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Abstract. A novel infill sampling criterion is proposed for a surrogate based
global optimization algorithm. Due to the extensive amount of calculations
required for the meta-heuristic global optimization methods, a surrogate model
was employed. In the surrogate based global optimization, SBGO, an iterative
process of constructing a model and sampling new points are repeated until a
stopping criterion is met. An infill sampling criterion, ISC, controls which data
point should be sampled, however, because the characteristics of a design
problem are prone to influence the performance of the algorithm, an adaptive
ISC should be developed. Thus, in this study, an algorithm that adaptively
searches globally and locally considering the current existing samples is pro-
posed. The novel ISC is integrated with a global search measure weighted
minimum distance, WD, which considers not only the most ambiguous regions
but also accounts for the response values for higher efficiency. The algorithm
was tested on unconstrained mathematical functions including the Dixon-Szego
test functions and the results were compared with other SBGO algorithms.
Additionally, the algorithm was further expanded and implemented to con-
strained optimization problems using penalizing coefficients.

Keywords: Surrogate based optimization � Global optimization � Sequential
approximate optimization

1 Introduction

The surrogate based global optimization (SBGO) is an optimization method which
employs surrogate model(s) to find the global optimum. Compared to previous global
optimization methods such as meta-heuristic methods, it is less computationally
expensive due to the use of the surrogates. The basic procedure of SBGO follows the
given steps; (1) initial points are sampled to build an initial surrogate, (2) afterwards an
infill sampling criterion (ISC) decides next point to be evaluated and added to the
sample set, (3) steps 1 and 2 are repeated until some defined stopping criteria are met.
The performance of an SBGO algorithm is mainly determined by the defined ISC.

SBGO algorithms can be categorized into two groups according to the use of a
single or multiple phase; an algorithm that uses a single phase is dominated by a single
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criterion throughout the entire process of searching whereas in a multiple phase, a
search is performed either in a global region or a bounded local region. The search
executed in each region is called global search and local search, respectively. A typical
example of a single phase SBGO is the EGO algorithm using EI as the ISC [1]. Other
examples may include variations of the EI such as generalized EI [2], or RBF based
SBGO such as Bjorkman [3], Gutmann [4], CORS-RBF [5] and weighted EI [6] which
pre-defined the search pattern. SuperEGO developed by Sasena et al. [7] is an example
for multiple phase SBGO.

Despite the fact that the ISC mostly dictates the algorithm, the performance may
become heavily influenced by the characteristics of a design problem. Therefore, it is
required to develop an ISC that adaptively accounts for the current state of sample
points and decides which region to sample next. In this study, a novel two phase ISC is
proposed that adaptively switch search regions between global and local according to
its conditions. The distinguishable property of the algorithm is that it does not have
pre-defined pattern or repetition but rather accounts for the existing points to determine
the next iteration.

2 Adaptive SBGO

The development objective of the adaptive algorithm is to compensate for the draw-
backs caused by the characteristics of a design problem with a fixed criterion. This
section will provide the details of the criterion; the overview of SBGO algorithm will
be presented first, specific conditions for switching will be then proposed, the weighted
minimum distance metric which accounts for the response value in a global search will
be presented next and finally, the implementation method to constrained problems will
be stated. All optimization procedures from now on will assume to have a goal of
finding the minimum.

2.1 Overview of Two Phase SBGO

The schematic for a two phase SBGO is given in Fig. 1. The initial sampling is done in
order to create the initial surrogate model. In this study, OLHD [8] is used for initial
sample points with a number of 5ndv, ndv being the number of design variables. The
model was generated using Kriging [9] with optimized internal parameters. The ISC
may decide which domain to search where in our case the global search is always
performed at the beginning of the algorithm. The method in choosing either global or
local search lies within the ISC. The ISC is generally consisted with the following
elements; a term for local search metric and a term for a global search metric. This is
expressed in Eq. (1).

ISC ¼ ð1� wÞðlocal search termÞþwðglobal search termÞ ð1Þ

The control weight, w, determines if the iteration should be local search or a global
search by switching between 0 and 1. Generally, the local search term contains a
minimization of the surrogate model to predict a candidate location where the global
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minimum may exist. The global search term usually consists of a metric for finding the
location with the least known information, for example, a point that has the maximum
predicted variance. The next two sub-sections will describe the terms in detail and the
conditions for deciding the control weight, w.

2.2 Local and Global Search Terms

As previously stated, the local search term should consist of a metric predicting a
candidate point where the optimum might be located. This procedure is done using
Eq. (2) where the negative complies the search for the minimum of the surrogate when
the equation is maximized.

ðymin � eyðxÞÞ ð2Þ

Maximized minimum distance is an often used method to search for a point which
lacks known information, i.e. a point that has the potential of giving the most infor-
mation when sampled. The metric was integrated with weights which adjust according
to the response value. The metric will be named as weighted minimum distance and
WD in short, defined as Eq. (3).

Fig. 1. Diagram of the two phase SBGO process
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WD xð Þ ¼ min
i

ci x� xik k

where ci ¼ 1þmax 0;
�y� yi
ry

� � ð3Þ

The �y and ry are the mean and the standard deviation of the response values of the
sample points. The WD works similar to the standard minimum distance metric but
tends to lean towards areas with smaller response values. Summing up the equations
from (1) to (3), the ISC and the optimization problem is defined as Eq. (4).

Find x
to maximize 1� wð Þ ymin � ey xð Þð ÞþwWD xð Þ
s:t: xli � xi � xui i ¼ 1; 2; � � � ; ndv

ð4Þ

2.3 Switching Conditions for the ISC

In this section, the details for the conditions controlling the weight in the ISC are
presented. The weight changes from 0 to 1 when local to global transition conditions
(LtoG) are met and 1 to 0 when global to local transition conditions (GtoL) are met.
The rule for this switch is stated below:

(1) LtoG1 condition; when consecutive iterations has no impact of significant
improvement

(2) LtoG2 condition; when a last sample point was sampled too close to another
existing point

(3) GtoL1 condition; when a new best point has been found
(4) GtoL2 condition; when adequate number of global search is considered to have

performed

The following will be the discussion of the four conditions in detail. For the LtoG1
condition, the current best point and the best point from the last iteration are subtracted
to calculate the relative improvement. It is then divided with the magnitude of the
previous best point for normalization purpose. If the value exceeds a defined threshold,
a count is increased and after a number of counts are cumulated, the condition is met
and the local search is terminated proceeding to global search after wards i.e. the
control weight of the ISC changes from 0 to 1.

For LtoG2 condition, a threshold is defined considering the maximin distance
between the existing sample points. The purpose of this changing threshold is to
prevent the threshold from becoming too small or too large. If the threshold is too large,
local search will always be terminated after a single iteration, if it is too small, it will
seldom transit to global search, unable to increase the overall accuracy of the model.

The GtoL1 condition has its purpose of developing a new region with the potential
global optimum. This condition is considered by comparing the current best response
value and the previous best response value. If the current best is better than the
previous, it indicates that a new region with higher potential has been located from the
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global search and therefore, a more thorough investigation is required leading to local
search around that point.

Finally, the GtoL2 condition is added in order to regularly return to local searching
and place some restriction in the iteration of global search. To contain the number of
consecutive global searches, a threshold and a count is employed as it was with LtoG1
condition. If the consecutive global search points do not find a new best point it will
return to local searching for further development of the current best sample. Performing
global search with shallow restriction is prone to cause a lot of wasting expensive
computation. Therefore, the metric and the thresholds must be decided with caution. In
this study for GtoL2 condition, a response deviation of nearest points is considered and
defined as Eq. (5).

rkneighbor ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnneighbor

i¼1

yneighbori � ykmin

� �2 !
= nneighbor � 1
� �vuut ð5Þ

If the difference between the current and the previous deviations exceeds the
threshold i.e. the improvement around the best point is insignificant, the count
increases. When the count cumulates enough to the defined value, the control weight of
ISC is changed from 1 to 0, in other words, the global search terminates. This metric
was observed to insure the prevention of redundant global sampling.

2.4 Expansion for Constrained Problems

There are typically two methods of handling constraints in SBGO algorithms; the
penalty method and the probability of feasibility method. A penalized method has an
advantage over the probability of feasibility in which it can be sampled at the constraint
due to its discrete tendency whereas for the probability of feasibility method it is not
easily achieved. Therefore, we have chosen to use the penalty method and applied it
over the ISC.

WDmin xið Þ ¼ min
i

cic
g
i x� xik k

where cgi ¼
Yncon
j¼1

cgji ¼
Yncon
j¼1

1

1þ max gj xið Þ;0ð Þ
rgj

ð6Þ

First, a penalty coefficient is added in the WD in order to repel away from infeasible
regions during the global search phase. Also, a penalty term is added along with the
surrogate model to prevent sampling a violated point.

ISC xð Þ ¼ 1� wð Þ ymin � ŷpen xð Þ� �þwWDmin xð Þ

where ŷpen xð Þ ¼ ŷ xð Þþ p
Xncon
j¼1

max 0; ĝj xð Þ� � ð7Þ
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3 Numerical Examples

To validate the performance and robustness of the algorithm, it has been tested on
various mathematical functions including the Dixon-Szego test functions. Details of the
test functions can be found in the reference [10]. The result may be heavily influenced
by the initial DoE, therefore, 30 different OLHDs were used for each test function and
the performance and robustness were measured using the average number of function
evaluations (NoE) and the standard deviation of the NoE. Also, the maximum allowed
NoE was defined as 200 to sort out the failure. Table 1 is the results for the perfor-
mance and Table 2 states the success rate and robustness. Other algorithms did not
present the success rate nor the deviation in the literature, hence, only the
CORS-RBF-Restart [11] is compared for these measures.

The Shekel function results were not given for the EGO algorithm in its paper. It
can be observed that the Adaptive SBGO has a comparable performance with the other
algorithms. The value in the parentheses is the ranking among the algorithms. It is clear
that it always remains within the top three which is a clear advantage when selecting an
algorithm without knowing the characteristics of a problem; most of the time in a real
world application.

Table 1. Average number of function evaluations comparison

Test function Adaptive
SBGO

CORS-RBF-Restart CORS-RBF Gutmann Bjorkman EGO
(EI)

Branin 27.0 (2) 43.90 40 44 26 28
Goldstein-Price 32.77 (3) 59.27 64 63 27 32
Hartmann3 26.97 (3) 54.03 61 25 22 35
Shekel5 71.89 (1) 216.97 104 76 96 –

Shekel7 70.78 (2) 150.77 52 76 72 –

Shekel10 68.21 (3) 121.3 64 51 76 –

Hartmann6 68.63 (2) 199.67 64 112 87 121

Table 2. Standard deviation and success rate of the number of evaluations comparison

Test function Robustness Success rate (%)
Adaptive
SBGO

CORS-RBF-Restart Adaptive
SBGO

CORS-RBF-Restart

Branin 5.35 2.46 100 100
Goldstein-Price 12.0 3.63 100 100
Hartmann3 4.31 8.17 100 100
Shekel5 24.33 28.06 90 93.3
Shekel7 30.48 15.12 90 100
Shekel10 28.58 16.65 93.3 100
Hartmann6 15.15 35.90 100 93.3
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It is shown that the suggested adaptive SBGO withholds a comparable result
against the CORS-RBF-Restart algorithm. The Shekel functions seem to press some
difficulties for the proposed algorithm, however, it is not a considerably crucial
difference.

Table 3 presents the results for the numerical examples of constrained test func-
tions. The test functions used for the constrained problems can be found in the refer-
ence [12] which also describes the details of the COBRA algorithm used for
comparison.

As it can be seen in the result, the suggested algorithm presents no difficulty for
solving constrained optimization problems.

4 Conclusion

In this study a novel infill sampling criterion for surrogate based optimization with
conditions governing the search phase is proposed. The purpose of the criterion is to
enhance the efficiency of the global optimization process. Note that the criterion is not
obliged to a specific surrogate model construction method and can be used for any
models.

The suggested algorithm was tested on mathematical functions and the results have
shown that the algorithm has a comparable performance along with other previously
developed SBGO algorithms. A further study might involve tuning the user parameters
more adaptive to the algorithm itself. Since the criterion is not bound to any other
aspects of the algorithm, additional conditions and features are expected to be easily
augmented.
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Table 3. Results for constrained problems compared with COBRA

Test function Adaptive SBGO COBRA
Average STDEV Success rate Average STDEV Success rate

G6 15.83 1.23 100.0 56.57 13.95 100.0
G8 66.83 24.41 100.0 33.30 2.79 100.0
G24 18.37 2.46 100.0 12.00 0.00 100.0
G5MOD 36.77 8.73 100.0 17.90 0.46 100.0
G13MOD 230.76 103.74 96.7 227.67 35.63 100.0
WB4 91.70 43.66 100.0 169.57 12.23 100.0
PVD4 92.70 64.28 100.0 217.17 – 93.3
SR7 44.60 4.46 100.0 43.00 2.67 100.0

698 D. Park et al.



References

1. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13, 455–492 (1998)

2. Schonlau, M.: Computer experiments and global optimization, Ph.D., Statistics, University
of Waterloo (1997)

3. Bjorkman, M., Holmstrom, K.: Global optimization of costly nonconvex functions using
radial basis functions. Optim. Eng. 1, 373–397 (2000)

4. Gutmann, H.M.: A radial basis function method for global optimization. J. Global Optim.
19, 201–227 (2001)

5. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box
functions using radial basis functions. J. Global Optim. 31, 153–171 (2005)

6. Sobester, A., Leary, S.J., Keane, A.J.: On the design of optimization strategies based on
global response surface approximation models. J. Global Optim. 33, 31–59 (2005)

7. Sasena, M.J.: Flexibility and efficiency enhancements for constrained global design
optimization with kriging approximations, Ph.D., Mechanical engineering, University of
Michigan (2002)

8. Park, J.S.: Optimal Latin-hypercube designs for computer experiments. J. Stat. Plan.
Inference 39, 95–111 (1994)

9. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Stat. Sci. 4, 409–423 (1989)

10. Dixon, L.C.W., Szego, G.P.: The global optimization problem: an introduction. In: Towards
Global Optimization, vol. 2, North-Holland, Amsterdam, pp. 1–15 (1978)

11. Regis, R.G., Shoemaker, C.A.: Improved strategies for radial basis function methods for
global optimization. J. Global Optim. 37, 113–135 (2007)

12. Regis, R.G.: Constrained optimization by radial basis function interpolation for
high-dimensional expensive black-box problems with infeasible initial points. Eng. Optim.
46, 218–243 (2014)

Surrogate Based Global Optimization Using Adaptive Switching 699


	Surrogate Based Global Optimization Using Adaptive Switching Infill Sampling Criterion
	Abstract
	1 Introduction
	2 Adaptive SBGO
	2.1 Overview of Two Phase SBGO
	2.2 Local and Global Search Terms
	2.3 Switching Conditions for the ISC
	2.4 Expansion for Constrained Problems

	3 Numerical Examples
	4 Conclusion
	Acknowledgements
	References


