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Preface

The ever-increasing demand of parallel processing drives society to investigate new
computer architecture and system software techniques. Following this trend, APPT
2017 broadly captured the recent advances in big data processing, parallel architectures
and systems, parallel software, parallel algorithms and artificial intelligence applica-
tions, distributed and cloud computing, etc., and provided an excellent forum for the
presentation of research efforts and the exchange of viewpoints.

We would like to express our gratitude to all the colleagues who submitted papers
and congratulate those whose papers were accepted. Following the success of its past
ten conference series, APPT 2017 managed to provide a high-quality program for all
attendees. The Program Committee (PC) decided to accept 11 papers. All submissions
were reviewed by three PC members. There was also an online discussion stage to
guarantee that consensus was reached for each submission.

While we would like to thank the authors for submitting their nice work to APPT
2017, and we would also like to show our sincere appreciation to PC members. The 25
PC members did an excellent job in returning high-quality reviews in time and
engaging in a constructive online discussion. We would also like to thank the general
chairs (Prof. Yong Dou and Prof. Haixiang Lin), the publicity chair (Prof. Duo Liu),
and the publication chair (Siqi Shen). Our thanks also go to Springer for its assistance
in putting the proceedings together. Finally, we offer our special thanks to the Orga-
nizing Committees of EuroPar, who made it possible to co-locate APPT 2017 with
EuroPar 2017 in Spain.

July 2017 Guangyu Sun
Yiran Chen
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Abstract. Directly browsing and analyzing numerous surveillance videos is
inefficient for human operators. Video condensation is a technical solution to fast
video browsing. On the one hand, traditional video condensation methods that
skip frames using simple strategies may lose some important frames. On the other
hand, the methods that rearrange frame contexts improve the browsing efficiency,
but are not easy to be accelerated using the data processing centers with various
hardware configurations. In this paper, we propose a platform-adaptive video
condensation system based on change detection, which is easy to accelerate and
keeps important frames accurately. To take full advantage of hardware acceler-
ation, we implement each module of the proposed system using multithreading
and GPU acceleration, and then further accelerate the system by exploiting the
task-level parallelism. We solve the computational resources assignment problem
via local search method. To be platform-adaptive, the combination of module
using different hardware acceleration are compared to choose the optimal com-
bination to make full use of the computational resources. Detailed experiments
are conducted to validate the accuracy of the proposed system, the efficiency of
the platform-adaptive mechanism and the high throughput performance.

Keywords: Change detection � Multithreading acceleration � GPU
acceleration � CPU-GPU heterogeneous acceleration � Task-level parallelism �
Video condensation

1 Introduction

In the past decades, numerous surveillance cameras have been deployed in public areas
in China. In particular, over 20,000 security cameras have been installed in the
prefecture-level cities. Approximately 80% of these cameras are @720P, whereas the

© Springer International Publishing AG 2017
Y. Dou et al. (Eds.): APPT 2017, LNCS 10561, pp. 1–13, 2017.
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remaining 20% are @1080P. According to related regulations, the data recorded by
these cameras should be stored for at least 30 days. The amount of video data can reach
over 15,000 terabytes. Due to the high cost and reliability issues, it is impractical for
human operators to continuously monitor the huge amount of video data. Therefore, the
efficient browsing of long surveillance videos is becoming increasingly crucial in the
public security field.

Several approaches for browsing videos have been proposed in literature. These
methods can be roughly grouped into two categories. The methods in the first group
condense the original video in the temporal domain. In methods [1, 2], videos can be
quickly browsed by skipping several frames to reach the selected timestamp or between
selected frames. Consequently, certain data may be overlooked if the skipped frames
contain important information. To keep more important frames, the adaptive methods
of skipping frames [3, 4] are proposed. These adaptive methods skip frames in periods
of low activity, and keep frames in periods of high activity.

The methods in the second group condense the original video in spatial and tem-
poral domain. In [5], the space-time video montage is used to analyze the spatial and
temporal information distributions of the original video. However, the visual quality of
the condensed video is unsatisfactory, because it has obvious seams and some pieces of
information are lost. In [6], a ribbon carving-based method is proposed. This technique
considers a ribbon, a flexible frame without activity, as the smallest processing unit and
iteratively removes all of them from the original video until no ribbon is left. However,
it may fail to handle scenarios where adjacent objects move in different speeds and
directions. The obtained condensed video also has obvious seams. Video synopsis [7–
9] methods consider a tube, a frame sequence of an object, as the smallest unit and
merge tubes by solving an optimization problem. While they provide superior per-
formance, the tube-based methods are low computational efficiency compared with the
previous methods. A high-performance condensation system for online videos was
proposed in [10]. This system achieves high throughput performance by using a
graphics processor unit (GPU) and a multi-core acceleration.

1.1 Motivations and Contributions

Though temporal-spatial methods provide high condensation ratio, these methods
cannot provide high computational efficiency. On the contrary, temporal condensation
methods are time efficient but may loss important frames. To this end, we employ
change detection to achieve temporal condensation, which only remove the frames that
contains minimal or no activities. The contributions of this paper are summarized as
follow.

Promising Performance in Keeping Important Frames. The proposed system
exploit change detection with object detection to keep important frames, which keeps
more important frames compared with simple temporal skimming or forwarding and
provides competing performance compared with the temporal-spatial condensation
methods.

Efficient Platform Adaptation. To make full use of the computational resources in
the platform with different hardware configurations, we combine the modules of the

2 P. Qiao et al.



proposed system and exploit a local search to efficiently optimize the computational
resources assignment for each combination.

High Throughput Performance. Each module of the proposed video condensation
system was implemented using both multithreading and GPU acceleration, and further
accelerated using task-level parallelism. On platform with 2-cores CPU @ 3.20 GHz
and GTX550Ti (described in Table 2), the proposed system condensed one-hour
videos @352 � 288 in about 60 s, and achieved 2.6 MB/s throughput and 1426.3
frames per second (fps) performances.

2 Change Detection Based Video Condensation Framework

The proposed change detection based video condensation (CDVC) framework is
illustrated in Fig. 1. This framework can be divided into three modules, namely module
FRM, MT, and OBJWRT. In module FRM, the images are captured and buffered. In
module MT, change detection procedure is conducted based on background subtrac-
tion. In module OBJWRT, the objects are determined via connected component
labelling and the frames with objects are written to the output video.

2.1 Background Building and Updating

Change detection techniques can be categorized into two groups, namely background
subtraction [14–21] and frame difference [22, 23]. Frame difference is fast, but fails to
detect objects when they stop or move slowly. By contrast, background subtraction
may not encounter such problem. To achieve both high detection accuracy and com-
putational efficiency, we adopt the simplest parameter estimation method to build and
update the background image.

In parameter estimation-based background subtraction, the background image Ibg is

the mean of the buffered images B ¼ Iif gNbg

i¼1 as,

Ibg ¼ 1
Nbg

XNbg

i¼1
Ii; ð1Þ

where Nbg is the number of images in B. To estimate Ibg accurately, Nbg is usually large.

It is memory-consuming to buffer all images Iif gNbg

i¼1. To be memory-efficient, we buffer

Fig. 1. CDVC framework in module view.

Platform-Adaptive High-Throughput Surveillance Video Condensation 3



Nsbg short time background images Bs ¼ Isbg
� �Nsbg

i¼1 , as shown in Fig. 2(a) and (b).
Therefore, Eq. (1) can be reformulated as,

Ibg ¼ 1
Nsbg

XNsbg

i¼1

Nsbg

Nbg

X
I2Bi

I

I

� �
¼ 1

Nsbg

XNsbg

i¼1
Iisbg ð2Þ

2.2 Change Detection

When Ibg is updated or built, the activities are determined by comparing the Ibg and the
new buffered image Ii, as shown in Fig. 2(c), and formulated as,

Iimask ¼ 1; if Ii � Ibg
�� ��[ Th

0; otherwise

�
; ð3Þ

where Th is an empirical parameter. The value 1 and 0 in Eq. (3) imply that the
corresponding pixel probably belongs to a moving object and to a non-moving object
(or the background), respectively.

2.3 Object Detection

Candidate objects are considered as connected components [24, 25], which are found
within Imask. These candidate objects (Cont) are considered as objects when satisfying
some geometric constrains, such as the area of candidate objects Acontð Þ, formulating as

MKi
I ¼ 1; if 9j;Ai

contj [ Thg
0; otherwise

�
; ð4Þ

where Ai
contj indicates the area of the j-th candidate object Contij in the i-th image Ii. The

geometric constrain threshold Thg is empirically set.

Fig. 2. Flowchart of CDVC framework.
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2.4 Fine- and Coarse-Grained Acceleration

In addition to module FRM and WRT are I/O-intensive operations, module MT and
OBJ are computationally intensive operations, and are easy to accelerate. Module MT
can be further divided into colorspace conversion (CVT), short time background image
building (BUILD), long time background image updating (UPDAT), change detection
(ChDet), and the morphology operation (Morph). Operation CVT, BUILD, UPDAT,
and ChDet run in pixel-wise computation manner, which can be easily mapped into the
Compute Unified Device Architecture (CUDA) [26] diagram by maximizing the use of
grid, block, and thread parallelisms. Operation Morph is computed in a sliding window
manner. Therefore, operation Morph is accelerated using more advanced techniques,
such as texture, shared memory optimization and 2D convolutional kernel separation
[26, 27]. The computation of module MT and OBJ are frame-independent, therefore we
also implement module MT and OBJ using OpenMP [31] implementation to exploit
frame-level parallelism. In OpenMP implementation, module MT and OBJ are
assigned with n1 and n2 CPU threads respectively. When module MT is implemented
using CUDA, we set n1 to 1. We can split the long video into K parts, and exploit
task-level parallelism. These K parts can be processed simultaneously, the processing
time becomes shorter.

3 Platform-Adaptive CDVC System

In this section, we first discuss the computational resources assignment (n1, n2, K) for a
specific platform. Then we introduce the local search-based computational resources
assignment, making the search of optimal assignment efficient. Finally, we introduce
the proposed platform-adaptive CDVC system by using different combination of
modules and different implementation of modules.

3.1 Brute Force-Based Computational Resources Assignment

To obtain a high-performance system, the computational resources assigned to coarse-
and fine-grained accelerations should be balanced [29, 30, 32] which means a proper
computational resource assignment (n1, n2, K) is required to minimize the overall
processing time. Taking OpenMP implementation of module MT and OBJ as an
example. Module MT runs simultaneously with module FRM and OBJWRT, pro-
cessing different interval of the buffered images. For a platform that has two CPUs and
each of them has 8-cores, all possible assignments are listed in Table 1. The optimal
assignment for this platform is (4, 4, 4), which is interpreted as four parts are running
simultaneously, in each part modules MT and OBJ are assigned with four threads,
respectively.

Platform-Adaptive High-Throughput Surveillance Video Condensation 5



3.2 Efficient Local Search-Based Computational Resources Assignment

Using brutal force search method, the number of all possible combinations of (n1, n2, K)
is O(n3), where n is the maximum number of threads. It is unacceptable to find the
assignment using brutal force search when n is large. In the parameter selection domain
[12, 13], the local search method is an alternative method and commonly used.

In the local search method, an assignment (n1, n2, K) is regarded as a state. The valid
operation for a state is to increase the value of one element in (n1, n2, K) if it is not
beyond the valid range. We test each new state, and record its processing time and total
computational resources used (equal to (n1 + n2) � K). As shown in Fig. 3, the
strategies we used to select one state among the new expanded states are as follows:
(I) the minimal resource used first, (II) the minimal processing time first, and (III) reg-
ularizing the processing time performance improvement based on Strategy II. As shown
in Table 1, the intuition of Strategy III is that adjacent assignments may achieve
compatible performance (given the threshold of performance improvement, Thp), which
implies that we can stop expansion and test new states as early as possible. As shown in
Table 1 and Fig. 3, the optimal computational resources assigned by Strategy III is
different from those assigned by the other two strategies and brutal force search, but the
run time performances of these assignments are nearly the same. For the search

Table 1. Test time for different (n1, n2, K) assignment on platform with GTX750Ti and
E5-2650@2.0 GHz 8 cores � 2.

K 1 2 4

n2 n1 n1 n1
1 2 4 8 1 2 4 8 1 2 4 8

1 150 114 126 118 107 80 73 70 56 42 42 42
2 148 108 102 108 107 76 65 64 52 39 37 39
4 151 126 85 91 109 76 61 63 60 41 36 38
8 156 109 92 91 110 74 54 55 54 40 37 38

Fig. 3. Assignment searching trees for the mentioned three strategies. The circle represents one
state (n1, n2, K). The numbers beside the circle denote the resource used and processing time. The
red bold arrow represents the state selected by the corresponding strategies.

6 P. Qiao et al.



efficiency, the entire search time of local search method used Strategy III (about 13 min)
is one order faster than that of brutal search method (about 141 min).

3.3 Platform-Adaptive Mechanism

In the data processing centers, various hardware configures may exist. To take full
advantage of the platform computational resources, the combination and implemen-
tation of modules are also needed to be optimized, besides the optimal computational
resources assignment. Hence, eight possible combination schemes are produced, i.e.,
A1, A2, A4, A6, B10, B12, C16 and C18, as shown in Fig. 4. The throughput per-
formance comparison of different schemes is illuminated in Fig. 7 in bar plots.

Given a platform, we determine the optimal scheme from A1, A2, A4, A6, B10,
B12, C16 and C18, each of which is with optimal computational resources assignment
(n1, n2, K). Although the overhead of the determination of the optimal combination and
assignment exists, it just runs once for this platform. Therefore, the proposed CDVC
system is efficiently platform-adaptive and is able to make full use of the computational
resources.

4 Experiment and Analysis

Datasets provided by the IEEE Change Detection Workshop in conjunction with CVPR
2012 [28] (http://wordpress-jodoin.dmi.usherb.ca/dataset2012/) were used to validate
the proposed CDVC system. In addition, ten outdoor surveillance video sequences,
each of which lasted 30 min, were used. The details of the operating environment and
the system setup are shown in Table 2.

To use less memory, Nsbg (in Eq. (2)) was set to 100. To balance change detection
accuracy and sensitivity to scene change, Nbg (in Eq. (1)) was set to 2000. The change
detection threshold Th (in Eq. (3)) was set to 30. The area of connected component
threshold Thg (in Eq. (4)) was set to 1600, and should be adjusted manually and
carefully with respect to actual scene. To balance the efficiency and accuracy of
computational resources assignment via the local search method, Thp (used in local

Fig. 4. Combination of modules FRM, MT and OBJWRT. The number following the module
name is the number of the buffered images. Different number indicates different time interval of
the buffered images. The “-omp” and “-gpu” are corresponding to OpenMP and CUDA
implementation respectively.

Platform-Adaptive High-Throughput Surveillance Video Condensation 7
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search Strategy III) was set to 1 s. The maximum value of K was set to eight to limit the
parameter space. The maximum values of n1 and n2 were set to the maximum number
of accessible threads. The values of n1, n2 and K increased by the exponent of two.

The performance evaluation metric used in this study is throughput, which is
defined as follows

throughput ¼ file size=run time; ð5Þ

where the unit of file size is megabyte (MB), and the unit of the run time is second (s).

4.1 Change Detection and Frame Removal Accuracy

The comparisons of change detection accuracy and frame removal accuracy are shown
in Tables 3 and 4, respectively. The performance metric used are Precision = TP/
(TP + FP), Recall = TP/(TP + FN) and F-measure = 2 ∙ Recall ∙ Precision/
(Recall + Precision). TP, FP, and FN are true positives (true foreground pixels), false
positives, and false negatives (false background pixels), respectively.

Compared with the scale invariant local ternary pattern (SILTP) proposed in [10],
the proposed CDVC system achieved better change detection performance, shown in
Table 3. The detection or segmentation results are shown in Fig. 5.

For the proposed CDVC system, the accuracy of determining whether to keep a
frame or not is high, as shown in Table 4. Change detection is conceptually simple, but
is sufficient to detect moving or important activities. Therefore, a relative high accuracy
of determining whether keeping a frame or not is achieved.

Table 2. Details of the running environment.

Platform GTX750Ti Platform GTX550Ti

Hardware CPU: 2.0 GHz 8 cores � 2
GPU: Nvidia GeForce GTX 550 Ti

CPU: 3.2 GHz 2 cores
GPU: Nvidia GeForce GTX 550 Ti

Operating system Windows server 2008 R2 enterprise 64 bit Windows 7 ultimate 64 bit

Table 3. Change detection accuracy comparison between the CDVC system and SILTP. The
test video sequences were obtained from change detection 2012.

Sequence Precision Recall F-measure
CDVC SILTP CDVC SILTP CDVC SILTP

Highway 0.87 0.59 0.91 0.96 0.89 0.73
Office 0.70 – 0.74 – 0.72 –

Pedestrians 0.99 0.38 0.99 0.95 0.99 0.54
PETS2006 0.86 0.54 0.72 0.97 0.78 0.70
Average 0.86 0.50 0.84 0.96 0.85 0.66

8 P. Qiao et al.



4.2 Speedup via Fine-Grained Acceleration

GPU Acceleration. GPU implementation of module MT on platform GTX550Ti is
2.9 times faster than CPU baseline setting n1 to 11, as shown in Fig. 6. The speedup of

Table 4. Video condensation accuracy.

Precision Recall F-measure

Highway 1 1 1
Office 0.99 1 0.99
Pedestrians 1 0.78 0.88
PETS2006 1 1 1

Fig. 5. Change detection results of CDVC and SILTP.

Fig. 6. Module MT speedup performance of GPU acceleration compared with the single-thread
CPU implementation (left). Runtime is plotted in logarithmic-form. Modules MT and OBJ
speedup performances of multithreading acceleration compared with the single-thread CPU
implementation (right).

1 Note that speedup is hardware dependent, given better hardware may lead to better speedup
performance. The overall speedup for platform GTX750Ti is 12.6.

Platform-Adaptive High-Throughput Surveillance Video Condensation 9



operation CVT, BUILD, UPDAT, ChDet, and Morph are 13.9, 5.98, 1.38, 5.28, and
1.40, respectively.

Multithreading Acceleration. The speedup performance of module MT on platform
GTX550Ti increases almost linearly with the increase in assigned computational
resources and reaches 3.5, as shown in Fig. 6. By contrast, the speedup of module OBJ
only reaches 2.0 when assigned with four threads. The difference of the speedup
performances can be interpreted that connected component labeling in module OBJ is
more complex than that of module MT.

4.3 Platform-Adaptive

Taking platform GTX550Ti as an example, the entire search time for all eight schemes
of the three strategies is 2.2, 1.7 and 1.5 h as shown in Table 5. For GTX750Ti, the
best scheme and computational resources assignment is C16 (2, 1, 8). For GTX550Ti
the best scheme and computational resources assignment is A6 (1, 1, 4).

With the same fixed assignment, the throughput performance of GTX550Ti is
compatible with that of GTX750Ti, as shown with bar graph in Fig. 7. It is the CPU
frequency that plays an important role in the fixed assignment scenario.

In the best assignment scenario, as shown with line graph in Fig. 7, all schemes on
platform GTX550Ti achieve nearly the same throughput performances, whereas the
throughput performances on platform GTX750Ti vary considerably. It is the number of
physical cores in CPU that plays an important role in the best assignment scenario.

Table 5. Number of expanded states of the three strategies.

Strategy A 1 A 2 A 4 A 6 B 10 B 12 C 16 C 18 Total Time (h)

I 3 13 15 8 15 9 11 6 80 2.2
II 3 11 11 8 11 6 9 5 64 1.7
III 3 9 9 6 9 7 9 5 57 1.5

Fig. 7. The throughput performance with a fixed assignment is plotted in bar. The throughput
performance with the best assignment is plotted in line.
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4.4 Throughput Performance

Using the best assignment, we run the video condensation system to process the other
ten surveillance video sequences. On platform GTX550Ti, the proposed system con-
densed one-hour videos @352 � 288 in about 60 s, and achieved 2.6 MB/s throughput.
In terms of fps, for the video resolution of 704 � 576, platform GTX550Ti achieves
295.7 fps, whereas platform GTX750Ti achieves 730.9 fps. As reported in [10], the
8-core CPU @ 2.66 GHz and Nvidia GeForce GTX285 achieves 292.2 fps for the same
video resolution. For the video resolution of 352 � 288, platform GTX550Ti achieves
1426.3 fps, whereas platform GTX750Ti achieves 3719 fps. As reported in [10], it
achieves 833.6 fps for the same video resolution. The computational ability of GTX285
is slightly lower than that of GTX550Ti, whereas the computational ability of 8-core
CPU @ 2.66 GHz is faster than that of 2-core CPU @ 3.20 GHz. Considering the
platform characteristics, the results in this study is promising.

5 Conclusion

A platform-adaptive high-throughput performance video condensation system based on
change detection is proposed in this study. The CDVC framework is accelerated using
GPU and multithreading. To make full use of the computational resources, we resort to
local search method to find the optimal assignment. To be platform-adaptive, we
combine the modules of the proposed CDVC system to take advantage of module
parallelism. Detailed experiments indicate that the proposed CDVC system is effi-
ciently platform-adaptive for different hardware configurations and provides high
throughput performance and high accuracy to keep important frames.

Acknowledgements. This work was supported in part by the Chinese National Natural Science
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Abstract. Convolutional Neural Network (CNN) has been extensively
employed in research fields including multimedia recognition, computer
version, etc. Various FPGA-based accelerators for deep CNN have been
proposed to achieve high energy-efficiency. For some FPGA-based CNN
accelerators in embedded systems, such as UAVs, IoT, and wearable
devices, their overall performance is greatly bounded by the limited data
bandwidth to the on-board DRAM. In this paper, we argue that it is fea-
sible to overcome the bandwidth bottleneck using data compression tech-
niques. We propose an effective roofline model to explore design trade-
off between computation logic and data bandwidth after applying data
compression techniques to parameters of CNNs. We implement a decom-
pression module and a CNN accelerator on a single Xilinx VC707 FPGA
board with two different compression/decompression algorithms as case
studies. Under a scenario with limited data bandwidth, the peak per-
formance of our implementation can outperform designs using previous
methods by 3.2× in overall performance.

Keywords: CNN · FPGA · Compression/decompression

1 Introduction

Convolutional Neural Network (CNN) [9], a popular deep learning algorithm, has
become the most successful algorithm for visual content understanding, image
search, and classification [6,8]. In recent years, CNN has achieved great improve-
ment on both neural network architecture and accuracy, which makes CNN out-
perform conventional approaches. However, previous research has demonstrated
that general purposed processors like CPUs are not efficient to perform the
computation of CNN algorithms. As a result, various accelerators for CNN have
been proposed recently. Among these accelerators, FPGA-based CNN accelera-
tors have attracted great attention because of their high performance, low power
consumption (compared with CPUs), and flexibility [1,5,10,11,16].
c© Springer International Publishing AG 2017
Y. Dou et al. (Eds.): APPT 2017, LNCS 10561, pp. 14–26, 2017.
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Previous works on FPGA-based CNN accelerator aim at optimizing compu-
tation throughput [1,5,11] and I/O bandwidth [10] to achieve the best perfor-
mance. In [16], Zhang et al. proposed a roofline model to find the design solution
with the highest performance and lowest bandwidth requirements. The model
can help find an optimal design configuration under the constraints of compu-
tation roof and bandwidth roof, which are provided by the specific hardware
platform. More details can be found in Sect. 2.2.

Having this model, it is also easy to tell whether computation resource or I/O
bandwidth has become the bottleneck of an FPGA-based CNN accelerator. In
fact, in most of modern embedded systems, such as UAVs, mobile phones, IoT
and wearable devices, the I/O bandwidth limitation (commonly 100–200 MB/s)
is even stricter, which further lowers the bandwidth roof and results in a decrease
on the overall performance of the CNN accelerators.

To overcome the problem of limited bandwidth, we further explore trade-
off between computation resource and data bandwidth with consideration of
compression techniques. In particular, we notice that the number of parameters
(weights and bias) in real-life CNN is usually too large to be stored on-chip (e.g.
about 60 million and 140 million of parameters for AlexNet [7] and VGG [12]
respectively), which indicates that users need to load parameters from external
storage to computation engines for CNN computation. Besides, the parameters
of CNN are pre-calculated off-line in training phase, and they remain the same
during inference phase. Taking advantage of this characteristic, we can compress
these parameters off-line in advance, and only decompress them on-line on FPGA
for CNN computation. While applied in embedded systems, CNN only performs
the inference phase in various real-life applications, so we focus on a real-time
acceleration for the inference phase of CNN.

To find the optimal design, we propose an effective roofline model. Con-
sequently, we can further improve performance and even reduce energy con-
sumption under the same bandwidth constraint. Moreover, we also provide
analysis on the design space exploration and characteristics of different com-
pression/decompression algorithms. To the best of our knowledge, this is the
first work on applying compression/decompression methods to the parameters
of CNN to improve the bandwidth bottleneck.

The main contributions of this work are summarized as follows,

– We build an effective roofline model for problem formulation and performance
analysis, which takes both CNN accelerator and decompression module into
consideration.

– We present a method to find the optimal configuration for architecture design,
with a best on-chip resource allocation between CNN accelerator and decom-
pression module using the effective roofline model.

– As case studies, we implement decompression modules using two typical com-
pression/decompression algorithms, which improve the performance of CNN
accelerator by 2.37× and 3.20× respectively, while saving energy at the same
time.
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The rest of this paper is organized as follows: Sect. 2 introduces CNN and
roofline model, and Sect. 3 explains our methodology for performance optimiza-
tion. Section 4 presents our hardware implementation. Experimental results and
analysis are shown in Sect. 5. Section 6 concludes this paper and discusses about
future work.

2 Background

In this section, we first introduce some basic concepts of CNN and explain our
ideas generally. Then we present the roofline model for performance analysis in
previous work.

2.1 CNN Basis

CNN is a classical supervised learning algorithm, and has achieved state-of-the-
art accuracy across a broad set of applications. Typically, CNN is composed of
two kinds of layers: convolutional layers (feature extractor) and fully connected
layers (classifier).

A typical convolutional layer is shown in Fig. 1. As this figure illustrates,
several feature maps form the input of a convolutional layer. These input feature
maps are filtered by their own convolution kernels, then we can get a set of
filtered feature maps as the output. Each convolution kernel is composed of many
parameters, also called weights and bias. Deploying a CNN normally includes
two phases: training and inference. In practice, training is accomplished off-line
using a cluster of CPUs [4] or GPUs [2,14,15], and parameters are adjusted in a
backward direction to get the best accuracy with a training set. During inference
phase, the trained CNN is deployed for real-life applications, and computation
executes in a forward direction on-line. So the speed of inference is the key factor
of CNN’s overall performance, and we focus on accelerating the inference phase in
this work. It is worth noting that parameters remain unchanged during inference,
which provides us with the possibility of compressing them off-line before they
are applied to real-life applications, and only doing the decompression work
on-line.

Fig. 1. Overview of a convolutional layer
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Work in [3] has demonstrated that convolutional operations will occupy over
90% of the computation time of a CNN during the inference phase, so we focus on
accelerating convolutional layers in this work, and discuss about fully connected
layers in Sect. 6.

2.2 Roofline Model

Roofline Model is first introduced in [13] to restrict system performance under
the highest attainable performance and data accessing bandwidth provided by
a specific platform. Figure 2 shows an example of roofline model.

Fig. 2. Performance analysis using roofline model

As shown in Fig. 2, in roofline model, X-axis is computation to communica-
tion ratio (CTC Ratio), which indicates the number of computation operations
per I/O traffic. Y-axis is the attainable performance (AP ) of a design in GOPS
(Giga operations per second). Here we denote the number of computation oper-
ations in CNN accelerator as Operations, and denote the amount of external
data access for computation as Data. So we can calculate CTC Ratio and AP
according to Eq. 1. According the definitions of CTC Ratio and AP , we can
calculate the required bandwidth (BWr) of a possible design by Eq. 2.

Roofline model defines computation roof to represent the peak performance
that utilizes all the computation resources, and it also defines bandwidth roof,
whose slope equals to the maximum data accessing bandwidth provided by the
hardware platform (denoted by BW ). On this hardware platform, the highest
performance that the accelerator can achieve is restricted by computation roof
and bandwidth roof. This can be summarized in Eq. 3.

CTC Ratio =
Operations

Data
, AP =

Opereations

Cycles
(1)

BWr =
Data

Cycles
=

AP

CTC Ratio
(2)

APmax = min(Computation Roof, CTC Ratio ∗ BW ) (3)
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3 Methodology

3.1 Effective Roofline Model

Inspired by roofline model, we propose an effective roofline model for perfor-
mance optimization. Applying decompression module to CNN accelerator brings
some changes to the formulations in Sect. 2.2. We denote the compression ratio
as r (Eq. 4). For a single decompression unit, we denote its throughput as BWd,
which equals to the amount of data that the decompression unit can output in
one second. However, a single decompression unit may not satisfy our demand for
maximized resource utilization and higher performance, so we duplicate decom-
pression unit according to the resources on chip, which offers great conciseness
and flexibility to our adjustment of resource utilization and speed of decompres-
sion. Here we denote the number of duplications as n. In fact, the data size
of input enoughignored when compared with the huge amount of parameters
to be loaded during inference phase. So the Attainable Performance and CTC
Ratio after applying a decompression module can be calculated by Eqs. 5 and 6
respectively.

r =
Size of Compressed Data

Size of Original Data
(4)

CTC Ratio′ =
Operations

Data′ =
Operations

Data ∗ r
(5)

AP ′ =
Operations

Cycles + Cycles of Decompression
=

Opereations

Cycles + Data
n ∗ BWd

(6)

To find the best design configuration under roofline model, we need to cal-
culate the new locations of all the design points again every time the value of n
changes. As a result, the amount of overall computation for estimation is highly
increased, which makes it more difficult to find the best design configuration. So
we propose to solve this problem in another easier and clearer way.

According to Sect. 2.2, we denote the I/O bandwidth provided by the plat-
form as BW . While applying a decompression module between storage and CNN
accelerator, the I/O bandwidth that the CNN accelerator actually obtains varies,
we denote it as BW ′. Based on the definitions above, the relationship between
BW ′ and BW is shown in Eqs. 7 and 8. BW is determined by the specific
platform. r and BWd are determined by the compression/decompression algo-
rithms and hardware implementations respectively. n is the variant to reflect the
trade-off between resources for decompression module and resources for CNN
accelerator.

When n = 0, BW ′ = BW (7)

When n > 0, BW ′ =
BW

r + BW
n ∗ BWd

(8)

With the formulations above, we present an effective roofline model to
solve the highly complex problem that the decompression module brings.
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Figure 3 shows an example of our effective roofline model. In effective roofline
model, we define an effective computation roof (ECR) as the highest attainable
performance of CNN accelerator with the on-chip resources that can be used for
it, and we also define an effective bandwidth roof (EBR), whose slope equals
to BW ′.

Deploying a decompression module has two aspects of influence on the CNN
accelerator: On the one hand, the decompression module definitely occupies a
certain amount of resources, which may decrease the on-chip resources available
for CNN accelerator. As n increases, the resources for CNN accelerator may fur-
ther decrease, which results in a decrease on the attainable performance. This
can be reflected as a downwards movement of ECR. On the other hand, accord-
ing to Eq. 8, BW ′ will increase when n increases, which results in a anticlockwise
movement of EBR in effective roofline model. Therefore, for different choices of
values for n (n0 < n1 < n2), the corresponding ECRs and EBRs are shown
in Fig. 3.

As a result, the design space of the roofline model introduced in [16] is just a
subset (when n = 0) of the design space of effective roofline model. After adding
the decompression module, our effective roofline model takes computation power,
bandwidth requirements and on-chip resource allocation into consideration, so it
can explore a much larger design space and probably find a design configuration
with better overall performance.

Fig. 3. An example of effective roofline model

3.2 Design Space Exploration

Taking advantage of the characteristics and parameterization of CNN accelera-
tor, every possible design can be represented as a point in the effective roofline
model. All these points comprise a huge space of possible design choices, and we
propose a method to efficiently find the design with highest overall performance.

According to our effective roofline model, when n equals to an arbitrary
value, the method to find the best design configuration is similar to that in
conventional roofline model. Under the constraints of ECR and EBR, we can
use a traversal approach to find the optimal configuration for architecture design
with highest performance and lowest bandwidth requirements, and this method
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has been presented in [16]. Every time n changes, ECR and EBR will change,
which means that we need to search for the best design among all the points in
all possible values of n. To simplify this procedure, we use pruning methods to
shrink the searching space.

On the one hand, when n = 0, which means we do not apply decompres-
sion module to the CNN accelerator, we have BW ′ = BW . Using the method
provided in [16], we can find a point (X in Fig. 4) with the best performance.
Then we add decompression module to this system to search for a point with
better overall performance. So if there exists such a point that is better than
X, this point must be located at the left side of EBRn=0 and at the upside of
X’s attainable performance. On the other hand, when we increase n to further
improve bandwidth bottleneck, ECR may move downwards. Supposing ECR
equals to X’s attainable performance when n equals to a certain value (denoted
by nmax), then there is no need to further increase n. Above all, we need to
traverse n from 1 to nmax to search for the best trade-off in resource allocation.
For each value of n, we only need to search for the best design among the points
in the shaded region (shown in Fig. 4) instead of the entire design space.

Fig. 4. An example of design space exploration

4 Implementation

4.1 System Design

The system design is shown in Fig. 5. We divide the whole function of this system
into two parts: Compression and CNN-D (CNN accelerator with decompression
module). The arrows in Fig. 5 show the direction of parameter flow. White arrows
indicate that the parameters transferred are compressed, while black arrows
indicate that the parameters transferred are decompressed.

As Fig. 5 illustrates, Compression is mainly implemented on software. The
Compression Module is used to compress the parameters of our implemented
CNN, and Dispatcher is deployed to dispatch them into the format suitable for
parallel decompression. To emulate the bandwidth bounded scenario in embed-
ded systems, we attach a NAND Flash chip to our FPGA board, and this NAND
Flash chip works as the external storage where the parameters of CNN are stored.
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Fig. 5. Overview of system design

Our whole design of CNN-D is implemented on a single FPGA board. The
NAND Flash Controller works as a data fetcher and data dispatcher for Decom-
pression Module. It fetches parameters stored in the NAND Flash and dispatches
parameters to each Decompression Unit. The Decompression Module is com-
posed of n Decompression Units, and each Decompression Unit decompresses
the parameters transfered into it. After decompression, the decompressed para-
meters are transfered to the CNN Accelerator, where the main part of CNN
computation is performed. What is more, we use a Timer to measure the execu-
tion time of our design.

4.2 Compression/Decompression Algorithms

Applying compression/decompression modules to minimize the amount of data
to be transfered is a common approach in system design for bandwidth opti-
mization. However, there is something different for our demand on the com-
pression/decompression algorithms. Firstly, we do not care how much time and
resources it costs to compress parameters of CNN, since we compress them off-
line only once, and store them in a read-only mode. Secondly, we hope decom-
pression does not cost much time and resources considering the performance
of the whole CNN accelerator. In summary, our requirements to the compres-
sion/decompression algorithms are: high compression ratio, high decompression
speed and low resource utilization for decompression. Considering representa-
tiveness and our requirements, we choose LZ77 as an example of dictionary
based algorithms, and Huffman Encoding as an example of entropy encoding
based algorithms. Many compression/decompression algorithms used nowadays
are variants or combinations of these two algorithms.
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4.3 CNN Accelerator

The implementation of CNN accelerator is generally shown in Fig. 6. All the
computation of CNN are accomplished in parallel by numerous convolution units.
Several optimizations are applied to the design of convolution units, such as
deep pipelining, loop unrolling and loop tiling. For data access optimization,
we implement two data buffers for data reusing and ping-pong operations. All
these optimization strategies can be parameterized, which makes it possible to
calculate the CTC Ratio and AP of each design configuration accurately. For
the choice of optimization parameters, we refer to the best design configuration
found by our effective roofline model.

Fig. 6. Overview of CNN accelerator

5 Case Study

In this section, the experimental setup of our experiments is provided first. Then
we present and analyze the experimental results.

5.1 Experimental Setup

We use Vivado HLS (v2015.4) to implement our CNN accelerator and decom-
pression module. Vivado HLS is a high level synthesis design tool, which takes C
code as input and outputs IP core in Verilog HDL. For the design space explo-
ration and performance estimation, we use the pre-synthesis report of Vivado
HLS. Then the RTL synthesis and implementation are done in Vivado (v2015.4).

The hardware platform we choose is a VC707 board with a Xilinx Virtex7
485t FPGA chip on it, and its working frequency is set to be 100 MHz. The
storage device we use is SAMSUNG K9F1G08U0D NAND Flash board.

To test our effective roofline model in a real-life case, we implement a CNN
with our accelerators, VGG-19 [12], which has 16 convolutional layers. The VGG
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Model increases depth using an architecture with very small (3 × 3) convolution
kernels, which shows that a significant improvement on the prior-art configu-
rations can be achieved by pushing the depth to 16–19 layers. The detailed
configurations of VGG-19 can be found in [12]. The input is a 224 × 224 RGB
image, and the convolution kernel size in convolutional layers is 3 × 3, with a
sliding stride of 1.

5.2 Experimental Results

Table 1 shows the average compression ratio (r in Sect. 3.1, r < 1), speed of
decompression (BWd in Sect. 3.1) and resource utilization of different decom-
pression units. From Table 1 we can see that Huffman Encoding performs about
1.30× better than LZ77 on average compression ratio. This is because that LZ77
is a dictionary-based compression algorithm, and performs better when the data
has a stronger locality. However, parameters of VGG-19 show a weak locality.
In other CNN models, the locality of parameters varies, LZ77 may perform bet-
ter. This is also the reason why we implement two different typical compression
algorithms. According to analysis in Sect. 3.1, decompression speed of a single
decompression unit is not very important for our application, since we can adjust
n for different BW ′, and CNN computation is the dominating factor. As shown
in Table 1, a single decompression unit does not occupy much resource. More
specifically, the main kind of resource these decompression units occupy is LUT,
and they do not use DSP at all. While computation resource (DSP) is crucial
to the performance of CNN accelerator, so this means a greater space for our
optimization.

Table 1. Decompression unit comparison

Algorithm r BWd DSP BRAM LUT FF

LZ77 0.48 114.7 MB/s 0.00% 0.97% 4.52% 0.82%

Huffman 0.37 90.61 MB/s 0.00% 0.49% 1.04% 0.16%

We implement three cases for our studies: design with no decompression
module (named as CNN), design combined with LZ77 decompression module
(named as CNN−D(LZ)) and design combined with Huffman Encoding decom-
pression module (named as CNN − D(HE)). All implementations implement
the best hardware configuration found by the method presented in Sect. 3.2.
The bandwidth of data accessing is 181.20 MB/s, which is within the typical
bandwidth range (100–200 MB/s) in real-life embedded systems.

The overall resource utilization of these three designs are shown in Table 2.
As shown in Table 1, decompression units occupy much more LUT and FF than
DSP and BRAM. When we duplicate decompression units to achieve better per-
formance, the demand for LUT and FF increases greatly. As a result, compared
with CNN in Table 2, we can observe a significant increase on the utilization of
LUT and FF in CNN − D(LZ) and CNN − D(HE).
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Table 2. Overall resource utilization

Implementation DSP BRAM LUT FF

CNN 10.00% 6.25% 8.66% 5.23%

CNN −D(LZ) 27.14% 17.48% 85.36% 32.78%

CNN −D(HE) 40.00% 30.10% 89.92% 18.39%

Table 3. Performance comparison

Number of layer CNN CNN −D(LZ) CNN −D(HE)

Time (s) GOPS Time (s) GOPS Time (s) GOPS

1 0.061 5.69 0.031 11.19 0.031 11.19

2 1.31 5.65 0.66 11.21 0.65 11.38

3 0.49 7.55 0.16 23.12 0.16 23.12

4 0.98 7.55 0.33 22.42 0.33 22.42

5 0.41 9.02 0.16 23.12 0.082 45.11

6, 7, 8 0.82 9.02 0.33 22.42 0.16 46.24

9 0.37 10.00 0.16 23.12 0.12 30.83

10, 11, 12 0.73 10.14 0.33 22.42 0.24 30.83

13, 14, 15, 16 0.18 10.07 0.082 22.55 0.061 30.21

Overall GOPS 8.66 20.49 27.69

Speedup 1.00× 2.37× 3.20×

The performance comparison is shown in Table 3. Since the configurations of
some convolutional layers in VGG-19 are the same, their results are shown in
a single row. We show the results of convolutional layers only, because convo-
lutional operations occupy most of the computation time of a CNN during the
inference phase, which has been discussed about in Sect. 2.1.

The overall performance of CNN is only 8.66 GOPS, which is pretty bad
if compared with previous designs. For example, design in [16] can achieve an
higher overall performance of 61.62 GOPS. However, it is worth noticing that
the bandwidth roof of data accessing in CNN is limited to 181.20 MB/s, which
is within the typical bandwidth range (100–200 MB/s) in real-life embedded
systems, while in design of [16], the bandwidth roof is 4.5 GB/s. So the obvious
difference of overall performance proves our claim that limited bandwidth in
embedded systems becomes a strict bound that prevents CNN accelerator from
achieving a higher performance.

Compared with CNN , we can see that CNN −D(LZ) achieves 2.37× spee-
dup in overall performance, and the speedup that CNN − D(HE) achieves is
3.20×. Since the change of runtime power of our FPGA board due to changes of
resource utilization is slight enough to be ignored, we can save almost the same
ratio of energy as that of speedups.
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6 Conclusions and Future Work

In this paper, we propose to use data compression to further improve the overall
performance of FPGA-based CNN accelerators. We present an effective roofline
model to solve the resource trade-off between decompression module and CNN
accelerator. This effective roofline model formulates a more general scenario and
includes the design space of former CNN accelerator works. In addition, we shrink
the design space for exploration, and provides a method to find the optimal
design configuration. Finally, we implement the system on a Xilinx VC707 FPGA
board, which achieved great improvement upon implementations using previous
methods.

We are working on extension of this work in several directions. First of
all, we use LZ77 and Huffman Encoding in our case studies. Lossy compres-
sion/decompression algorithms are not taken into consideration. We expect that,
in the near future, we can come up with an accurate model to describe the
key characteristics of different compression/decompression algorithms. What is
more, this model can be combined with our effective roofline model for a better
modeling and estimation. Secondly, Artificial Neural Network (ANN) is com-
posed of fully connected layers only, which indicates more parameters to be
transfered. Though the computation pattern of ANN is a little different from
that of CNN, our proposed effective roofline model can still work with a few
modifications. We plan to analyze several real-life ANNs applied in embedded
systems, and test how much improvement we can achieve with the help of effec-
tive roofline model.

References

1. Cadambi, S., Majumdar, A., Becchi, M., Chakradhar, S., Graf, H.P.: A program-
mable parallel accelerator for learning and classification. In: Proceedings of the
19th International Conference on Parallel Architectures and Compilation Tech-
niques, pp. 273–284. ACM (2010)

2. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., Andrew, N.: Deep learning
with COTS HPC systems. In: Proceedings of the 30th International Conference on
Machine Learning, pp. 1337–1345 (2013)

3. Cong, J., Xiao, B.: Minimizing computation in convolutional neural networks. In:
Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg,
S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 281–290.
Springer, Cham (2014). doi:10.1007/978-3-319-11179-7 36

4. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A.,
Tucker, P., Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In:
Advances in Neural Information Processing Systems, pp. 1223–1231 (2012)

5. Farabet, C., Poulet, C., Han, J.Y., LeCun, Y.: CNP: an FPGA-based processor
for convolutional networks. In: International Conference on Field Programmable
Logic and Applications, FPL 2009, pp. 32–37. IEEE (2009)

6. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human
action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

http://dx.doi.org/10.1007/978-3-319-11179-7_36


26 Y. Guan et al.

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

8. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical
evaluation of deep architectures on problems with many factors of variation. In:
Proceedings of the 24th International Conference on Machine Learning, pp. 473–
480. ACM (2007)

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

10. Peemen, M., Setio, A., Mesman, B., Corporaal, H., et al.: Memory-centric acceler-
ator design for convolutional neural networks. In: IEEE 31st International Confer-
ence on Computer Design (ICCD), pp. 13–19. IEEE (2013)

11. Sankaradas, M., Jakkula, V., Cadambi, S., Chakradhar, S., Durdanovic, I., Cosatto,
E., Graf, H.P.: A massively parallel coprocessor for convolutional neural networks.
In: 20th IEEE International Conference onApplication-specific Systems, Architec-
tures and Processors, ASAP 2009, pp. 53–60. IEEE (2009)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

13. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

14. Yadan, O., Adams, K., Taigman, Y., Ranzato, M.: Multi-GPU training of convnets.
arXiv preprint arXiv:1312.5853, p. 17 (2013)

15. Yu, K.: Large-scale deep learning at Baidu. In: Proceedings of the 22nd ACM Inter-
national Conference on Conference on Information and Knowledge Management,
pp. 2211–2212. ACM (2013)

16. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based
accelerator design for deep convolutional neural networks. In: Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 161–170. ACM (2015)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.5853


Molecular Docking Simulation Based
on CPU-GPU Heterogeneous Computing

Jinyan Xu, Jianhua Li(&), and Yining Cai

Department of Computer Science and Engineering,
East China University of Science and Technology, Shanghai, China

jhli@ecust.edu.cn

Abstract. Receptor-ligand molecular docking aims to predict possible drug
candidates for many diseases, and it requires a lot of computing cost. Shortening
this time- consumption process will help pharmaceutical scientist to speed up
drug development. In this paper, a parallel molecular docking simulation based
on CPU-GPU heterogeneous computing is proposed. This simulation is devel-
oped from our previous developed molecular docking code iFitDock (Induced fit
docking program) which introduced Non-dominated Sorting Genetic Algo-
rithm II (NSGA II) and Molecular Mechanical-Generalized Born Surface Area
(MM-GBSA) binding free energy. In this program, the most computationally
intensive part is the computing of scoring functions due to complex computing
process of free binding free energy. Thus, this paper focuses on offloading the
computing of scoring functions as well as related conformation spatial trans-
formation to GPU, and keeping the rest of the simulation on CPU. A detailed
CPU-GPU heterogeneous computing model is constructed to parallelize the
computing of scoring functions and related workload on the GPU and to define
the data exchange between GPU and CPU. The primary parallel iFitDock system
with only parallel semi-flexible docking implemented achieves a speedup of
around *20� with respect to a single CPU core. The result shows that it is very
productive to use CPU-GPU heterogeneous computing for semi-flexible mole-
cule docking cases in iFitDock.

Keywords: Molecular docking � Scoring function � CPU-GPU heterogeneous
computing

1 Introduction

Receptor-ligand molecular docking is a process of achieving low energy stable com-
plexes from two or more molecules through geometrical and energy matching in
modern structure-based drug design. Computer simulation of molecular docking is a
complex computing process to find out a set of low-energy molecule conformations.
Typically, these low-energy conformations are searched and assessed by means of
different reasonable and effective optimization methods, including Genetic Algorithm
(GA), Fast Fourier Transform (FFT) correlations, Monte Carlo (MC) techniques,
simulated annealing etc. [1–3].

The simulation of molecular docking always requires an intensive computing
consumption. Besides that, docking quality depends on the coverage of the search
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space, which can be improved by increasing the number of random samples. Therefore,
a fast and high-quality simulation is productive for molecular docking. Generally,
parallelization of the simulation is a regular and efficient way to achieve this goal and
some research work has been carried out. There are three categories of parallelization in
literatures. The first category is parallel simulation based on a massively parallel sys-
tem. For example, DOCK6.0 was used for high throughput computing validation on a
massively parallel system IBM BlueGene. The second one is parallelization on Graphic
Processing Units (GPUs) which is very popular and low-cost [4, 5]. Evaluation of the
induced-fit effect [4, 5], Dock6’s Amber Scoring [6], and genetic algorithm [7] were
three typical parallelization objects on GPU. The third one is constructed on a
reconfiguration hardware, e.g. field programmable gate array (FPGA) were chosen to
speed up rigid-molecule docking [8]. However, the above researches are limited to their
own applications, and the parallelization of molecular docking still needs to be further
investigated.

In this paper, we focus on accelerating a specific docking program, Induced Fit Dock
(iFitDock), which was developed by Bai et al. [9]. The serial version of iFitDock
introduces multi-objective optimization algorithm NSGA II and Molecular Mechanical-
Generalized Born Surface Area (MM-GBSA) binding free energy. As the number of
conformations and that of populations grow, the workload of the program increases
rapidly. Thus, there is a strong demand for a faster and more efficient iFitDock. In this
paper, a new molecular docking simulation based on CPU-GPU heterogeneous com-
puting is put forward. In this simulation, a CPU-GPU heterogeneous computing model
is constructed and a primary parallel simulation system is implemented in Compute
Unified Device Architecture (CUDA).

2 iFitDock - A Flexible Docking Program

2.1 Overview and Description of iFitDock

The docking program iFitDock has been developed to accurately predict the binding
conformations for ligands to proteins (receptors), and to characterize the water mole-
cules mediated binding interaction of drugs to their proteins. According to the different
flexibilities for both ligands and proteins, iFitDock provides three docking modes:
semi-flexible docking, flexible docking and key loop flexible docking. All modes have
a similar computing procedure. Here, considering that the mode of semi-flexible
docking is the simplest, the semi-flexible docking block is chosen as the parallelization
object.

As a molecular docking program, iFitDock definitely includes the implementation
of conformation search and conformation assessment, as shown in Fig. 1. Generally,
conformation search refers to conformation sampling of ligand molecule and receptor
molecule, and conformation assessment indicates evaluating and calculating of sear-
ched conformation. In the implementation of conformation search of this program, both
the ligand and the receptor conformation change because of “induced-fit” effect. In the
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implementation of semi-flexible docking, the conformation assessment contains two
objective functions, and they are:

(1) the sum of both the van der Waals energy and the electrostatic potential energy
between small molecule and receptor protein.

(2) the sum of both the van der Waals energy and electrostatic potential energy
among the atoms of the molecule.

Both the objective functions can be calculated by the formula (1).
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In this formula, E is the interaction energy between the ligand and the receptor; rij is
the distance between the atom i and the atom j; Aij and Bij are van der Waals exclusion
and attracting parameters; qi and qj are the partial charges on the atom i and the atom j;
D is the dielectric constant.

Considering that the conformation assessment is a multi-objective optimization
problem, a multi-objective optimization algorithm (NSGA II) has been chosen to solve
the docking simulation in iFitDock [10]. The main cycle process of the algorithm
NSGA II is outlined as:

(1) Merge the parent population and the progeny population;
(2) Sort the merged population by non-domination sorting method;
(3) The first i-th rank individuals are incorporated into the new parent population until

the parent population cannot be filled with the next rank individuals;
(4) Compute crowding-distance and sort by the crowding-comparison operator of

each individual with (i + 1)-th rank;
(5) Incorporate the first N individuals into the new parent population until the parent

population is full;
(6) Individuals in the parent population carry on crossover, mutation and selection to

produce a new progeny population.

After introducing NSGA II, conformation search becomes the process of popula-
tion initialization and transformation, while conformation assessment is still the com-
puting process of the objective functions.

Conformational Search

Conformational Assessment

Optimization Algorithm

Input Output

Fig. 1. Overview of the iFitDock program.
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iFitDock divides the sampling space discretely for achieving a comprehensive and
systematic drug-target binding mode, but the computation is intensive with fine
meshing. In iFitDock, the detailed flowchart of semi-flexible docking within one single
sampling space is illustrated in Fig. 2. Users can use Python to call the program to
compute all the binding free energy of the entire sampling space in batch, and to result
in a final conformation.

2.2 Time Expenditure of Serial iFitDock

Typically, offloading the most computationally intensive part of the serial program to
the GPU is a common parallel strategy. Hence, the times expenditures of the serial
iFitDock should be analyzed to find out which part is the most computationally
intensive.

In this paper, a Urokinase Protein and a molecule C18H15N3O (6-[(Z)-AMINO
(IMINO)METHYL]-N-PHENYL-2-NAPHTHAMIDE) are taken as inputs of iFit-
Dock. When the population size is 2000 and the iteration is 350 generations, the
semi-flexible docking of one single grid is tested and all the time expenditures of
software modules in the program are recorded. Considering that the algorithm is a
heuristic algorithm, the time consumptions have slight deviations among repeated
experiments, and all the recorded values are the average of 10 experiments.

Input the parameter files

Operation modes

Read in files;

Get ligand s active site

Calculate the length of 
chromosome

Include conservative water 
molecules

Read in the water 
molecules file

Initialization, prepare the 
water molecules file

Choose strategy

Crossover, Mutation

Evaluate Population

Ligand makes rotation and 
translation transformation;

Objective function 
1.interaction energy between 

ligand and protein;
2.internal energy of ligand;

Population merger

Non-dominated and crowd-
distance sorting

Update elite archive

Export

Population
iteration

YES

NO

mode=0 semi-
flexible docking

Execute NSGA II

Strategy=2 semi-
flexible docking

Start

End

Fig. 2. Semi-flexible docking flowchart in one single grid
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According to the functions of the program, there are six modules in this program,
and their time expenditures are shown in Table 1. As can be seen from the Table 1, the
total expenditure is about 2625 s. Among these six modules, the most
time-consumption module is the second objective function and its time expenditure is
about 2100 s, and the second most time-consumption module is the first objective
function. The sum of the time expenditures of two objective functions reaches up to
87% of the total time due to complex computing process of free binding free energy.
Moreover, the time expenditures of the rotation and translation, which belongs to the
conformation search, takes the fourth palace in time expenditures. This statistical result
in Table 1 shows that most computationally intensive parts of the program are the two
scoring functions.

3 CPU-GPU Heterogeneous Model of Semi-flexible Docking

Based on the above statistical result, a CPU-GPU heterogeneous computing model is
constructed to offload the computing of scoring functions as well as related confor-
mation spatial transformation to GPU, as shown in Fig. 3. This model ensures that the
data stream from random search method is the same in both CPU-only model and
CPU-GPU model. The model consists of three parts: the program in CPU, the program
in GPU, and the exchange data between CPU and GPU. The program in CPU not only
deals with input data and output data, but also handles the crossover, mutation,
merging, sorting and updating the elite file steps of the NSGA II. In addition, the
program in CPU also handles the judgment and accumulation in objective functions.
The exchange data between CPU and GPU are mainly the spatial coordinate values of
all atoms, energy lattice values, the van der Waals energy and electrostatic potential
energy between atoms. The program in GPU is divided into three parts:

(1) Computing three-dimensional transformation of small molecule and three-
dimensional transformation around rotatable bonds of molecule internal atoms;

(2) Computing interaction energy between the small molecule and the protein;
(3) Computing internal energy of the small molecule.

The program inGPU is in charge of distributing theworkload to threads, i.e. assigning
detailed data to different threads, in this CPU-GPU heterogeneous computation. After the
data being copied into GPU, the program in GPU computes the three-dimensional
transformation of entire molecule and three-dimensional transformation around rotatable

Table 1. Time expenditures of iFitDock

Software module Time Total time

I/O 4.3 s 2625 s
Mutation, crossover, sorting, etc. 35 s
Rotation and translation 140 s
The first objective function 175 s
The second objective function 2100 s
Other 170 s
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bonds of atoms. The kernel function of these two rotation transformations defines
16 � 16 threads in per block, each grid contains (3 � atom number � population
size) � (dimBlock.x � dimBlock.y) blocks. Thus, each thread can compute the atomic
coordinate values in each individual. After that, the coordinate values are backed up in
CPU side. The program in GPU keeps on computing the energy grid boundary, and the
program in CPU determines and resets the boundary, then the program in GPU computes
interpolation points.

While computing the first objective function, namely, the computation of interac-
tion energy between small molecule and protein, the program in GPU sets the threads
in per block to the number of molecule atoms, each grid size is equal to the population
size, so each thread can compute interaction energy between molecule and protein of
each individual. The result returns to CPU for computing the sum of energy values. At
the same time, the program in CPU removes non-computational atom pairs.

The second objective function in GPU is to compute the molecule’s internal energy,
it is the main time-consumption part in the original serial program. The kernel function
of GPU sets the threads in per block to the number of atom pairs, each grid size is equal
to the population size, so each thread can compute the energy of each individual’s atom
pair.

Finally, the program in CPU accumulates small molecule’s internal energy.

Crossover,Mutation

Evaluate population

Ligand makes rotation and 
translation transformation;

Objective function 
1.interaction energy between 

ligand and protein;
2.internal energy of ligand;

Population merger

Non-dominated and crowd-
distance sorting

Update elite archive

Population
iteration

Copy relative parameters Ligand s entire 
rotation and translation

Atoms rotation and 
translation

Update atomic coordinates

Reset grid boundary Compute grid boundary

Compute initial 
interpolation points

Compute the first 
objective function

Compute the sum of all 
atoms interaction energy

Atoms 
relative 

positions

Compute the second 
objective functionNo

Compute ligand internal 
energy

CPU GPU
GPU data 

stream

CPU data stream

Fig. 3. CPU-GPU heterogeneous computing model
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4 Experimental Results and Analysis

The parallel version of iFitDock is developed under the mixed language of C++ and
CUDA under Linux (Red Hat Enterprise release 5.8) operating system, and the test
experiment is executed in a CPU-GPU heterogeneous computer whose configurations
are shown in Table 2.

Taking Urokinase Protein’s semi-flexible docking as an example, when the pop-
ulation size is set to 2000, after running iterations of 350 generation, the conformations
of docking results in a single grid are shown in Fig. 4. The colorful part is the final
computed 20 conformation results. After running iteration of one generation with 2000
population size in the parallel program, we have figured out the time-consumption of
CPU, GPU and memory copy for seven times, and results are shown in Fig. 5.

The serial program (denoted as “CPU” in Fig. 5) takes about 7.3 s by average when
the population size is set to 2000 after running iterations of 350 generation, while
parallel program (denoted as “GPU” in Fig. 5) in CPU-GPU heterogeneous computing
only takes about 0.5 s by average. The parallel program is 14.6 times faster than the
serial program. Therefore, computational efficiency has been greatly improved. The

Table 2. Specification of CPU-GPU heterogeneous computer

CPU GPU

Hardware intel(R) Xeon(R) CPU E5- 2650 @ 2.00 GHz Tesla M2090
CPU MHz 2000.06 MHz
Computing power 2.0
CPU cores 8
CUDA version 5.0
Compiler version gcc 6.2.0 nvcc 5.0

Fig. 4. Conformations of docking results in a single grid
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size of the population is an essential factor that affects the computation time signifi-
cantly. The performance of our program is also tested in different inputted population
size. When the population size reaches 1000, 2000, 3000, 4000 and 5000, we compute
the time consumption within the iteration of one generation. The algorithm is per-
formed only on CPU or on CPU-GPU heterogeneous model) separately for six times.
The averages of results are shown in Fig. 6. Figure 7 shows the time-consumption of
GPU calculation and its memory copy in the corresponding population size. The results
show that the memory copy is growing slowly along with the population size growing,
while the rest of the computation time grows relatively fast.

The computation results can be clearly seen that population size affects the oper-
ation time greatly. Whether the program runs on the CPU platform or GPU platform,
the time-consumption will increase with population size increasing, but the acceleration
effect becomes much more significant after being paralleled. Figure 8 shows the
speedup ratio of CPU-GPU Heterogeneous Model. It indicates that when the popula-
tion size is 1000, the simulation is accelerated at 9� after being paralleled. When the
population size rises to 5000, the simulation is accelerated at 20� speed. Therefore, the
CPU-GPU model in this paper has high operating efficiency.

This experimental result reflects the acceleration trend of the parallel program
because the random search technique is used in NSGA II. The trend indicates that the
average running time and speedup ratio of CPU-GPU heterogeneous model are
productive.
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Fig. 5. Time consumption of 2000 population size
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5 Conclusions

This paper presents a CPU-GPU heterogeneous computing model of iFitDock. The
model offloads the computing of scoring functions as well as related conformation
spatial transformation on GPU. The results of experiment verify the effectiveness of the
proposed parallel method. It is a significant attempt to speed up the performance of
semi-flexible modular docking.

However, there are still two future work to enhance our system. One is the par-
allelization of the flexible mode and the loop model of iFitDock, the other is extending
the system to run on a cluster.
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Abstract. The convolutional neural networks are widely used in deep
learning model because of its advantages in image classification, speech
recognition and natural language processing. However, training large-
scale networks is very time and resource consuming, because it is both
compute-intensive and memory-intensive. In this paper, we proposed to
use the fixed point arithmetic to train CNN with popular deep learn-
ing framework Caffe. We propose our framework FixCaffe (Fixed Point
Caffe), where fixed point matrix multiply function is substitute for part
of the original floating point matrix multiply function in Caffe. We ana-
lyze the range of the operands during the training process, and choose the
proper scaling factor for transform floating point operands to fixed point
operands. Training LeNet-S model, obtained by modifying LeNet-5, on
the MNIST benchmark, the result shows that after training 1000 itera-
tions, FixCaffe with 8-bit fixed point multiplications only leads to about
0.5% loss in the classification accuracy compared to the single-precision
floating point Caffe baseline. Using Xilinx V7 690T to implement the
multiplier, the cost of computing resource can save up to 83.3%, and
the on-chip storage overhead for the LeNet-S model’s parameters can
save 75%.

Keywords: CNN · Limited precision · CNN training · Accuracy · Caffe

1 Introduction

Deep learning have demonstrated state-of-the-art performance in many machine
learning tasks such as image classification, speech recognition and natural lan-
guage processing. One of the most impressive forms of deep learning architec-
ture is Convolutional Neural Network (CNN). CNNs are primarily used to solve
challenging image classification tasks, avoiding the complex pre-processing of
images.

Since AlexNet won the 2012 ImageNet large-scale image recognition compe-
tition (ILSVRC2012) with 83.6% top-5 accuracy [11], CNNs have become well
known. In 2014, VGGNet [16] achieves 92.7% top-5 accuracy on ImageNet and
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in the same year GoogLeNet [17] achieves 93.3%. By 2015, Microsoft’s resid-
ual learning framework, ResNet [9], achieves 96.43% top-5 accuracy, exceeding
human accuracy which is only 94.9%. These networks are very deep especially
the last one which is more than 100 layers.

To a large extent, the success of deep learning architecture is contingent upon
the underlying hardware platform ability to perform fast, supervised training of
complex networks using large amount of labeled data. Virtually all training today
is in floating point [10], which needs massive computation power and storage
requirements, and Graphics Processing Unit (GPU) provides enough comput-
ing to develop them. Therefore, training is often executed in the data-centers
with GPUs deployed. Recently, Google design a new hardware called a Tensor
Processing Unit (TPU) which can use only 8-bit for inference [10], and the latest
TPU2 can perform both training and inference in low-precision data represen-
tation and fixed point arithmetic.

There are two main motivations to adopt low numerical precision by using
fixed point representation at training. Firstly, fixed point computation units are
typically faster and use far less hardware resources and power than floating point
computation units. The smaller logic footprint of the fixed point arithmetic cir-
cuits would allow for the instantiation of many more such units for a given area
and power budget. Secondly, low-precision data representation reduces the mem-
ory footprint, enabling larger models to fit within the given memory capacity
and lowering the bandwidth requirements [6].

In order to reduce computation and storage resources consumption in the
hardware implementation, this paper implemented a framework FixCaffe to train
CNN using low-precision fixed point arithmetic based on the deep learning frame-
work Caffe. The main contributions are,

• By analyzing the effect of converting single-precision floating point opera-
tions of different CNN layers into low-precision fixed point computations, we
determine which operation can be converted and which one cannot.

• We propose a method of converting floating point numbers into fixed point
integers for data in CNN training. The method includes analyzing data dis-
tribution, choosing scaling-up method and deciding the rounding scheme.

• By modifying the deep learning framework Caffe, we implement a framework
called FixCaffe to support low-precision fixed point matrix multiplication.

With the experiment of LeNet-S, it shows that after training 1000 iterations,
FixCaffe with 8-bit precision multiplications only lead to about 0.5% loss in the
classification accuracy compared to the single precision floating point baseline.
Using implementation on Xilinx V7 690T FPGA, the cost of computing resource
can save up to 83.3%, and the on-chip storage overhead for the LeNet-S model’s
parameters can save 75%.
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2 Background

2.1 LeNet-5

LeNet-5 [12] is a classical CNN model for image recognition. Our model, LeNet-S,
is obtained by modifying LeNet-5. As can be seen from Fig. 1, LeNet-S comprises
of 9 layers. Specific parameters of each layer except data layer are shown in
Table 1.

The convolutional (CONV) layer is to detect the local connection character-
istics of the previous layer. The units of a CONV layer is organized by feature
maps. Each feature map has many neurons, each connected to a local region of
the input feature map through a set of weights. All neurons of the same fea-
ture map share the same set of weights, also called the convolutional kernel.
Different feature maps use different filter banks. In conclusion, each feature map
extracts a feature of the input via a convolutional kernel. The pooling layer fuses
semantic-similar features into a single one. A typical pooling layer, max pooling
layer, computes the local maximum for each feature map/several feature maps.
The fully connected (FC) layer plays an important role in classification in CNN,
mapping the learned features to the sample label space. Non-linear layer is to
perform non-linear transformation for input data and produce output as same
size as input.

Fig. 1. LeNet-S model structure

Table 1. Parameters of LeNet-S model

Layer type Weight Bias

Data layer

Conv1 20 * 1 * 5 * 5 20

Pooling1

Conv2 50 * 20 * 5 * 5 50

Pooling2

Ip1 800 * 500 500

ReLU

Ip2 500 * 10 10

Soft max

2.2 CNN Training and Caffe Implementation

The training of CNN includes two process: forward and backward propagation.

Forward. In the forward propagation phase, the data source is from the data
read layer and passes through several processing layers to the last layer (possibly
the loss layer or the feature extraction layer). Weights in the network do not
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change during the forward propagation phase and can be considered as constants.
The calculation can be expressed as a formula:

ai
(l) =

∑

j

w
(l)
i,j · g

(
a
(l−1)
j

)
. (1)

where a
(l)
i denotes the i-th activation in the l-th layer, wi,j

(l) represents the
(i, j)-th weight value in the l-th layer. And g(·) is the activation function.

Backward. Backward propagation computes the gradient of each parameter in
the network from top to bottom by loss function. All the weight layers update
parameters with these gradient together after one backward propagation. The
loss function is the starting point of the backward propagation and is obtained in
the forward propagation calculation. And the purpose of backward is to minimize
the loss function.

Backward is a process of matrix operations as well as forward.

Main Computation in CNN Training in Caffe. In this paper, we aim to
modify the popular deep learning framework, Caffe, to train CNN with fixed
point arithmetics. Thus we will introduce some details of Caffe and find the
main computations in CNN training in Caffe.

There are three important data structure used in Caffe, Net, Layer and Blob.
Net includes both Layer objects and Blob objects. Blob is used to Layer data,
such as weights, biases, inputs, outputs and gradients. Layer performs some com-
putations on the specific input Blob based on the Net description, and produces
output Blob [18].

Caffe requires Basic Linear Algebra Subprograms (BLAS) as the backend of
its matrix and vector computations, which are the main mathematical calcula-
tions in CNN training. There are several implementations of this library, such as
ATLAS, Inter MKL, OpenBLAS and so on. In this paper, we use OpenBLAS.
Two functions, gemm() and gemv(), are commonly used. The former is basic
matrix-matrix multiplication (MM) routine, and the latter is basic matrix-vector
product operation.

Two specific layer types, CONV layer and FC layer, are worth considering.
The former contributes to the majority (e.g., 86.5–97.8%) of the total computing
time and the latter contributes to more than 87.1% of the total memory storage
cost of the model [15]. As a result, these two layer types have significant influ-
ence on the cost of computing and storage resources. MM operations are the
main computing type in these two layer types. For convolutional layers, Caffe
use im2col method to convert input and kernel into two matrices and substi-
tute MM operation for convolution process in the forward propagation, while in
backward computation of gradients is achieved by computing the partial deriva-
tives of input, weights and biases, which, except biases, are MM operations. For
fully connected layers, as Caffe adopts batch processing, input vectors composes
the input matrix and it multiply with the weight matrix to produce output in
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forward, and in backward the calculations are similar to those in the convolu-
tional layer. Therefore, we conclude that in Caffe, MM operation is the main
computation in CNN training.

3 Overview of FixCaffe

Figure 2 gives the main idea of FixCaffe. Since MM operation is the main compu-
tation in Caffe’s training CNN, converting MM operation from single-precision
floating point arithmetic to limited-precision fixed point is the key point of imple-
menting FixCaffe. We propose a method to transform operands of MM opera-
tion from single-precision floating point to limited-precision fixed point. First,
we amplify data with scaling factors to get integer part of the amplified data,
and then apply the rounding scheme to limit the value of the fixed point inte-
ger within the range of a low numerical precision. Scaling factors are numbers.
Their value are of significance to the training performance. To select proper scal-
ing factors, we use Caffe to train CNN on the given dataset for a few iterations
with single-precision floating point arithmetic, profiling weights and intermediate
data (such as inputs, outputs and gradients). By analyzing data distribution, we
choose candidate scaling factors. Next, we compute error between MM operation
outputs of original Caffe (OpenBLAS-based) and FixCaffe and determine scaling
factors based on error distribution. The limited-precision fixed point data will
be the input of fixed point MM operation. Using limited-precision fixed point
MM operation to replace original single-precision floating point MM operation
in weight layers’ forward and backward propagation in Caffe, we get FixCaffe.
At last, we use FixCaffe to train CNN on the given dataset to get an available
model for feeding to hardware inference engine.

Fig. 2. Overview of FixCaffe

MM operation is exactly a multiply-and-accumulate process, just as Eq. 1
shows. Assuming that in Eq. 1 w and g (a) (operands of MM operation) are
a-bit fixed point values, the computing process can be divided into the following
two steps.
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Step 1: Compute w · g (a). As both w and g (a) are a-bit fixed point values,
the product is a 2a-bit value.

Step 2: Compute
∑

w ·g (a). The size of the accumulator is larger than 2a-bit
to prevent overflow.

In this paper we use low precision multiplication but high precision accumu-
lation to prevent overflow.

The outcome of equation a
(l)
i in next layer is equivalent to a

(l−1)
j in this layer.

To keep with the desired fixed point precision, we add a quantization step. We
divide the outcome by w’s scaling factor and this is conducted on CPU rather
than hardware.

3.1 Float2fix

Rounding Scheme. To convert data from floating point into limited-precision
fixed point, we first scale up the number by a scaling factor which can be denoted
as s and take the integer part of the amplified floating point number. The equa-
tion is:

y = |x× s| . (2)

Then use rounding scheme to limit the integer part of the number in the
range of given precision, which can be described as follows:

Round (y) =

⎧
⎨

⎩

−2FL, y < −2FL,
y, −2FL � y � 2FL − 1,

2FL − 1, y > 2FL − 1.
(3)

Scaling Factor. Scaling factor is crucial to the computing error between result
of limited-precision fixed point multiplication and traditional single-precision
floating point. The influence comes from two aspects with relation to Eqs. 2
and 3. In Eq. 2, it will lead to the loss of data distribution information if the
scaling factor is too small because the integer part of the amplified number is
0. In Eq. 3, it will lead to the loss of data distribution information if the scaling
factor is too big because the integer is out of range and will be rounded.

We give the norm and procedure to choose proper scaling factors for training.

Norm.

Error =

∑M×N
i=0 |C[i]−D[i]|

M×N
∑M×N

i=0 |C[i]|
M×N

=
∑M×N

i=0 |C[i] −D[i]|
∑M×N

i=0 |C[i]|
(4)

In 4, C represents the result of MM operation in single-precision floating point
format, D is the result of MM operation in limited-precision fixed point format,
and M ×N is the size of C and D.

Scaling factors leading to small Error are more likely to make training con-
verge than those leading to big Error.
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Procedure. The procedure can be divided into three steps.

(1) Train the model in floating point using the target data set and collect sta-
tistics of operands of MM operations, such as weights and inputs for each
weight layer in the early several iterations.

(2) Analyze the data distribution and select candidate scaling factors for each
kind of operands of MM operations.

(3) Compute error and determine the best scaling factors for different data pre-
cision from the candidates.

4 Implementation and Experimental Result

4.1 Platform

We use MNIST dataset as the benchmark. This dataset comprises of 60,000
training images and 10,000 test images. Each image is 28× 28 pixels containing
a digit from 0 to 9. The FixCaffe framework is running on Ubuntu 16.04 system
in VMware 12.0 Workstation. The processor is Intel Core i5-6600.

4.2 Implementation

We use Eigen as the alternative library of OpenBLAS to support fixed point
operations in Caffe because OpenBLAS only supports floating point operations.
Eigen doesn’t have any dependencies other than the C++ standard library [1],
and provides fixed point matrix operations which are equivalent to gemm/gemv
in OpenBLAS [2]. Note that matrix reading from memory is RowMajor in BLAS
but ColMajor in Eigen by default. We use our function, eigen gemm to replace
the call of gemm in CONV and FC layers’ forward and backward propagation
as shown in Table 2.

Table 2. Functions calling gemm

Functions Phase

forward cpu gemm Forward

forward cpu bias Forward

backward cpu gemm Backward

weight cpu gemm Backward

4.3 Choosing Scaling Factors for Training LeNet-S with MNIST

Analyzing Data Distribution and Choosing Candidates. Table 3 gives
the operands of MM operations during the forward and backward propagation
of the four weight layers of LeNet-S model.
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Table 3. Operands of MM operations

Operand1 Operand2

1 bottom data weight

2 bias bias multiplier

3 top diff bottom data

4 top diff weight

Table 4. Candidate scaling factors

s1 s2

bottom data 10 100

weight 100 1000

top diff 1000 10000

bias 100

Table 3 shows that there are total five kinds of operands, of which all elements
of matrix bias multiplier are number 1 in LeNet-S model. Therefore, we only
analyze data distribution of the other four operand types. Data samples are
fetched from MM operations of weight layers during training LeNet-S on MNIST
for a few iterations using floating point arithmetic. Figure 3 gives the results.

Fig. 3. Data distribution

From Fig. 3 we can see that most of the input data is between −0.1 and
0.1, so are the weights. Data of top diff is very small and the majority is below
0.001. Based on the results above, we choose two candidate scaling factors for
bottom data, weight and top diff, as shown in Table 4. Because the amount of
biases is very small, accounting for a little of the total computations and memory
cost, we choose 100 as the final scaling factor based on Fig. 3.

Calculating Error. Figure 4 gives error distribution of MM operations in
Table 3 (except for bias and bias multiplier ) when using different candidate scal-
ing factors for converting the floating point operands into limited-precision fixed
point format. Data samples come from early 20 iterations of training LeNet-S
model with MNIST using floating point arithmetic.
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Fig. 4. Error distribution

In Fig. 4, the x axis is scaling factors for MM operation’s two operands and
the y axis is Error. From Fig. 4 we can see that data points in 10-bit and 12-
bit precision are the same, which means 10-bit is sufficient for representing the
amplified integer. Therefore, we do not conduct experiments in 12-bit.

Take 8-bit as an example, from Fig. 4(a) and (b) we find that Error is small-
est when scaling factors for bottom data and weight are 10 and 100 respectively.
Figure 4(c) to (f) show that error is smaller if top diff is 10000 rather than 1000
when scaling factors of bottom data and weight are 10 and 100. Similarly, we
determine scaling factors under 10-bit. Table 5 shows our decision.
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Table 5. Scaling factors for MM operation operands under different data precision

Precision s for bottom data s for weight s for top diff s for bias

8 10 100 10000 100

10 100 1000 10000 100

4.4 Comparison of Classification Accuracy

We use the conventional 32-bit floating point representation as our baseline,
where matrix operation functions called by layer forward and backward propa-
gation are also implemented by Eigen.

While training using fixed point, the different model hyper-parameters such
as weight initialization, regularization parameters, learning rates etc. are kept
unchanged from the ones used during the baseline evaluation.

For each configuration of training, we train 6 times, 3 with max iterations
of 1000 and the others with max iterations of 5000 to observe the performance
(the accuracy on the test net).

Figure 5 shows the comparison of classification accuracy between baseline
and experimental group as shown in Table 5 using FixCaffe.

Fig. 5. Accuracy comparison

From Fig. 5 we can see that with 10-bit data precision limit, training with
fixed point MM operation leads to nearly no loss in accuracy after 1000 iterations.
And 8-bit causes only about 0.3% decline in accuracy after 1000 iterations.

4.5 Discussion

Cost of Computing Resource. The cost of a fixed point multiplier varies
as the square of the precision (of its operands) for small widths while the cost
of adders and accumulators varies as a linear function of the precision [5]. As a
result, the cost of a fixed point multiplier-accumulator mainly depends on the
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precision of the multiplier. In modern FPGAs, multipliers can be implemented
with dedicated DSP blocks/slices. One Xilinx V7 690T has 3600 DSP blocks.
We use nx to denote the number of x-bit wide multipliers one Xilinx V7 690T
can implement, and N to denote the number of total multipliers the digital
implementation of LeNet-S model needs. One DSP block/slice can implement
one 27 × 27 multiplier, two 18 × 18 multipliers or three 9 × 9 multipliers. The
ratio of computing cost is:

costa
costb

=
N
na

N
nb

=
nb

na
, (5)

where a means a-bit and b means b-bit. A 32 × 32 multiplier needs two DSP
block. So n32 is 1800, n10 is 7200 and n8 is 10800. Therefore, implementing 8-bit
wide multiplier compared to 32-bit wide multiplier can save 1− n32

n8
= 1− 1800

10800 =
83.3% computing resources.

Cost of Memory Footprint. Take LeNet-S as an example. From Table 1
we know the total number of weights in LeNet-S is 430500, and that of bias
is 580, and the sum is 431080. Biases account for only about 0.001%. With a
single-precision floating point representation, these weights require 431080 * 4 =
1724320 bytes of storage space. The 10-bit fixed point (the most significant is
sign bit) can represent (−2048, 2047). Only 31.25% of the original storage space.
The 8-bit fixed point (the most significant is sign bit) can represent (−128, 127),
requiring only 25% of the original storage space.

5 Related Work

Determining the precision of the data representation and the compute units is
a critical design choice in the hardware (analog or digital) implementation of
artificial neural networks. In general, there are two approaches to designing a
fixed point DCN [13]: (1) convert a pre-trained floating point DCN model into a
fixed point model without training, and (2) train a DCN model with fixed point
constraint.

There are several works related to the first approach. One of them is to fine-
tune pre-trained floating point DCNs using data representations with reduced
numeric precision. However, the training algorithms have a strong tendency to
diverge when the precision of network parameters and features are too low [3,8].

More recently, several works have touched upon the second approach, train-
ing deep networks with low numerical precision [6,7,14]. In all of these works,
stochastic rounding has been the key to improving the convergence properties
of the training algorithm. Stochastic rounding is an unbiased rounding scheme
and possesses the desirable property that the expected rounding error is zero
[6]. And another work is also worth mentioning. In [4], they propose that using
dynamic fixed point is even better than fixed point. The dynamic fixed point
format is a variant of the fixed point format in which there are several scaling
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factors instead of a single one. It can be seen as a compromise between the float-
ing point format and the fixed point format. With dynamic fixed point, a few
grouped variables share a scaling factor which is updated from time to time to
reflect the statistics of values in the group [4].

Our work is training CNN with limited-precision data representation and
fixed point multiply operation.

6 Conclusion

This paper explore the effect of using limited precision data representation and
computation on training of convolutional neural networks. We substitute the
Matrix Multiply Library of Caffe from OpenBLAS to Eigen, and use LeNet-S
model as an training example. We find that it is acceptable to use low-precision
fixed point data representation and multiplication for training LeNet-S with
MNIST datset. The experimental result shows that after training 1000 iterations,
FixCaffe using 8-bit fixed point multiplications only leads to about 0.5% loss
in the classification accuracy compared to the single-precision floating point
Caffe baseline. Using Xilinx V7 690T to implement the multiplier, the cost of
computing resource can save up to 83.3%, and the on-chip storage overhead for
the LeNet-S model’s parameters can save 75%. The future work is to explore
whether low precision computation works for networks deeper than LeNet-S.

Acknowlegement. Funding provided by China NSFC 61402501, 61602498. Thanks
to the anonymous reviewers.
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Abstract. To capture and analyze applications’ memory behaviors with low
overhead plays a vital role in managing and scheduling memory resources on
modern computer systems. In this paper, we re-design SysMon based on
[13, 14], which is an OS-level memory behaviors monitoring module in existing
OS, and modify its several core components to meet the challenges of higher
efficiency and accuracy. SysMon can be used without offline profiling, instru-
mentation or configuring complex parameters. We evaluate SysMon by making
a great deal of experiments on SPECCPU 2006 [7], Memcached [1] and Redis
[6]. The experimental results show that, by using SysMon, we can efficiently
capture the memory footprint, write/read operations, hot/cold features, re-use
time, bank hotness/bank balance, etc. Besides, we collect the memory access
behaviors in the configuration of different sampling intervals, and draw a con-
clusion that using a 3 s interval can obtain information accurately with low
overhead. Finally, to reduce the scanning overhead during samplings, SysMon
adopts a randomization method, and scans only a portion of pages. Experiments
show that the sampling overhead can be reduced by 44.42% on average while
guaranteeing the accuracy of sampling.

Keywords: Memory behaviors � System monitor tool � Random sampling �
Sampling interval

1 Introduction

Allocating, managing and scheduling of memory resources have always been a major
and very challenging subject on modern computer systems. With the emerging of big
data and cloud computing, fast-growing memory footprint and energy consumption,
high demand for Quality of Service (QoS) and throughput, etc. have brought new
challenges to memory management [20–23, 25]. Especially, it may result in the severer
memory access conflict with high probability when multiple applications are running in
parallel. Many previous studies [8, 9, 13, 16, 19, 26, 27] show that it is important for
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operating systems to efficiently manage data with low overhead. In order to achieve this
goal, there are many factors need to be considered to manage memory system effi-
ciently, such as the different characteristics of data (e.g., write/read operations, hot/cold
features), memory access hotness, re-use time, etc. Thus, an effective memory man-
agement policy is expected to accurately detect the applications’ memory behaviors
and schedule memory resources accordingly.

The existing program analysis tools like Intel’s dynamic binary instrumentation
framework Pin [5] can be used to create Pintools to perform program analysis on user
space applications on Linux, Windows and OS X*. However, instrumentation con-
sumes system resources, and thus increases the profiling overhead when analyzing the
applications’ behaviors. Another tool, Oprofile [2], is a performance counter monitor
tool that monitors the running applications based on Performance Monitoring Unit
(PMU). However, Oprofile and other performance counter monitor tools like PAPI [3]
and perfmon2 [4] require underlying hardware support (i.e., PMU). And many of them
cannot fully support the newer architectures because of the diversification of the
hardware architecture.

Compared with above approaches, SysMon [13, 14] is an efficient and lightweight
application access behaviors monitor tool, which is a module that integrated into the
kernel. It can be used on any version of Linux kernel without instrumentation, con-
figuring complex parameters, or extra underlying hardware support. SysMon has good
compatibility, stability, and scalability. However, in practice, some studies further
show that the overhead brought by SysMon is heavy for some applications with much
higher memory footprint and the sampling interval is hard to be determined to balance
the overhead and accuracy in many real cases. To address these concerns, we re-design
SysMon and make the following contributions in this paper:

• We optimize SysMon’s sample method by adopting random sampling rather than
traversing the page table to sample each page. The experimental results show that the
sampling overhead can reduce 44.42% on average while ensuring the sample effect.

• We collect the memory access information under the configuration of different
sampling intervals. By analyzing the information, we draw a conclusion that using a
3 s interval can obtain information accurately with low overhead.

• By using SysMon, we study a large number of workloads, and analyze their char-
acteristics, including SPECCPU2006 [7], Memcached [1] and Redis [6].

We open sourced SysMon. The full code of SysMon is available at: https://github.
com/Sys-Inventor-Research-Group-ICT/Sysmon.

2 Background

2.1 __access_bit and __dirty_bit

Starting from Linux v2.6.11, 64-bit Operating System (OS) adopts the organizational
form of the four-layer page table, which is represented in Fig. 1. Each item in PageGlobal
Directory (PGD) points to a Page Upper Directory (PUD), and each entry in PUD points
to a Page Middle Directory (PMD), and then, each item in PMD points to a PTE.
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The __access_bit in page table entry (PTE) can be used to indicate whether the
page is accessed [11, 18]. 0 represents the page has not been accessed; while 1 means
accessed (we define these pages as hot pages in this paper). And for the __dirty_bit, it
can represent whether the page is modified. Similar to the __access_bit, when the
__dirty_bit is equal to 0, it means there is no write operation happened to that page.

2.2 Address Mapping

Prior research [28] shows that mainstream computer systems’ address mapping can be
detected by the software method. For example, as shown in Fig. 2, bank bits are
divided into two parts. Part I is independent, and part II is overlapped with cache bits.
Figure 2(a) presents Intel i7-860 processor that equips with a 16-way set associative
8 MB last level cache (LLC) and 8 GB DDR3 main memory system, and it’s bank bits
are 13–15, 21 and 22 bits; In Fig. 2(b), Intel Xeon 5600 processor, with 16-way set
associative 12 MB LLC and 32 GB DDR3 main memory, whose bank bits are 13, 14,
20 and 21 bits. For the configuration (a), 5 bank bits can index 25 ¼ 32 banks ranging
from bank 0 to bank 31.

Fig. 1. Four-layer page table under 64-bit operating system.

Fig. 2. Address mapping.
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3 Design and Implementation

3.1 Overview

SysMon captures application behaviors dynamically such as memory footprint, page
access frequency, re-use time of pages, memory utilization, etc. The information is
collected online without offline profiling and does not need hardware performance
counters.

The design of SysMon is based on the three following principles:

Principle 1: Compatibility. SysMon is integrated in the Linux kernel as a kernel
module to monitor page-level application activities. It is reliable, portable and suitable
for any version of Linux kernel.

Principle 2: Low overhead. SysMon is a lightweight online tool that monitors
applications in the real time. The overhead is mainly caused by scanning application’s
page table. Through the random scanning optimization method, which is introduced in
detail at Chapter 5, SysMon greatly reduces the scanning overhead by 44.42% on
average.

Principle 3: Efficiency. It is important for a monitoring tool that does not slow the
responses to the applications’ access requests. Our experiments show that 100 ls is
enough to collect sufficient information while incurring a negligible delay.

Except for monitoring the single application, SysMon can also monitor multiple
applications that are executed in parallel. By analyzing the information captured by
SysMon, we can make an accurate prediction of a running workload’s memory char-
acteristics, and use an appropriate memory management policy.

As shown in Fig. 3, we take a page classification algorithm as an example to
introduce the modules of SysMon. The information in the dashed box is collected by
SysMon, and acc_num records the page’s total number of accesses in a given period,
read/write times are being used to indicate the number of read/write operations on the
pages during samplings. Re-use time is a variable to represent the page’s temporal
locality. Based on the information in the dashed box in Fig. 3, we classify the pages into
three categories: write page, read page and cold page. In our experiments, THR1 is 20

Fig. 3. SysMon-based online page classification algorithm.
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and THR2 is 10. The detailed information about pages’ characteristics can guide the data
placement and data movement among the DRAM Banks to improve the overall
performance.

In the next section, we will introduce the modules of SysMon one by one.

3.2 Module 1: Collecting Page Access Frequency

In the current version, the time interval between two sampling periods is 3 s in our
system. To reduce the error efficiently, 200 samplings are executed in one sampling
period (i.e., 3 s), but note that the time cost of 200 samplings is far less than 3 s (100 ns
in most cases). Each sampling contains two loops. Firstly, SysMon clears pages’
__access_bit by the pte_mkold() kernel function; and secondly, SysMon checks the
pages’ __access_bit in the second loop. If the __access_bit is still 0, it means the page
has not been accessed in this sampling; otherwise, this page has been accessed during
this sampling.

To locate the PTE and check the __access_bit of each page during the samplings,
SysMon needs to lookup virtual address layer by layer (see Fig. 1). In consideration of
the fact that all pages targeted by a request are virtually contiguous, most of their PTEs
are adjacent. It means that SysMon only needs to obtain the first page’s PTE from the
page table root; for each of the remaining pages, we can get their PTEs by adding a
fixed offset without starting from PGD [12]. Traversing like this can reduce the sam-
pling overhead.

For the running applications, Algorithm_1 shows the pseudo-code for obtaining
the page access frequency. In the first loop, SysMon clears all pages’ __access_bit
(Line 2); and then, check the __access_bit using function pte_young() (Line 6).

SysMon: Monitoring Memory Behaviors via OS Approach 55



After 200 samplings, SysMon will calculate the total number of accesses of each
page, and grade pages according to the page “heat” (i.e., the number of accesses).
Classification standard in our experiments is shown in Table 1. It can be adjusted
according to the characteristics of workloads. In addition, SysMon can calculate the
memory footprint of the running workload.

3.3 Module 2: Write/Read Operations Statistics

SysMon dynamically monitors the write/read operations of hot pages during samplings.
In the page classification process (see Fig. 3), we give write operations a heavier
weight as write operations are more expensive than read operations in memory system
(i.e., empirical value is 2 since write operations need to read data, modify and write
back to the memory, causing a longer latency than read operations [29]). And this value
can be adjusted according to the specific environments and configurations.

Algorithm_1 shows how to calculate the write/read times of each page. SysMon
clear the __access_bit and __dirty_bit in the first loop (Line 2); and in the second loop,
if pte_dirty() returns 1, it means write operation occurs. Otherwise, a read operation is
detected (Lines 8–12). Moreover, SysMon can also record that, compared with the last
sampling, the number of write pages converting into read pages and the number of read
pages converting into write pages. It is meaningful for the data placement that dis-
tinguishes the page is a write domain page or a read domain page.

3.4 Module 3: Re-use Time Statistics

In order to calculate re-use time of a page, SysMonmonitors whether this page is accessed
in each sampling, and uses an array to record the interval between the two accesses, this is
so-called “re-use time” of that page. Figure 4 denotes the re-use time of the selected page,
where iterationsmeans the samplings, and access times records the picked page’s access
times. Algorithm_2 describes how to calculate the re-use time of a page. SysMon checks
the __access_bit, if the page is accessed, the number of accesses times adds 1; if not, the
re-use “distance” between last access and next access increases 1 (Lines 6–10).

Table 1. Classification standard for page “heat”.

The number of accesses Page “Heat” The number of accesses Page “Heat”

Larger than 200 Very High 64–100 Low
150–200 High 10–64 Lower
100–150 Medium Less than 10 Very low

Fig. 4. Re-use time of one page.
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The pages to be monitored are chosen randomly before samplings. By doing so,
SysMon guarantees that there is less deviation when collecting re-use time information
during samplings. Page-level re-use time information is an important factor that reflects
the application access behaviors, which represents the temporal locality of the pages.
By analyzing the re-use time, we can quantify how quickly the particular pages will be
accessed again. Taking re-use time into account can accurately reflect the page access
trend and the applications’ overall memory access trend during the period of time.
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3.5 Module 4: Bank Hotness Statistics

The main memory system is composed of several DRAM banks that are shared by
multiple running processes. When several requests from different process falling on the
same DRAM bank, the access conflict occurs, and these requests have to be handled in
a sequential order. This causes row buffer thrashing and a longer access delay, and
declines the overall performance of the system. Therefore, it is the foundation of further
optimizing memory scheduling algorithms to clearly understand the bank hotness/
balance information among several DRAM banks.

As illustrated in Algorithm_3, SysMon calculates the number of hot pages in each
bank. PAGE_TO_BANK is a macro definition that can extract the bank bits and obtain
the bank id (Line 3). Note that Algorithm_3 is implemented with channel interleaving
under the configuration of Fig. 2(a). When the entire bandwidth demand is larger than
2 GB/s, channel partition is more effective and can avoid significant performance
degradation [15]. In the case above, since there are 64 banks in the memory system (32
banks/per channel), PAGE_TO_BANK should simultaneously extract channel bit and
bank bits to calculate the bank id.

4 Optimization

For the applications that need large memory footprint, to reduce the scanning over-head
during samplings, SysMon randomly scans a portion of pages instead of traversing all
the Virtual Memory Areas (VMAs). As illustrated in Fig. 5, SysMon scans 5% pages in
our experiments. Before sampling, SysMon generates a random number as the sam-
pling’s starting point within a VMA by using function get_random_bytes(). The
sampling interval of pages can be calculated by scanning ratio (i.e., 1/0.05 = 20 in our
experiments). The scanning ratio can be adjusted as required.

To reduce the error efficiently, SysMon uses different random numbers before each
sampling. After 200 samplings, all the pages can be covered. We adopt equal interval
sampling (i.e., sample page 0, 20, 40, 60…) instead of completely random design (i.e.,
generate random numbers constantly as the page number during samplings). It is because
if we use the second method, we have to record all the random numbers, so the space
overhead will increase linearly as the memory footprint increases; it is contrary to the
intention of “randomization to reduce the sampling overhead”, and not worth the candle.

Fig. 5. SysMon samples a portion of pages to analyze the applications’ behaviors. Note that the
sampling fraction here is only for illustration purpose. In our experiments, we sample 5% of
pages during each sampling.
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Our experiments show that sample 5% pages can accurately reflect the applications’
memory access trend, the ratio of hot pages, etc. Figure 6 gives several examples of
benchmarks. Experiments show that randomization can reduce the scanning overhead
by 33.12% at least (tonto), 47.89% at most (Memcached), and 44.42% on average.

5 Evaluation

5.1 How to Run SysMon

We study SysMon on the configuration of Fig. 2(a). To run SysMon, we firstly need to
write a Makefile file. Each source file (i.e., *.c) corresponds to a line “obj-m += *.o” in
the Makefile. After using make command to compile the source files, we then use
insmod *.ko command to insert the module into the kernel. Finally, use dmesg to output
the results.

5.2 Benchmarks

We evaluate SysMon with diverse workloads, including SPECCPU2006, widely used
Memcached with data from Twitter and Redis. SPECCPU2006 benchmark is an
industry-standardized, CPU-intensive benchmark suite. The widely used Memcached is
a distributed memory object caching system. It is an in-memory key-value store for
small chunks of arbitrary data from results of database calls, API calls, or page ren-
dering. Redis is a popular NoSQL database and is single-threaded. Redis has no file I/O
after loading the dataset into memory.

5.3 Experimental Results

Memory Footprint and Write/Read Operations. Figure 7 shows the benchmarks’
average normalized portion of different types of pages (i.e., write page, read page and

Fig. 6. The number of hot pages by using random sampling method.
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cold page). It can be seen from Fig. 7 that more than 80% pages of omnetpp, sjeng, lbm
and GemsFDTD are hot pages; more than 90% pages of lbm are write pages. For bzip2
and namd, less than 10% pages are hot pages. As for Memcached and Redis, though
their memory footprints are large, the portion of hot pages/active pages is not that large.

Re-use Time. We tested all the benchmarks and observed that there are two categories
can be classified by the re-use time characteristics. One is that most re-use times are
relatively small; the other is the re-use times are evenly distributed in different sections.

Figure 8 represents the portion of different re-use time sections. Figure 8(a) shows
that for mcf, 80.6% re-use time (i.e., re-use distance) is less than 5, and only 7.4%
re-use time is larger than 50 within 200 samplings; it means that the memory access for
mcf is very intensive. Libquantum (Fig. 8(c)) is similar to mcf, most re-use times are
between 0 and 20, only 6.4% re-use time is larger than 50. As for Memcached (Fig. 8
(b)), the re-use time distribution is more balanced, which indicated that memory access
is not that intensive compared with mcf and libquantum.

Bank Hotness. Figure 9 illustrates the normalized hot page number (i.e., bank hot-
ness) within each DRAM bank. By exploring the bank hotness of all benchmarks, we
found that the hot page distribution is not balanced in many cases. Taking Memcached

Fig. 7. Normalized portion of the three types of pages of different benchmarks.

Fig. 8. Normalized portion of different re-use time sections.
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as an example, the hottest bank (bank 31) has 531 more hot pages than the coldest bank
(bank 15). Besides, we randomly choose two workloads and test their bank hotness. To
eliminate the bank unbalance, Liu et al. [17] proposes a page-coloring based bank-level
partition mechanism, which allocates specific DRAM banks to specific threads.

5.4 Sampling Interval

In our experiments, the sampling interval between two sampling periods is set to 3 s. In
terms of the time interval, we are challenged by a question: how much the interval
should we use to obtain the applications’ memory access information with low over-
head and good accuracy? To study the relation between sampling accuracy and sam-
pling interval, we test the hot page numbers of all benchmarks by using different
intervals (i.e., 1 s, 3 s, 5 s, and 7 s). Due to the space limitation, we show two
benchmarks in Fig. 10. It can be seen that the variation trends of hot page numbers are

Fig. 9. Normalized bank hotness of single benchmark and multi-benchmarks.

Fig. 10. The number of hot pages under the configuration of different sampling intervals.
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similar no matter how much the time interval is. Note that the smaller interval, the
higher overhead, so we choose 3 s in our platform to balance the accuracy and over-
head. By doing so, we can guarantee the accuracy while not costing so much overhead.

6 Related Work

Many previous researches [10, 24] performed profiling in the real time by the support of
hardware performance counters. In this paper, without hardware supports, SysMon
obtains memory access behaviors online via OS approach, and is able to collect the
page-level re-use time, bank balance/hotness, and the write/read characteristics [14, 16].
The captured information is critical for the memory management on hybrid
DRAM-NVM system [13, 19, 22].

7 Conclusion

This paper re-designs SysMon as a Linux kernel module to meet the challenges on
monitoring large memory footprint applications. To balance the sampling overhead and
accuracy, we adopt a random sampling method and explore the appropriate sampling
interval. Experiments show that 44.42% sampling overhead on average can be reduced
by using random sampling method. We capture a large number of benchmarks’
memory behaviors including page access frequency, write/read and hot/cold features,
re-use time and bank balance/hotness by using SysMon.

References

1. Memcached. http://memcached.org
2. Oprofile. http://oprofile.sourceforge.net/news/
3. PAPI. http://icl.utk.edu/papi/
4. Perfmon2. http://perfmon2.sourceforge.net/
5. Pin. https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
6. Redis. http://redis.io/
7. SPECCPU2006. http://www.spec.org/cpu2006
8. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster manage-

ment. In: ASPLOS (2014)
9. Duong, N., Zhao, D., Kim, T., et al.: Improving cache management policies using dynamic

reuse distances. In: MICRO (2012)
10. Jaleel, A., Najaf-Abadi, H.H., Subramaniam, S., Steely, S.C., Emer, J.: CRUISE: cache

replacement and utility-aware scheduling. In: ASPLOS (2012)
11. Kwon, Y., Yu, H., Peter, S., Rossbach, C.J., Witchel, E.: Coordinated and efficient huge

page management with ingens. In: OSDI (2016)
12. Lin, F.X., Liu, X.: Memif: towards programming heterogeneous memory asynchronously.

In: ASPLOS (2016)
13. Liu, L., Yang, H., Li, Y., Xie, M., Li, L. Wu, C.: Memos: a full hierarchy hybrid memory

management framework. In: ICCD (2016)

62 M. Xie et al.

http://memcached.org
http://oprofile.sourceforge.net/news/
http://icl.utk.edu/papi/
http://perfmon2.sourceforge.net/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://redis.io/
http://www.spec.org/cpu2006


14. Liu, L., Li, Y., Ding, C., Yang, H., Wu, C.: Rethinking memory management in modern
operating system: horizontal, vertical or random? TC 65, 1926–1935 (2016)

15. Liu, L., Cui, Z., Li, Y., et al.: BPM/BPM+: software-based dynamic memory partitioning
mechanisms for mitigating DRAM bank-/channel-level interferences in multicore systems.
ACM Trans. Archit. Code Optim. (TACO) 11(1), 5 (2014)

16. Liu, L., Li, Y., Cui, Z., Wu, C., et al.: Going vertical in memory management: handling
multiplicity by multi-policy. In: ISCA (2014)

17. Liu, L., Cui, Z., Xing, M., Wu, C., et al.: A software memory partition approach for
eliminating bank-level interference in multicore systems. In: PACT (2012)

18. Lee, S., Bahn, H., Noh, S.H.: CLOCK-DWF: a write-history-aware page replacement
algorithm for hybrid PCM and DRAM memory architectures. TC 63, 2187–2200 (2014)

19. Liu, L., Xie, M., Yang, H.: Memos: revisiting hybrid memory management in modern
operating system. arXiv:1703.07725 (2017)

20. Lv, F., Liu, L., et al.: WiseThrottling: a new asynchronous task scheduler for mitigating I/O
bottleneck in large-scale datacenter servers. J. Supercomput. 71, 3054–3093 (2015)

21. Lv, F., Cui, H., Wang, L., Liu, L., et al.: Dynamic I/O-aware scheduling for batch-mode
applications on chip multiprocessor systems of cluster platforms. JCST 29, 21–37 (2014)

22. Liu, L.: Tackling diversity and heterogeneity by vertical memory management. arXiv:1704.
01198 (2017)

23. Liang, Y., Li, X.: Efficient kernel management on GPUs. ACM Trans. Embed. Comput.
Syst. (TECS) 16(4), 115 (2017)

24. Mai, H.T., Park, K.H., Lee, H.S., Kim, C.S., Lee, M., Hur, S.J.: Dynamic data migration in
hybrid main memories for in-memory big data storage. ETRI J. 36, 988–998 (2014)

25. Mutlu, O.: Main memory scaling: challenges and solution directions. In: Topaloglu, R. (ed.)
More than Moore Technologies for Next Generation Computer Design, pp. 127–153.
Springer, New York (2015). doi:10.1007/978-1-4939-2163-8_6

26. Rixner, S., Dally, W.J., Kapasi, U.J., et al.: Memory access scheduling. ACM SIGARCH
Comput. Archit. News 28(2), 128–138 (2000). ACM

27. Sun, G., Zhang, C., Li, P., et al.: Statistical cache bypassing for non-volatile memory. IEEE
Trans. Comput. 65(11), 3427–3440 (2016)

28. Mi, W., Feng, X., Xue, J., Jia, Y.: Software-hardware cooperative DRAM bank partitioning
for chip multiprocessors. In: Ding, C., Shao, Z., Zheng, R. (eds.) NPC 2010. LNCS, vol.
6289, pp. 329–343. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15672-4_28

29. Kim, Y., Seshadri, V., Lee, D., Liu, J., Mutlu, O.: A case for exploiting subarray-level
parallelism (SALP) in DRAM. ACM SIGARCH Comput. Archit. News 40(3), 368–379
(2012)

SysMon: Monitoring Memory Behaviors via OS Approach 63

http://arxiv.org/abs/1703.07725
http://arxiv.org/abs/1704.01198
http://arxiv.org/abs/1704.01198
http://dx.doi.org/10.1007/978-1-4939-2163-8_6
http://dx.doi.org/10.1007/978-3-642-15672-4_28


Self-adaptive Failure Detector for Peer-to-Peer
Distributed System Considering the Link Faults

Yanzhang He, Xiaohong Jiang(&), Changbo Dai, and Zikun Fan

College of Computer Science, Zhejiang University, Hangzhou 310027, China
{heyanzhang,jiangxh,daichangbo,fanzikun}@zju.edu.cn

Abstract. Nowadays, the distributed computing is prevailing in artificial
intelligence applications due to the limited computation capacity of single
computing node. Generally, distributed computing system contains large scale
of computing node, and therefore system breakdown is regarded as usual matter.
To enhance the system availability and performance, failure detection dominates
important status to recover the system. The traditional failure detector simply
equates the link fault with the node fault problem, which greatly affects the
resource utilization, fault locating and fast repair. We present a self-adaptive
Link-based Failure Detection Agreement DLFDA with an improved node fault
detection algorithm, which can accurately distinguish the node fault and link
fault. DLFDA can dynamically adjust the detection structure to increase the
coverage of the link fault detection, while using Gossip protocol to distribute
fault diagnosis results to other system members, which extensively reduces the
damage of the system performance. Finally, the experimental results show that
our method can meet the requirements of theoretical design.

Keywords: Distributed system � Failure detector � Self-adaptive � Link fault �
Node fault

1 Introduction

With the development of distributed technology, the distributed system is prevailing in
multiple cloud computing and artificial intelligence applications, such as HPACS [1],
Hadoop virtual cluster [2], AlphaGo, medical intelligent diagnosis and smart cars,
which can provide high performance and availability service compared with traditional
single node computing. However, with the increasing of the system scale, which
always contains thousands of computing nodes, the system breakdown is regarded as
usual matter. For instance, On April 21, 2011, EC2 suffered a customer-impacting
service disruption in the US East Region, which leads to about 75 websites be not
accessible [3]. Also, Microsoft Outlook.com experienced large-scale downtime in
2013, and even cause some users can not use the service within three days, seriously
affecting the service quality and user experience [4].

To improve the performance and availability in the distributed system, timely and
effective system failure detection is critical, and we must deal with two fundamental
challenges: fault tolerance and asynchronism [5]. Fault tolerance is an important goal of
distributed system design, which is an important means to improve the system’s
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autonomous operation and fault immunity [6]. It can guarantee the correct operation in
the case of partial failure of the system, and will not greatly influence the overall system
performance. Fault detection, as one of the basic components of system availability,
provides the basis for triggering failure recovery mechanism [7], and is a prerequisite
for fault tolerance. However, the asynchronism of the distributed system can not
warrant the accuracy of fault detection. In asynchronous systems, the processing speed
of the Process and the delay of the message transmission between different processes
are not bounded. The system can’t differentiate the reasons when it fails to receive the
heartbeat message, such as the network transmission delay, slow processing speed of
the Process, or process failure.

At present, most failure detection agreements simply regard the link fault as the
node fault, that is, whatever it is the node fault or link fault, it is determined that the
node connected to the link is faulty, which will result in low resource utilization of the
system. While some other failure detection methods prevent the waste of resources by
tolerating link faults, but this tolerance can lead to serious errors in the entire dis-
tributed system. The contributions of this paper can be summarized as follows:

• First, we propose a self-adaptive Link-based Failure Detection Agreement DLFDA
with an improved node fault detection algorithm, which can not only detect the
node fault, but also distinguish the link fault in the system. DLFDA judges the fault
type through the analysis of multiple detectors located in different nodes of the
distributed system;

• Second, DLFDA can dynamically adjust the detection structure to increase the
coverage of the link fault detection, and using Gossip protocol to distribute fault
diagnosis results, which reduces the decrease of the system performance;

• At last, we implement the DLFDA and conduct a lot of experiments. The experi-
mental results show that our method can meet the requirements of theoretical
design.

The rest of this paper is structured as follows. In Sect. 2, we give the introduction of
related works. In Sect. 3, we first present topological structure of DLFDA, then we
explain the execution steps of DLFDA, including improved node fault detector,
judgment of fault type, diagnosis result distribution and system detection structure
adjustment. The Sect. 4 shows the experiment and result analysis. In the last section,
we conclude our work.

2 Related Work

Failure detection technology has been accompanied by the development of distributed
systems, and it is one of the most important components to build a reliable distributed
system. Since the failure detection technology was proposed, many researchers have
been paying close attention to it, and a variety of failure detector were proposed to meet
the different needs. Such as the Byzantine Generals problem [8] proposed by Leslie
Lamport, who is a Turing Award winner and expert in the distributed technology field.
Failure detection is one of the most important means to ensure fault tolerance of
distributed systems, and it is first defined by Chandra and Toueg [9]. In addition, two
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important attributes are defined in the paper to measure the detection capability of the
fault detector. “Completeness” is used to measure the ability to eventually detect each
fault in the system, and the “Accuracy” is used to measure the ability to correctly detect
the fault process.

Heartbeat protocol and ping protocol always used in the failure detector. The
heartbeat protocol is generally used to negotiate and monitor the availability of a
resource, which includes pull-mode and push-mode message communication. The
heartbeat protocol can detect the status of Process granularity, while the ping protocol
can only detect the status of computing node granularity. The u-FD is the earliest
well-known heartbeat based failure detector proposed by Hayashibara et al. [10, 11],
which includes fault monitoring and interpretation, and provides a cumulative value
based on heartbeat interval variation. The u-FD uses push-mode heartbeat detection
technology to maintains a sliding window of size n to store the heartbeat messages in
the detection process, and has an effective design with the simple calculation of the
output value u. The premise of the u-FD is to assume that the heartbeat arrival interval
is a normal distribution. When the interval between two heartbeats increases or
decreases, the value of u increases or decreases at the same time, which indicates that
the possibility of system failure raises or declines. At present, many distributed systems
failure detector are based on u-FD, such as open source Apache distributed NoSQL
database Cassandra [12], and distributed application framework Akka. Cassandra
system used the exponential distribution to replace the normal distribution in the
detector, simplifying the calculation of u value. Bjm-FD [9] improves the u-FD, and
uses the cumulative distribution of the heartbeat messages in the sliding window to
further simplify the calculation of u value, and to make the failure detector be more
accurate in the network environment with heavy packet loss. The failure detectors
mentioned above have simple and flexible structure. However, they can’t differentiate
the link fault and node fault, and the link fault is simply regarded as the node fault,
which can’t satisfy the “Accuracy”.

The SWIM protocol [13] is an extensible, weakly consistent protocol, which is
suitable for decentralized distributed system such as P2P architecture. The protocol
tolerates the link fault in the system through the “re-detection” mechanism. When one
node member can’t ping another node member, it sets it as a suspected computing
node. Then it randomly chooses some other node members to re-detect the suspected
node, if it doesn’t receive ack message from other computing node members after a
period time, it can judge the suspected node as faulty node. Horita et al. [14] improved
the “re-detection” mechanism by using the static configuration to choose the other node
members, and it can reduce the time complexity. However, the SWIM and the
improved protocols uses ping instead of heartbeat, so it can not refine the detection
granularity of to the process, instead of computing node. They also ignore the link
fault, which can’t satisfy the “Completeness”, and will result in system error and low
system performance. We aim to propose a self-adaptive link-based failure detection
agreement to meet the not only the “Accuracy”, but also the “Completeness”.
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3 Description of DLFDA

We can describe the distributed system as a grape G with n nodes and l edges
G ¼ V ;Eð Þ. V is the set of nodes, and can be regarded as Processes running in different
nodes P1;P2;P3; . . .;Pnf g. E is the set of edges, and E ¼ fp; qj8p; q 2 V ; p 6¼ qg,
which means all Processes are interconnected over the network link. Each Process
maintains a system member list list1 and a link list list2, and sorts the system member
list and link list by the value of hash Pið Þ. The hash code is calculated by the unique ID
of Pi, and to ensure that the hash code of different Processes will not repeat. To
simplify the description, we can presume the ID numbers are continuous positive
integers, and the Fig. 1 shows an example. When the Process receives the failure
Gossip message from other Processes, it will update the system member list and link
list. The execution steps of DLFDA includes 4 modules: improved node fault detector,
fault type judgment, diagnosis result distribution and system detection structure
adjustment.

3.1 Improved Node Fault Detector

In order to void serious detection load to the system performance by failure detection,
we need to reduce the quantity of heartbeat messages at the same time. In DLFDA, we
don’t use all-to-all way to detect, and use the detection topology shown in Fig. 1 to
reduce the amount of detection heartbeat messages. At the time t, the process Pi detects
the following 1� k processes, and changes to detect kþ 1� 2k processes after the
interval T 0. Theoretically, it needs to take n � T 0ð Þ=2k to detect all the links in the
system, which the link quantity is n � n� 1ð Þ=2. DLFDA uses improved node fault
detector DA-FD to calculate the u value between Processes. DA-FD maintains a n size
practical historical heartbeat interval sequence and a n size estimated historical

Fig. 1. Detection topology in DLFDA method
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heartbeat interval sequence to calculate the exponential moving average value. The
calculation of u is showed as formula 1. tnow is the current time, and Tlast is the time of
last heartbeat.

u tnowð Þ ¼ e
tnow�Tlast

EIA‘þ 1 þ a‘þ 1 � 1 ð1Þ

EIA‘þ 1 is the estimation interval value of the next heartbeat and the a‘þ 1 is the
average error value of the former n times of estimation. EIA‘þ 1 and a‘þ 1 can be
calculated by formula 2 and 3.

EIA‘þ 1 ¼
Pn�1

i¼0 1� bð Þiw vn�ið ÞIAn�i
Pn�1

i¼0 1� bð Þiw vn�ið Þ ð2Þ

a‘þ 1 ¼ 1
n

Xn�1

i¼0
ðIAi � EIAiÞ ð3Þ

where IAi is the practical interval value of the i th heartbeat, EIAi is the estimated
interval value of the ith heartbeat, wðviÞ is the variance ratio of the ith heartbeat, and b
is the weight adjustment factor. The calculation is showed in formula 4–8.

wðviÞ ¼ d2

d2 þ v2i
ð4Þ

d2 ¼ 1
n

Xn

i¼1
IAi � lð Þ2 ð5Þ

vi ¼ IAi � l ð6Þ

l ¼ 1
n

Xn

i¼1
IAi ð7Þ

b ¼ 2
N þ 1

;N� n
3:45

� 1 ð8Þ

We can see that DA-FD does not need to assume that the heartbeat arrival
intervals obey the normal distribution, and does not need to calculate the cumulative
probability of the distribution. When the u value exceeds the value of threshold, then
it judge the Pj as suspected Process and invokes the fault type judgment module in
the Sect. 3.2.

When Pi receives the heartbeat message before the u value increases to the
threshold, then it can judge the Pj as normal Process. Table 1 shows the pseudo-code of
the improved node fault detection algorithm.
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3.2 Fault Type Judgment

The Fig. 2 shows the link fault detection steps in the DLFDA method. The Process Pi

sends a heartbeat detection message to the process Pj. If there is no heartbeat response
received within a certain period of time, the u value calculated by Sect. 3.1 exceeds the
threshold value. In this case, we can’t judge Pj as node fault or link fault. It spreads the
message of “suspectðPjÞ” state to other k � 1 detectors. After the Processes
PS1;PS2; . . .;Psi;Ps k�1ð Þ

� �
receive the message, they will respond to Pi according to

their own detection results. If the result is normal, then Pi can judge the failure as link
fault: Failure Pi;Pj

� �
, and updates the link list. If the result is abnormal, then Pi can

judge the failure as node fault: Failure Pj
� �

, and invokes the detection result distribution
module in the Sect. 3.3. Table 2 show the pseudo-code of fault type judgment.

3.3 Diagnosis Result Distribution

The Pi updates the list1 or list2, and distribute the failure Pj
� �

or failureðPi;PjÞ message
to other Processes by Gossip protocol. Gossip distribution protocol is different from the
all-to-all distribution mode, the principle is similar to rumors spread, which can reduce
the quantity of message transmission and reduce the influence of distributed system
performance. Every gossip message has a version number, the other member compares

Table 1. Pseudo-code of DA-FD

Self-adaptive Failure Detector for Peer-to-Peer Distributed System 69



it with the local list status when receives the message and merges the latest message.
Although the failure message consistency among different Processes can not be
guaranteed, all the members can eventually know which node or link is failure. Each
member who receive the message update the status of the list1 or list2, and will
randomly choose k members who didn’t receive the message to send. The steps of
diagnosis result distribution can be described as Table 3.

Fig. 2. Steps of fault type judgment

Table 2. Pseudo-code of fault type judge
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3.4 System Detection Structure Adjustment

As shown in Fig. 1, the process Pi detects the following 1� k processes at the time t,
and changes to detect kþ 1� 2k processes after the interval T 0. The purpose of
structure adjustment is to ensure that all the fault links can be found in a certain period.
In the peer-to-peer distributed system, one system member (leader) is required to
initiate a detection structure adjustment request in every detection period. For example,
the first member of the ordered member list is selected as the initiator. After completing
the present fault detection period, the leader notifies the other members in the dis-
tributed system to rotate the detection object. After all the members receive the request,
they begin to adjust the structure. When the leader is downtime, they will vote the next
member of the ordered member list as the leader. The steps of detection structure
adjustment can be described as Table 4.

4 Experimental Results and Analysis

In this section, we first validate the DA-FD algorithm used in DLFDA. In order to
compare the failure detection performance, we implement the u-FD algorithm and the
Bjm-FD algorithm respectively, which are commonly used classical failure detectors
mentioned in the related works. Then we implement the DLFDA protocol to verify the
detection results of node fault and link fault. Finally, we analyze the advantages of
DLFDA protocol.

Table 3. Diagnosis result distribution by Gossip protocol

Table 4. Steps of detection structure adjustment
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4.1 Result Analysis of DA-FD Algorithm

The Fig. 3 shows the failure detection mistake rate in different threshold value. We set
the heartbeat request interval as 100 ms, and compare the result in three different
sliding window sizes, n ¼ 50; n ¼ 200 and n ¼ 500. We can see that the detection
mistake rate decreases when the threshold increases, and the rate can be close to 0 when
the threshold is infinite. In addition, when the window size is n ¼ 200, the mistake rate
is significantly lower than n ¼ 50, but it is close to the result of n ¼ 500. So the sliding
window size can increase the accuracy of detection, but when the size increases to a
certain extent, the improvement of accuracy rate is not obvious.

In order to compare the three algorithms, we use the accuracy rate with the same
detection time as the unified evaluation indicator. The detection time is calculated the
same as u-FD algorithm. We set the heartbeat request interval as 100 ms, and the rate
of message loss rate as 0. As shown in Fig. 4, we can see that the mistake rate of all

Fig. 3. Failure detection mistake rate with different threshold

Fig. 4. Result comparison of three failure detector algorithms
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algorithms gradually reduce with the detection time increases. In addition, when the
average detection time is the same, DA-FD algorithm has the lowest mistake rate, better
than u-FD and Bjm-FD.

Finally, to verify the performance of DA-FD in high message loss rate network
environment. We set the heartbeat request interval as 100 ms, and the rate of message
loss rate as 1%. As shown in Fig. 5, it can be found that the performance decrease of
u-FD is higher than the DA-FD and Bjm-FD, which means the u-FD is not suitable in
the network environment with high message loss. In addition, the accuracy of the
DA-FD algorithm is still higher than that of the Bjm-FD algorithm.

4.2 Validation of DLFDA

First, we need to verify the efficiency of DLFDA for link fault detection. In the
experiment, we set the heartbeat request interval as 100 ms, and the threshold of
DA-FD algorithm is 3. We use the iptables command in the Linux operating system to
simulate the link fault. As shown in Fig. 6, when the number of detection nodes is
k ¼ 1, the link fault rate is 100%, which means the link fault is equivalent to node fault.
When k[ 1, the detection mistake rate is gradually reduced by the detection time. In
addition, when the k increases, the detection mistake rate is relatively reduced, this is
because more detection nodes can be more timely detect the node fault and link fault.

Finally, we analyze the impact of DLFDA protocol on system performance, which
means the analysis of the detection message load in unit time. As shown in Fig. 7, the
detection message load is related to the value of k. Unlike the all-to-all mode failure
detection, the detection message load is O nð Þ, rather than Oðn2Þ.

Fig. 5. Result comparison with message loss
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5 Conclusions

To solve the weaknesses of u-FD and Bjm-FD, we propose a more flexible DA-FD
algorithm with higher efficiency. The DA-FD algorithm doesn’t need the hypothesis of
normal distribution, which is more efficient and less affected by the sliding window
size. The experiments show that DA-FD has better performance than u-FD and
Bjm-FD in all network situations.

To differentiate the link fault and node fault, we propose a self-adaptive Link-based
Failure Detection Agreement DLFDA. DLFDA can not only detect the node fault, but
also distinguish the link fault in the system. DLFDA judges the fault type through the
analysis of multiple detectors located in different nodes of the distributed system.
DLFDA can dynamically adjust the detection structure to increase the coverage of the

Fig. 6. Accuracy validation of DLFDA

Fig. 7. Detection load of DLFDA
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link fault detection, and using Gossip protocol to distribute fault diagnosis results,
which reduces the influence of the system performance. The experimental results show
that our method can meet the requirements of theoretical design.

Acknowledgments. This work is supported by National High Technology Research 863 Major
Program of China (No. 2011AA01A207).
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Abstract. Due to less healthy, contention for shared resources, operating sys-
tem interference and other factors in high performance computers, there are
performance variability phenomena during various components runtime. With
the scale of systems and numerical simulation program parallelism increases, the
impact of performance variability will be magnified. This will introduce per-
formance variability and degradations, affect applications scalability and overall
system throughput. In this context, the performance variability becomes
important question for both HPC systems and numerical simulation applications.
The future research about this question will be helpful for the system and
application design towards future exascale computing. In terms of this issue, this
paper gives a literature review about quantitative measurement of performance
variability in HPC systems. We summarize the quantitative measurement
method of performance variability for three different components, including
computation, memory and communication, respectively. Finally, we analyze the
gap between researches and challenging demands, potential research issues and
future work are also introduced.

Keywords: High performance computer � Performance variability � System
noise � Bulk synchronous parallel � Collective communication

1 Introduction

1.1 Performance Variability in HPC Workloads

As HPC systems scale and numerical simulation applications parallelism increased, the
performance variability of HPC workloads is common in large-scale parallel com-
puters. For examples, (1) using the same binary code and input files, the performance
variability of applications is significantly great while running on different computing
nodes group, (2) using the same binary code, input files and nodes, the performance
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changes from run to run. The application run-time variability is more and more popular
while the parallelism increased. From the system user’s perspective, the binary code
and input files are unchanged, so the HPC program and input parameter are certain;
furthermore, from the numerical simulation software developer’s view, the system
model of high performance computer is also certain. The program, input parameter and
system model are all certain, Why the performance variability exists?

1.2 Rout Cause of Performance Variability

With the development of computer architecture and interconnect technology, the peak
performance of HPC systems is significantly increased in the past decade. From the
TOP500 ranking lists [1], the peak performance of top 1 system increases one order of
magnitude every three years. But besides the processor clock speed, the peak perfor-
mance improvement of HPC systems mainly benefit from the large number of cores
because of the Multi- and many core chips. For example, in the latest TOP500 ranking
lists (issued on Jun. 2015), the number of cores in every top ten systems are more than
100,000. With now developing trend, future exascale computing platforms consist of
108–109 cores [2]. The following presents several key characteristics of these systems:

(1) The challenge of scalability toward massive parallelism. The data communication
between tasks of parallel application is necessary. The performance variability of
any component will cause degraded performance of one task, and other tasks will
wait for messages from it. The communication overhead from such wait time will
be higher for 105 and future 108 parallelism of the applications.

(2) The contention for shared resources is common. With the node counts and core
counts in one node increase, HPC systems might be shared by different appli-
cations contending for shared resources (such as CPU cores, processor caches,
memory bandwidth, and network bandwidth), and within the same application
different requests might contend for resources. The contention for shared
resources inevitably results in the performance variability of HPC Workloads.

(3) The network topology can impact application performance in large supercom-
puters. With the scale of communication network increases, the network topology
and the network routing play a very important role and make a precise prediction
or modeling of the perturbation hard. In this context, the performance of different
tasks in same applications will be variable, and the performance of same appli-
cations running on different nodes will be variable from run to run.

(4) There exist the effects of operating system interference on extreme-scale parallel
machines. The performance of parallel applications running on large HPC systems
is known to degrade due to the interference of kernel and daemon activities on
individual nodes, often referred to as operating system noise. Due to the random
noise, the performance variability exists during the running time of different tasks
in unique application.

(5) Performance degradation is unavoidable as long as a sub-health component is
used. In addition to the Fail-Stop [3] faults, some silent errors lead to performance
degradation due to the “sub-healthy” state. For example, with expected power
optimizations, such as decreased supply voltages and increases in memory
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density, the number of DRAM errors is expected to increase for future exascale
systems. To address these faults, current HPC systems typically include some
form of Error Correction Code (ECC). The most common memory resilience
scheme is the Single-symbol Error Correction and Double-symbol Error Detection
(SEC-DED) [4]. The frequent ECC events will introduce overhead and perfor-
mance degradation is unavoidable despite offering computation task [5]. Thus,
performance degradation due to sub-health components inevitably leads to per-
formance variability of numerical simulation applications.

In the presence of sub-health components and operating system interference, the
processors or nodes with same architecture will export different performance during
system runtime. The communication network topology and contention for shared
network resources lead to the performance variability of data transfer between remote
processes. From the above analysis, the performance variability in large scale high
performance computer is the root cause of application performance variability.

1.3 The Impact of Performance Variability

For the Bulk Synchronous Parallel (BSP) applications in Fig. 1, in order to ensure load
balance, all the tasks have the same computation, communication and memory access
performance. All the tasks will reach the synchronization point (for example a global
barrier) at the same time and the wait time should be as low as possible. With the scale
of systems and numerical simulation program parallelism increases, the contention for
shared resources, communication network topology, operating system interference and
sub-health components will have a high probability and become common features in
HPC systems. All of the common overheads will destroy the load balance in Fig. 1.
Due to the overhead and synchronization, each computing phase is prolonged to the
duration of the slowest task. The impact of performance variability overhead is illus-
trated in Fig. 2.

Rank i

Rank 1
Rank 2

Barrier Computing

Begin End

Fig. 1. BSP model
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Especially for the massively parallel, long running time and including frequent
global synchronization activities HPC workload, the performance degradation of partial
tasks will influence all the other tasks. So, toward massive parallelism, the performance
variability of HPC systems would significantly reduce applications performance. Some
research results argued the impact of performance variability from operating system
noise. For example, by removing noise caused by several types of daemons, confining
daemons to the cluster manager, and removing the cluster manager and the RMS cluster
monitor from each cluster’s compute pool, the performance of SAGE on ASCI Q system
had been doubled [6]. Another example, by using kernel level noise injection, the OS
noise has a dramatic impact on the performance of CTH, SAGE, POP three applications
at scale [7]. In our study [8], we proposed one quantitative analysis method named
FWQ-MPI which is used to analyze the impact of system noise based on computation
and communication features from parallel applications. By FWQ-MPI method, we
analyzed the impact of system noise on large-scale sparse linear algebraic equations in
detailed. The quantitative results showed that the operating system noise reduce the
performance of sparse linear algebra solver 30–70% for 1024, 2048, 4096 parallelism.

The performance variability of computing systems bas received attention for a long
time. Back in 1994 and 1996, the researchers noticed the performance variability of
point-to-point and All-to-All communications on IBM 9076 SP1 [9], SP2 [10] systems.
In recent years, many groups have paid more attention to performance variability and
variability towards tomorrow’s exascale computing. Such as the HPC-Colony project
[11] achieves high scalability through coordinated scheduling techniques and other
strategies aimed at reducing the operating system overhead; from 2011 the international
workshop on runtime and operating systems for supercomputers (ROSS) [12] selected
“system noise analysis and prevention” as the main topic of discussion.

For different high performance computers and various numerical simulation appli-
cations, the root cause of system performance variability will be complex and various.
The impact of every performance variability causes on numerical simulation applica-
tions will be diverse, so there are different ideas introduced in related researches. We
summarize the key ideas and contributions of related researches and give a literature
review about quantitative measurement of performance variability in HPC systems.

Rank1
Rank2

Rank i

Barrier Computing

Begin Wait

overhead

Fig. 2. Impact of performance variability overhead
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2 Quantitative Measurement of Performance Variability

The performance variability of HPC workloads reflects the instability of HPC systems
performance, so the running time of relative benchmarks can be used to quantitative
measurement of performance variability in HPC systems. Some related research works
construct a sequence of benchmarks including computation, memory access and
communication activities respectively. After establishing baselines of standard
benchmarks, the Performance variability of HPC systems was tested via a series of
benchmark running time.

2.1 Quantitative Evaluation of Computation Performance Variability

The Performance variability in computing components is primarily due to interference
from operating system noise. Operating system noise as a cause of application per-
formance degradation has been extensively studied via various techniques. In the HPC
community, this problem was first demonstrated by Petrini et al. [6]: they explained
how OS noise and other system activities dramatically impact the performance of a
large cluster. The quantitative analysis methods of OS noise are applicable for the
quantitative evaluation of Performance variability in computing components. The
current benchmarks support three different quantitative analysis methods: Fixed Work
Quantum (FWQ) [13, 14], Fixed Time Quantum (FTQ) [14, 15] and Selfish DeTour
(SDT) [14].

2.1.1 Fixed Work Quantum
The fixed work quantum benchmark performs a fixed amount of work multiple times
and records the time it takes for each run. The overhead of OS noise is calculated based
on the running time of FWQ benchmark. Figure 3 shows a schematic sketch. The fixed
work quantum steps are introduced as follows:

First Step: construct a fixed amount of work named W;
Second Step: the W is performed n times and all the run time are T n½ �;

Fig. 3. Schematic sketch for fixed work quantum method [15]
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Third Step: set Tmin ¼ min T1; T2; � � � ; Tnf g, Tmin is defined as the ideal running
time of W without system noise interference.

Fourth Step: the total amount of system noise is defined as follows,

Nall ¼
Xn

i¼1

T i½ � � Tminf g ¼
Xn

i¼i

T½i� � n� Tmin ð1Þ

The proportion of system noise to all time is defined:

Pnoise ¼ Nall

Xn

i¼i

T½i� ¼ 1� n� Tmin

Xn

i¼1

T ½i�
, ! ,

ð2Þ

2.1.2 Fixed Time Quantum
The Fixed Time Quantum (FTQ) had been described in [15]: A very small work
quantum is performed until a fixed time quantum has exceeded, for each iteration, it is
recorded how many workload iterations were carried out. In the absence of noise this
number should be equal for every sample. When there is noise this number varies.
Because every sample takes an equal amount of time, periodicity in the occurrence of
noise can be analyzed with this method. Figure 4 shows a schematic sketch. The fixed
work quantum steps are introduced as follows:

First Step: construct a loop named W and the amount of work in W is defined as C;
Second Step: for every fixed time named T, the W is performed and records the

amount of work that was done. All the amount of work are C[n];
Third Step: C[n] is well-behaved in the way it samples and hence can be used for

frequency- and time-domain analysis [15]. The analysis results give the key features of
OS noise.

2.1.3 Selfish Detour
“Selfish DeTour (SDT)” runs in a tight loop and measures the time for each iteration.
The Code for Selfish Detour is shown in Fig. 5 [16].

0

Amount of 
work

1

Time

C[1]
C[2]

C[3] C[4]
C[5]

T T T T T

Fig. 4. Schematic sketch for fixed time quantum method [15]
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From the Fig. 5, Selfish DeTour method is same with Fixed Work Quantum when
the amount of W is NULL, so the sample period of Selfish Detour is shorter than FWQ
and FTQ. The Selfish Detour method can get the fine-grained features of OS noise, as
shown in the Fig. 6 [16], all the OS activities whose duration is larger than Tsample can
be measured. From the Figs. 5 and 6, we can get:

Tsample ¼ min ticks

Tnoise ¼ td � Tsample
ð3Þ

These three quantitative methods was implemented in the software P-SNAP [13],
Netgauge [17], ftq [15] respectively. In practice, we found that the features of OS noise
in multicore and multicpu nodes are variable between different usage patterns. In order
to measure the noise of all nodes in large scale systems, we implement a new tools
called NoiseProfiler [8, 18] which include FWQ, FTQ and Selfish Detour and achieve
three measuring processes named Full Node, Single CPU and Single Core, corre-
sponding to three usage patterns of HPC systems.

count=0;
min_ticks=INFINITY;
current = rdtsc();
while(count<N) {

prev=current;
current=rdtsc();    /* keep the previous timer value */
td=current-prev;   /*obtain the current timer value*/
if(td>threshold) {/*If an iteration takes longer than the

                        threshold, then the timestamp  is recorded. */
detour[count++]=prev;
detour[count++]=current;

}
if(td<min_ticks) min_ticks=td;

}

Fig. 5. The code for Selfish Detour [16]

Fig. 6. The sample for Selfish Detour [16]
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2.2 Quantitative Evaluation of Memory Access Performance Variability

The memory access Performance variability might suffer from the deep memory
hierarchies, shared cache contention in multicore chip and NUMA multiprocessors.
There are no a formal and unified approach to the evaluation of Memory Access
Performance variability. The quantitative evaluation benchmarks in related researches
are derived from each numerical simulation applications respectively.

The research in [19] is the representative example. The contribution of [19] is the
analysis of a novel source of system variability that is related to the OS services such as
memory allocation management rather than the kernel itself. To solve the Scalability
Challenges for Massively Parallel AMR Applications, three major methods that
improved AMR scaling behavior has be applied: improving communication locality,
converting to metadata management algorithms with O(N) computational complexity,
and optimizing coarse-fine boundary value computations [19]. However the Runtime
Variability is significantly higher. To help isolate scaling bottlenecks in the
Chombo AMR infrastructure, the authors created and run benchmarks for an AMR
hyperbolic gas dynamics computation to quantitative evaluation of Performance vari-
ability in four HPC systems, such as Jaguar/Catamount XT4, Jaguar/Catamount XT3,
Jaguar/CNL XT4 and Franklin/CNL XT4. Figure 7 shows the runtime distributions of
8192 MPI process ranks for the AMR hyperbolic gas dynamics running on the eval-
uated systems. The representation in Fig. 7 shows a clear evidence in the Performance
variability on Franklin/CNL XT4 and Jaguar/CNL XT4 (the runtime is 156–175 s),
however the runtime on Jaguar/Catamount XT4 and Jaguar/Catamount XT3 has small
variability. The investigation showed that the traditional concerns over load imbalance
and communication volume were not as critical to application performance. The
investigation also revealed that heap management of Compute Node Linux was an
equally important source of performance variability. For quantitative evaluation of
memory access Performance variability, the coefficient of variations (CoV) of
PAPI_TLB_DM (Data translation look aside buffer misses), PAPI_L1_DCA (Level 1

Fig. 7. Histogram of runtime variability for the AMR hyperbolic gas dynamics runs on the
evaluated systems [19]
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data cache accesses), PAPI_FP_OPS (Floating point operations), DATA_CA-
CHE_MISSES (Data Cache Misses) events as well as the times spent in functions can
be selected. Figure 8 gives the evaluation results of Performance variability for three
memory allocation system in CNL including Barena, BArena+env vars and Carena.
For the function secondslopediffsf_, the performance variability with “BArena+env
vars” memory allocation system decreased comparing against Barena and Carena.

Another study in [20] selected ten memory intensive benchmarks to quantitative
assessment of memory access Performance variability. The variation in benchmarks’
runtime and cache miss-rate was used to analyze the performance variability for
next-touch, random and Round-robin memory allocation policies.

2.3 Quantitative Evaluation
of Communication
Performance Variability

The topology, contention for shared network
resources and subhealth components are the
root cause of communication Performance
variability. Various types of communication
intensive benchmarks are used to evaluate the
communication Performance variability in
HPC systems.

The research in [21] selected the MILC
application as the benchmark to measure the
communication Performance variability
caused by Cray 3D Torus topology in Hopper
system (Cray XE6 architecture, 6300 com-
pute nodes). In this study the researchers
proposed to understand the impact of Node
Placement on performance and thus applica-
tion runtime variability. Figure 9 shows the
node placement in Hopper for MILC running
on 8192 cores three different times. The
running (NERSC_TIME) time is 887.12 s (Blue), 1298.88 s (Orange) and 2462.33 s
(Red) respectively; the ratio between maximum and minimum performance values is
three times.

Fig. 8. CrayPat dump of Chombo AMR code performance [19]

Fig. 9. The node placement in Hopper for
MILC run on 8192 cores three different
times [21] (Color figure online)
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Another example in [22], the authors use pF3D, a highly scalable, communication
heavy, parallel application to quantify performance reproducibility on three different
parallel architectures: IBM Blue Gene/P, IBM Blue Gene/Q and Cray XE6. The
Average Messaging Rates was used as the metric for evaluating Communication
Performance variability. The Evaluation results show that the Node Placement and
contention for shared network resources in CIELO and HOPPER system (Cray XE6
architecture) influence PF3D’s performance: the communication time of PF3D varied
from 36% faster to 69% slower when compared to the average. In [23], the Perfor-
mance variability caused by contention in fat-tree topology is analyzed in detail.

3 Conclusions

From the above analysis, the quantitative evaluation methods of Performance vari-
ability in HPC systems can be summarized as follows: the synthesized benchmarks
should be formed considering the characteristics from both numerical simulation
applications and HPC systems, and the variations of runtime metrics from these
benchmarks are selected to evaluate the Performance variability of HPC systems. Thus,
the key question of benchmarks design is how to reflect the characteristics of HPC
systems and numerical simulation applications accurately and comprehensively. In
addition, the quantitative benchmarks of Performance variability also take into account
the needs for root cause analysis and impact assessment.
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Abstract. With the rapid increase of GPS users, the performance of
location-based services (LBS) has gradually become a hot research topic.
As the core algorithm of LBS, fast range query processing with massive
data become the key problem. Till now, the main structures in this field
are R-tree and its varieties. Although they can be adapted to a variety
of dynamical data-set, and process insert/deletion in O(log n), there are
still two essential defects when processing range query in it. Firstly, their
time boundary for range query is O(

√
n). Secondly, their performance are

based on heuristic algorithm. Given these two facts, the performance of
R-trees is intolerable and unstable. Thus, in this paper, we introduce
Geographical Dynamic Cascading Range Tree (GDCRT), a 2D dynamic
index tree aiming at geographical range query in points data-set. The
main innovation of GDCRT is to make fractional cascaded Range-tree
dynamical by applying AVL-tree’s balance principle. For insertion and
deletion, its time complexity is O(log n), which is equal to R-tree. For
range query, its time boundary is θ(k + log n), which is lower compared
to R-tree series. And final experiment results also prove the correctness
and efficiency of our structure.

Keywords: Geographical index · 2D dynamic tree · Location-based
services (LBS) · Fast range query · High-performance indexing

1 Introduction

As is known, the information needed in human daily life has strong geo-
graphical locality. Currently, with the mature of the location system, location
based services are widely utilized. Smart phone users use LBS to search for
friends, shops, attractions nearby. This refers to range query in data struc-
ture field, which request all points in an given area (such as a rectangle). As
GPS users increase, both the data-set and the frequency of range query grow.
Without effective indexing method, query operations often become performance
bottlenecks.
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To address these need, we have investigated the existing data structures.
R-tree families meet the expectation for the cost of insertion and deletion. In
industry they are hired in many database such as Microsoft SQL server [6]. But
their performance depends on an heuristic space segmentation algorithm, which
is unreliable. More importantly, as R-tree is not optimized for range query, the
range query’s time complexity is as slow as O(

√
n). Grid structures and space-

filling curves is dynamical and process searching as fast as hash table. However,
they need to be adapted to R-tree as they can’t support range query naturally.

Generally, we found that though there are structures with similar interface,
in terms of efficient range query, none of those is satisfactory. Meanwhile, all
the technology mentioned above directly organized data in disk. Even though
data can be well paged, the bandwidth of the disk is still the bottleneck of the
algorithm. Considering the exponential growth of memory size and decline in
its price over the past decades [13], we believe that virtual memory and paging
technology are no more necessary for meta-data indexing. Storing all tree nodes
in memory allows us organize data flexibly rather than page everything.

Therefore, for the requirements summed above, we propose Geographical
Dynamic Cascading Range Tree (GDCRT), a new structure whose the time cost
is O(log(n)) for all operations. The main contribution of the paper includes:

1. Propose the concept of in-memory meta-data index tree for large data-set.
2. Modify 2D range tree to support dynamic updates with O(log n) time cost

using AVL balance strategy.
3. By adapting fractional cascading to the 2D AVL-tree, we accelerate the range

query process from O(log2 n + k) level to O(log n + k).
4. We verify the time complexity of GDCRT in practice by implementing

GDCRT in Redis.

The next sections arranged as follows. Section 2 focuses on the background
knowledge for a better understanding. Section 3 gives the definition of GDCRT
as well as the algorithm for update and range query. The time complexity of
GDCRT will be analyzed theoretically in Sect. 4. And Sect. 5 writes experimental
data as an evidence of the complexity analysis. In Sect. 6, related works are listed.
Section 7 draws a conclusion to our work.

2 Background

Since GDCRT is based on the three algorithms of AVL tree, range tree, and
fractional cascading, it is necessary to briefly describe their principles in this
section. So that the algorithms can be defined more clearly.

2.1 Range Tree

Range tree [3] is a static multi-dimensional space search tree designed aiming
at range queries. We draw lessons from its two-dimension situation. Before we
introduce the principle of it, the definition of range query is needed for a better
understanding:
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Fig. 1. Typical range query example

X1 X2

nodes�in�[x1,x2]

nodes�just�out�of�[x1,x2]
but�on�the�search�path

nodes�on�path�but�useless

search�path

Fig. 2. Range query in range tree

For a bounded point set S = {p1, p2, . . . , pn−1, pn} in two-dimension space
V = [xmin, xmax] ∗ [ymin, ymax], a range query requires the subset S′ represents
all the points located in the given rectangle V = [xleft, xright] ∗ [ybottom, ytop]
(see Fig. 1).

The main difficulty of this operation is how to avoid meaningless access to
the points whose x ∈ [x1, x2] but y /∈ [y1, y2]. Range tree manages to solve this
by the thought described below:

Build a xTree for x values, on every node xNodei of xTree, build a yTree
which contains all the y value of the nodes in xNodei’s subtree. Therefore, a
range tree is processed as Fig. 2 shows:

1. For the range [x1, x2] ∗ [y1, y2], we look for the boundary values x1 and x2 in
the xTree and mark the path as Pathx1 and Pathx2.

2. We access all the nodes on the shadow border (black nodes), add them to
results if their y coordinates are in [y1, y2].

3. Apparently, for the shadow-side child xNodesc of each border node, all its sub-
trees satisfy x ∈ [x1, x2] (shaded portion). Hence, directly searching yTreesc
of those xNodesc will get the results. This avoids visiting the inner part of
the shadow and makes the process fast.

The time cost of this algorithm is O(k + log n), where k is size of result set,
and log n is the length of two paths.

2.2 AVL Tree

AVL tree [7] is a basic linear balance tree. For every tree node, AVL demands
its left and right sub-trees satisfy |heightleft −heightright| ≤ 1. GDCRT use 3-4
reconnection to ensure this condition.

As Fig. 3 displays, the gray subtree makes the height of node p = (h + 2),
resulting in imbalance of g (|(h + 2) − h| ≥ 1). To re-balance g, we only need to
adjust the vertical relationship among g, v, p, which we call 3-4 reconnection.

2.3 Fractional Cascading

Fractional cascading [10] is an optimization technique for range search in sub-
set. Given an sorted number set S = {a1 . . . ai . . . an} and its subset S1 =
{b1 . . . bi . . . bn}, fractional cascading records a map M defined as below:
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Fig. 3. 3-4 reconnection Fig. 4. Range query in GDCRT (Color figure online)

Mg(ai) = bj where bj−1 ≤ ai ≤ bj (1)

M l(ai) = bk where bk ≤ ai ≤ bk+1 (2)

Thus, for a range query whose result in S is [ai, aj ] ai, aj ∈ S, we can write
its result in S1 as [Mg(ai),M l(aj)]. The time consumption is O(1) while directly
recalculation in S1 is O(n).

3 Geographical Dynamic Cascading Range Tree

In this section, we denote the definition of GDCRT, including a brief illustration
of a range query on GDCRT. Then, we explain the main steps of update on
GDCRT, followed by a detailed algorithm. At last, we organize the illustrated
range query process into a precise algorithm.

3.1 Structure

Firstly, we give a brief illustration in Fig. 4. In the figure, we organize 11 points
in GDCRT, and process an range query over this GDCRT. For range query, we
first find eligible yNodes in yTree (19 to 55). Then as we processing search in
xTree, the Mg and M l are passed to every visited node (the green dotted line
for Mg and red for M l). Therefore, given a xNode, we can directly answer which
points in its yList is in range. Hence, when we finish searching xTree, we get
the result without checking every eligible xNode if its y coordinate is in range.
In Fig. 4 the result set should be: (3, 31); (4, 55); (5, 19); (6, 23); (7, 42).

The detailed definition goes as follow:
We define the height of a tree node as the number of nodes on the path from

itself to its the farthest descendants (including itself and the farthest descen-
dants). For point set S = {p1, p2, . . . , pn−1, pn}, in which pi is represented as
(xi, yi), we record it by:
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1. Store x coordinate using AVL-tree [7] as xTree.
2. Store all points’ y coordinate in the root of xTree (xRoot) using AVL-tree as

yTree.
3. In every xNodei except xRoot, build a ordered list marked as yListi, which

contains the y coordinate of the points whose x coordinate is in the descen-
dants of xNodei (subTreei).

4. For every Internal yListi, given the left child of xNodei as xNodelc, and the
other as xNoderc. Do:
(a) As yListlc is subset of yListi, for every yListi element, we record the frac-

tional cascading map value from it to the yListlc (see formulas 1 and 2). We
call these Mg

lc(yk) and M l
lc(yk), where yk is the y value of yListi elements.

(b) Repeat step (a) replacing yListlc with yListrc and call the map member
as Mg

rc(yk) and M l
rc(yk).

5. Consider yTree as a yList, apply step 4 on it.

3.2 Insertion

Using AVL strategy, insertion of GDCRT contains three main operations:

1. Insert in xTree and yTree, which is as simple as AVL tree.
2. Maintain yList while inserting.
3. Correct yList after 3-4 Reconnection.

Maintaining Y List While Inserting. To insert a new point (foo) into the
GDCRT, we first insert foo.x in xTree and foo.y in yTree. Then, we must insert
foo.y in every yListi that xNodei is on the path between xRoot and xNodefoo.
But as Fig. 5 displays, problem remains when we insert foo.y in the yList of
xNodei’s child:

Fig. 5. Insertion in y list (Color figure online)

Assuming foo.y has already been inserted in yListi. Before yListv changes,
the M l

rc(yk) of the nodes from nextp to nextv is prev (red line). After foo.y
was insert yListv, we need to change these record to foo.y (the green line).
Same correction need to be applied to Mg

rc(yk). A simple algorithm is denoted
as below to do this:
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Algorithm 1. Adjustment after Inserting foo.y in yListp

1. xNodep ← Parent(xNodev) and mark every variable as Fig. 5 shows;
2. j ← prep;
3. while j is not nextv and not NULL do
4. j ← j.next;
5. M l

now(j) ← (foo.y in yListv); // now := (is v left child)?lc : rc

6. end
7. from nextp to prev in yListp, do same to Mg

now(j);

Correcting Y List After 3-4 Reconnection. Take Fig. 3 as example, after
3-4 Reconnection, sub-tree of node g, v, p changes dramatically, which means the
information in g, v, p’s yList would be wrong. Because too many nodes in their
sub-tree has changed. The only viable solution is to reconstruct the three yList.

To implement the solution, we first reconstruct yListg by merging the yList
of its two children. Then do so to its bother and parent (p and v). One should
notice that both yLists and the M(y) maps between them need to be corrected.

This operation has some side effect on the time complexity. Fortunately, We
can prove that all operations are still log(n) time consuming. This part is detailed
in Sect. 4.2.

Detailed Insert Algorithm. Combining all three operations above, we here
provide the detailed algorithm for insertion. Assuming that point foo =
(foo.x, foo.y) will be inserted into the GDCRT, we need to do the following:

Algorithm 2. Insertion of GDCRT
1. in xTree, find foo’s parent, mark as XNodehot;
2. insert xNodefoo as a child of xNodehot; // Insert in xTree
3. j ← xNodehot;
4. while j! = null do
5. if j is not balance then
6. g ← j, p ← higher child of j, v ← higher child of p;
7. do 3-4connect to g, p, v and their four children;
8. reconstruct yLists of g, p, v;
9. j ← null ; // It’s proved the above nodes is balance

10. end
11. j ← j’s parent;
12. end
13. j ← xNodefoo ; // Insert in yLists
14. while j! = xRoot do
15. Insert foo.y in the yListj ;
16. rc ← j, process Algorithm 1 on j and its parent;
17. j ← j’s parent;
18. end
19. Insert foo.y in yTree; // Insert in yTree
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We especially emphasize that yTree can be considered as a special yList to
fit Algorithm 1. This is feasible in practice.

3.3 Deletion

The deletion is inverse operation of insertion, which is similar to insertion in
principle, except that the order of operations is opposite to insertion. That means
the data should be firstly deleted in yTree, then in yLists, as last in xTree. For
people who implement GDCRT, they should notice that if two xNodes need to be
swapped, the yLists between them should also be corrected using Algorithm 1.

3.4 Range Query on GDCRT

The Fig. 4 has illustrated the process of range query on GDCRT. Here we give a
precise algorithm for it. Supposing we want to find which points locate in range
R = [x1, x2] ∗ [y1, y2]:

Algorithm 3. Range query in GDCRT
1. search x1 in xTree, mark the path as P1, the end node as xNode1;
2. search x2 in xTree, mark the path as P2, the end node as xNode2;
3. xNodesp ← the node where P1 and P2 separate;
4. search y1 or its next in yTree, the end node as ylower(lower bound);
5. search y2 or its previous in yTree, the end node as yupper(upper bound);
6. foreach j on P1 from xRoot to xNodesp do
7. ylower ← Mg

now(ylower);
8. yupper ← M l

now(yupper) ; // now := (is j left child)?lc : rc

9. end
10. y′

lower ← ylower, y′
upper ← yupper;

11. foreach j on P1 from xNodesp to xNode1 do
12. y′

lower ← Mg
now(y′

lower), y′
upper ← M l

now(y′
upper);

13. if j.x in [x1, x2] then
14. output j if j.y in [y1, y2];
15. y′

l ← Mg
rc(y

′
lower), y′

u ← M l
rc(y

′
upper);

16. output nodes from y′
l to y′

u in the yList of j’s shadow-side child.
17. end
18. end
19. from xNodesp to xNode2 on P2 repeat line 10 to 18.

4 Time Complexity

4.1 Range Query

To figure out the time complexity of range query, we directly count the nodes
Algorithm 3 visits.
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Firstly, nodes on P1 and P2 are visits, which is θ(log n). Then, every node
visited is in the result set. Assuming the result set size is k, the worst case time
boundary of range query is θ(log(n) + k).

4.2 Update

Maintaining Y List While Inserting. As Algorithm 1 displays (in Sect. 3.2),
to insert a node in xNodev’s yListv, we need to access the nodes from prev to
nextv in its parent’s ylistp (see Fig. 5). The number of these nodes (mark as N)
represents the time boundary (Mark as TimeyList) of Algorithm 1. These nodes
are mainly from xNodelc, which is bother of xNodev. Thus, we calculate N by
converting it to the following problem:

Given an interval I = [y1, y2] y1, y2 ∈ R, we generate sorted set m1 =
{a1, . . . , an},m2 = {b1, . . . , bn} by randomly selecting n elements from I. Set
m = m1 ∪ m2. Now the number of accessed nodes is converted to the number of
bj between ai and ai+1 in m.

As Fig. 6 shows, the expectation of
Lai−ai+1
Ly2−y1

= 1
n+1 . So the N ’s expectation is

Size (m2) ∗ La2−a1
Ly2−y1

= n
n+1 ≤ 1. Therefore, the expectation of TimeyList = O(1).

Hence, the time complexity of a naive update without 3-4 reconnection is:

TimeyTree + TimexTree ∗ TimeyList = O(log n + log(n) ∗ 1) = O(log n) (3)

where TimeyTree and TimexTree are the nodes accessed in AVL trees while
updating (proved in [7]).

Fig. 6. Length from ai to ai+1

3-4 Reconnection. When a 3-4 reconnection happens to nodes g, p, v, all the
nodes in their yList are visited, which is slow. Fortunately, not every update
results in 3-4 reconnection. Actually, if we define depthk as the number of nodes
between Nodek and Root, we have the lemma below:

Lemma 1. For n continuous updates, the nodes depth = i suffers up to 2i times
3-4 reconnection [8,12].

Using this lemma, the time complexity of 3-4 reconnection for every single
update is:

O(
1
n

∗
logn∑

i=1

2i ∗ n

2i
) = O(log n) (4)

The updates complexity is the sum of naive update complexity and 3-4 recon-
nection complexity, which is O(log n).
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5 Evaluation

In this section, we provide details on a set of experiments to evaluate the per-
formance of GDCRT. Using C++ language, we implement GDCRT on a Linux
server. The server has 32 GB memory. And we run a Redis [14] memory stor-
age on it. We store all our tree nodes in Redis instead of directly in program.
This may cause some loss in performance but make our code an understand-
able example of implementation. Because Redis uses some cache and pipeline
strategy, the time cost result may be interfered and confusing. Here we assume
that every Redis operation (read/write) is equal time consumption, then use the
frequency of the storage operations to represent the time consumption level of
an insertion/deletion. For example, the first insertion in an empty tree may need
1 write and 0 read.

Update Performance. At first, we test the time of updating single node in
trees whose size range from 0 to 1500. To ensure the accuracy, we repeat the
experiment 100 times. The results are displayed in Fig. 7(a).

(a) Update (b) Range

Fig. 7. 1500 * 100 points performance (Color figure online)

As Fig. 7(a) displays, few points on the diagonal prove that only several 3-4
re-connections happen at the tree root during 150000 times updates. From the
diagonal to the x-axis, points increase exponentially. This can be an evidence of
Lemma 1. Moreover, after calculating the average performance of 100 times on
each point (the blue line), we notice 99% nodes are around the average line. We
use y = a + b ∗ log x to fit the average data, the result is satisfactory as Fig. 8
shows. The R-square of all fitting is over 97%, which is enough high to prove
that our experiment is an O(log n) process.

Range Query Performance. We range the tree size from 0 to 1500, and
test the range query whose result set contains 1–20 elements. The results are
displayed in Fig. 7(b), and the fitting result is also shown in Fig. 8. Compared to
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Fig. 8. Logarithmic fitting of the 1500 * 100 points performance (Color figure online)

(a) Update (b) Range

Fig. 9. 100000 * 3 points performance (Color figure online)

update, range query cost less time and the time consumption variance is smaller.
The fitting result also proves the time complexity of range query is (log n) level.
To further verify the complexity of GDCRT, we build a 100000-nodes tree for
several times and test the performance of it. The data shown in Fig. 9 meets the
logarithm trends of the early test.

To conclude, we found that in practice, the time complexity of all operations
on GDCRT is O(log n) level, which is as we expected. For update, few opera-
tions influencing the root node will cause performance degradation. But most
of updates are fast. Averagely, updates are accomplished in O(log n). For range
query, all operations can be finished in O(log n).

6 Related Work

High-performance spatial range query has long been a goal of the data structure.
However, there is still no technology aiming at 2D geographical points case. As
we have researched, the related technology can be classified into: (i) tree-based
structure [1], (ii) grid structures [11], and (iii) space-filling curves [2,4]. Quad-
tree is one of the most ordinary tree-based choices. It simply divides a square
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into four sub-squares recursively until every sub-square has few points. But with
no balance strategy, it acts as a linked list on numerous data, and averagely
2–3 times slower compared to R-tree [9]. The principle of grid structures and
space-filling curves are similar to Quad-tree, but they give every sub-square a
uniquely identified string code. The string code has a beforehand protocol on
code pattern. Hence, by converting coordinate to the patterned string code, sub-
squares can be accessed like key-value pairs in hash table, which is fast. However,
two problem remains in this program. On the one hand, if the sub-squares are
too large, too many points contained in a single sub-square results in the low
performance when searching in it. On the other hand, if the sub-squares are
too small, a range query may overfill several sub-squares, the algorithm become
chaotic. In practice, it is difficult to find a suitable size of division.

The R-tree uses a heuristic algorithm to partition the space into recursive
bounding boxes, then builds B-tree based on these partitions. Due to the different
choice of heuristic algorithm, R-tree families adapt themselves into various of
use-cases, such as different partition shapes, lazy updates on frequently moving
objects, fast bounding box on irregular objects, etc. However, speaking of range
query on point set, R-tree is still unsatisfactory compared to GDCRT.

By combining R-tree and space-filling curves, hierarchical structure was intro-
duced as an optimization. Currently it is used in structures such as Spatial-
Hadoop [5] and E-tree [15]. It divides spatial data into two levels. Spatial data
is first split using space-filling curves, then R+-Tree is built in every sub-square.
This optimization improves the performance of small range query that does not
overfill the sub-square. But as this hierarchical structure can be transplanted
into every index tree, the essential range query function are still relatively slow.

7 Conclusion and Future Work

Conclusion. In this paper, we have implemented a dynamical balanced index
structure designed for 2-D range search. The structure is extraordinary for range
query, and support update with relatively low complexity. As memory grows,
GDCRT is supposed to index meta-data and layout in memory to offer the
best performance. Although GDCRT is designed to index spatial date, it is also
suitable for accessing data according to a composite key in database.

Future Work. Two future work remains: As discussed in Sect. 3.2, a total of
O(log n) yLists need to be fixed (Algorithm 1) for a single insertion/deletion.
Considering yLists are independent if their xNodes are not connected, the
O(log n) times Algorithm 1 can be parallelized. Also, adapting GDCRT into
heuristic algorithm to fit distributed Systems is another work to be studied.

Acknowledgments. This work is supported by the National Key R&D Plan of China
(Grant No. 2016YFB1000303); NSF of China (Grant No. 61373025); the National 863
High-Tech Program of China (Grant No. 2012AA010905).
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Abstract. In this paper, a novel 3-erasure code having advantages of both
horizontal and vertical codes is described. Because of its parity construction
liking the Greek Numeral XI, so we call it Eleven code. It is an MDS code
expanded from H-code (an MDS code to optimal partial stripe writes in
RAID-6) thus it has optimal storage property. To prove the accuracy of this new
code’s construction, a program also be designed in this paper; We compare
Eleven code to Star code and T-code, and it shows that Eleven code reduces
partial stripe write cost by up to 18.13% and 14.11%, respectively.

Keywords: 3-erasure code � MDS code � Partial stripe write � Performance
evaluation

1 Introduction

With the progress of the society and the development of large data, the growing data
information, the requirement of high stability and high availability has brought new
opportunities and challenges in the field of storage technology. In large-scale data
storage systems, multi-erasure codes have always been an efficient technology for its
high storage performance and high reliability [1, 3]. As a scheme of a storage system,
an m-erasure code uses m parity disks to encode its content on n data disks in order that
the system can solve any m disk failures [2–5].

MDS (Maximum distance separable) codes [1, 6, 7] are one class of codes which
offer data recovery against disk failures with the best storage structure of redundancy
on multi-erasure coding technologies. In other words, MDS codes have optimal storage
efficiency, which also be called optimal full stripe write complexity [9]. On the other
hand, the complexity of a single write and partial stripe writes is also important in
storage system [8, 10]. Partial stripe write is not like full stripe write which refers to the
operation to write or update new data to each disks and do not care there have been data
in them or not, it just focus on a part of disk in the array under writing. With increasing
different read-write demand under processing information in disks, besides, in order to
ensure the continuous availability of entire storage system by solving unbalanced I/O
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distribution, the disk controller needs some efficient coding techniques, which can
tolerate failures as well as have optimal partial stripe write performance, to execute I/O
operations [2, 8].

In this paper, 3-erasure codes are considered and we categorize MDS codes into
horizontal codes and vertical codes. Horizontal codes contain disks which only store
data or parity information, in contrast, there are both data and parity packets stored
within a single disk in vertical codes’ disks [1, 8, 9]. In case of double fault tolerance,
there are various kinds of codes either horizontal codes or vertical codes [13]. For the
reasons of performance as well as disk I/O balance, we focus on the following prop-
erties with these codes, which we call them the efficiency properties:

1. It has optimal performance in partial stripe writes.
2. It has Balanced I/O operation.
3. It has low single write complexity.

As horizontal codes, EVENODD [11], RDP [10] and some other 2-erasure codes
have been generalized to 3-erasure even m-erasure (m > 3) and besides, 2-erasure
vertical codes such as B-code has further been generalized to m-erasure. However, the
code satisfying the whole efficiency properties above like H-code has not been gen-
eralized by now. Accordingly, a 3-erasure code satisfied those properties from H-code
is constructed in this paper, named Eleven code, which is similar to Greek numeral XI.

An outline of this paper is as follows. Section 2 briefly overviews the basis of this
paper, namely, H-code reviews. The design of Eleven code is described in detail in
Sect. 3.

2 H-Code Review

2.1 H-Code and Encoding

H-code is a hybrid MDS code scheme in RAID-6 which takes advantages of both
vertical and horizontal codes [9]. In H-code, there are n disk (where n = p + 1, p is a
prime number and p� 5), in the form of an array which is a p � 1ð Þ � p þ 1ð Þ
matrix, contains p � 1ð Þ � p þ 1ð Þ elements, including p is a prime number. In the
matrix, there are three elements: the data element, level calibration elements and the
diagonal parity elements. A Ci,j represents the i-th row first j column elements, the array
of 0 is data elements to all elements, the last column is used to store all level calibration
elements, the rest of the columns are also contains data elements and the diagonal
elements of check. Specific coding formulas are given as follows:

Horizontal parity:

Ci;p ¼
Xp�1

j¼0
Ci;j j 6¼ iþ 1ð Þ ð1Þ
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Anti-diagonal parity:

Ci;iþ 1 ¼
Xp�1

j¼0
C\p�2�iþ j[ p;j j 6¼ iþ 1ð Þ ð2Þ

In (2) \p� 2� iþ j[ p represents modular arithmetic, so as others in the paper.
An H-code on p = 7 is shown in Fig. 1.

2.2 H-Code Erasure Decoding

In [9], the author divided erasure decoding into two cases in term of erasure locations.
Owing to spatial confined, the paper enumerates the most common one that column p is
not erased but column 0 is erased. In this case, a decoder first searches for the starting
point of the recovery chainwhich is determined by the erasure columns. Then the lost data
elements in the same chain can be recovered by XOR operations within Eq. (2). Then all
erasure symbols are fully recovered by computing other lost elements upon using the
Zig-zag process. Figure 2 is the example of H-code encoding (p = 7). The starting point
is C0,0 and the decoder moves from ① to ⑪ following the direction of arrows.

(a) The corresponding data elements in the same row 
calculate a horizontal element by XOR operations. For 
example, C1,7=C1,0 C1,1 C1,3 C1,4 C1,5 C1,6

(b) The corresponding data elements in all columns except its 
column and column p  calculate a anti-diagonal element by XOR 
operations. For example, C0,1=C5,0 C0,2 C1,3 C2,4 C3,5 C4,6

Fig. 1. H-code with p = 7.

⑪

Fig. 2. Encoding of H-code (p = 7).
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3 Eleven Code Encoding

An eleven code also consists of p + 1 columns which are extending from H-code,
where the first and last columns are the same as H-code [10], i.e. all elements in column
0 are data and all elements of column p are parity. For Eleven code in this paper, which
is verified by the parity check matrix, the parameter p we provided is prime and no less
than five. Upon the construction of H-code, in which there has three kinds of elements–
data, horizontal parity and anti-diagonal parity, the eleven code adds a new element,
which is called diagonal parity. Although a new kind element is added, there has no
extension on columns and rows because of its embedding among disks in a array as
well. It is like X-code [12] based on shape when we just pay attention to the
anti-diagonal parity and diagonal parity. However, the parity elements are not located
in the last two rows but inserted to the array regularly. Due to the new parity elements
occupying some data units, the encoding of H-code is no longer applies to a part of
Eleven code. Algebraically, the encoding of Eleven code can be represented as:

Horizontal parity:

Ci;p ¼
Xp�1

j¼0
Ci;j j 6¼ iþ 1 and j 6¼ p� 1� ið Þ ð3Þ

Anti-diagonal parity:

Ci;p�1�i ¼
Xp�1

j¼0

C\iþ j[ p;j

j 6¼ p� 1� i and j 6¼ p� 1
2

� i
2

� �
þ p� 1

2
� mod i; 2ð Þ

� � ð4Þ

Diagonal parity:

Ci;iþ 1 ¼
Xp�2

j¼0
Cj;\p�jþ i[ p j 6¼ p� 1

2
þ i

2

� �
� p� 1

2
� mod i; 2ð Þ

� �
ð5Þ

(a) Anti-diagonal parity of Eleven code(p=7) (b) Diagonal parity of Eleven code(p=7)

Fig. 3. Encoding of Eleven code (p = 7).
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Construction of Eleven code for an 8-disk array that p = 7 is presented in Fig. 3.
Because of the similarity on horizontal parity between H-code and Eleven code
(Fig. 1(a)), the horizontal parity construction of Eleven code is not shown in this paper.
Let Ci;j represent the unit in row i, column j, as shown in Fig. 3. Horizontal parity in the
last column is got by XOR operations. In contrast to H-code, there is j 6¼ iþ 1 and j 6¼
p� 1� i in horizontal parity chains of Eleven code, such as row 0,
C0;7 ¼ C0;0 � C0;2 � C0;3 � C0;4 � C0;5, where j 6¼ 1 and j 6¼ 6, namely, C0;1 and C0;6

are not involved in horizontal parity of row 0. Similarly, the other horizontal parity can
be computed with (3). What calls for special attention is that C0;1 no longer represents
anti-diagonal parity but diagonal parity, and C0;6 represents anti-diagonal parity. In
general, the direction of parity chains is opposite to their parity elements location. For
example, in (4), C2;4 ¼ C2;0 � C3;1 � C5;3 � C0;5 � C1;6, where j 6¼ 4 and j 6¼ 2,
because C4;2 storages anti-diagonal parity now, shown in Fig. 3(a). Intuitively, diagonal
parity and anti-diagonal parity are symmetrical, but it is different. Take C2;3 in Fig. 3(b)
for example, C0;2; C1;1; C2;0; C3;6; C5;4 are data elements participating in parity and
C4;5 expresses diagonal parity unit and not computed within XOR operations, which in
virtue of (5), we calculate all other diagonal elements.

It is of utmost importance to verify the accuracy authentication of a code in order to
justify the code to be used, and there are different methods to attest it. As presented in
this section, we design a program to solve Eleven code’s accuracy question. As stated
above, Eleven code is of distance 4, which means it can recover any 3 erasures.
Consequently, it is certain to correct any one or two errors. As for these two authen-
tications, they can be comprehended obviously in Fig. 3.

We have clear evidence to recover one error from Fig. 3 so let us discuss two errors
situations. We identify the double failure columns are l1 and l2 (l1\l2). We can
reconstruct the elements using the starting point: C\l1�1[ p�2ð Þ; l2 . For example, when
l1 ¼ 3 and l2 ¼ 5, the start points are C2, 5 we can recover the lost elements in the
sequence of recovery: C4,3 ! C1,5 ! C2,5 ! C0,3 ! C5,5 ! C0,5 ! C4,5 ! C2,3

C3,3 ! C1,3 ! C3,5 ! C5,3. Other two errors situations are similar to this case.
Our verification focuses on 3-erasures. Similarly, we denote the three lost columns

as l1; l2; l3. In Fig. 3, it is obvious that the construction has symmetry. Thus, our
priority is l1 ¼ 0 and l3 ¼ p, i.e., stripe 0 and stripe p are lost. It is obvious that there
are all data elements or parity elements in them. We can recover them by the starting
point: C\2l2�1[ p; 0 and C\p�1�2l2 [ p; 0 with formula (3), (4), (5). While the above
process just a case of erasure, other positions are difficult to use this method to solve so
far. So will we adopt programing to calculate the accuracy.
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Abstract. Graph clustering is pervasive in emerging “big data” applications,
and is known to be quite challenging to implement on distributed memory sys-
tems. In this work, we design and implement scalable distributed-memory
algorithms for peer pressure clustering using the sparse matrix infrastructures of
Combinatorial BLAS, where the peer pressure clustering algorithm is represent
as sparse matrix computations. For settling ties, which is the most time-
consuming step in this algorithm, we design a matrix-based algorithm and pro-
vide two parallel implementations. One is based on MPI model, and the other is a
hybrid programming with MPI and OpenMP. Relying on matrix algebra building
blocks, our algorithm exposes a high degree of parallelism and good scalability
on distributed-memory platforms. For a real instance, when the input is a per-
muted R-MAT graph of scale 21 with self-loops added, our MPI implementation
achieves up to 809.6x speedup on 1024 cores of a Dawning supercomputer, and
the hybrid implementation with MPI and OpenMP obtains 949.5x speedup on
2048 cores of the same computer.

Keywords: Parallel computing � Large-scale graph � Peer pressure clustering �
Linear algebra � Sparse matrix

1 Introduction

Graph clustering is the problem of determining natural groups with high connectivity in
a graph. This can be useful in fields such as machine learning, data mining, pattern
recognition, image analysis, and bioinformatics. There are numerous methods for graph
clustering, many of which involve performing random walks through the graph. Here,
we focus on a clustering algorithm called peer pressure clustering [1]. The increasing
size of the large graph in various application encouraged development of many
distributed-memory solvers as large-scale problems do not fit into a single node. The
lack of distributed-memory graph clustering algorithms and implementations left a
bottleneck in varied “big data” application. The current representative parallel imple-
mentation methods of peer pressure clustering contain SPARQL [2, 3] and STAR-P
[4]. The SPARQL declarative query language is a powerful query language similar to
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SQL which operates on graphs specified in the RDF (short for Resource Description
Framework) format, and includes innovative capabilities to match subgraph patterns
within a semantic graph database, providing a powerful base upon which to implement
complex graph algorithms for very large data. Star-P is a parallel implementation of the
Matlab language with global array semantics, they demonstrated this with an imple-
mentation of peer pressure clustering using the sparse matrix infrastructure in STAR-P.
Despite lots of active research, no published result achieves continuing speedups to
thousands, or even hundreds of cores. This is an informal testimony to the hardness of
parallelizing the peer pressure clustering problem in practice. Therefore, high perfor-
mance scalable distributed-memory graph clustering algorithms, such as peer pressure
clustering, are indeed needed in large distributed graphs.

This paper focuses on peer pressure clustering in a large graph. Peer pressure is a
clustering algorithm based on the observation that for a given graph clustering the
cluster assignment of a vertex will be the same as that of most of its neighbors. The
algorithm starts with an initial cluster assignment, such as each vertex being in its own
cluster. Each iteration performs an election at each vertex to select which cluster that
vertex should belong to at the end of the iteration. The votes are the cluster assignments
of its neighbors. Ties are settled by selecting the lowest cluster ID to maintain deter-
minism here, but it also can be settled arbitrarily. The algorithm converges when two
consecutive iterations have a tiny difference between them.

Matrix algebra has been recognized as a useful tool in graph theory [5] for nearly as
long and references therein, However, matrices have not traditionally been used for
practical computing with graphs, in part because a dense two dimensional matrix is not an
efficient representation of a sparse graph. With the growth of efficient data structures and
algorithms for sparse matrices, it has become possible to develop a practical matrix-based
approach to computation on large, sparse graphs. The GraphBLAS standard (istc-
bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph
algorithms to the broadest possible audience. The GraphBLAS mathematically defines a
core set of matrix-based graph operations that can be used to implement a wide class of
graph algorithms in a wide range of programming environments.

In this paper, we have developed a matrix-based distributed-memory peer pressure
clustering algorithm that employs sparse matrix-matrix multiplication (SpGEMM) to
perform the election at each vertex to select which cluster that vertex should belong to in
each iteration. So we focus on the SpGEMM algorithm called Sparse SUMMA [6–8],
which uses two-dimensional block data distributions with serial hypersparse kernels(a
matrix is hypersparse if the ratio of nonzeros to its dimension is asymptotically 0), is
indeed highly flexible, scalable, and memory-efficient in the general case, and is the first
to yield increasing speedup on an unbounded number of processors. It is because of the
two-dimensional block distribution of sparse matrices where serial sections use a
hypersparse kernel for scalability, the HyperSparseGEMM [9] that computing the
product of two hypersparse matrices uses a new O(nnz) data structure, called DCSC for
doubly compressed sparse columns, which is explained in Sect. 4. After the election
stage, what to do if two clusters tie for the maximum number of votes for a vertex? To
settling ties, we designed a new parallel algorithm which was implemented both in MPI
and in MPI-OpenMP to select the lowest cluster ID to maintain determinism. Lastly, we
implemented this distributed-memory peer pressure clustering based on CombBLAS
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(short for Combinatorial BLAS [10]) which consists of a small but powerful set of linear
algebra primitives specifically targeting graph and data mining applications. By repre-
senting the peer pressure clustering algorithm as sparse matrix computations, it allows
structured representation of irregular data structures, decompositions, and irregular
access patterns in graph applications. These modifications result in a highly-parallel peer
pressure clustering algorithm that scales up to thousands of cores on Dawning
supercomputer.

Our main contributions in this paper are as follows:

• We present a highly parallel algorithm for peer pressure clustering on
distributed-memory system using matrix algebra.

• We present a matrix-based parallel algorithm for settling ties which is an important
step in each iteration of the peer pressure clustering algorithm.

• We provide both a MPI implementation and a hybrid MPI-OpenMP implementation
of the parallel peer pressure clustering. On synthetic graph, our algorithm was tested
on a R-MAT [11] graph with 2.1 million vertices and 18.3 million edges.

The structure of the following sections will be as follows. Section 2 will introduce
the standard peer pressure clustering algorithm and its matrix algebra representation.
Section 3 will explain our parallel peer pressure clustering based on CombBLAS in
detail. Section 4 will show the numerical experiments and discussions, and lastly the
conclusion.

2 Preliminaries

In this paper, we represent a graph G ¼ V ;Eð Þ with N vertices and M edges by an
N � N adjacency matrix which has the property A vi; vj

� � ¼ 1 if there is an edge eij
from vertex vi to vertex vj and is zero otherwise. The number of non-zero entries in A
corresponds to the number of edges in the graph G.

2.1 Standard Peer Pressure Clustering Algorithm

Peer pressure clustering [12] capitalizes on the fact that given any reasonable cluster
approximation for the graph, a vertex’s cluster assignment will be the same as the
cluster assignment of the majority of its neighbors. If the incoming edges to each vertex
in this graph are examined to determine from which cluster they originate, this clus-
tering can be considered suboptimal. Each vertex has a majority of incoming edges
originating from its own cluster. Traditionally, peer pressure clustering is performed by
iteratively refining a cluster approximation for the graph. Given a cluster approxima-
tion, each vertex in the graph first votes for all of its neighbors to be in its current
cluster. These votes are then tallied and a new cluster approximation is formed by
moving vertices to the cluster for which they obtained the most votes. The algorithm
typically terminates when a fixed point is reached (when two successive cluster
approximations are identical). Algorithm 1 shows the recursive definition for peer
pressure clustering.
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In Algorithm 1, the loop at line 1 is responsible for the voting, and the loop at line 3
tallies those votes to form a new cluster approximation. It is assumed that the structure
T is stored as an array of lists, which keeps track of, for each vertex, the number of
votes that vertex gets for each cluster for which it receives votes.

In order to get things going with the peer pressure clustering algorithm, an initial
cluster approximation must be chosen. For graphs that actually contain clusters, the
solution arrived at by the algorithm is highly independent from the initial cluster
approximation. For this reason, a naive starting approximation is that each vertex is in a
cluster by itself. As shown below, where each vertex is in a cluster by itself, suffices to
start things off: for v 2 V, do Ci(v) = v.

In graphs where there is a large discrepancy between the out-degree of vertices,
vertices with a large out-degree will have a larger influence on the cluster approxi-
mations. These vertices will have more votes in each cluster refinement because they
have more outgoing edges. This can be easily remedied by normalizing the votes of
each vertex to one. This can be done by summing up the weights of the outgoing edges
of each vertex, and then dividing those weights by that sum.

Line 4 of Algorithm 1 does not specify what to do if two clusters tie for the
maximum number of votes for a vertex. This can be done in a deterministic manner by
selecting the cluster with the lowest number. This deterministic method also helps to
speed the algorithm to convergence by having all vertices choose the same “leader” for
their cluster early in the algorithm.

2.2 Peer Pressure Clustering Using Matrix Algebra

While the graph is represented as a weighted adjacency matrix, G ¼ A: RN�N
þ , the

clustering algorithm can be performed in the same manner. Let C : BN�N be the cluster
approximation, where if cij ¼¼ 1, then vertex j is in cluster i. With this representation,
voting can be expressed as a simple matrix multiplication: T = CA. Here T represents a
tallying matrix where if tij ¼¼ k, then there are k votes for vertex j to be in cluster i.
Once the votes have been performed, the new clusters need to be selected. This can be
done with the following operations: m = T max: (m is an array where each array
element stores the count of maximum vote in each column), Cf = m: == T (Performing
logical AND operation between array m and each row of matrix T to get the cluster
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approximation matrix Cf in this iteration). Here the max vote for each vertex in each
cluster is found, then the cluster approximation is set appropriately according to that
value. Algorithm 2 shows the matrix-based peer pressure clustering algorithm. Line 2
performs the voting, and lines 3 and 4 tally those votes to form a new cluster
approximation.

As before, an initial approximation must be selected. If each vertex is in a cluster by
itself, with the cluster number being equal to the vertex number, then Ci = I. Nor-
malizing the out-degrees of the vertices in the graph corresponds to normalizing the
rows of the adjacency matrix. This can be done as below: w = A + :, A = 1/w :� A.
Settling ties for votes in this clustering algorithm requires selecting the lowest num-
bered cluster with the highest number of votes. In many linear algebra packages, this
simply corresponds to a call to max, finding the location of the maximum values in
each column. Typically, the location corresponds to the first maximum value in that
column, or the smallest cluster number among those who tie for maximums.

2.3 Previous Works on Parallel Peer Pressure Clustering

We are aware of only two results on distributed-memory peer pressure clustering.
Kevin Deweese et al. [3] presented a method to find a global graph metric, clustering
using the peer pressure algorithm, using SPARQL, and they had targeted their code for
a dataset from the Mayo Clinic “Smackdown” project to help identify potential disease
cause. John R. Gilbert et al. [4] argued that many of the tools of high-performance
numerical computing – in particular, parallel algorithms and data structures for com-
putation with sparse matrices – can form the nucleus of a robust infrastructure for
parallel computing on graphs, they demonstrated this with an implementation of peer
pressure clustering using the sparse matrix infrastructure in STAR-P. All the parallel
implementations listed above were scaled up to 128 cores at most (SPARQL: scale up
to 64, STAR-P: scale up to 128), and showed no specific speedup and scalability.
However, it implied that they did not actually achieve good parallel performance using
STAR-P [4].

Parallel Peer Pressure Clustering Algorithm 109



3 Parallel Peer Pressure Clustering

3.1 Data Distribution and Storage

We use CombBLAS framework which distributes its sparse matrices on a two
dimensional pr � pc processor grid. Processor P i; jð Þ stores the sub-matrix Aij of
dimensions m = prð Þ � n = pcð Þ in its local memory. The Combinatorial BLAS uses the
doubly compressed sparse columns (DCSC) format to store its local submatrices for
scalability. DCSC is a further compressed version of CSC where repetitions in the
column pointers array, which arise from empty columns, are not allowed. Only col-
umns that have at least one nonzero are represented, together with their column indices.
The HyperSparseGEMM operates on the strictly O(nnz) doubly compressed sparse
column (DCSC) data structure, and its time complexity does not depend on the matrix
dimension, as opposed to O n

ffiffiffi
p

p þ nnz
� �

memory across all processors for CSC format.
Above all, DCSC is essentially a sparse array of sparse columns, whereas CSC is a
dense array of sparse columns.

3.2 Parallel Peer Pressure Clustering Algorithm

We present a parallel algorithm for peer pressure clustering on distributed-memory
system using CombBLAS primitives, showed in Algorithm 3, and design a parallel
algorithm to settling ties which is an important step in the peer pressure clustering.

Line 1–4 perform the process of assuring vertices have equal votes using 3 primitives
in Combinatorial BLAS including Reduce(), Apply(), and Dimscale(), Line 5-8 repre-
sent the iterations of clustering, particularly, line 6 is responsible for the step of voting,
Line 7 shows the step of renormalize, which assures the elements in T matrix remain to 1
or 0. Line 8 perform the step of settling ties that select the lowest numbered cluster with
the highest number of votes in T matrix which shows the voting result in this iteration.
The following sections will describe the parallel algorithms used in these steps.
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3.3 Algorithm Expansion

(1) Parallel voting

For voting, we employ the SpGEMM algorithm called Sparse SUMMA which is
showed in Algorithm 4. The coarseness of the algorithm can be adjusted by changing
the block size 1� b� gcdðk=pr; k=pcÞ. The pseudo code, however, requires b to evenly
divide k=pr and k=pc for ease of presentation.

The Broadcast ðAic;Pði; :ÞÞ syntax means that the owner of Aic becomes the root and
broadcasts its submatrix to all the processors on the ith processor row. Similarly for
Broadcast ðBrj;Pð:; jÞÞ, the owner of Brj broadcasts its sub matrix to all the processors
on the jth processor column. In lines 6–7, the local column (for A) and row (for B)
ranges for matrices that are to be broadcast during that iteration. They are significant
only for the broadcasting processors, which can be determined implicitly from the first
parameter of Broadcast. Here B is indexed by columns as opposed to rows, because it
has already been locally transposed in line 2. This makes indexing faster since local
submatrices are stored in the column-based DCSC sparse data structure. The HyperS-
parseGEMM in line 10 uses an outer-product formulation whose time complexity is
O(nzc(A) + nzr(B) + flops(AB)�lg(ni)), where nzc(A) is the number of columns of
A that are not entirely zero, nzr(B) is the number of rows of B that are not entirely zero,
flops(AB) is the number of nonzero arithmetic operations required to compute the
product AB, and ni is the number of indices i for which A(:, i) 6¼ ∅ and B(i, :) 6¼ ∅.
The extra lg(ni) factor in the time complexity expression originates from the priority
queue that is used to merge ni outer products on the fly. The overall memory require-
ment of this algorithm is the asymptotically optimal O(nnz (A) + nnz (B) + nnz (C)),
independent of either matrix dimensions or flops.
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(2) Renormalization

In this step, we leverage two primitives in CombBLAS to assure the elements in
T matrix remain to 1 or 0. As shown in Algorithm 5.

(3) Parallel settling

We design and implement matrix-based algorithms to settle ties in a MPI version and a
hybrid MPI-OpenMP version respectively, showed in Algorithms 6 and 7. In this stage,
we select the lowest numbered cluster with the highest number of votes.

In Algorithm 6, CreatVec() constructs a vector where each element is corre-
sponding to each column in T matrix. If the values in some columns contain 1, then its
processor ID will be tallied to its corresponding element in the vector. Otherwise, the
maximal integer will be tallied. In line 3, MPI_Allreduce() is executed on every pro-
cessor column to select the lowest numbered processor with the corresponding value of
1 in each vector of every processor column. In line 4 (PruneMat()), a new matrix is
generated which represents the clustering result in this iteration according to the new
vector, called min_v, generated in line 3.
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Algorithm 7 is the hybrid MPI-OpenMP implementation of our ties-settling algo-
rithm. We provide the intra-node multithreading in step 1 (CreatVec()) and step 2
(PruneMat()) using OpenMP respectively.

4 Numerical Experiments

4.1 Environment and the Input Graph

A Dawning supercomputer is used for our experiments. Its nodes are interconnected
with Intel Omni-Path network. Each compute node is equipped with 64 GB RAM and
two 12-core 2.5 GHz Intel E5-2680 processors. Its MPI implementation is based on
Mvapich2. We used OpenMP for intra-node multithreading and compiled the code with
icc –O2 –fopenmp flags. In our experiments, we only used square process grids
because rectangular grids are not supported in CombBLAS now. For the settling ties
part with MPI-OpenMP implementation, we used 8 threads per MPI process and each
MPI process was placed on a processor. All MPI processes perform local computation
followed by synchronized communication rounds.

The input is a permuted R-MAT graph of scale 21, with self-loops added, con-
taining 2.1 million vertices and 18.3 million edges.

4.2 Experiment Results

(1) MPI implementation

Figure 1 shows the total run time of MPI implementation. It took less than a minute to
cluster the graph on 1024 cores, while more than 12 h was spent to cluster on a single
processor. Our algorithm achieves up to 809.6x speedup on 1024 cores. Figure 2
shows the speedup gained from 4 to 1024 cores for this version. It is a linear scale.

Fig. 1. The run time of MPI version when clustering an R-MAT graph of scale 21.
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(2) MPI-OpenMP implementation

Figures 3 and 4 respectively show the total runtime and speedup of our MPI-OpenMP
implementation. On 2048 cores, we were able to cluster this graph in less than a minute.
The same graph takes more than 12 h to cluster on a single processor. Our hybrid
implementation achieves up to 949.5x speedup on 2048 cores of a Dawning
supercomputer.

Fig. 2. The speedup of MPI version when clustering an R-MAT graph of scale 21.

Fig. 3. The run time of MPI-OpenMP version with an R-MAT graph of scale 21.

Fig. 4. The speedup of MPI-OpenMP version with an R-MAT graph of scale 21.
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4.3 Discussions

From the above speedup figures of the MPI version and hybrid version, it shows the
good scalability of the two implementations. The parallel efficiency of the MPI version
running on 1024 cores of the Dawning supercomputer achieved 79.1%, compared with
46.4% on 2048 cores for hybrid version. For the hybrid version with MPI and
OpenMP, the parallel efficiency on the cores from 8 to 2048 is small declining from
50% to 46.4%.

In our current MPI version, there is a limit on the core numbers can be used. It
should be the product of two numbers of the same value. There are two reason causes
this limit. One reason is that the number of columns is equal to the number of rows.
The other is that the current version based on CombBLAS uses even distribution
between processor cores. For the same reasons, the number of cores that the hybrid
version can be used is also limited. To provide more flexibility on the number of cores
can be used is the future work.

5 Conclusion

Results of the experiments obtain satisfied speedup and parallel efficiency, and prove
the feasibility and validity of this distributed algorithm for peer pressure clustering. In
this work, we showed that matrix-algebraic primitives enabled our algorithms to
achieve high speedups to thousands of processors.

Currently, our settling ties step together make up more than 99% of the total
running time. Future work includes developing a faster, lower communication algo-
rithm for settling ties, that dominate the performance at large concurrencies in both
MPI and MPI-OpenMP implementation.
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Abstract. We introduce a skip list, T-list, that updates the index on the
search process by recording critical positions in the traverse of the index
nodes. T-list uses a step counter to decide when and where to build
a new index node and guarantees that the index node is generated in
critical position unlike the probabilistic skip list, resulting in an efficient
index structure. Meanwhile T-list does not enforce strong constraints to
the overall structure unlike the deterministic skip list, thus eliminates a
lot of maintaining work. Worst case in T-list can be efficiently repaired
by a few requests that traverse the most part of list. Building a new
index node in T-list only modifies the contents of two adjacent nodes,
enabling the algorithm friendly to concurrent accessing. Experimental
results show that compared to the skip list used in a popular application
- LevelDB, T-list can construct a more efficient and stable index structure
and the insertion and search performances are improved by 17.8% and
33.3% respectively. T-list also scales well with the threads number in the
multi-core machine.

Keywords: Skip list · Concurrent list · Key value store · Index structure

1 Introduction

Skip list is a structure that is easy to implement and allows fast search and
insertion, originally introduced by Pugh et al. [15] as an alternative to the bal-
anced tree. A standard skip list comprises multiple layers of nodes. The bottom
layer contains the inserted nodes each with a unique key and the user data (i.e.,
value). The nodes in a higher layer can be regarded as a subset of the lower
layer but only contains the keys and pointers to other nodes and act as indexes.
A new node is first inserted into the bottom layer and gets a height in proba-
bility, then in each layer within the height a indexing node with the same key
is also created. Due to the simplicity of concept and easiness of implementa-
tion, skip list has been adopted by many LSM-tree based key-value stores such
as BigTable [1], HBase [7], Cassandra [11], LevelDB [4], and MemSQL [17]. In
different use scenarios it plays different roles. For example, in LevelDB the new
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inserted key-value pairs are stored in a skip list that is a part of the whole user
data, while MemSQL uses skip list as a secondary index [12] for its clustered
user data.

State-of-the-art implementations of skip lists are categorized into two classes
with respective shortcomings. The first one is styled by the implementations
based on the original idea that generates height by probability, called proba-
bilistic skip list. Although probability mechanism can expect to obtain the logN
search complexity [15], it lacks stability and is not easy for purposely optimiz-
ing, such as space locality, because a new node gets its height independently
without considering the status of the nearby nodes and is not to be changed
in the future once determined. Defective index nodes that degrade the indexing
efficiency can also be generated unpredictably. The other class consists of the
implementations that enforce a set of predefined rules and constraints to the
structure, called deterministic skip list. On each update to a node, the deter-
ministic list forcedly adjusts its whole structure to restore the defined rules.
Since the adjusting process leads to many check operations and must maintains
information of nearby nodes, the deterministic list is complex to implement and
not friendly to concurrent accesses in multi-thread environments.

In this paper we present T-list, a skip list construction algorithm that
maintains loose rules on the overall index structure when new node joins, but
strengthen it gradually on the processing of search requests. Since an insertion
operation always executes a search phase to determine the position for insert-
ing, the index structure can also be built up under 100% insertion workload.
When processing operations that may change the structure, T-list only modifies
at most two nodes on a layer, making it multi-thread friendly because a write
operation only involves locking of two adjacent nodes on a single layer. T-list
may generate thin index structure for particular requests sequence. For instance,
T-list does generate index for a reversely ordered sequence of keys because the
search phase for each insertion needs only on step. However, the index can be
built up if some search requests that need more steps are processed. In other
words, T-list generates the index on need, which can be a better choice for the
memory component of the LSM-tree based key-value stores mentioned above.

The rest of the paper is organized as follows. In Sect. 2 we briefly discuss the
related works. The design and implementation are detailed in Sect. 3. Section 4
presents the evaluation results. At last we conclude the work and discuss future
plans in Sect. 5.

2 Background and Related Works

Three basic operations are defined on a general list structure, insertion, search
and deletion. The insertion and deletion operations always need a search phase
to determine where to insert the new node or which node to delete. Based on
the basic operations, skip list has been researched for fast searches as well as for
favorable concurrent insertions.
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Pugh et al. first presented the skip list [15] as an alternative to tree struc-
ture for its expected logN search complexity and implemented a lock-based
concurrent version [14]. Munro et al. [13] proposed to enforce pre-defined rules
on the skip list, to achieve deterministic structure. One of deterministic struc-
ture is the 1–2 skip list that adjusts the structure each time after inserting a
new node to hold the rules non-violated by recursively inspecting the nearby
information until the whole structure became balanced. Another construction
method introduced in this paper was the top-down 1-2-3 skip list, which can
be regarded as a remedy policy that repairs the structure in the next time and
the distance of any two nodes is allowed to be 3 even if it has the equivalent
property with 1-2 skip list. T-list is similar to the top-down list in that it moves
the index building work to the search phase, and the insertion operation finishes
immediately after linking the new node into the bottom layer. However, the
top-down list must check the total number of nodes in the gap from which the
search process descends, and adjusts the structure to keep the nodes between the
gap not exceeding the predefined value (i.e., 3 for the 1-2-3 list). Instread, T-list
counts the steps when the search progresses and raises the height of a node when
the steps reaches to the predefined value without inspecting all nodes between
the gap. Other works are optimizations based on the above concepts and most
of them focus on concurrent environment. Herlihy designed the lock-based skip
list [10] that is built on the lazy-list [8], which acquires locks for all nodes that
need to be modified when inserting or removing nodes. Non-blocking concur-
rent mechanisms [3,5,9,19] achieves concurrency by using atomic instructions.
Skip lists are also used in network environments. Singh et al. presented the algo-
rithms for achieving concurrency in a distributed deterministic 1-2 skip list [18]
and a self-stabilizing peer-to-peer network maintenance algorithm is designed by
Clouser et al. [2].

Except the above works, skip lists are also adopted by key-value stores as
the in-memory component. For example, LevelDB, a popular key-value store,
implements a probabilistic skip list (Lev-list) as the in-memory structure [4]. In
Lev-list a configurable variable referred to as branch (default to 4) controls the
general structure. A new node gets a height by the probability related to the
value of branch. Such as, the branch value set to 4 means the height will be 2 in
probability of 1

4 , and be 3 in probability of 1
42 , and so on. This results a list in

which a layer expects to have 1/4 nodes of the layer under it, and the list height
expects to be log4N in which N is the total number of nodes in the bottom layer.
Lev-list does not explicitly implement deletion operation but instead marks the
node as deleted, known as logical deletion [3,6,16]. The deletion marker is also
useful in LevelDB for removing keys that exist on the disk. The lifetime of Lev-
list is temporary, as it is periodically transformed and destroyed, and a new
empty list is created to receive new requests.

With a study of these researches and the practical implementations, we found
that the probabilistic skip list is easy to implement because of no need to main-
tain rules on the overall structure, but has degraded performance for its non-
perfect index structure, while deterministic skip list is the other way around.
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The design of T-list aims to resolve the shortcomings that exist in the proba-
bilistic skip list and the deterministic skip list, in order to make a better trade off
in practical use case such as LSM-tree environment. Probabilistic skip list builds
the index without knowledge of the nearby nodes, leading to defective index-
ing nodes that degrade the search efficiency. In the contrary, deterministic skip
list enforces special rules and constraints on the structure and performs check
operations based on the intensity of nearby nodes, leading to heavy maintain-
ing work. T-list decouples the insertion operation to two distinct phases, search
and linking. The search phase traverses the list to find a bottom node after
which the new node should be linked. In the process of traversing, indexes are
built by the traverse steps. The linking phase simply links the new node to the
bottom layer.

3 Design and Implementation

3.1 Structure Overview

We start with a figurative description of the structure overview of T-list. First
let us assume a sorted link list without indexing structure on it. For each search
request, it must traverse the list nodes one by one until it finds a key equal or
greater than the requested key. Now we regard each node as a station, and the
link between two adjacent nodes as a path. The search request is performed by
a traveler who walks along the path station by station to find the target station
that contains the requested key. Walking from one station to the next is counted
as one step. Each time when he have walked a fixed number of steps (e.g. two)
he will want to build a higher station in the higher path that is more convenient.
Next time when the traveler accepts a search request he will first walk along the
higher path on which he walks faster than along the lower one, until to a station
he must go down. The point is that when he traverses on the higher path he as
well keeps building more higher stations if he walks the fixed number of steps.
Insertion request is served in such a way that after finding the insertion position
on the bottom path the new node (station) is simply linked.

In the remained of the paper, when we say a node or station on the bottom
path, they have the same meaning, except that node is used when we refer to a
key while stations is used when we refer to traversing. Figure 1 shows a simple
T-list example with 8 nodes/stations on the bottom path. Each station on other
paths at the same vertical line contains a pointer to the node so the key can be
accessed quickly anywhere on the search process.

The fixed number of steps in the above description is defined as span of the
list, which has the equal role as the branch in LevelDB. A span of two means
that a higher station is to be built every time when the traveler walks two steps.
All stations on the same vertical line are transportable. That is, each station
contains two pointers to its upper and lower stations respectively. The header
stations plays the same role as the others except that it does not contain a key.
The last station in each path points to null. The height of the list is determined
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Fig. 1. A T-list example with the span configured to 2. A step on a path usually means
two steps on its lower path.

by the highest path. A blank path above the highest path is set with the header
station as the last station. The blank path is used for assisting adding station
and is not counted for the height.

3.2 Search Procedure

Before introducing other operations, we first give a brief description of how
to search a key in T-list. Search operation in T-list has two versions. One is
called PureTravel that works the same way as in common skip lists. The other
is called BuildTravel that is the core function in T-list, which plays the role of
constructing the indexing structure.

PureTravel begins from the highest path and descends at a station if it is
the last station on the path or its next station contains a greater key than the
target, until finally it descends to the bottom path. Traveling on the bottom path
will report the search result. If no key is found, the last node that has a lesser
key than the target will be returned (Fig. 2 targeting the key 26), otherwise the
node with the key matching the target is returned. Matching can also be met
on other paths above the bottom, in which case the matching node is returned
immediately.

1 4 5 11 13 18 25 32

NotFound

0

1

2

Fig. 2. PureTravel to Find the Key 26. The traveler begins at path 2 and ends at path
0 with the node 25, because the next node of node 25 has a greater key than the target.
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BuildTravel is based on PureTravel, besides that it maintains two mark-
ers when the search traverses on the path and calls BuildStation when nec-
essary. One marker is the step counter which indicates how many steps the
traveler has walked. Each time the counter reaches the configured span value,
the BuildStation function is called to build a station on top of the current sta-
tion (referred to as base station) the traveler suspends on. BuildStaion assures
whether the station should be indeed built (check). If the check is passed, a sta-
tion is built, i.e. adding a higher station on the top of the base station. The other
marker is a station pointer that always points to the higher station from which
the traveler lastly descends (pre higher station). At the beginning of the search,
the pre higher station points to the header station on the blank path. The step
is reset to 0 each time the descending occurs or after the BuildStation is called.
An example is illustrated in Fig. 3, in which we assume the key 33 is searched
and the pre higher station is pointing to the node 18 in path 1 when the traveler
walks to 32. At this time, BuildStation is called since the step counter reaches 2.

1 4 5 11 13 18 25 32

pre-higher-station

1

1

1 2

step

0

1

2

Fig. 3. When searching to the node 32, the step counter reaches 2 (span of the list),
so the BuildStation function is called to build station on it and the new station will be
linked after pre higher station (node 18 in the path 1)

The BuildStation function only needs the base station and pre higher station
to know where to build the new station. It first checks whether the station should
be really built. If the station next to the base station has a higher station, the
checking would fail and the building operation is canceled, avoiding redundant
station in the higher path. In a special case when the check is passed and the
higher path is the blank path, meaning that the new built station will make
the blank path non-blank, the height of the list will be increased by 1. T-list
guarantees the new station is not redundant and has accurate span with the
pre higher station. In any case, the step counter is reset to 0 after the BuildSta-
tion returns.

3.3 Insertion Procedure

The list is initiated as an empty list that only has the header node pointing to
null. This empty list still has a path 0 (the bottom path) and a blank path above
it, and its height is regarded as 1. In other words, the path 0 of an empty list
has the same structure as the blank path.
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An insertion operation is decoupled to two phases: (1) Searching the position
on the path 0 where the new key should be placed, and (2) Linking the new
node into the location. The location should be between two adjacent nodes that
the previous one has the key lesser than the new key and the next one has the
key greater than the new key, or the next one is null. The search phase is the
main work of the insertion operation and is accomplished by BuildTravel in our
implementation, and the linking phase is a simple operation just linking the new
node in the found location.

The BuildTravel is called in the search phase of insert operation because
potentially higher stations may need to be built as the new joined node increases
the number of the bottom stations. Theoretically, the stations built by Build-
Travel have no benefits to the calling search process. However, the new node
can be taken into consideration in the later building procedures if any request
executes BuildTravel across it. There can be a T-list with a thin index structure
even if the path 0 has many nodes under special workloads, but this situation
is the result that the processed requests need no long travelling. The thin index
structure can grow to be strong if a few requests have traveled most part of the
list. For example, T-list provides a Perfect function that at most needs logN
requests to make a perfect index structure on a bare list that only has one path
(path 0) with N nodes. One can execute the insertion process by calling Pure-
Travel, and running the BuildTravel with background threads to build index.
However, our experiments showed that running the BuildTravel background is
not always prompt to satisfy search efficiency of the insertion.

3.4 Concurrent Operations

We implement a lock-based concurrent mechanism for multiple threads to oper-
ate the list without breaking the list structure. As the PureTravel only reads the
memory content, we leave the threads free to do such operations. The concurrent
mechanism focuses on resolving multiple threads contenting for adding stations
to the list.

In summary, the BuildStation operation and the linking operation are two
actions that modify the structure of T-list. The BuildStation only adds new sta-
tions in non-bottom paths at a time, while the linking only adds a new station
(node) to the bottom path. With this property in mind, we design a simple con-
trol mechanism that allocates one lock for each path, defined as path lock(PL).
Actually, fine grained lock can be applied on T-list to enable multiple threads
operating concurrently on a same path. There are totally the max height (i.e. 40)
number of PLs initiated for use, each responsible for a path.

The following steps are executed by a thread in order to add a station.

(i) Decide to add a station. This indicates that the thread has determined to
add a station X on path i between two adjacent stations A and B.

(ii) Acquire the lock on path i (PL[i]). If other threads are changing the struc-
ture on path i, this thread must wait.
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(iii) Reconfirm the real location of the new station if the lock is got. There is
possibility that other threads have added stations between A and B, so it
is necessary to reconfirm whether it is needed to add this new station and
where to add it. The reconfirming is done by looking forward the path i
from station A until it meets a station whose key is greater than that of
station X. This station is marked as station B′, and the station previous to
it is marked as station A′.

(iv) Check if it is really needed to add station between station A′ and B′. If the
check is passed, the station would be linked between A′ and B′, otherwise
nothing is done.

(v) Release PL[i].

When a thread decides to call BuildStation on a particular path i(0 ≤ i ≤
height), it first records the station (station A) after which the new one will be
linked, and then acquires the lock PL[i]. After path i has been locked, no other
threads can change the structure on it, therefor the following operations can
be done safely with no disturbances. However, other threads may have added
new stations on path i when the PL is acquired, and the real position may
turn to be the new station added by other threads. In this case if the thread
directly adds its new station, the structure would be broken. To avoid this, a
look-forward operation is done to find the real position. After the look-forward,
the new station can be safely added, because this operation is done under the
lock, other threads can not disturb the operation.

3.5 Other Implementation Issues

In this section we talk about some other implementation issues in T-list. Dele-
tion operation in the prototype of T-list is implemented by logically marking the
node as deleted, while all the stations on it are preserved for indexing. There are
physical deletion discusses in the top-down skip list [13] and other works [3,10].
In the practical use case as in LevelDB, the deletion operation is a special inser-
tion operation targeting the same key but replaces the value with a deletion
marker, which can be regarded as a logical deletion mechanism. We also imple-
ment Perfect function to build a perfect indexing structure for the list. This
function traverses all the paths from bottom to top by a modified BuildTravel
function. The Destroy function is a cleanup procedure after the list life ends. It
releases all the resources the list has acquired from the OS.

4 Evaluation

We evaluate T-list with the following purposes:

– Examine the performance of T-list for different workloads.
– Verify the structure property generated by T-list.
– Evaluate the performance scalability for increasing number of the threads.
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In the basic evaluation experiments, we compare the results with the skip-list
used in LevelDB, which is a single-thread version. To make the comparison fair,
we extract the code only related to the skip list structure from LevelDB and
make it only serve integral keys. This list will be referred to as Lev-list in the
following text. The configuration of branch in Lev-list had the same effect as the
span in T-list, and their values had the equivalent influence on the structure,
so we used the word span to refer both configurations. We then evaluate the
scalability for increasing threads of T-list.

Our evaluation experiments are executed on a machine equipped with Intel
Xeon Processor E3-1270 v2 (8M Cache, 3.50 GHz) which supports eight threads
and four 8-GB DDR3 memory cards. Each experiment is run 5 times and the
average value is computed as the final result.

4.1 Performance

We used three kinds of workloads to evaluate the performances of the two
structures.

(1) 100% put. All operations are insertion requests.
(2) 100% get. All operations are search requests.
(3) 2:8 hybrid. For each incoming request, the probability of insertion is 20%

and search is 80%.

The put workload fills the list from blank to the given size by random keys
with uniform distribution. The get workload searches a million random keys
from the list that is filled by the put workload. The hybrid workload fills the list
in the same manner as the put workload, except that a lot of search requests
are mixed in the process. The size of the list is varied in different number of
keys(from 103 to 108). The span is configured with two different values, 2 and
4. Each experiment selects a workload, a list size, and a span value to run.
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Fig. 4. Normalized performance with different sized lists. For 100% put, the list is
inserted with random keys from blank to the size. For 100% get, the list is first con-
structed by 100% put to the size, and then search 1 million random keys. For 20% put
80% get, every operation is determined by this ratio and 5 times the size operations
are processed.

Fig. 4a and b give the results of all the experiments normalized by Lev-list
grouped by the list size, with span configured to 2 and 4 respectively. We can
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see that when span = 2, T-list has better performance in all cases. When span is
configured to 4, T-list also performs better except when the list size is 105 and
106. As T-list builds index stations on the search phase when inserting a node
and generates faster paths for later operations, its advantage may not show up
when the list size is small under the put workload. When the list size increases,
T-list can build a stable index structure and a single insert operation benefits
well from it. Lev-list uses probability mechanism to build index nodes that can
have varied list height in a same experiment. Figure 5 demonstrates the height
variances that are calculated from the put workload experiments. Although Lev-
list has the expected height for a given list size, it intends to generates a more
higher structure than the expected value, which makes the search operations
traverses more paths to the bottom. This can be reflected from the result of
the get workload, in which T-list always performs better than Lev-list in any
cases no matter the span value. As the get workload works on a static list, the
experiment results can reflect that T-list generates a more perfect and efficient
index structures.
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Fig. 5. Height variance of constructing different sized lists. The result comes from
the 100% put workload. Every experiment is repeated five times and the heights are
recorded for computing the variance.

4.2 Multi-thread

We use the put and get workloads introduced above to evaluate the concurrency
of T-list. The threads number is varied in 1, 2, 4 and 8. The span is configured
to 2. For the put workload, each experiment creates a number of threads by the
configuration and all of them perform random insertions to the list until the
list reaches the defined size. For the get workload, firstly one thread is used to
fill a list with a defined number of random keys, then a number of threads by
the configuration are created to do random searches on the list until totally 10
million requests are processed.

Figure 6a and b show the results of the put and get workloads with different
threads running on varied sized lists. The figures show that, while multi-threads
is more efficient for the large sized list, it degrades the performance when the
list size is small. This is comprehensible since there are overheads of the threads
management work, which emerge to be significantly when the overheads on nor-
mal operations are small.
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Specifically for the put workload, a lock is shared in all threads for adding a
station on a same path. In small sized list the threads are more likely to contend
for locks because only few paths can be operated at the same time. With the
list size increasing, the overheads for contending locks are distributed as the
search route becomes long. As search operations do not need to acquire locks,
theoretically they do not suffer the contention overheads that are significant in
the small list. However, the scalability of multi-threads for the get workload also
is achieved when the size increases. This can be resulted from the high proportion
of scheduling overheads in concurrently accessing small portion of data.

●
●

●

●

●

●50
0

15
00

25
00

35
00

Th
ro

ug
hp

ut
 (x

10
00

 O
Ps

/s
)

1000 10000 1e+05 1e+06 1e+07 1e+08

●

Threads
1
2
4
8

(a) Multi-thread Put

●

●

●

●
●

●

20
00

60
00

Th
ro

ug
hp

ut
 (x

10
00

 O
Ps

/s
)

1000 10000 1e+05 1e+06 1e+07 1e+08

●

Threads
1
2
4
8

(b) Multi-thread Get

Fig. 6. Threads scalability in different sized lists, the span configured to 2. The threads
number are varied from 1 to 8. For the put workload, different number of threads are
created and they concurrently insert random keys to the list until it reaches the size.
For the get workload, a list is first created to the determined size by one thread with
random keys, and then different number of threads are created to do concurrent search
operations in this list (totally a million random keys are processed).

5 Conclusion

In this paper we introduce and implement a skip list construction algorithm,
called T-list, that employs a special search procedure to build indexes accord-
ing to the traversing steps on the search progress. Building-on-search makes the
index construction work distributed on the search phases so as the heavy oper-
ations on the new nodes are relieved. Besides, T-list maintains loose constraint
rules to make the index structure self-adjustable according to the workload
patterns for insert-intensive workloads. On the other hand, concurrent opera-
tions can benefit from T-list as each update to the structure only needs to lock
two nodes on a single path. The evaluations on the prototype show that T-list
achieves better performance than the skip list used in LevelDB. For multi-core
environments it also performs well in the scalability with the increasing number
of threads.

Nevertheless, more potential properties can be exploited from T-list. As the
real-world workloads are varied, a more intelligent algorithm that can fit varied
environments is worthwhile to be studied. We plan to improve the algorithm in
the future by leveraging its adjustable characteristic to make it aware of and
intelligent to the complex and varied use cases.
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