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Abstract. The question for an optimal solution to a certain real-world problem
often turns into a complex optimization problem. The sizing of the cross sections for
bars of a truss structure is generally hampered by interdependencies. This prevents
local search methods from finding a sufficient optimum. For those issues, there is a
demand for fast and reliable global optimization algorithms. The Firefly Algorithm
is a swarm-intelligence-based method frequently used for solving multi-modal
optimization problems. The algorithm maintains a set of individuals, each corre-
sponding to a point within the solution space. During the optimization process, the
individuals move within the solution space under certain rules in order to find the
global optimum. This paper presents an enhancement of the Firefly Algorithm by
an implicit backward Euler movement. Therefore, in each iteration a linear system
of equations must be solved to determine the new positions of the individuals. To
evaluate the performance of the implicit movement, it is applied to continues
benchmark optimization functions. The optimization process is compared to the
basic Firefly Algorithm to specify the effect of implicit movement. Furthermore, a
discrete parameter optimization of a ten-bar truss in the sense of a weight reduction
is carried out. The optimization results are compared to the basic Firefly Algorithm
as well as to the results of four state-of-the-art algorithms. The implicit movement
provides an intuitive and an easy to implement modification of the Firefly Algo-
rithm. Simulation results show that the implicit movement causes a significant
improvement in the convergence behavior compared to the basic Firefly Algorithm
and outperforms state-of-the-art algorithms in terms of the solution quality and
convergence behavior. Due to its generality, the proposed implicit movement can
be implemented to several swarm-intelligence-based algorithms and offers a
promising universal approach for enhancement.

Keywords: Stochastic optimization - Swarm intelligence - Firefly algorithm -
Sizing

1 Introduction

Optimization is a subset of mathematics that deals with determining system parameters
that minimizes or maximizes one or more functions under certain conditions. The
optimization problem is often bounded by constraints. The constraints can be explicit,
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such as by a restriction of the parameter range, or implicit by functions, which may not
leave a certain range of values depending on the parameters. In engineering or eco-
nomics, objectives and constraints are often determined by non-linear functions. These
non-linearities yield a parameter response with multi-modal landscape. For such an
optimization problem, local search algorithms, like hill climbing or Nelder-Mead
downhill simplex methods are usually not able to determine a global optimum.
Therefore, global optimization algorithms like stochastic methods are appropriate. [1, 2]

Stochastic methods are randomized search methods, which are usually based on no
mathematical foundation. They represent iterative methods whose course is determined
by certain stochastics in addition to logical conditions. Because these iterative opti-
mization algorithms are independent of the system to be optimized, they are eligible for
optimization problems in which the objective function or constraints are mathemati-
cally decoupled from the decision variables. Most stochastic procedures are inspired
and abstracted by nature, like the Genetic Algorithm (GA) [3], the Ant Colony Opti-
mization (ACO) [4] or the Particle Swarm Optimization (PSO) [5].

Another frequently used stochastic algorithm is the swarm-intelligence-based
Firefly Algorithm (FA), developed in 2008 by Xin-She Yang [6]. The FA is used
successfully in a wide range of fields like economic dispatch problems [7, 8],
scheduling problems [9] and structural optimization problems [10, 11]. Preliminary
studies show that the FA outperforms existing algorithms in many test cases with
multi-modal landscape [12, 13].

In this paper, we first give a brief outline of the basic Firefly Algorithm. Then, we
introduce the implicit movement within the Firefly Algorithm to enhance its conver-
gence behavior and solution quality. Afterwards, the modified algorithm is applied to
continues benchmark optimization functions as well as to a discrete parameter opti-
mization of a ten-bar truss in the sense of a weight reduction. Finally, we will validate
the performance of the Firefly Algorithm with implicit movement and propose topics
for further research.

2 Basic Firefly Algorithm

The Firefly Algorithm (FA) by Yang [6] is inspired by the characteristic behavior of
fireflies. The specific feature of these insects is the ability to glow, with which they
attract their conspecific. The FA transfers the demand of fireflies to move toward bright
glowing mates in a swarm-intelligence-based optimization algorithm. The d to be
optimized parameters form a hyperspace RY in which the n individuals are located.
According to the position vector x;, an individual i has an objective function value f
whose quality determines the brightness /; of the individual. In terms of a maximization
problem, the brightness I; can simply be chosen as

Li(x;) oc f(x;). (1)
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During the optimization process, each individual i moves within the solution space
toward every brighter (by means of I; > I;) individual j, with the intention to improve
their own objective function value. The step size toward another individual is up to the
attractiveness of this individual. The attractiveness f3; of the individual j for the indi-
vidual i depends on the distance r;; of the two individuals and is determined by

By = Boe 7", (2)

The parameter f§, corresponds to the attractiveness at a distance of r; = 0 and y is
the light absorption coefficient. The distance is commonly the Cartesian distance

ri = |Jxi = x]]. 3)

For an individual i, its movement toward a brighter individual is determined by
it =x 4 ﬁoe_"’rfi (xj’ — xf) + o8 (4)
The third term corresponds to a random movement in space with the step size o,

and a vector €, with random numbers drawn from a Gaussian or uniform distribution.
The pseudo-code of the basic Firefly Algorithm is given in Table 1.

Table 1. Pseudo code: Firefly Algorithm [6]

Firefly Algorithm

Define Objective Function f(x), x = (xq, .., xq)"
Generate initial population of fireflies x;(i = 1,2,...,n)
Light initensity I; at x; is determinded by f(x;)
Define light absorption coef ficient y
while (t < Max Generation)
for (i =1:n alln fireflies)
for (j = 1:n alln fireflies)

if (I,>1;)
2
Bij = Boe™"U
x; = x; + Bij(x; — x;) + ae
endif
end forj
Calculate new Lightintensity I; at x;
end fori
Rank the fireflies and find the current best

end while
Postprocess
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3 Firefly Algorithm with Implicit Movement

The Firefly Algorithm without random movement correlates to a diffusion process of
the form

0X
= bLOY) 5)

with L(x;) = (xJ’ — xf) The diffusion Eq. (5) can be integrated with an explicit Euler

scheme, yielding:
X' = X' 4 pdrL(X"), (6)

which corresponds to the movement Eq. (4) in the basic Firefly Algorithm without
random movement:

X =+ p(x - x)). ™)

The position of an individual at iteration #+ 1 is therefore dependent on the
positions of the other individuals at iteration ¢. To improve the convergence behavior of
the FA, Eq. (5) is now solved by an implicit integration. The position of an individual
at iteration 7 + 1 thus depends on the positions of the other individuals at iteration 7 + 1.
The integration of Eq.(5) by the implicit backward Euler method is
X'+ = X'+ BdrL(X'*1), which leads to the linear system of equation (LSE):

(E — parL)X'*' = X'
le+1 — X[

(8)

with the identity matrix E. The size of the matrix K = E — fidiL equals R"4*(d)
with the number of individuals » and the number of the to be optimized parameters d.
After solving the LSE, a random movement of the individuals takes place:

X =X+ o 9)

The pseudocode of the Firefly Algorithm with implicit movement is given in
Table 2.
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Table 2. Pseudo code: implicit Firefly Algorithm

Implicit Firefly Algorithm

Define Objective Function f(x), x = (x1, ..., xg)"
Generate initial population of fireflies x;(i = 1,2, ...,n)
Light initensity I; at x; is determinded by f (x;)
Define light absorption coef ficient y
while (t < Max Generation)
Initialize Matrix Ky.qgxnaqa =E
for (i =1:n alln fireflies)
for (j =1:n alln fireflies)
if (L>1) ]
Bij = Boe™"
add entities to K
end if
end forj
end fori
Xt+1 = K—lxt
Xt+1 — Xt+1 + ae
Calculate new Lightintensity I; at x;
Rank the fireflies and find the current best
end while
Postprocess

4 Experiments and Results

In the following, the Firefly Algorithm with an implicit movement is evaluated using
benchmark optimization problems. Each optimization is carried out fifty times and the
average (AVGQG) value are formed from these to take account of fluctuations in the course.
On the one hand, the Ackley’s function, the Sphere function, the Rosenbrock function
and the Lévi#13 function given in Table 3 are optimized. The results are compared with
the classical FA in order to determine the impact of the implicit position determination.
Furthermore, a discrete parameter optimization of a ten-bar truss shown in Fig. 5
regarding to a weight reduction is carried out. The optimization results are compared to
the basic FA and furthermore to the optimization results of the Particle Swarm Opti-
mization (PSO) algorithm, the Ant Colony Optimization (ACO) algorithm, the Artificial
Bee Colony (ABC) algorithm and a Genetic Algorithm (GA) adapted from [14—18].
The basic FA as well as the implicit FA are implemented with a population size of
n = 25. The parameters are set to i, = 1.0, y = 0.0001 and o = 0.1. Thus, the basic

Table 3. The function test bed

Name Formula n Search domain Global min.
Ackley’s " n 10 —5<x<5 fx)=0
fx) =20-exp( —0.2-, [1. 322 | + exp(1) — exp (%Zcos(lm,v))
i=1 i=1
Sphere u 10 —5<x<5 x)=0
P f(x>:21x? SXs S(x)
i=

Rosen- . n-l . 10 —5<x<5 flx)=0
brock flx) = ; [100(X,+| —x) 4 (x — 1)2]

Lévi#13 Fx) = sin® (3mxy) + (x — 1) (14 sin?(3mx)) + (62 — 1) (1 + sin (2mx2)) 2 —10<x <10 fx)=0
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FA and the implicit FA only differ in the sense of explicit and implicit movement. The
algorithms are implemented in MATLAB R2016b. The calculations are done on an
intel® core™ i5-6200U CPU with 2.40 GHz. The evaluation of the LSE in each
iteration of the implicit Firefly Algorithm are done with the standard midivide-operator
in MATLAB. The calculation time of the LSE is between 4.50e-06 s and 6.36e-04 s in
all optimizations carried out in this study.

4.1 Optimization Results of Benchmark Test Functions

The optimization results of the test functions given in Table 3 are shown in Figs. 1, 2,3
and 4. In order to obtain representative results, the best objective function values found
within the respective iteration are averaged over the fifty optimization runs. The results
show that the Firefly Algorithm with implicit movement has a superior convergence
behavior. Especially in the first iterations, the objective function value is minimized
significantly faster. Table 4 shows the averaged values (AVG) and the standard
deviations (STD) of the optimizations in the last iteration. The Firefly Algorithm
achieves better mean objective function values, whereby on the average a better
optimization result is achieved. The lower standard deviation for all four test functions
verifies the superior reliability of the FA with implicit movement. Note from Figs. 1, 2,
3 and 4 that in every iteration, the Firefly Algorithm with implicit movement provides a
superior averaged best objective function value.

Table 4. Comparison of FA and implicit FA optimization results of the test functions

Ackley’s Sphere Rosenbrock Lévi#13

AVG |STD |AVG |STD |AVG |STD |AVG |STD
FA 0.0615 | 0.1607 | 0.0043 | 0.0019 | 9.4771 | 12.012 | 1.4e-03 | 2.5e-03
Impl. FA | 0.0149 | 0.0017 | 0.0021 | 0.0005 | 4.8449 | 1.0180 | 5.5¢-04 | 1.7e-04
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Fig. 1. Comparison of convergence rates for Fig. 2. Comparison of convergence rates for
Ackley’s Function of FA and implicit FA Sphere Function of FA and implicit FA
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Fig. 3. Comparison of convergence rates for Fig. 4. Comparison of convergence rates for
Rosenbrock Function of FA and implicit FA  Lévi#13 Function of FA and implicit FA

4.2 Optimization Results of a Planar 10-Bar Truss

For the evaluation of the developed optimization algorithm, a discrete parameter
optimization problem of a planar 10-bar truss is carried out. This test problem has
already been used in different studies and, accordingly, there are comparative values for
other optimization algorithms. The planar structure to be optimized is shown in Fig. 5.
The parameters to be optimized are the ten bar cross sections with regard to a weight
reduction while maintaining the restrictions defined by a maximum permissible stress
of 172.369 MPa and by a maximum node deflection in the vertical and horizontal
direction of £50.8 mm. The structure is subjected by the external force F = 444.82 kN
at node 2 and 4. The bar cross-sectional areas are selected from a set of 42 discrete
predefined values given in Table 5. The density of the material is 2767.99 kg/mm’ and
the modulus of elasticity is 68947.6 MPa.

Table 5. Predefined set of possible cross-sectional areas for the 10-bar-truss [mm?]

1045.16 |1161.29 |1283.87 |1374.19 |1535.48 |1690.32 |1696.77 |1858.06
1890.32 |1993.54 |2019.35 |2180.64 |2238.71 |2290.32 |2341.93 |2477.41
2496.77 |2503.22 |2696.77 |2722.58 |2896.77 [2961.28 |3096.77 |3206.45
3303.22 |3703.22 |4658.06 |5141.93 |7419.34 |8709.66 |8967.72 |9161.27
9999.98 |10322.56 | 10903.20 | 12129.01 | 12838.68 | 14193.52 | 14774.16 | 17096.74
19354.80 | 21612.86

The averaged optimization processes out of 50 optimizations of the Firefly Algo-
rithm and the implicit Firefly Algorithm are shown in Fig. 7. The corresponding
courses of the standard deviations of the weight are shown in Fig. 8. To compare the
optimization results with other algorithms, the optimization processes in Figs. 7 and 8
are indicated by the number of performed calculations. One calculation corresponds to
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a stress and deformation calculation of the truss. It can be seen from Figs. 7 and 8 that
the implicit movement provides a much better convergence behavior. The averaged
best weights obtained after 2500 performed calculations are 2504 kg by the implicit
Firefly Algorithm and 2556 kg by the basic Firefly Algorithm respectively. Including
the standard deviation after 2500 performed calculations of 11.48 Kg and 65.71 kg as
shown in Fig. 8, the Firefly Algorithm with implicit movement achieves a distinctly
better reliability.

The best permissible parameter combination found within the 50 optimizations
compared to the results of state-of-the art algorithms are given in Table 6. The number
of calculations corresponds to the number of stress and deformation calculations
necessary to reach the indicated weight. The calculation numbers are to be interpreted
in such a way that no improvement to the listed weight was possible in subsequent

9144 mm i 9144 mm
+

21612.86 mm? 1045.16 mm?

W pp16

14774.16 mm* 9161.27 mm*

{

Fig. 5. Schematic of the planar 10-bar Fig. 6. Schematic of the optimized
truss structure planar 10-bar truss structure
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iterations. It can be seen in Table 6 that both, the basic Firefly Algorithm and the
implicit Firefly Algorithm, outperform the reviewed state-of-the-art algorithms. The
implicit Firefly Algorithm achieves the best weight of 2490.55 kg within 2125 cal-
culations and is therefore superior to the basic Firefly Algorithm where 3750 calcu-
lations are necessary. The truss structure corresponding to the weight of 2490.55 kg is
shown in Fig. 6.

Table 6. Comparison of FA and implicit FA optimization results with literature for the
ten-bar-truss problem

Algorithm PSO [14] | ACO [15]| ABC [16] | GA [17] |FA Impl. FA
Weight [kg] 2507.00 |2490.55 |2490.55 |[2520.56 |2490.55 |2490.55
#calculations performed | 50000 10000 25800 2000 3750 2125

Al [mm?] 19354.80 | 21612.86 |21612.86 | 19354.80 | 21612.86 | 21612.86
A2 [mm?] 1045.16 |1045.16 |1045.16 |1045.16 |1045.16 |1045.16
A3 [mm?] 14774.16 | 14774.16 | 14774.16 | 17096.74 | 14774.16 | 14774.16
A4 [mm?] 8709.66 |9161.27 |9161.27 |8709.66 |9161.27 |9161.27
A5 [mm?] 1045.16 |1045.16 |1045.16 |1045.16 |1045.16 |1045.16
A6 [mm?] 1045.16 |1045.16 |1045.16 |1045.16 |1045.16 |1045.16
A7 [mm?] 514193 |5141.93 |5141.93 [4658.06 |5141.93 |5141.93
A8 [mm?] 17096.74 | 14774.16 | 14774.16 | 14774.16 | 14774.16 | 14774.16
A9 [mm?] 14193.52 | 14193.52 | 14193.52 | 14193.52 | 14193.52 | 14193.52
A10 [mm?] 1161.29 |1045.16 |1045.16 |1045.16 |1045.16 |1045.16

5 Conclusion

The Firefly Algorithm is an optimization algorithm, which is typically applied to global
optimization problems. We successfully improved the Firefly Algorithm by using an
implicit determination of the changes in individual positions. The system of equations
that must be solved for the implicit position determination is efficiently solvable due to
its sparseness. The proposed modification therefore has no remarkable effect on the
runtime.

The implicit Firefly Algorithm has been tested by means of test functions and has
also been validated by a discrete optimization of a ten-bar truss. Compared to the basic
Firefly Algorithm, the implicit Firefly Algorithm showed a much better convergence
behavior and better reliability. In addition, the optimization of the ten-bar-truss showed
that the implicit Firefly Algorithm outperforms state-of-the-art methods reviewed in
this study both in calculation time and quality.

The proposed algorithm presents an easy to implement and mathematically intuitive
modification of the basic Firefly Algorithm. Due to its generality, the proposed implicit
movement can be implemented to several swarm-intelligence-based algorithms and
offers a promising universal approach for enhancement. Within the scope of this study
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no disadvantages of the implicit movement could be identified. In addition to the
implementation in further swarm-intelligence-based algorithms, supplementary opti-
mization problems should be investigated in order to ensure the validity of the state-
ments made.
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