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Abstract In this chapter, we discuss recently developed methods for characteriz-

ing the dynamics of recurrent neural networks. Such methods rely on theory and

concepts coming from the field of complex systems. We focus on a class of recur-

rent networks called echo state networks. First, we present a method to analyze and

characterize the evolution of its internal state. This allows to provide a qualitative

interpretation of the network dynamics. In addition, it allows to assess the stability

of the system, a necessary requirement in many practical applications. Successively,

we focus on the identification of the onset of criticality in such networks. We discuss

an unsupervised method based on Fisher information, which can be used to tune the

network hyperparameters. With respect to standard supervised techniques, we show

that the proposed approach offers several advantages and is effective on a number of

tasks.
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1 Introduction

Since the very first recurrent neural network (RNN) architectures, several attempts

have been made to describe and understand their internal dynamics [64]. Nowadays,

such efforts found renewed interest by those researchers trying to “open the black-

box” [26, 45, 46, 49]. This is mostly motivated by recent advances in various fields,

such as neuroscience [10]. In fact, understanding the inner mechanisms that drive

the inductive inference is of utmost importance for deriving novel scientific results

[48].

Research on complex dynamical systems is focusing more and more on networks

characterized by time-varying properties [2], which can be related to the topol-

ogy and/or features associated with vertices and edges (e.g., states of networked

dynamic systems). Of particular interest are those systems that also perform a com-

putation when driven by an external stimulus. RNNs, initially proposed in the 80s

[12, 42, 60], offer an example of those systems. RNNs are universal approximators

of Lebesgue measurable dynamical systems [15], with the capability of storing the

history of input signals and utilize such information for prediction [8, 23, 40, 50].

While in principle RNNs are characterized by a simple, yet powerful and flexible

model, in practice they are hard to train. In fact, in order to learn the internal con-

nection weights, the network designer has to face a series of technical issues [36].

The most important obstacles are due to the vanishing and exploding gradient [3].

In this chapter, we focus on a particular class of RNN, called Echo State Network

(ESN). The main peculiarity of ESNs is that the recurrent part, called reservoir, is

randomly generated and the connection weights are kept fixed. The only part that is

trained is the so-called readout, a memory-less component that combines the neuron

activations of the reservoir in order to reproduce a suitable output, according to the

specified task at hand. ESNs not only benefit from the presence of feedbacks like

any other RNN (the feature which gives to the system the capability to model any

complex dynamic behavior) but their sparsely interconnected reservoir of neurons

leads to a very fast and simple training procedure. In fact, unlike the complicated

and time consuming training process required by standard RNNs, a simple linear

readout can be used to solve efficiently a great variety of tasks. On the downside,

ESN is characterized by a short-term memory, making it unsuitable for application

when long-term correlations must be modeled [37].

Even if ESNs offer an important simplification for what concerns training, they

depend on hyperparameters affecting their behavior; additionally, their modus

operandi is still not fully understood and it represents an actual object of study

[6, 49]. An ESN can generate complex dynamics characterized by sharp transi-

tions between ordered and chaotic regimes. Several experimental results suggest that

ESNs achieve the highest information processing capabilities exactly on the edge of

this transition, called edge of criticality, resulting in high memory capacity (stor-

age of past events) and good performance on the modeling/prediction task at hand

(low prediction errors) [1, 5, 21, 39, 54, 58]. To determine such “critical” network

configurations, an ESN requires fine tuning of its controlling hyperparameters. This
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general behavior is in agreement with the widely-discussed “criticality hypothesis”

observed in many biological (complex) systems [14, 16, 41, 43, 51], including the

brain [9, 32, 35, 52, 53]. In fact, it was noted [34] that such complex systems tend to

self-organize and operate in a critical regime. Investigating weather a given complex

system operates more efficiently in the critical regime or not, requires theoretically

sound methods for detecting the onset of criticality [44].

Best-performing network configurations are typically identified through super-

vised methods, such as cross-validation and alike. In this chapter, we present recent

research results [6, 22] that focus on unsupervised approaches to characterize ESN

dynamics and to identify the edge of criticality. These approaches do not require a

validation set, an important limitation in several applications, with scarce amount

of data. Another issue of validation procedures is the need to repeat training for

each hyperparameter configuration taken into account. Through the proposed unsu-

pervised approaches, hyperparameters are tuned in advance and training is per-

formed just once, at the end. Finally, cross validation considers only the performance

obtained on the given task, treating the network as black box. Instead, the presented

methods offer insights on the functioning, by modeling dynamics with more easily

interpretable tools.

Different unsupervised approaches to identify configurations that maximize ESN

computation capability have been proposed in the literature. These, are quickly

reviewed in Sect. 2 after an overview on the ESN architecture. In Sect. 3, we address

the issue of interpretability of ESN dynamics by relying on recurrence plots and

recurrence quantification analysis [6] to characterize the evolution of the internal

states. When the network is driven by a specific input signal, these instruments can

be used to monitor its degree of stability, for a given configuration of its hyperpara-

meters. In Sect. 4, we define an unsupervised methodology for tuning ESN hyperpa-

rameters by means of sensitivity analyses [22]. In particular, we present a theoretical

framework based on Fisher information matrix [55, 62] and its related connection

with criticality. Conclusions and future research directions are provided in Sect. 5.

2 Echo State Networks

A schematic representation of an ESN is shown in Fig. 1. An ESN consists of a reser-

voir of Nr nodes characterized by a non-linear transfer function f (⋅). At time t, the

network is driven by the input 𝐱[t] ∈ ℝNi and produces the output 𝐲[t] ∈ ℝNo , being

Ni and No the dimensionalities of input and output, respectively. The weight matri-

ces 𝐖r
r ∈ ℝNr×Nr (reservoir internal connections), 𝐖r

i ∈ ℝNi×Nr (input-to-reservoir

connections), and 𝐖r
o ∈ ℝNo×Nr (output-to-reservoir feedback connections) contain

values in the [−1, 1] interval drawn from a uniform distribution.

ESN is a discrete-time nonlinear system with feedback, whose model reads:
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Fig. 1 Schematic depiction of the ESN architecture. The circles represent input 𝐱, state, 𝐡, and

output, 𝐲, respectively. Solid squares 𝐖o
r and 𝐖o

i , are the trainable matrices, respectively, of the

readout, while dashed squares, 𝐖r
r, 𝐖

r
o, and 𝐖r

i , are randomly initialized matrices. The polygon

represents the non-linear transformation performed by neurons and z
-1

is the unit delay operator

𝐡[t] = f
(
𝐖r

r𝐡[t − 1] +𝐖r
i𝐱[k] +𝐖r

o𝐲[t − 1]
)
; (1)

𝐲[t] = g
(
𝐖o

r𝐡[t] +𝐖o
i 𝐱[k]

)
. (2)

Activation functions f (⋅) and g(⋅), both applied component-wise, are typically

implemented as a sigmoidal (tanh) and identity function, respectively. The output

weight matrices 𝐖o
r ∈ ℝNr×No and 𝐖o

i ∈ ℝNi×No , which connect, respectively, reser-

voir and input to the output, represent the readout of the network. The standard train-

ing procedure for such matrices requires solving a straightforward regularized least-

square problem [18].

Even though the three matrices𝐖r
r,𝐖

r
o, and𝐖r

i are generated randomly, they can

be modified in order to obtain desired properties. For instance, 𝐖o
r is controlled by a

multiplicative constant, which in this work is set to 0 to remove the output feedback

connection. 𝐖r
i is controlled by scalar parameter 𝜃IS, which determines the amount

of non-linearity introduced by the sigmoid processing units that is largest around the

origin. In particular, inputs far from zero tend to drive the activation of the neurons

towards saturation where they show more non-linearity. Finally, the parameter 𝜃RC
defines the percentage of non-zero connections in 𝐖r

r, while its spectral radius 𝜃SR
controls important properties, as discussed in the sequel.

2.1 ESN Dynamics and Stability Measures

An ESN is typically designed so that the influence of past inputs gradually fades away

and the initial state of the reservoir is eventually washed out. This is formalized by

the Echo State Property (ESP), which ensures that, given any input sequence taken
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from a compact set, trajectories of any two different initial states become eventually

indistinguishable. ESP was originally investigated in [18] and successively in [61];

we refer the interested reader to [25] for a more recent definition, where also the

influence of input is explicitly accounted for. In ESNs with no output feedback, as in

our case, the state update of Eq. (1) reduces to:

𝐡[t] = f (𝐖r
r𝐡[t − 1] +𝐖r

i𝐱[k]). (3)

In order to study the stability of the network, we compute the maximal local Lya-

punov exponent (𝜆) from the Jacobian of the state update (3) of the reservoir. This

quantity is used to approximate (for an autonomous system) the separation rate in

phase space of trajectories having very similar initial conditions. 𝜆 is derived from

the Jacobian at time t, which can be conveniently expressed if neurons are imple-

mented with a tanh activation function as

𝐉(𝐡[t]) = 𝕀Nr
⋅
[
1 − (h1[t])2, 1 − (h2[t])2,… , 1 − (hNr

[t])2
]T

. (4)

where hl[t] is the activation of the l-th neuron, with l = 1, 2,… ,Nr. 𝜆 is then com-

puted as

𝜆 = max
n=1,…,Nr

1
t
max

t
max∑

t=1
log

(
rn[t]

)
, (5)

being rn[t] the module of n-th eigenvalue of 𝐉(h[t]) and t
max

the total number of

time-steps in the considered trajectory.

Local, first-order approximations provided by Eq. 4 are useful to study the stabil-

ity of a (simplified) reservoir operating around the zero state, 𝟎. In fact, implementing

f (⋅) as a tanh assures f (𝟎) = 𝟎, i.e., 𝟎 is a fixed point of the ESN dynamics. Therefore,

by linearizing (3) around 𝟎 and assuming a zero-input, we obtain from (4)

𝐡[t] = 𝐉(𝟎)𝐡[t − 1] = 𝐖r
r𝐡[t − 1]. (6)

Linear stability analysis of (6) suggests that, if 𝜃SR < 1, the dynamic around 𝟎 is

stable. In the more general case, the non-linearity of the sigmoid functions in (3)

forces the norm of the state vector of the reservoir to remain bounded. Therefore,

the condition 𝜃SR < 1 looses its significance and does not guarantee stability when

the system deviates from a small region around 𝟎 [57]. Notably, it is possible to

find reservoirs (3) having 𝜃SR > 1, which still possess the ESP. In fact, the effec-

tive local gain decreases when the operating point of the neurons shifts toward the

positive/negative branch of the sigmoid, where stabilizing saturation effects start to

influence the excitability of reservoir dynamics [61]. In the more realistic and use-

ful scenario where the input driving the network is a generic (non-zero) signal, a

sufficient condition for the ESP is met if 𝐖r
r is diagonally Schur-stable, i.e., if there

exists a positive definite diagonal matrix,𝐏, such that (𝐖r
r)
T𝐏𝐖r

r − 𝐏 is negative def-

inite [61]. However, this recipe is fairly restrictive in practice as this condition might
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generate reservoirs that are not rich enough in terms of provided dynamics, since

the use of a conservative scaling factor might compromise the amount of memory in

the network and thus the ability to accurately model a given problem. Therefore, for

most practical purposes, the necessary condition 𝜃SR < 1 is considered “sufficient in

practice”, since the state update map is contractive with high probability, regardless

of the input and given a sufficiently large reservoir [63].

2.2 Edge of Criticality

The number of reservoir neurons and the bounds on 𝜃SR can be used for a naïve

quantification of the computational capability of a reservoir [61]. However, those

are static measures that only consider the algebraic properties of 𝐖r
r, without taking

into account other factors, such as the input scaling 𝜃IS and the particular properties

of the given input signals. Moreover, it is still not clear how, in a mathematical sense,

these stability bounds relate to the actual ESN dynamics when processing non-trivial

input signals [25]. In this context, the idea of pushing the system toward the edge

of criticality has been explored. In [5, 20, 21] it is shown that several dynamical

systems, among which randomly connected RNNs, achieved the highest computa-

tional capabilities when moving toward the unstable (sometime even chaotic) regime,

where the ESP is lost and the system enters into an oscillatory behavior. This justifies

the use of spectral radii above the unity in some practical applications.

The stable–unstable transition can be detected numerically by considering the

sign of 𝜆 (5). In fact, in autonomous systems, 𝜆 > 0 indicates that the dynamics is

chaotic. Relative to ESNs, 𝜆 was proposed to characterize reservoir dynamics and

it demonstrated its efficacy in designing a suitable network configuration in several

applications [56, 57]. Further descriptors used for characterizing the dynamics of

a reservoir are based on information-theoretic quantities, such as (average) transfer

entropy and active information storage [7]. The authors have shown that such quan-

tities peak right when 𝜆 > 0. In addition, the minimal singular value of the Jacobian

(4), denoted as 𝜂, was demonstrated to be an accurate predictor of ESN performance,

providing more accurate information regarding the ESN dynamics than both 𝜆 and

𝜃SR [56]. Hyperparameters that maximize 𝜂 generate a dynamical system that is far

from singularity, it has many degrees of freedom, a good excitability, and it separates

well the input signals in phase space [56].

3 Interpreting and Tuning ESN Through Recurrence
Quantification Analysis

Poincaré recurrence provides fundamental information for the analysis of dynami-

cal systems [29]. This follows from Poincaré’s theorem, which guarantees that the

states of a dynamic system must recur during its evolution. Recurrences contain all
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relevant information regarding a system behavior in phase space and can be linked

also with dynamical invariants (e.g., metric entropy) and features related to stabil-

ity. However, especially for high-dimensional complex systems, the recurrence time

elapsed between recurring states is difficult to calculate, even when assuming full

analytical knowledge of the system.

Recurrence Plots (RPs) [11, 27, 29, 30], together with the computation of dynam-

ical invariants and heuristic complexity measures called Recurrence Quantification

Analysis (RQA), offer a simple yet effective tool to analyze such recurrences start-

ing from a time-series derived from the system under analysis. RP provides a visual

representation of recurrence time and its line patterns contain information about

the duration of the recurrence [28]. RPs are constructed by considering a suitable

distance in the phase space and a threshold 𝜏RP is used to determine the recur-

rence/similarity of states during the evolution of the system.

In the following, we address the interpretability issue of ESNs by analyzing the

dynamics of the reservoir neuron activations with RPs and RQA complexity mea-

sures. Techniques based on RPs and RQA allow the designer to visualize and char-

acterize (high-dimensional) dynamical systems starting from a matrix encoding the

recurrences of the system states over time.

3.1 Representing ESN Dynamics with RP

The sequence of ESN states can be seen as a multivariate time-series 𝐡, relative to

the Nr neuron activations. An RP is constructed by calculating a t
max

× t
max

binary

matrix 𝐑. The generic element Rij is defined as

Rij = 𝛩(𝜏RP − d(𝐡[i],𝐡[j])), 1 ≤ i, j ≤ t
max

, (7)

where d(⋅, ⋅) is a dissimilarity measure operating in phase space (e.g., Euclidean,

Manhattan, or max-norm distance), 𝛩(⋅) is the Heaviside function and 𝜏RP > 0 is a

user-defined threshold used to identify recurrences. 𝜏RP can be defined in different

ways, but typically chosen to be proportional to a percentage of the average or the

maximum phase space distance between the states. Figure 2 depicts the algorithmic

steps required to generate an RP on ESN states.

Depending on the properties of the analyzed time-series, different line patterns

emerge in a RP [28]. Besides providing an immediate visualization of the system

properties, from 𝐑 it is possible to derive several complexity measures, those asso-

ciated with an RQA. Such measures are defined by the distribution of both verti-

cal/horizontal and diagonal line structures present in the RP and provide a numer-

ical characterization of the underlying dynamics. Several RQA measures are based

on the histograms P(l) and P(v), counting, respectively, the diagonal and vertical

lines having lengths l and v,



150 F.M. Bianchi et al.

P(l) =
t
max

−l∑

i,j=1
(1 − Ri−1,j−1)(1 − Ri+l,j+l)

l−1∏

k=0
Ri+k,j+k;

P(v) =
t
max

−v∑

i,j=1
(1 − Ri,j)(1 − Ri,j+v)

v−1∏

k=0
Ri,j+k.

The RQA measures considered here are summarized in Table 1; abbreviations and

notation are kept consistent with [29].

3.2 Visualize and Classify Reservoir Dynamics

In the following, we show how RPs permit to visualize, and hence classify, reservoir

dynamics when ESN is fed with inputs possessing well-known characteristics. We

consider a stable ESN described by (3); RPs are constructed following the procedure

depicted in Fig. 2. Although many classes of signals/systems exist (with related sub-

classes) [29], here we focus on the ability to discriminate between important classes

for the input signals: (i) with/without time-dependence, (ii) periodic/non-periodic

Fig. 2 When 𝐱[t] is fed as input to the Nr neurons of the ESN reservoir, the internal state is updated

to 𝐡[t] = [h1[t], h2[t],… , hNr
[t]]T , where hn[t] is the output of the n-th neuron. Once the time-series

𝐡 is generated, the RP is constructed by using a threshold 𝜏RP and a dissimilarity measure d(⋅, ⋅). If

d(𝐡[t],𝐡[i]) ≤ 𝜏RP, the cell of the RP in position (t, i) is colored in black, otherwise it is left white.

The elements in gray highlight the operations performed at time-step t. Taken from [6]
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Fig. 3 RPs generated by state sequences 𝐡 of ESNs fed with input signals taken into account. Both

axes represent time. Taken from [6]



152 F.M. Bianchi et al.

Table 1 Definition of RQA measures

RR = 1
t2
max

∑t
max

i,j=1 Rij Recurrence rate, a measure of density of recurrences in 𝐑. It

corresponds to the correlation sum, an important concept used in

chaos theory. RR can help to select 𝜏RP when performing multiple tests

on different conditions, e.g., by preserving the rate

DET =
∑tmax

l=lmin
lP(l)

∑tmax

l=1 lP(l)
Determinism level of the system, based on the percentage of diagonal

lines of minimum length lmin. A periodic system would have DET
close to unity and close to zero for a signal with no time-dependency

Lmax = max{li}
Nl
i=1 Maximum diagonal line length, with 1 ≤ Lmax ≤

√
2t

max
. li is ith

diagonal line length and Nl is the total number of diagonal lines,

defined as Nl =
∑

l≥lmin

P(l)

DIV = 1∕Lmax Mean exponential divergence in phase space, related to correlation

entropy of the system. Notably, chaotic systems do not present long

diagonal lines, as trajectories diverge exponentially fast

LAM =
∑tmax

v=vmin
vP(v)

∑tmax

v=1 vP(v)
Presence of laminar phases, which denote states of the system that do

not change or change very slowly for a number of consecutive

time-steps. vmin is the minimal vertical line length considered

ENTR =

−
t
max∑

l=1
p(l) ln(p(l))

Diagonal lines distribution, with p(l) = P(l)∕Nl. In absence of

time-dependence, ENTR ≃ 0, i.e., the diagonal lines distribution is

fully concentrated on very short lines. Conversely, ENTR increases

when the diagonal lines distribution become heterogeneous

motions, (iii) laminar behaviours, (iv) chaotic dynamics, and finally

(v) non-stationary processes. We refer to the examples depicted in Fig. 3 to discuss

the RP relative to each class.

Time-dependency: a uniformly distributed RP denotes absence of time-dependence

in the time-series. Specific RQA measures, such as DET and ENTR (Table 1), can

be used to numerically investigate the presence of time-dependency, as their val-

ues is very low if the signal is uncorrelated. For periodic signal with a strong time-

dependency, DET would be very high, but ENTR would still be low. In fact, ENTR

measures the complexity of the signal, which is low if there is no temporal structure.

Figure 3a depicts the RP generated by feeding the ESN with Gaussian white noise,

a typical example of signal with no time-dependency. Reservoir states generates a

uniform RP, which is peculiar of signals composed by realizations of statistically

independent variables.

Periodicity: every periodic system would induce long diagonal lines and the vertical

spacing provides the period of the oscillation. A periodic system is typically accom-

panied by high values for DET and Lmax, while its low complexity is expressed by

ENTR. In Fig. 3b, we show an example of periodic motion generated by reservoir

neurons, when ESN is fed with a sinusoid having a single dominating frequency. The

regularity of the diagonal lines can be immediately recognized from the figure.
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Laminarity: a system presents laminar phases if its state does not change or change

very slowly over a number of successive time-steps. Laminar phases can be visually

recognized in an RP by the presence of black rectangles. Every system possessing

laminar phases is characterized by high values for LAM. To provide an example,

we consider the logistic map (LM), defined by the differential equation 𝐱[t + 1] =
𝜏LM𝐱[t](1 − 𝐱[t]), where usually 𝜏LM ∈ (0, 4]; here we set the initial condition 𝐱[1] =
0.5. Figure 3c depicts RP obtained for 𝜏LM = 3.679, where the system exhibits chaos-

chaos transitions. In fact, such a RP is compatible with the one of a (mildly) chaotic

system, showing the presence of laminar phases (large black rectangles).

Chaoticity: RPs offer a particularly useful visual tool in the case of chaotic dynamics,

which are characterized by the presence of erratic and very short diagonal lines. As a

consequence, RR would be very low. ENTR is also useful to determine the degree of

chaoticity: the higher its value, the more chaotic/complex the system. Chaos is char-

acterized by trajectories diverging exponentially fast. This can be quantified with

Lmax and DIV, whose values would be respectively very low and close to one for

systems with a high degree of chaoticity. As an example, we consider a chaotic sys-

tem obtained through LM set with 𝜏LM = 4. The reservoir dynamics, as shown in the

RP in Fig. 3d, denotes fully developed chaos, as indicated by the presence of short

and erratic diagonal lines.

Non-stationarity: Peculiar line patterns observed for all nonstationary signals include

large white areas with irregular patterns denoting abrupt changes in the dynamics.

Drift is a typical form of nonstationarity, which is visually recognized in an RP by the

fading of recurrences in the upper-left and lower-right corners. In Fig. 3e, we show

an example by feeding the ESN with a well-known nonstationary signal: Brownian

motion, a random walk resulting in a nonstationary stochastic process; whose incre-

ments correspond to Gaussian white noise, a stationary process. In Fig. 3f we show

an example of drift, obtained by adding a linear trend to a sinusoid. Nonstationar-

ity can be numerically detected by considering an RQA measure called TREND (not

used in our study) and by analyzing the variation of RQA measures when time-delay

is applied to the signal (see [29] for technical details).

3.3 Recurrence Analysis to Determine ESN Stability

In this section, we show how recurrence analysis can be used to assess stability for

a given configuration. We perform two experiments: in the first one, we use RPs to

visualize reservoir dynamics when driven by a given input signal. When the reservoir

operates in a stable regime, RPs of reservoir and input show similar line patterns. In

a second experiment, We show that Lmax is anticorrelated with 𝜆 and hence it can

be considered as a reliable indicator for the (input-dependent) degree of network

stability.

To test our methodology, we consider two time-series generated respectively by

an oscillatory and by the Mackey-Glass (MG) dynamical system [47]. We chose
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these two signals since both of them are often considered as benchmarks for predic-

tion in the ESN literature [18, 57] and they exemplify a very regular and a mildly

chaotic system, respectively. In both experiments, we consider an ESN with no out-

put feedback, configured with a standard setting: uniformly distributed weights in

[−1, 1] for Wr
i and Wr

r, percentage of non-zero reservoir connections 𝜃RC = 25%.

The readout is trained by setting the regularization parameter in the ridge regres-

sion to 0.1. According to the standard drop-out procedure, we discarded the first 100

elements of 𝐡 in order to get rid of the ESN transient states. The number of reser-

voir neurons is set to Nr = 75. We used the Manhattan distance for evaluating the

dissimilarity in the phase space. The threshold 𝜏RP has been calculated by using a

percentage of the average dissimilarity value between the states in 𝐡. Our results are

easily reproducible by using the ESN
1

and RP
2

toolboxes available online.

The first experiment consists in generating the RP relative to the input sequence

{𝐱[t]}tmax

t=1 (sinusoid or MG time-series) and the ones relative to neuron activations

{𝐡[t]}tmax

t=1 , when the reservoir is configured with a spectral radius 𝜃SR that determines

a ordered or a chaotic dynamics.

In Fig. 4, we report the RPs relative to the input signal and the reservoir states,

generated for two different values of 𝜃SR. The left column is relative to the ESN

fed with a sinusoid and the right column to the ESN fed with the MG time-series.

As we can see, when 𝜃SR = 0.9 the ESN is stable and the dynamics of the input,

represented by the RPs in Fig. 4a and b produce very similar line patterns in the

RPs of the reservoirs, reported in Fig. 4c and d. Instead, when the spectral radius is

pushed far beyond unity, the ESN dynamics become unstable and the similarity in

the reservoir RPs is lost, as we can see from Fig. 4e and f.

In the second experiment, we evaluate the effectiveness of Lmax and DIV in deter-

mining the degree of stability in the ESN. Specifically, the higher the value of Lmax,

the more stable the system. The opposite holds for DIV, which is computed as the

reciprocal of Lmax (see Table 1). Our evaluation consists in comparing, 𝜆, a global

indicator of stability (see Eq. 5), with Lmax, the value of the longest diagonal line in

an RP, and with DIV. As before, we consider two ESN fed with the sinusoid and the

MG time-series. The correlations of these measures are reported in Table 2.

To visually assess the agreement of 𝜆 with Lmax and DIV, in Fig. 5 we show a 2D

depiction obtained by selecting a specific input scaling 𝜃IS = 0.8 and by varying 𝜃SR
in the interval [0.1, 2]. For the sinusoidal input, 𝜆 and Lmax are anticorrelated with

(Pearson) correlation equal to −0.74: the value of Lmax decreases as 𝜃SR increases,

while 𝜆, as expected, increases with 𝜃SR. Additionally, it is possible to observe that

there exists a positive correlation (0.53) between 𝜆 and DIV. Also for the MG time-

series, 𝜆 and Lmax show a good anticorrelation, with a value of −0.65. Analogously,

𝜆 and DIV are correlated with a slightly lower value of 0.57.

1
http://www.reservoir-computing.org/node/129.

2
http://www.recurrence-plot.tk/.

http://www.reservoir-computing.org/node/129
http://www.recurrence-plot.tk/
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Fig. 4 RPs of input signal and sequence of states of the reservoir. When 𝜃SR = 0.9, the ESN is

stable and the activations are compatible with the input dynamics. When 𝜃SR exceeds one, the

activations denote instability. Taken from [6]
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Table 2 Correlations between 𝜆, DIV, and Lmax for sinusoid input and MG time-series

corr(𝜆,Lmax) corr(𝜆,DIV)
Sin −0.74 0.53

MG −0.65 0.57
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(a) Sinusoid: Lmax, λ
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and DIV
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(b) MG: Lmax, λ and DIV

λ

Fig. 5 Value of 𝜆 (gray solid line), value of Lmax (solid black line), and the value of DIV (dashed

black line) for the ESN fed with sinusoid input (left) and MG time-series (right). Taken from [6]

Even if in Fig. 5 we provide a visualization only for a specific value of input scal-

ing, it is important to remark that the agreement between 𝜆 and Lmax is consistent

for the entire range of 𝜃IS, confirming that statistics of the RP diagonal lines offer

consistent and solid complexity measures that are able to characterize the network

stability.

4 Detection of Critical Dynamics with Fisher Information

In the last part of this chapter, we present a theoretically motivated, unsupervised

method based on Fisher information for determining the edge of criticality in ESNs

(see [22] for details). It is proven that Fisher information is maximized for (finite-

size) systems operating near or on the edge of criticality [38]. Accordingly, the

hyperparameters, which indirectly affect ESN performance, are suitably controlled

to identify a collection of network configurations that maximize Fisher information

and computational performance. Since no assumption regarding the mathematical

model of the (input-driven) dynamic system is made, the method can handle any

type of applications. Additionally, it is independent of the particular reservoir topol-

ogy, since it operates in the hyperparameter space. This allows the network designer

to instantiate a specific architecture based on problem-dependent design choices.

However, Fisher information is notoriously difficult to compute and either requires

the probability density function or the conditional dependence of the system states

with respect to the model parameters. In the proposed framework, we take advantage

of a recently-developed non-parametric estimator of the Fisher information matrix

[4].
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4.1 Fisher Information Matrix and the Non-parametric
Estimator

Fisher information matrix (FIM) [62] is a symmetric positive semi-definite (PD)

matrix, whose elements are defined as follows:

Fij(p𝜽(⋅)) =
∫


p
𝜽
(𝐮)

(
𝜕 ln p

𝜽
(𝐮)

𝜕𝜃i

)(
𝜕 ln p

𝜽
(𝐮)

𝜕𝜃j

)
d𝐮, (8)

where p
𝜽
(⋅) is a parametric probability density function (PDF), which depends on

d parameters 𝜽 = [𝜃1, 𝜃2,… , 𝜃d]T ∈ 𝛩 ⊂ ℝd
; 𝛩 is the parameter space. In the ESN

framework, 𝜽 contains the hyperparameters under consideration. In (8), ln p
𝜽
(⋅) is

the log-likelihood function and  ⊆ ℝD
denotes the domain of the PDF. To simplify

notation, we denote 𝐅(p
𝜽
(⋅)) as 𝐅(𝜽). The FIM contains d(d + 1)∕2 distinct entries

encoding the sensitivity of the PDF with respect to the parameters 𝜽.

Fisher information is tightly linked with statistical mechanics and, in particular,

with the field of (continuous) phase transitions. In fact, it is possible to provide a

thermodynamic interpretation of Fisher information in terms of rate of change of the

order parameter [38], quantities used to discriminate the different phases of a system.

This fact provides an important link between the concept of criticality and statistical

modeling of complex systems. It emerges that the critical phase of a thermodynamic

system can be mathematically described as that region of the phase space where the

order parameters vanish and their derivatives diverge. This implies that, on the crit-

ical region, FIM diverges as well, hence providing a quantitative, well-justified tool

for detecting the onset of criticality in both theoretical models and computational

simulations [59]. In the ESN framework considered here, we identify the edge of

criticality as the region in parameter space where the Fisher information is maxi-

mized. Figure 6 provides an intuitive illustration, linking criticality and ESNs.

Calculation of the FIM (8) requires full analytical knowledge of the PDF. How-

ever, in many experimental settings either the PDF underlying the observed data is

unknown or the relation linking the variation of the control parameters 𝜽 and the

resulting p
𝜽
(⋅) depends on an unknown function. Recently, a non-parametric estima-

tor of the FIM based on divergence measure

D
𝛼

(p, q) = 1
4𝛼(1 − 𝛼) ∫

(𝛼p(𝐮)(1 − 𝛼)q(𝐮))2
𝛼p(𝐮)(1 − 𝛼)q(𝐮)

d𝐮 − (2𝛼 − 1)2, (9)

was proposed [4], with 𝛼 ∈ (0, 1); p(⋅) and q(⋅) are PDFs both supported on . D
𝛼

belongs to the family of f -divergences and it can be computed directly by means of

an extension of the Friedman-Rafsky multi-variate two-sample test statistic [13].

FIM can be approximated by using a proper f -divergence measure computed

between the parametric PDF of interest and a perturbed version of it [17]. Notably,

by expanding Eq. 9 up to the second order we obtain:
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Fig. 6 The approach based on FIM maximization used to identify a continuous phase transition

can be adopted also to characterize dynamics in ESNs. In this context, ESN hyperparameters (e.g.,

spectral radius, input scaling) play the same role of the control parameters in a thermodynamic

system. FIM can be used to identify the critical region in the ESN hyperparameter space, where the

computational capability is maximized. Taken from [22]

D
𝛼

(p
𝜽
, p

̂𝜽
) ≃ 1

2
𝐫T𝐅(𝜽)𝐫, (10)

where ̂𝜽 = 𝜽 + 𝐫, being 𝐫 ∼  (𝟎, 𝜎2𝐈d×d) a small normally distributed perturbation

vector with standard deviation 𝜎.

In the following, we omit 𝜽 and we refer to the estimated FIM as ̂𝐅. According to

[4], FIM can be estimated through least-square optimization:

̂𝐅hvec = (𝐑T𝐑)−1𝐑T𝐯
𝜽
, (11)

where 𝐯
𝜽
= [v

𝜽
(𝐫1),… , v

𝜽
(𝐫M)]T , with v

𝜽
(𝐫i) = 2D

𝛼

(p
𝜽
, p

̂𝜽i
), i = 1,… ,M, and

D
𝛼

(⋅, ⋅) is computed by means of the Friedman-Rafsky test. 𝐑 is a matrix con-

taining all M perturbation vectors 𝐫i arranged as column vectors, and ̂𝐅hvec is the

half-vector representation of ̂𝐅. Note that a vector representation ̂𝐅vec of ̂𝐅 reads as
[
f11,… , fm1, f12,… , fmn

]T
. Since ̂𝐅 is symmetric, it can be represented through the

half-vector representation, ̂𝐅hvec, which is obtained by eliminating all superdiagonal

elements of ̂𝐅 from ̂𝐅vec [24]. ̂𝐅hvec in Eq. 11 is hence defined as
[
̂f11,… ,

̂fdd, ̂f12,… ,

̂fd(d−1)
]T

, where the diagonal elements are located in the first components of the

vector.

4.2 Tuning ESN by Exploiting FIM Properties

In the following, we define the procedure to identify the edge of criticality, here

defined as parameter configurations  ⊂ 𝛩 that maximize the ESN computational
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Collect ESN
activations

Sθ = {h[k]}K
k=1

Non-parametric
estimation
of FIM F̂(θ)

Evaluate
determinant

of F̂(θ)

Initial parameter
configuration θ0

Input signal
x[1], . . . ,x[K]

arg max
θ∗∈Θ

det(F̂(θ∗))

Select new ESN hyperparameters θ

Fig. 7 Schematic, high-level description of the proposed procedure. Taken from [22]

capability. Figure 7 shows a schematic description of the main phases involved in the

proposed method.

In order to determine , we introduce an algorithm that take advantage of the

FIM properties on a system undergoing a continuous phase transition. FIM defines

a metric tensor for the smooth manifold of parametric PDFs embedded in 𝛩 [38],

providing thus a geometric characterization of the system under analysis. It is pos-

sible to prove [33] that  corresponds to a region in 𝛩 characterized by the largest

volume (high concentration of parametric PDFs). This geometric result is reflected

in the determinant det(𝐅(𝜽)), which is monotonically related to the aforementioned

volume in parameter space. Therefore, considering that the FIM is a PD matrix, and

hence its determinant is always non-negative, we identify  with all those hyperpa-

rameters 𝜽
∗

for which:

𝜽
∗ = arg max

𝜽∈𝛩
det(𝐅(𝜽)). (12)

Algorithm 1 delivers the pseudo-code of the proposed procedure. The impact pro-

vided by the variation of the control parameters 𝜽 on the resulting ESN state cannot

be described analytically without making further assumptions [31]: the (unknown)

input signal driving the network plays an important role in the resulting ESN dynam-

ics. Therefore, in order to calculate 𝐅(𝜽), in Algorithm 1 we rely on the non-

parametric FIM estimator described in Sect. 4.1. The estimation of the FIM for a

given 𝜽 is performed by analyzing the sequence 
𝜽
= {𝐡[t]}tmax

t=1 of reservoir neu-

ron activations. Since 𝐡[t] ∈ [−1, 1]Nr , the domain of the PDF in (8) is defined as

 = [−1, 1]Nr . Additional sequences of activations, 
̂𝜽j

, are considered (see line 7),

which are obtained by perturbing M times the current network configuration 𝜽 under

analysis, and processing the same input 𝐱. Perturbations are introduced by means of

a small zero-mean noise with spherical covariance matrix, thus characterized by a

single scalar parameter 𝜎 controlling the magnitude of the perturbation. FIM is esti-

mated according to Eq. 11. In order to make the estimation more robust, we follow

an ensemble approach and perform a number of trials (see line 3). The determinant

is computed only once on the resulting average FIM, which is obtained by using T
different (and independent) random realizations of the ESN architecture (see line

16).



160 F.M. Bianchi et al.

Algorithm 1 Procedure for determining an ESN configuration on the edge of criti-

cality.

Input: An ESN architecture, input 𝐱 = {x[i]}tmax
i=1 , quantized parameter space 𝛩, standard deviation

𝜎 for the perturbations, number of trials T and perturbations M.

Output: A configuration 𝜽
∗ ∈ 

1: Select an initial parameter configuration, 𝜽 ∈ 𝛩; maximum 𝜂 = 0
2: loop
3: for t = 1 to T do
4: Randomly initialize the ESN weight matrices

5: Configure ESN with 𝜽 and process input 𝐱
6: Collect the related activations 

𝜽
= {𝐡[i]}tmax

i=1
7: for j = 1 to M do
8: Generate a perturbation vector 𝐫j ∼  (𝟎, 𝜎2𝐈d×d)
9: Randomly initialize the ESN weight matrices

10: Configure ESN with perturbed version ̂𝜽j = 𝜽 + 𝐫j and process input 𝐱
11: Collect the related activations 

̂𝜽j
= {𝐡[i]}tmax

i=1
12: end for
13: Define 

̂𝜽
= ∪M

j=1 ̂𝜽j

14: Estimate the FIM 𝐅(t)(𝜽) of trial t using 
𝜽

and 
̂𝜽

with the non-parametric estimator

introduced in Sect. 4.1

15: end for
16: Compute the average FIM, 𝐅(𝜽), using all 𝐅(t)(𝜽), t = 1,… ,T
17: if det(𝐅(𝜽)) > 𝜂 then
18: Update 𝜂 = det(𝐅(𝜽)) and 𝜽

∗ = 𝜽

19: end if
20: if Stop criterion is met then
21: return 𝜽

∗

22: else
23: Select a new 𝜽 ∈ 𝛩 based on a suitable search scheme

24: end if
25: end loop

4.3 Results

In the following, we compare the agreement between the hyperparameter config-

urations identified by the unsupervised FIM-based approach as the edge of criti-

cality, with the configurations where supervised performance measures are maxi-

mized. Specifically, we consider the prediction accuracy, defined as 𝛾 = max{1 −
NRMSE, 0}, where NRMSE is the Normalized Root Mean Squared Error of the

ESN. Then, we account the memory capacity (MC), which quantifies the capability

of ESN to remember previous inputs, relative to an i.i.d. signal. MC is measured

as the squared correlation coefficient between the desired output, which is the input

signal delayed by different delays 𝛿 > 0, and the observed network output 𝐲[t]:

MC =
𝛿

max∑

𝛿=1

cov
2 (𝐱[t − 𝛿], 𝐲[t])

var (𝐱[t − 𝛿]) var (𝐲[t])
. (13)
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MC is computed by training several readout layers, one for each delay 𝛿 ∈ {1, 10,… ,

100}, while keeping fixed input and reservoir layers.

To test the effectiveness of the identified edge of criticality in terms of forecast

accuracy, we consider the prediction of the sinusoid and the MG time-series. We

also take into account the NARMA task,

𝐲[t + 1] = 0.3𝐲[t] + 0.05𝐲[t]
( r−1∑

i=0
𝐲[t − i]

)

+ 1.5𝐱[t − r]𝐱[t] + 0.1, (14)

being 𝐱[t] an i.i.d. uniform noise in [0, 1].
In addition to the spectral radius 𝜃SR and the input scaling 𝜃IS, we consider also

the effect of the density of the reservoir connections 𝜃RC as a core hyperparameter.

The hyperparameters are searched in a discretized space through a grid search, which

considers 10 different configurations for each parameter. Specifically, we search for

the spectral radius 𝜃SR in [0.4, 1.6], input scaling 𝜃IS in [0.3, 0.8], and reservoir con-

nectivity 𝜃RC in [0.1, 0.7], evaluating a total of 1000 hyperparameter configurations.

Since we considered a parameter space with three dimensions, the related edge of

criticality  is a two-dimensional manifold embedded in such a three-dimensional

space. For each hyperparameter configuration, in Algorithm 1 we perform T = 10
independent trials and M = 80 perturbations to compute the ensemble average of the

FIM; the variance for the perturbations is set to 𝜎

2 = 0.25. In each trial, we sample

new (and independent) input and reservoir connection weights (Wr
i and Wr

r).

In Fig. 8, we report the critical regions of the parameter space identified in each

test by: maximization of FIM determinant, denoted by 𝜙, zero-crossing of MLLE

(𝜆), and maximization of minimum singular value of the Jacobian (𝜂). The light

gray manifold corresponds to the regions in parameter space where the performance

of the network is maximized and the dark gray manifolds represent 𝜙, 𝜆, and 𝜂. In

Table 3, we report the numerical values of the correlations between the light gray

manifold and the dark gray ones.

The numerical values of the correlations are reported in Table 3. As it is possible

to notice in Fig. 8a, the critical regions identified by each one of the three methods

follow with good accuracy the region of the hyperparameter space where MC is

maximized. The degrees of correlation for the MC task are described in Table 3. It

is interesting to note that 𝜆 shows a very high correlation (81%) preforming better

than 𝜂 for this task. The correlation between 𝜙 and the region with maximum MC is

also very high (75%), showing that both 𝜙 and 𝜆 can be used as reliable indicators

to identify the optimal configurations that enhance the short-term memory capacity

of ESNs. The p-values for each correlation measure are lower than 0.05, indicating

statistical significance of the results.

Relative to the prediction of the sinusoid, as it is possible to observe in Fig. 8b,

both 𝜙 and 𝜂 are consistent with 𝛾 , while 𝜆 shows a lower agreement. From Table 3,

we see that 𝜙 achieves the best results, all the measures have positive degrees of

correlation with 𝛾 and small p-values (hence statistical significance).
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Fig. 8 In each figure, the light gray manifold represents configurations of spectral radius (𝜃SR),

input scaling (𝜃IS), and reservoir connectivity (𝜃RC) that maximize Memory Capacity (MC) or pre-

diction accuracy (𝛾). The dark gray manifolds represent (from left to right): configurations where

the FIM determinant is maximized (𝜙); configurations where MLLE crosses zero (𝜆); configura-

tions where mSVJ is maximized (𝜂). Taken from [22]
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Table 3 Correlations between the regions where FIM determinant is maximized (𝜙), MLLE

crosses zero (𝜆), minimum singular value of the Jacobian is maximized (𝜂) and performances are

maximized (𝛾/MC). Best results are shown in bold, p-values are reported in brackets

Test Corr (𝜙, 𝛾/MC) (𝜆, 𝛾/MC) Corr (𝜂, 𝛾/MC)

MC 0.75 (1e-5) 0.81 (1e-8) 0.65 (1e-4)

Predict—SIN 0.58 (0.02) 0.52 (1e-3) 0.56 (1e-3)

Predict—MG 0.71 (1e-5) 0.66 (1e-4) 0.38 (0.06)

Predict—NARMA 0.52 (0.01) 0.25 (0.22) 0.48 (0.02)

In MG test, both 𝜙 and 𝜆 provide better results than 𝜂 to identify the optimal

configuration, as we can see from Fig. 8c and the results in the table. Notably, the

correlation between 𝛾 and 𝜂 has a p-value beyond the confidence level 0.05, suggest-

ing that correlations are not different from zero.

According to the results shown in Fig. 8d and Table 3, in the NARMA task 𝜙 and

𝜂 perform significantly better than 𝜆 for identifying the critical region. If fact, the

correlation between 𝛾 and 𝜆 is low and not statistically significant. Even in this case,

the best results in terms of correlation are achieved by 𝜙.

5 Concluding Remarks and Future Research Perspectives

In this chapter, we presented recent research developments for the characterization

and tuning of echo state networks. We have shown how recurrence plots can be gen-

erated from reservoir neurons activations and exploited by the designer as visual

tools to analyze the response of the network to a specific input. Recurrence plots

provide an immediate visual interpretation of network stability: short and erratic

diagonal lines denote instability/chaoticity, while long diagonal lines denote regu-

larity (e.g., a periodic motion). Through the recurrence quantification analysis, the

designer can deduce important and consistent conclusions about the behavior of the

network, depending on the actual input driving the system and the current configu-

rations of the hyperparameters.

Successively, we discussed a method that establishes a connection between the

notion of continuous phase transition, echo state networks, and Fisher information.

Based on this interplay, we have developed a principled approach to configure ESNs

on the edge of criticality, where computational capability (defined in terms of pre-

diction performance and short-term memory capacity) is maximized. The proposed

methodology is completely unsupervised and it opens new perspectives for analyz-

ing the dynamics of driven recurrent neural networks. Fisher information requires

analytic knowledge of the distribution ruling the system. To address this issue, we

have followed an ensemble estimation approach based on a recently proposed non-

parametric FIM estimator, which, thanks to a graph-based representation of the data,

is also applicable to high-dimensional densities. This last aspect plays a fundamental
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role in our domain of application, since we analyze the network through a multivari-

ate sequence of reservoir neuron activations; hence the number of dimensions is

determined by the number of reservoir neurons. We evaluated the proposed method

on benchmarks of short-term memory capacity and prediction accuracy, to identify

the ESN hyperparameters maximizing the computational capability. We compared

our method with established criteria based on the sign of the maximum local Lya-

punov exponent and the minimum singular value of the Jacobian. Our experiments

demonstrated that the FIM-based approach achieves comparable or even better accu-

racy than the two other indicators in identifying the onset of criticality.

The methodologies discussed here are independent of the particular task at hand

and offer an insight on the dynamics and actual functioning of the network. In this

sense, the proposed framework of analysis represents a step forward to the under-

standing of these systems that, even if are capable of solving efficiently a variety

of tasks, are often treated as black boxes. We believe that, the linkage of methods

from the complex systems field with recurrent neural networks offers the potential

to disclose a whole new set of opportunities for further studies and applications.

Our future directions point toward graph-based approaches, which demonstrated to

be powerful tools to represent complex systems and to model their dynamics when

observed through time-series [19].
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