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Abstract  We use Bayesian probability theory to develop a new way of measuring 
research productivity. The metric accommodates a wide variety of project types and 
productivity sources and accounts for the contributions of “failed” as well as “suc-
cessful” investigations. Employing a mean-absolute-deviation loss functional form 
with this new metric allows decomposition of knowledge gain into an outcome 
probability shift (mean surprise) and outcome variance reduction (statistical preci-
sion), a useful distinction, because projects scoring well on one often score poorly 
on the other. In an international aquacultural research program, we find laboratory 
size to moderately boost mean surprise but have no effect on precision, while scien-
tist education improves precision but has no effect on mean surprise. Returns to 
research scale are decreasing in the size dimension but increasing when size and 
education are taken together, suggesting the importance of measuring human capital 
at both the quantitative and qualitative margin.

�Introduction

The centrality of research to economic growth begs for rigorous, practical methods 
of assessing scientific knowledge. Now occupying 2.8% of US gross domestic prod-
uct, R&D is nearly universally regarded to be essential to continued economic 
health (Industrial Research Institute 2016). At country, institution, program, and 
scientist levels, however, research administrators are continually asked to demon-
strate R&D’s benefits over costs. That would require understanding not only the net 
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benefits themselves but how they are influenced by research goals, analytical strate-
gies, scientist recruitment, and management.

The cost side of R&D assessment follows much the same protocol as in any other 
enterprise. The main problem is with the knowledge outputs, which are resistive of 
statistical simplification, difficult to track once released, and only indirectly observ-
able. Research effort and productivity response, furthermore, begin well before and 
continue well after the easily observable research activities and include problem 
inception and funding; observations and testing; writing and presenting; and the 
scientific, administrative, and industrial uses to which the research will be put. 
Because each phase represents a certain “production,” each can be the object of 
productivity evaluation. Figure 1 depicts a simplified schema of these production 
stages, emphasizing applied research.1 The first is the research project itself, the 
second its communication, and the third its economic impacts.

Although distinctions among the three are ambiguous in actual situations, they 
are valuable for understanding the differences among research evaluation methods. 
Economic surplus methods focus on the economic impact stage, examining the net 
relationships between research expenditures and subsequent industry productivity. 
A virtue of the surplus approach is that because expenditures are dual to and there-
fore reflect research design, management, and communication, they afford an effi-
cient, statistically unbiased focus on the bottom line – economic gains (White and 
Havlicek 1982; Alston et al. 1995; Huffman and Evenson 2006; Alston et al. 2011; 
Hurley et al. 2014). A largely separate bibliometric literature concentrates on the 
communication phase, especially on relationships between research funding and 
directly observable outputs  – patent counts and citations if intellectual property 
markets are present (Hall et al. 2005; Fontana et al. 2013), publication counts and 
citations they are if not (Pardey 1989; Adams and Griliches 1996; Oettl 2012). The 
bibliometric approach offers a more refined view of the transmission of scientific 
ideas than economic surplus can.

Despite their analytical power in the purposes for which they were designed, 
neither of these two approaches is positioned to look very far into the laboratory 
itself. Neither therefore is very suitable for assessing individual projects nor the fac-
tors like research topic, laboratory resources, and management policies affecting the 
research programs under which they are organized. It would be useful then to 

1 Basic research cannot as easily be divided into Fig. 1’s steps or into any regular steps at all. We 
note below the important differences between basic research and the applied research that moti-
vates our present approach.

Fig. 1  Stages of the research and dissemination process
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examine the possibility of a research output metric helpful for that purpose. Like a 
case study, the metric would require insights and data from the principal investiga-
tors (Polanyi 1974; Schimmelpfennig and Norton 2003; Shapira et al. 2006). Unlike 
a case study, it would be expressible in a manner that can be readily compared 
across projects and programs. The metric must, in particular, be flexible enough to 
accommodate a variety of project topics, methods, and settings, while suitable for 
pooling into an econometric model of research outputs and inputs. It must, for 
example, overcome the problems of distinguishing program from nonprogram 
influences on research success.

We develop such a metric here by deriving a scientific knowledge measure reflec-
tive of individual laboratory, treatment, and control conditions but useful for the 
administration of heterogeneous applied research projects in a variety of technical 
and institutional settings. We use the approach to investigate the knowledge returns 
to an international aquacultural research program involving, over a 4-year span, 55 
studies in 16 nations, showing how returns vary by research team characteristics, 
scale, topic area, analytical approach, and outcome dimension. To be useful for 
these purposes, the metric must be capable of comparison with the factors hypoth-
esized to influence it. Much of our effort therefore is devoted to accommodating and 
exploiting cross-study heterogeneity in a research program.

�A Direct Approach to Scientific Knowledge Measurement

A knowledge metric accounting adequately for research program discovery would 
satisfy at least three requirements. It should be (a) ratio-scale comparable across the 
studies investigated (i.e., contain a meaningful zero point); (b) ex-ante in the sense 
of conditional on the anticipation of future significant R&D events; and (c) reflec-
tive of all new knowledge a study provides, regardless of whether it achieved its 
most ambitious goals or outperformed an earlier study in some positive respect. The 
ratio-scale cardinality in criterion (a) assures that statements such as “Project A 
provided twice as much knowledge as Project B” will be valid. Criterion (b) assures 
that findings will be evaluated in a way conformable to their usefulness in specific 
future applications. Criterion (c) assures that research “failures” be counted with 
potentially the same weight as “successes.” A treatment’s failure to outperform an 
old one does not imply efforts have been wasted: the disappointment was potentially 
valuable in pointing to more fruitful research directions (CGIAR Science Council 
2009). Sufficient for satisfying these criteria is that research success should be eval-
uated in terms of the information it offers about the probabilities of treatment out-
comes, expressed as a shifting or narrowing of the outcome probability distribution 
in the face of alternative settings.

Bayesian reasoning is well-suited to criterion (b) as well as (c) because it consid-
ers knowledge in terms of improvements in the predictability of unknown future 
outcomes (Lindley 1956; Winkler 1986, 1994). A valid experiment or survey can 
never reduce our forecast ability and generally will improve it. To see this, consider 
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the prospective user, a fish farmer say, of a clinical study to predict the efficacy of a 
fish vaccine. We want to know how much the farmer would gain from vaccination 
decisions or regime based on research forecasts of their effect on fish mortality and, 
therefore, eventual harvest, as opposed to those that use no research information. To 
do so we use the Bayesian notion of a loss function: the expected utility of the vac-
cination regime unsupported by a study from the research program in question, less 
the expected utility of a regime that does take advantage of the program 
information.

The negative of that loss is the value K of the research information itself. If we 
let d be the vaccination decision or regime, Y the mortality or harvest outcome, and 
Z the study forecast of that outcome, our measure of research knowledge gain K 
(viz., the expected value of sample information EVSI) therefore is:

	
K EU d Z p Y Z EU d p Y Z= = ( )  − ( ) 

def

EVSI |; |; | ; |
	

(1)

(Winkler 1972, p. 311; Berger 1985, p. 60). Here p (Y|Z) is the probability that out-
come Y will occur given that we know its forecast Z. Its presence in both the first and 
second right-hand term of K indicates only that the utility of research-informed 
decision d|Z and the research-uninformed decision d is each being evaluated with 
the use of the research forecast model from which forecasts Z have been drawn. This 
is valid because the research studies we are investigating have already been con-
ducted, so the forecasts are already known. Including these forecasts in both right-
hand terms of the knowledge equation therefore is necessary as well as possible, 
because it is the only way to compute the expected utility the farmer foregoes by 
declining to use the research information that the program has made available.

Our principal interest is in determining how the research program’s purview, 
resources, and management policies – including the topics it takes up, the research 
disciplines involved, its budgets, and the training of its scientists – affect the knowl-
edge it produces. Many of these factors, which we indicate by the vector X, are 
observed at the research project level, such as the research discipline, human and 
physical research capital, study methods and materials, research treatments, and the 
type and difficulty of the topic addressed. Others are observed at the program rather 
than project level, such as the physical environment spanning a number of 
projects.2

We model an applied research program’s economic value in terms of its improve-
ment to decision makers’ forecast accuracy. Thus, we must adopt a functional form 
for utility U or equivalently for the loss incurred when outcome Y (such as harvest 
volume) diverges from its forecast Z. For that purpose, we use the mean absolute 
deviation (MAD) functional form U(d, Y) =− |d − Y|, so that loss is proportionate to 
the absolute difference between decision, and hence prediction, and outcome 

2 Basic research in contrast could be argued to lack any concrete outcomes or probabilities, being 
a matter more of discrete realizations than incremental steps. Probit models might in future be use-
ful in representing that kind of discrete space.
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(Robert 2001). Research utility and knowledge K improve, in other words, to the 
extent forecasts come closer to outcomes, whether overshooting or undershooting 
them.

In this case, it is not too difficult to show that Eq. (1) should depend to a high 
degree of accuracy on two terms. The first is the difference the research has made in 
the scientist’s outcome prediction Z. That is, it is the difference between the prior 
forecast Mprior and the posterior forecast Mpost, defined as the shift in the location of 
the outcome’s probability distribution, which we call the study mean surprise. The 
greater the mean surprise, the more knowledge the research has provided. The sec-
ond is the sample variation of the research outcomes, or in a regression context the 
standard deviation of the model error σpost, which we will call the study’s impreci-
sion. The lower the imprecision, the greater the study’s knowledge contribution. In 
sum, our own regression model of a research program’s knowledge production is

	
K g M M f= − −( ) = ( )prior post post, ,σ εX .

	
(2)

Knowledge contribution is greater to the extent of its mean surprise and lower to 
the extent of its precision, and this contribution depends on the research program 
characteristics X.

�Application to Research Assessment

As an illustration, we apply this framework to a pond fisheries research program 
funded by the US Agency for International Development (USAID), which during 
the 2007–2011 period comprised 55 studies managed under seven subprograms in 
16 nations.3 It combined the resources of 17 US universities and 31 foreign universi-
ties and institutes. Twenty-five of the studies were completed during the program’s 
2007–2009 phase, examined here. Data are drawn from a research input and output 
questionnaire administered to the 25 2007–2009 investigators, plus associated inter-
views. In each controlled experiment study, an output observation consisted of a 
pair of prior and posterior probability distributions for each major treatment and for 
each dimension if the treatment involved multiple outcome dimensions. In each 
survey study, an output observation consisted of such a probability distribution pair 
for each major survey question posed. Study expenditure data were obtained from 
the study proposals and their subsequent quarterly, annual, and final reports. Sample 
size from the 25 studies was 415.

3 Feed-the-Future Innovation Lab for Collaborative Research on Aquaculture and Fisheries, Oregon 
State University, sponsored by US Agency for International Development. The countries are 
Bangladesh, Cambodia, China, Ghana, Guyana, Indonesia, Kenya, Mexico, Nepal, Nicaragua, the 
Philippines, South Africa, Tanzania, Thailand, Uganda, and Vietnam.
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�Research Problem Type

Research topic can affect knowledge output because some topics are more easily 
exploitable than others – requiring fewer scarce resources, of more recent interest 
and thus fewer scientific competitors, or benefiting from earlier discoveries that 
enhanced the likelihood of new ones (Alston et al. 2000). Program administrators 
would have intuitions about which areas will conduce to the greatest study output 
with a given budget. Ex post however, the productivity of a topic area is empirical 
and can be determined only by comparing topic research performance when costs 
are held constant. In a highly diversified program like this aquacultural one, catego-
rizing problem types is difficult because “topic” can refer to a scientific discipline 
like biology, a subdiscipline like developmental biology, or a problem area like 
mutation. Topic areas in are here aggregated into four groups: development biology, 
human health science, economic science, and environmental science.

Research outcome dimensions, too, have implications for research performance 
because, for example, water microcystin problems may be less familiar and so cost-
lier than water phosphorus problems. At the same time, relative unfamiliarity can 
bring greater breakthrough opportunities in the sense of shifting the expected out-
come away from the literature’s current one. Similarly, some outcome dimensions 
are more easily measured than others and hence more amenable to predictive preci-
sion, a disease’s immunity rate more predictable, for example, than its duration. A 
typical study in our data focused on five or six separate outcome dimensions. For 
parsimony, they are aggregated here into four categories: mortality and growth, 
demand and price, species diversity, and water quality. Outcome dimensions cross-
cut topic areas. Developmental biology and environmental science studies, for 
instance, frequently consisted of mortality/growth and water quality dimensions.

A crucial element of problem difficulty is the analytical approach required to 
address it. Experiments are usually more expensive than surveys. But the difficulty 
of managing a controlled experiment depends on the lead investigator’s training and 
experience and the topic at hand. Because experimental controls are designed to 
reduce random noise, we expect them to bring lower unexplained sample variance, 
that is, greater precision, than surveys do. On the other hand, science’s normal pref-
erence for a controlled setting suggests surveys are used only when a problem’s 
conceptual frame is too poorly understood to formulate an incisive experiment. That 
absence of a strong a priori likely brings large and frequent distribution shifts – a 
substantial amount of mean surprise – in statistical surveys.

�Research Cost

The potentially best indicator of a project’s resources is its budget, encapsulating its 
physical and human capital and material costs. Research budgets in our data often 
included administrative support and lab space costs but rarely equipment. In either case 
their service flows to the given project were unreliable because they were based on local 
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accounting conventions, which vary by country. A reliable measure of project scale, 
however, was budgeted principal investigator and research assistant time: project FTE.

Researcher quality might be as important as size: education has been widely 
shown to lift labor productivity. This would be especially true in a knowledge-
intensive activity like research (Cohen and Levinthal 1989; Rynes et  al. 2001; 
Schulze and Hoegl 2008). A valuable proxy for unobserved infrastructure can be 
researcher travel cost because most program study sites were far from the home 
institution. Travel consumes resources – the scientist’s time and energy as well as 
cash cost  – otherwise devotable to analysis. Education and travel time therefore 
were included in our model in addition to laboratory assistant FTE. Research mate-
rial and training expenses were unavailable. Table 1 lists the knowledge measures 

Table 1  Summary statistics, aquaculture and fisheries research, 2007–2009 (N = 415)

Variable Unit Mean
Standard 
deviation

Coefficient 
of variation

Knowledge generated
Value of sample information (K) Proportion 0.123 0.212 1.723
Mean surprise (distribution shift) " 0.224 0.278 1.241
Imprecision (error st. deviation) " 0.380 0.653 1.718
Laboratory human capital
Lab size (FTE) Years 4.8 2.9 0.604
Mean lab education Years/person 17.1 1.2 0.070
Mean lab age Years/person 33 6.1 0.185
Research problem type
Topic area category

Development biology Category 0.51 0.50 0.98
Human health science " 0.12 0.32 2.67
Economic science " 0.11 0.31 2.82
Environmental science " 0.27 0.44 1.63
Research outcome dimension

Mortality and growth Category 0.68 0.47 0.69
Demand and price " 0.14 0.37 2.64
Species diversity " 0.002 0.05 25.00
Water quality " 0.18 0.39 2.17
Analytical approach

Experiment vs survey Category 0.70 0.46 0.657
Public infrastructure
Site proximity Kilometers 843 891 1.06
Region of world
Asia Category 0.78 0.41 0.53
Africa " 0.05 0.22 4.40
Latin America " 0.17 0.37 2.18
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and relevant productivity factors for which we have data: laboratory human capital, 
topic area category, research outcome dimension, analytical approach, and public 
infrastructure proxies.

�Data Construction and Econometric Specification

In sum, research program analysis involves eliciting investigators’ prior and poste-
rior density functions and formulating and estimating the associated loss function.

�Eliciting Prior and Posterior Densities

The director of each controlled experiment study was asked to identify the three most 
important experimental controls to be used in her research. For each control, and 
each major outcome dimension of that control, she then was asked to state her prior 
probabilities that a respectively low, medium, and high outcome level would be 
observed. These stated probabilities were used to compute that control’s and dimen-
sion’s prior mean Mprior. When the experimental results were later obtained for that 
control and dimension, she was asked to provide its mean outcome Mpost. The cor-
responding research precision measure σpost was obtained as the standard deviation 
of the ANOVA model’s residual error. The director of each survey study was asked 
to name the three most important survey questions to be enumerated. For each, we 
asked him to identify his prior probability that the respondent would give a respec-
tively low, medium, and high answer, giving us the expected survey question out-
come Mprior. The corresponding precision measure was the residual standard deviation 
of the investigator’s multiple regression analysis of the responses (Winkler 1972).

At two international program meetings and several other workshops, we trained 
principal investigators in the process of quantitatively expressing their prior proba-
bilities, together with the kinds of information, such as the scientific literature and 
earlier experience with related projects, admissible in priors. Among the experimen-
tal studies, the 14 investigators each reported an average of 8 treatments and 3 out-
come dimensions per treatment. In the statistical survey studies, the 11 investigators 
reported an average of 4 respondent subgroups and three survey questions per 
subgroup.

�Data

Key sample statistics are shown in Table 1. In the average study, research control, 
and outcome dimension, the prior outcome expectation was 22.4% greater or less 
than the mean outcome in the subsequent experiment or survey. That is, research 
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outcome expectations tended to be 22.4% of what eventually happened, creating a 
22.4% mean surprise. Study precision is reflected in the sample mean posterior 
standard deviation (0.380) in Table 1 – measuring the average spread of unexplained 
research outcomes around their unity-normalized experimental or survey means. 
Research utility lost, that is, on account of prediction or estimation noise was 38% 
of the typical outcome mean. The mean expected value of sample information – our 
knowledge metric K – was 12.3% of the typical outcome mean.

The knowledge density functions provide a broader picture. The distribution of 
mean surprises (Figs. 2 and 3) is skewed strongly to the right, most observations 
lying just above zero. Mean surprise appears to be a tournament: the greater the 
outcome distribution shift, the fewer that achieve it. Something of a reverse tourna-
ment is evidenced in study precision, the worst performances being the least likely. 
The bulk of investigators, that is, maintain a relatively low error variance. 
Aggregating mean surprise and precision together, the new knowledge distribution 
appears to be dominated by its mean-surprise component. Most projects bunch near 
the low end of the new knowledge range, a phenomenon often noticed in competi-
tive outcomes (Hausman et al. 1984; Griliches 1990; Lanjouw and Schankerman 
2004). Logs of mean surprise and precision (Fig. 2) are rather symmetrically distrib-
uted. But especially in knowledge K (Fig. 2c), left-tail outliers are evident, repre-
senting mean surprises near zero and hence with large negative logs.

As Table 1 shows, the average lab assistant had 17 years of education – about 
1 year of postgraduate work. Seventy percent of the projects were controlled experi-
ments and the remaining 30% surveys. Fifty-one percent of topics were in develop-
ment biology, 27% in environmental science, 12% in human health science, and 
11% in economics. Crosscutting these areas, 68% of treatment outcomes were on 
mortality and growth, 18% on water quality, and about 14% on demand and price. 
Seventy-eight percent of the studies were in Asia, 17% Latin America, and 5% 
Africa. Coefficients of variation (CV) of explanatory variables, reflecting adequacy 
of variation for statistical inference, varied widely. Education’s relative variability 
(CV = 0.07) is the lowest, as expected on a research team. None of these factors 
were correlated to an extent creating inference problems.

�Results

A way to think of basic research is that it is an effort to find a “whole new approach” 
to the problem in question, shifting the entire probability distribution of predicted 
outcomes. That is, if successful, it will generate a substantial mean surprise 
|Mprior – Mpost|.

One expects to see statistical surveys used most frequently in these situations, 
when the problem’s stochastic structure is poorly understood. Survey approaches, 
that is, might be expected to bring greater mean surprise than experiments do. 
Conversely, experimental controls would be used when the structure is better known 
and so have greater success in achieving research precision.

A Bayesian Measure of Research Productivity



Fig. 2  Histograms of (a) Mean Surprise |Mprior – Mpost|, Imprecision (posterior standard deviation 
σpost), and (c) New Knowledge K



Fig. 3  Histograms of (a) Log Mean Surprise (ln |Mprior – Mpost|), (b) Log Imprecision (log posterior 
standard deviation ln σpost), and (c) Log New Knowledge (ln K)
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At the same time, because structural shifts are more poorly observable to the 
econometrician and hence harder to model than are the more marginal scientific 
efforts to reduce prediction variance, mean surprise should be more difficult for 
research evaluators to assess than research precision is. Explaining surprise would 
require deeper attention to the nature of the subject and its institutional and intel-
lectual constraints, modeled here in only a summary way by analytical approach, 
topic area, and outcome dimension. Explaining precision therefore would involve 
greater attention to the more numerate factors like budget, laboratory equipment, 
and the number, experience, and education of the research assistants.

�Factor Effects on Mean Surprise and Predictive Precision

The first step in our own evaluation of the USAID program is to regress mean sur-
prise on the associated project inputs and program features. We then separately 
regress the study outcome residual (i.e., unexplained) variances on these same proj-
ect inputs and program features. The results are shown in Tables 2 and 3. Several 
factors not included in these tables – research assistant numbers and age and travel 
mode to study site  – were consistently nonsignificant in earlier regressions and 
dropped. R-squares, 0.26 in the mean surprise and 0.44 in the research precision 
model, are reasonably high considering the sample’s cross-sectional structure and 
the variety of research problems, methods, treatments, outcome types, institutional 
settings, and cultural settings it contains.

Topic area category and research outcome dimension each help explain mean 
surprise (Table 2). Developmental biology studies bring 0.47 [i.e., 0.266 – (−0.204)] 
percentage points more mean surprise than economics studies do, a difference 2.24 
times as large as the average (0.21) of the associated standard errors. Human health 
science work similarly brings 0.35% points more mean surprise than economics 
work does, 1.45 times the average (0.24) standard error. Mean-surprise differences 
between the remaining topic-area pairs are small. Among outcome dimensions, 
demand and species diversity each bring significantly more mean surprise than 
water quality does (t-statistics 1.9 and 1.6, respectively).

Topic area and outcome dimension have even more striking influences on 
research precision (Table 3) than they do on mean surprise. Predictive precision 
averages 48% higher in development biology, 48% lower in human health, and 73% 
lower in economics than in environmental science. The low associated standard 
errors make clear that the precision differences among biology, human health, and 
economic science are also statistically significant at normal confidence levels. 
Among outcome dimensions, mortality/growth predictions carry 78% greater preci-
sion, and demand/price predictions 67% greater precision, than do water quality 
predictions. Separately, and consistent with our hypothesis, statistical surveys pro-
duce the greater probability distribution shifts, and controlled experiments produce 
the more precise predictions. All else equal, surveys bring an average 105% greater 
mean surprise than controlled experiments do (Table 2) and experiment an average 
75% lower posterior outcome error than surveys do (Table 3).
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Laboratory size (proxied by employment) does turn out to significantly boost 
mean surprise, lifting it 0.21% for every 1.0% lab size increment (Table 2). It has no 
significant effect however on predictive precision (Table 3).4 Study site proximity to 
the research center enhances mean surprise only moderately (elasticity 0.11  in 
Table 2) and statistical precision even less.

4 If laboratory expansion did impair precision, we would be unlikely to observe any expansion 
unless the mean-surprise advantage more than compensated for the precision loss.

Table 2  Input effects on absolute difference between prior and posterior mean finding (mean 
surprise)

Research input Estimate
Standard 
error

Intercept 0.171 3.790
Continuous inputs

Lab size (FTE) 0.206 0.097
Mean education −0.353 1.333
Site proximity 0.107 0.025
Topic area category

Development biology 0.226 0.196
Human health science 0.143 0.252
Economic science −0.204 0.232
(Base: Environmental 
science)
Research outcome dimension

Mortality and growth −0.087 0.200
Demand and price 0.568 0.300
Species diversity 1.836 1.140
(Base: Water quality)
Analytical approach

Experiment vs survey −1.051 0.248
(Base: Statistical 
surveys)
Region of world

Asia −0.667 0.163
Africa 0.576 0.303
(Base: Latin America)
Notes:
Dependent variable: Absolute difference between prior expectation and posterior sample 

mean of experimental finding or survey response. Estimation linear 
in logs

Residual standard 
error:

1.091

Sample size: 415
Multiple R-square: 0.26

A Bayesian Measure of Research Productivity
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�Implications for Knowledge Production

The second step in our evaluation is to decompose total knowledge production into 
its mean surprise and unexplained error variance components. Our regression fit to 
the 415 sample observations (R2 = 0.97) is, with t-statistics in parentheses:

	

ln . . ln . ln

. .

K M M STD= − + − + −( )
−( )

1 188 1 76 0 71

30 97 122

prior post post

008 50 79( ) −( ).
	

(3)

Three conclusions can be drawn from this estimate. (a) The high R2 suggests 
mean surprise and unexplained posterior variance together virtually exhaust the 
knowledge generated. In other words, EVSI in a MAD functional form is very suc-
cessfully decomposed into mean surprise and statistical precision. (b) Surprise and 

Table 3  Input effects on negative of standard deviation of unexplained finding (precision)

Research input Estimate Standard error

Intercept −11.543 3.302
Continuous inputs

Lab size (FTE) −0.112 0.085
Mean education 4.263 1.161
Site proximity 0.033 0.021
Topic area category

Development biology 0.481 0.171
Human health science −0.476 0.219
Economic science −0.735 0.202
(Base: Environmental science)
Research outcome dimension

Mortality and growth 0.797 0.174
Demand and price 0.670 0.261
Species diversity 1.614 0.993
(Base: Water quality)
Analytical approach

Experiment vs survey 0.752 0.216
(Base: Statistical surveys)
Region of world

Asia 0.370 0.142
Africa −0.516 0.264
(Base: Latin America)
Notes:
Dependent variable: Negative of standard deviation of unexplained experimental 

finding or survey response. Estimation linear in logs
Residual standard error: 0.9508
Sample size: 415
Multiple R-square: 0.44
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precision are each positive contributors to new knowledge K. (c) Surprise does turn 
out, in both an elasticity and goodness-of-fit sense, to be the more powerful knowl-
edge factor, and precision the less powerful: the mean-surprise knowledge elasticity 
is 1.76/0.71 = 2.5 times greater than precision.

We now use the above regression weights 1.76 and 0.71 in conjunction with the 
research output elasticities in Tables 2 and 3 to compute in Table 4 how each selected 
research input affects new knowledge output K. The contribution of lab size to sci-
entific knowledge is, by way of its effect on mean surprise, (1.76) (0.206) = 0.36% 
and, by way of its effect on research precision, statistically nonsignificant. Scaling-up 
lab size 1% thus lifts knowledge output by 0.36%. Decreasing returns to lab scale 
are evident; the average project’s ability to produce new findings with its observable 
physical resources is tightly constrained by, presumably, not only unaccounted for 
missing inputs but breakthrough opportunities in the research field.

On the other hand, research scale economies can be considered in a qualitative as 
well as physical or quantitative direction. In particular, we might want to know how 
knowledge output is affected by a simultaneous expansion of research lab size and 
quality. An elasticity at the combined quantitative and qualitative margins can, to the 
degree that quality is reflected in formal training, be obtained by adding the elasticity 
with respect to size together with the elasticity with respect to education. We have 
found that team education has essentially no mean-surprise effect (Table 2), although 
a precision elasticity of 4.263 (Table  3). Weighting the latter by precision’s 0.71 
knowledge, weight in Eq. (3) says a 1.0% education improvement boosts knowledge 
production by a very strong 3.027% (Table 4). Combining this with the lab size elas-
ticity discussed above implies that expanding research capacity, 1.0% in both quan-
titative and qualitative dimensions lifts knowledge output by 0.363 + 3.027 = 3.39%. 
That is, taking input quality as well as quantity into account, increasing rather than 
decreasing returns to research scale is evident. Kocher et al. (2006) and Wang and 
Huang (2007) also find increasing returns to research scale, although with bibliomet-
ric methods and in situations much different than examined here.

Table 4  Decomposition of input effects on new knowledge, continuous variables

Research input
Knowledge contribution 
via research mean surprise

Knowledge contribution 
via research precision

Total knowledge 
contribution

Lab size (FTE) 0.363 0 0.363
Mean 
education

0 3.027 3.027

Site proximity 0.189 0.023 0.212

Notes:
Contributions in the first column are Table 2 elasticities multiplied by mean surprise’s marginal 
knowledge contribution, and in the second column, the Table 3 elasticities multiplied by preci-
sion’s marginal knowledge contribution
Third column numbers are the sums of those in the first and second columns
Continuous input effects are percentage changes induced by a 1% change in the indicated input
Analytical approach effects are the percentage changes associated with switching from the refer-
ence group to the group indicated
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�Conclusions

We have outlined a method of estimating research productivity at program, project, 
and scientific control level, permitting, in turn, direct comparisons with the associ-
ated research inputs and costs. New knowledge is modeled as the Bayesian expected 
value of sample information. The mean absolute deviation (MAD) utility form used 
here for that metric enables decomposing knowledge into mean surprise (outcome 
probability density shift) and research precision (density compactness), permitting 
independent examination of how each moment is influenced by the research 
settings.

In an application to an international research program, we find that (i) mean sur-
prise and precision explain nearly the entire variation in research productivity, sur-
prise more so than precision; (ii) greater laboratory size brings decreasing scale 
returns in the mean-surprise dimension and insignificant returns in the precision 
dimension; and (iii) researcher education powerfully improves precision, to the 
extent that, if expanded along with laboratory size, it brings increasing returns to 
scale in aggregate scientific knowledge. Furthermore, gains at the qualitative margin 
are much greater than at the quantitative margin.

Despite efforts to quantify the sources of research productivity, many lie beneath 
the surface even in as comparatively detailed a model as the present one. We have 
been able to match treatment- and dimension-specific research outcome statistics, 
hidden to most outside viewers, to many of the factors affecting them. But, for 
instance, we have not controlled for a research assistant’s allocation across treat-
ments and trials, which would affect the number of trials per treatment and the qual-
ity of effort per trial and hence research productivity. Although our model suggests 
they might be valuable, program accountants rarely record that kind of data.

Just as importantly, the present work points to the advantage of requiring scien-
tists to specify their quantitative expectations of research outcomes. Priors have 
three virtues in a proposal. They encapsulate intuitions about previous work and 
about the scientist’s own ideas, resources, and objectives that will differ from it. 
They require the proposer to specify precisely what the study controls or treatments 
are expected to be. And finally, they give managers and funders a more precise basis 
for judging the study’s eventual success.

References

Adams, J., and Z.  Griliches. 1996. Measuring Science: An Exploration. Proceedings of the 
National Academy of Science 93: 12664–12670.

Alston, J.M., G.W.  Norton, and P.G.  Pardey. 1995. Science Under Scarcity: Principles and 
Practices for Agricultural Research Evaluation and Priority Setting. Ithaca: Cornell University 
Press and ISNAR.

Alston, J.M., M.C. Marra, P.G. Pardey, and T.J. Wyatt. 2000. Research Returns Redux: A Meta-
Analysis of the Returns to Agricultural R&D. Australian Journal of Agricultural and Resource 
Economics 44 (2): 185–215.

L. Qin and S.T. Buccola



481

Alston, J.M., M.A. Andersen, J.S. James, and P.G. Pardey. 2011. The Economic Returns to US 
Public Agricultural Research. American Journal of Agricultural Economics 93 (5): 1257–1277.

Berger, J.O. 1985. Statistical Decision Theory and Bayesian Analysis. 2nd ed. New York: Springer.
CGIAR Science Council. 2009. Defining and Refining Good Practice in Ex-Post Impact 

Assessment – Synthesis Report. Rome: CGIAR Science Council Secretariat.
Cohen, W.M., and D.A.  Levinthal. 1989. Innovation and Learning: The Two Faces of R&D. 

Economic Journal 99: 569–596.
Fontana, R., A.  Nuvolari, H.  Shimizu, and A.  Vezzulli. 2013. Reassessing Patent Propensity: 

Evidence from a Dataset of R&D Awards, 1977–2004. Research Policy 42 (10): 1780–1792.
Griliches, Z. 1990. Patent Statistics as Economic Indicators: A Survey. Journal of Economic 

Literature 27: 1661–1707.
Hall, B.H., A.B.  Jaffe, and M.  Trajtenberg. 2005. Market Value and Patent Citations. RAND 

Journal of Economics 36: 16–38.
Hausman, J.A., B.H. Hall, and Z. Griliches. 1984. Econometric Models for Count Data with an 

Application to the Patents-R&D Relationship. Econometrica 52 (4): 909–938.
Huffman, W.E., and R.E. Evenson. 2006. Do Formula or Competitive Grant Funds Have Greater 

Impacts on State Agricultural Productivity? American Journal of Agricultural Economics 88 
(4): 783–798.

Hurley, T.M., X. Rao, and P.G. Pardey. 2014. Re-Examining the Reported Rates of Return to Food 
and Agricultural Research and Development. American Journal of Agricultural Economics 96 
(5): 1492–1504.

Industrial Research Institute. 2016. 2016 Global Funding Forecast. R&D Magazine (Winter 2016 
Supplement), 3–34.

Kocher, M.G., M. Luptacik, and M. Sutter. 2006. Measuring Productivity of Research in Economics: 
A Cross-Country Study Using DEA. Socio-Economic Planning Sciences 40: 314–332.

Lanjouw, J.O., and M. Schankerman. 2004. Patent Quality and Research Productivity: Measuring 
Innovation with Multiple Indicators. Economic Journal 114 (495): 441–465.

Lindley, D.V. 1956. On a Measure of the Information Provided by an Experiment. Annals of 
Mathematical Statistics 27: 986–1005.

Oettl, A. 2012. Reconceptualizing Stars: Scientist Helpfulness and Peer Performance. Management 
Science 58 (6): 1122–1140.

Pardey, P.G. 1989. The Agricultural Knowledge Production Function: An Empirical Look. The 
Review of Economics and Statistics 71: 453–461.

Polanyi, M. 1974. Personal Knowledge. Chicago: University of Chicago Press.
Robert, C.P. 2001. The Bayesian Choice. 2nd ed. New York: Springer.
Rynes, S.L., J.M. Bartunek, and R.L. Daft. 2001. Across the Great Divide: Knowledge Creation 

and Transfer between Practitioners and Academics. Academy of Management Journal 44 (2): 
340–355.

Schimmelpfennig, D.E., and G.W. Norton. 2003. What is the Value of Agricultural Economics 
Research? American Journal of Agricultural Economics 85: 81–94.

Schulze, A., and M. Hoegl. 2008. Organizational Knowledge Creation and the Generation of New 
Product Ideas: A Behavioral Approach. Research Policy 37 (10): 1742–1750.

Shapira, P., J. Youtie, K. Yogeesvaran, and Z. Jaafar. 2006. Knowledge Economy Measurement: 
Methods, Results, and Insights from the Malaysian Knowledge Content Study. Research Policy 
35 (10): 1522–1537.

Wang, E.C., and W. Huang. 2007. Relative Efficiency of R&D Activities: A Cross-Country Study 
Accounting for Environmental Factors in the DEA Approach. Research Policy 36: 260–273.

White, F.C., and J. Havlicek. 1982. Optimal Expenditures for Agricultural Research and Extension: 
Implications of Underfunding. American Journal of Agricultural Economics 64 (1): 47–55.

Winkler, R.L. 1972. An Introduction to Bayesian Inference and Decision. New  York: Holt, 
Rinehart and Winston.

———. 1986. Expert Resolution. Management Science 32 (3): 298–303.
———. 1994. Evaluating Probabilities: Asymmetric Scoring Rules. Management Science 40 (11): 

1395–1405.

A Bayesian Measure of Research Productivity


	A Bayesian Measure of Research Productivity
	 Introduction
	 A Direct Approach to Scientific Knowledge Measurement
	 Application to Research Assessment
	 Research Problem Type
	 Research Cost

	 Data Construction and Econometric Specification
	 Eliciting Prior and Posterior Densities

	 Data
	 Results
	 Factor Effects on Mean Surprise and Predictive Precision
	 Implications for Knowledge Production

	 Conclusions
	References


