3.0622

B Local None (α = 0) 3.84386

C None (l1 = l2 =
√

0.7) Local 6.61234

D Local, with l1 = l2 Local 3.66904

E Local, with l1 = l2 None (α = 0) 3.99547

strength of the material in the directions of the stress (Fig. 3). Consequently, the
optimal density is automatically penalized to 0 and 1 in large areas, see Fig. 4,
case E leads to similar results.

Fig. 3. Numeric results for case A: optimal l1 (a), l2 (b) and density (c)

6 Projection of the Optimal Homogenized Design

To project our optimal homogenized design, we use the deshomogenization pro-
posed by Pantz and Trabelsi [13]. They introduce the set of Y-periodic open
subset of R2: U#. Let ω : R2 �→ U# and ε ∈ R

+∗ a scale parameter. They can
then define a locally periodic composite:

ωε = {x ∈ R
2 : x ∈ εω(x)} (9)

First, if we consider the test case B, the orientation is fixed to 0 in D:
we can produce a sequence of shapes ωε, with ε �→ 0, where the function ω
depends only on l1 and l2. This sequence converges then to the optimal shape.
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Fig. 4. Numeric results for case B: optimal density

To take account the local rotation α(x) of the cells, they introduce ϕ : R2 �→ R
2

a regular local diffeormorphism and the sequence of composites:

Ωϕ,ε = {x ∈ D : x ∈ ϕ−1(εω(x))} (10)

The components of its gradient Dϕ = (u1, u2) have to be colinear respectively
to v1 = R(α)e1 and v2 = R(α)e2 where (e1, e2) is the canonical basis of R2:

u1 = erv1 and u2 = erv2 (11)

with r : R2 �→ R, local dilatation factor. Note that the condition we imposed here
means that the diffeomorphism ϕ preserves locally the angles, since it preserves
the orthogonality of the canonical basis: it is a conformal map. Consequently,
the square cells are not too much distorted by the projection, and their effec-
tive elastic tensors are closed to the ones previously computed and used during
the optimization process. Moreover, the lower ε is chosen, the less the cells are
deformed and the closer the effective tensors are to computed ones.

Pantz et al. proved that r depends only on v1 and v2 up to a constant:

∇r = (∇ ∧ v1)v2 − (∇ ∧ v2)v1 (12)

and
∀p : D �→ R, p = 0 on ∂D,

∫

D

∇r ∧ ∇pdx = 0 (13)

Since v1 = (cos(α), sin(α))T and v2 = (−sin(α), cos(α))T , (11) and (12) we
can conclude:

∇r = (−∂α

∂y
,
∂α

∂x
)T and Δα = 0 (14)

To compute the diffeomorphism ϕ, we first have to regularize the optimized
orientation α. In practice, we define a new optimization problem, similar to the
previous one, defined in Sect. 4. We simply add the constraint Δα = 0, and
minimize the compliance on the variables l1 and l2. We initialize l1, l2 and α
with the optimal fields previously computed. The constraint is imposed with
an Uzawa algorithm. The optimal orientation field (so before regularization)
presents a singularity in the center of the low border of D, but in practice,
the density is equal to 1 in its neighborhood, which means the cells are full,
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hence their orientation is irrelevant. The optimal orientation field seems also
arbitrary in the upper corners, where the density is close to 0. In these areas,
it is almost void, so that the orientation is meaningless as well. Consequently,
in the both extreme cases, orientation can be adjusted, without significantly
deteriorating the solution. Indeed, during the regularization phase, orientation
is mainly revised in these three areas, see Fig. 5. The singularity is pushed outside
the design domain D: there is no problem to apply the above method. We observe
on Fig. 5 a jump of the sign of the orientation, even after the regularization. This
is not a theoritical limitation, since the angle α is defined modulo π. We take
into account this observation in our algorithm to compute ϕ by introducing a
manifold on which α and α +π coexist and where the diffeomorphism is defined
and continuous.

After the orientation regularization phase, we can compute r up to a constant,
which corresponds to a global dilation of the cells, and the diffeomorphism ϕ, also
up to a constant corresponding to a phase difference and which can be chosen
to adjust, for example, the symmetry of the projected shape. Projections of the
optimal design are shown on Fig. 6 for two different values of ε. In practice, ε has
to be chosen according to the resolution of the additive manufacturing process.

Fig. 5. (left) Optimal orientation - (right) Regularised orientation

Fig. 6. Projection of case A optimal design - (a) ε = 1, (b) ε = 2
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7 Conclusion and Perspectives

The optimization strategy based on homogenization method developed in the
present work allows to design anisotropic cellular structures. A manufacturable
shape is then computed by post-processing the homogenized optimal results,
thanks to the introduction of a diffeomorphism.

However, an additional cleanup step is necessary to improve the final design.
For example, low densities could be penalized where they are not required (here,
above the bridge for example). The question of high density is more complex:
we would like to force high densities to 1, in order to limit details too thin for
the AM process. But in 3D, we would prefer to exclude high density to avoid
any inclusions where some material could be trapped during the fabrication, like
unfused metal powder in selective laser melting (SLM).

Our method can be extended to 3D and to more complex parametrized
designs of cells. Hence, the set of reachable elastic tensors will be greatly
enlarged. More results will be available in a future paper.
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