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Abstract. To date the design of structures via topology optimisation
methods has mainly focused on single-objective problems. However, real-
world design problems usually involve several different objectives, most
of which counteract each other. Therefore, designers typically seek a set
of Pareto optimal solutions, a solution for which no other solution is bet-
ter in all objectives, which capture the trade-off between these objectives.
This set is known as a smart Pareto set. Currently, only the weighted
sums method has been used for generating Pareto fronts with topology
optimisation methods. However, the weighted sums method is unable
to produce evenly distributed smart Pareto sets. Furthermore, evenly
distributed weights have been shown to not produce evenly spaced solu-
tions. Therefore, the weighted sums method is not suitable for generat-
ing smart Pareto sets. Recently, the smart normal constraints method
has been shown to be capable of directly generating smart Pareto sets.
This work presents an updated smart normal constraint method, which
is combined with a bi-directional evolutionary structural optimisation
algorithm for multi-objective topology optimisation. The smart normal
constraints method has been modified by further restricting the feasible
design space for each optimisation run such that dominant and redun-
dant points are not found. The algorithm is tested on several different
structural optimisation problems. A number of different structural objec-
tives are analysed, namely compliance, dynamic and buckling objectives.
Therefore, the method is shown to be capable of solving various types of
multi-objective structural optimisation problems. The goal of this work
is to show that smart Pareto sets can be produced for complex topol-
ogy optimisation problems. Furthermore, this research hopes to highlight
the gap in the literature of topology optimisation for multi-objective
problems.
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1 Introduction

Engineering design is typically characterised by several considerations, usually
with conflicting requirements, which cannot be simplified down to a single objec-
tive. In such cases, more than one solution exists that fits the bill of the design
problem. Hence, for these multi-objective problems, the Pareto frontier of the
entire design space is the most valuable tool a designer can have, allowing the
most appropriate design to be selected. The Pareto frontier is defined as the
set of all solutions for which no other solution is better in all objectives [1].
A solution that lies on the Pareto frontier is known as Pareto-optimal or non-
dominated. Therefore, Pareto sets give the trade-off relationships between the
particular objectives in a multi-objective problem. However, in the “real-world”
there also exists unavoidable design constraints. A common example being the
stress in a structure constrained to not exceed its material limit value. There-
fore, if an optimisation algorithm is to be used for real-world engineering design
problems it must be able to handle multiple objectives and constraints.

Structural optimisation can trace its roots back over a century to the publi-
cation of a paper that derived the optimality criteria for the least weight layout
of trusses [2]. Currently, structural optimisation can be divided into three pri-
mary categories: sizing [3,4], shape [5,6] and topology optimisation [7–9]. Of
these categories, topology optimisation has the greatest potential for exploring
superior optimised structures, since both changes in topology and shape are
permitted. The first general theory of topology optimisation, known as layout
theory, was formulated by Prager and Rozvany [10]; however, it was the seminal
paper by Bendsøe and Kikuchi [7], which developed the first material distrib-
ution method, making topology optimisation applicable to real-world engineer-
ing problems. Nowadays, two methods, namely, Solid Isotropic Material with
Penalisation (SIMP) [8,11] and Bi-directional Evolutionary Structural optimisa-
tion (BESO) [9,12,13] have reached the stage of application in single-objective
industrial problems [14]. This study is concerned with the latter, extending a
recently proposed algorithm [15], known as Smart Normal Constraints BESO
(SNC-BESO), to handle multiple constraints in multi-objective topology opti-
misation (MOTO) problems. Thus, realising the full potential of topology opti-
misation in real-world applications.

Typically, to facilitate the handling of multi-objective optimisation (MOO)
problems, a scalarisation technique such as the weighted-sums method [16] or
the ε-constraint method [17], is employed. These methods combine all objec-
tives to form a single function, known as the aggregate objective function, so
that a MOO problem can be converted to a single-objective optimisation (SOO)
problem. These methods are the most common approach found in the MOO
literature, possibly owing to their simplicity and ease of application. However,
there are three main difficulties associated with these types of methods. First,
a satisfactory a priori selection of weights does not guarantee an acceptable
final solution will be obtained [18]. Second, these methods are unable to cap-
ture solutions on the non-convex regions of the Pareto frontier [19,20]. Finally,
varying the weights consistently and continuously does not guarantee an even
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distribution of Pareto solutions and an accurate, complete representation of the
Pareto set. Hence, these methods are suitable for obtaining Pareto solutions, but
ill-suited for the creation of Pareto sets [21].

One popular method to obtain a comprehensive Pareto set is to use
metaheuristic-based MOO techniques, such as a multi-objective genetic algo-
rithm [22] or a multi-objective particle swarm optimisation [23], which are
extensions of their SOO algorithms, respectively. Metaheuristic-based techniques
have also been applied to multi-objective topology optimisation problems, see
for example [24–26]. One advantage of these techniques is that they do not
require design sensitivities, making their implementation simpler. However, for
this same reason metaheuristic-based techniques are inefficient, and thus, can-
not be applied to large scale problems that have thousands of design variables
[27]. In the literature, metaheuristic-based approaches that are able to han-
dle MOTO problems have been limited to approximately 103 design variables
[28]. Conversely, topology optimisation problems are usually characterised by
large-scale problems for which the number of design variables is in the order of
103–106, as each element or node in the discretised design domain is assigned as
a design variable [29]. Consequently, additional techniques to reduce the num-
ber of design variables are required when metaheuristic-based approaches are
applied to topology optimisation problems [30,31]. Further, the complexity of
these order reducing techniques becomes increasingly problematic as the MOTO
problem becomes more complex. Therefore, making application of these methods
to real-world design problems futile.

On the other hand, gradient-based topology optimisation methods, such as
SIMP and BESO, can effectively and efficiently handle problems with design
variables in the order of 106. A wide variety of objective functions have been
used with gradient-based topology optimisation algorithms, diversifying their
application to almost all fields of engineering and design [32,33]. However, com-
pared with the extensive research on SOO, there has been considerably less work
concerned with topology optimisation for multi-objective problems. This gap in
the literature is highlighted by the most recent review articles [13,14,27,34] and
textbooks [35–37] on topology optimisation, with only one or two references
and no section dedicated to multi-objective problems. Recently, Sigmund and
Maute identified the handling of multiple constraints as one of the main future
challenges of topology optimisation [27]. The authors of this work feel that along
with the handling of multiple constraints, multiple objectives should also be han-
dled in topology optimisation algorithms for their continued use in real-world
problems.

The Evolutionary Structural optimisation (ESO) method has been employed
with the weighted sums method to incorporate multiple criteria into the ESO
process [38,39]. Proos et al. showed that this approach is able to produce a
range of options, of Pareto attribute, for a multi-objective problem. However,
the weighted sums method is unable to produce Pareto sets. Kim et al. [40] devel-
oped a multi-objective structural optimisation method for a three-dimensional
(3D) thermal protection system using the ESO algorithm. They again used
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the weighted sums method with the objective of minimising maximum thermal
stress and maximising the fundamental frequency. More recently, the Aggrega-
tive Gradient-based Multi-objective optimisation (AGMO) method was applied
to a topology optimisation problem with a minimum compliance and volume
objective [41]. However, the AGMO method can only be applied to topology
optimisation problems with two objectives, and further, points located at a great
distance from the Pareto frontier are updated along with points near the frontier,
which is computationally inefficient. Moreover, AGMO requires an additional
method to ensure diversity of the obtained Pareto-optimal solutions [42]. Sato
et al. [43] recently coupled an adaptive weighted sums method with point selec-
tion schemes, namely a population-based approach, to a level-set based topology
optimisation algorithm. They applied their method to compliance minimisation
problems for multiple static load cases, providing insight into the relationship
between the topology and the applied load. However, their method is unable
to produce uniform Pareto-optimal solutions, and hence, Pareto-optimal solu-
tions are sparse in certain areas, due to the use of the weighted sums approach.
Furthermore, this renders the approach unsuitable for problems that have a
non-convex Pareto frontier.

As outlined above, multi-objective optimisation methods that are suitable for
MOTO problems with multiple constraints are yet to be developed. In this paper,
the recently introduced SNC-BESO method [15], which was shown to produce
smart Pareto sets in an efficient and effective manner, is therefore extended
to also handle multiple constraints. The method is demonstrated on a num-
ber of examples having dynamic and static constraints. Hence, realising the full
potential of gradient-based topology optimisation algorithms in real-world design
problems.

2 Methodology

In this section the SNC-BESO method, which is able to consider topology opti-
misation problems with multiple constraints as well as objectives, is briefly out-
lined. This section focuses on outlining the methods that enable the algorithm to
consider multiple constraints, whilst finding the Pareto-set for a multi-objective
topology optimisation problem. For a more in-depth description of the algo-
rithm the interested reader is advised to seek out the recent publication by the
authors [15].

2.1 Smart Normal Constraints Method

First, the variation of the smart normal constraints method used is defined. The
SNC method can be divided into 7 steps, which will be described in this section
using a bi-objective optimisation problem. Steps 2–7 are repeated until there are
no more approximate regions of the Pareto surface that are capable of yielding
a smart Pareto point.



Producing Smart Pareto Sets 149

Step 1: Generating the reference points
To approximate the Pareto frontier the anchor and anti-anchor points, the points
in the feasible design space that correspond to the minimum and maximum value
of one of the objectives respectively, must be found. The anchor point for the
ith objective is found by:

μi∗ =
[
μ1(xi∗), μ2(xi∗), . . . , μn(xi∗)

]T
(1)

where μ is the design objective vector and xi∗ is defined as the design variable
vector that gives the minimum value of the ith objective. The anti-anchor point
for the ith objective is found by:

μi◦ =
[
μ1(xi◦), μ2(xi◦), . . . , μn(xi◦)

]T
(2)

where xi◦ is the design variable vector that gives the maximum value for the
ith objective. The anchor and anti-anchor points are used as the vertices on the
edges of the Pareto frontier approximation to guarantee convergence of the entire
Pareto set [44].

Step 2: Connecting the approximation points
The vertices found in the previous step are divided into approximation segments
or planes (for more than two objectives) to approximate the Pareto frontier. The
anchor points are connected to each other, creating the utopia lines. Therefore,
a utopia line vector, Nj , is found using the equation:

Nj = μj∗ − μn∗ ∀j ∈ (1, 2, . . . , n − 1) (3)

Hence, n − 1 utopia line vectors are defined, all of which point to the anchor
point corresponding to the nth dimension, μn∗.

Step 3: Approximating the Pareto frontier
A set of evenly spaced approximation points are generated along each approxi-
mation line or plane, by the following relation:

Si =
n∑

j=1

αj
i Pj (4)

where Si is the ith approximation point and Pj is the jth approximation vertex.
The non-dimensional parameter αj

i is defined such that it satisfies the constraints
given by:

0 ≤ αj
i ≤ 1 (5)

and

n∑

j=1

= αj
i = 1 (6)
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αj is varied from 0 to 1 with a fixed increment of δj such that an even distribu-
tion of approximation points is obtained. Small increments, δj , will result in more
approximation points. However, computations performed on the approximation
points are relatively inexpensive, since more approximation points will not result
in more function calls, as only one point is used per iteration. Therefore, con-
trary to the normal constraints (NC) method, the efficiency of this algorithm
depends little on the value of δj .

Step 4: Removing restricted approximation points
Unavoidably, some of the new solutions found will not add to the smart Pareto
set. There may also be regions where the Pareto frontier is discontinuous and,
therefore, solutions cannot exist. In Step 7 these restricted regions are recorded
and avoided in further iterations. In this step the approximation points that lie
within one smart distance (defined in next step) of already existing smart Pareto
points are removed from further consideration.

Step 5: Calculating the smart distance
In this step the smart distance between each approximation point and all approx-
imation vertices is calculated. Mattson et al. [45] first introduced the idea of a
smart Pareto set, based on the assumption that: “when the trade-off is signif-
icant a designer is willing to give up an insignificant amount in one objective
to gain significantly in another”. Consequently, Mattson et al. [45] introduced
the smart Pareto filter, which removes any duplicate Pareto solutions that fall
inside a user defined shape, known as the Practically Insignificant Trade-off
(PIT) region, surrounding each Pareto solution.

In the SNC method, the direct generation of a smart Pareto set is facilitated
by the smart distance between points in the design space. The shape of the
PIT region around a point is called a Lamé curve. Therefore, the PIT region
is defined as the area that lies on or within the Lamé curve. All points inside
the PIT region have a smart distance of s ≤ 1 from the centre point. Hence, by
definition all members of a smart Pareto set do not lie inside the PIT regions of
any other members of the set, thus each will have a smart distance of s > 1 with
respect to all other members of the set. The smart distance between two points
is found by:

s = ‖Ad‖p for (0 ≤ p ≤ 2) (7)

where

A =

⎡

⎢
⎣

1
a1

· · · 0
...

. . .
...

0 · · · 1
an

⎤

⎥
⎦ for (a > 0) (8)
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d is a vector between the two points and ||Ad||p is the p-norm of the vector
Ad, which follows that given by Rynne [46], in this case it is found by:

‖Ad‖p =

(
n∑

i=1

|Ai,idi|p
) 1

p

(9)

The variables a and p determine the distribution of the smart Pareto points.
The values of ai which make up the diagonal of the matrix A, correspond to the
ith objective and can be considered as the amount of change in the ith objective
necessary to constitute a significant difference between two points if all other
objectives were to remain practically unchanged. Larger values of the matrix A
will thus result in fewer points in the smart Pareto set. The value of p deter-
mines the amount of curvature of the PIT region, and hence controls the degree
of trade-off between objectives that is required in order for two points near each
other to both be considered smart Pareto points. Since the values of a and p are
user-defined, it is therefore the user’s preferences that determine the distribution
of the set. Hence, the SNC method is able to search the entire design space more
efficiently and determine which approximation point is most likely to generate
a new smart Pareto solution.

Step 6: Generating the new Pareto point
The approximation point with the largest smart distance to its nearest known
Pareto point is selected to construct a single objective optimisation (SOO) prob-
lem with two normal constraints, given by:

Nj (μ(x) − Sr) ≤ 0 ∀j(1, 2, . . . , n − 1) (10)

and

− Nj (μ(x) − Sl) ≤ 0 ∀j(1, 2, . . . , n − 1) (11)

where Sr and Sl are the approximation points on either side of the approximation
point that is determined to be most likely to produce a smart Pareto solution.
In this way the solution is guaranteed to fall at the intersection of the Pareto
curve and the normal line, which intersects the approximation point most likely
to produce a smart Pareto solution. Therefore, the new Pareto point is found by
solving the SOO problem given by:

min(x) μ1(x)
subject to: n ≥ 2

g(x) ≤ 0
h(x) = 0
xl ≤ x ≤ xu

Nj(μ(x) − Srj
)T ≤ 0 ∀j(1, 2, . . . , n − 1)

−Nj(μ(x) − Slj )
T ≤ 0 ∀j(1, 2, . . . , n − 1)

(12)

where g and h are inequality and equality constraints, respectively, and n is the
dimension of the problem or number of objectives. Thus, for every approximation
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point that is considered likely to produce a smart Pareto solution, a correspond-
ing point on the Pareto frontier is found. Once a new Pareto solution has been
obtained the approximation points are updated. Consequently, the approxima-
tion points become closer to the Pareto front than the utopia line points that
are obtained with the NC method. This usually results in fewer function calls
per SOO for the SNC method compared to the NC method.

Step 7: Confirming the new Pareto point belongs to the smart Pareto set
The new Pareto point, found in Step 6, may not lie on the smart Pareto set.
Therefore, if this is the case, a restriction enabling the removal of future approxi-
mation points in these regions, which are known to be unable top produce smart
Pareto points, must be added. In the literature it is generally accepted that three
criteria: dominated, redundant and separated, can be formulated to test whether
the new point lies inside the smart Pareto set [15,47]. If the point meets one of
these criteria, then it is not a smart Pareto point.

A dominated point may be produced by solving the SOO problem from Step
6 when there are local minima or maxima in the region defined by the two
normal constraints. When using gradient-based algorithms, local optima can be
perceived as global optima by the optimiser. A dominated solution is one which
is locally optimal, but not globally optimal, since there exists one other solution
where one of the objective functions can be improved in value, compared to
the dominated point, without degrading the other objective values. Therefore,
a solution is called Pareto-optimal if there does not exist another solution that
dominates it.

A redundant point can be produced when the new solution falls within the
PIT region of another, already present, Pareto point. This can occur because the
true shape of the Pareto frontier is unknown, rather it is approximated by the
already existing Pareto solutions that have been obtained. Therefore, by simply
selecting an approximate point which does not lie inside the PIT of another
Pareto point does not guarantee that the obtained Pareto point also won’t lie
inside the PIT of another Pareto point.

A separated point is a point that is separated from the normal constraint
lines or planes, which were used in the SOO problem that created it (Step 6).
This separation indicates that there is a region in the design space in which all
SOOs will converge to the same solution. This occurs because the Pareto frontier
is discontinuous in this region. Using the normal constraint line that produced
the separated point and a parallel normal constraint line that intersects the final
solution, a restricted region can be created. This restricted region is kept for the
remainder of the optimisation process, to avoid further generation of redundant
points.

2.2 Bi-direction Evolutionary Structural Optimisation

This work uses the Bi-directional Evolutionary Structural Optimisation (BESO)
algorithm [9,12] to solve the SOO problem in Step 6. In this section only the
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method used to extend the SNC-BESO algorithm to handle both multiple con-
straints will be described in detail. For further details on the BESO algorithm
and the specific variation used here the reader should seek out the latest textbook
[36] and the recent manuscript by the authors which introduced the SNC-BESO
algorithm [15].

To solve a multi-constrained optimisation problem, Zuo et al. [48] pro-
posed relaxing the problem using Lagrange multipliers. Thus, the constraints
are treated as penalty terms in the calculation of the objective functions. There-
fore, the sensitivity analysis becomes:

α = αobjectives + λαconstraint (13)

where α is the sensitivity function, λ is a Lagrange multiplier and the subscripts
objectives and constraint refers to the objectives and constraint values, respec-
tively. The additional Lagrange multipliers are continuous in an infinite domain.
Thus, it is computationally infeasible to search such a domain with a direct
method. Instead λ can be defined through a scaling function of replacement
factors φ that range in a finite domain [0, 1), given by:

λ =
φ

1 − φ
φ ∈ [0, 1) (14)

Hence, the Lagrange multipliers, λ, are represented in the whole range by the
replacement factors, φ, since φ = 0 =⇒ λ = 0 and limφ→1 λ = ∞. Thus, the
Lagrange multiplier, and hence the penalty term due to the constraint, can be
increased or decreased by increasing or decreasing the corresponding replacement
factors. Therefore, in this manner any number of physical constraints can be
handled by adding a penalty term to the sensitivity analysis.

However, there is another type of constraint, known as geometrical con-
straints, which can be handled even before the calculation of the sensitivity
numbers. A common example in topology optimisation is a volume constraint,
where the final structure must have a volume less than or equal to a pre-defined
percentage of the design space. Another example is when certain areas of the
design domain are non-designable, i.e. must remain solid or void. For these types
of constraints no modification to the SNC-BESO algorithm is needed as it can
already handle geometrical constraints [15].

3 Results and Discussion

In this section the results of the SNC-BESO algorithm, with and without mul-
tiple constraints, are presented. First, a 2D plane stress problem taken from
the literature of multi-objective topology optimisation [38] is solved. Only the
weighted sums method was used to solve this kind of problem in topology optimi-
sation, therefore a smart Pareto set could not be obtained. However, it is shown
that by using the SNC-BESO method a smart Pareto set is found effectively
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and efficiently. Next, the same problem is solved, however with an added phys-
ical constraint on the 2nd natural frequency. This demonstrates the algorithms
ability to not only handle multiple objectives, but multiple constraints as well.
Hence, multiple objectives and multiple constraints, both physical and geomet-
rical, are handled in the same problem, showing the ability of such a methods
to be applied to real-world problems.

3.1 Multiple Objective Topology Optimisation

Proos et al. [38] present a multiple objective topology optimisation problem,
where a structure subjected to nine point loads, having a magnitude of 200N
each, distributed over 0.09m is being designed. The structure is supported by
two roller supports at the bottom two corners (Fig. 1). The design domain has
dimensions 0.8 × 0.5 × 0.01 m for the length, height and width, respectively.
The domain is discretised using 80 × 50 four-node square elements (Fig. 1). The
material properties defined for the design domain are: a Young’s modulus of
E = 200 GPa, a Poisson’s ratio of ν = 0.3 and a density of ρ = 7000 kgm−3.
Throughout the analysis 2D plane-stress conditions are assumed.

Fig. 1. Initial design domain [38]

The design objectives for the topology optimisation problem are to minimise
the mean compliance and to maximise the first natural frequency. For this prob-
lem, a volume constraint of V = 0.7 is also applied. The multiple objective topol-
ogy optimisation problem is solved using the SNC-BESO method. The amount of
change in either objective that would constitute a significant difference between
two Pareto points, if all other objectives remain practically unchanged, is set
to 5%. The amount of curvature of the PIT region is defined as p = 0.4. The
corresponding Pareto curve of the minimum mean compliance terms and first
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Fig. 2. Pareto frontier of the mean compliance and first mode natural frequency for the
multiple objective topology optimisation problem found using the SNC-BESO method

mode natural frequencies is presented in Fig. 2. The points marked (a)–(i) all
correspond to the topologies shown in Fig. 3. The dashed lines represent the lim-
its of both objectives, found by solving a single-objective topology optimisation
problem for both objectives.

The points illustrated in Fig. 2 are evenly spaced along the Pareto front, with
no points lying within the PIT of any other, thus making up a smart Pareto set.
Furthermore, all the PIT regions intersect their neighbouring point’s PIT region
in some location, demonstrating that no new designs can be found that would
be of interest to the designer. Hence, the entire design space has been searched.
This is a particularly important improvement over the previous methods used
in multi-objective topology optimisation, since the designer has the minimum
amount of information required to give all possibilities for the current design
problem. Therefore, the SNC-BESO method used is able to access the entire
design space, produce evenly distributed Pareto solutions and efficiently obtain
a smart Pareto set, illustrating its ability to solve multi-objective optimisation
problems in an efficient and effective manner.

In contrast, the work of Proos et al. [38] does not produce a smart Pareto
set, showing the deficiencies of the weighted sums method. Moreover, evenly
distributed weights are prescribed, but an even distribution of points is not
obtained. Furthermore, the points are concentrated around the knee region of the
Pareto curve, where larger areas of trade-off are observed. Proos et al. found that
using the weighted sums method, for this particular problem, did not necessarily
lead to a design that showed any improvement in one criteria leading to a clear
trade-off with the others. Hence, increasing the weights of one objective did not
always lead to an improvement in that objective with a corresponding reduction
in the others. They found that the solution with a 90% stiffness weighting had a
lower natural frequency than the solution produced with a stiffness weighting of
100%. However, the mean compliance was lower for the solution with a stiffness
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Topologoes of smart Pareto-set

weighting of 100%. Thus, this solution was optimal in terms of being the stiffest
design; the authors had found a local optimum, i.e. a dominated point was
produced. These problems are not evident for the SNC-BESO method of this
work.

The final topologies (Fig. 3) found using the SNC-BESO method are not
affected by numerical instabilities, such as mesh-dependency and checkerboard-
ing. Each solution has clear holes, with a uniform mesh transition between the
two anchor points. In contrast, the topologies illustrated in [38] contain some
checkerboarding, with several small holes formed and elements connected at
only two corners. This shows the benefits of implementing an updated BESO
method compared to the ESO method. The mesh-independency filter employed
in this work spreads the sensitivities across the entire design domain such that
these instabilities do not occur. Furthermore, the topologies produced in this
work (Fig. 3) are convergent, whereas the ESO method does not have a rigorous
convergence criterion. The SNC-BESO method is thus better able to find smart
Pareto sets of multi-objective topology optimisation problems.
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3.2 Multiple Objective Topology Optimisation with Multiple
Constraints

The previous subsection solved a multiple objective topology optimisation prob-
lem from the literature, showing the improvements of the SNC-BESO algorithm
over the current state of the art. However, as previously mentioned, in real world
design problems often the designer must manage constraints as well as objec-
tives. Therefore, in this subsection an additional physical constraint, where the
difference between the first and second natural frequency must be greater than
400 Hz (i.e. ωn2 − ωn1 ≥ 400 Hz), is added to the problem formulation. Such
a constraint is used to ensure that frequency coupling, where two natural fre-
quencies come together resulting in a damping ratio of zero causing resonance,
does not occur. Hence, the addition of such a constraint, along with the already
present geometrical constraint, makes the problem a multiple objective as well
as a multiple constraint problem.

The design objectives for this problem are again to minimise the mean com-
pliance and to maximise the first natural frequency. Furthermore, the volume
constraint is again set to V = 0.7. The multiple objective and constraint topol-
ogy optimisation problem is solved using the SNC-BESO method. The amount of
change in either objective that would constitute a significant difference between
two Pareto points, if all other objectives remain practically unchanged, is set
to 5%. The amount of curvature of the PIT region is defined as p = 0.4. The
corresponding Pareto curve of the minimum mean compliance terms and first
mode natural frequencies is presented in Fig. 4. The points marked (a)–(h) all
correspond to the topologies shown in Fig. 5. The dashed lines represent the lim-
its of both objectives, found by solving a single-objective topology optimisation
problem for both objectives with the constraints.

Fig. 4. Pareto frontier of the mean compliance and first mode natural frequency for
the multiple objective topology optimisation problem with a geometric and physical
constraint found using the SNC-BESO method
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5. Topologoes of smart Pareto-set with geometrical and physical constraint

The points illustrated in Fig. 4 are spaced across the entire Pareto front, with
no points lying within the PIT of any other, thus making up a smart Pareto
set. The Pareto front (Fig. 4) is noticeably different from the one found for the
problem without the additional physical constraint (Fig. 2). Namely, there is
a discontinuity in the Pareto front between solutions (e) and (f). This discon-
tinuity is due to the flatness of the Pareto front towards the right hand side
(Fig. 4), where the structures with higher compliance values are found. The
added physical constraint has resulted in a steep drop to almost the maxi-
mum fundamental frequency (solutions (a)–(e)) and then a flat region where
large decreases in compliance result in only a small increase in the first nat-
ural frequency (solutions (f)–(h)). This is due to the reduction in the range
of the first natural frequencies, 675.9Hz ≤ ωn1 ≤ 694.4Hz, for the multi-
constrained problem compared to, 675.9Hz ≤ ωn1 ≤ 699.1Hz, for the ini-
tial problem. Furthermore, the range of compliance values has increased from:
6.61(10−3)Nm ≤ Compliance ≤ 7.70(10−3)Nm for the initial problem to:
6.61(10−3)Nm ≤ Compliance ≤ 7.90(10−3)Nm for the multi-constrained prob-
lem. Therefore, the added constraint has extended the range of compliance



Producing Smart Pareto Sets 159

design, but put a restriction on the amount by which the first natural frequency
can be maximised.

The final topologies (Fig. 5) found using the SNC-BESO method are again
not affected by numerical instabilities, such as mesh-dependency and checker-
boarding. Each solution has clear holes, with a uniform mesh transition between
the two anchor points. Compared to the previous problem, the final topolo-
gies are all different except for solution (a). The effect of the added constraint
can be clearly seen, especially towards the latter solutions (Fig. 5(f)–(h)). This
added constraint is especially difficult for the optimiser, because increasing the
gap between the first and second frequencies results in the structure where the
load is applied being removed. This drastically increases the compliance of the
structure, whose minimisation is also one of the objectives of the problem. This
removal is easily seen by solutions (f) and (g) (Fig. 5). Therefore, the struc-
ture becomes less rounded and more triangular. Hence, the updated SNC-BESO
method is thus able to find smart Pareto sets to multi-objective as well as multi-
constrained topology optimisation problems.

4 Conclusions

A recently developed multi-objective topology optimisation algorithm, known as
SNC-BESO, which uses a variation of the smart normal constraints method com-
bined with a bi-directional evolutionary structural optimisation algorithm, has
been extended to also include multiple constraints (both physical and geometri-
cal). The literature review showed that, thus far, topology optimisation methods
have mainly focused on single-objective problems. Hence, reducing the applica-
bility of topology optimisation algorithms to real-world problems. Two multiple
objective topology optimisation problems were solved using the updated SNC-
BESO method, the first was taken from the limited literature on multi-objective
topology optimisation and the second was an extension of this first problem
with an added physical constraint to make the problem contain both multiple
objectives as well as constraints.

The first test case was purely a multi-objective problem with a stiffness and
dynamic criterion. The same problem had previously been solved in the literature
using a weighted sums ESO method [38]. The Pareto front determined by the
SNC-BESO method was found to constitute a smart Pareto set, while the same
cannot be said for the Pareto front found using the weighted sums method [38].
Hence, the SNC-BESO method is shown to be able to produce multi-objective
topology optimisation problems in an efficient and effective manner.

The second problem has multiple constraints as well as objectives, having an
added dynamic stability constraint. To the best of the author’s knowledge, such
a problem has not yet been solved before using any method in the BESO liter-
ature. Again, the SNC-BESO method was shown to be able to produce a smart
Pareto set covering the entire design domain. The added constraint resulted in
a discontinuous Pareto front; however, the updated SNC-BESO algorithm was
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able to find solutions on either side of the discontinuity. This demonstrated that
the recently developed SNC-BESO algorithm is able to handle multiple con-
straint problems along with multiple objectives and physics as demonstrated in
an earlier work by the authors [15].

The work presented here adds to the literature on multi-objective topol-
ogy optimisation, as well as multi-constrained topology optimisation, which is
a limited field of research. This type of analysis is instrumental for further
application of topology optimisation to industrial design problems, where the
consideration of multiple objectives, physics and constraints is a very frequent
requirement. Finally, it is left as future work to apply the updated SNC-BESO
method to topology optimisation problems with more than two-objectives, thus
demonstrating that this method is suitable for any dimension of multi-objective
problem.
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