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Abstract. Surrogate models are widely used in simulation-based engineering
design and optimization to save the computational cost. In this work, an
adaptive region-based global optimization method is suggested. During the
sampling process the approach uses hyperrectangles to partition the design space
and construct local surrogates according to existing sample points. The sizes of
hyperrectangles are adaptively generated by the maximum distance of the
centered sample point between other points. The large size of the hyperrectangle
indicates that the constructed local surrogate might be low accuracy, and the
extended size of the hyperrectangles indicates that new sample points should be
sampled in this sub-region. On the other hand, considering the exploration of the
design space, an uncertainty predicted by using the Kriging model is integrated
with the local surrogate strategy and applied to the global optimization method.
Finally, comparative results with several global optimization methods demon-
strates that the proposed approach is simple, robust, and efficient.
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1 Introduction

Surrogate Assisted Optimization (SAO) has been applied widely in the practical
engineering [1]. The SAOs [2, 3] have advantages over traditional methods when
dealing with highly computational cost problems, such as simulation-based design.
However, most of high nonlinear and high dimensional problems still cannot be
handled, especially for expensive simulation evaluations. Usually, 10 or more
dimensional problems can be considered high if the corresponding evaluation is time
consuming, and such problems widely exist in various disciplines [4, 5].
Region-based optimization is one branch of optimization methods. For an opti-
mization problem, the design space can be partitioned multiple sub-region to search the
global optimum. Partitioning multiple regions is often done with the DIRECT opti-
mization algorithm. The method is a global optimization method first motivated by
Lipschitz optimization, which has been proven to be effective in a wide range of
application domains [6, 7]. The algorithm centers on a space-partitioning scheme that
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divides large hyperrectangles into small ones. The center of each hyperrectangle,
considered as a representing point of the hyperrectangle, is evaluated via the objective
function. At each iteration, a set of potentially optimal hyperrectangles are selected for
further divisions. However, for most of high nonlinear and high dimensional problems
still cannot be handled. On the other hand, Xu ef al. partitioned the design space into
multiple cells to improve the accuracy of the global surrogate [8].

In this study, an adative region-based global optimization is suggested. The method
intends to generate multiple sub-regions and sample sets within each sub-region. With
the generation of multiple sub-regions, a local surrogate is built from the sample set
within each sub-region to predicate the optimum of the sub-region. At each iteration, a
global surrogate is built from all the sample sets to predicate the optimal sub-region.
One crucial advantage of the proposed method is to use local surrogate to exploit the
global optimum and global surrogate to explore the optimal sub-region.

The next section of this paper describes the general idea behind the multiscale
surrogate assisted global optimization method in details. Sections 3 and 4 present
numerical experiments and discuss the test results compared with three nature-inspired
methods and three surrogate assisted methods. Section 5 presents concluding remarks.

2 Adative Region-Based Global Method Optimization
Formulations (MSAQO)

The general formulation of an optimization problem is considered:

Min Y = £(X)
st X= [xl,xz,...,xD]T,X €Q

(1)
where X is the design variable vector, D is the number of design variables. f(X) is the
objective function. Q is the constraint subset of the D dimensional space.

To help designers to concentrate on these sub-regions rather than the whole design
space, the suggested method partitions the space into multiple sub-regions and assigns
multiple sample points to each sub-region as presented in Fig. 1. Figure 1 illustrates the
partition of a two-dimensional space into four sub-regions, which requires three center
points. In this example, the center points are placed randomly in the design space. For
the shape of the sub-region, hyperrectangles are employed to partition the entire design
space into a set of hyperrectangle cells. The ith rectangles cell, represents the sur-
rounding region of center point P;,
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Fig. 1. Two-dimensional partitioning example showing data points and three sub-regions.

2.1 Generation of New Samples

Once the sub-regions have divided with assigning multiple sample points, the local
surrogates are built within the sub-region. The local optimization is repeatedly obtained
by using gradient optimization method to generate new points (Point 1). However, the
new point needs meet two criteria:

(1) The new point should not be too close to existing points within the sub-region
(2) Due to updating the size of the sub-region based on the new point, the new point
should not be too close to the center points of other sub-regions.

When the new point is too close to existing points within the sub-region, then an
exploration point should be added. To explore the sub-region, the sample set should be
updated by adding a point to the database that maximizes the uncertainty of the local
surrogate (Point 2) [9]. The exploration could prevent the new point from crowding the
same area, allowing one point to capture the behavior in the sub-region. If the Point 2
could not meet the second criterion, the sub-region could not find a new point (Table 1).

Table 1. Comparison of two points to decide where to place the center of a sub-region and
update the size of the region.

New point Update Center

the size sub-region at
Point 1:The minimum Euclidean diatance between other center | Yes New Point
points meet the two criteria
Point 2:The minimum Euclidean diatance between other center | No current
points meet the second criterion center point
Point 2:The minimum Euclidean diatance between other center | No current

points cannot meet the second criterion center point
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2.2 Dynamic Partitioning

The cooperative optimization process performed by local surrogates and global surro-
gate is suggests in per optimization iteration. The purpose of this method is to have each
local surrogate predicate a single optimum, and the global surrogate could explore a
single optimal sub-region per iteration. Therefore, as a part of the cooperative opti-
mization process, a self-organizing mechanism is proposed to dynamically partition the
sub-regions which adapts to the search space. By self-organizing, the size of the
sub-regions will be updated and terminated depending on the cooperative optimization
process. The size of the sub-regions will be extended when the new points is to improve
the current optimum and reduce the uncertainty of the local surrogate (updating), and
will be terminated when the sub-region could not exploit the optimum (termination).

The method of space partitioning focuses on moving the sub-regions’ centers to
different local optima. As a result, each sub-region can choose a surrogate that is
accurate around the local optimum, and the new sub-region can also explore the whole
design space. Then it begins optimization by choosing a surrogate, fitting it and
optimizing on this surrogate. As a result, the new sub-region could be arranged mul-
tiple new points. Then, the center of the sub-region is moved to the “best” point in the
sub-region to tradeoff distance and objective function value. This is done by comparing
the center at the last iteration to the last point added by the sub-region.

2.2.1 Update or Terminate the Size of the Sub-region

Once a sub-region has added a new point in its database, it will check whether to
update the size of the region and moved its center to the best point, or to terminate the
udpdating of the region. These operations assign search resources non-uniformly in the
design space so that sub-regions are not redundant and can efficiently improve the
accuracy of the local surrogate.

2.2.2 Create a New Sub-region

The sub-regions might reach a point where there is no improvement made by the
optimization in several iterations (i.e., the sub-region couldnot generate new point). To
improve exploration, a new sub-region is created in the design space per iterations. This
parameter is called the stagnation threshold. To create a new sub-region, a new center
point is created by minimizing the global surrogate, thus forming a new sub-region.
The design space is then repartitioned. If the new sub-region might be too close to other
sub-region, the sub-region could be created by maximizing the uncertainty of the global
surrogate.
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2.3 The Optimization Method is Summarized as Follows

The flowchart of the MSAO method is shown in Fig. 2.
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Fig. 2. Flowchart of the MSAO method.

3 Numerical Experiment

529

This section compares the accuracy and efficiency of the methods presented in this
study for three numerical examples. Six methods are compared: three nature-inspired
methods (GA [10], DE [11], and PSO [12]), three surrogate assisted methods (EGO

[13], MSEGO [14], and MPS [15]).
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3.1 Test Functions

In this section, three test cases with different features are used to demonstrate the
applicability of the methods. These test cases are classified two groups: the first group
is a set of low dimensional test cases. These test cases are in favor of sequential
sampling optimization methods considering both exploration and exploitation; the
second group is a high dimensional test case with highly nonlinear regions. These cases
are summarized in Table 2.

Table 2. Summary of test cases

Test Range Optimal region Number | Performance
function of
variables
Rosenbrock | [—2.048,2.048]* | finin (*min) = 0 2 Low nonlinearity
Xmin = (1, 1) with unimodal and
valley-shaped
Schwefel | [—-500, 500 Sonin(Xmin) = 0 2 High nonlinearity
Xmin = (420.9687,420.9687) with multimodal and
Waving uniformly
Rastrigin [-5, 5]10 Sonin(Xmin) = 0 10 High dimension and
nonlinearity with
multimodal and
Waving uniformly

3.2 Test Scheme

To obtain more stable prediction, all functions are tested with 100 replications. A Latin
Hypercube Sampling (LHS) is employed to create an initial sample set where sample
points are infilled in the design space and sub-regions. The number of initial sample
points is 3D for low dimension and 10D for high dimension. Furthermore, to compare
the performance method with different method within the limited Number of the
Function Evalutions (NFEs), the NFEs is the stopping criterion used in this study. The
details are summarized in Table 3.

Table 3. Multi-agent parameters for example problems

Parameter Low dimension High dimension

Sample points in the initial DOE in | 3D 10D

design space

Maximum NFE 30D 100D

Min distance between points 10%of max distance in 10% of max distance in
sub-region sub-region

Initial silhouette of the sub-region 0.02 0.02

Initial number of points in each 2D D

sub-region
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4 Results and Discussion

4.1 Rosenbrock Function

Figure 3 shows the real function, global surrogate, local surrogate, and the region with
sample points in different cycles. As shown in Fig. 3(a—c), the centers of the regions are
based on the initial samples are created by the LHS, and the size of the region is set by
the initial size. Then the next initial samples are included and created by the LHS. As
shown in Fig. 3(d—f), the number of the region is 2 instead of 4 since the new sample is
too close to the other sample within the disappeared region. Moreover, by the manner,
the optimal region can be catched, and the other region can be removed. As shown in
Fig. 3(g—i), there are two remaining regions. The large one is the optimal region to
exploit the next global optimum. The small one is the most uncertainty region to
explore the region of the global optimum.
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Fig. 3. Contour plots of the real function and KRG model in different cycles
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The results of the different methods for Rosenbrock2 are shown in Fig. 4.
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Fig. 4. The results of the different methods for Rosenbrock2 (60NFEs)
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Fig. 5. Contour plots of the real function and KRG model in different cycles
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Figure 6 shows that the Ymin of each method is close to the real optimum in the
limited number of samples, suggesting that none of the EGOs can handle such a
complicated multimodal function. However, it is clear that the convergence result of
the EGO is retively good and reliable.

4.2 Schwefel Function

Figure 5 shows the real function, global surrogate, local surrogate, and the region with
sample points in different cycles. As shown in Fig. 5(a—c), the centers of the regions are
based on the initial samples are created by LHS, and the size of the region is set by the
initial size. Then the next initial samples are included and created by the LHS. As shown
in Fig. 5(d—f), the number of the region is 4 since the distances between the new samples
of the current region and the other samples of the current region are suitable to generate
new samples. Moreover, by the manner, the current region can be extended to find more
local optimum. As shown in Fig. 5(g—i), the number of the region is 3 instead of 5 since
the distances between the new samples of the disappeared regions and the other samples
of the disappeared regions are too short or the size of the disappeared region is too large.
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Fig. 6. The results of the different methods for Schwefel2 (60NFEs)

Figure 6 shows that the Ymin of each method is near to the real optimum in the
limited number of samples, suggesting that none of these methods can handle such a
complicated multimodal function. However, it is clear that the convergence result of
the MASO is retively good and reliable.
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Fig. 7. The results of the different methods for Rastrigin 10 (1000 NFEs)
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4.3 Rastrigin Function

Figure 7 shows that the Ymin of each method is near to the real optimum in the limited
number of samples, suggesting that none of these methods can handle such a com-
plicated multimodal function. However, it is clear that the convergence result of the DE
is retively good and reliable.

5 Conclusion Remarks

This paper provided a novel multiscale surrogate assisted global optimization method
to address the global optimization problem. The method is compared with six global
methods. It is observed that the MASO method has the potential to improve the
efficiency of the optimization method by dynamically partitioning the design space. In
practice, this is an ideal scenario as one would not want to waste resources on searching
for poor sub-region.

For Schwefel and Rosenbrock function, it is observed that the MSAO method
outperforms nature-inspired methods in terms of efficiency and reliability. However,
the MSAO method might not outperform other surrogate assisted optimization (EGO,
MSEGO). For Rastrigin function, none of methods obtains the global optimum. It is
observed that the MSAO method outperforms other surrogate assisted optimization
(EGO, MSEGO) in terms of efficiency and reliability. However, the MSAO method
might not outperform the nature-inspired methods.

In the future, a more in-depth look at the advantages of using multiple sub-regions
per iteration can be studied. There is the possibility to explore asynchronous
sub-regions that partition the starting points for local optimization in the space and
update the global surrogate as new points are added.
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