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Abstract. Many supertree estimation and multi-locus species tree esti-
mation methods compute trees by combining trees on subsets of the
species set based on some NP-hard optimization criterion. A recent app-
roach to computing large trees has been to constrain the search space by
defining a set of “allowed bipartitions”, and then use dynamic program-
ming to find provably optimal solutions in polynomial time. Several phy-
logenomic estimation methods, such as ASTRAL, the MDC algorithm
in PhyloNet, and FastRFS, use this approach. We present SIESTA, a
method that allows the dynamic programming method to return a data
structure that compactly represents all the optimal trees in the search
space. As a result, SIESTA provides multiple capabilities, including: (1)
counting the number of optimal trees, (2) calculating consensus trees,
(3) generating a random optimal tree, and (4) annotating branches in
a given optimal tree by the proportion of optimal trees it appears in.
SIESTA is available in open source form on github at https://github.
com/pranjalv123/SIESTA.

1 Introduction

Phylogeny estimation is generally approached as a statistical estimation prob-
lem, and finding the best tree for a given dataset is typically based on methods
that are computationally very intensive; for example, maximum likelihood phy-
logeny estimation is NP-hard [19] and Bayesian MCMC methods require a long
time to converge. For this reason, among others, the calculation of very large
phylogenies is often enabled by divide-and-conquer methods that use “supertree
methods” to combine smaller trees into larger trees. A more common use of
supertree methods is to combine trees computed by independent research groups
on different datasets into a single tree on a large dataset. Supertree methods are
very popular and an area of active research in the computational phylogenetics
community [3].

Species tree estimation, even for small numbers of species, is also difficult
because of multiple processes that create differences in the evolutionary his-
tory across the genome; examples of such processes include incomplete lineage
sorting (ILS), gene duplication and loss (GDL), and horizontal gene transfer
(HGT) [12]. Species tree estimation is therefore performed using multiple loci
from throughout the genomes of the different organisms, and is referred to as
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“phylogenomics”. One of the standard approaches for species tree estimation is
to compute gene trees (i.e., trees on different genomic regions) and then com-
bine the trees together into a species tree under statistical models of evolution,
such as the multi-species coalescent (which models ILS), that allow for gene tree
heterogeneity. Examples of methods that construct species trees by combining
gene trees and that are statistically consistent under the multi-species coalescent
model include ASTRAL [15,16], GLASS [17], the population tree in BUCKy [8],
MP-EST [10], NJst [9], and a modification of NJst called ASTRID [29].

This approach, called “summary methods”, shares algorithmic features in
common with supertree methods in that both construct trees on the set of species
by combining trees on subsets of the species set; the difference between the two
types of methods is that in the supertree context, the assumption is that the
heterogeneity observed between these “source trees” is due only to estimation
error, while in the phylogenomic context the assumption is that source trees can
differ from the species tree due to a combination of estimation error and true
heterogeneity resulting from ILS, GDL, HGT, or some other causes.

Summary methods and supertree methods are often based on attempts to
solve NP-hard problems, and so typically use heuristics (a combination of hill-
climbing and randomization) to search for optimal trees. While these heuristics
can be highly effective on small datasets, they are often very slow and there are
no guarantees about the solutions they find.

An alternative approach to the use of heuristic searches is constrained exact
optimization, whereby the solution space is first constrained using the input
source trees, and then an exact solution to the optimization problem is found
within that constrained space. This approach can lead to polynomial time meth-
ods (where the running time depends on the size of the constraint space as well
as on the input) that can have outstanding accuracy. The first use of this app-
roach was presented in Hallet and Lagergren [7], which provided a method to
find a species tree minimizing the duplication-loss reconciliation cost given a set
of estimated gene trees. Since then, many other constrained exact optimization
methods have been developed in phylogenomics for different purposes, includ-
ing species tree estimation from sets of gene trees under gene duplication and
loss models or under the multi-species coalescent model, or improving gene trees
given a species tree [2,4,15,16,26,27,30,31].

Most of these approaches constrain the search space using a set of “allowed
bipartitions”, which we define here. Each edge e in an unrooted tree T on a set
S of species defines a bipartition πe of S (also called a “split”), obtained by
deleting e but not its endpoints from T ; hence, every tree T can be defined by
its set of bipartitions C(T ) = {πe : e ∈ E(T )}. The constraints imposed by these
algorithms are obtained by specifying a set X of allowed bipartitions so that the
returned tree T must satisfy that C(T ) ⊆ X. The set X is used to define a set of
“allowed clades” (comprised of the halves of the bipartitions, plus the full set of
species), and dynamic programming is then used on the set of allowed clades to
find an optimal solution to the optimization problem. The set X has an impact
on the empirical performance, but even simple ways of defining X can result
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in very good accuracy and provide guarantees of statistical consistency under
statistical models of evolution [16,30].

The constrained exact optimization approach has multiple advantages over
heuristic search techniques. From an empirical perspective, the dynamic pro-
gramming approach is frequently faster, and if the constraint space is selected
well it is often more accurate than alternative approaches that typically use
heuristic searches for optimal solutions. From a theoretical perspective, the abil-
ity to provably find an optimal solution within the constraint space is often
sufficient to prove statistical consistency under a statistical model of evolution
(e.g., under the multi-species coalescent model); hence, many of the methods
that use constrained exact optimization can be proven statistically consistent,
even for very simple ways of defining the constraint set.

These constrained exact optimization methods typically have excellent accu-
racy in terms of scores for the optimization problems they address (established
on both biological and simulated datasets) and topological accuracy of the trees
they compute (as established using simulated datasets). A basic limitation of
these methods, however, is that they return a single optimal tree, even though
there can be multiple optima on some inputs. This limitation reduces the utility
of the methods.

We present SIESTA (Summarizing Implicit Exact Species Trees Accurately),
an algorithmic tool that can be used to enhance these dynamic programming
methods for finding optimal trees. The input to SIESTA is the set T of source
trees, the constraint set X of allowed bipartitions, and a scoring function w that
assigns scores to tripartitions of the taxon set (and which is derived from the
optimization function F that assigns scores to trees and the set T , as we show
later); SIESTA returns a data structure I that represents the set T ∗ of trees
that optimize the function F subject to the constraint that every bipartition in
every tree in T ∗ is in X. This data structure I enables the user to explore the
set of optimal trees in various ways. In this study, we use SIESTA to compute
consensus trees and the maximum clade credibility (MCC) tree, to count the
number of optimal trees, and to report the frequency of each bipartition in the set
of optimal trees. We explore the impact of using SIESTA with two methods that
use the dynamic programming method for constrained exact optimization: the
supertree method FastRFS [30] and the species tree estimation method ASTRAL
[16], which addresses gene tree heterogeneity due to ILS.

The remainder of the paper is organized as follows. The performance study
is described in Sect. 2, and the results of that study are presented in Sect. 3. We
discuss the trends observed in our experiment, and the impact of using SIESTA
in supertree estimation and multi-locus species tree estimation, in Sect. 4. The
conclusions are presented in Sect. 5. Details of SIESTA’s algorithm design and
running time analysis are provided in Sect. 6. The simulated datasets analyzed
in this paper are available on FigShare at [28].
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2 Experiments

2.1 Overview

We tested SIESTA in conjunction with the supertree method FastRFS (using
the enhanced version) and the coalescent-based species tree estimation method
ASTRAL on 2 biological and 1765 simulated datasets. For each dataset we exam-
ined, we used SIESTA to compute the set of optimal solutions, and then com-
puted consensus trees for these trees. We computed the strict consensus tree,
which is the unique tree whose bipartitions appear in every optimal tree. We
report the average of the FN and FP error rates.

2.2 Methods

Standard Methods. We report results for FastRFS v2.0 (using the enhanced
variant, as described in [30]) on the supertree datasets, since this technique gave
the best performance, and improved on MRL [18], a leading supertree method,
as well as on ASTRAL-II. We also report results for ASTRAL-II (ASTRAL
v4.11.1) on the phylogenomic datasets using default settings. We used RAxML
v8.2.4 [23] to estimate gene trees (using options -m GTRGAMMA -p 12345) and
to run MRL within FastRFS (using options -m BINGAMMA -p 12345).

ASTRAL-SIESTA. The use of SIESTA to process ASTRAL trees is called
ASTRAL-SIESTA: this is the algorithm that computes the data structure for
the optimal trees computed by ASTRAL, and then returns the strict consensus
of the optimal trees as well as the Maximum Clade Credibility (MCC) tree. The
output of ASTRAL-SIESTA can also be used for other explorations of the set
of optimal trees, including annotating edges in a given candidate species tree
with branch support based on the frequency of the edge appearing in the set
of optimal trees. ASTRAL-SIESTA uses ASTRAL v4.11.1 (with the -q option)
to compute the Maximum Clade Credibility (MCC) tree, which is based on the
ASTRAL-II posterior support values [21].

FastRFS-SIESTA. The use of SIESTA to process FastRFS trees is called
FastRFS-SIESTA: this is the algorithm that computes the data structure for the
optimal trees computed by FastRFS, and then returns the strict consensus of the
optimal trees. The output of FastRFS-SIESTA can also be used for other explo-
rations of the set of optimal trees, including annotating edges in a given candidate
supertree with branch support based on the frequency of each edge appearing
in the set of optimal trees. FastRFS-SIESTA uses ASTRAL v4.7.8 to compute
the set X of allowed bipartitions (using the option -k searchspace norun).

Simulated Supertree Datasets. The simulated supertree datasets were originally
provided in [25], and have been used to explore the accuracy of several supertrees
methods [18,30]. We explore the results on the datasets with 1000 taxa, which
are the hardest datasets in this collection; results on 100 and 500 taxa are shown
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in the supplement. Each replicate contains one “scaffold” tree and several clade-
based trees. The scaffold tree is based on a random sample of the species, and
contains 20%, 50%, 75%, or 100% of the taxa sampled uniformly at random from
the leaves of the tree. The clade-based trees are based on a clade and then a birth-
death process within the clade (and hence may miss some taxa). The original 100-
taxon, 500-taxon, and 1000-taxon datasets had 6, 16, and 26 source trees respec-
tively; the number of source trees was reduced to 6, 11, and 16 for the 500-taxon
datasets, and 6, 11, 16, 21, and 26 for the 1000-taxon datasets. Sequences evolved
down each scaffold and clade-based source tree under a GTR+Gamma model
(selected from a set of empirically estimated parameters) with branch lengths
that are deviated from the strict molecular clock. Maximum likelihood trees were
estimated on each sequence alignment using RAxML under the GTRGAMMA
model (with numeric parameters estimated by RAxML from the data), and used
as source trees for the experiment. 10 replicates were analyzed for each scaffold
factor of the 1000-taxon model condition.

Simulated Phylogenomic Datasets. The simulated phylogenomic datasets are
from [16]; the gene trees were generated by SimPhy [14] and the sequences
evolved down the gene trees using Indelible [5]. The species trees are randomly
generated, and gene trees evolve within the species trees under the multi-species
coalescent model; hence there is gene tree heterogeneity resulting from ILS in
these datasets. Three levels of ILS were generated, characterized by the average
normalized bipartition distance (AD) between true gene trees and true species
trees: a moderate ILS condition (AD = 12%), a high ILS condition (AD = 31%),
and a very high ILS condition (AD = 68%). These datasets have a speciation rate
of 10−6, resulting in speciation close to the tips of the model trees (recent diver-
gence). Sequences evolved down each gene tree under a GTR+Gamma model
with branch lengths that are deviated from the strict molecular clock.

These datasets were then modified for the purposes of this study. These
datasets originally had 200 taxa each, but were randomly reduced to 50 taxa
each to reduce the running time. The original datasets had variable length loci
between 300 and 1500 bp, and were truncated for this experiment to 150 bp to
produce datasets with properties that are consistent with empirical phyloge-
nomic datasets (which frequently have very low phylogenetic signal). Each repli-
cate was evaluated with 5, 10, and 25 loci. We evaluated model conditions where
each gene contained all 50 taxa, as well as model conditions where each gene
contained 10, 20, or 30 taxa chosen at random from the taxon set.

Gene trees were estimated on each sequence alignment using RAxML
[23] under the GTRGAMMA model (with numeric parameters estimated by
RAxML), and we analyzed 25 replicates for each model condition (defined by
the ILS level, number of loci, and amount of missing data).

Overall, we examined 900 simulated phylogenomic datasets and 600 simu-
lated supertree datasets.

Biological Phylogenomic Datasets. We analyzed two phylogenomic datasets on
which ASTRAL had at least two optimal trees: a Sigmontidine rodent dataset
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[13] with 285 species and 11 genes, and a Hymenoptera dataset [22] with 21
species and 24 genes. The Sigmontidine rodent dataset has 72 optimal ASTRAL
trees and the Hymenoptera dataset has 4 optimal ASTRAL trees.

Performance Criteria. For the simulated datasets, we evaluate accuracy of the
strict consensus trees in comparison to the accuracy of a single optimal tree
returned by the default usage of either FastRFS or ASTRAL. We report both
the false negative (FN) rate and the false positive (FP) rate, with respect to the
model tree; the FN rate is the number of bipartitions in the model tree that are
missing from the estimated tree and the FP rate is the number of bipartitions in
the estimated tree that are not in the model tree, each divided by n− 3 where n
is the total number of leaves in the model tree. For each tree estimation method
(i.e., ASTRAL and FastRFS), we report Delta-Error, which is the difference
between the average of its FN and FP error rates, and the error rate of the strict
consensus of the optimal trees. Hence, when Delta-Error is negative, the strict
consensus has overall lower error than a single optimal tree. For the biological
datasets, since topological accuracy cannot be assessed completely, we describe
differences between the consensus trees we compute using SIESTA and trees
computed using other techniques. We report the number of optimal trees for the
optimization problems on all the datasets we examine. DendroPy [24] was used
to measure tree error.

3 Results

3.1 Simulated Supertree Data

Topological Accuracy of Estimated Supertrees. Figure 1 shows a comparison on
1000-taxon simulated supertree datasets between the strict consensus tree com-
puted by FastRFS-SIESTA and a single best FastRFS tree; note the FastRFS-
SIESTA is more accurate than FastRFS for all scaffold factors, with the largest
improvements when the scaffold factor is the smallest. The same trends hold on
the 100- and 500-taxon datasets, as seen in Supplementary Fig. 7.

Figure 2 shows FN and FP rates separately for the 1000-taxon supertree
datasets, and how they are impacted by the number of optimal trees. As
expected, the FP rates decrease and the FN rates increase using the strict con-
sensus tree as the number of optimal trees increases. However, as the number
of optimal trees increases, the decrease in FP rate is substantially larger than
the increase in FN rate. As a result, while there is generally a benefit in using
FastRFS-SIESTA, the benefit increases with the number of optimal trees. The
same trends hold on the 100- and 500-taxon datasets, as seen in Supplementary
Figs. 7 and 8.

Number of Optimal FastRFS Trees. Both variants of FastRFS (the enhanced and
basic forms) have a large number of optimal trees on these supertree datasets,
as seen in Table 4. Datasets with 100 taxa typically have tens or hundreds of
optimal solutions, but the number of optimal trees increases with the number
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Fig. 1. FastRFS-SIESTA is more accurate than FastRFS. We show Delta-error (change
in mean topological error between FastRFS and the strict consensus of FastRFS trees)
on simulated supertree datasets with 1000 species; values below 0 indicate that the
strict consensus FastRFS is more accurate (i.e., it has lower error) than FastRFS. The
figure shows how the percentage of taxa in the scaffold source tree impact accuracy,
averaged over 10 replicates. Error bars indicate the standard error; the topological error
is the average of the FN and FP error rates. Results on other numbers of species show
the same trends.

Fig. 2. Mean error rates for a single FastRFS tree and the strict consensus of all
FastRFS trees on the supertree datasets with 1000 species, compared to the number of
optimal trees. We show FP and FN rates (maximum error rate is 1.0) for each method;
these are equal for default FastRFS (because it is always binary), but can be different
for the strict consensus of the FastRFS trees. The decrease in the FP rate is larger than
the increase in the FN rate for the strict consensus of the FastRFS trees, as the number
of optimal trees increases, explaining why the average error for the strict consensus of
the FastRFS trees is lower than for a single FastRFS tree (as shown in Fig. 1). Results
for 193 replicates are shown.

of species, so that with 1000 species there are up to 1018 optimal trees. Most of
the supertree datasets have a sparse scaffold and not too many source trees, and
these factors generally (but not always) increase the number of optimal trees.
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3.2 Simulated Phylogenomic Data

We examined two types of simulated datasets: the first type is where all the gene
trees are complete (i.e., all species are present in all the genes), and the other
type is where we deleted random species from the genes, so that all genes are
missing the same number of species.

As shown in Supplementary Tables 1, 2 and 3, when all the gene trees are
complete, nearly all the analyses produced only one optimal ASTRAL tree, and
when more than one tree was produced it was typically a very small number
(often just two). For these datasets, there was essentially no difference between
the strict consensus and a single ASTRAL tree, as the strict consensus tree
usually lost only one edge, and whether it was a false positive or a true positive
the error rate was changed only slightly.

The situation changes for the datasets with incomplete gene trees: there
are many optimal ASTRAL trees (see Supplementary Tables 1, 2 and 3). Fur-
thermore, when there are many optimal trees, the average error rates for the
strict consensus of the ASTRAL trees are lower than the error rate for a single
ASTRAL tree: Fig. 3 shows results under the highest ILS condition as a func-
tion of the amount of missing data, and Fig. 4 shows this as a function of the
number of optimal trees. The trends are the same under lower ILS conditions
(Supplementary Figs. 9 and 10).

Fig. 3. The strict consensus of ASTRAL trees is more accurate than ASTRAL. We
show Delta-error (change in mean topological error between FastRFS and the strict
consensus of FastRFS trees) on simulated phylogenomic datasets with 25 incomplete
gene trees with three different ILS levels; values below 0 indicate that the strict consen-
sus ASTRAL is more accurate (i.e., it has lower error) than ASTRAL. Note how the
percentage of taxa in each gene tree impact accuracy. We show results for 25 replicates.
Error bars indicate the standard error; topological error is the average of the FN and
FP error rates.
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Fig. 4. Mean change in error between the strict consensus of the ASTRAL trees com-
pared to a single ASTRAL tree on the 50-taxon phylogenomic datasets with high ILS
and varying degrees of missing data, as a function of the number of optimal trees. Val-
ues below zero indicate that the strict consensus tree has better accuracy (lower error)
than a single ASTRAL tree. We show the change in FP rates (blue, solid line) and in
FN rates (red, dashed); the black line represents the baseline. This figure shows that
the strict consensus has lower false positives than a single ASTRAL tree and higher
false negative, but also that the reduction in false positives is larger than the increase
in false negatives. The figure also shows that the reduction in false positives increases
with the number of optimal trees. (Color figure online)

3.3 Biological Datasets

Hymenoptera Dataset. There are four optimal ASTRAL trees on this dataset
(shown in Fig. 5). The differences between these four trees are restricted to
two clades with three species each: (1) Solenopsi, Apis, and Vesputal C, and
(2) Acyrthosi, Myzus, and Acyrthosp. The strict and majority consensus trees
(Fig. 6) on these four ASTRAL trees are identical, and present these two groups
as completely unresolved. The MCC tree on this set of four ASTRAL trees
matches one of the four trees with respect to topology, but has different branch
support on the edges, so that the branch support for the two clades in ques-
tion are halved in comparison to the four ASTRAL trees; thus, the MCC tree
correctly identifies these clades as having very low support.

Sigmontidine Rodent Dataset. The species tree computed on this dataset in [13]
was a concatenated Bayesian tree using MrBayes [20], with branch support based
on posterior probabilities. We used the approach detailed in Sect. 6.3 to further
analyze the Sigmontidine rodent dataset [13], which had 72 optimal ASTRAL
trees. The ASTRAL MCC tree is highly unresolved after collapsing edges with
less than 75% support. This dataset has 285 taxa, meaning that a fully resolved
tree would have 282 internal edges; the collapsed ASTRAL MCC tree has only
74 internal nodes. By comparison, the MrBayes tree has 223 internal nodes after
collapsing edges with less than 75% support.

Comparing the MrBayes tree with the ASTRAL MCC tree, we find that
64 bipartitions are present and highly supported in both trees. After collapsing
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Fig. 5. The four optimal ASTRAL trees on the Hymenoptera dataset, each rooted at
the outgroup, and given with local posterior probabilities for branch support. The four
trees differ only in two groups: (1) Solenopsi, Apis, and Vesputal C, and (2) Acyrthosi,
Myzus, and Acyrthosp.

the edges with lower support, we are left with only the high support edges. Six
highly supported bipartitions are present in the ASTRAL MCC tree and com-
patible with the collapsed MrBayes tree, and three bipartitions are present in
the ASTRAL MCC tree and incompatible with the collapsed MrBayes tree. 153
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Fig. 6. The ASTRAL MCC (left) and strict consensus (right) trees on the Hymenoptera
dataset. The ASTRAL MCC tree is topologically identical to one of the four ASTRAL
trees, but has different branch support; in particular, the branch support on the clades
in question is half the branch support in the original ASTRAL trees on these clades.
The ASTRAL strict consensus tree makes these two clades into polytomies.

highly supported bipartitions are present in the MrBayes tree and compatible
with (but not present in) the collapsed ASTRAL MCC tree, and 5 highly sup-
ported bipartitions in the MrBayes tree are incompatible with the collapsed
ASTRAL MCC tree. The highly supported conflicts between the trees occur in
three locations:

1. The MrBayes tree has Akodon Mimus as the root of the Akodon genus, while
the ASTRAL MCC tree has it internal to Akodon (the root of Akodon is not
resolved with greater than 75% support).

2. The MrBayes tree and the ASTRAL MCC tree swap the locations of the
Holochilus and Sooretamys clades, with ASTRAL putting Holochilus as the
basal clade and MrBayes putting Sooretamys as the basal clade.

3. The ASTRAL MCC tree and the MrBayes tree disagree about some resolu-
tions within the Oligoryzomys clade.

These placements are in general not well established in the literature [1,6,11],
and so it is not clear which of the two trees is more likely to be correct.

4 Discussion

We studied SIESTA in conjunction with ASTRAL and FastRFS on a collection of
biological and simulated datasets, mainly focusing on using SIESTA to compute
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the strict consensus of the set of optimal trees. This study showed that using
SIESTA to compute the strict consensus produced a benefit for some methods
in some cases, but not in all. The trends we observed clearly indicate that when
there are many optimal trees, the use of the strict consensus tree results in a
substantial reduction in the false positive rate and a lesser increase in the false
negative rate, for an overall reduction in topological error. Conversely, when
there are only a small number of optimal trees, there is little change between
the strict consensus tree and any single optimal tree. Thus, the impact of using
the strict consensus depends on the number of optimal solutions. We also saw
that the number of optimal trees depends on the amount of missing data, so
that the benefit of using SIESTA to compute the strict consensus seems to be
reliable only when there is missing data.

The study also showed that FastRFS typically benefited from using the strict
consensus tree, while ASTRAL’s benefit varied with the dataset. To some extent
this is a natural consequence of using FastRFS on the supertree datasets, all
of which have substantial amounts of missing data, and we used ASTRAL on
the phylogenomic datasets, most of which had no missing data. However, a
comparison of ASTRAL and FastRFS on the same datasets shows that ASTRAL
tends to have fewer optimal trees than FastRFS (Table 4).

The reason that FastRFS tends to have more optimal solutions than
ASTRAL, even on the same datasets, is probably that the number of possible
FastRFS scores is substantially smaller than the number of possible ASTRAL
scores. Specifically, if n is the number of species and k is the number of source
trees, the FastRFS scores are all integers in the range [0, (n − 3)k], while the
possible ASTRAL scores are integers in the range [0, k

(
n
4

)
]. Therefore, the fre-

quency of multiple trees with the same optimal score is higher for FastRFS than
for ASTRAL.

5 Conclusions

SIESTA is a simple technique for computing a data structure that implicitly rep-
resents a set of optimal trees found during the dynamic programming algorithms
used by ASTRAL and FastRFS, but SIESTA is generalizable to any algorithm
that uses the same basic dynamic programming structure. Once the data struc-
ture is computed, it can be used in multiple ways to explore the solution space.
In particular, it can be used to count the number of optimal solutions and deter-
mine the support for a particular bipartition, thus enabling the estimation of the
support on branches for a given optimal tree that takes into account the exis-
tence of other optimal trees. This study showed that SIESTA generally improves
topological accuracy when the number of optimal trees is not too small, and that
otherwise it allows the user to confirm that the solution that is returned is highly
supported.

An interesting application of SIESTA is to produce better statistical sup-
port values on the edges of ASTRAL trees. In the current implementation of
ASTRAL, the support values are obtained using posterior probabilities based
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on quartet trees around an edge in a single optimal tree. However, a simple
example can explain why this can be misleading. Suppose T1 and T2 are the
only trees that are optimal for ASTRAL, and that T1 has a split π that T2 does
not have. Then under the assumption that T1 and T2 are both equally likely to
be the true species tree, the maximum probability that π can be a true split is
0.5 – since it is in only one optimal tree. It is easy to see that any support value
greater than 0.5 produced when T1 is examined is inflated, and that a correc-
tion must be made that takes into consideration that T2 is also an optimal tree.
SIESTA’s way of calculating support explicitly enables this correction, since it
explicitly considers the support of each bipartition obtained from the entire set
of optimal trees.

6 The SIESTA Algorithm

6.1 The Dynamic Programming Approach to Constrained
Optimization

We begin with a review of the fundamentals of the dynamic programming algo-
rithms for the constrained optimization problems. Recall that in the constrained
optimization approach, the input is a set of source trees (estimated gene trees in
the case of ASTRAL, generic source trees in the case of FastRFS) as well as a
set X of allowed bipartitions of the set S of species. Given this set X of allowed
bipartitions, we define a set C of “allowed clades” by taking the two halves of each
bipartition, and we also include the set S; thus, C = {A : [A|S \ A] ∈ X} ∪ {S}.

We also form a set TRIPS of “allowed tripartitions”, as follows. TRIPS
contains all ordered 3-tuples (A,B,C) of allowed clades that are pairwise dis-
joint, that union to S, and where A∪B is also an allowed clade. We require that
A and B be non-empty, but we allow C to be empty.

The purpose of creating this set is that it allows us to perform the dynamic
programming algorithm to find optimal solutions for some optimization prob-
lems. To see this, consider an unrooted binary tree T that is a feasible solution
to the constrained optimization problem under consideration. Now root the tree
T arbitrarily and pick some internal node v defining clade c. Since T is a feasible
solution to the optimization problem, all the clades in T (r) (the rooted version
of T ) are allowed clades, and every vertex v defining clade c that is not a leaf has
two major subclades A and B defined by its two children. The 3-tuple (A,B,C)
where C = S \ (A ∪ B) is the tripartition associated to node v (equivalently,
associated to clade c). If v is the root of T , then C will be empty. The set
of “allowed tripartitions” is defined to ensure that it includes all 3-tuples that
could be formed in this way. Finally, by construction, we consider (A,B,C) and
(B,A,C) to be equivalent tripartitions.

Similarly, given a rooted binary tree T (r) on leafset S, each non-leaf node
v in T (r) defines a tripartition (A,B,C) where A and B are the clades (i.e.,
leafsets) below the two children of v, and C = S \ (A ∪ B). We refer to the set
of tripartitions of a rooted binary tree T (r) by trips(T (r)).
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Hence, the objective of the constrained optimization problems is to find
an unrooted tree T ∗ on leafset S that optimizes a function F (·) defined on
unrooted trees, subject to T ∗ drawing its bipartitions from X. Hence, if we root
T ∗, we obtained a rooted tree T ∗(r) in which the non-leaf nodes define allowed
tripartitions.

ASTRAL and FastRFS are each algorithms that find optimal binary trees
for some optimization problem, subject to the constraint that the tree draw its
bipartitions from a set X of allowed bipartitions. These algorithms reframe the
problem by seeking a rooted tree that draws its clades (i.e., subsets of leaves
defined by internal nodes) from the set C of allowed clades, and use the dynamic
algorithm design that we will now describe.

For both ASTRAL and FastRFS, it is possible to define a function w on
allowed tripartitions such that for any unrooted binary tree T on leafset S,
letting T r denote a rooted version of T (obtained by rooting T on any edge),

F (T ) =
∑

t∈trips(T r)

w(t) (1)

where F (T ) is the optimization score for tree T .
The existence of a function w that is defined on tripartitions and that satis-

fies Eq. 1 is the key to these dynamic programming algorithms. Given function
w that is defined on tripartitions, we define a recursive function f that is defined
on clades that we can then use to find optimal solutions. We show how to define
f for a maximization problem; defining it for a minimization problem is equiv-
alently easy.

The calculation of f(c) for a given allowed clade c given w and X uses the
following recursion (phrased here in terms of maximization):

f(c) =

{
max{f(a) + f(b) + w(a, b, x)|(a, b, x) ∈ TRIPS, a ∪ b = c}, |c| > 1
0, |c| = 1

By Eq. 1, f(S) = F (T ∗), where T ∗ is the optimal solution to the constrained
optimization problem.

Hence, we can solve the optimization problem using dynamic programming.
We compute all the f(c) from the smallest clades to the largest clade S. To
construct the optimal solution T ∗, when we compute f(c) for a clade c, we
record how we obtained this best score (i.e., we record the unordered pair (a, b)
of clades whose union is c achieving this optimal score), and we use backtracking
to construct the rooted version of T ∗. Then we unroot the rooted tree.

6.2 The SIESTA Data Structure

SIESTA modifies these algorithms so they output a set containing all the optimal
trees that contain only clades in C. When computing f(c), instead of recording
a single split of the clade c into two subclades that generates an optimal score,
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we record every such split of c. To achieve this, we show how we can represent
the entire set of optimal trees computed during the algorithm with a novel data
structure.

A rooted binary tree can be stored as a collection of nodes, where each node
contains either two pointers (one to each of its two children, if it is an internal
node) or a taxon label (if it is a leaf node). Since each node in a rooted binary
tree with leaves labelled by S can be represented by a clade, this representation
of a tree can be seen as having pointers from each clade c (with at least two
species) to a pair of disjoint clades c1 and c2, whose union is c.

We modify this representation to compactly represent a set of rooted binary
trees, using the correspondence between nodes in rooted trees and clades, as
follows. Instead of having each clade have a pair of pointers to two sub-clades,
we have each clade have a set of pairs of pointers to a potentially large number
of sub-clades. We denote the set of pairs of pointers for clade c by I[c]. Thus,
the entire data structure is the array I indexed by the clades in C.

Given such a representation, it is easy to generate any single tree by following
a path from the entry I[S] down to the leaves, and at each clade corresponding
to a non-leaf node, choosing one of the pairs of pointers in its set.

The asymptotic running time of this phase is equal to the asymptotic run-
ning time of the original DP algorithm, which is O(|X|2α), where α is the time
required to calculate w for a single tripartition [15]. Storing the entire data struc-
ture requires O(|X|2) space in the extreme case where every tree has the same
score, but in many real-world cases will require less.

6.3 Using SIESTA

We show how we can use SIESTA in various ways, including counting the number
of optimal trees, generating greedy, strict, and majority consensus trees, and
computing the maximum clade credibility tree.

Counting the Number of Optimal Trees. We traverse the collection of allowed
clades from smallest to largest, calculating for each allowed clade c the number
of optimal rooted binary trees that contain exactly the taxa in c. Obviously,
clades of size 1 have exactly one optimal rooted binary tree. For larger clades c,
the following expression gives the number of optimal subtrees:

optimalsubtrees(c) =
∑

(x,y)∈I[c]

optimalsubtrees(x) · optimalsubtrees(y) (2)

The number of optimal rooted binary trees is optimalsubtrees(S), where S is
the entire set of species. For the algorithms we consider (ASTRAL and FastRFS),
all rootings of a particular unrooted tree have the same criterion score, and so
this quantity should be divided by 2n−3, where n = |S| is the number of species,
to get the number of optimal unrooted trees.
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Calculating Consensus Trees. A particular clade c is present in fraction Ac of
the optimal trees, where

Ac =
optimalsubtrees(c) ∗ optimalsubtrees(S \ c)

optimalsubtrees(S)
(3)

For α ≥ 0.5, the α-consensus tree is the unique tree that contains exactly
those bipartitions that occur in more than fraction α of the optimal trees. For
smaller values of α, we can still construct a consensus tree, but the set of bipar-
titions that appear with frequency greater than α may not form a tree. To
construct the α-consensus tree, we sort the clades in descending order by Ac,
restricted only to those clades c with Ac > α, and construct a greedy con-
sensus tree using this ordering. The asymptotic running time of this phase is
O(|X| log |X|).

The ASTRAL Maximum Clade Credibility Tree. ASTRAL-2 uses a quartet-
based local posterior probability (PP) measure [21] to assign support values to
edges. We can enhance this technique by outputting every tree in the space of
optimal trees, assigning support local PP values to their edges using ASTRAL-
2, then computing the average support of each clade (where a tree without a
certain clade contributes a support of zero), and taking a greedy consensus of the
resulting clades ranked by their average support over all optimal trees. In other
words, we greedily compute a maximum clade credibility tree over all optimal
trees, and we refer to this as the ASTRAL MCC tree.
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Supplementary Materials

Table 1. We show the mean number of optimal trees for ASTRAL, averaged over 25
replicates of 50-taxon simulated datasets with 5 genes that vary in the level of missing
data. AD12 is moderate ILS, AD31 is high ILS, and AD68 is very high ILS.

# genes 5 5 5 5

# taxa per gene 10 20 30 50

50tx-AD12 286.7 707.4 24.1 2.1

50tx-AD31 171.5 210.2 15.5 1.6

50tx-AD68 176.1 154.9 12.2 1.2

Table 2. We show the mean number of optimal trees for ASTRAL, averaged over 10
replicates of 50-taxon simulated datasets with 10 genes that vary in the level of missing
data. AD12 is moderate ILS, AD31 is high ILS, and AD68 is very high ILS.

# genes 10 10 10 10

# taxa per gene 10 20 30 50

50tx-AD12 132715.2 700.7 17.0 1.1

50tx-AD31 81694.2 612.2 15.8 1.0

50tx-AD68 16673.0 192.5 3.6 1.1

Table 3. We show the mean number of optimal trees for ASTRAL, averaged over 10
replicates of 50-taxon simulated datasets with 25 genes that vary in the level of missing
data. AD12 is moderate ILS, AD31 is high ILS, and AD68 is very high ILS.

# genes 25 25 25 25

# taxa per gene 10 20 30 50

50tx-AD12 17958863.0 46.8 1.8 1.0

50tx-AD31 278584.5 10.3 1.4 1.0

50tx-AD68 107973.8 24.2 1.4 1.0
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Table 4. Number of optimal trees (in scientific notation) for ASTRAL, FastRFS-
basic, and FastRFS-enhanced on SMIDgen simulated supertree data sets with varying
numbers of taxa and genes, and differing scaffold factors. ASTRAL has several orders
of magnitude fewer optimal trees than FastRFS-basic and FastRFS-enhanced.

# taxa # genes Scaffold ASTRAL FastRFS-basic FastRFS-enh

100 6 20% 9.36 3.52 × 102 2.23 × 103

100 6 50% 4.00 1.31 × 102 8.66 × 103

100 6 75% 1.72 7.27 × 101 1.70 × 102

100 6 100% 1.04 2.49 × 101 3.54 × 101

500 6 20% 2.72 × 102 3.17 × 107 1.53 × 109

500 6 50% 7.93 × 101 1.27 × 109 1.60 × 1010

500 6 75% 1.09 × 101 5.16 × 109 8.84 × 1010

500 6 100% 1.00 8.24 × 107 1.56 × 108

500 11 20% 5.18 × 102 8.18 × 107 1.07 × 1010

500 11 50% 4.91 × 101 1.40 × 108 5.64 × 109

500 11 75% 2.92 × 101 1.89 × 108 1.32 × 1010

500 11 100% 1.00 7.61 × 107 1.28 × 108

500 16 20% 1.62 × 103 6.09 × 107 4.91 × 1010

500 16 50% 3.94 × 101 1.97 × 108 2.20 × 109

500 16 75% 4.23 × 101 1.37 × 108 1.37 × 109

500 16 100% 1.00 5.36 × 106 2.60 × 107

1000 6 20% 3.28 × 102 6.26 × 106 4.47 × 1011

1000 6 50% 3.62 × 102 1.46 × 1011 1.40 × 1012

1000 6 75% 8.52 × 101 3.47 × 1011 2.46 × 1012

1000 6 100% 1.00 2.77 × 1011 5.96 × 1011

1000 11 20% 2.85 × 103 1.61 × 1010 5.39 × 1016

1000 11 50% 3.72 × 102 1.29 × 1014 8.28 × 1016

1000 11 75% 2.54 × 102 1.95 × 1013 1.11 × 1015

1000 11 100% 1.00 1.39 × 1014 4.18 × 1014

1000 16 20% 1.08 × 105 1.77 × 1017 5.70 × 1025

1000 16 50% 3.92 × 103 9.50 × 1017 1.59 × 1020

1000 16 75% 2.59 × 102 4.22 × 1015 2.33 × 1018

1000 16 100% 1.00 4.19 × 1014 2.05 × 1015

1000 21 20% 2.92 × 105 2.73 × 1016 2.94 × 1022

1000 21 50% 2.43 × 104 3.70 × 1014 2.17 × 1020

1000 21 75% 5.35 × 102 2.09 × 1014 1.51 × 1020

1000 21 100% 1.00 8.28 × 1013 7.21 × 1014

1000 26 20% 6.48 × 105 2.32 × 1015 8.48 × 1020

1000 26 50% 3.60 × 104 9.17 × 1014 1.89 × 1023

1000 26 75% 5.67 × 102 2.51 × 1014 5.96 × 1019

1000 26 100% 1.00 1.97 × 1013 1.39 × 1014
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Fig. 7. The strict consensus of FastRFS trees is more accurate than FastRFS. We
show Delta-error (change in mean topological error between FastRFS and the strict
consensus of FastRFS trees) on simulated supertree datasets with 100, 500, and 1000
species; values below 0 indicate that the strict consensus FastRFS is more accurate
(i.e., it has lower error) than FastRFS. The figure shows how the percentage of taxa
in the scaffold source tree impact accuracy, averaged over 10 replicates for 1000-taxon
data and 25 replicates for 100- and 500-taxon data. Error bars indicate the standard
error; the topological error is the average of the FN and FP error rates.
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Fig. 8. Mean error rates for a single FastRFS tree and the strict consensus of all
FastRFS trees on the supertree datasets with 100, 500, and 1000 species, compared to
the number of optimal trees. We show FP rate and FN rates for each method; these
are equal for default FastRFS (because it is always binary), but different for the strict
consensus of the FastRFS trees. As the number of optimal trees increases, the decrease
in the FP rate is larger than the increase in the FN rate for the strict consensus of
the FastRFS trees, explaining why the average error for the strict consensus of the
FastRFS trees is lower than for a single FastRFS tree (as shown in Fig. 7). Results for
193 replicates are shown on 1000-taxon data, results for 312 replicates are shown on
500-taxon data, and results for 104 replicates are shown on 100-taxon data.
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Fig. 9. The strict consensus of ASTRAL trees is more accurate than ASTRAL when
gene trees are incomplete. We show Delta-error (change in mean topological error
between FastRFS and the strict consensus of FastRFS trees) on simulated phyloge-
nomic datasets with varying numbers of incomplete gene trees on 50-species datasets
with three different ILS levels; values below 0 indicate that the strict consensus
ASTRAL is more accurate (i.e., it has lower error) than ASTRAL. Note that there
is a big advantage in computing the strict consensus tree of the optimal ASTRAL
trees instead of a single ASTRAL tree under the highest amount of missing data, and
that the advantage decreases as the amount of missing data decreases. We show results
for 25 replicates. Error bars indicate the standard error; topological error is the average
of the FN and FP error rates.
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Fig. 10. Mean change in error between the strict consensus of the ASTRAL trees
compared to a single ASTRAL tree on the 50-taxon phylogenomic datasets with varying
degrees of missing data and ILS, as a function of the number of optimal trees. Values
below zero indicate that the strict consensus tree has better accuracy (lower error)
than a single ASTRAL tree. We show the change in FP rates (blue, solid line) and in
FN rates (red, dashed); the black line represents the baseline. This figure shows that
the strict consensus has lower false positives than a single ASTRAL tree and higher
false negatives, but also that the reduction in false positives is larger than the increase
in false negatives. The figure also shows that the reduction in false positives increases
with the number of optimal trees. (Color figure online)



254 P. Vachaspati and T. Warnow

References

1. Alvarado-Serrano, D.F., D’Eĺıa, G.: A new genus for the Andean mice Akodon
latebricola and A. bogotensis (Rodentia: Sigmodontinae). J. Mammal. 94(5), 995–
1015 (2013)

2. Bayzid, M.S., Mirarab, S., Warnow, T.J.: Inferring optimal species trees under gene
duplication and loss. In: Pacific Symposium Biocomputing, vol. 18, pp. 250–261
(2013)

3. Bininda-Emonds, O.R.: Phylogenetic Supertrees: Combining Information to Reveal
the Tree of Life, vol. 4. Springer Science & Business Media, Dordrecht (2004).
doi:10.1007/978-1-4020-2330-9

4. Bryant, D., Steel, M.: Constructing optimal trees from quartets. J. Algorithms
38(1), 237–259 (2001)

5. Fletcher, W., Yang, Z.: INDELible: a flexible simulator of biological sequence evo-
lution. Mol. Biol. Evol. 26(8), 1879–1888 (2009). http://mbe.oxfordjournals.org/
content/26/8/1879.abstract
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